
Computational Differentiation (WS1617)

J. Hüser, M.Sc., und Prof. Dr. U. Naumann

LuFG Informatik 12: Software and Tools for Computational Engineering
RWTH Aachen

STCE

Tutorial Sheet 2 (26.10.16)
(SAC and lDAG, Tangent Mode AD, Gradient Descent)

1 SAC and lDAG

Consider again Nesterov’s Chebyshev-Rosenbrock function f : Rn → R with

f(x) =
1

4
(x0 − 1)2 +

n−2∑
i=0

(xi+1 − 2x2
i + 1)2 .

Task: For n = 2 write down a single assignment code (SAC) and the corresponding linearized directed
acyclic graph (lDAG) like described in the lecture slides (slide 90 and the following). Also write down a
way of computing the elements of the gradient∇f(x) by following the chain rule on the lDAG.

2 Tangent Mode AD

During the exercise session we saw the following example of how to use dco/c++ for first order scalar
tangent mode algorithmic differentiation (AD):

#include <iostream >
#include <cmath>
using namespace s td ;

#include " dco . hpp "
using namespace dco ;

template <typename T>
T f (T ∗x) {

return (s in (x [0]) ∗ x [1] ∗ x [1] + 5 ∗ x [0]) ;
}

i n t main () {
gt1s <double > : : type x [2] , y ;
x [0] = 2 . 0 ;
x [1] = 2 . 0 ;
d e r i v a t i v e (x [0]) = 1 . 0 ;
d e r i v a t i v e (x [1]) = 0 . 0 ;
y = f (x) ;
cout << y << endl ;
cout << d e r i v a t i v e (y) << endl ;

return 0;
}

1

For the function f(x) = sin(x0)x
2
1 + 5x0 the above example prints y = f(2, 2) and

derivative(y) = ∇f(2, 2)
(
1
0

)
=

∂f

∂x0
(2, 2) .

The following demonstrates how to compile the above code under my Linux system:

• I downloaded dco/c++ and the licence file as described on the previous exercise sheet. My dco/c++
installation is in /home/jonathan/Downloads/dco_cpp_v3.1.4_trial_lin64_gcc and my
licence file is /home/jonathan/Downloads/keys.txt. The paths will probably be different on
your computer so you need to change them accordingly.

• Activate the licence key file by typing

export NAG_KUSARI_FILE=/home/jonathan/Downloads/keys.txt

into you shell. Note that the export will only be valid for the shell session in which you enter the
command. You need to do all the compilation and execution involving dco/c++ within that same
shell session.

• Compile the example program in example.cpp with

g++ -I/home/jonathan/Downloads/dco_cpp_v3.1.4_trial_lin64_gcc/include -c
example.cpp -o example.o

• Link the static library part of dco/c++ (the order of object file and libary matters)

g++ -I/home/jonathan/Downloads/dco_cpp_v3.1.4_trial_lin64_gcc/include example.o
/home/jonathan/Downloads/dco_cpp_v3.1.4_trial_lin64_gcc/lib/libdcoc.a -o
example

• Finally you can run the program with

./example

Task: Based on your implementation of Nesterov’s Chebyshev-Rosenbrock from the previous exercise
sheet write a function that computes the complete gradient using dco/c++ tangent mode AD. The tan-
gent mode AD gradient function should have the same interface as the finite difference gradient function
from the previous exercise sheet.

3 Gradient Descent

Download the heat_equation.zip archive from the 261016 folder in the L2P. Go over the finite
difference gradient descent implementation (in fd_grad.cpp) for the heat equation example develo-
ped during the last tutorial session. Also go over the tangent mode AD gradient implementation (in
gt1s.cpp) developed during the tutorial session. You should be able to get the example to run with
dco/c++ with the above instructions and replacing the file name of the .cpp file.
Task: Merge the two implementations into a gradient descent that uses tangent mode AD instead of
finite differences.

2

	SAC and lDAG
	Tangent Mode AD
	Gradient Descent

