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In the last decades, fiber reinforced composites have gained popularity in the applications

of light-weight designs. Inside composites, fibers are aligned in a certain direction for rein-

forcement, and matrix material surrounds the fibers. It is advantageous that the composite

has high stiffness and yield strength compared to its weight. That is because those fibers

are stronger than matrix materials, and they carry mechanical loads in that certain direction.

On the other hand, that composite is weak in directions orthogonal to that direction for rein-

forcement since matrix material is loaded mostly in that case. Consequently, the mechanical

response of such composites should be investigated before the composites are applied in

real engineering applications. Since experimental studies of composites are costly and take

much time to manufacture specimens, a fast numerical method is required as an alterna-

tive option. Thus, the aim of this research is to develop a numerical method to predict the

mechanical response of composites containing cylindrical inclusions. In this work, the Fast

Fourier Transform-based (FFT-based) homogenization method of Moulinec and Suquet [1]

is introduced. Also, the reformulated FFT-based scheme for large deformation problems by

Eisenlohr et al [2] is discussed and chosen for the current research. To predict a mechani-

cal failure, the thermodynamics framework is used to derive the isotropic damage model. In

order to circumvent the ill-posedness of the local continuum damage model, the gradient-

extended damage model based on the micromorphic approach is proposed. After that,

coupling schemes to calculate the interaction between the field of local damage variable

and that of nonlocal damage variable will be discussed. The simultaneous scheme will be

proved to be a not only stable but also fast coupling strategy. Finally, applications of the FFT-

based scheme, combined with the gradient-extended damage model and the simultaneous

scheme, will be tested on the composites made of cylindrical inclusions, and the result will

be analyzed.
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Chapter 1

Introduction

1.1 The Object and Scope of the Research

The aim of the research is to develop a numerical technique to predict the mechanical re-

sponse of a composite, made of a matrix material and cylindrical inclusions. The composite

with cylindrical inclusions is the interest of the current research because this kind of geome-

try is widely used in designs of composites, e.g. Fiber-Reinforced Polymers. An example of

that composite’s microstructure containing a single cylindrical inclusion is shown in Figure

1.1

(A) A composite having a cylindrical inclusion in -Z
direction.

(B) Wireframe model of the composite.

FIGURE 1.1: Visualizations of a composite with a cylindrical inclusion.

In general, the materials of inclusions are more stiff and durable than matrix materials.

Those inclusions are installed inside the matrix in the direction of reinforcement depending

on the purpose of engineering design. This makes the composite more stiff and durable in

the inclusion’s direction. On the other hand, that composite is weak at shear deformations

and deformations in the direction orthogonal to a direction of inclusions. That is because

matrix materials surrounding fibers carry mechanical loads in this case. Consequently, when

a composite goes through processes of large deformation in the weak directions, it is likely

1



Introduction 2

to fail. Thus, the mechanical strength of a composite in the orthogonal direction should be

investigated before an engineering design is carried out. In order to predict the mechanical

strength of a composite, the aim of the current research is focused on the investigations

of an elastic-damage behavior of the composite under uniaxial stretch in the orthogonal

direction to cylindrical inclusions.

The difficulty of solving the problem of a composite arises from the fact that different material

phases are distributed inside a composite. Because of this, numerical methods are preferred

over analytical methods. H. Moulinec and P. Suquet proposed the scheme making use

of the Fast Fourier Transforms (FFT) to solve a mechanical problem under the periodic-

boundary condition, [1]. This method avoids difficulties in meshing. Instead, this method

requires a discretization on a grid of regular spacing. Formulations of stiffness matrix are

unnecessary and those are replaced by iterative procedures of the forward and backward

FFT operations using the Green operator. The iterative procedure solves the momentum

balance equation in Fourier space to estimate a deformation gradient at each grid point. By

letting state variables of irreversible processes to be updated after deformation gradients are

updated, inelasticities of solid can be calculated. In summary, the FFT-based scheme has

the advantage in the process of discretization and is easy to be implemented with inelastic

material behaviors. The FFT-based scheme is chosen as the numerical platform of the

current research.

In the case of large deformations taking place, there are several nonlinear and inelastic ma-

terial behaviors involved in a composite, such as a process of damage evolution or plastic

deformations. Since most of the mechanical responses of brittle materials can be rep-

resented using an isotropic elastic-damage model, for the sake of simplicity, an isotropic

elastic-damage model is used for defining constitutive laws of a matrix material and inclu-

sions. As an inelastic behavior is likely to occur when a material goes through a process

of large deformation, a constitutive law of a material is constructed based on a finite strain

model in this paper. Therefore, the scope of the research is a mechanical boundary-value

problem of a composite under the process of elastic-damage loading.

1.2 Structure of the Paper

This paper is organized as follows. Chapter 2 gives the fundamental understanding of kine-

matics of the finite strain model for the FFT-based scheme. The concept of Representative

Volume Element (RVE) is introduced to represent a microstructure of a composite eas-

ily. The homogenization techniques and the procedure of formulating the algorithm of the

FFT-based scheme are introduced. The mathematical descriptions in Chapter 2 are taken

from papers written by P. Eisenlohr et al [2] and M. Kabel et al [3]. Chapter 3 presents
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the thermodynamics framework of damage models. The basic idea of the local contin-

uum damage model is introduced. On top of that, the concept of the thermodynamics

framework is extended using the micromorphic approach to construct a gradient-extended

damage model, [4, 5]. The gradient-extended damage model is expected to remedy the

ill-posedness of the local continuum damage model. In chapter 4, the backgrounds of the

partitioned approaches (staggered scheme and iteratively staggered scheme) and the si-

multaneous scheme are discussed. Also, the implementations and validations of those

schemes are demonstrated. In Chapter 5, parametric studies and numerical examples us-

ing the FFT-based scheme with the gradient-extended damage model are presented. At

last, the summary of important investigations and remarks are presented in Chapter 6.

Moreover, further research topics to improve numerical stability and efficiency of the current

research to achieve more realistic simulations are introduced.



Chapter 2

The FFT-based Scheme for Finite

Strain Model

In this chapter, the FFT-based scheme to solve the mechanical boundary-value problem

defined as a strong form of the momentum balance equation under periodic boundary con-

dition will be discussed. From the macroscopic point of view, a composite can be regarded

as homogeneous material when it is composed of much smaller microstructures which are

randomly distributed. A Representative Volume Element (RVE) is a volume element of a

composite’s microstructure which exhibits the same effective response of a real composite

at the macroscale. The concept of RVE can be incorporated to reduce the spatial size of

a composite at the macroscale to that of an RVE at the microscale. By solving the prob-

lem of each RVE, the solution of an entire composite can be attained because a composite

can be regarded as a homogeneous material showing the same mechanical response of

an RVE. In this context, the FFT-based scheme suggested by Moulinec and Suquet will be

introduced, [1]. According to Moulinec and Suquet, the equation of the periodic boundary-

value problem can be classified as a problem of the Lippmann–Schwinger equation. With

the help of the FFT, the convolution in real space can be easily solved in Fourier space. The

formulation of the FFT-based schemed for a finite deformation problem is suggested by P.

Eisenlohr et al, [2], and will be employed in this paper.

2.1 Kinematics of Deformations

Kinematics is a mathematical theory to relate the motion and the deformation of a body.

At the initial position of a material in the reference configuration Ω0 where time t = 0, the

position of a material point is described using the initial position vectorX. As time goes on,

a body may go through a rigid body motion, such as translation or rotation. On top of that,

4



The FFT-based scheme 5

it is possible for a body to deform. At time t, the position vector x is introduced to express

the current position of a material point in the current configuration Ωt. The current position

x can be expressed in terms of the initial position X and time t. The displacement vector

u is defined as the gap between the current position vector x and the initial position vector

X, and it reads as follows:

u = x−X (2.1)

The deformation gradient F reads as follows:

F =
∂x

∂X
(2.2)

Equation (2.1), leads to x = u+X, and

F =
∂(u+X)

∂X
=

∂u

∂X
+ I = H + I

H =
∂u

∂X

(2.3)

where H is called the displacement gradient. In the case of a finite deformation problem, the

Green-Lagrange strain tensor is employed to measure strain quantity. The Green-Lagrange

strain tensor is expressed in terms of the deformation gradient and reads as follows:

E =
1

2
(FTF− I) =

1

2
(C− I) (2.4)

The right Cauchy-Green deformation tensor is also one of strain measurements and it is

given by:

C = FTF (2.5)

2.2 The Representative Volume Element and the Periodic Boundary-

Value Problem

2.2.1 The Concept of Representative Volume Element

In general, material phases are randomly distributed over a composite. As multiple inclu-

sions with different shapes can be included in a composite, it takes enormous amounts of

effort and computer memory to represent and save every detail of a composite’s microstruc-

ture. In order to simplify the representation of a microstructure, it is assumed that there is

a volume element that has the same effective mechanical response of a composite at the

macroscale. This postulation is valid when the distribution of microstructures in a composite

is statistically random enough. This class of volume element at the microscale is called
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Representative Volume Element (RVE). The concept of RVE is frequently used in multiscale

simulations to make use of a standard microstructure. To give an example, a composite’s

microstructure made of a periodically distributed RVE is presented in Figure 2.1:

(A) Periodic distribution of 9 RVEs at the mi-
croscale.

(B) The RVE of a composite at the microscale.

FIGURE 2.1: Microstructure and its RVE.

2.2.2 The Periodic Boundary-Value Problem

The periodic boundary condition on boundaries of an RVE implies that field quantities and

the geometry of an RVE are periodically distributed over a composite. From a macroscopic

point of view, an RVE seems to be a homogeneous material point with the overall defor-

mation gradient F0. At the microscale, on the other hand, the overall deformation gradient

F0 is regarded as the average of the deformation gradient field. The deformation gradient

field F(x) is expressed in terms of the macroscopic deformation gradient F0 and a fluctu-

ation field H̃(x) that arises from the heterogeneities of a microstructure. The deformation

gradient field can be expressed as follows:

F(x) = F0 + H̃(x) (2.6)

The fluctuation field is given by:

H̃(ũ(x)) = ∇0ũ(x) (2.7)

The entire displacement field in microscale reads as follows:

u(x) = F0x+ ũ(x) (2.8)
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The periodicity of u in microscopic domain implies the following averages over a whole RVE

should vanish
< ũ(x) >=

1

Ω

∫
Ω
ũ(x) dV = 0

< H̃(x) >=
1

Ω

∫
Ω

H̃(x) dV = 0

(2.9)

At the microscale, Ω stands for the spatial domain of an RVE. The strong form of the mo-

mentum balance equation reads as follows:

Div P(x) = 0 x in Ω (2.10)

where P(x) stands for the first Piola-Kirchhoff stress tensor. The followings are the sum-

mary of equations that should be satisfied in an RVE and at its boundaries

Div P = 0 x in Ω

F = F0 + H̃ x in Ω

H̃ periodic x on ∂Ω
(2.11)

2.3 The Homogenization Technique and Lippmann-Schwinger

Equation

The complexity of the boundary-value problem (2.11) arises from the fact that a field of local

stiffness tensor C(x) is varying in the spatial domain of an RVE, Ω. In order to circumvent

the difficulty, the homogenization approaches are used to transform the boundary-value

problem in a heterogeneous microstructure (2.11) into one in a homogeneous one. The

very first idea goes back to Eshelby, [6]. He solved this problem by the means of a simple

set of imaginary cutting, straining, and welding operations. The problem of a heterogeneous

microstructure, including matrix materials and inclusions, could be split into homogeneous

microstructures with the help of the imaginary procedures. Consequently, the transformation

of a heterogeneous problem into a homogeneous problem simplified the solution technique.

The concept of homogenization was developed further by Dederichs and Zeller, [7], for es-

timating bounds for the effective elastic constants of polycrystals. An auxiliary problem was

formulated in a homogeneous elastic medium in order to take away the local dependence

of the stiffness tensor C(x). In this context, the homogenization approach is employed to

construct a numerical scheme to find a solution of the boundary-value problem (2.11). The

mathematical formulations and descriptions came from the literature [8].

