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In the last decades, fiber reinforced composites have gained popularity in the applications
of light-weight designs. Inside composites, fibers are aligned in a certain direction for rein-
forcement, and matrix material surrounds the fibers. It is advantageous that the composite
has high stiffness and yield strength compared to its weight. That is because those fibers
are stronger than matrix materials, and they carry mechanical loads in that certain direction.
On the other hand, that composite is weak in directions orthogonal to that direction for rein-
forcement since matrix material is loaded mostly in that case. Consequently, the mechanical
response of such composites should be investigated before the composites are applied in
real engineering applications. Since experimental studies of composites are costly and take
much time to manufacture specimens, a fast numerical method is required as an alterna-
tive option. Thus, the aim of this research is to develop a numerical method to predict the
mechanical response of composites containing cylindrical inclusions. In this work, the Fast
Fourier Transform-based (FFT-based) homogenization method of Moulinec and Suquet [1]
is introduced. Also, the reformulated FFT-based scheme for large deformation problems by
Eisenlohr et al [2] is discussed and chosen for the current research. To predict a mechani-
cal failure, the thermodynamics framework is used to derive the isotropic damage model. In
order to circumvent the ill-posedness of the local continuum damage model, the gradient-
extended damage model based on the micromorphic approach is proposed. After that,
coupling schemes to calculate the interaction between the field of local damage variable
and that of nonlocal damage variable will be discussed. The simultaneous scheme will be
proved to be a not only stable but also fast coupling strategy. Finally, applications of the FFT-
based scheme, combined with the gradient-extended damage model and the simultaneous
scheme, will be tested on the composites made of cylindrical inclusions, and the result will
be analyzed.
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Chapter 1

Introduction

1.1 The Object and Scope of the Research

The aim of the research is to develop a numerical technique to predict the mechanical re-
sponse of a composite, made of a matrix material and cylindrical inclusions. The composite
with cylindrical inclusions is the interest of the current research because this kind of geome-
try is widely used in designs of composites, e.g. Fiber-Reinforced Polymers. An example of
that composite’s microstructure containing a single cylindrical inclusion is shown in Figure
1.1

&Y

o &

(A) A composite having a cylindrical inclusion in -Z
direction.

(B) Wireframe model of the composite.

FIGURE 1.1: Visualizations of a composite with a cylindrical inclusion.

In general, the materials of inclusions are more stiff and durable than matrix materials.
Those inclusions are installed inside the matrix in the direction of reinforcement depending
on the purpose of engineering design. This makes the composite more stiff and durable in
the inclusion’s direction. On the other hand, that composite is weak at shear deformations
and deformations in the direction orthogonal to a direction of inclusions. That is because
matrix materials surrounding fibers carry mechanical loads in this case. Consequently, when

a composite goes through processes of large deformation in the weak directions, it is likely



Introduction 2

to fail. Thus, the mechanical strength of a composite in the orthogonal direction should be
investigated before an engineering design is carried out. In order to predict the mechanical
strength of a composite, the aim of the current research is focused on the investigations
of an elastic-damage behavior of the composite under uniaxial stretch in the orthogonal

direction to cylindrical inclusions.

The difficulty of solving the problem of a composite arises from the fact that different material
phases are distributed inside a composite. Because of this, numerical methods are preferred
over analytical methods. H. Moulinec and P. Suquet proposed the scheme making use
of the Fast Fourier Transforms (FFT) to solve a mechanical problem under the periodic-
boundary condition, [1]. This method avoids difficulties in meshing. Instead, this method
requires a discretization on a grid of regular spacing. Formulations of stiffness matrix are
unnecessary and those are replaced by iterative procedures of the forward and backward
FFT operations using the Green operator. The iterative procedure solves the momentum
balance equation in Fourier space to estimate a deformation gradient at each grid point. By
letting state variables of irreversible processes to be updated after deformation gradients are
updated, inelasticities of solid can be calculated. In summary, the FFT-based scheme has
the advantage in the process of discretization and is easy to be implemented with inelastic
material behaviors. The FFT-based scheme is chosen as the numerical platform of the

current research.

In the case of large deformations taking place, there are several nonlinear and inelastic ma-
terial behaviors involved in a composite, such as a process of damage evolution or plastic
deformations. Since most of the mechanical responses of brittle materials can be rep-
resented using an isotropic elastic-damage model, for the sake of simplicity, an isotropic
elastic-damage model is used for defining constitutive laws of a matrix material and inclu-
sions. As an inelastic behavior is likely to occur when a material goes through a process
of large deformation, a constitutive law of a material is constructed based on a finite strain
model in this paper. Therefore, the scope of the research is a mechanical boundary-value
problem of a composite under the process of elastic-damage loading.

1.2 Structure of the Paper

This paper is organized as follows. Chapter 2 gives the fundamental understanding of kine-
matics of the finite strain model for the FFT-based scheme. The concept of Representative
Volume Element (RVE) is introduced to represent a microstructure of a composite eas-
ily. The homogenization techniques and the procedure of formulating the algorithm of the
FFT-based scheme are introduced. The mathematical descriptions in Chapter 2 are taken
from papers written by P. Eisenlohr et al [2] and M. Kabel et al [3]. Chapter 3 presents
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the thermodynamics framework of damage models. The basic idea of the local contin-
uum damage model is introduced. On top of that, the concept of the thermodynamics
framework is extended using the micromorphic approach to construct a gradient-extended
damage model, [4, 5]. The gradient-extended damage model is expected to remedy the
ill-posedness of the local continuum damage model. In chapter 4, the backgrounds of the
partitioned approaches (staggered scheme and iteratively staggered scheme) and the si-
multaneous scheme are discussed. Also, the implementations and validations of those
schemes are demonstrated. In Chapter 5, parametric studies and numerical examples us-
ing the FFT-based scheme with the gradient-extended damage model are presented. At
last, the summary of important investigations and remarks are presented in Chapter 6.
Moreover, further research topics to improve numerical stability and efficiency of the current

research to achieve more realistic simulations are introduced.



Chapter 2

The FFT-based Scheme for Finite
Strain Model

In this chapter, the FFT-based scheme to solve the mechanical boundary-value problem
defined as a strong form of the momentum balance equation under periodic boundary con-
dition will be discussed. From the macroscopic point of view, a composite can be regarded
as homogeneous material when it is composed of much smaller microstructures which are
randomly distributed. A Representative Volume Element (RVE) is a volume element of a
composite’s microstructure which exhibits the same effective response of a real composite
at the macroscale. The concept of RVE can be incorporated to reduce the spatial size of
a composite at the macroscale to that of an RVE at the microscale. By solving the prob-
lem of each RVE, the solution of an entire composite can be attained because a composite
can be regarded as a homogeneous material showing the same mechanical response of
an RVE. In this context, the FFT-based scheme suggested by Moulinec and Suquet will be
introduced, [1]. According to Moulinec and Suquet, the equation of the periodic boundary-
value problem can be classified as a problem of the Lippmann—Schwinger equation. With
the help of the FFT, the convolution in real space can be easily solved in Fourier space. The
formulation of the FFT-based schemed for a finite deformation problem is suggested by P.
Eisenlohr et al, [2], and will be employed in this paper.

2.1 Kinematics of Deformations

Kinematics is a mathematical theory to relate the motion and the deformation of a body.
At the initial position of a material in the reference configuration 2o where time ¢ = 0, the
position of a material point is described using the initial position vector X. As time goes on,
a body may go through a rigid body motion, such as translation or rotation. On top of that,

4
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it is possible for a body to deform. At time ¢, the position vector x is introduced to express
the current position of a material point in the current configuration €2;. The current position
x can be expressed in terms of the initial position X and time ¢. The displacement vector
u is defined as the gap between the current position vector  and the initial position vector
X, and it reads as follows:

u=x—X (2.1)

The deformation gradient F reads as follows:

ox
= 2.2
F 0X 22)

Equation (2.1), leads to x = v + X, and

ou+X) Ou

(2.3)
T gl
0X

where H is called the displacement gradient. In the case of a finite deformation problem, the
Green-Lagrange strain tensor is employed to measure strain quantity. The Green-Lagrange
strain tensor is expressed in terms of the deformation gradient and reads as follows:

_lore ol
E= (F'F-1) = (C-T) (2.4)

The right Cauchy-Green deformation tensor is also one of strain measurements and it is
given by:
C=FTF (2.5)

2.2 The Representative Volume Element and the Periodic Boundary-
Value Problem

2.2.1 The Concept of Representative Volume Element

In general, material phases are randomly distributed over a composite. As multiple inclu-
sions with different shapes can be included in a composite, it takes enormous amounts of
effort and computer memory to represent and save every detail of a composite’s microstruc-
ture. In order to simplify the representation of a microstructure, it is assumed that there is
a volume element that has the same effective mechanical response of a composite at the
macroscale. This postulation is valid when the distribution of microstructures in a composite
is statistically random enough. This class of volume element at the microscale is called
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Representative Volume Element (RVE). The concept of RVE is frequently used in multiscale

simulations to make use of a standard microstructure. To give an example, a composite’s

microstructure made of a periodically distributed RVE is presented in Figure 2.1:

... ) The RVE of a composite at the microscale.

(A) Periodic distribution of 9 RVEs at the mi-
croscale.

FIGURE 2.1: Microstructure and its RVE.

2.2.2 The Periodic Boundary-Value Problem

The periodic boundary condition on boundaries of an RVE implies that field quantities and
the geometry of an RVE are periodically distributed over a composite. From a macroscopic
point of view, an RVE seems to be a homogeneous material point with the overall defor-
mation gradient Fy. At the microscale, on the other hand, the overall deformation gradient
Fy is regarded as the average of the deformation gradient field. The deformation gradient
field F(x) is expressed in terms of the macroscopic deformation gradient F and a fluctu-
ation field H(x) that arises from the heterogeneities of a microstructure. The deformation
gradient field can be expressed as follows:

F(x) = Fo + H(x) (2.6)
The fluctuation field is given by:

H(a(x)) = Vou(z) (2.7)
The entire displacement field in microscale reads as follows:

u(x) = Fox + u(x) (2.8)
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The periodicity of w in microscopic domain implies the following averages over a whole RVE
should vanish

<m@>=é4a@mvzo
(2.9)

<m@>_é4ﬁ@mv_o

At the microscale, () stands for the spatial domain of an RVE. The strong form of the mo-

mentum balance equation reads as follows:
DivP(xz)=0 zinQ (2.10)

where P(x) stands for the first Piola-Kirchhoff stress tensor. The followings are the sum-
mary of equations that should be satisfied in an RVE and at its boundaries

DivP =0 =zinf)

F :Fo—i-I:I xin
(2.11)

H periodic @ ondf?

2.3 The Homogenization Technique and Lippmann-Schwinger
Equation

The complexity of the boundary-value problem (2.11) arises from the fact that a field of local
stiffness tensor C(x) is varying in the spatial domain of an RVE, Q. In order to circumvent
the difficulty, the homogenization approaches are used to transform the boundary-value
problem in a heterogeneous microstructure (2.11) into one in a homogeneous one. The
very first idea goes back to Eshelby, [6]. He solved this problem by the means of a simple
set of imaginary cutting, straining, and welding operations. The problem of a heterogeneous
microstructure, including matrix materials and inclusions, could be split into homogeneous
microstructures with the help of the imaginary procedures. Consequently, the transformation
of a heterogeneous problem into a homogeneous problem simplified the solution technique.
The concept of homogenization was developed further by Dederichs and Zeller, [7], for es-
timating bounds for the effective elastic constants of polycrystals. An auxiliary problem was
formulated in a homogeneous elastic medium in order to take away the local dependence
of the stiffness tensor C(x). In this context, the homogenization approach is employed to
construct a numerical scheme to find a solution of the boundary-value problem (2.11). The
mathematical formulations and descriptions came from the literature [8].

A stress field can be expressed in terms of a homogeneous reference material’s constant
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stiffness tensor C” and the polarization stress 7(x)

P(z)=C": F(x)+7(x) 2.12)

By using equation (2.12), the divergence free condition in equation (2.11) is replaced by the
following equivalent form:

Div(C’: F(z) +7(x)) =0 2inQ (2.13)

By transferring the divergence of polarization term to the right hand side, the following state-
ments are valid in the spatial domain €Q:

Div(CY: F) = —Div(r) zinQ
F=Fy+H zinQ (2.14)
H periodic xondf)
The mechanical boundary-value problem of a heterogeneous RVE (2.11) is equivalent to the
homogenized problem (2.14). The homogenized problem can be interpreted that external
body force Div(7(x)) is acting on a homogeneous material with stiffness C° in Q while the
periodic boundary condition of u(x) is fulfilled at the boundaries 0f2. In equation (2.14),
the divergence of polarization field plays the role of an external body force. As a result, the
heterogeneous problem is reinterpreted as a simple homogeneous problem acted on by the
external force Div(T(x)).
The solution of such problem can be described using the Green’s operator ° which is
associated to the reference material, [7]. The fluctuation field of the deformation gradient
H(x) is expressed using the convolution of the Green’s operator with the polarization field

H(z)=—( "%7)(x) (2.15)
where the convolution operator denoted by ’x’ is given by:
(Cxn@) = [ Y@y Ty 2.16)
Q

The Green’s operator ° has a nonlocal character which couples two points « and y at the
microscale. By using the equation of the deformation gradient field F(x) in equation (2.6),
the solution of the deformation gradient field can be written

F=Fy,— "x7 (2.17)
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The class of this problem reduces to the Lippmann-Schwinger equation in elasticity, at-
tributed to Lippmann and Schwinger, [9]. In general, the convolution between two field
quantities is not easily calculated in real space. Nevertheless, a convolution term can be
easily solved in Fourier space since the convolution operator transforms into scalar products
in Fourier space. The above relation (2.17) can be expressed in Fourier space and reads
as follows:

F(¢) =— "¢ :#(&) VE#£0, F(0)=F, (2.18)

Finally, the original strong form of the equation for a heterogeneous problem (2.10) can be
solved using the technique of homogenization and the Fourier transform (2.18).

