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Problem 9 : SVD, Least squares

We reconsider Example 1.1.1 from the lecture notes. For t ∈ [0, 1] the following func-

tions are given:

g(t) = ξ1t+ ξ2e
t + ξ3t

3, ξ∗ = (ξ1, ξ2, ξ3)
T := (1.2, 0.6, 1.6)T ,

ĝ(t) = ξ1t+ ξ2e
t + ξ3t

3 + ξ4 sin t, ξ̂∗ = (ξ1, ξ2, ξ3, ξ4)
T := (1.2, 0.6, 1.6, 0.9)T .

Using discrete points ti = i∆t, i = 1, . . . , 6 for ∆t = 0.15, we get (exact) data vectors

y, ŷ ∈ R6 with yi = g(ti) and ŷi = ĝ(ti), respectively. In the following we assume that

the exact parameter values ξ∗, ξ̂∗ are unknown and are determined by a least-square

formulation using (measurement) data at ti, i = 1, . . . , 6.

• Construct matrices A ∈ R6×3 and Â ∈ R6×4 such that Aξ∗ = y and Âξ̂∗ = ŷ in

MATLAB. Verify this by computing A*xi - y and AHat*xiHat - yHat.

• We choose perturbations δy1 := 10−2 (1, 0,−1,−1,−0.5, 1)T , δy2 :=

10−2 (−1, 1, 1,−0.5,−2, 1)T , yielding perturbed data yi = y + δyi, ŷi = ŷ + δyi,

i = 1, 2, and consider the corresponding least-squares problems

‖Aξ − yi‖2 → min and ‖Âξ̂ − ŷi‖2 → min, i = 1, 2.

Solve these least-squares problems using the backslash operator, i.e., xi = A\y,

and compute the errors ‖ξi − ξ∗‖2, ‖ξ̂i − ξ̂∗‖2, i = 1, 2. Verify that you get the

same errors as given in the lecture notes.

• To analyze the error propagation for the least-squares problems, compute the

SVD of A and Â, respectively, by using the svd command in MATLAB. Discuss

for both matrices: what is the largest possible error amplification, and for which

kind of perturbation does it occur?

• Considering the least-squares problem for ĝ, represent the perturbations δyi ∈ R6,

i = 1, 2, in a suitable orthonormal basis. Why is there such a large error in ξ̂2,

but only a mild error amplification in ξ̂1?
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Problem 10 : Backwards heat equation

We consider the 1D (forwards) heat equation (cf. Section 1.3 in the lecture notes)

ut(x, t)− αuxx(x, t) = 0 for x ∈ [0, L], t ∈ [0, T ], (1)

u(0, t) = U(L, t) = 0 for t ∈ [0, T ], (2)

u(x, 0) = u0(x) for x ∈ [0, L], (3)

with length L = π, final time T = 5, heat conduction coefficient α = 10−3 and initial

temperature u0(x) = sin(x) + 0.2 sin(8x). For the backward heat equation, the initial

condition (3) is replaced by a final condition u(x, T ) = uT (x), x ∈ [0, L].

Spatial discretization on a uniform 1D grid leads to the discrete problem

~ut(t)− C~u(t) = 0 for t ∈ [0, T ], (4)

~u(0) = ~u0, (5)

with

C =
α

h2
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∈ Rn×n, for mesh size h =

L

n+ 1
.

• Compute the eigenvalues and eigenvectors of C for n = 100. Plot the eigenvectors

corresponding to the smallest and largest eigenvalue, respectively.

• The solution of (4)–(5) is given by ~u(t) = exp(−tC) ~u0. Compute ~uT = ~u(T )

with MATLAB. Adding a perturbation 1e-2*randn(n,1) with normal dis-

tribution and variance σ = 10−2 to ~uT yields the measured final temperature

~umeas
T . Plot ~u0, ~uT , ~u

meas
T together in one figure (hold on . . .hold off).

• Using ~umeas
T as final condition, compute the estimated initial temperature ~uest0 =

~u(0) which is the solution of the corresponding backward heat equation. Plot

~u0, ~u
est
0 together in one plot.

• Repeat the previous steps for n = 50 and n = 25. Which amount of ill-posedness

do you observe on these coarser grids?
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Problem 11 : TSVD, Tikhonov

We reconsider the least squares problem for ĝ from Problem 9. For easier notation, we

drop the ‘ˆ’ in the following.

g(t) = ξ1t+ ξ2e
t + ξ3t

3 + ξ4 sin t, ξ∗ = (ξ1, ξ2, ξ3, ξ4)
T := (1.2, 0.6, 1.6, 0.9)T .

Using discrete points ti = i∆t, i = 1, . . . , 6 for ∆t = 0.15, we get an (exact) data vector

y ∈ R6 with yi = g(ti). In the following we assume that the exact parameter values ξ∗

are unknown and are determined by a least-square formulation using (measurement)

data at ti, i = 1, . . . , 6.

We choose the perturbation δy = δy2 := 10−2 (−1, 1, 1,−0.5,−2, 1)T , yielding per-

turbed data ỹ = y + δy and consider the corresponding least-squares problem

‖Aξ̃ − ỹ‖2 → min .

a.) Plot the exact parameters ξ∗ and the estimated parameters ξ̃ = A†ỹ together in

one figure. Plot the exact data y, the perturbed data ỹ and the data fit ȳ = Aξ̃

together in one figure. What do you observe?

b.) Compute the SVD of A, UTAV = Σ, and use the truncated SVD to get a

regularized solution ξ̃TSVD = V Σ†regU
T ỹ, where in Σreg the smallest singular value

σ4 was replaced by zero. As before, plot the parameters ξ∗, ξ̃TSVD and the data

y, ỹ, ȳ = Aξ̃TSVD in respective figures. Discuss your results.

What happens if in Σreg also σ3 is replaced by zero?

c.) Now we consider Tikhonov regularization, choosing α = 1. Note that this is

equivalent to replacing the normal equation ATAξ = ATy by the modified normal

equation (ATA + α2I)ξα = ATy. As before, plot the parameters ξ∗, ξ̃α and the

data y, ỹ, ȳ = Aξ̃α in respective figures. Discuss your results.

d.) Obviously, the parameter choice α = 1 was not optimal. To find a better choice,

we try a parameter range α ∈ [10−3, 103] (or logspace(-3,3) in MATLAB).

Plot the parameter error ‖ξ̃α− ξ∗‖2 and the data error ‖Aξ̃α− ỹ‖2 as functions of

α together in a loglog plot. What would be a better parameter choice α = α∗?

Repeat c.) for this improved parameter α∗.