A stress field can be expressed in terms of a homogeneous reference material’s constant
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stiffness tensor C0 and the polarization stress τττ(x)

P(x) = C0 : F(x) + τττ(x)
(2.12)

By using equation (2.12), the divergence free condition in equation (2.11) is replaced by the

following equivalent form:

Div(C0 : F(x) + τττ(x)) = 0 x in Ω (2.13)

By transferring the divergence of polarization term to the right hand side, the following state-

ments are valid in the spatial domain Ω:

Div(C0 : F) = −Div(τττ) x in Ω

F = F0 + H̃ x in Ω

H̃ periodic x on ∂Ω

(2.14)

The mechanical boundary-value problem of a heterogeneous RVE (2.11) is equivalent to the

homogenized problem (2.14). The homogenized problem can be interpreted that external

body force Div(τττ(x)) is acting on a homogeneous material with stiffness C0 in Ω while the

periodic boundary condition of u(x) is fulfilled at the boundaries ∂Ω. In equation (2.14),

the divergence of polarization field plays the role of an external body force. As a result, the

heterogeneous problem is reinterpreted as a simple homogeneous problem acted on by the

external force Div(τττ(x)).

The solution of such problem can be described using the Green’s operator �0 which is

associated to the reference material, [7]. The fluctuation field of the deformation gradient

H̃(x) is expressed using the convolution of the Green’s operator with the polarization field

H̃(x) = −(�0 ∗ τττ)(x) (2.15)

where the convolution operator denoted by ’∗’ is given by:

(�0 ∗ τττ)(x) =

∫
Ω
�0(x,y) : τττ(y) dV (2.16)

The Green’s operator �0 has a nonlocal character which couples two points x and y at the

microscale. By using the equation of the deformation gradient field F(x) in equation (2.6),

the solution of the deformation gradient field can be written

F = F0 − �0 ∗ τττ (2.17)
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The class of this problem reduces to the Lippmann-Schwinger equation in elasticity, at-

tributed to Lippmann and Schwinger, [9]. In general, the convolution between two field

quantities is not easily calculated in real space. Nevertheless, a convolution term can be

easily solved in Fourier space since the convolution operator transforms into scalar products

in Fourier space. The above relation (2.17) can be expressed in Fourier space and reads

as follows:

F̂(ξ) = −�̂0(ξ) : τ̂ττ(ξ) ∀ ξ 6= 0, F̂(0) = F0 (2.18)

Finally, the original strong form of the equation for a heterogeneous problem (2.10) can be

solved using the technique of homogenization and the Fourier transform (2.18).

2.4 The Periodic Lippmann-Schwinger Equation in Fourier Space

The solution of the periodic boundary-value problem in a homogeneous domain (2.14) can

be obtained using the Fourier transforms. In this context, the FFT-based scheme was de-

veloped by Moulinec and Suquet, [1], to solve the periodic boundary-value problem of a

heterogeneous material by means of the homogenization technique. In Fourier space, dif-

ferential operators of partial-differential equation turn into linear operators so that it makes

the problem to be easily solved.

2.4.1 The Formulation of Solution Technique

The field variables of the boundary-value problem described in equation (2.11) are periodic.

Considering the fact that the periods of field variables are equal to those of an RVE at the

microscale, those field variables can be also expressed in Fourier space. A displacement

field u(x) in Fourier space reads as follows:

û(ξ) =
1

Ω

∫
Ω
u(x)exp(−iξ · x) dx (2.19)

where the complex number is i =
√
−1. The wave vector is denoted as ξ. On the other

hand, the inverse Fourier transform of û(ξ) yields u(x) back

u(x) =

∫
Ω
û(ξ)exp(iξ · x) dξ (2.20)

One important feature of an expression in Fourier space is that a function with zero wave

vector in Fourier space represents the average of that function in real space. In the case of

the fields of displacement and the deformation gradient, that feature is given by the following
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definitions:
û(ξ = 0) =

1

Ω

∫
Ω
u(x) dx

F̂(ξ = 0) =
1

Ω

∫
Ω

F(x) dx

(2.21)

The gradient of the displacement field in real space ∇0u(x) can be simply expressed in

Fourier space

F̂mn(ξ) = iûm(ξ)ξn (2.22)

The construction of the FFT-based scheme starts from the Fourier transform of the stress

field (2.12)
P̂kl(ξ) = C0

klmn : F̂mn(ξ) + τ̂kl(ξ)

⇐⇒ iC0
klmnûmξn + τ̂kl

(2.23)

The Fourier transform of the divergence free condition of equation (2.11) reads as follows:

iP̂klξl = 0 (2.24)

Equation (2.23) can be augmented into equation (2.24) to yield the following form:

iτ̂klξl = (Ĝ0)−1
kmûm (2.25)

where (Ĝ0)−1
km = C0

klmnξlξn is the inverse of the acoustic tensor. Consequently, û can be

expressed as follows:

ûm = iĜ0
mkτ̂klξl (2.26)

The expression of the displacement field in Fourier space is used to derive the expression

of the deformation gradient field in Fourier space. As a result, equations (2.22) and (2.26)

are combined to express the deformation gradient field in Fourier space as follows:

F̂kl = ûk(ξ)ξl = −Ĝ0
kmτ̂mnξnξl

⇔ −�̂0
klmnτ̂mn

�̂0
klmn = Ĝ0

kmξlξn

(2.27)

where �̂0 is the Green’s operator.

2.4.2 The Reference Material for a Large Deformation Problem

According to the M. Kabel’s paper, [3], a reference material should be chosen to satisfy the

following coercivity condition:

F(x) : C0 : F(x) ≥ F(x) : F(x) ∀x in Ω (2.28)
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The coercivity condition is necessary to set the norm of an error to be bounded in the case

of a large deformation problem. In this context, a symmetrized linear isotropic material

cannot be a reference material. The reason is that a linearly elastic C0 satisfying minor

symmetries violates the coercivity condition (2.28). Instead, M. Kabel chose an isotropic

reference material C0
kLmN = Λ0δkLδmN + 2µ0δkmδLN , which is a fourth-order tensor, to

calculate the stress in a reference material and derive the Green’s operator

(Ĝ0)−1
km = C0

klmnξlξn (2.29)

From the definition of the inverse of the acoustic tensor (2.29), the explicit form of acoustic

tensor can be derived as follows:

(Ĝ0)−1
km = Λ0δkLδmNξLξN + 2µ0δkmδLNξLξN (2.30)

Ĝ0(ξ) =
(Λ0 + 2µ0)|ξ|2I− Λ0ξ ⊗ ξ

2µ0(Λ0 + 2µ0)|ξ|4
(2.31)

By combining the definition of the Green’s operator �̂0 (2.27) and the explicit form of the

acoustic tensor (2.31), the explicit form of the Green’s operator can be derived

�̂0
kLmN (ξ) =

δkmξLξN
2µ0|ξ|2

− Λ0

2µ0(Λ0 + 2µ0)

ξkξLξmξN
|ξ|4 (2.32)

2.4.3 The Fast Fourier Transform and Discretization of RVE

A 3D image is a group of pixels arranged in a 3D grid and each pixel will have its own color.

Analogously, it is possible to imagine that an RVE is a 3D image made of a 3D grid. A

color in each pixel of a 3D image is analogous to a material phase at each grid point in

an RVE. Therefore, an RVE can be interpreted as a 3D grid having an individual material

phase at each point. On top of that, each grid point will contain information of own field

variables, such as stress, strain, and state variables of inelasticity. Those state variables are

determined by a material constitutive law at each grid point.

The beauty of this approach is that data from digital image processes can be directly utilized,

e.g. computer tomography (CT), for defining a distribution of material phases in an RVE. It

is advantageous compared to the conventional finite element technology since there is zero

effort for mesh generation, and saving a stiffness matrix.

The grid of an RVE has Nx points in x-coordinate, Ny points in y-coordinate, and Nz points

in z-coordinate. In total, the grid has Nx×Ny ×Nz points. The index, the grid size, and the

position of each grid point are summarized as follows:
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x-coordinate y-coordinate z-coordinate

Number of grid points Nx Ny Nz

Length of RVE Lx Ly Lz

Index i = 0, · · · , Nx − 1 j = 0, · · · , Ny − 1 k = 0, · · · , Nz − 1

Grid size dx = Lx
Nx

dy =
Ly
Ny

dz = Lz
Nz

Position of grid point i · dx j · dy k · dz

TABLE 2.1: RVE’s properties as 3D grid.

The FFT can be used to express the displacement field in Fourier space, [10]. One of the

most popular libraries for the FFT is "Fastest Fourier Transform in the West" (FFTW). By

using the definitions of parameters in Table 2.1, the wave vector and the position vector at

each grid point can be constructed when there is a grid point, Pijk, having indexes i, j, and

k in x, y, and z coordinates, it will have the wave vector ξijk and the position vector xijk.

The definition of these vectors read as follows:

ξijk = [ξi, ξj , ξk] = 2πî[
i

Lx
,
j

Ly
,
k

Lz
]

xijk = [i · dx, j · dy, k · dz]
(2.33)

In FFTW, the forward Fourier transform of field quantity Xijk at Pijk is defined as follows:

Yijk =

Nx−1∑
a=0

Ny−1∑
b=0

Nz−1∑
c=0

Xabcexp(−îξijk · xabc) (2.34)

The inverse Fourier transform of Yijk reads as follows:

Zijk =

Nx−1∑
a=0

Ny−1∑
b=0

Nz−1∑
c=0

Yabcexp(̂iξabc · xijk) (2.35)

In comparison to equation (2.20), the output Yijk in equation (2.34) is not normalized with

respect to the total number of grid points, Nx × Ny × Nz. It can be deduced that when

FFTW is used, an output will be factored by Nx × Ny × Nz after a field variable is once

forward Fourier transformed and backward Fourier transformed. Thus, at every grid point

the following relation holds:

Zijk = (Nx ×Ny ×Nz)Xijk (2.36)

It makes a different interpretation of a field quantity with zero wave vector in Fourier space.

According to equation (2.21), the function of a field variable with zero wave vector in Fourier

space corresponds to the mean value of that function in real space. On the other hand,

according to equation (2.33) and (2.34), that function with zero wave vector in Fourier space
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is equal to a summation of that function in real space. This feature should be taken into

account when the FFT-based scheme is implemented using FFTW.

2.5 The Algorithm of the FFT-based Scheme for Inelastic Behav-

iors

A material may have nonlinear constituents or inelastic behavior described in terms of

stress, strain, and a rate of both of them. The algorithm of the FFT-based scheme for an

inelastic material’s behavior was introduced by H. Moulinec and P. Suquet, [1]. They sug-

gested the algorithm for the FFT-based scheme with nonlinear constituents and success-

fully implemented the J2-flow theory of elastic-plastic behavior. They calculated the fields of

stress and plastic strain after the elastic strain field is updated. In the case of elastic-damage

behavior, instead of plastic strain, damage and damage hardening variables are updated.

The algorithm of the FFT-based scheme in the case of general inelasticities follows:

Algorithm 1 The Algorithm for a Large Deformation with Inelastic Constitutive Laws

1: procedure THE FFT-BASED SCHEME

2: Initialization: F0(x) = F0 ∀x ∈ Ω

3: Calculate P0(F(x)) using a constitutive law ∀x ∈ Ω

4: Iterate i+1 Fi and Pi known at every xd
5: (a) P̂i = FFT(Pi)

6: (b) τ̂ττ i = C0 : (Fi)− (Pi)

7: (c) F̂i+1(ξ) = −�̂0(ξ) : τ̂ττ i(ξ) ∀ξ 6= 0, F̂i+1(0) = F0

8: (d) Fi+1(xd) = FFT−1(F̂i+1(ξ)) ∀x ∈ Ω

9: (e) Calculate Pi+1(F(x)) using a constitutive law ∀x ∈ Ω

10: (f) Check the convergence criterion Div(Pi+1(x)) = 0 ∀x ∈ Ω

For the convergence criterion in step (e), H. Moulinec and P. Suquet proposed to calculate

the convergence criterion for a small deformation problem in Fourier space

error =
Σ||σ̂σσ(ξ)ξ||

NxNyNz||σ̂σσ(0)|| (2.37)

where σσσ stands for the Cauchy stress. On the other hand, M. Kabel proposed to evaluate

convergence of the L2-norm of the deformation gradient field in order to reduce memory

occupations and computations. The convergence criterion expressed in terms of the defor-

mation gradient reads as follows:

error =
Σ||Fi+1 − Fi||
NxNyNz||F0||

(2.38)
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2.6 The Defects of the Conventional FFT-based Scheme and Rem-

edy

When it comes to using the FFT-based scheme, heterogeneity of local properties (such as

effective stiffness) can lead to discontinuities in field quantities. When it comes to an elastic-

damage material’s simulation, an increase in the field of damage variable may deteriorate

the discontinuity of field variables, such as stress and displacement. When there is an

interface between elastic and elastic-damage materials in an RVE, only elastic-damage ma-

terials will be damaged and its effective stiffness will decrease further. Evolution of damage

variables increases the gap between stiffness of elastic and that of elastic-damage materi-

als. The sharp interface between material phases causes the ringing artifacts and the Gibbs

effects because of the non-uniform convergence of Fourier coefficients at the points of loss

of differentiability, A. Vidyasagar et al. [11]. This problem can cause differential operators,

such as divergence and gradient, to be inaccurate in Fourier space. W. H. Müller introduced

a numerical technique to remedy the ringing artifacts by using a modified discrete Fourier

transform, [12]. The idea is to enforce the derivative in a domain to be bounded. This idea

can be realized by approximating the differential operator by a finite-difference scheme. A.