2.4 The Periodic Lippmann-Schwinger Equation in Fourier Space

The solution of the periodic boundary-value problem in a homogeneous domain (2.14) can
be obtained using the Fourier transforms. In this context, the FFT-based scheme was de-
veloped by Moulinec and Suquet, [1], to solve the periodic boundary-value problem of a
heterogeneous material by means of the homogenization technique. In Fourier space, dif-
ferential operators of partial-differential equation turn into linear operators so that it makes
the problem to be easily solved.

2.4.1 The Formulation of Solution Technique

The field variables of the boundary-value problem described in equation (2.11) are periodic.
Considering the fact that the periods of field variables are equal to those of an RVE at the
microscale, those field variables can be also expressed in Fourier space. A displacement
field u(x) in Fourier space reads as follows:

u(g) = é/ﬂu(m)exp(—i& cx)dx (2.19)

where the complex number is ¢ = v/—1. The wave vector is denoted as £. On the other
hand, the inverse Fourier transform of u(&) yields u(x) back

u(a) = [ a€)expli€ =) de (2.20)

One important feature of an expression in Fourier space is that a function with zero wave
vector in Fourier space represents the average of that function in real space. In the case of
the fields of displacement and the deformation gradient, that feature is given by the following
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definitions:

(2.21)

The gradient of the displacement field in real space Vou(x) can be simply expressed in

Fourier space
an(ﬁ) = Zam(ﬁ)&n (2-22)

The construction of the FFT-based scheme starts from the Fourier transform of the stress
field (2.12)
Pkl(&) = Cglmn : an(&) + 7ﬁkl(E)

o ) (2.23)
= 1ChmnUmén + T

The Fourier transform of the divergence free condition of equation (2.11) reads as follows:
iPu& =0 (2.24)
Equation (2.23) can be augmented into equation (2.24) to yield the following form:

i€ = (GO)g it (2.25)

km

where (G)1 = C)

kimn

&€, is the inverse of the acoustic tensor. Consequently, & can be
expressed as follows:
T = 1G2 , T11&) (2.26)

The expression of the displacement field in Fourier space is used to derive the expression
of the deformation gradient field in Fourier space. As a result, equations (2.22) and (2.26)
are combined to express the deformation gradient field in Fourier space as follows:

Fry = 13 (&)& = =G Tk

& — YnFmn (2.27)

0 A0
klmn — kaglfn

where 0 is the Green’s operator.

2.4.2 The Reference Material for a Large Deformation Problem

According to the M. Kabel’s paper, [3], a reference material should be chosen to satisfy the

following coercivity condition:

F(z):C’:F(z) > F(x) : F(z) VzinQ (2.28)
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The coercivity condition is necessary to set the norm of an error to be bounded in the case
of a large deformation problem. In this context, a symmetrized linear isotropic material
cannot be a reference material. The reason is that a linearly elastic C° satisfying minor
symmetries violates the coercivity condition (2.28). Instead, M. Kabel chose an isotropic
reference material CngN = Aobrr.0mnN + 2100kmdrn, Which is a fourth-order tensor, to

calculate the stress in a reference material and derive the Green’s operator

(G = Chimn&ién (2.29)

From the definition of the inverse of the acoustic tensor (2.29), the explicit form of acoustic
tensor can be derived as follows:

(GO)2L = AoGkrOmNELEN + 20100kmOLNELEN (2.30)

200 p (Mo +2p0)[€PT — A€ ® €
)= 200(Ao + 2p0) €|

By combining the definition of the Green’s operator "o (2.27) and the explicit form of the

(2.31)

acoustic tensor (2.31), the explicit form of the Green’s operator can be derived

0 () = Okm&LEN Ao Er€LEméN
ST 2u0leP 2p0(Ao+ 2um0) &

(2.32)

2.4.3 The Fast Fourier Transform and Discretization of RVE

A 3D image is a group of pixels arranged in a 3D grid and each pixel will have its own color.
Analogously, it is possible to imagine that an RVE is a 3D image made of a 3D grid. A
color in each pixel of a 3D image is analogous to a material phase at each grid point in
an RVE. Therefore, an RVE can be interpreted as a 3D grid having an individual material
phase at each point. On top of that, each grid point will contain information of own field
variables, such as stress, strain, and state variables of inelasticity. Those state variables are
determined by a material constitutive law at each grid point.

The beauty of this approach is that data from digital image processes can be directly utilized,
e.g. computer tomography (CT), for defining a distribution of material phases in an RVE. It
is advantageous compared to the conventional finite element technology since there is zero
effort for mesh generation, and saving a stiffness matrix.

The grid of an RVE has N, points in x-coordinate, N, points in y-coordinate, and N points
in z-coordinate. In total, the grid has IV, x N, x N, points. The index, the grid size, and the
position of each grid point are summarized as follows:
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x-coordinate y-coordinate z-coordinate
Number of grid points N, Ny N,
Length of RVE Ly L, L,
Index i=0,---,Ny—1|j=0,--- ,N,—1|k=0,---,N,— 1
Grid size dr = L= dy = & dz = %=
Position of grid point i-dx J- dy k-dz

TABLE 2.1: RVE’s properties as 3D grid.

The FFT can be used to express the displacement field in Fourier space, [10]. One of the
most popular libraries for the FFT is "Fastest Fourier Transform in the West" (FFTW). By
using the definitions of parameters in Table 2.1, the wave vector and the position vector at
each grid point can be constructed when there is a grid point, F;;;, having indexes ¢, j, and
kin z, y, and z coordinates, it will have the wave vector §;;;, and the position vector ;.
The definition of these vectors read as follows:

€ = 60656 = 2l L o5
Tijr = [i-dx,j - dy, k- dz]

In FFTW, the forward Fourier transform of field quantity X, at P, is defined as follows:

Ny—1Ny—1N,—1

zgk Z Z Z Xabcexp ZEz]k moLbc) (234)

a=0 b=0 c=0

The inverse Fourier transform of Y;;;, reads as follows:

—1Ny—1N,—-1

Zijk = Z >N Yaseexp(ibope - Tij) (2.35)

a=0 b=0 c=0

In comparison to equation (2.20), the output Y;; in equation (2.34) is not normalized with
respect to the total number of grid points, N, x N, x N.. It can be deduced that when
FFTW is used, an output will be factored by IV, x N, x N, after a field variable is once
forward Fourier transformed and backward Fourier transformed. Thus, at every grid point
the following relation holds:

Zijk = (Nx X Ny X Nz)Xijk: (236)

It makes a different interpretation of a field quantity with zero wave vector in Fourier space.
According to equation (2.21), the function of a field variable with zero wave vector in Fourier
space corresponds to the mean value of that function in real space. On the other hand,
according to equation (2.33) and (2.34), that function with zero wave vector in Fourier space
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is equal to a summation of that function in real space. This feature should be taken into
account when the FFT-based scheme is implemented using FFTW.

2.5 The Algorithm of the FFT-based Scheme for Inelastic Behav-

iors

A material may have nonlinear constituents or inelastic behavior described in terms of
stress, strain, and a rate of both of them. The algorithm of the FFT-based scheme for an
inelastic material’s behavior was introduced by H. Moulinec and P. Suquet, [1]. They sug-
gested the algorithm for the FFT-based scheme with nonlinear constituents and success-
fully implemented the J,-flow theory of elastic-plastic behavior. They calculated the fields of
stress and plastic strain after the elastic strain field is updated. In the case of elastic-damage
behavior, instead of plastic strain, damage and damage hardening variables are updated.
The algorithm of the FFT-based scheme in the case of general inelasticities follows:

Algorithm 1 The Algorithm for a Large Deformation with Inelastic Constitutive Laws
1: procedure THE FFT-BASED SCHEME

2 Initialization: F'(z) = Fy Vz € Q

3 Calculate PY(F(x)) using a constitutive law  Vz €
4 Iterate i+1 F’ and P’ known at every x4

5 (a) P!=FFT(P)

6: (o) 7' =CV: (F)) — (P

7 () FH(&)=— ") :7'(€) VE#0, F(0)=F,

8 (d) Ftl(zy) = FFT{(F*(§) VzecQ

9 (e) Calculate Pi*!(F(x)) using a constitutive law ~ Vx € Q
0 (

10: f) Check the convergence criterion Div(P**!(z)) =0 Vz € Q

For the convergence criterion in step (e), H. Moulinec and P. Suquet proposed to calculate
the convergence criterion for a small deformation problem in Fourier space

error = Zllo(e)E] (2.37)

Ny NyN|[|6(0)]]

where o stands for the Cauchy stress. On the other hand, M. Kabel proposed to evaluate
convergence of the L?-norm of the deformation gradient field in order to reduce memory
occupations and computations. The convergence criterion expressed in terms of the defor-
mation gradient reads as follows:

E||Fz’+1 _ FZH

error = -~ 1l (2.38)
Nz NyN.|[Fol|
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2.6 The Defects of the Conventional FFT-based Scheme and Rem-
edy

When it comes to using the FFT-based scheme, heterogeneity of local properties (such as
effective stiffness) can lead to discontinuities in field quantities. When it comes to an elastic-
damage material’s simulation, an increase in the field of damage variable may deteriorate
the discontinuity of field variables, such as stress and displacement. When there is an
interface between elastic and elastic-damage materials in an RVE, only elastic-damage ma-
terials will be damaged and its effective stiffness will decrease further. Evolution of damage
variables increases the gap between stiffness of elastic and that of elastic-damage materi-
als. The sharp interface between material phases causes the ringing artifacts and the Gibbs
effects because of the non-uniform convergence of Fourier coefficients at the points of loss
of differentiability, A. Vidyasagar et al. [11]. This problem can cause differential operators,
such as divergence and gradient, to be inaccurate in Fourier space. W. H. Muller introduced
a numerical technique to remedy the ringing artifacts by using a modified discrete Fourier
transform, [12]. The idea is to enforce the derivative in a domain to be bounded. This idea
can be realized by approximating the differential operator by a finite-difference scheme. A.
Vidyasagar et al. employed this idea to solve an electromechanical problem of bulk poly-
crystalline ferroelectric ceramics, [11]. Also, A. Vidyasagar et al. described the modified
wave vector by approximating the differential operator using the central-difference scheme
in their paper, [11]. According to reference [11], for a 3D problem, a wave vector at a grid
point will have three components in spatial coordinates as follows:

sin(27/N,i) sin(27/Ny,7) sin(27/N.k)

2.39
dx dy dz ) ( )

Eijk = [€>85, k] = [
A. Vidyasagar et al. tested their new wave vector to calculate the derivative of a double step
function. They proved that calculating spectral derivative using the new wave vector showed
less oscillation compared to the result of the conventional spectral derivative. Therefore, the
modified wave vector (2.39) is incorporated in this article.



Chapter 3

Damage Mechanics

3.1 Local Continuum Damage Model

In this section, the local continuum damage model will be described. The notion ’local’
means that the thermodynamic state at a material point is totally determined by local quan-
tities at that point, e.g., stress, strain, and internal variables. To begin with, the thermody-
namics framework and the definition of the damage variable will be introduced. Next, the
Clausius-Duhem inequality is investigated, which every model should satisfy. After that, the
isotropic damage model will be formulated in the thermodynamics framework. In order to
solve the damage evolution, a return-mapping algorithm will be introduced to calculate the
damage variable update in an iterative manner. Finally, the micromorphic approach is used
to formulate a gradient-extended damage model.

3.1.1 Thermodynamics Framework for Isotropic Damage Model

Continuum damage theories are usually based on irreversible thermodynamics and the in-
ternal state variable theory. One introduces the Helmholtz free energy potential and uses
the Clausius-Duhem inequality to express the second law of thermodynamics. Since the
second law of thermodynamics is a universal principle, the free energy should change while
satisfying the Clausius-Duhem inequality. For an isotropic damage model, a scalar damage
variable is sufficient for modeling. On the other hand, tensor valued damage variables (sec-
ond or fourth-order) are necessary for expressing anisotropic damage processes [13].

