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Problem 9 : SVD, Least squares

We reconsider Example 1.1.1 from the lecture notes. For t € [0, 1] the following func-

tions are given:

g(t) = &t + Eae' + Est?, & =(&,6,6) = (1.2, 0.6, 1.6)7,
g(t) = glt + £2€t + €3t3 + 54 Sintv é* = (fla 62753754)T = (127 067 167 OQ)T

Using discrete points ¢; = iAt, i = 1,...,6 for At = 0.15, we get (exact) data vectors
v,y € R® with y; = g(¢;) and §; = §(t;), respectively. In the following we assume that
the exact parameter values 5*,5* are unknown and are determined by a least-square

formulation using (measurement) data at t;, i = 1,...,6.

e Construct matrices A € RS*3 and A € R4 such that A¢* = y and AE* = § in
MATLAB. Verify this by computing A+xxi - y and AHat+*xiHat - yHat.

e We choose perturbations dy' = 1072(1,0,—1,-1,-0.5 1), dy* :=
1072 (—=1,1,1,-0.5, -2, 1)T, yielding perturbed data y* = y + dy¢, J° = § + 6y,

1 = 1,2, and consider the corresponding least-squares problems
|AE — ¢ll; = min  and  |JA = §|]y — min,  i=1,2.

Solve these least-squares problems using the backslash operator, i.e., xi = A\y,
and compute the errors ||€F — £*[|s, [|€F — €2, i = 1,2. Verify that you get the

same errors as given in the lecture notes.

e To analyze the error propagation for the least-squares problems, compute the
SVD of A and A, respectively, by using the svd command in MATLAB. Discuss
for both matrices: what is the largest possible error amplification, and for which

kind of perturbation does it occur?

e Considering the least-squares problem for g, represent the perturbations dy’ € RS,
1 = 1,2, in a suitable orthonormal basis. Why is there such a large error in 52,

but only a mild error amplification in é 17
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Problem 10 : Backwards heat equation

We consider the 1D (forwards) heat equation (cf. Section 1.3 in the lecture notes)

u(x,t) — Qug(x,t) =0  for z €0,L],t €[0,7T], (1)
uw(0,t) =U(L,t) =0  forte0,T], (2)
u(z,0) = ug(x) for x € [0, L], (3)

with length L = 7, final time 7" = 5, heat conduction coefficient o« = 10~2 and initial
temperature ug(x) = sin(z) + 0.2sin(8x). For the backward heat equation, the initial

condition (3) is replaced by a final condition u(z,T) = up(x), x € [0, L.

Spatial discretization on a uniform 1D grid leads to the discrete problem

w(t) — Cu(t) =0 for t € [0, 7], (4)
u(0) = o, (5)
with
2 -1
-1 2 -1 0
L
C:% e R™", formeshsizeh:n+1.

0 -1 2 -1
-1 2

e Compute the eigenvalues and eigenvectors of C' for n = 100. Plot the eigenvectors

corresponding to the smallest and largest eigenvalue, respectively.

e The solution of (4)—(5) is given by w(t) = exp(—tC)uy. Compute ur = u(T)
with MATLAB. Adding a perturbation 1e-2+randn (n, 1) with normal dis-
tribution and variance ¢ = 1072 to uy yields the measured final temperature

wpes. Plot up, ur, wp® together in one figure (hold on ...hold off).

e Using @} as final condition, compute the estimated initial temperature 4 =

#(0) which is the solution of the corresponding backward heat equation. Plot

Up, U together in one plot.

e Repeat the previous steps for n = 50 and n = 25. Which amount of ill-posedness

do you observe on these coarser grids?
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Problem 11 : TSVD, Tikhonov

We reconsider the least squares problem for g from Problem 9. For easier notation, we

drop the ‘"7 in the following.

g(t) = glt + €2€t + €3t3 + 54 Sil’lt, 5* = (fla 52753754)T = (127 06a 167 OQ)T

Using discrete points ¢; = iAt, i = 1,...,6 for At = 0.15, we get an (exact) data vector
y € RS with y; = g(t;). In the following we assume that the exact parameter values &*
are unknown and are determined by a least-square formulation using (measurement)

data at t;, i =1,...,6.

We choose the perturbation dy = 6y? = 1072(—1,1,1,-0.5, -2, 1), yielding per-

turbed data § = y + dy and consider the corresponding least-squares problem

HAE— Jll2 — min.

a.) Plot the exact parameters £* and the estimated parameters ¢ = A'j together in
one figure. Plot the exact data y, the perturbed data § and the data fit § = AE

together in one figure. What do you observe?

b.) Compute the SVD of A, UTAV = ¥, and use the truncated SVD to get a
regularized solution éTSVD = VEIegU Ty, where in Y,¢, the smallest singular value
o4 was replaced by zero. As before, plot the parameters £*, éTSVD and the data

Y, Y, Y = AETSVD in respective figures. Discuss your results.

What happens if in ¥, also o3 is replaced by zero?

c.) Now we consider Tikhonov regularization, choosing v = 1. Note that this is
equivalent to replacing the normal equation A7 A ¢ = ATy by the modified normal
equation (ATA 4 o21)¢, = ATy. As before, plot the parameters £*, &, and the

data y,y,y = Aéa in respective figures. Discuss your results.

d.) Obviously, the parameter choice & = 1 was not optimal. To find a better choice,
we try a parameter range o € [1073,10%] (or logspace (-3, 3) in MATLAB).
Plot the parameter error ||€, — &*||» and the data error || A, — §|2 as functions of
a together in a 1oglog plot. What would be a better parameter choice o = o*?

Repeat c.) for this improved parameter o*.



