Parallel Computing for Simulation Sciences:
Project 3

Jaeyong Jung (359804)
July 12, 2016

Figure 1: Figure made by 32 processors

1. For the round-robin algorithm use the MPI _Isend version, such that com-
munication and computation can be performed to a certain extent concurrently.

The communication algorithm is conceived to allow communication to be done during
process of serial computation. It is compulsory to have MPI_Wait commands because send-
buffer should not be modified before MPI_Isend is finished. Consequentially, the location of
MPI_Wait affects the concurrency of communication and computation. To realize the con-
currency, MPI_Wait can be placed just before ”address_swaper”. If this is set before serial
computation, it will block computation until MPI_Isend is completely done. Therefore, the
concurrency can be realized by allowing MPI_Wait to be just before sendbuffer’s modification
code as close as possible.

// Wait unitil previous Isend is finished so that addresses can be
swaped .
if ((ipes+rounds) > 0)

MPI_Wait(&request [0] , MPLSTATUSIGNORE) ;
MPI_Wait(&request [1], MPILSTATUSIGNORE) ;
MPI_Wait(&request [2], MPLSTATUSIGNORE) ;

}

// Isend communication

// mpes —1 + round(=1) = npes is the last step

if ((ipes + rounds) < npes) {
// wait until previous sending (mzyz, data, node_found) is

finished

address_swaper(&mxyz_fine_send , &mxyz_fine) ;
address_swaper(&data_fine_send , &data_fine);
address_swaper(&node_found_send , &node_found) ;

MPI _Isend (&(mxyz_fine_send [0][0]) , nnc_fines*nsd,
MPLDOUBLE, next, 0, MPLCOMMWORLD, &request [0])

// calculated data stored in data_fine. Send what each
processor has now

MPI_Isend (&(data_fine_send [0][0]) , nnc_fines*ndf,
MPIDOUBLE, next, 1, MPLCOMMWORLD, &request[1]) ;

// calculated data stored in data_fine. Send what each

processor has mow

MPI _Isend (&(node_found_send [0]), nnc_fine, MPILINT, next,
2, MPLCOMM_WORLD, &request [2]);

// wait until previous sending (nnc_fine, offset_-nn) is
finished
if ((ipes+rounds) > 0)
{
MPI_Wait(&request [3], MPLSTATUSIGNORE) ;
MPI_Wait(&request [4] , MPLSTATUSIGNORE) ;
}
nnc_fine_send = nnc_fine;
offset _nn_fine_send = offset_nn_fine;
MPI Isend (&(nnc_fine_send), 1, MPLINT, next, 3,
MPLCOMM WORLD, &request [3]);
MPI_Isend (&(offset_nn_fine_send), 1, MPIINT, next, 4,
MPLCOMM.WORLD, &request [4])

’

2. For distributing the fine mesh nodes and coarse mesh elements, conceive
an algorithm that splits them as evenly as possible across the different processing
units.

Yes, they will behave differently if size of buffer is too much big. MPI_Send and MPI_Rsend
do not work with large buffer size. That is because temporary buffer in MPI_Send communi-
cation has limited size. If send buffer’s size exceeds a certain amount of memory, temporary
buffer cannot save send buffer’s data. Thus, MPI_Send and MPI_Rsend should be used
with small amount of send buffer. On computer cluster, it is measured that MPI_Send and
MPI_Rsend will work with buffer size of 505 at most.

On the other side, MPI_Isend works with large buffer size. The reason is that MPI_Isend
simply sends buffer’s data when there is a matching MPI_Recv. In conclusion, it is recom-
mendable to implement MPI communication with MPI_Isend on Round-Robin algorithm.

3. Comment on possible differences between the OpenMP- and MPI-parallelized
codes with respect to consistency and uniqueness of the generated results. Is
the generated file data.fine the same irrespective of the number of cores used for
execution? We do not require your code to be consistent in that regard.

MPI-parallelized codes will not have uniqueness of generated results, depending on num-
ber of processors. If the number of processors is changed, it will yield different results.
when there is a fine node that does not get into any coarse mesh with 0 tolerance, it will
be interpolated with different coarse elements. That is because that kind of node can be
interpolated with arbitrary element which allows 0.2 tolerance. Changing the number of
processors will yield a change in offsets. Consequentially, processors will have different set of
coarse elements, and try to do interpolation based on what they have. This nature of MPI-
parallelization engenders randomness of result. However, difference between results will be
not so big since tolerance is small.