Vidyasagar et al. employed this idea to solve an electromechanical problem of bulk poly-

crystalline ferroelectric ceramics, [11]. Also, A. Vidyasagar et al. described the modified

wave vector by approximating the differential operator using the central-difference scheme

in their paper, [11]. According to reference [11], for a 3D problem, a wave vector at a grid

point will have three components in spatial coordinates as follows:

ξijk = [ξi, ξj , ξk] = [
sin(2π/Nxî)

dx
,
sin(2π/Ny ĵ)

dy
,
sin(2π/Nzk̂)

dz
] (2.39)

A. Vidyasagar et al. tested their new wave vector to calculate the derivative of a double step

function. They proved that calculating spectral derivative using the new wave vector showed

less oscillation compared to the result of the conventional spectral derivative. Therefore, the

modified wave vector (2.39) is incorporated in this article.



Chapter 3

Damage Mechanics

3.1 Local Continuum Damage Model

In this section, the local continuum damage model will be described. The notion ’local’

means that the thermodynamic state at a material point is totally determined by local quan-

tities at that point, e.g., stress, strain, and internal variables. To begin with, the thermody-

namics framework and the definition of the damage variable will be introduced. Next, the

Clausius-Duhem inequality is investigated, which every model should satisfy. After that, the

isotropic damage model will be formulated in the thermodynamics framework. In order to

solve the damage evolution, a return-mapping algorithm will be introduced to calculate the

damage variable update in an iterative manner. Finally, the micromorphic approach is used

to formulate a gradient-extended damage model.

3.1.1 Thermodynamics Framework for Isotropic Damage Model

Continuum damage theories are usually based on irreversible thermodynamics and the in-

ternal state variable theory. One introduces the Helmholtz free energy potential and uses

the Clausius-Duhem inequality to express the second law of thermodynamics. Since the

second law of thermodynamics is a universal principle, the free energy should change while

satisfying the Clausius-Duhem inequality. For an isotropic damage model, a scalar damage

variable is sufficient for modeling. On the other hand, tensor valued damage variables (sec-

ond or fourth-order) are necessary for expressing anisotropic damage processes [13].

In the present study, the Helmholtz free energy Ψ is chosen to be of Neo-Hookean type as

15
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follows:

Ψ(C, D, ξd) = f(D)[
µ

2
{trC− 3− ln(detC)}+

Λ

4
{detC− 1− ln(detC)}]

+r{ξd +
exp(−sξd)− 1

s
}

f(D) = (1−D)2

(3.1)

Here, C is the right Cauchy-Green tensor, D ∈ [0, 1) is the damage variable, and ξd is the

damage-hardening variable. The Lamé constants are µ and Λ. Damage material parame-

ters are r and s. The function f(D) expresses the influence of damage on the free energy.

When a material is undamaged, f(D) is one. For a fully damaged material with D = 1,

f(D) becomes zero. The Clausius-Duhem inequality is given by

−Ψ̇ + S : Ė ≥ 0 (3.2)

where S is the second Piola-Kirchhoff stress and E is the Green-Lagrange strain tensor.

The Helmholtz free energy formula (3.1) can be plugged into the Clausius-Duhem inequality

(3.2) which leads to

−
(∂Ψ

∂C
: Ċ +

∂Ψ

∂D
Ḋ +

∂Ψ

∂ξd
ξ̇d
)

+ S : Ė ≥ 0 (3.3)

Considering Ė = 1
2Ċ, inequality (3.3) can be further simplified as

(
S− 2

∂Ψ

∂C

)
:

1

2
Ċ− ∂Ψ

∂D
Ḋ − ∂Ψ

∂ξd
ξ̇d ≥ 0 (3.4)

Since (3.4) has to be valid for arbitrary thermodynamic processes, one obtains

S = 2
∂Ψ

∂C
= f(D){µ(I−C−1) +

Λ

2
(detC− 1)C−1} (3.5)

which is the stress-strain relationship. The remaining dissipation inequality reads

Y Ḋ − qdξ̇d ≥ 0 (3.6)

where

Y := −∂Ψ

∂D
= −f ′(D)[

µ

2
{trC− 3− ln(detC)}+

Λ

4
{detC− 1− ln(detC)}] (3.7)

qd :=
∂Ψ

∂ξd
= r{1− exp(−sξd)} (3.8)

are the thermodynamic conjugate forces to damage and damage hardening, respectively.
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3.1.2 Damage Loading Condition

A damage criterion is formulated with the following functional form:

φd = Y − (Y0 + qd) ≤ 0 (3.9)

φd is also called "damage loading function". Y0 is the initial damage threshold. At the point

where an increase of Y leads to the case where the damage loading function becomes zero,

damage loading occurs and the damage variable and damage hardening variable should be

updated. The evolution of the damage and damage hardening variables is defined by the

damage evolution equations

Ḋ = λ̇
∂φd
∂Y

= λ̇

ξ̇d = −λ̇∂φd
∂qd

= λ̇
(3.10)

where λ̇ ≥ 0 is the damage multiplier. The damage loading/unloading conditions are given

by the Karush–Kuhn–Tucker (KKT) conditions

λ̇ ≥ 0, φd ≤ 0, λ̇φd = 0 (3.11)

Conditions (3.11) are standard for problems involving constraints. The conditions (3.11)

imply that when the damage loading function φd is negative, λ̇ has to be zero to fulfill λ̇φd =

0. Then, the damage and damage hardening variables remain constant according to the

damage evolution equations (3.10). On the other hand, if damage loading occurs so that λ̇

is positive, φd should be zero to fulfill λ̇φd = 0 in (3.10).

3.1.3 Numerics for Damage Variable Calculation

In this section, the mathematical procedure to solve φd = 0 is explained in the case of

damage loading. In order to deal with general forms of damage models, a numerical method

to solve φd = 0 should come into play. The Newton-Raphson method is a good candidate

for solving this problem since it is simple to be implemented and has quadratic convergence

towards the solution. Quadratic convergence means that the error is proportional to the

square of the previous error, [14].

Suppose that the simulation is at n-th loading step, and the damage and damage hardening

variables are sought for the (n+ 1)-th loading step. By multiplying the simulation time step

∆t on equations (3.10), the formulation of the damage and damage hardening variables at
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the (n+ 1)-th loading step can be derived i.e.,

Dn+1 = Dn + ∆λ

ξn+1
d = ξnd + ∆λ

(3.12)

where an increment of the damage multiplier is denoted as ∆λ = λ̇∆t. The Newton-

Raphson method is utilized to estimate the damage and damage hardening variables in-

crement ∆λ in an iterative manner. It starts with an initial guess for ∆λ which is zero. An

overview of the Newton-Raphson iteration to estimate ∆λ looks as follows:

Algorithm 2 Algorithm for damage and damage hardening variables

1: procedure NEWTON-RAPHSON METHOD

2: Initialization: ∆λ = 0.

3: ∆(∆λ)0 = 0.

4: Iterate i+1 Seek increment of ∆λ and update D and ξd.

5: (a) Update ∆λi+1 = ∆λi + ∆(∆λ)i.

6: (b) Update D and ξd. Di+1 = Dn + ∆λi+1, ξd,i+1 = ξnd + ∆λi+1.

7: (c) Calculate residual φd,i+1.

8: if ||φd,i+1|| < tolerance then return D and ξd.

9: else

10: (d) Calculate Kloc =
∂φd,i+1

∂∆λ = ∂Yi+1

∂D
∂D
∂∆λ −

∂qd,i+1

∂ξd

∂ξd
∂∆λ .

11: (e) Calculate ∆(∆λ)i+1 = −φd,i+1

Kloc
.

12: (f) i = i+ and repeat the algorithm from step (a).

This is the so-called return-mapping algorithm which is widely used in computational me-

chanics.

3.1.4 Validation of the Implementation of the Local Damage Model

Once the algorithm (2) to solve the damage evolution has been implemented, it should be

validated whether the implementation yields a correct solution. The problem of the elastic-

damage material’s damage evolution is defined in terms of the damage loading function

(3.9), the evolution laws (3.10) and the KKT conditions (3.11). To make the validation simple,

a virtual experiment of uniaxial stretch is performed. The deformation gradient during the

uniaxial stretch reads as follows:

F =


li 0 0

0
√
li 0

0 0
√
li

 li ∈ [1, lf ] (3.13)
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where li is the stretch in x-direction at i-th loading step, and lf is the stretch at the final step.

li is monotonously increasing from 1 to its final value lf . li = 1 means that the body is in an

undeformed state. lf should be chosen large enough in order to observe elastic-damage

behavior.

To begin with, the equation (3.9) is solved using MATLAB’s built-in nonlinear equation solver.

At each loading step, the right Cauchy-Green tensor and its invariants, tr(C) and det(C),

are calculated. Then the thermodynamic conjugate forces Y and qd are calculated, (3.7) and

(3.8). The damage loading function is calculated and solved for a new value of the damage

multiplier when its norm exceeds a prescribed tolerance. Otherwise, the damage multiplier

and damage variable remain unchanged. On the other side, the return-mapping algorithm

(2) is implemented into the algorithm of the FFT-based scheme (1). For a homogeneous

RVE, the deformation gradient at each grid point will be the same as the prescribed macro-

scopic deformation gradient F0 in equation (2.7) because there will be no fluctuating field

arising from a heterogeneity of the microstructure. The solution obtained from algorithm (2)

is compared with the solution derived using MATLAB. The material parameters used in the

study are given in Table 3.1.

Symbol Value Unit

Lamé’s first parameter Λ 5000 MPa

Lamé’s second parameter µ 7500 MPa

Initial damage threshold Y0 5 MPa

damage parameter r 50 MPa

exponential damage parameter s 0.5 -

TABLE 3.1: Material parameters for elastic-damage model

By assigning these parameters at each grid point, a homogeneous RVE is defined. A com-

parison between the results is shown in Figure 3.1:
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FIGURE 3.1: Comparison between the results of the nonlinear solver using MATLAB and
the implementation of algorithm (2) in the FFT-based scheme.

Here, the pink line is the result of the FFT-based scheme and the blue dashed line is the

result of the built-in nonlinear solver in MATLAB. As shown in Figure 3.1, those two results

match exactly. This is a good indication that the elastic-damage model is implemented

correctly.

3.2 Gradient-Extended Damage Model

In recent decades, the defect of local continuum damage models in describing material soft-

ening behavior has been discussed. The defect is triggered by a loss of well-posedness of

the boundary-value problem beyond a certain level of accumulated damage. As a result,

the ill-posedness leads to the problem that the numerical solutions do not converge to a

physically reasonable solution upon h-refinement of the spatial discretization, [15–18].

Several authors suggested to discard local action based constitutive laws to fix the prob-

lem of ill-posedness. So-called nonlocal continuum damage models have been developed

to yield mesh-objective solutions, [15]. Gradient-extended models are especially popular

and promising since, while incorporating nonlocal interactions, they still remain local in a

mathematical sense which makes their implementation easier and more efficient, [19]. In
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the next section, the micromorphic approach as a systematic method to construct gradient-

extended nonlocal constitutive models will be described. After a discussion of the general

micromorphic approach, its application is shown for the case of a continuum damage model.

3.2.1 Micromorphic Approach

The micromorphic approach in the sense of Samuel Forest is a well-established and sys-

tematic procedure to incorporate gradient effects into already existing local material models

(for details, see e.g. Forest [4]). In the case of an isotropic damage model as considered in

this study, one introduces a so-called micromorphic damage variable D̄ into the formulation

which has the meaning of an additional internal degree of freedom of the material (similar,

e.g., to the temperature in case of a thermomechanically coupled model). A coupling of

D̄ to the corresponding local damage variable D is then enforced by postulating a direct

dependence of the free energy on the difference between the two quantities, i.e., (D − D̄).

The starting point of the micromorphic approach is usually the principle of virtual work.