In the present study, the Helmholtz free energy W is chosen to be of Neo-Hookean type as

15
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follows:
U(C,D, &) = f(D)[g{trC — 3 —In(detC)} + %{detc — 1 —1In(detC)}]

e, 4 SRESD L (3
S

/(D) = (1- D)’

Here, C is the right Cauchy-Green tensor, D € [0, 1) is the damage variable, and & is the
damage-hardening variable. The Lamé constants are p and A. Damage material parame-
ters are r and s. The function f(D) expresses the influence of damage on the free energy.
When a material is undamaged, f(D) is one. For a fully damaged material with D = 1,
f(D) becomes zero. The Clausius-Duhem inequality is given by

—U+S:E>0 (3.2)

where S is the second Piola-Kirchhoff stress and E is the Green-Lagrange strain tensor.
The Helmholtz free energy formula (3.1) can be plugged into the Clausius-Duhem inequality

(3.2) which leads to - . -
(0¥ 5 0T OV, b _
(80 C+3DD+8£d£d)+S E>0 (3.3)

Considering E = %C, inequality (3.3) can be further simplified as

ov . oU .

ov
“ap” @gd >0 (3.4)

1.
(5_2%)'50

Since (3.4) has to be valid for arbitrary thermodynamic processes, one obtains

oV A
S=2-5 = f(D{uId—-Cc™ )+ 5 (detC — ncy (3.5)

which is the stress-strain relationship. The remaining dissipation inequality reads

YD —q4éa >0 (3.6)
where
9 A
Y _a% = /(D)5 {rC ~ 3~ In(detQ)} + 5 {detC — 1~ In(detC)}]  (37)
G = 2;1; —r{l-exp(~s&)}  (38)

are the thermodynamic conjugate forces to damage and damage hardening, respectively.



Damage Mechanics 17

3.1.2 Damage Loading Condition

A damage criterion is formulated with the following functional form:

¢a=Y —(Yo+qq) <0 (3.9)

¢4 is also called "damage loading function”. Yj is the initial damage threshold. At the point
where anincrease of Y leads to the case where the damage loading function becomes zero,
damage loading occurs and the damage variable and damage hardening variable should be
updated. The evolution of the damage and damage hardening variables is defined by the
damage evolution equations

=392 _

oY
‘ by (3.10)
€= 2224 _

0qq

where A\ > 0 is the damage multiplier. The damage loading/unloading conditions are given
by the Karush—Kuhn—Tucker (KKT) conditions

A>0, ¢a<0, Apg=0 (3.11)

Conditions (3.11) are standard for problems involving constraints. The conditions (3.11)
imply that when the damage loading function ¢ is negative, A has to be zero to fulfill A¢g =
0. Then, the damage and damage hardening variables remain constant according to the
damage evolution equations (3.10). On the other hand, if damage loading occurs so that A
is positive, ¢4 should be zero to fulfill A\¢; = 0 in (3.10).

3.1.3 Numerics for Damage Variable Calculation

In this section, the mathematical procedure to solve ¢4 = 0 is explained in the case of
damage loading. In order to deal with general forms of damage models, a numerical method
to solve ¢4 = 0 should come into play. The Newton-Raphson method is a good candidate
for solving this problem since it is simple to be implemented and has quadratic convergence
towards the solution. Quadratic convergence means that the error is proportional to the
square of the previous error, [14].

Suppose that the simulation is at n-th loading step, and the damage and damage hardening
variables are sought for the (n + 1)-th loading step. By multiplying the simulation time step
At on equations (3.10), the formulation of the damage and damage hardening variables at
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the (n + 1)-th loading step can be derived i.e.,

D™ = D™+ AN

(3.12)
it =g+ AN

where an increment of the damage multiplier is denoted as AXA = AAt. The Newton-
Raphson method is utilized to estimate the damage and damage hardening variables in-
crement A\ in an iterative manner. It starts with an initial guess for AX which is zero. An
overview of the Newton-Raphson iteration to estimate A\ looks as follows:

Algorithm 2 Algorithm for damage and damage hardening variables
1: procedure NEWTON-RAPHSON METHOD

2: Initialization: A\ = 0.

3: A(AN)p = 0.

4: Iterate i+1 Seek increment of A\ and update D and &;.

5: (@) Update A 11 = AN + A(AN);.

6: (b) Update D and §g. Diy1 = D™ + AXit1, a1 = §f + Adiga.
7: (c) Calculate residual ¢q ;1.

8: if ||¢ait1]| < tolerance then return D and ¢,.

9: else
10: (d) Calculate Ko, = 5kt = O3t O, — Sais Ba
11: (e) Calculate A(AN); 1y = —Z&=L,
12: () ¢ =14 and repeat the algorithm from step (a).

This is the so-called return-mapping algorithm which is widely used in computational me-
chanics.

3.1.4 Validation of the Implementation of the Local Damage Model

Once the algorithm (2) to solve the damage evolution has been implemented, it should be
validated whether the implementation yields a correct solution. The problem of the elastic-
damage material’'s damage evolution is defined in terms of the damage loading function
(3.9), the evolution laws (3.10) and the KKT conditions (3.11). To make the validation simple,
a virtual experiment of uniaxial stretch is performed. The deformation gradient during the
uniaxial stretch reads as follows:

i O 0
VI 0 l; € [1,lf] (3.13)

F=1]0
0 0 Vi
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where [; is the stretch in z-direction at ¢-th loading step, and I is the stretch at the final step.
l; is monotonously increasing from 1 to its final value [;. [; = 1 means that the body is in an
undeformed state. [y should be chosen large enough in order to observe elastic-damage
behavior.

To begin with, the equation (3.9) is solved using MATLAB’s built-in nonlinear equation solver.
At each loading step, the right Cauchy-Green tensor and its invariants, tr(C) and det(C),
are calculated. Then the thermodynamic conjugate forces Y and g, are calculated, (3.7) and
(3.8). The damage loading function is calculated and solved for a new value of the damage
multiplier when its norm exceeds a prescribed tolerance. Otherwise, the damage multiplier
and damage variable remain unchanged. On the other side, the return-mapping algorithm
(2) is implemented into the algorithm of the FFT-based scheme (1). For a homogeneous
RVE, the deformation gradient at each grid point will be the same as the prescribed macro-
scopic deformation gradient Fy in equation (2.7) because there will be no fluctuating field
arising from a heterogeneity of the microstructure. The solution obtained from algorithm (2)
is compared with the solution derived using MATLAB. The material parameters used in the
study are given in Table 3.1.

Symbol | Value | Unit

Lamé’s first parameter A 5000 | MPa

Lamé’s second parameter 7 7500 | MPa

Initial damage threshold Yo 5 MPa

damage parameter r 50 MPa
exponential damage parameter S 0.5 -

TABLE 3.1: Material parameters for elastic-damage model

By assigning these parameters at each grid point, a homogeneous RVE is defined. A com-
parison between the results is shown in Figure 3.1:
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Validation of Local Damage Model
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FIGURE 3.1: Comparison between the results of the nonlinear solver using MATLAB and
the implementation of algorithm (2) in the FFT-based scheme.

Here, the pink line is the result of the FFT-based scheme and the blue dashed line is the
result of the built-in nonlinear solver in MATLAB. As shown in Figure 3.1, those two results
match exactly. This is a good indication that the elastic-damage model is implemented

correctly.

3.2 Gradient-Extended Damage Model

In recent decades, the defect of local continuum damage models in describing material soft-
ening behavior has been discussed. The defect is triggered by a loss of well-posedness of
the boundary-value problem beyond a certain level of accumulated damage. As a result,
the ill-posedness leads to the problem that the numerical solutions do not converge to a
physically reasonable solution upon h-refinement of the spatial discretization, [15—18].
Several authors suggested to discard local action based constitutive laws to fix the prob-
lem of ill-posedness. So-called nonlocal continuum damage models have been developed
to yield mesh-objective solutions, [15]. Gradient-extended models are especially popular
and promising since, while incorporating nonlocal interactions, they still remain local in a
mathematical sense which makes their implementation easier and more efficient, [19]. In
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the next section, the micromorphic approach as a systematic method to construct gradient-
extended nonlocal constitutive models will be described. After a discussion of the general
micromorphic approach, its application is shown for the case of a continuum damage model.

3.2.1 Micromorphic Approach

The micromorphic approach in the sense of Samuel Forest is a well-established and sys-
tematic procedure to incorporate gradient effects into already existing local material models
(for details, see e.g. Forest [4]). In the case of an isotropic damage model as considered in
this study, one introduces a so-called micromorphic damage variable D into the formulation
which has the meaning of an additional internal degree of freedom of the material (similar,
e.g., to the temperature in case of a thermomechanically coupled model). A coupling of
D to the corresponding local damage variable D is then enforced by postulating a direct
dependence of the free energy on the difference between the two quantities, i.e., (D — D).
The starting point of the micromorphic approach is usually the principle of virtual work.
Assuming a geometrically nonlinear, quasi-static and purely mechanical framework, the ex-
pressions for the internal (g;,:) and external (ges¢) virtual work can, for example, be for-
mulated with respect to quantities defined in the reference configuration By of the body as

follows:
Gint = / S:0EdV + / (a0i6D + bg; - VodD) dV
BO BO
Jext = fo-oudV + / ty - dudA + / (GOEC;D + boe - VO5D) dV + / CLQC(SD dA
BO aBot Bo 8BOc

(3.14)
Here, dV and d A stand for volume and surface integrals of the initial domain, respectively.
The Green-Lagrange strain tensor is denoted as E, S is the second Piola-Kirchhoff stress, u
is the displacement, aq; and by; are internal forces associated with D. Likewise, ag. and by,
are generalized volume forces associated with D. f, is the mechanical body force acting in
the initial configuration. Quantities o and ao. are tractions on boundaries 0By, and 0B, .
The test function JE can be represented in terms of F and du as:

0E = — (F'Vo(du) + Vo(0u)'F) (3.15)

N

With the help of simple algebraic manipulations, one can then write:

S : 0E = (FS) : Voou (3.16)
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Consequently, there are two test functions du and § D, and they should be zero on Dirichlet
boundaries 0By, and dBy_, respectively. From the principle of virtual work, i.e.,

Gint — Gext =0 (3.17)

the strong form of the equation for the micromorphic variable D will be derived. By incorpo-
rating (3.14) and (3.16) into (3.17), it follows:

/ (FS) : VodudV + / [(aol' — a06)5D + (bol — bOe) . V05D] dV — fO -dudV
Bo Bo Bo
—/ tg-éudA—/ aOC(SDdA:O
8B()t 8BOC
(3.18)

The first term should be expanded using the following formula, [20],

Div(6u(FS)) = Div(FS) - du + (FS) : Vo(du)
& (FS) : Vo(6u) = Div(du(FS)) — du - Div(FS)

(3.19)

Analogously, it holds
(bOi - bge) . Vo(SD = DlV((bOZ - boe)(SD) - DlV(bOZ - boe)5D. (320)
Inserting (3.19) and (3.20) into (3.18) yields

/[Div(éu(FS))—(DiV(FS)-l-fo)-5u]dV—/ to- dudA
Bo 9By,

—|—/ [(a()i - a()e)éD + DiV((bOi — boe)(SD) — DiV(b()Z' — b06)5D] dV — / aocéD dA =0
B() 8BOc

(3.21)
The test functions du and 6D vanish on Dirichlet boundaries. Furthermore, by using the
divergence theorem to convert the volume integration of divergence terms into surface inte-

gration over 0By, and 0B,, [20], one obtains:

/ Div(du(FS))dV = (0u(FS)) -ngdA = ((FS)ng) - dudA
Bo aBOt aBot
/ DiV((bOZ‘ - boe)(SD) dV = (b()i — b()e)éD N dA = (b()i - bOe) . n05D dA
Bo 0B, 0Bo,,
(3.22)

where ng is a normal to the boundary 9By. Now, (3.21) can be expressed as
/ (—Div(FS) — fo) - dudV +/ (FS)ng — to) - Su dA
Bo 8By,

+/ {(CLOZ' — aoe) — DiV(bOi — boe)}(SD dV + / {(bOz — bge) Ny — aoc}(SD dA =0
BD 6B0c
(3.23)
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Because equation (3.23) should be valid for arbitrary test functions, the following equations
can be derived:

Div(FS)+ fo=0 in By (8.24a)
(FS)ng =ty on 0By, (3.24b)

u=up on 0B, (3.24c¢)

Div(bg; — boe) = api — age in By (3.24d)
(boi — boe) - Mo = ape on OBy, (3.24e)
D=Dp on 0By, (3.24f)

Here, up and Dp are prescribed values at the Dirichlet boundaries By, and By, As are-
sult, the equations (3.24a) and (3.24d) are strong forms of (3.18). Corresponding Neumann
boundary conditions are (3.24b) and (3.24e€). Dirichlet boundary conditions are (3.24c) and
(3.24f). Expression (3.24f) is a Dirichlet boundary condition for D (which is, however, not
considered in the present work).

3.2.2 Extension of Thermodynamics Framework using Micromorphic Approach

The Helmholtz free energy (3.1) can be extended to a micromorphic damage model in the
following way:

U(C,D, &4, D) = f(D)[g{trC — 3 —In(detC)} + %{detC — 1 —1In(detC)}]
1

+r{€+ W} +SH(D - D) + %AVOD VoD (3:25)

f(D) = (1~ DY’

Here, H is a penalty term, supposed to be a large value, and A is a parameter which
describes the influence of the gradient in the material. The penalty term, H, can be any
value which is a large enough value such that D and D are closely related to each other,
[4]. On the other hand, A can be regarded as a material parameter. In the following,
generalized external forces are neglected. By plugging (3.25) into an extended form of the
Clausius-Duhem inequality, one obtains:

—\i/—l—S:E—}—aoz‘ﬁ—l-boi'VobZO

A . V. OU. OU- 0T . 1. . .