On the contrary, the result of OpenMP is independent of the number of threads. The
reason is that every thread has shared memory so that will try to have a look on the same

coarse elements. To verify this in this project. Output file ”data.fine”’s values are compared
using MATLAB.

omp 8 | omp 6 | MPI 4 proc | MPI 8 proc | MPI 32 proc
8.75e-4 | 8.75e-4 9.38e-6 8.84e-4 9.39e-4

Table 1: Relative norm of error with respect to norm of data, made using 1 processor

Table 1 shows relative error of results. Reference is result made by one processor. 2-
norms of errors are calculated using MATLAB. After that, 2-norms of errors were divided
by the norm of the reference result. Regardless of using different number of threads to run
OpenMP, the value of relative error is 8.75e¢ — 4. Still, relative error of MPI depends on
the number of processors. Therefore, the result of MPI depends on the number of proces-
sors. Nevertheless, the difference is negligible since tolerance is small. Also, the result of
computation using MPI will be consistent if the number of processors is constant. That is
because the algorithm to split computational load is only dependent on number of processors.

4. At the end of our round-robin process, if sending fine mesh data, the data
may not reside on the same PE as it started on; this must be accounted by
proper offset before writing the data.

In general, each processors will have different set of nodes other than it used to have.
Therefore, it is important to keep track on offset of each set of nodes. By tracking the offset,
each processor will know where their final data will fit in and write them on proper point.
Below code includes MPI communication to pass offset value to next processor and receiving
one from previous processor.

// To make it sure that sending nnc, offset are complete.

if (ipes + rounds >0)

{
// previous step’s sending nnc_fine complete
MPI_ Wait(&request [3] , MPLSTATUSIGNORE) ;
nnc_fine_send = nnc_fine;
MPI_Isend (&(nnc_fine_send), 1, MPLINT, next, 3,

MPLCOMM. WORLD, &request [3]) ;

// sending offset_nn_fine complete

MPI_Wait(&request [4], MPLSTATUSIGNORE) ;

offset _nn_fine_send = offset_nn_fine;

MPI_TIsend (&(offset_nn_fine_send), 1, MPIINT, next, 4,
MPLCOMM. WORLD, &request [4]) ;

else

nnc_fine_send = nnc_fine;

offset _nn_fine_send = offset_nn_fine;

MPI_Isend (&(nnc_fine_send), 1, MPIINT, next, 3,
MPLCOMM WORLD, &request [3]) ;

MPI_Tsend (&(offset_nn_fine_send), 1, MPIINT, next, 4,
MPLCOMM WORLD, &request [4])

I

5. Tracking analysis of MPI communication

It is necessary to check how processors have communicated by visualizing it. Red bar
means time interval for MPI commands. In figure 2, it is seen that processors do commu-
nication with neighbour processors. In the first time interval, from 2.5 to 7.5 sec, several
processors finished communication very early and the others took more time. It means that
computational load, dependent on structure of mesh, is biased. If a processor has more
computational load, it will finish serial computation later. It lets next processor to wait
until the slow processor finishes. Also, it is seen that long red MPI_Recv bar is propagating
from O-th processor to 11-th processor. It shows that computational bias can be amplified
as communication goes on.

o

3174455

Timeline
0s 25s 50s 7.5s 10.0s 125s 15.0s 175s 200s 2255 2505 275s 300s [

thread:0
thread:1
thread:2
thread:3
thread:4
thread:5
thread:6
thread:7
thread:8
thread:9
thread:10
thread:11

All Processes, Accumulated Exclusive Time per Function
120s 100 s 80s G0 s 40s 20s Os

2.107 s [}] MPI_Init
0.548 SW MPI_Finalize

0.179 5| MPI_Reduce
10.025 ms | MPI_Isend

38.21 ps | MPI_Comm_rar

9.936 ps | MPI_Comm_siz

Figure 2: Overall communication graph

In summary, this tracking analysis insists that evenly distributed computational load is
crucial to shorten total runtime.

6. Considerations about scalability

In order to study how much MPI makes the program faster, runtime is measured. For

each number of processors, runtime is measured three times and average value is calculated.
Runtime, scalability, and parallel efficiency is visualized below.

Runtime
25 0 T T T T T T

200 1

150 b

Runtime

100 7

Number of processors

Figure 3: MPI Runtime

Scalability

16 T T

14 -

-
o
T

I

Scalability
o

Number of processors

Figure 4: MPI Scalability

Efficienc
1.1 T T T ;y

Efficiency
e o =
| o (L]
T T T
1 1 1

=]
[=}]
T
|

=}
un
T
1

0 5 10 15 20 25 30 35
Number of processors

]
B

Figure 5: MPI Efficiency

The scalability is linearly increasing with respect to number of processors, according to
Figure 4. At the same time, parallel Efficiency decreases inverse proportionally. It coincides
with Figure 2 that larger number of MPI communication will waste time on MPI_Recv. It
can be inferred from Figure 2 that as communication step goes on, it is more likely to waste
time on MPI_Recv. MPI communication with more processor is accompanied by more com-
munication steps, and it leads to bad parallel efficiency.