Assuming a geometrically nonlinear, quasi-static and purely mechanical framework, the ex-

pressions for the internal (gint) and external (gext) virtual work can, for example, be for-

mulated with respect to quantities defined in the reference configuration B0 of the body as

follows:

gint =

∫
B0

S : δE dV +

∫
B0

(a0iδD̄ + b0i · ∇0δD̄) dV

gext =

∫
B0

f0 · δu dV +

∫
∂B0t

t0 · δu dA+

∫
B0

(a0eδD̄ + b0e · ∇0δD̄) dV +

∫
∂B0c

a0cδD̄ dA

(3.14)

Here, dV and dA stand for volume and surface integrals of the initial domain, respectively.

The Green-Lagrange strain tensor is denoted as E, S is the second Piola-Kirchhoff stress, u

is the displacement, a0i and b0i are internal forces associated with D̄. Likewise, a0e and b0e

are generalized volume forces associated with D̄. f0 is the mechanical body force acting in

the initial configuration. Quantities t0 and a0c are tractions on boundaries ∂B0t and ∂B0c .

The test function δE can be represented in terms of F and δu as:

δE =
1

2

(
FT∇0(δu) +∇0(δu)TF

)
(3.15)

With the help of simple algebraic manipulations, one can then write:

S : δE = (FS) : ∇0δu (3.16)
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Consequently, there are two test functions δu and δD̄, and they should be zero on Dirichlet

boundaries ∂B0u and ∂B0φ̄ , respectively. From the principle of virtual work, i.e.,

gint − gext = 0 (3.17)

the strong form of the equation for the micromorphic variable D̄ will be derived. By incorpo-

rating (3.14) and (3.16) into (3.17), it follows:∫
B0

(FS) : ∇0δu dV +

∫
B0

[(a0i − a0e)δD̄ + (b0i − b0e) · ∇0δD̄] dV −
∫
B0

f0 · δu dV

−
∫
∂B0t

t0 · δu dA−
∫
∂B0c

a0cδD̄ dA = 0

(3.18)

The first term should be expanded using the following formula, [20],

Div(δu(FS)) = Div(FS) · δu+ (FS) : ∇0(δu)

⇔ (FS) : ∇0(δu) = Div(δu(FS))− δu ·Div(FS)
(3.19)

Analogously, it holds

(b0i − b0e) · ∇0δD̄ = Div((b0i − b0e)δD̄)−Div(b0i − b0e)δD̄. (3.20)

Inserting (3.19) and (3.20) into (3.18) yields∫
B0

[Div(δu(FS))− (Div(FS) + f0) · δu] dV −
∫
∂B0t

t0 · δu dA

+

∫
B0

[(a0i − a0e)δD̄ + Div((b0i − b0e)δD̄)−Div(b0i − b0e)δD̄] dV −
∫
∂B0c

a0cδD̄ dA = 0

(3.21)

The test functions δu and δD̄ vanish on Dirichlet boundaries. Furthermore, by using the

divergence theorem to convert the volume integration of divergence terms into surface inte-

gration over ∂B0t and ∂B0c , [20], one obtains:∫
B0

Div(δu(FS)) dV =

∫
∂B0t

(δu(FS)) · n0 dA =

∫
∂B0t

((FS)n0) · δudA∫
B0

Div((b0i − b0e)δD̄) dV =

∫
∂B0c

(b0i − b0e)δD̄ · n0 dA =

∫
∂B0c

(b0i − b0e) · n0δD̄ dA

(3.22)

where n0 is a normal to the boundary ∂B0. Now, (3.21) can be expressed as∫
B0

(−Div(FS)− f0) · δu dV +

∫
∂B0t

((FS)n0 − t0) · δu dA

+

∫
B0

{(a0i − a0e)−Div(b0i − b0e)}δD̄ dV +

∫
∂B0c

{(b0i − b0e) · n0 − a0c}δD̄ dA = 0

(3.23)
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Because equation (3.23) should be valid for arbitrary test functions, the following equations

can be derived:

Div(FS) + f0 = 0 in B0 (3.24a)

(FS)n0 = t0 on ∂B0t (3.24b)

u = uD on ∂B0u (3.24c)

Div(b0i − b0e) = a0i − a0e in B0 (3.24d)

(b0i − b0e) · n0 = a0c on ∂B0c (3.24e)

D̄ = D̄D on ∂B0D̄ (3.24f)

Here, uD and D̄D are prescribed values at the Dirichlet boundaries B0u and B0D̄ . As a re-

sult, the equations (3.24a) and (3.24d) are strong forms of (3.18). Corresponding Neumann

boundary conditions are (3.24b) and (3.24e). Dirichlet boundary conditions are (3.24c) and

(3.24f). Expression (3.24f) is a Dirichlet boundary condition for D̄ (which is, however, not

considered in the present work).

3.2.2 Extension of Thermodynamics Framework using Micromorphic Approach

The Helmholtz free energy (3.1) can be extended to a micromorphic damage model in the

following way:

Ψ(C, D, ξd, D̄) = f(D)[
µ

2
{trC− 3− ln(detC)}+

Λ

4
{detC− 1− ln(detC)}]

+r{ξd +
exp(−sξd)− 1

s
}+

1

2
H(D − D̄)2 +

1

2
A∇0D̄ · ∇0D̄

f(D) = (1−D)2

(3.25)

Here, H is a penalty term, supposed to be a large value, and A is a parameter which

describes the influence of the gradient in the material. The penalty term, H , can be any

value which is a large enough value such that D and D̄ are closely related to each other,

[4]. On the other hand, A can be regarded as a material parameter. In the following,

generalized external forces are neglected. By plugging (3.25) into an extended form of the

Clausius-Duhem inequality, one obtains:

−Ψ̇ + S : Ė + a0i
˙̄D + b0i · ∇0

˙̄D ≥ 0

⇔ −
(∂Ψ

∂C
: Ċ +

∂Ψ

∂D
Ḋ +

∂Ψ

∂ξd
ξ̇d +

∂Ψ

∂D̄
˙̄D +

∂Ψ

∂∇D̄
: ∇0

˙̄D
)

+ S :
1

2
Ċ + a0i

˙̄D + b0i · ∇0
˙̄D ≥ 0

⇔
(
S− 2

∂Ψ

∂C

)
:

1

2
Ċ +

(
a0i −

∂Ψ

∂D̄

) ˙̄D +
(
b0i −

∂Ψ

∂∇0D̄

)
· ∇0

˙̄D − ∂Ψ

∂D
Ḋ − ∂Ψ

∂ξd
ξ̇d ≥ 0.

(3.26)
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The terms
(
S − 2 ∂Ψ

∂C

)
,
(
a0 − ∂Ψ

∂D̄

)
, and

(
b0 − ∂Ψ

∂∇0D̄

)
are assumed to vanish identically.

Consequently, the following relations hold:

S = 2
∂Ψ

∂C

a0 =
∂Ψ

∂D̄
= −H(D − D̄)

b0 =
∂Ψ

∂∇0D̄
= A∇0D̄

(3.27)

The thermodynamic conjugate forces of the system are,

Y := −∂Ψ

∂D
= −f ′(D)[

µ

2
{trC− 3− ln(detC)}+

Λ

4
{detC− 1− ln(detC)}]−H(D − D̄)

qd :=
∂Ψ

∂ξd
= r{1− exp(−sξd)}

(3.28)

Finally, by inserting a0i and b0i in (3.27) into (3.24d), the micromorphic balance equation for

the micromorphic damage variable is derived,

Div(A∇0D̄) +H(D − D̄) = 0

⇔ ADiv(∇0D̄) +H(D − D̄) = 0

⇔ A∇2
0D̄ +H(D − D̄) = 0

⇔ D̄ − A

H
∇2

0D̄ = D

⇔ D̄ − α∇2
0D̄ = D, α =

A

H

(3.29)



Chapter 4

Coupling Schemes

In this chapter, the concepts of coupling strategies are introduced to calculate the fields

of the local and the nonlocal damage variables. In the thermodynamics framework based

on the micromorphic approach, two governing laws to be fulfilled. One is given by the

Karush–Kuhn–Tucker (KKT) conditions (3.11), and the other one is by the micromorphic

balance equation (3.29). In general, a coupling scheme is necessary to find a solution sat-

isfying multiple numerical models. To be more specific, in this case, a coupling scheme is

necessary to find the solution of the local and nonlocal damage fields, which satisfies both

the KKT conditions and the micromorphic balance equation. In this context, the partitioned

approaches and simultaneous approach (scheme) are presented. The staggered scheme

and iteratively staggered scheme belong to the class of partitioned approaches. The stag-

gered scheme can be unstable in a certain case where multiple numerical models in a sys-

tem cannot be treated individually. On the contrary, the iteratively staggered scheme yields

a stable solution for a coupled problem, but it can be too much time-consuming. The simul-

taneous scheme can be an alternative method to remedy defects of those two partitioned

approaches. These three coupling schemes are described and implemented to calculate

the local and nonlocal damage variables which satisfy both the KKT conditions and the mi-

cromorphic balance equation. Finally, after the implementations of the coupling schemes

are tested using a homogeneous problem, it is concluded that the simultaneous scheme

is not only stable but also runs faster than the others do. In conclusion, the simultaneous

scheme is employed for the current research.

25
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4.1 Introduction of Coupling Schemes

4.1.1 Partitioned Approach

The partitioned approach is the numerical method to split a group of numerical models of

field quantities into isolated ones. The interactions between numerical models of field quan-

tities are regarded as forcing effects that are communicated between the individual com-

ponents [21]. In the category of partitioned approaches, the staggered and the iteratively

staggered schemes are widely known and used.

4.1.1.1 Pros and Cons of the Partitioned Approach

The key favors of the partitioned approach are an independent modeling and modularity,

[21].

Independent Modeling. The partitioned approach facilitates the use of different numerical

models. For instance, when it comes to a fluid-structure interaction problem, the meshes

of structure and fluid do not necessarily coincide at their interface. This inconsistency lying

on that interface gives rise to difficulties in the analysis of complex systems such as aircraft

or submarine. Individual model can be devised by individual design team to get rid of the

difficulties arising from the non-matching interfaces.

Modularity. New models can be incorporated in a modular platform depending on project

needs. For example, a new local nonlinear effect can be included while keeping the rest the

same. Implementation, testing, validation, and analysis of individual changes can be carried

out.

Nevertheless, these benefits do not come for free. The partitioned approach necessitates

delicate formulation and implementation to prevent degradation in stability and accuracy.

Parallelization of code should be carefully implemented. Gains of computational efficiency

with respect to a simultaneous approach are not always granted. If an interaction between

multiple fields occurs through a volume, such as thermal and electromagnetic fields, effi-

ciency in parallelization can be lost.

4.1.1.2 Staggered Scheme

The staggered scheme is one of the most favored partitioned approaches. When there are

multiple numerical models involved in a system, a staggered scheme is used to split and

solve them one by one. At the beginning, an initial guess of the solution of field quantities is

estimated. Next, one numerical model is solved for one corresponding field quantity while
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the other field quantities are kept constant. That field quantity is updated and the same

solution procedure is applied for the other numerical models. After every numerical model

is solved, the staggered scheme terminates.

In order to have a clear idea of staggered schemes, an example of a two-field coupled

problem is given:
f1(u, φ) = 0 in Ω

f2(u, φ) = 0 in Ω
(4.1)

where u and φ are scalar field quantities in domain Ω. f1(u, φ) and f2(u, φ) are scalar

quantities as well. However, u, φ, f1(u, φ), and f2(u, φ) could be vectors in more general

cases, and the following coupling schemes would still be valid. In order to solve problem

(4.1), the Newton-Raphson method can be used to solve f1(u, φ) = 0 and f2(u, φ) = 0

individually. The Newton-Raphson method is implemented based on a staggered scheme

to solve problem (4.1) as described in algorithm 3. In algorithm 3, the increment of u is

calculated firstly. Then, u is updated with un+1 and used to solve the second numerical

model f2(un+1, φn) = 0. Finally, the second model is solved, and φ is updated with φn+1.

Algorithm 3 summarizes the process of the staggered scheme.

Algorithm 3 The algorithm of Staggered Scheme

1: procedure STAGGERED SCHEME USING THE NEWTON-RAPHSON METHOD

2: Initialization: Load previous values φn and un.

3: (a) Solve ∂f1(un,φn)
∂u ∆u = −f1(un, φn) for ∆u.

4: (b) Update un+1 = un + ∆u.

5: (c) Solve ∂f2(un+1,φn)
∂φ ∆φ = −f2(un+1, φn) for ∆φ.

6: (d) Update φn+1 = φn + ∆φ.

7: Return

4.1.1.3 Instability of the Staggered Scheme

Instabilities can arise in staggered schemes when interactions between numerical models

are highly nonlinear. In the literature [21], it is described that, in the case of more gen-

eral problems, particularly those modeled by oscillatory second order ordinary-differential

equations, the stability can heavily be spoiled. A staggered scheme is highly effective for

first-order parabolic systems, but the stability and the accuracy of a scheme is not guaran-

teed for general problems.