A A SCA A SCA R Y s A S D+ by - VoD >

VRN (ac C+8D +8§d§d+E)D +8VD VoD) + S 20+am +by; - VoD >0
9T, 1. o - oy . 9T . 9T .

s 29 Yet (ao = PV + (bo — -2y v - 2 - %% s,

& (8-25g)  5C+ (a0 = 55) D+ (boi = 55 5) VoD — 55D — 50 &2 0

(3.26)
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The terms (S — 25¢), (a0 — 55), and (by — 5&75) are assumed to vanish identically.

Consequently, the following relations hold:

ov
ov

ag = 5= =—H(D - D) (3.27)
o

= _ = AV,D
OVoD 0

bo

The thermodynamic conjugate forces of the system are,

ynz—gg:—fungﬁmyay4m@uny+jmac—l—mmacnyJﬂD—zn
. g;; — {1 - exp(—sta)}

(3.28)

Finally, by inserting ag; and by; in (3.27) into (3.24d), the micromorphic balance equation for

the micromorphic damage variable is derived,

Div(AVoD) + H(D — D) =0
& ADiv(VoD) + H(D — D) =0
=0

2 = —

A
@D—E%D:D

_ . A
& D —-aViD =D, a=



Chapter 4

Coupling Schemes

In this chapter, the concepts of coupling strategies are introduced to calculate the fields
of the local and the nonlocal damage variables. In the thermodynamics framework based
on the micromorphic approach, two governing laws to be fulfiled. One is given by the
Karush—Kuhn—-Tucker (KKT) conditions (3.11), and the other one is by the micromorphic
balance equation (3.29). In general, a coupling scheme is necessary to find a solution sat-
isfying multiple numerical models. To be more specific, in this case, a coupling scheme is
necessary to find the solution of the local and nonlocal damage fields, which satisfies both
the KKT conditions and the micromorphic balance equation. In this context, the partitioned
approaches and simultaneous approach (scheme) are presented. The staggered scheme
and iteratively staggered scheme belong to the class of partitioned approaches. The stag-
gered scheme can be unstable in a certain case where multiple numerical models in a sys-
tem cannot be treated individually. On the contrary, the iteratively staggered scheme yields
a stable solution for a coupled problem, but it can be too much time-consuming. The simul-
taneous scheme can be an alternative method to remedy defects of those two partitioned
approaches. These three coupling schemes are described and implemented to calculate
the local and nonlocal damage variables which satisfy both the KKT conditions and the mi-
cromorphic balance equation. Finally, after the implementations of the coupling schemes
are tested using a homogeneous problem, it is concluded that the simultaneous scheme
is not only stable but also runs faster than the others do. In conclusion, the simultaneous
scheme is employed for the current research.

25
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4.1 Introduction of Coupling Schemes

4.1.1 Partitioned Approach

The partitioned approach is the numerical method to split a group of numerical models of
field quantities into isolated ones. The interactions between numerical models of field quan-
tities are regarded as forcing effects that are communicated between the individual com-
ponents [21]. In the category of partitioned approaches, the staggered and the iteratively
staggered schemes are widely known and used.

4.1.1.1 Pros and Cons of the Partitioned Approach

The key favors of the partitioned approach are an independent modeling and modularity,
[21].

Independent Modeling. The partitioned approach facilitates the use of different numerical
models. For instance, when it comes to a fluid-structure interaction problem, the meshes
of structure and fluid do not necessarily coincide at their interface. This inconsistency lying
on that interface gives rise to difficulties in the analysis of complex systems such as aircraft
or submarine. Individual model can be devised by individual design team to get rid of the
difficulties arising from the non-matching interfaces.

Modularity. New models can be incorporated in a modular platform depending on project
needs. For example, a new local nonlinear effect can be included while keeping the rest the
same. Implementation, testing, validation, and analysis of individual changes can be carried
out.

Nevertheless, these benefits do not come for free. The partitioned approach necessitates
delicate formulation and implementation to prevent degradation in stability and accuracy.
Parallelization of code should be carefully implemented. Gains of computational efficiency
with respect to a simultaneous approach are not always granted. If an interaction between
multiple fields occurs through a volume, such as thermal and electromagnetic fields, effi-
ciency in parallelization can be lost.

4.1.1.2 Staggered Scheme

The staggered scheme is one of the most favored partitioned approaches. When there are
multiple numerical models involved in a system, a staggered scheme is used to split and
solve them one by one. At the beginning, an initial guess of the solution of field quantities is
estimated. Next, one numerical model is solved for one corresponding field quantity while
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the other field quantities are kept constant. That field quantity is updated and the same
solution procedure is applied for the other numerical models. After every numerical model
is solved, the staggered scheme terminates.
In order to have a clear idea of staggered schemes, an example of a two-field coupled
problem is given:

filu,¢) =0 inQ

fo(u, ) =0 inQ

where u and ¢ are scalar field quantities in domain 2. fi(u,¢) and fa(u,¢) are scalar

(4.1)

quantities as well. However, u, ¢, fi(u, ¢), and f2(u, ¢) could be vectors in more general
cases, and the following coupling schemes would still be valid. In order to solve problem
(4.1), the Newton-Raphson method can be used to solve fi(u,¢) = 0 and fa(u,®) = 0
individually. The Newton-Raphson method is implemented based on a staggered scheme
to solve problem (4.1) as described in algorithm 3. In algorithm 3, the increment of u is
calculated firstly. Then, u is updated with «"*! and used to solve the second numerical
model fo(u™*1 ¢™) = 0. Finally, the second model is solved, and ¢ is updated with ¢"*1.

Algorithm 3 summarizes the process of the staggered scheme.

Algorithm 3 The algorithm of Staggered Scheme
1: procedure STAGGERED SCHEME USING THE NEWTON-RAPHSON METHOD

2 Initialization: Load previous values ¢™ and u™.

3 (a) Solve LAu = —fi(u", ¢") for Au.

4: (b) Update " = u™ + Au.

5 (c) Solve MM = — fo(unt, ¢") for Ag.
6 (d) Update ¢"t! = ¢ + A¢.

7 Return

4.1.1.3 Instability of the Staggered Scheme

Instabilities can arise in staggered schemes when interactions between numerical models
are highly nonlinear. In the literature [21], it is described that, in the case of more gen-
eral problems, particularly those modeled by oscillatory second order ordinary-differential
equations, the stability can heavily be spoiled. A staggered scheme is highly effective for
first-order parabolic systems, but the stability and the accuracy of a scheme is not guaran-
teed for general problems.

A general description of the cause of instability in a staggered scheme can be explained by
using the aforementioned two-field coupled problem (4.1). In order to visualize changes in
the field quantities, the sets of field quantities at each step in algorithm 3 are summarized

as follows:
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Step The set of field quantities Valid equation
Initialization (u", ™) -
(a) (u”, ¢") -
(b) (u", ¢") fi(u™ ¢") =0
(c) (u"t1, o) -
(d) (u"t1, 9" ) fou 9" ) =0

TABLE 4.1: Field quantities and equations at each step in algorithm 3

At step (d) in Table 4.1, the set of field quantities (u"*!, ¢"*1) is calculated and satisfies
the second equation fo(u™*!, ¢"*1) = 0. On the other hand, it is not clear whether the set
(umtl ¢ntl) satisfies fi(u™tl, ¢"*1) = 0. At step (b), only the set (u"! ¢") is valid for
the first equation since it is calculated by solving the equation f (u, ¢) = 0 for ™. There-
fore, the set of field quantities (u"*!, " *!) does not necessarily satisfy f;(u"*!, ¢"*!) and
fo(untt ¢"*1) at the same time. Thus, running only one iteration of algorithm 3 fulfills one
numerical model, but the other one may not be satisfied.

At the same time, an investigation of the instability of a staggered scheme can be found in
a problem of fluid-structure interaction described in the literature [22]. When a staggered
scheme is applied to couple fluid field and structure on a wet surface, a destabilizing effect
occurs, which is called "artificial added mass" effect. It is observed that the stability of the
numerical scheme depends on the combination of temporal discretization and parameters
of structure and fluid, such as density and stiffness. Even though decreasing the size of a
time step usually leads to an enhanced accuracy of a numerical scheme, decreasing the
size of a time step here rather causes the instability to occur earlier. The instability cannot
be healed by increasing the accuracy in temporal discretization since the instability arises
from an inherent instability of the staggered scheme. This drawback of staggered schemes
motivates to use iteratively staggered schemes which avoid instability while keeping the
advantages of partitioned approaches.

4.1.1.4 Ilteratively Staggered Scheme

While each numerical model is solved only once during a time step in a staggered scheme,
a staggered scheme is repetitively executed until a convergence criterion is satisfied in an
iteratively staggered scheme. In problem (4.1), by iterating algorithm 3 until the set of field
quantities fulfills every numerical model, the instability of the staggered scheme is removed.
The convergence criterion for an iteratively staggered scheme is called "coupling condition”.
A coupling condition should be defined to ensure that a set of field quantities satisfies every
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numerical model. The algorithm of the iteratively staggered scheme for problem (4.1) is

given as follows:

Algorithm 4 The algorithm of Iteratively Staggered Scheme
1: procedure ITERATIVELY STAGGERED SCHEME

2: Initialization: Load previous values for initial guesses, gb”“ = ¢" and u"H u”.
3: Repeat:
n+1
4: (a) Solve 78f WP ) A = — fr (ul @i,
5: (b) Update u“jf = uf*! 4+ Au.
. | i%(“wl Wi A ntl n+l

6: (c) Solve ¢ =—folully, ;")
7: (d) Update ¢yj11 = ¢t 4+ Ag.
8:  if Coupling condition (|| fi(u} !, ¢l )| <= tol && [|fa(ul!, 61| <= tol) is

fulfilled then
o return v and ¢!
10: else
11: (c) +=1-+1andgo to step (a).

After step (d), the convergence is validated by using the coupling condition in algorithm
4. If the coupling condition is fulfilled, the set of field quantities (u}}', ¢/;) is returned.
Otherwise, the solution procedure restarts from step (a).

The iteratively staggered scheme is the easiest way to avoid the drawback of the staggered
scheme. Furthermore, it is an efficient tool to keep advantage of modular programming.
Nevertheless, depending on the problem, an iteratively staggered scheme might be too
time-consuming for solving coupled problems. In order to speed up the simulation, the

simultaneous scheme can be a better option.

4.1.2 Simultaneous Scheme

Instead of solving numerical models individually, the idea of solving all of the numerical
models for a time increment is devised. This approach is called "simultaneous approach
(scheme)" or "monolithic approach”, [21]. In this article, the Newton-Raphson method is
employed as a basic methodology to construct the simultaneous scheme. For nonlinear
coupling problems, by applying the Newton-Raphson method for every numerical model, a
Jacobian matrix can be assembled such that all of the field quantities can be solved and
updated simultaneously. Since a simultaneous scheme seeks for a solution which satisfies
every numerical model at the same time, it is possible to heal the instability of staggered
schemes.

The example problem (4.1) can be solved using the simultaneous scheme. To begin with,
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the residual of a set of simultaneous equations should be defined. In equations (4.1),
fi(u, @) and fa(u, ¢) are calculated to define the residual vector. Next, the Jacobian matrix
in algorithm 5 is constructed by differentiating the residual vector with respect to unknown
variables u and ¢. The definition of the Jacobian matrix reads as follows:

u
Ofe  Af2 (4.2)
ou L)

Next, the increments of u and ¢ are calculated. Finally, the field quantities of « and ¢, and
the coupling condition is tested. This procedure of the simultaneous scheme is summarized

in algorithm 5.

Algorithm 5 The algorithm of Simultaneous Scheme
1: procedure SIMULTANEOUS SCHEME

2 Initialization: Load previous values for initial guesses, ¢g+1 = ¢" and ug+1 =u".
3: Repeat:
4 (a) Calculate the residuals f1(u™!, ¢?t1) and fo(ul ™, ¢,
5: (b) Calculate the Jacobian matrix J; = ofs ofs | |-
ou oo i
Au uttt gntt Au
6: (c) Solve J; =— S ;H QS;H) for :
A¢ P (Ul s O ) Ag¢
7: (d) Update vy = u*! + Auand ¢} = ¢/ + Ag.
8 if Coupling condition (|| fi(u} !, i)l <= tol && [|fa(uli!, 61| <= tol) is
fulfilled then
o: return v and ¢
10: else
11: (c) i=1-+1andgo to step (a).

4.1.2.1 The Reason Why the Simultaneous Scheme Can Be Faster

An efficient implementation of a simultaneous scheme can be more efficient than that of
an iteratively staggered scheme. That is because it is possible to retain the quadratic rate
of convergence towards the solution using the Newton-Raphson method, [14]. This can
be described by comparing the solution procedures of a simultaneous scheme and that of
an iteratively staggered scheme. An iteratively staggered scheme’s Jacobian matrix can be
calculated in the manner which is comparable to that of a simultaneous scheme in algorithm
5. More precisely, the linear equation to calculate an increment in the Newton-Raphson
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method reads as follows:

G oa) (Au faluf or

dfs  0Ofa = n+l n+1 (43)
In an iteratively staggered scheme, when fi(u, ¢) is solved for Au, A¢ is considered as a
zero value. As a consequence, %—J;l is zero in an iteratively staggered scheme. In the same
manner, % is also regarded as a zero value. The modified linear equation for the iteratively
staggered scheme is given by:

(@{; 0 ) (m) - <f1(u?“,¢?“)> 4)
0 %) \ae fo(uf 67 |
In equation (4.4), the second residual — f2(u};;', ¢7*") is calculated using w7} because
the first row is solved, and the updated u is used for the second row. The comparison be-
tween equations (4.3) and (4.4) proves that the Jacobian matrix in the iteratively staggered
scheme has zero values in the second diagonal, equation (4.4). The iteratively staggered
scheme discussed in this article can be understood as the Gauss-Seidel-like method, Kay
Hameyer [23]. At the same time, an iteratively staggered scheme can be formulated in the
Jacobi-like manner, Kay Hameyer [23], but that is not considered in this paper. Therefore,
based on the analysis using the Newton-Raphson method, a simultaneous scheme is likely
to be faster than an iteratively staggered scheme.

