Fast Iterative Solvers:
Project 2

Jaeyong Jung (359804)
November 2, 2016

1. Plot the convergence using the measure ||r"||./||7°||- against multigrid
iterations m for meshes with n = 4, n = 7 (resulting in N = 16, and N = 128).

To begin with, n = 4 is tried to see the convergence. Simulation is done for two cases by
varying v as described in Figure 1. The maximum number of iteration is 30.

Error graph (n=4)
3 —f—1=12=1

—‘5—\"— pl=2, v2=1

105_

A "\
£
i
£
". t.
197191 éggk
AN
&
hat
\

Relative error

10 15 I i
] 5 10

The number of iteration

Figure 1: Error analysis when n is 4

For the first case, v1 = v2 = 1, The relative error decreases drastically until 18-th
iteration step. At that 18-th point, the relative error is 3.239 x 107'°. Then it reaches
2.699 x 107'° at last. On the other hand, the later case, v1 = 2,12 = 1, convergency is
attained much faster. Untill 15-th iteration, the relative error diminishes rapidly. At that
point, relative error is 1.979 x 10~'°, which is even less than the first case’s error at 18-th
point. Finally, the error at 30-th step is 2.699 x 107'° and it is identical to that of the
first case. Two cases’ final value is the same. Nevertheless, the second case shows oscilating
behavior. At the 15-th the error is 1.979 x 1071 but the last error is bigger, 2.699 x 10715,
It is guessed that coarsness of the mesh yield the oscillating bahavior. By comparing this
result with numerical simulation with finer mesh, this guess will be verified.

Computational experiment with n = 7 is done to see if the rate of convergence is higher
compared to coarser mesh. The result is shown on Figure 2.

Error graph (n=7)

% pl=p2=1

é% —£5 =2, 12=1

105_

108_

Relative error

1010_

1012_

The number of iteration

Figure 2: Error analysis when n is 7

When v1 = v2 = 1, the relative error decreases drastically until 13-th iteration step. At
that 13-th point, the relative error is 3.288 x 10713, Then it reaches 2.109 x 10713 at last,
30-th step. On the other hand, the later case, v1 = 2,2 = 1, convergency is attained much
faster. Untill 10-th iteration, the relative error diminishes rapidly. At that point, relative
error is 2.976 x 10713, which is even less than the first case’s error at 13-th point. Finally,
the error at 30-th step is 1.951 x 1072 and it is smaller as well.

In summary, it takes less iteration step for finer mesh to get convergence. Plus, finer mesh
does hot have oscillating behavior. For both of them, more Gauss-Seidel pre-smoothing step
makes numerical solution to converge with less iterations. However, the final iteration’s value
of error is smaller in coarser mesh. That is because the size of mesh is closer to the lowest
level, where the equation is perfectly solved, for coarser mesh.

2. Further consideration about the effect of pre-Gauss-Seidel smoothing op-
eration.)

The comparision of numerical experiments showed that pre-Gauss-Seidel smoothing will
make the multigrid process to require less iteration for convergence. Nevertheless, it does not
necessarily mean that more smoothing will take less time for convergence as well. Thus, it
is necessary to conduct numerical experiment to compare runtimes. Before the comparision
is done, other parameters are defined. n = 7 and v2 = 1. v1 is changed every time to see

difference in runtime.

Error graph (n=7,12=1)

]_Dn\ § T T T
' —f—11=1
2 4k —f:ﬁ‘_"—r»l=2
10 : vl=3 | 7
vl=7
———p1=10

104 —11=20] T
—
o
5 106 .
i}
2
o 3p72 1
e}
o

10 10 i

10 12 4

10 14 | I I |

0 0.02 0.04 0.06 0.08 0.1 0.12 014 016 0.18
Runtime

Figure 3: Runtime comparision

The convergence criteria is the point that relative error goes below 10712,

The fastest convergence in error is made when v1 = 2 and it takes 20.63ms. The slowest
case is when v1 = 20, and the runtime is 37.62ms. The graph in Figure 3 proves that there is
optimal number of smoothing. If there is too much smoothing, it will not only decrease the
performance of computation but also takes more time than one smoothing. In conclusion,
two or three times for smoothing is optimal.