A general description of the cause of instability in a staggered scheme can be explained by

using the aforementioned two-field coupled problem (4.1). In order to visualize changes in

the field quantities, the sets of field quantities at each step in algorithm 3 are summarized

as follows:
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Step The set of field quantities Valid equation

Initialization (un, φn) -

(a) (un, φn) -

(b) (un+1, φn) f1(un+1, φn) = 0

(c) (un+1, φn) -

(d) (un+1, φn+1) f2(un+1, φn+1) = 0

TABLE 4.1: Field quantities and equations at each step in algorithm 3

At step (d) in Table 4.1, the set of field quantities (un+1, φn+1) is calculated and satisfies

the second equation f2(un+1, φn+1) = 0. On the other hand, it is not clear whether the set

(un+1, φn+1) satisfies f1(un+1, φn+1) = 0. At step (b), only the set (un+1, φn) is valid for

the first equation since it is calculated by solving the equation f1(u, φ) = 0 for un+1. There-

fore, the set of field quantities (un+1, φn+1) does not necessarily satisfy f1(un+1, φn+1) and

f2(un+1, φn+1) at the same time. Thus, running only one iteration of algorithm 3 fulfills one

numerical model, but the other one may not be satisfied.

At the same time, an investigation of the instability of a staggered scheme can be found in

a problem of fluid-structure interaction described in the literature [22]. When a staggered

scheme is applied to couple fluid field and structure on a wet surface, a destabilizing effect

occurs, which is called "artificial added mass" effect. It is observed that the stability of the

numerical scheme depends on the combination of temporal discretization and parameters

of structure and fluid, such as density and stiffness. Even though decreasing the size of a

time step usually leads to an enhanced accuracy of a numerical scheme, decreasing the

size of a time step here rather causes the instability to occur earlier. The instability cannot

be healed by increasing the accuracy in temporal discretization since the instability arises

from an inherent instability of the staggered scheme. This drawback of staggered schemes

motivates to use iteratively staggered schemes which avoid instability while keeping the

advantages of partitioned approaches.

4.1.1.4 Iteratively Staggered Scheme

While each numerical model is solved only once during a time step in a staggered scheme,

a staggered scheme is repetitively executed until a convergence criterion is satisfied in an

iteratively staggered scheme. In problem (4.1), by iterating algorithm 3 until the set of field

quantities fulfills every numerical model, the instability of the staggered scheme is removed.

The convergence criterion for an iteratively staggered scheme is called "coupling condition".

A coupling condition should be defined to ensure that a set of field quantities satisfies every
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numerical model. The algorithm of the iteratively staggered scheme for problem (4.1) is

given as follows:

Algorithm 4 The algorithm of Iteratively Staggered Scheme

1: procedure ITERATIVELY STAGGERED SCHEME

2: Initialization: Load previous values for initial guesses, φn+1
0 = φn and un+1

0 = un.

3: Repeat:

4: (a) Solve ∂f1(un+1
i ,φn+1

i )
∂u ∆u = −f1(un+1

i , φn+1
i ).

5: (b) Update un+1
i+1 = un+1

i + ∆u.

6: (c) Solve
∂f2(un+1

i+1 ,φ
n+1
i )

∂φ ∆φ = −f2(un+1
i+1 , φ

n+1
i ).

7: (d) Update φn+1
i+1 = φn+1

i + ∆φ.

8: if Coupling condition (||f1(un+1
i+1 , φ

n+1
i+1 )|| <= tol && ||f2(un+1

i+1 , φ
n+1
i+1 )|| <= tol) is

fulfilled then

9: return un+1
i+1 and φn+1

i+1 .

10: else

11: (c) i = i+ 1 and go to step (a).

After step (d), the convergence is validated by using the coupling condition in algorithm

4. If the coupling condition is fulfilled, the set of field quantities (un+1
i+1 , φ

n+1
i+1 ) is returned.

Otherwise, the solution procedure restarts from step (a).

The iteratively staggered scheme is the easiest way to avoid the drawback of the staggered

scheme. Furthermore, it is an efficient tool to keep advantage of modular programming.

Nevertheless, depending on the problem, an iteratively staggered scheme might be too

time-consuming for solving coupled problems. In order to speed up the simulation, the

simultaneous scheme can be a better option.

4.1.2 Simultaneous Scheme

Instead of solving numerical models individually, the idea of solving all of the numerical

models for a time increment is devised. This approach is called "simultaneous approach

(scheme)" or "monolithic approach", [21]. In this article, the Newton-Raphson method is

employed as a basic methodology to construct the simultaneous scheme. For nonlinear

coupling problems, by applying the Newton-Raphson method for every numerical model, a

Jacobian matrix can be assembled such that all of the field quantities can be solved and

updated simultaneously. Since a simultaneous scheme seeks for a solution which satisfies

every numerical model at the same time, it is possible to heal the instability of staggered

schemes.

The example problem (4.1) can be solved using the simultaneous scheme. To begin with,
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the residual of a set of simultaneous equations should be defined. In equations (4.1),

f1(u, φ) and f2(u, φ) are calculated to define the residual vector. Next, the Jacobian matrix

in algorithm 5 is constructed by differentiating the residual vector with respect to unknown

variables u and φ. The definition of the Jacobian matrix reads as follows:(
∂f1

∂u
∂f1

∂φ
∂f2

∂u
∂f2

∂φ

)
(4.2)

Next, the increments of u and φ are calculated. Finally, the field quantities of u and φ, and

the coupling condition is tested. This procedure of the simultaneous scheme is summarized

in algorithm 5.

Algorithm 5 The algorithm of Simultaneous Scheme

1: procedure SIMULTANEOUS SCHEME

2: Initialization: Load previous values for initial guesses, φn+1
0 = φn and un+1

0 = un.

3: Repeat:

4: (a) Calculate the residuals f1(un+1
i , φn+1

i ) and f2(un+1
i , φn+1

i ).

5: (b) Calculate the Jacobian matrix Ji =

(
∂f1

∂u
∂f1

∂φ
∂f2

∂u
∂f2

∂φ

)∣∣∣∣∣
i

.

6: (c) Solve Ji

(
∆u

∆φ

)
= −

(
f1(un+1

i , φn+1
i )

f2(un+1
i , φn+1

i )

)
for

(
∆u

∆φ

)
.

7: (d) Update un+1
i+1 = un+1

i + ∆u and φn+1
i+1 = φn+1

i + ∆φ.

8: if Coupling condition (||f1(un+1
i+1 , φ

n+1
i+1 )|| <= tol && ||f2(un+1

i+1 , φ
n+1
i+1 )|| <= tol) is

fulfilled then

9: return un+1
i+1 and φn+1

i+1 .

10: else

11: (c) i = i+ 1 and go to step (a).

4.1.2.1 The Reason Why the Simultaneous Scheme Can Be Faster

An efficient implementation of a simultaneous scheme can be more efficient than that of

an iteratively staggered scheme. That is because it is possible to retain the quadratic rate

of convergence towards the solution using the Newton-Raphson method, [14]. This can

be described by comparing the solution procedures of a simultaneous scheme and that of

an iteratively staggered scheme. An iteratively staggered scheme’s Jacobian matrix can be

calculated in the manner which is comparable to that of a simultaneous scheme in algorithm

5. More precisely, the linear equation to calculate an increment in the Newton-Raphson
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method reads as follows:(
∂f1

∂u
∂f1

∂φ
∂f2

∂u
∂f2

∂φ

)(
∆u

∆φ

)
= −

(
f1(un+1

i , φn+1
i )

f2(un+1
i , φn+1

i )

)
(4.3)

In an iteratively staggered scheme, when f1(u, φ) is solved for ∆u, ∆φ is considered as a

zero value. As a consequence, ∂f1

∂φ is zero in an iteratively staggered scheme. In the same

manner, ∂f2

∂u is also regarded as a zero value. The modified linear equation for the iteratively

staggered scheme is given by:(
∂f1

∂u 0

0 ∂f2

∂φ

)(
∆u

∆φ

)
= −

(
f1(un+1

i , φn+1
i )

f2(un+1
i+1 , φ

n+1
i )

)
(4.4)

In equation (4.4), the second residual −f2(un+1
i+1 , φ

n+1
i ) is calculated using un+1

i+1 because

the first row is solved, and the updated u is used for the second row. The comparison be-

tween equations (4.3) and (4.4) proves that the Jacobian matrix in the iteratively staggered

scheme has zero values in the second diagonal, equation (4.4). The iteratively staggered

scheme discussed in this article can be understood as the Gauss-Seidel-like method, Kay

Hameyer [23]. At the same time, an iteratively staggered scheme can be formulated in the

Jacobi-like manner, Kay Hameyer [23], but that is not considered in this paper. Therefore,

based on the analysis using the Newton-Raphson method, a simultaneous scheme is likely

to be faster than an iteratively staggered scheme.

4.2 Combination of the FFT-based Scheme and the Coupling

Schemes

In this section, the entire algorithm to combine the algorithm of the FFT-based scheme and

that of a coupling scheme is discussed. H. Moulinec and P. Suquet [1] proposed the ex-

tension of the FFT-based scheme to incorporate nonlinear constituents. They suggested to

couple the FFT-based scheme and nonlinear constituents in an iteratively staggered manner

in a loading step. In their work, for a given macroscopic strain ε0, the iteratively staggered

scheme is used to update the fields of the strain, stress and the plastic strain. Analogously,

in the current research, inside an iterative loop, the FFT-based scheme is used to update the

field of the deformation gradient firstly. Secondly, the fields of the nonlocal damage variable

D̄ and the local one D are updated using one of the aforementioned coupling schemes. Fi-

nally, the convergence criteria of the FFT-based scheme and the damage fields are checked.

This procedure of the iteratively staggered scheme can be simply summarized as follows:
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Algorithm 6 The combination of the FFT-based scheme and a coupling scheme

1: procedure FFT-BASED SCHEME + COUPLING SCHEME

2: Initialization: Load previous field quantities for initial guesses, Fn+1
0 = Fn, D̄n+1

0 =

D̄n, and Dn+1
0 = Dn.

3: Repeat:

4: (a) Run the FFT-based scheme, algorithm 1, to update Fn+1
i+1 .

5: (b) Calculate D̄n+1
i+1 and Dn+1

i+1 using one of the coupling schemes.

6: (c) Check the convergence criteria: Div(Pi+1(x)) = 0 and D̄n+1 −
α∇2D̄n+1 −Dn+1 < tol ∀x ∈ Ω.

7: if Convergence then

8: return Fn+1
i+1 , D̄n+1

i+1 , and Dn+1
i+1 .

9: else

10: (c) i = i+ 1 and go to step (a).

4.3 Implementations of the Coupling Schemes

In this section, implementations of the coupling schemes are discussed. The following

implementations are supposed to be placed at step (b) in algorithm 6. On top of that,

validations and investigations of these coupling schemes are presented.

4.3.1 Staggered Scheme

4.3.1.1 Basic Idea

The basic idea of the staggered scheme is to arrange the solution techniques for the mi-

cromorphic balance equation and the KKT conditions in a sequential manner. Since the

nonlocal damage variable D̄ has an impact on the local damage D, the micromorphic bal-

ance equation is solved for the field of D̄ firstly while that of D is kept fixed. Then, the

solution procedure to solve the KKT conditions for the local damage D follows. The micro-

morphic balance equation is solved using the spectral method which is presented in the next

section. In order to calculate the increment of D at each grid point, the Newton-Raphson

method described in algorithm 7 is used.
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4.3.1.2 The Spectral Method to Solve the Micromorphic Balance Equation Defined

on a RVE

A systematic approach to solve the micromorphic balance equation (3.29) for the nonlocal

damage variable D̄ is suggested. To solve the equation, M. Boeff et al. used a semi-

implicit method to express the nonlocal damage field D̄ in terms of the local damage field

D in Fourier space, [24]. In the same manner, the micromorphic balance equation can be

expressed in Fourier space. The solution procedure is given by:

D̂(ξ) = FFT(D(x)) ∀x ∈ Ω

ˆ̄D(ξ) =
1

1 + α|ξ|2
D̂(ξ)

D̄(x) = FFT−1( ˆ̄D(ξ)) ∀x ∈ Ω

(4.5)

where the internal length scale α is a constant in the spatial domain Ω. The definition of

the wave vector ξ comes from equation (2.33). After the nonlocal damage field is solved in

Fourier space, a backward fast Fourier transform is performed on the nonlocal damage field

to express it in real space. Finally, the solution of the micromorphic balance equation D̄ is

obtained in real space.