4.2 Combination of the FFT-based Scheme and the Coupling
Schemes

In this section, the entire algorithm to combine the algorithm of the FFT-based scheme and
that of a coupling scheme is discussed. H. Moulinec and P. Suquet [1] proposed the ex-
tension of the FFT-based scheme to incorporate nonlinear constituents. They suggested to
couple the FFT-based scheme and nonlinear constituents in an iteratively staggered manner
in a loading step. In their work, for a given macroscopic strain ¢, the iteratively staggered
scheme is used to update the fields of the strain, stress and the plastic strain. Analogously,
in the current research, inside an iterative loop, the FFT-based scheme is used to update the
field of the deformation gradient firstly. Secondly, the fields of the nonlocal damage variable
D and the local one D are updated using one of the aforementioned coupling schemes. Fi-
nally, the convergence criteria of the FFT-based scheme and the damage fields are checked.
This procedure of the iteratively staggered scheme can be simply summarized as follows:
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Algorithm 6 The combination of the FFT-based scheme and a coupling scheme
1: procedure FFT-BASED SCHEME + COUPLING SCHEME

2. Initialization: Load previous field quantities for initial guesses, Fi! = F”, Dyt =
D", and Dyt = D

3 Repeat:

4: (a) Runthe FFT-based scheme, algorithm 1, to update F;‘jll.

5 (b) Calculate ijll and D;fll using one of the coupling schemes.

6 (c) Check the convergence criteria: Div(P“*!(xz)) = 0 and D"*! —
aV2iDnt — pntl < tol YV € Q.

7: if Convergence then

8: return F1', D!, and DI

9: else

10: (c) +=1+1andgo to step (a).

4.3 Implementations of the Coupling Schemes

In this section, implementations of the coupling schemes are discussed. The following
implementations are supposed to be placed at step (b) in algorithm 6. On top of that,
validations and investigations of these coupling schemes are presented.

4.3.1 Staggered Scheme
4.3.1.1 Basic Idea

The basic idea of the staggered scheme is to arrange the solution techniques for the mi-
cromorphic balance equation and the KKT conditions in a sequential manner. Since the
nonlocal damage variable D has an impact on the local damage D, the micromorphic bal-
ance equation is solved for the field of D firstly while that of D is kept fixed. Then, the
solution procedure to solve the KKT conditions for the local damage D follows. The micro-
morphic balance equation is solved using the spectral method which is presented in the next
section. In order to calculate the increment of D at each grid point, the Newton-Raphson
method described in algorithm 7 is used.
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4.3.1.2 The Spectral Method to Solve the Micromorphic Balance Equation Defined
on a RVE

A systematic approach to solve the micromorphic balance equation (3.29) for the nonlocal
damage variable D is suggested. To solve the equation, M. Boeff et al. used a semi-
implicit method to express the nonlocal damage field D in terms of the local damage field
D in Fourier space, [24]. In the same manner, the micromorphic balance equation can be
expressed in Fourier space. The solution procedure is given by:

D(¢) = FFT(D(x)) Yz € Q
D) = 1 argaD© (4.5)

D(z) = FFTY(D(¢)) vz € Q

where the internal length scale « is a constant in the spatial domain 2. The definition of
the wave vector £ comes from equation (2.33). After the nonlocal damage field is solved in
Fourier space, a backward fast Fourier transform is performed on the nonlocal damage field
to express it in real space. Finally, the solution of the micromorphic balance equation D is
obtained in real space.

4.3.1.3 The Return-Mapping Algorithm for the Nonlocal Damage Model

The KKT conditions are expressed in terms of the thermodynamic conjugate forces and
the damage loading function. The thermodynamic conjugate forces for the micromorphic
approach in equation (3.28) are used to define the damage loading function ¢,,;,. for the
nonlocal model. The thermodynamic conjugate forces for the nonlocal model in equation
(3.28) are denoted by Y,,;,. and g4 respectively. In algorithm 7, these thermodynamic forces
and the damage loading function are used for calculating an increment of the damage mul-
tiplier. The return-mapping algorithm for the local damage model, algorithm 2, is extended
to the case of the nonlocal damage model. The return-mapping algorithm for the nonlocal
damage model, algorithm 7, is introduced as follows:
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Algorithm 7 The Return-Mapping Algorithm for the Nonlocal Damage Model
1: procedure NEWTON-RAPHSON METHOD

2: Initialization: Load previous state variables.
3: AN =0.
4: A(A)N)p = 0.
5: Dyt = D.
6: nel =g
7: D = D.
8: Iterate i+1 Seek the increment of A\ and update D and &;.
9: (@) Update AX;11 = AN + A(AN);.
10: (b) Update D and &. D' = Dp™ + Aip, 571 = €07 + Ay,
11: (c) Calculate the residual ||Gnioc,i1 (D €45 D)l = Yatoe — 4a
12 if ||®nioc,i+1|| < tolerance then return foll and gfll.
13: else
14: (d) Calculate Ko = 20assitt = Hntesizt ID. _ Sins By
15: (e) Calculate A(AN)j+1 = —%
16: () <=1+ 1 and repeat the algorithm from step (a).

4.3.1.4 The Algorithm

By combining algorithm 7 and the FFT-based solution technique for the micromorphic equa-
tion (4.5), the staggered scheme for coupling the micromorphic balance equation and the
KKT conditions is given as follows:

Algorithm 8 Staggered Scheme for coupling of damage fields

1: procedure STAGGERED SCHEME

Initialization: Load previous values of D, D.
(a) Solve equation D"+ —aV2D"*!t = D+l for D™*1 using equations (4.5).
(b) Run algorithm 7 to check and update local damage evolution, D" 1.
(c) Return D"*! and D"+1,

a & @b

4.3.2 Ilteratively Staggered Scheme

4.3.2.1 Basic Idea and Algorithm

An iteratively staggered scheme can be constructed by iterating the staggered scheme 8
until a coupling condition is satisfied. The coupling conditions should be set to ensure that
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all of the coupled fields satisfy every numerical model. The coupling condition at every step
in the iteratively staggered scheme reads as follows:

¢q < tolerance inf)

L (4.6)
D —aV*D — D < tolerance inf)

where € is the spatial domain of a RVE and tolerance is a small positive value. The coupling
conditions should be valid for every grid point in a RVE. However, the coupling condition
can be further simplified. In order to simplify the coupling condition, the KKT conditions
are solved firstly, and then the solution of the micromorphic balance equation is computed.
When the sequence of solutions is arranged in this manner, the convergence of the local
damage field yields the convergence of the nonlocal damage field. At the end of i-th step in
the iteratively staggered scheme, the following relation is valid in Fourier space

2 1 .

i = ————5D; .
1+ ale? (4.7)

When the local damage field is converged at the (i + 1)-th step, D, and f)iH are the same.
Likewise, in Fourier space, the following relation is satisfied:

1

By L
i+1 1+Oé|£|2

Dii1 (4.8)

As « and € are the same in the i-th and the (i 4 1)-th step, §i+1 and f)l are the same as
well. Thus, it is only necessary to check the convergence of the local damage field. The
simplified coupling condition reads as follows:

¢4 < tolerance in) (4.9)

The algorithm of the iteratively staggered scheme reads as follows:

Algorithm 9 Iteratively Staggered Scheme for Coupling Damage Fields
1: procedure ITERATIVELY STAGGERED SCHEME

2. Initialization: Take initial guesses from previous values Dy "' = D, ¢! = ¢, and
Dyt = D.

3 Repeat:

4 (@) Run algorithm (7) to calculate (D}, &1l ) from (D, €01, DY),

5 (b) Solve equation D' —a V2D = D! for DI using equations (4.5).

6: if Coupling condition (4.9) is fulfilled then

7 return (D1, €01l DY),

8 else

9 (c) ¢ =1+ 1 and repeat the algorithm from step (a).
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4.3.3 Simultaneous Scheme
4.3.3.1 Basic ldea

Finally, the simultaneous scheme comes into play in order to calculate the increments of the
local and the nonlocal damage variables satisfying the KKT conditions (3.11) and the micro-
morphic balance equation (3.29) at the same time. A set of simultaneous equations can be
constructed from these two models in order to calculate the fields of local and nonlocal dam-
age. In general, for a heterogeneous microstructure, there are two elastic-damage loading
scenarios. One is that damage-loading takes place at every grid point. The other one is the
case where damage-loading takes place only at certain grid points while other points are
going through purely elastic deformations. For clear explanations, firstly, the implementation
of the simultaneous scheme is introduced for the first scenario. Next, the implementation for
the second scenario is discussed.

4.3.3.2 Formulations of the Residual Vector and the Vector of Increments

To begin with, the first scenario that damage-loading takes place at every grid point is inves-
tigated. Two types of residuals are derived from the micromorphic balance equation (3.29)
and the KKT conditions (3.11). At every grid point, one residual denoted as r; can be for-
mulated from the micromorphic balance equation. The other one denoted as r is derived
from the damage loading function in the KKT conditions since the damage loading function
should be zero when damage evolution takes place. The definitions of the thermodynamic
conjugate forces for the nonlocal damage model are given in equation (3.28). The thermo-
dynamic conjugate forces are denoted by Y,,;,c and ¢4 in this section. At each grid point
going through a damage-loading process, these two residuals are given by:

ri(D,D)=D —aV?’D—-D=0

~ B (4.10)
TQ(DafdaD) = ¢nloc = nloc(D7D> - (Yb + Qd(éd)) =0

In the above equations (4.10), three state variables D, &; and D are involved in 1 and r.
The number the increments of the state variables can be further reduced to two, AD and
A\. The damage evolution equations (3.10) are reviewed below:

b=320 _ 5

24 441
. Dby - (4.11)
§a=—A =A

0
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The damage evolution equations (3.10) imply that the increments of D and £, are the same
with that of A. By taking this into account, the damage and damage hardening variables at
(n + 1)-th loading step are expressed in terms of those at n-th loading step

D"l = D" + AD = D™ + A\

o L (4.12)
&a §a"+ ALy =& + AN

where AD, A&;, and A) are the increments of D, &,, and X respectively. By using equations
(4.12), the increments of D and &, are simply expressed in terms of A\. At the same time,

D at (n + 1)-th step can be expressed in the same manner
D"l = D"+ AD (4.13)

Consequently, the simultaneous scheme is constructed to calculate A\ and AD in order to
update the state variables.

The indexing of each grid point follows the notations in Table 2.1. Residuals at a grid point,
T1,(i,5,k) @nd 7o (; j x), can be assembled into one residual vector. The definition of the resid-

ual vector of an entire spatial domain reads as follows:

r17(070?0)

7'1,(0,0,1)

71,(0,0,N.—1)

L) e R2(NeNyN:) (4.14)

) T1,(Ng—1,Ny—1,N.—1)

T(D, D7 £d) = (

T2

T2,(Ny—1,Ny—1,N,—1)
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Likewise, the increment vector of state variables « can be represented as follows:

AD0,0,0)
ADg,0,1)

AD o N, —1)

AD
_ (Nz—1,Ny—1,N.—1)
AD
x = = e RANeNyN:) (4.15)

A

AX0,0,0)

AX,0,1)

AX,0,N.-1)

ANN,~1,N,~1,N.—1)

The increment vector x is composed of the increment vector of the nonlocal damage vari-
able AD and that of the damage multiplier AX. As a result, the solution of the coupled
problem is defined as the increment vector « (4.15) which makes the residual vector r
(4.14) a zero vector.

4.3.3.3 Application of the Newton-Raphson Method

The Newton-Raphson method is used to find the increments of the state variables satisfying
the equation »(AD, AX) = 0. The initial guess of the increment vector x is initialized
with a zero vector. In the iterative procedure of the Newton-Raphson method, at i-th step,
the residual vector r; is calculated using the increment vector ;. The partial derivative
of r; with respect to z; should be calculated to construct a Jacobian matrix 2-| which is
necessary to calculate an increment of the increment vector Ax;. The incrementl vector at
(i + 1)-th step is calculated by adding Ax; to x;, ;+1 = x; + Ax;. Then, the residual
vector r;11 is calculated, and the convergence is checked. The aforementioned relations
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are summarized as follows:

mOZO

Tit1 =x; + Ax;

Tit1 = T; + (dl> Az, =0
v (4.16)
Az = () | ar
A AD ori ori -1
AAN) )|, s s 1\ |,

The Jacobian matrix g—;’. can be split into four submatrices. The Jacobian matrix and its
7
submatrices are described as follows:

67’1 87’1
_ [ aAaD 0AX
i 87"2 8’!’2

OAD OAX

dl
dx

€ R(2NaNyNz)x(2NzNyN-) (4.17)

7

where these four submatrices in equation (4.17) are (N,N,N.) by (N;N,N.) matrices.
In equation (4.17), r1, ro, AD, and A are vectors of corresponding residuals and the
increments in equations (4.14) and (4.15) respectively.