3. Implementations of Gauss-Seidel Smoother, restriction operator, prolon-

gation, and main function.
Important functions are copied on following page. The entire code is also submitted.

C code:

void GS(doublex u0, doublex f, int nu, int N)
{
int iteration=0, i, j, k, 1, m;
double h = (1/(double)N);
double tol = 1le—10;
double norm = 1;

double (xu_t) = (double(x)) calloc ((N+1)%x(N+1), sizeof(double)
) ;

for (m=0; mxnu; mt+)
{iteration++;
// Load wvalues onto wu_t
copy (u_t, u0, (N+1)%(N+1));

for (j=1; j<=N—-1;j++)

{

for (i=1; i<=N—-1;i++)
{
ul [(N+1)xi + j] = (hxh«f [(N+1)*xi + j] + u0[(N+1)=(
i—1) + j] + uO[(N+1)*i + j—1] + uO[(N+1)x(i+1)
+ j] + uO[(N+1)*i + j+1])/4;

}

}

printf (”GS smoothing done iteration = %d norm = %e \n”,
iteration , norm);

free(u_t);

void Restriction (doublex u_c, doublex u, int N)

{
int ii, jj, Nc = N/2;
for (int i=1; i<=Nc—1;i++)
{
11 = 2x%i;
for (int j=1; j<=Nc—1;j++)
{
JJ = 2%];
u_c[(Ne+1)xi + j] = (u[(N+1)*(ii —=1) + (jj—1)] +2+u[(N
+1)x(i1) + (jj—1)] + u[(N+1)«(ii+1) + (jj—1)] + 2xu
[((N+1) (il =1) + (jj)] +4u[(N+1)=(ii) + (jj)] + 2*u
[((N+D)*(ii+1) + (jj)]
+ u[(N+D)=(ii =1) + (jj+1)] + 2xu[(N+1)«(ii) +
} (Ji+D] + u[(N+1)«(ii+1) + (jj+1)]) /16;
}
¥

void Prolongation (doublex u, doublex u_c, int N)

{

int Nc = N/2;
// initialize wu
for (int i=1; i<=N-—-1; i++)
{
for (int j=1; j<=N-1; j++)

{
}

u[(N+1)*xi 4+ j] = 0;

}

for (int i=1; i<=Nc—1; i++)
{
int ii = 2x1i;
for (int j=1; j<:NC—1; j_|__|_)
{
int jj = 2xj;
double temp = (u_c[(Ne+1)*(1)
u[(N+1)*(ii —=1)+ (jj—1)]
double)1/4xtemp;

(e
—
—~

u[(N+D) (il =D+ (Jj+1)] = u[(N+D*(ii =1+ (ji+1)] + (

double) 1/4xtemp;

u[(N+1)#(ii4+1)+ (jj+1)] = u[(N+D)*(ii+1)+ (jj+1)] + (

double) 1/4*temp;

u[(N+1D)x(ii+1)+ (jj—=1)] = u[(N+D)*(ii+1)+ (jj—1)] + (

double) 1/4*temp;

u[(N+1D)+(ii)+ (jj —1)] = u[(N+1)=(ii)+ (jj—1)]
double) 1/2xtemp;

u[(NFD)+(ii1)+ (ji+1)] = u[(N+D)+(ii)+ (jj+1)]
double) 1/2*temp;

u[(N+1D) (il =1+ (jj)] = u[(N+1)=(ii =1+ (jj)]
double) 1/2xtemp;

u[(N+L)*(ii+1)+ (jj)] = u[(N+1)*(ii+1)+ (jj)]
double) 1/2*temp;

u[(N+1)x(ii)+ (jj)] += temp;

void MG(int 1, double xu, double xf, int N, int gamma, int nul,
int nu2)

{// 1: level, w: grid, f, N: N at l—th level, gamma: #iteration at
each level
int Nc = N/2;
double *u_c = (double(x)) calloc ((Nc+1)*(Nc+1), sizeof(double)