4.3.1.3 The Return-Mapping Algorithm for the Nonlocal Damage Model

The KKT conditions are expressed in terms of the thermodynamic conjugate forces and

the damage loading function. The thermodynamic conjugate forces for the micromorphic

approach in equation (3.28) are used to define the damage loading function φnloc for the

nonlocal model. The thermodynamic conjugate forces for the nonlocal model in equation

(3.28) are denoted by Ynloc and qd respectively. In algorithm 7, these thermodynamic forces

and the damage loading function are used for calculating an increment of the damage mul-

tiplier. The return-mapping algorithm for the local damage model, algorithm 2, is extended

to the case of the nonlocal damage model. The return-mapping algorithm for the nonlocal

damage model, algorithm 7, is introduced as follows:
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Algorithm 7 The Return-Mapping Algorithm for the Nonlocal Damage Model

1: procedure NEWTON-RAPHSON METHOD

2: Initialization: Load previous state variables.

3: ∆λ = 0.

4: ∆(∆λ)0 = 0.

5: Dn+1
0 = D.

6: ξn+1
d,0 = ξd.

7: D̄ = D̄.

8: Iterate i+1 Seek the increment of ∆λ and update D and ξd.

9: (a) Update ∆λi+1 = ∆λi + ∆(∆λ)i.

10: (b) Update D and ξd. Dn+1
i+1 = Dn+1

0 + ∆λi+1, ξ
n+1
d,i+1 = ξn+1

d + ∆λi+1.

11: (c) Calculate the residual ||φnloc,i+1(Dn+1
i+1 , ξ

n+1
i+1 , D̄)|| = Ynloc − qd

12: if ||φnloc,i+1|| < tolerance then return Dn+1
i+1 and ξn+1

i+1 .

13: else

14: (d) Calculate Knloc =
∂φnloc,i+1

∂∆λ =
∂Ynloc,i+1

∂D
∂D
∂∆λ −

∂qd,i+1

∂ξd

∂ξd
∂∆λ .

15: (e) Calculate ∆(∆λ)i+1 = −φnloc,i+1

Knloc
.

16: (f) i = i+ 1 and repeat the algorithm from step (a).

4.3.1.4 The Algorithm

By combining algorithm 7 and the FFT-based solution technique for the micromorphic equa-

tion (4.5), the staggered scheme for coupling the micromorphic balance equation and the

KKT conditions is given as follows:

Algorithm 8 Staggered Scheme for coupling of damage fields

1: procedure STAGGERED SCHEME

2: Initialization: Load previous values of D, D̄.

3: (a) Solve equation D̄n+1−α∇2D̄n+1 = Dn+1 for D̄n+1 using equations (4.5).

4: (b) Run algorithm 7 to check and update local damage evolution, Dn+1.

5: (c) Return D̄n+1 and Dn+1.

4.3.2 Iteratively Staggered Scheme

4.3.2.1 Basic Idea and Algorithm

An iteratively staggered scheme can be constructed by iterating the staggered scheme 8

until a coupling condition is satisfied. The coupling conditions should be set to ensure that
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all of the coupled fields satisfy every numerical model. The coupling condition at every step

in the iteratively staggered scheme reads as follows:

φd < tolerance in Ω

D̄ − α∇2D̄ −D < tolerance in Ω
(4.6)

where Ω is the spatial domain of a RVE and tolerance is a small positive value. The coupling

conditions should be valid for every grid point in a RVE. However, the coupling condition

can be further simplified. In order to simplify the coupling condition, the KKT conditions

are solved firstly, and then the solution of the micromorphic balance equation is computed.

When the sequence of solutions is arranged in this manner, the convergence of the local

damage field yields the convergence of the nonlocal damage field. At the end of i-th step in

the iteratively staggered scheme, the following relation is valid in Fourier space

ˆ̄Di =
1

1 + α|ξ|2
D̂i (4.7)

When the local damage field is converged at the (i+ 1)-th step, D̂i and D̂i+1 are the same.

Likewise, in Fourier space, the following relation is satisfied:

ˆ̄Di+1 =
1

1 + α|ξ|2
D̂i+1 (4.8)

As α and ξ are the same in the i-th and the (i + 1)-th step, ˆ̄Di+1 and ˆ̄Di are the same as

well. Thus, it is only necessary to check the convergence of the local damage field. The

simplified coupling condition reads as follows:

φd < tolerance in Ω (4.9)

The algorithm of the iteratively staggered scheme reads as follows:

Algorithm 9 Iteratively Staggered Scheme for Coupling Damage Fields

1: procedure ITERATIVELY STAGGERED SCHEME

2: Initialization: Take initial guesses from previous values Dn+1
0 = D, ξn+1

0 = ξ, and

D̄n+1
0 = D̄.

3: Repeat:

4: (a) Run algorithm (7) to calculate (Dn+1
i+1 , ξ

n+1
d,i+1) from (Dn+1

i , ξn+1
d,i , D̄

n+1
i ).

5: (b) Solve equation D̄n+1
i+1 −α∇2D̄n+1

i+1 = Dn+1
i+1 for D̄n+1

i+1 using equations (4.5).

6: if Coupling condition (4.9) is fulfilled then

7: return (Dn+1
i+1 , ξ

n+1
d,i+1, D̄

n+1
i+1 ).

8: else

9: (c) i = i+ 1 and repeat the algorithm from step (a).
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4.3.3 Simultaneous Scheme

4.3.3.1 Basic Idea

Finally, the simultaneous scheme comes into play in order to calculate the increments of the

local and the nonlocal damage variables satisfying the KKT conditions (3.11) and the micro-

morphic balance equation (3.29) at the same time. A set of simultaneous equations can be

constructed from these two models in order to calculate the fields of local and nonlocal dam-

age. In general, for a heterogeneous microstructure, there are two elastic-damage loading

scenarios. One is that damage-loading takes place at every grid point. The other one is the

case where damage-loading takes place only at certain grid points while other points are

going through purely elastic deformations. For clear explanations, firstly, the implementation

of the simultaneous scheme is introduced for the first scenario. Next, the implementation for

the second scenario is discussed.

4.3.3.2 Formulations of the Residual Vector and the Vector of Increments

To begin with, the first scenario that damage-loading takes place at every grid point is inves-

tigated. Two types of residuals are derived from the micromorphic balance equation (3.29)

and the KKT conditions (3.11). At every grid point, one residual denoted as r1 can be for-

mulated from the micromorphic balance equation. The other one denoted as r2 is derived

from the damage loading function in the KKT conditions since the damage loading function

should be zero when damage evolution takes place. The definitions of the thermodynamic

conjugate forces for the nonlocal damage model are given in equation (3.28). The thermo-

dynamic conjugate forces are denoted by Ynloc and qd in this section. At each grid point

going through a damage-loading process, these two residuals are given by:

r1(D, D̄) = D̄ − α∇2D̄ −D = 0

r2(D, ξd, D̄) = φnloc = Ynloc(D, D̄)− (Y0 + qd(ξd)) = 0
(4.10)

In the above equations (4.10), three state variables D, ξd and D̄ are involved in r1 and r2.

The number the increments of the state variables can be further reduced to two, ∆D̄ and

∆λ. The damage evolution equations (3.10) are reviewed below:

Ḋ = λ̇
∂φd
∂Y

= λ̇

ξ̇d = −λ̇∂φd
∂qd

= λ̇
(4.11)
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The damage evolution equations (3.10) imply that the increments of D and ξd are the same

with that of λ. By taking this into account, the damage and damage hardening variables at

(n+ 1)-th loading step are expressed in terms of those at n-th loading step

Dn+1 = Dn + ∆D = Dn + ∆λ

ξd
n+1 = ξd

n + ∆ξd = ξd
n + ∆λ

(4.12)

where ∆D, ∆ξd, and ∆λ are the increments ofD, ξd, and λ respectively. By using equations

(4.12), the increments of D and ξd are simply expressed in terms of ∆λ. At the same time,

D̄ at (n+ 1)-th step can be expressed in the same manner

D̄n+1 = D̄n + ∆D̄ (4.13)

Consequently, the simultaneous scheme is constructed to calculate ∆λ and ∆D̄ in order to

update the state variables.

The indexing of each grid point follows the notations in Table 2.1. Residuals at a grid point,

r1,(i,j,k) and r2,(i,j,k), can be assembled into one residual vector. The definition of the resid-

ual vector of an entire spatial domain reads as follows:

r(D̄,D, ξd) =

(
r1

r2

)
=



r1,(0,0,0)

r1,(0,0,1)

...

r1,(0,0,Nz−1)

...

r1,(Nx−1,Ny−1,Nz−1)

. . . . . . . . .

r2,(0,0,0)

r2,(0,0,1)

...

r2,(0,0,Nz−1)

...

r2,(Nx−1,Ny−1,Nz−1)



∈ R2(NxNyNz) (4.14)
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Likewise, the increment vector of state variables x can be represented as follows:

x =

(
∆D̄

∆λ

)
=



∆D̄(0,0,0)

∆D̄(0,0,1)

...

∆D̄(0,0,Nz−1)

...

∆D̄(Nx−1,Ny−1,Nz−1)

. . . . . . . . . .

∆λ(0,0,0)

∆λ(0,0,1)

...

∆λ(0,0,Nz−1)

...

∆λ(Nx−1,Ny−1,Nz−1)



∈ R2(NxNyNz) (4.15)

The increment vector x is composed of the increment vector of the nonlocal damage vari-

able ∆D̄ and that of the damage multiplier ∆λ. As a result, the solution of the coupled

problem is defined as the increment vector x (4.15) which makes the residual vector r

(4.14) a zero vector.

4.3.3.3 Application of the Newton-Raphson Method

The Newton-Raphson method is used to find the increments of the state variables satisfying

the equation r(∆D̄,∆λ) = 0. The initial guess of the increment vector x0 is initialized

with a zero vector. In the iterative procedure of the Newton-Raphson method, at i-th step,

the residual vector ri is calculated using the increment vector xi. The partial derivative

of ri with respect to xi should be calculated to construct a Jacobian matrix dr
dx

∣∣∣
i

which is

necessary to calculate an increment of the increment vector ∆xi. The increment vector at

(i + 1)-th step is calculated by adding ∆xi to xi, xi+1 = xi + ∆xi. Then, the residual

vector ri+1 is calculated, and the convergence is checked. The aforementioned relations



Coupling Schemes 39

are summarized as follows:

x0 = 0

xi+1 = xi + ∆xi

ri+1 = ri +
( dr
dx

)∣∣∣
i
∆xi = 0

∆xi = −
( dr
dx

)−1∣∣∣
i
∆ri

∆xi =

(
∆(∆D̄)

∆(∆λ)

)∣∣∣∣∣
i

= −

(
∂r1

∂∆D̄
∂r1
∂∆λ

∂r2

∂∆D̄
∂r2
∂∆λ

)−1∣∣∣∣∣
i

(
r1

r2

)∣∣∣∣∣
i

(4.16)

The Jacobian matrix dr
dx

∣∣∣
i

can be split into four submatrices. The Jacobian matrix and its

submatrices are described as follows:

dr

dx

∣∣∣
i

=

(
∂r1

∂∆D̄
∂r1
∂∆λ

∂r2

∂∆D̄
∂r2
∂∆λ

)∣∣∣∣∣
i

∈ R(2NxNyNz)×(2NxNyNz) (4.17)

where these four submatrices in equation (4.17) are (NxNyNz) by (NxNyNz) matrices.

In equation (4.17), r1, r2, ∆D̄, and ∆λ are vectors of corresponding residuals and the

increments in equations (4.14) and (4.15) respectively.

4.3.3.4 Calculations of the Residual Vector and the Jacobian Matrix

Firstly, at each grid point, the partial derivatives of r1 with respect to ∆D̄ and ∆λ are inves-

tigated. At a grid point with index (i, j, k), the residuals are written as follows:

r1(D(i,j,k), D̄(i,j,k)) = D̄(i,j,k) − α∇2D̄(i,j,k) −D(i,j,k) = 0 (4.18)

r2(D(i,j,k), ξd,(i,j,k), D̄(i,j,k)) = φnloc,(i,j,k) = Ynloc,(i,j,k) − (Y0,(i,j,k) + qd,(i,j,k)) = 0 (4.19)

In order to calculate the value of r1 and the derivative of r1 with respect to ∆D̄, the Laplacian

∇2 should be approximated using the central finite difference scheme. In three-dimensional

space, the approximation of ∇2D̄(i,j,k) reads as follows:

∇2D̄(i,j,k) =
D̄(i−1,j,k) − 2D̄(i,j,k) + D̄(i+1,j,k)

dx2
+
D̄(i,j−1,k) − 2D̄(i,j,k) + D̄(i,j+1,k)

dy2

+
D̄(i,j,k−1) − 2D̄(i,j,k) + D̄(i,j,k+1)

dz2

(4.20)

where dx, dy, and dz stand for grid spacing in each direction, Table 2.1. The visualization

of the stencil of the approximation (4.20) is found in reference [25]:
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FIGURE 4.1: Stencil of the central finite difference scheme (4.20).