4.3.3.4 Calculations of the Residual Vector and the Jacobian Matrix

Firstly, at each grid point, the partial derivatives of r; with respect to AD and A\ are inves-
tigated. At a grid point with index (i, j, k), the residuals are written as follows:

r1(Di s D)) = Diijry — aV?Diijgy — Diijiy =0 (4.18)
r2(Di i k)s Eayijok) Diiik) = Prtoe(ijik) = Yotoesijik) — (Yo,(i.k) T da(ijr)) =0 (4.19)

In order to calculate the value of r; and the derivative of r; with respect to AD, the Laplacian
V2 should be approximated using the central finite difference scheme. In three-dimensional
space, the approximation of VQD(Z-J,,C) reads as follows:

D1k = 2D jr) + Ditijny | D1k = 2Dk + Dijrk

V2D k) = 5 + 2
dx _ dy _ (4.20)
dz?

where dz, dy, and dz stand for grid spacing in each direction, Table 2.1. The visualization
of the stencil of the approximation (4.20) is found in reference [25]:
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FIGURE 4.1: Stencil of the central finite difference scheme (4.20).

By plugging (4.20) into (4.18), r; at a grid point (i, 7, k) reads as follows:

_ Dii—1,jk) + Diir15k) | D1 + Dy
D +D :Uz 2a 2 ’ @21
(i7j7k_1) (’L,j,k‘—‘rl) a « o B
+ 12 ) + <1 T2 T ﬁ)D(myk) = Diijry
where the approximation of —aV2Dy, ; ;) reads as follows:
- D14k + Disgg) . Dig—16) + Diijak
_aV2D(i,j,k) ~ —a( (i-1,j )dq;Q (i+1,5,k) n (4,5 )d _ (4,5+1,k)
) ) y (4.22)
Diijk—1) + Dijikt1) 2. 20 20\ -
* pE )+ (G + o 32) D
Each row of the submatrix ;’A’“D can be derived from differentiating 7 (; j ) With respect
t0 AD(; j k), AD(i41,jkys AD(i—1,j), -+ > @nd AD(i 41 j 41 +1)- The shape of X% is gen-

erated from the approximation of the Laplacian using the central finite difference scheme.

Considering (4.21), the partial derivative of ry (; ; ) with respect to AD(iyjyk) forms an iden-

ory
OAD"

=TI — aV2 should be a symmetric and positive-definite matrix

tity matrix I in the submatrix

ory
> OAD

when the internal length scale « is a positive constant over a RVE. That is because I and

In general, since the Laplacian is always symmetric
and negative-definite

—aV? are positive-definite matrices. From equations (4.12) and the chain rule, the following
relations at every grid point can be derived:

oD _q
AN
&4
— 4.23
OAN 1 ( )
87‘1 o (97“1 8D

OAN ~ 0D OAN
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ory
OAN

Two submatrices derived by differentiating r; are summarized as follows:

Therefore, the submatrix is a scalar matrix where the main diagonal entries are —1.

81'1 2
=I-aV
OAD (4.24)
87"1 -1
OAN

In order to formulate submatrices which are the partial derivatives of r5, the definitions of
the thermodynamic conjugate forces are revisited. In equation, (3.28), the thermodynamic
conjugate forces are defined as follows:

Yoioe := —g% = —f’(D)[g{trC — 3 —In(detC)} + %{detC —1—1In(detC)}] — H(D — D)
= g = {1~ expl-s60)

(4.25)
At each grid point, the partial derivatives of r» with respect to the vectors, AD and A\, can
be derived by the following procedure:

T, (i,j,k) _ Y nitoc, (i) k) _ g
OAD BAD(@M) (4.26)
Ora (k) _ Ontoc(ijh)  Odaigk) _ o '
AN DN k) 0BGy ootk
where K, is defined at each grid point as follows:
K o aYnloc oD . % aéd
Mo T D AN 0Eq DAN
A
& - f”(D)[g{trC ~ 3~ In(detC)} + S {detC — 1 — In(detC)}] — (rs)exp(—s&) -
(4.27)
Finally, it is concluded that fﬁj is a scalar matrix, HI. The last submatrix 885\ is a diagonal

matrix having K. calculated at each grid point. In summary, these four submatrices are

summarized as follows:

Submatrix Definition
;Z‘b Approximation of I — a'V? using the central finite difference scheme
x5 &%, = ding(~1)
aaAmD aamp diag(H)
% dr = dlag( nloc)

Only the first submatrix
matrices. For example, the shape of the Jacobian matrix for a one dimensional problem is

TABLE 4.2: Submatrices of the Jacobian matrix 4=

ory
OAD

is symmetric a

nd positive-definite, and the others are diagonal
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FIGURE 4.2: Blue dots represent nonzero entities in the Jacobian matrix d—; in equation

d;
. ory or, Orsy Org
(4.17). Each submatrix in a quadrant corresponds to 535, 75 55> aNd A% -

where N, = 10, N, = 1, N, = 1, and the red cross distinguishes the submatrices.

4.3.3.5 Application of a Sparse Matrix Form and the Schur Complement Method

The simultaneous scheme is developed to solve the linear equation (4.16) in an iterative
manner until convergence is achieved. In practice, saving all entities of the Jacobian matrix
consumes a huge amount of memory. For example, for a 2D grid having grid points in
each dimension (N, Ny, N,) = (64,64,1), (64 x 64 x 1 x 2)? x (8)/22° = 512 Megabytes
are necessary to store the entire Jacobian matrix in double precision. To save memory
occupation, expressing the Jacobian matrix in a sparse format will save a huge amount
of memory. For this reason, the Compressed Sparse Row (CSR) format comes into play
to express the Jacobian matrix in a program. Details of the CSR format can be found in
Appendix A.
dr1

The Jacobian matrix is asymmetric because ;1% and 88AT2D are different. lterative methods

like GMRES can come into play to solve this asymmetric matrix. Nevertheless, considering

ory
O0AD

transformed into a smaller symmetric one by means of the Schur complement method. By

is symmetric and the other submatrices are diagonal, the Jacobian matrix can be

using the Schur complement method, not only the size of the Jacobian matrix reduces, but
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also the symmetric nature can accelerate iterative solvers to converge faster. The general
form of the Schur complement method for a linear equation and its solution reads as follows:

A Ap) (Ax _ (™M

Asi Ay \Ax, T2
Axy = {A — Apa(Ag) T Ay iy + Apa(An) '}
Axy = —(Az) '(ry + Ay Axy)

(4.28)

The matrix {A11 — A12(Ag) Ao} {71+ A12(Ag) " try} is called the "Schur comple-
ment matrix". Submatrices and vectors in the simultaneous scheme (4.16) can be mapped
to those of the Schur complement method (4.28). The corresponding terms are summarized
in Table 4.3

Simultaneous scheme | Schur complement method
aaAri‘) A
Y A1
aaATQD Azl
SR A
A(AD) Az,
A(AN) Axo

TABLE 4.3: Similarities between equations (4.16) and (4.28).

By applying the Schur complement method (4.28), the increment of the increment vector
of the nonlocal damage A(A D) is calculated firstly, and then that of the damage multiplier
A(AMN) is calculated from A(AD). By using the Schur complement method, A(AD) is
given by:

A(AD):{ ory ory (87“2 )—1 ors }—1{_ N orq (8r2 >_1r2} (4.29)

OAD  OAA\OAX) OAD " 9AA \oAX
where
{ 8r1_ _Om (81“2 )71 arg_ }—1 € RONaNy N (N Ny )
OAD  OAA\OAXN) OAD 430)
ory [ Org \—1 (Na Ny N.) '
{ T am(am) ’"2} € RV

By using the information of submatrices in Table 4.2, the Schur complement matrix can be

simplified further:

87'1_ B or1 (8r2 )—1 8r2_ _ arl_ H(@rz >—1 (4.31)
OAD OAX\OAX OAD OAD OAN
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At the same time, A(A\) reads as follows:

A =—( 633)_1<r2 + aaAr;_)A(AD)) (4.32)

4.3.3.6 The General Case of a Damage Evolution

In general, every grid point does not necessarily go through a process of damage evolution
at the same time. For a grid point with index (i, j, k) going through elastic deformation, the
condition 5 (; ; »y = 0 is not valid according to the KKT conditions. A(A)) should be zero at
that grid point. As a consequence, the Jacobian matrix and the residual vector in equation
(4.16) should be modified accordingly. When an elastic process takes place at a grid point,
A(AM) can be expressed as follows:

A(ANG k)

=0
) (4.33)
= 0A(AD(; k) + 1A(ANG k) =0

In the previous section, when there is a damage evolution at a grid point, the following
relation is derived from ro (; ; ) = 0

I3, (i,j,k) _ Ora,(i.j.k)

— 22 A(ADy; — 2 A(ANG = Ty (i 4.34

8AD(1,],I¢) ( ( 7]7k)) + aA)‘(’L,j,k) ( ( 7]7k)) T27( 7]7k) ( 3 )
This equation should be replaced by equation (4.33). Equation (4.33) can be regarded as a
special case of equation (4.34) where ;ﬁj =0,r, =0, and 883 = 0. The value of gg& at

a grid point where an elastic process takes place can be set to zero because A(A\) is zero
there. The following Table 4.4 summarizes the terms to be replaced at grid points under
elastic processes

Terms to be replaced | Values
I3, (i,5.k) 0
9ADs (i.j k)
I3 (i5.k) 1
IBXs (i4k)
72,(i,5.k) 0

TABLE 4.4: Modifications of terms when an elastic-loading takes place at a grid point,
(4,4, k).

On the contrary, the micromorphic balance equation is always valid in a domain. Therefore,
the residual vector of the micromorphic balance equation should be constructed in the same
manner.
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4.3.3.7 The Choice of an lterative Solver

The choice of the iterative solver depends on the type of the Schur complement matrix

dry _ 9ry [ dra \ ! ora
0AD OAX \ OAX 0AD
ora

the approximation of the submatrix (8A>‘> should be investigated. As the penalty term H

}. In order to analyze the Schur complement matrix further,

is a huge value compared to other terms in equation (4.27), K, is approximately —H
at every grid point. When every grid point goes through a damage loading process, this

approximation makes the submatrix ( 5’;2)\) to be close to a scalar matrix —HI. Accordingly,
the Schur complement matrix in equation (4.31) can be approximated as

—-1
87“1_ _ 8’1“1 (87“2 ) 87“2_ ~ 8’1“1_ 1 (435)
OAD  OAX\OAMX OAD O0AD
From Table 4.2, it is known that
87’1 2
—~1— 4.36
AD aV ( )

By combining relations (4.35) and (4.36), the following approximation of the Schur comple-
ment matrix is valid when the penalty term H is huge enough:

orq ory (Org )*1 Ors

— — ~ o~ — 2 4.37
oAb _onx\aax) aap =V (4.37)

As a result, equation (4.37) demonstrates that the Schur complement matrix is approxi-
mately a symmetric and positive-definite matrix when the penalty term H is large enough.

In the case of the second scenario of general damage loading, the Schur complement ma-
trix is still symmetric and positive-definite. In a general case, considering the approximation

in equation (4.27) and Table 4.4, (8‘9&\ (59&2)\)_1 8‘1’%) will have a zero or one in the diagonal
entries when H is large enough. Then, this matrix is semi-positive-definite so that the Schur
complement matrix is still a symmetric and positive-definite matrix.

The symmetric and positive-definite nature of the Schur complement matrix makes it pos-
sible to solve the linear equation (4.16) by means of the conjugate gradient method. In the
case of a symmetric and positive-definite matrix, the conjugate gradient method is much
faster than GMRES (Generalized Minimal Residual Method). Therefore, the conjugate gra-

dient method is used in the simultaneous scheme in the current work.

4.3.3.8 The Algorithm of Simultaneous Scheme

In summary, the algorithm of the simultaneous scheme is summarized below:
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Algorithm 10 Simultaneous Scheme for Coupling Damage Fields

1: procedure SIMULTANEOUS SCHEME

2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Initialization: Take the initial guesses from values at a previous loading step

Dyttt = Dn, it = &7, and Dt = D" Initialize the initial increments with zero,

ADy=0and AXg =0

Calculate and save dagb using the central finite difference scheme (4.21).
Repeat:
(a) Loop over every grid point to calculate damage loading function ¢,.

if (¢4 > tolerance) then

) 9 9
Assign gz = —1, gx5 = H, a5 = Knioc: and r2 = @q.
else
: or1 Ora Org __ _
Assign 555 =0, 335 =0, 535 = L, and rp = 0.

(b) Calculate r1 using equation (4.21).
(c) Check the convergence of the simultaneous scheme.
if (Coupling condition: ¢4 < tolerance at every grid point) then
return .
else
(d) Calculate the Schur complement matrix in equation (4.31).
(e) Solve the Schur complement matrix for A(AD);
(fy Update AD; 1 = AD; + A(AD);.
(9) Update DI"\! = Dgt! + ADy.
(h) Calculate A(AM); using equation (4.32).
(i) Update AN, 11 = AN + A(AN);.
() Update D" = Dyt + Ay and €57 ) = €050 + A
(k) 2 = 7 + 1 and repeat the algorithm from step (a).

