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1. Comparing graph from interpolation method and original graph from
coarse mesh.
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Figure 1: Comparing graph of coarse and fine mesh

2. Description about how the program works
My program is designed to minimize iterative steps for finding corresponding coarse element
of a fine node. The most outer loop is set to be parallel. That is because it is directive
to distribute every fine nodes to every thread. Also, by parallelizing the most outer loop,
overhead to wake up every thread can be prevented. If inner loop is parallel, threads have to
be waken up every time when parallel loop is called. Also, inner loop is modified to minimize
the number of iterations to search coarse elements with two tolerances.

At the beginning of for(1) loop, finding coarse element, the program starts finding elements
with 0.2 tolerance. If it finds an element with 0.2 tolerance, it saves interpolated data on
data_fine and try 0.0 tolerance right after that. flag_tol 1l is set to be 1 since interpolation is
done with larger tolerance. Nevertheless, the program still keep searching element with 0.0
tolerance until it finds an element with 0.0 tolerance. If an element for interpolation with
0.0 tolerance is found, interpolated data are saved on data_fine and flag_tol_s is set to be 1
and break from the loop. At last, those two flags are initialized and go for another iteration.
This idea is summarized below.

e The case of the element with 0.0 tolerance to exist. Computer searches element with 0.2
tolerance firstly. If it finds an element with 0.2 tolerance, it also tries interpolation with
0.0 tolerance. If it is hit, breaks the loop after saving interpolated values. Otherwise,
just keep searching on.

e On the other hand, the element with 0.0 tolerance do not exist. Computer tries inter-
polation with 0.2 tolerance. At some point, interpolation will be done and computer
will still keep searching for. Finally, computer saves an interpolation with 0.2 tolerance.

Implementation of parallel algorithm is done on main function. C code:

#pragma omp parallel for firstprivate(tol, tol2, flag_tol_l,
flag_tol_s) private(k, 1, m, xx, yy, zz, xi_eta_zeta,6 xe, ye,
ze, coarse_data) schedule(static)

for (i = 0; i < nn_fine; i++) {
J/printf(” Working on i= %d\n”,i);




xx = mxyz_fine[1][0];

yy = mxyz_fine[i]|[1];

zz = mxyz_fine[i][2];

{ // Loop over degrees of freedom and interpolate,
ndf = 4

// TODO: Interpolate the data_fine[i][k]. This
is the k—th degree of freedom of the i—th
node .

// In this project the number of degrees of
freedom is 1. Use for interpolation the
function

// YOUR CODE STARTS HERE

for (1 = 0; 1 < ne_coarse; l++) {
// Put element node’s coordinates
for (m = 0; m < NEN; mt+) {

xe [m| = mxyz_coarse|[mien_coarse [l
Jm]J[O];

ye [m] = mxyz_coarse|[mien_coarse |l
JIm]J[1];

ze [m] = mxyz_coarse|[mien_coarse |l
JIm]][2];

}

if (flag_tol_1 = 0)

{

if (check_with_tolerance(xi_eta_zeta , xe, ye, ze,
XX, yy, zz, tol2) = 1)

{

for (k = 0; k < ndf; k++) {
for (m = 0; m < NEN; mt+) {
coarse_data [m] = data_coarse |
mien_coarse[1][m]][k];

data_fine [i][k] = interpolate_data
(xi_eta_zeta , coarse_data);

}
1

} // We have interpolation with larger tolerance
but need to go for more iteration with 0
tolerance.

flag _tol_ 1 = 1;

if (flag_tol_ 1 = 1) // We got that tolerance 0.2




1s accepted in a specific case. Still, we neeed
to narrow it down with 0 tolerance.
{
if (check_with_tolerance(xi_eta_zeta , xe, ye, ze,
XX, yy, zz, tol) = 1) {
for (k = 0; k < ndf; k++)
{
for (m = 0; m < NEN; m+t+)
{
coarse_data [m] = data_coarse |
mien_coarse[1l][m]][k];

}

data_fine [i][k] = interpolate_data(xi_eta_zeta ,

coarse_data) ;
}
flag _tol_s = 1;

break; // breaking from 1 loop, since we got
interpolation with 0 toleration.
}

}
} // end 1

if (flag_tol_1 + flag_tol_s = 0) {
printf(”Impossible to interpolate points”)

)

exit(—1);

}

flag_tol_s = 0;
flag_tol_1 = 0;

Y // end k

Y // end i
// end of parallel loop

3. Study on scalability and scheduling
Scalability is investigated based on default ”Static” scheduling firstly. The maximum number
of threads are 12. After that, " Dynamic” scheduling experiments with varying chunk size
have been done to improve scalability. Finally, it is found that it is possible to attain 100%
parallel efficiency using ”Dynamic” scheduling.

Scalability with respect to number of threads is studied using default ”Static” scheduling
option.
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From those three graphs, it is observed that runtime decreases as number of threads
increases. From Figure 3, parallel efficiency is below 0.85. This parallel efficiency is good
in general. However, considering the most outer loop is parallel so that most of the code is
parallel, this efficiency is not remarkable. One of the reason why the parallel efficiency is not
so good is that every thread has different amount of computational load. To elaborate, every
thread tries to do interpolation on coarse mesh element from first one to last one for every
iteration. Depending on the distribution of fine nodes in coarse mesh matrix, each thread
can be assigned with coarse elements near to first one or the last one. Since some threads
may finish their job early and the others take more time, computational load can be biased.
Therefore, it is necessary to randomly distribute computational work loads onto threads to
run the program independently to coarse mesh matrix structure. ”Dynamic” scheduling is
alternative way to distribute computational load equally along threads.

For "Dynamic” scheduling test, number of threads is fixed as 12 and chunk size varies.
The first test’s chunk size number of fine nodes (110618) over number of threads (12). Based
on this, the chunk size is divided with natural numbers for "normalization”. Smaller chunk
size allows threads to have computational load randomly and equally.
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nn_fine

12 x 100°
The reason is that smaller chunk size makes threads to prevent having biased computational

From Figure 6 and 7, the parallel efficiency is the highest when chunk size is



load. It is unexpected that when the efficiency of chunk size 1 is a little bit slower than the
maximum value. The smallest chunk size does not guarantee maximum parallel efficiency.
”Overhead” is another factor that influences this phenomenon. If chunk size is too much
small, master thread should allocate new jobs to others quite often. As time is wasted on
assigning new jobs to threads, parallel efficiency will not be the best. Nevertheless, this
"Dynamic” schedule’s default chunk size option yields better computational performance
than ”Static” default does.

In conclusion, with 12 threads and ”Dynamic” schedule, it is possible to make this inter-
polation program 11.9042 faster, from Figure 7, than it used to be with single thread.