By plugging (4.20) into (4.18), r1 at a grid point (i, j, k) reads as follows:

r1,(i,j,k) = −α
(D̄(i−1,j,k) + D̄(i+1,j,k)

dx2
+
D̄(i,j−1,k) + D̄(i,j+1,k)

dy2

+
D̄(i,j,k−1) + D̄(i,j,k+1)

dz2

)
+
(

1 +
2α

dx2
+

2α

dy2
+

2α

dz2

)
D̄(i,j,k) −D(i,j,k)

(4.21)

where the approximation of −α∇2D̄(i,j,k) reads as follows:

−α∇2D̄(i,j,k) ≈ −α
(D̄(i−1,j,k) + D̄(i+1,j,k)

dx2
+
D̄(i,j−1,k) + D̄(i,j+1,k)

dy2

+
D̄(i,j,k−1) + D̄(i,j,k+1)

dz2

)
+
( 2α

dx2
+

2α

dy2
+

2α

dz2

)
D̄(i,j,k)

(4.22)

Each row of the submatrix ∂r1

∂∆D̄
can be derived from differentiating r1,(i,j,k) with respect

to ∆D̄(i,j,k),∆D̄(i+1,j,k),∆D̄(i−1,j,k), · · · , and ∆D̄(i+1,j+1,k+1). The shape of ∂r1

∂∆D̄
is gen-

erated from the approximation of the Laplacian using the central finite difference scheme.

Considering (4.21), the partial derivative of r1,(i,j,k) with respect to ∆D̄(i,j,k) forms an iden-

tity matrix I in the submatrix ∂r1

∂∆D̄
. In general, since the Laplacian is always symmetric

and negative-definite, ∂r1

∂∆D̄
= I − α∇2 should be a symmetric and positive-definite matrix

when the internal length scale α is a positive constant over a RVE. That is because I and

−α∇2 are positive-definite matrices. From equations (4.12) and the chain rule, the following

relations at every grid point can be derived:

∂D

∂∆λ
= 1

∂ξd
∂∆λ

= 1

∂r1

∂∆λ
=
∂r1

∂D

∂D

∂∆λ
= −1

(4.23)
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Therefore, the submatrix ∂r1
∂∆λ is a scalar matrix where the main diagonal entries are −1.

Two submatrices derived by differentiating r1 are summarized as follows:

∂r1

∂∆D̄
= I− α∇2

∂r1

∂∆λ
= −I

(4.24)

In order to formulate submatrices which are the partial derivatives of r2, the definitions of

the thermodynamic conjugate forces are revisited. In equation, (3.28), the thermodynamic

conjugate forces are defined as follows:

Ynloc := −∂Ψ

∂D
= −f ′(D)[

µ

2
{trC− 3− ln(detC)}+

Λ

4
{detC− 1− ln(detC)}]−H(D − D̄)

qd :=
∂Ψ

∂ξd
= r{1− exp(−sξd)}

(4.25)

At each grid point, the partial derivatives of r2 with respect to the vectors, ∆D̄ and ∆λ, can

be derived by the following procedure:

∂r2,(i,j,k)

∂∆D̄
=
∂Ynloc,(i,j,k)

∂∆D̄(i,j,k)

= H

∂r2,(i,j,k)

∂∆λ
=
∂Ynloc,(i,j,k)

∂∆λ(i,j,k)
−
∂qd,(i,j,k)

∂∆λ(i,j,k)
= Knloc,(i,j,k)

(4.26)

where Knloc is defined at each grid point as follows:

Knloc =
∂Ynloc
∂D

∂D

∂∆λ
− ∂qd
∂ξd

∂ξd
∂∆λ

⇔ −f ′′(D)[
µ

2
{trC− 3− ln(detC)}+

λ

4
{detC− 1− ln(detC)}]− (rs)exp(−sξd)−H

(4.27)

Finally, it is concluded that ∂r2

∂∆D̄
is a scalar matrix, HI. The last submatrix ∂r2

∂∆λ is a diagonal

matrix having Knloc calculated at each grid point. In summary, these four submatrices are

summarized as follows:

Submatrix Definition
∂r1

∂∆D̄
Approximation of I− α∇2 using the central finite difference scheme

∂r1
∂∆λ

∂r1
∂∆λ = diag(−1)

∂r2

∂∆D̄
∂r2

∂∆D̄
= diag(H)

∂r2
∂∆λ

∂r2
∂∆λ = diag(Knloc)

TABLE 4.2: Submatrices of the Jacobian matrix dr
dx .

Only the first submatrix ∂r1

∂∆D̄
is symmetric and positive-definite, and the others are diagonal

matrices. For example, the shape of the Jacobian matrix for a one dimensional problem is
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displayed

FIGURE 4.2: Blue dots represent nonzero entities in the Jacobian matrix dr
dx in equation

(4.17). Each submatrix in a quadrant corresponds to ∂r1
∂∆λ , ∂r1

∂∆D̄
, ∂r2
∂∆D̄

, and ∂r2
∂∆λ .

where Nx = 10, Ny = 1, Nz = 1, and the red cross distinguishes the submatrices.

4.3.3.5 Application of a Sparse Matrix Form and the Schur Complement Method

The simultaneous scheme is developed to solve the linear equation (4.16) in an iterative

manner until convergence is achieved. In practice, saving all entities of the Jacobian matrix

consumes a huge amount of memory. For example, for a 2D grid having grid points in

each dimension (Nx, Ny, Nz) = (64, 64, 1), (64× 64× 1× 2)2 × (8)/220 = 512 Megabytes

are necessary to store the entire Jacobian matrix in double precision. To save memory

occupation, expressing the Jacobian matrix in a sparse format will save a huge amount

of memory. For this reason, the Compressed Sparse Row (CSR) format comes into play

to express the Jacobian matrix in a program. Details of the CSR format can be found in

Appendix A.

The Jacobian matrix is asymmetric because ∂r1
∂∆λ and ∂r2

∂∆D̄
are different. Iterative methods

like GMRES can come into play to solve this asymmetric matrix. Nevertheless, considering
∂r1

∂∆D̄
is symmetric and the other submatrices are diagonal, the Jacobian matrix can be

transformed into a smaller symmetric one by means of the Schur complement method. By

using the Schur complement method, not only the size of the Jacobian matrix reduces, but
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also the symmetric nature can accelerate iterative solvers to converge faster. The general

form of the Schur complement method for a linear equation and its solution reads as follows:(
A11 A12

A21 A22

)(
∆x1

∆x2

)
= −

(
r1

r2

)
∆x1 = {A11 −A12(A22)−1A21}−1{−r1 + A12(A22)−1r2}

∆x2 = −(A22)−1(r2 + A21∆x1)

(4.28)

The matrix {A11−A12(A22)−1A21}−1{−r1 +A12(A22)−1r2} is called the "Schur comple-

ment matrix". Submatrices and vectors in the simultaneous scheme (4.16) can be mapped

to those of the Schur complement method (4.28). The corresponding terms are summarized

in Table 4.3

Simultaneous scheme Schur complement method
∂r1

∂∆D̄
A11

∂r1
∂∆λ A12

∂r2

∂∆D̄
A21

∂r2
∂∆λ A22

∆(∆D̄) ∆x1

∆(∆λ) ∆x2

TABLE 4.3: Similarities between equations (4.16) and (4.28).

By applying the Schur complement method (4.28), the increment of the increment vector

of the nonlocal damage ∆(∆D̄) is calculated firstly, and then that of the damage multiplier

∆(∆λ) is calculated from ∆(∆D̄). By using the Schur complement method, ∆(∆D̄) is

given by:

∆(∆D̄) =
{ ∂r1

∂∆D̄
− ∂r1

∂∆λ

( ∂r2

∂∆λ

)−1 ∂r2

∂∆D̄

}−1{
− r1 +

∂r1

∂∆λ

( ∂r2

∂∆λ

)−1
r2

}
(4.29)

where { ∂r1

∂∆D̄
− ∂r1

∂∆λ

( ∂r2

∂∆λ

)−1 ∂r2

∂∆D̄

}−1
∈ R(NxNyNz)×(NxNyNz){

− r1 +
∂r1

∂∆λ

( ∂r2

∂∆λ

)−1
r2

}
∈ R(NxNyNz)

(4.30)

By using the information of submatrices in Table 4.2, the Schur complement matrix can be

simplified further:

∂r1

∂∆D̄
− ∂r1

∂∆λ

( ∂r2

∂∆λ

)−1 ∂r2

∂∆D̄
=

∂r1

∂∆D̄
+H

( ∂r2

∂∆λ

)−1
(4.31)
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At the same time, ∆(∆λ) reads as follows:

∆(∆λ) = −
( ∂r2

∂∆λ

)−1(
r2 +

∂r2

∂∆D̄
∆(∆D̄)

)
(4.32)

4.3.3.6 The General Case of a Damage Evolution

In general, every grid point does not necessarily go through a process of damage evolution

at the same time. For a grid point with index (i, j, k) going through elastic deformation, the

condition r2,(i,j,k) = 0 is not valid according to the KKT conditions. ∆(∆λ) should be zero at

that grid point. As a consequence, the Jacobian matrix and the residual vector in equation

(4.16) should be modified accordingly. When an elastic process takes place at a grid point,

∆(∆λ) can be expressed as follows:

∆(∆λ(i,j,k)) = 0

⇐⇒ 0∆(∆D̄(i,j,k)) + 1∆(∆λ(i,j,k)) = 0
(4.33)

In the previous section, when there is a damage evolution at a grid point, the following

relation is derived from r2,(i,j,k) = 0

∂r2,(i,j,k)

∂∆D̄(i,j,k)

∆(∆D̄(i,j,k)) +
∂r2,(i,j,k)

∂∆λ(i,j,k)
∆(∆λ(i,j,k)) = −r2,(i,j,k) (4.34)

This equation should be replaced by equation (4.33). Equation (4.33) can be regarded as a

special case of equation (4.34) where ∂r2
∂∆D̄

= 0, r2 = 0, and ∂r2
∂∆λ = 0. The value of ∂r1

∂∆λ at

a grid point where an elastic process takes place can be set to zero because ∆(∆λ) is zero

there. The following Table 4.4 summarizes the terms to be replaced at grid points under

elastic processes

Terms to be replaced Values
∂r2,(i,j,k)

∂∆D̄2,(i,j,k)
0

∂r2,(i,j,k)

∂∆λ2,(i,j,k)
1

r2,(i,j,k) 0

TABLE 4.4: Modifications of terms when an elastic-loading takes place at a grid point,
(i, j, k).

On the contrary, the micromorphic balance equation is always valid in a domain. Therefore,

the residual vector of the micromorphic balance equation should be constructed in the same

manner.
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4.3.3.7 The Choice of an Iterative Solver

The choice of the iterative solver depends on the type of the Schur complement matrix{
∂r1

∂∆D̄
− ∂r1

∂∆λ

(
∂r2
∂∆λ

)−1
∂r2

∂∆D̄

}
. In order to analyze the Schur complement matrix further,

the approximation of the submatrix
(
∂r2
∂∆λ

)
should be investigated. As the penalty term H

is a huge value compared to other terms in equation (4.27), Knloc is approximately −H
at every grid point. When every grid point goes through a damage loading process, this

approximation makes the submatrix
(
∂r2
∂∆λ

)
to be close to a scalar matrix−HI. Accordingly,

the Schur complement matrix in equation (4.31) can be approximated as

∂r1

∂∆D̄
− ∂r1

∂∆λ

( ∂r2

∂∆λ

)−1 ∂r2

∂∆D̄
≈ ∂r1

∂∆D̄
− I (4.35)

From Table 4.2, it is known that
∂r1

∂∆D̄
≈ I− α∇2 (4.36)

By combining relations (4.35) and (4.36), the following approximation of the Schur comple-

ment matrix is valid when the penalty term H is huge enough:

∂r1

∂∆D̄
− ∂r1

∂∆λ

( ∂r2

∂∆λ

)−1 ∂r2

∂∆D̄
≈ −α∇2 (4.37)

As a result, equation (4.37) demonstrates that the Schur complement matrix is approxi-

mately a symmetric and positive-definite matrix when the penalty term H is large enough.