4.4 Validations of the Implementations of the Coupling Schemes

In general, deriving an analytical solution of a coupled problem is intricate or impossible be-

cause of nonlinearities in geometries of inclusions and material models. There is one way

to test whether an implementation is correct. When it comes to a homogeneous RVE, the

nonlocal damage model should show exactly the same behavior as that of the local dam-

age model. The micromorphic balance equation (3.29) is reformulated for a homogeneous

domain

D—aV?’D=D, a=
(4.38)

o e

= D=
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In the above equation, the Laplacian a' V2D taking account of the nonlocality of D disap-
pears since every grid point will have the same field quantities in a homogeneous RVE.
Therefore, the nonlocal damage variable should be the same as the local one. In the fol-
lowing sections, the mechanical boundary-value problem of a homogeneous RVE is solved
using each coupling scheme, and the results are compared to the result of the local damage
model. To make the validation simple, a virtual experiment of uniaxial stretch is performed
in 2D space. The macroscopic deformation gradient F during the uniaxial stretch reads as

follows:
i 0 0
Fo=10 1/l; 0 l; €1, lf] (4.39)
0O 0 1

where [; is the stretch in z-direction at i-th loading step, and [; is the stretch at the final
step. [; is monotonously increasing from 1 to its final value I;. The elastic and damage
parameters in Table 4.5 are used. The penalty constant H is chosen as 10* MPa, and the

internal length scale a is 107 MPa mm?. The parameters are summarized as follows:

Symbol | Value Unit

Lamé’s first parameter A 5000 MPa

Lamé’s second parameter I 7500 MPa

Initial damage threshold Yo 5 MPa

Damage parameter r 50 MPa

Exponential damage parameter S 0.5 -

Penalty constant H 104 MPa

Internal length scale o 1076 | MPa mm?

TABLE 4.5: Elastic-damage material parameters

The penalty constant H should be large enough to firmly couple the local and the nonlocal
damage fields. In this case, the internal length scale a does not have any influence on a
homogeneous RVE.

4.4.1 Comparison of the Results

The results of the local damage model and the nonlocal damage model are presented in
this section. They are put on the same graph to prove that they show consistent results.

The comparison is shown in Figure 4.3
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Validations of Coupling Schemes
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FIGURE 4.3: Comparison between the solution of the local damage model and that of the
nonlocal damage model with different coupling schemes.

In Figure 4.3, only the results of the iteratively staggered scheme and the simultaneous one
are visible. That is because results overlap each other. As a result, it is concluded that
those schemes yield consistent results in the case of a homogeneous RVE.

Now, the runtime of each scheme matters from the practical point of view. The runtime of
each scheme to get to the point of principal stretch being equal to 1.04855 is summarized in
Table 4.6.

_ Local Nonlocal damage model

Numerical models : -
damage Staggered Iteratively Simultaneous
model scheme staggered scheme

scheme

Time (s) 16 888 3395 18

Runtime ratiow.r.t. | 1.0 55.5 212.18 1.12

the local model

TABLE 4.6: The runtime of simulations with different schemes.

To compare the runtime clearly, the contents of Table 4.6 are visualized in the following

Figure 4.4:
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FIGURE 4.4: The iteratively staggered scheme takes up the largest amount of runtime.
The simultaneous scheme is the fastest one among those coupling schemes.

In Table 4.6, the fastest coupling scheme is the simultaneous scheme which is 188.61 times
faster than the iteratively staggered scheme. Moreover, the speed of the simultaneous
scheme is comparable to that of the local damage model. In conclusion, as the simultaneous
scheme is stable and the fastest one among those three coupling schemes, this scheme is
adopted for running numerical examples in the following Chapter 5.

4.4.2 The Reason Why the Partitioned Approaches Are Slow

In previous section 4.1.2.1, the reason why a simultaneous scheme can be faster than a
partitioned approach was described. However, this does not fully explain the reason why
the partitioned approaches are much slower as shown in Figure 4.4.

The problem comes from the fact that D is not updated in the return-mapping algorithm
7 while D is updated. The cause of slow-down can be found from the return-mapping
algorithm 7 for the partitioned approaches. An increment of the damage multiplier at each
step in the return mapping algorithm reads as follows:

A(A)\) _ ¢d,nloc _ ¢d,loc - H(D B D)

(4.40)
—nloc _Kloc +H

In order to make the expressions comparable to that of the local damage model, the damage
loading function ¢4 0. is expressed in terms of the local one ¢4,.. In the same manner,
K,10c 1S also expressed in terms of K, which is the corresponding term in the local dam-
age model. By dividing the numerator and denominator in equation (4.40) by the penalty
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constant H, the expression in equation (4.40) can be approximated as follows:

Hbdnioc — (D —D)  —(D—D
A(A)\):H(Z)d,lKloci_l ) . —( : ) < .41)
H

In the construction of the micromorphic approach, the penalty constant H ties D and D to
become very close to each other, [4]. Consequently, (D — D) will be an infinitesimal value in
the equation (4.41). As an increment of A\ is infinitesimal in equation (4.41), each iteration
in the return-mapping algorithm 7 results in an infinitesimal increment of D.

Even worse, an infinitesimal increment of D can make the damage loading function ¢ 5. t0
be equal or less than zero, which lets the return-mapping algorithm 7 to converge without a
sufficient increase in D. ¢g ni0c iS highly affected by an infinitesimal increment of D because
of the penalty term —H (D — D) in ®dnioc- While D is fixed in the return-mapping algorithm,
an infinitesimal increment of D adds a large negative value t0 ¢g ... Thus, a huge value
for H causes D to evolve less than it should. Returning a very small increment of D causes
the overall iteratively staggered scheme 6 to run longer to yield a converged solution. It
means that the FFT-based scheme and the spectral method for the micromorphic balance
equation should run longer as well, which in turn leads to expensive FFT operations.



Chapter 5

Numerical Examples

In this chapter, parametric studies of the local damage model and applications of the local
and the nonlocal damage models are presented. By investigating each parameter’s influ-
ence on a damage evolution, proper choices can be made. On top of that, RVEs with a
single and multiple inclusions are introduced to validate the local and the nonlocal damage
model for general problems. Those damage models are used to simulate several damage
loading scenarios on these RVEs.

5.1 Parametric Studies of the Local Damage Model

The influences of the damage parameter » and the exponential damage parameter s are
investigated. It is obvious that the damage threshold Y, determines a loading step where
an initial damage evolution takes place. For this reason, only the influences of r» and s are
investigated. Those three parameters are chosen, as follows:

Symbol | Value
Initial damage threshold Yo 5 MPa
Damage parameter r 50 MPa
Exponential damage parameter s 0.5

TABLE 5.1: Elastic-damage material parameters

To begin with, the influence of an increase in r is investigated while Y and s are fixed. Next,
the influence of s is also investigated while the others are kept constant.

51
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5.1.1 Effect of the damage parameter r

The influence of the damage parameter r is investigated. When only r varies, the compari-
son between different choices of r is shown in Figure 5.1

Parametric Study (r)

r=50
600.01
r=200
500.0 |
= 400.0
o
=
—~
' 300.0
200.01
10001}

0.0 F | | | | | i :
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
ufL

FIGURE 5.1: The influence of r on the effective material response at fixed Y, and s.

In Figure 5.1, as r increases, the curves of damage hardening/softening regions become
higher and wider. Every curve has the same onset of the damage evolution since the same
threshold Y} is used in every case. From Figure 5.1, it can be inferred that higher » makes
a material to have slower damage evolution so that the maximum stress of its stress-strain
curve becomes higher value. As a consequence, it is concluded that higher » makes a
stress-strain curve to reach a higher peak and become wider.

5.1.2 Effect of the exponential damage parameter s

The case study of the influence of s is shown in Figure 5.2
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Parametric Study (s)
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FIGURE 5.2: The influence of s while Y, and r are fixed.

As s increases, those graphs become higher as well. Apparently, increasing s seems to
have the same effect of increasing r. Nevertheless, when s increases, the softening regions
in Figure 5.2 do not become wider as much as the softening regions in Figure 5.1 do. In
Figure 5.2, an increase in s not only increases a maximum stress but also makes a softening
region to be steeper. In conclusion, by manipulating influences of those parameters r and

s, one will have the flexibility of modeling a hardening/softening behavior of a material.

5.2 Problem of a Single Inclusion

In this section, the local and the nonlocal damage models are used to solve problems of
a composite where its RVE has a single cylindrical inclusion at the center. The problem is
defined as a plain-strain problem in 2D. The geometry of the composite’s RVE is shown in
Figure 5.3a and 5.3b
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(A) An RVE having a cylindrical inclusion. (B) Periodically distributed RVEs.

FIGURE 5.3: Visualizations of an RVE with a cylindrical inclusion.

The red color in Figure 5.3a and 5.3b represents the cylindrical inclusion, and blue matrix
material is surrounding those inclusions. As the RVE is periodically distributed in a compos-
ite, the composite’s microstructure will look like Figure 5.3b. The inclusion is presumed to be
a purely elastic material as a inclusion is supposed to be much stiffer than a matrix material
in most cases. The matrix material’s elastic-damage behavior is described using the local
damage model or the nonlocal one. The table of material parameters are summarized as

follows:
Symbol Matrix Inclusion
Lamé’s first parameter A 5000 MPa 5250 MPa
Lamé’s second parameter u 7500 MPa 7875 MPa
Initial damage threshold Yo 5 MPa 00
Damage parameter r 50 MPa -
Exponential damage parameter S 0.5 -
Penalty term H 10* MPa -
Internal length scale a 2.5 x 1078 MPa mm? -

TABLE 5.2: Elastic-damage material parameters

In Table 5.2, the stiffness of the inclusion is 1.05 times as much as the stiffness of ma-
trix. The material contrast ratio, 1.05, is set to be small for fast convergence of the FFT-
based scheme. The virtual uniaxial stretch experiments are performed using the FFT-based
scheme combined with those damage models. The macroscopic deformation gradient F
at each loading step is defined as follows:

L 0 0
Fo=|[0 1/l; 0| e[l (5.1)
0 0 1

where [; is the principal stretch in x-direction at i-th loading step and monotonously increas-
ing from 1 to [y. I is the stretch at the final step.
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5.2.1 Local Damage Model
In this section, the simulation results of the local damage model are presented. By using dif-

ferent discretizations, the grid convergence of those results is investigated. The comparison
of simulations is presented in Figure 5.4

Single Inclusion (local damage model)

32X32
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— 128X128
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1.000 1.005 1010 1.015 1.020 1.025 1.030
Principal Stretch

FIGURE 5.4: Simulations of the local damage model with different discretization.

In Figure 5.4, the number in each label indicates the level of discretization. For example,
the pink curve in Figure 5.4 represents a grid having 32 x 32 grid points in two dimensional
space. As it is shown in Figure 5.4, those curves in the figure have severe drop-down be-
haviors. The "snap-back" is possible to happen when a material goes through a process
of strain localization, M. A. Crisfield [26]. As the principal stretch of the macroscopic de-
formation gradient F is always increasing, the loading condition in equation (5.1) cannot
represent the phenomenon of snap-back. Consequently, at the drop-down points, the FFT-
based had to calculate a solution while skipping a number of loading steps. The problem of
the local damage model is that those points of drop-down do not converge towards a point.
From the peak point, the localization of damage zone becomes severe so that fractured
zones are generated in each RVE. Those graphs show individual softening behaviors after
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the peak points. Even worse, they have totally different fractured profiles in Figure 5.5. In
Figure 5.5, the results are arranged from the first quadrant to the fourth quadrant

64X64 \# / 32X32

damage

v | 4 02
’ g ’ ‘ [0.0e+00
128X128 a : A 256X256

FIGURE 5.5: Fractured configurations of the local damage model. There are 32 x 32,
64 x 64, 128 x 128, and 256 x 256 grid points in each quadrant. The contour interval of the
damage variable is 0.2.

Figure 5.5 shows that the spatial refinement does not lead to a convergence toward an
unique solution. In conclusion, the local damage model does not have a converged solution
in the softening region.

5.2.2 Nonlocal Damage Model

The defect of the local damage model that spatial refinement does not guarantee the exis-
tence of a unique solution motivates one to apply the nonlocal damage model. The results
are displayed in Figure 5.6
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Single Inclusion (nonlocal damage model)
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FIGURE 5.6: Simulations of the nonlocal damage model with different discretizations.

As it is shown in Figure 5.6, Those curves’ points of drop-down converge toward one point
(1.01685,198.314). However, simulations of the nonlocal damage model will show differ-
ent softening-behavior depending on the level of discretization. For the construction of the
simultaneous scheme, the Laplacian was approximated using the central finite-difference
scheme, equation (4.20). Spatial resolution affects not only the FFT-based scheme but also
the approximation of the Laplacian. This fact makes the diffusion of D to be dependent on
a spatial resolution. For this reason, in Figure 5.6, the result of the coarsest grid shows the
smoothest softening-behavior because the stencil of the central finite difference scheme,
Figure 4.1, is the widest. Figure 5.7 backs up this investigation that the coarsest grid has
the widest damage zone. As a consequence, the large damage zone in the coarsest grid
could make strain localization to be less severe. On the other hand, finer ones show sharper
transitions in softening regions. Nevertheless, in the case of the nonlocal damage model, it
is promising that spatial refinement leads to closer softening regions in Figure 5.6.