7. Another algorithm to improve scalability

As it is seen from previous Figures, the program is made to allow the concurrency but
wastes much time on MPI_ Recv. I changed the position of MPI_Wait to be right after
MPI_Recv. Runtime is measured in the same way as it has been done. The alternative
algorithm’s MPI_Wait looks like below code.

// Round—robin loop
for (int ipes=0; ipes <= npes—1; ipes++) {

// Irecv communication to get new data
if ((ipes + rounds) > 0) {

MPI_Recv(&(nnc_fine), 1, MPIINT, prev, 3,
MPLCOMM WORLD, MPI STATUSIGNORE) ;

MPI_Recv (& (mxyz_fine [0][0]), nnc_finexnsd,
MPIDOUBLE, prev, 0, MPLCOMM WORLD,

MPLSTATUSIGNORE) ;
MPI_Recv(&(data_fine [0][0]) , nnc_finesndf,
MPI DOUBLE, prev, 1, MPLCOMMWORLD,
MPISTATUSIGNORE) ;
MPI_Recv (& (node_found [0]) , nnc_fine, MPIINT, prev
. 2, MPLCOMM WORLD, MPLSTATUSIGNORE);
MPI Recv(&(offset _nn_fine), 1, MPLINT, prev, 4,
MPLCOMM WORLD, MPISTATUSIGNORE) ;

// wait until sending (mzxyz, data, node_found) is finished
MPI_Wait(&request [0] , MPLSTATUSIGNORE) ;
MPI Wait(&request [1], MPLSTATUSIGNORE) ;
MPI_Wait(&request [2] , MPLSTATUSIGNORE) ;
printf (7 [%d] MPI_Recv done, message size %d \n”,
mype, nnc_fine);

}

This code’s runtime and pattern of MPI communication prove that it is more fast and
efficient compared to the previous algorithm.

Runtime
250 T T
— previous algorithm
m— new algorithm
200
i 150 |
E
A
=
&
100
50
0 i i i i i i
0 2 10 15 20 25 30 35

Number of processors

Figure 6: MPI Runtime Comparison

Scalability

25 T T

 previous algorithm
e new algorithm

=
Lun
T
L

Scalability

b
o
T
L

0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of processors

Figure 7: MPI Scalability Comparison

Efficiency

1.2 T T

 previous algorithm
11 m new algorithm i

Efficiency

0.6

0.4 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of processors
Figure 8: MPI Efficiency Comparison
This result is unexpected at the first time since the first algorithm looks faster. The

computational is undertaken to compare two MPI communications. Figure 9 represents the
alternative MPI communication.

1 [} . N ES— " EW:EL D

Timeline
0s 3s 65 9s 12s 15 s 18

Master thread:0
Master thread:1
Master thread:2
Master thread:3
Master thread:4
Master thread:5
Master thread:8
Master thread: 7
Master thread:8
Master thread:9

5 2ls

Master thread:10
Master thread:11
All Processes, Accumulated Exclusive Time per Function
35s 30s 25 s 20s 15s 10s 5s Os
; : g ; ; " ; | MPI_Recv
{1,443 s [MPInit
: : : : : : i 38.93 ms | MP|_Finalize
37.685 ms | MP|_Reduce
12,302 ms | MP|_Isend
38.219 s | MPI_Comm_rank

10.19 us

Figure 9: Overall communication graph

MPI|_Comm_size

By comparing Figure 9 with Figure 2, it is clear that the alternative algorithm consumes
less time for MPI communication. In Figure 2, MPI_Recv takes 134 seconds but the alter-
native one takes only 37 seconds. Nevertheless, the alternative needs about 8 seconds more
to undertake MPI_Wait. This drawback is negligible since the alternative algorithm saves
97 seconds for MPI_Recv. Visually, Figure 9 looks that it has more structured and short
communication pattern compared to Figure 2. Although, the alternative algorithm does
not allow the concurrency between serial computation and MPI communication, it is much

faster.

It is evident that there should be another factor that affects MPI communication perfor-
mance other than the concurrency. Depending on structure of serial computational program
or interactions of MPI communication, sometimes, trying another method that opposites to

intuitive idea will be better.

10