) ;

double (xr_1) = (double(x)) calloc ((N+1)*(N+1), sizeof(double)
) ;

double (xr_12) = (double(*)) calloc ((Nc+1)%(Nc+1), sizeof(
double)) ;

double (xe_1) = (double(x)) calloc ((N+1)*(N+1), sizeof(double)
) ;

double (xe_12) = (double(x)) calloc ((Nc+1)*(Nc+1), sizeof(
double)) ;

double (xu_t) = (double(x)) calloc ((N+1)*(N+1), sizeof(double)
) ;

double h = (1/(double)N);
double h2 = (double)h/2;

printf(”\nstart %d—th level , h = % N = %d \n”,1 ,h,N);
GS(u, f, nul, N);

// Implement r_| = f— A_lxu_l (A_l: is Lagrangian operator)
J/ u_t = A lxu_t
Laplacian(u_-t, u, h, N);

subtract(r_1, f, ut, (N+1)%(N+1));
// r_12 = Restriction r_l
Restriction(r_12, r_1, N);

if (1==1)
{
printf(”reached at just before the lowest level Nc¢ = %d\n”
, Ne);
GS(e_12, r_.12, 1, Nc);
//Inv_Laplacian(e_l2, r_12, h2, Nc);
// Jinzuan told me that Gauss relazation is inverse
opeation of laplacian
/) e 12 =—e_l2
Inv_sign(e-12, (Nc+1)*(Nc+1));

7

int

printf(”The lowest error equation is solved!\n”);

}
else
{
Inv_sign(r_-12, (Nec+1)*(Nc+1));
Init (e_12, (Nc+1)*(Ne+1), 0);
for (int j=0; j< gamma; j++)
{
MG(1—-1, e_12, r_12, Ne¢, gamma, nul, nu2);
}
}

// Continue writing from here

Prolongation(e_l, e_ 12, N);
subtract (u, u, e_l, (N+1)*(N+1));
GS(u, f, nu2, N);

free (u_c);

free (r-1);

free (r_12);

free (e_l);

free (e_12);

free (u_t);

main (void)

int 1=7;

int N= pow(2,1);

int Nc¢ = (N/Q),

double h = (1/(double)N);

double (xu) = (double(x)) calloc ((N+1)%(N+1), sizeof(double));

// coarse mesh

double (xu_-c) = (double(x)) calloc ((Nec+1)*(Nc+1), sizeof(
double)) ;

// real solution

double (xu_s) = (double(x)) calloc ((N+1)*(N+1), sizeof(double)

) ;
double (xf) = (double(x)) calloc ((N+1)x(N+1), sizeof(double));
printf ("N = %d\n” ,N);

printf(”Nc = %d\n” ,Nc);

printf(”h = %e\n” ,h);

// [and u_s initialization
Initialization (u.s, f, N);

int gamma = 2;
int nul = 7, nu2 = 1, iteration = 30;

double r0 = abs_max(f, (N+1)%(N+1));
double r[l1 + iteration];

double r_time[l + iteration |;
double sta_t=clock () ;

r[0] = 1;

// Perform multigrid method for a certain number of times.
for (int m=0; m < iteration; mt+)
{
MG(1, u, f, N, gamma, nul, nu2);
rm+1] = r_inf_norm (u, f, N)/r0;
r_time [m+1] = (clock()— sta_t)/CLOCKSPERSEC;
¥

char aa[20] = "error”;
char bb[20] = "r_time”;
char cc[20] =" .txt”;

char nul_c[10];
sprintf(nul_c,”%d” ,nul) ;

strcat (aa,nul_c);
strcat (aa,cc);

strcat (bb,nul _c);
strcat (bb,cc);

// save error and runtime as text file.
M _fprint (aa, r, iteration+1, 1);
M _fprint (bb, r_time, iteration-+1, 1);

if ((r[iteration+1]) < le—8)

{

printf(”\nconverged! Relative error = %e \n\n”, (r]
iteration+1]/10));

else

free
free
free
free

prin

)

tf(”\nFailed to converge, %e\n\n”, (r[iteration+1]/r0)

)

10