Moreover, it is also promising that the fractured configurations of RVEs shown in Figure 5.7

have consistent fractures
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FIGURE 5.7: Fractured configurations of the nonlocal damage model. There are 32 x 32,
64 x 64, 128 x 128, and 256 x 256 grid points in each quadrant. The contour interval of
damage variable is 0.2.

This is a good indication that the nonlocal damage model results in consistent results when
the spatial discretization becomes finer. Figure 5.7 also supports the fact that the approxi-
mation of the Laplacian on a coarser grid results in more diffusive damage field.

5.3 Problem of Multiple Inclusions

In this section, an RVE consists of randomly distributed multiple inclusions is investigated.
The RVEs containing multiple inclusions are visualized in Figure 5.8a and 5.8b

A) An RVE having multiple cylindrical inclusions. B) Periodically distributed RVEs.

FIGURE 5.8: Visualizations of RVEs with multiple cylindrical inclusions.

In Figure 5.8b, it is shown that the RVE satisfies the geometric continuity across the bound-
aries. The RVE in Figure 5.8a is used to conduct virtual experiments of uniaxial stretches
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in x and y directions and a shear deformation. The virtual experiments are conducted using
the local and the nonlocal damage models to be compared to each other.

5.3.1 Uniaxial Stretch in X-Direction

Uniaxial stretch simulations are performed on the RVEs with different spatial discretizations.
In this case, the macroscopic deformation gradient at each loading step is defined as it is for
the single inclusion simulations, (5.1). First, the effective stress-principal stretch curves of
grids are compared to investigate a grid convergence. Next, the fractured configurations at
principal stretch 1.02 are compared to investigate the consistency in the fractured shapes.

5.3.1.1 Stress Curves

The stress-principal stretch curves of the local and the nonlocal damage models are shown

in Figures 5.9a and 5.9b respectively



Numerical Examples 60

Complex RVE with Many Inclusions (local model)

64X64
— ]728X128
2401 — 256X256
200 l
< 1601
o
=
b: 120 |
80 + R
 C—
40
2000 1.005 1.010 1.015 1.020

Principal Stretch

(A) The local damage model.

Complex RVE with Many Inclusions (nonlocal model)
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(8) The nonlocal damage model.

FIGURE 5.9: The effective response of the damage models under the uniaxial stretch in
x-direction.
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In Figure 5.9a, the spatial refinement for the local damage model does not lead to a con-
verged solution. Specifically, those three curves’ drop-down points differ from each other.

As a result, it is hard to predict the loading step where a composite breaks down using the

local damage model.

On the other hand, the drop-down points in Figure 5.9b converges toward the point (1.016, 214.431).
Still, curves in Figure 5.9b show individual profiles depending on the level of spatial dis-

cretizations.

5.3.1.2 Fractured Configurations

The fractured configurations of the local and the nonlocal damage models are shown in
Figures 5.10a and 5.10b respectively. In Figure 5.10a, the results of the local damage model
show inconsistent fractured configurations. The result of the finest grid is different from the
others. On the other hand, the fractures of the nonlocal damage model are consistent.
Fractured regions of different grids match each other at boundaries in Figure 5.10b. In
conclusion, the nonlocal damage model yields the consistent fractures while the local one
does not.
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(A) The result of the local damage model under an uniaxial stretch in x-
direction.

(B) The result of the nonlocal damage model under an uniaxial stretch in
x-direction.

FIGURE 5.10: There are 64 x 64, 128 x 128, and 256 x 256 points in each quadrant. The
principal stretch is 1.02. The contour interval of the damage variable is 0.2.
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5.3.2 Uniaxial Stretch in Y-Direction

The macroscopic deformation gradient for the simulations in y-direction is given by:

1, 0 0
F() = 0 li 0 li c [1, lf] (52)
0O 0 1

where [; is the principal stretch in y-direction at i-th loading step and monotonously increas-
ing from 1 to [;. [; is the principal stretch at the final loading step. Likewise, the local and
the nonlocal damage models are used to simulate this loading condition 5.2.

5.3.2.1 Stress Curves

The effective responses of the local and the nonlocal damage models are described in
Figure 5.11a and 5.11b respectively.
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Complex RVE with Many Inclusions (local model)
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(8) The nonlocal damage model.

FIGURE 5.11: The effective response of the damage models under the uniaxial stretch in
y-direction.
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The effective responses under the stretch in y-direction are very similar to those in x-
direction, Figures 5.9a and 5.9b. The similarity implies that the RVE 5.8a has an isotropic
effective response. This can happen because the RVE is made of randomly distributed
circular inclusions. Also, the isotropic Neo-Hooken solid model is used for both the matrix
material and the inclusions. According to I. M. Gitman et al. [27], an RVE does not neces-
sarily have to be uniquely defined for an arbitrary heterogeneous microstructure. If the RVE
in Figure 5.8a is rotated 90 degrees clockwise, the rotated RVE still has similar statistical
properties. First, the rotated one has the same amount of density of the inclusions. Second,
since those inclusions are randomly distributed, the rotated one has the similar standard
variation in the distribution of those inclusions. As a consequence, the rotated one is eligi-
ble to be an RVE of the microstructure as well, Figure 5.8b. Therefore, this inference leads
to the conclusion that the effective response of the RVE is isotropic.

5.3.2.2 Fractured Configurations

The fractured configurations of the local and the nonlocal damage models are shown in
Figures 5.12a and 5.12b respectively.
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(A) The result of the local damage model under an uniaxial stretch in y-
direction.

128X128 S f y 64X64

(B) The result of the nonlocal damage model under an uniaxial stretch in
y-direction.

FIGURE 5.12: There are 64 x 64, 128 x 128, and 256 x 256 points in each quadrant. The
principal stretch is 1.02. The contour interval of the damage variable is 0.2.

As it is discussed in previous section 5.3.2.1, because of the isotropic response, the frac-
tured configurations of the local and the nonlocal damage models are almost same to those
under the loading in the x-direction.



Numerical Examples 67

5.3.3 Shear Deformation

The macroscopic deformation gradient under a shear deformation is defined in the following

manner:

Fy= li 1 O li € [1,lf] (53)

where [; is the amount of shear deformation at i-th loading step and monotonously increas-
ing from 1 to [;. When [; is small enough, Fy becomes the deformation gradient of a pure
shear problem. The macroscopic small strain tensor €y can be expressed in terms of Fy in
the following manner:

€ = %(F0 +F) —1 (5.4)

When F is given as equation (5.3), €y reads as follows:
=0 0 0| Lellly (5.5)

When [; is small enough, F in equation (5.3) becomes the deformation gradient of a pure
shear deformation. Finally, the results of the local and the nonlocal damage models are
introduced in the following sections.

5.3.3.1 Stress Curves

The effective responses of the microstructure under the shear deformation are calculated
using the local and the nonlocal damage models. These responses are described in Figures
5.13a and 5.13b
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Complex RVE with Many Inclusions (local model)
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(A) The local damage model.

Complex RVE with Many Inclusions (nonlocal model)
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(8) The nonlocal damage model.

FIGURE 5.13: The effective response of the damage models under the shear deformation.
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Those two graphs of the local and the nonlocal damage models look very similar to each
other. This similarity can be explained by examining the fractured configurations.

5.3.3.2 Fractured Configurations

The fractured configurations are shown in Figures 5.12a and 5.14b respectively. Both figures
have vertical fractures. In this case, the local damage model shows consistent fractured
configurations. In the previous case studies on the RVE with a single inclusion, the fractured
configurations generated from the local damage model are individual in Figure 5.5. That is
because there are multiple possibilities of fractures to be generated in the matrix. However,
certain weak regions in an RVE can be determined from its microstructure and a loading
condition. Considering the microstructure of the RVE, it is obvious that fractures will be
generated in the matrix located between inclusions because inclusions are purely elastic.
Since weak regions are obvious in the RVE, the problem of the local damage model may be
well-posed on the RVE under the shear deformation. Therefore, the local and the nonlocal
damage models yield similar the consistent results in this special case
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(B) The result of the nonlocal damage model under a shear deformation.

FIGURE 5.14: There are 64 x 64, 128 x 128, and 256 x 256 points in each quadrant. The
principal stretch is 1.02. The contour interval of the damage variable is 0.2.



Chapter 6

Conclusions

6.1 Summary of Major Investigations

In summary, the implementation of the gradient-extended damage model in the FFT-based
scheme and its numerical examples are investigated in this thesis. In conclusion, the non-
local damage model (3.29) implemented using the simultaneous scheme’s algorithm 10, is
recommended to replace the local damage model. One reason is that the nonlocal damage
model shows the grid convergence until a severe strain localization takes place. Further-
more, the nonlocal damage model yields consistent fractured configurations for different
spatial discretizations. The investigations and remarks in this paper are summarized as

follows:

e According to Figures 4.3 and 4.4 in Chapter 4, it is shown that the simultaneous
scheme is stable and the fastest coupling scheme for the current research.

e The RVE having cylindrical inclusions, Figure 5.8a, shows almost isotropic effective
behavior. That is because those inclusions are circular in 2D and randomly distributed.
If the inclusions are other geometric objects like a triangle or elliptic curves, the effec-
tive response of an RVE might be anisotropic.

e The local damage model shows non-unique fractured configurations in the softening
regions depending on the level of spatial discretizations, shown in Figures 5.5, 5.10a,
and 5.12a. Nevertheless, it does not necessarily mean that the local damage model
always fails to have a unique solution. Depending on a combination of the geometry
of an RVE and loading conditions, the problem of the local damage model in softening
regions can be well-posed in certain cases, shown in Figure 5.14a.

e The nonlocal damage model has shown consistent fractured configurations in every
case study, Figures 5.7, 5.10a, 5.12a, and 5.14a.

71
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e When it comes to hardening or softening regions, both damage models show drop-
down phenomena of effective behaviors. For example, Figures 5.9a and 5.9b.

The following topics are suggested to develop more robust and realistic simulations in the

future.

e For ductile simulations, plasticity models can be also taken into account since plasticity
and damage evolution are likely to take place at the same time.

e The Newton-Raphson based methods can be more stable and accelerate the speed
of computations by means of the quadratic convergence, M. Kabel [3]. It can be used
to run simulations with higher spatial resolution or 3D problems.

e In order to heal the drop-down phenomena possibly arising from the snap-back prob-
lems, artificial-viscosity can be applied.

e The gradient-extended damage model with the micromorphic approach can be also
implemented in an FEA software. The concept of the homogenization technique can
be applied in an FEA software. In each loading step, the periodic boundary condition
and a macroscopic deformation gradient can be used to define boundary conditions
in FEA. For structural inclusions, the spatial discretization using finite elements can
represent a geometry of an inclusion neatly. FEA can be more stable and efficient
platform than the FFT-based scheme in that case.



Appendix A

The Sparse Matrix Format

In order to reduce hardware memory occupancy for expressing a huge size matrix, sparse
matrix formats are devised to express only nonzero entries in a matrix. The Compressed
Sparse Row (CSR) and Compressed Sparse Column (CSC) formats are widely used. Those
sparse matrix formats are very useful when an iterative solver is used to solve a linear
equation. In that case, a matrix does not need to be directly inverted, but only matrix-vector
multiplications are necessary to solve a linear problem. In C/C++, a multidimensional array
is represented in a row-major format. On the other hand, in Fortran, that is done in a column-
major format. To keep the consistency with the standard data storage format in C/C++, the
CSR format is employed. This consistency is advantageous when a matrix in a dense form
is converted into the CSR format since it is possible to utilize cache-hit. On top of that, each
row of the approximation of the Laplacian using the central finite difference scheme (4.20) is
calculated sequentially, it is easier to construct the approximation (4.20) in the CSR format.
From the development reference for Intel Math Kernel Library 2018 - Fortran (Beta) [28],
descriptions and an example of the CSR format can be found. It is supposed that a matrix
has m rows, n columns, and nnz nonzero entries. The arrays in terms of the nonzero

values, row, and column positions of a matrix are described in the following Table:

values | This array contains every nonzero values in a matrix. In the CSR format,
nonzero values are saved in this array in the row-major sequence. The size

of the array is equal to the number of nonzero values nnz.

columns | Column indexes of nonzero values are stored in this array. The size of the

array is equal to the number of nonzero values nnz.

rowlndex | Locations of first elements in each row are saved in this array. Basically,
this array has size of m. On top of that, the last entry of this array saves

(nnz 4+ 1). As aresult, this array has size of (m + 1).
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For an instance, a matrix in the dense format is given as an example

[

*

oo

*
*
4
2

*

-3 %

*
4

*

N O ¥

x —b

(A.1)

The matrix B can be represented in the CSR format in the following manner in Table A.1:

Storage arrays for a Matrix in the CSR Format

one-based indexing

Values = (-1 -3 -2 -4 -5)
Columns = (1 1 1 5)
RowlIndex = (1 9 |12 ] 14)

zero-based indexing

Values = (-1 3|25 -4 -5)
Columns = 0 1 0 4)
Rowlndex = (0 11 | 13)

TABLE A.1: The representation of the matrix B in the CSR format.
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