In the case of the second scenario of general damage loading, the Schur complement ma-

trix is still symmetric and positive-definite. In a general case, considering the approximation

in equation (4.27) and Table 4.4, ( ∂r1∂∆λ( ∂r2∂∆λ)−1 ∂r2
∂∆D̄

) will have a zero or one in the diagonal

entries when H is large enough. Then, this matrix is semi-positive-definite so that the Schur

complement matrix is still a symmetric and positive-definite matrix.

The symmetric and positive-definite nature of the Schur complement matrix makes it pos-

sible to solve the linear equation (4.16) by means of the conjugate gradient method. In the

case of a symmetric and positive-definite matrix, the conjugate gradient method is much

faster than GMRES (Generalized Minimal Residual Method). Therefore, the conjugate gra-

dient method is used in the simultaneous scheme in the current work.

4.3.3.8 The Algorithm of Simultaneous Scheme

In summary, the algorithm of the simultaneous scheme is summarized below:
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Algorithm 10 Simultaneous Scheme for Coupling Damage Fields

1: procedure SIMULTANEOUS SCHEME

2: Initialization: Take the initial guesses from values at a previous loading step

Dn+1
0 = Dn, ξn+1

d,0 = ξnd , and D̄n+1
0 = D̄n. Initialize the initial increments with zero,

∆D̄0 = 0 and ∆λ0 = 0

3: Calculate and save ∂r1
∂∆D̄

using the central finite difference scheme (4.21).

4: Repeat:

5: (a) Loop over every grid point to calculate damage loading function φd.

6: if (φd > tolerance) then

7: Assign ∂r1
∂∆λ = −1, ∂r2

∂∆D̄
= H , ∂r2

∂∆λ = Knloc, and r2 = φd.

8: else

9: Assign ∂r1
∂∆λ = 0, ∂r2

∂∆D̄
= 0, ∂r2

∂∆λ = 1, and r2 = 0.

10: (b) Calculate r1 using equation (4.21).

11: (c) Check the convergence of the simultaneous scheme.

12: if (Coupling condition: φd < tolerance at every grid point) then

13: return .

14: else

15: (d) Calculate the Schur complement matrix in equation (4.31).

16: (e) Solve the Schur complement matrix for ∆(∆D̄)i

17: (f) Update ∆D̄i+1 = ∆D̄i + ∆(∆D̄)i.

18: (g) Update D̄n+1
i+1 = D̄n+1

0 + ∆D̄i+1.

19: (h) Calculate ∆(∆λ)i using equation (4.32).

20: (i) Update ∆λi+1 = ∆λi + ∆(∆λ)i.

21: (j) Update Dn+1
i+1 = Dn+1

0 + ∆λi+1 and ξn+1
d,(i+1) = ξn+1

d,0 + ∆λi+1.

22: (k) i = i+ 1 and repeat the algorithm from step (a).

4.4 Validations of the Implementations of the Coupling Schemes

In general, deriving an analytical solution of a coupled problem is intricate or impossible be-

cause of nonlinearities in geometries of inclusions and material models. There is one way

to test whether an implementation is correct. When it comes to a homogeneous RVE, the

nonlocal damage model should show exactly the same behavior as that of the local dam-

age model. The micromorphic balance equation (3.29) is reformulated for a homogeneous

domain
D̄ − α∇2D̄ = D, α =

A

H

⇔ D̄ = D

(4.38)



Coupling Schemes 47

In the above equation, the Laplacian α∇2D̄ taking account of the nonlocality of D̄ disap-

pears since every grid point will have the same field quantities in a homogeneous RVE.

Therefore, the nonlocal damage variable should be the same as the local one. In the fol-

lowing sections, the mechanical boundary-value problem of a homogeneous RVE is solved

using each coupling scheme, and the results are compared to the result of the local damage

model. To make the validation simple, a virtual experiment of uniaxial stretch is performed

in 2D space. The macroscopic deformation gradient F0 during the uniaxial stretch reads as

follows:

F0 =


li 0 0

0 1/li 0

0 0 1

 li ∈ [1, lf ] (4.39)

where li is the stretch in x-direction at i-th loading step, and lf is the stretch at the final

step. li is monotonously increasing from 1 to its final value lf . The elastic and damage

parameters in Table 4.5 are used. The penalty constant H is chosen as 104 MPa, and the

internal length scale α is 10−6 MPa mm2. The parameters are summarized as follows:

Symbol Value Unit

Lamé’s first parameter Λ 5000 MPa

Lamé’s second parameter µ 7500 MPa

Initial damage threshold Y0 5 MPa

Damage parameter r 50 MPa

Exponential damage parameter s 0.5 -

Penalty constant H 104 MPa

Internal length scale α 10−6 MPa mm2

TABLE 4.5: Elastic-damage material parameters

The penalty constant H should be large enough to firmly couple the local and the nonlocal

damage fields. In this case, the internal length scale α does not have any influence on a

homogeneous RVE.

4.4.1 Comparison of the Results

The results of the local damage model and the nonlocal damage model are presented in

this section. They are put on the same graph to prove that they show consistent results.

The comparison is shown in Figure 4.3
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FIGURE 4.3: Comparison between the solution of the local damage model and that of the
nonlocal damage model with different coupling schemes.

In Figure 4.3, only the results of the iteratively staggered scheme and the simultaneous one

are visible. That is because results overlap each other. As a result, it is concluded that

those schemes yield consistent results in the case of a homogeneous RVE.

Now, the runtime of each scheme matters from the practical point of view. The runtime of

each scheme to get to the point of principal stretch being equal to 1.04855 is summarized in

Table 4.6.

Numerical models
Local

damage

model

Nonlocal damage model

Staggered

scheme

Iteratively

staggered

scheme

Simultaneous

scheme

Time (s) 16 888 3395 18

Runtime ratio w.r.t.

the local model

1.0 55.5 212.18 1.12

TABLE 4.6: The runtime of simulations with different schemes.

To compare the runtime clearly, the contents of Table 4.6 are visualized in the following

Figure 4.4:
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FIGURE 4.4: The iteratively staggered scheme takes up the largest amount of runtime.
The simultaneous scheme is the fastest one among those coupling schemes.

In Table 4.6, the fastest coupling scheme is the simultaneous scheme which is 188.61 times

faster than the iteratively staggered scheme. Moreover, the speed of the simultaneous

scheme is comparable to that of the local damage model. In conclusion, as the simultaneous

scheme is stable and the fastest one among those three coupling schemes, this scheme is

adopted for running numerical examples in the following Chapter 5.

4.4.2 The Reason Why the Partitioned Approaches Are Slow

In previous section 4.1.2.1, the reason why a simultaneous scheme can be faster than a

partitioned approach was described. However, this does not fully explain the reason why

the partitioned approaches are much slower as shown in Figure 4.4.

The problem comes from the fact that D̄ is not updated in the return-mapping algorithm

7 while D is updated. The cause of slow-down can be found from the return-mapping

algorithm 7 for the partitioned approaches. An increment of the damage multiplier at each

step in the return mapping algorithm reads as follows:

∆(∆λ) =
φd,nloc
−Knloc

=
φd,loc −H(D − D̄)

−Kloc +H
(4.40)

In order to make the expressions comparable to that of the local damage model, the damage

loading function φd,nloc is expressed in terms of the local one φd,loc. In the same manner,

Knloc is also expressed in terms of Kloc which is the corresponding term in the local dam-

age model. By dividing the numerator and denominator in equation (4.40) by the penalty
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constant H , the expression in equation (4.40) can be approximated as follows:

∆(∆λ) =
1
Hφd,nloc − (D − D̄)

−Kloc
H + 1

≈ −(D − D̄)

1
<< 1 (4.41)

In the construction of the micromorphic approach, the penalty constant H ties D and D̄ to

become very close to each other, [4]. Consequently, (D−D̄) will be an infinitesimal value in

the equation (4.41). As an increment of ∆λ is infinitesimal in equation (4.41), each iteration

in the return-mapping algorithm 7 results in an infinitesimal increment of D.

Even worse, an infinitesimal increment ofD can make the damage loading function φd,nloc to

be equal or less than zero, which lets the return-mapping algorithm 7 to converge without a

sufficient increase in D. φd,nloc is highly affected by an infinitesimal increment of D because

of the penalty term −H(D− D̄) in φd,nloc. While D̄ is fixed in the return-mapping algorithm,

an infinitesimal increment of D adds a large negative value to φd,nloc. Thus, a huge value

for H causes D to evolve less than it should. Returning a very small increment of D causes

the overall iteratively staggered scheme 6 to run longer to yield a converged solution. It

means that the FFT-based scheme and the spectral method for the micromorphic balance

equation should run longer as well, which in turn leads to expensive FFT operations.



Chapter 5

Numerical Examples

In this chapter, parametric studies of the local damage model and applications of the local

and the nonlocal damage models are presented. By investigating each parameter’s influ-

ence on a damage evolution, proper choices can be made. On top of that, RVEs with a

single and multiple inclusions are introduced to validate the local and the nonlocal damage

model for general problems. Those damage models are used to simulate several damage

loading scenarios on these RVEs.

5.1 Parametric Studies of the Local Damage Model

The influences of the damage parameter r and the exponential damage parameter s are

investigated. It is obvious that the damage threshold Y0 determines a loading step where

an initial damage evolution takes place. For this reason, only the influences of r and s are

investigated. Those three parameters are chosen, as follows:

Symbol Value

Initial damage threshold Y0 5 MPa

Damage parameter r 50 MPa

Exponential damage parameter s 0.5

TABLE 5.1: Elastic-damage material parameters

To begin with, the influence of an increase in r is investigated while Y0 and s are fixed. Next,

the influence of s is also investigated while the others are kept constant.

51
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5.1.1 Effect of the damage parameter r

The influence of the damage parameter r is investigated. When only r varies, the compari-

son between different choices of r is shown in Figure 5.1

FIGURE 5.1: The influence of r on the effective material response at fixed Y0 and s.

In Figure 5.1, as r increases, the curves of damage hardening/softening regions become

higher and wider. Every curve has the same onset of the damage evolution since the same

threshold Y0 is used in every case. From Figure 5.1, it can be inferred that higher r makes

a material to have slower damage evolution so that the maximum stress of its stress-strain

curve becomes higher value. As a consequence, it is concluded that higher r makes a

stress-strain curve to reach a higher peak and become wider.

5.1.2 Effect of the exponential damage parameter s

The case study of the influence of s is shown in Figure 5.2
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FIGURE 5.2: The influence of s while Y0 and r are fixed.

As s increases, those graphs become higher as well. Apparently, increasing s seems to

have the same effect of increasing r. Nevertheless, when s increases, the softening regions

in Figure 5.2 do not become wider as much as the softening regions in Figure 5.1 do. In

Figure 5.2, an increase in s not only increases a maximum stress but also makes a softening

region to be steeper. In conclusion, by manipulating influences of those parameters r and

s, one will have the flexibility of modeling a hardening/softening behavior of a material.

5.2 Problem of a Single Inclusion

In this section, the local and the nonlocal damage models are used to solve problems of

a composite where its RVE has a single cylindrical inclusion at the center. The problem is

defined as a plain-strain problem in 2D. The geometry of the composite’s RVE is shown in

Figure 5.3a and 5.3b
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(A) An RVE having a cylindrical inclusion. (B) Periodically distributed RVEs.

FIGURE 5.3: Visualizations of an RVE with a cylindrical inclusion.

The red color in Figure 5.3a and 5.3b represents the cylindrical inclusion, and blue matrix

material is surrounding those inclusions. As the RVE is periodically distributed in a compos-

ite, the composite’s microstructure will look like Figure 5.3b. The inclusion is presumed to be

a purely elastic material as a inclusion is supposed to be much stiffer than a matrix material

in most cases. The matrix material’s elastic-damage behavior is described using the local

damage model or the nonlocal one. The table of material parameters are summarized as

follows:

Symbol Matrix Inclusion

Lamé’s first parameter Λ 5000 MPa 5250 MPa

Lamé’s second parameter µ 7500 MPa 7875 MPa

Initial damage threshold Y0 5 MPa ∞
Damage parameter r 50 MPa -

Exponential damage parameter s 0.5 -

Penalty term H 104 MPa -

Internal length scale α 2.5× 10−8 MPa mm2 -

TABLE 5.2: Elastic-damage material parameters

In Table 5.2, the stiffness of the inclusion is 1.05 times as much as the stiffness of ma-

trix. The material contrast ratio, 1.05, is set to be small for fast convergence of the FFT-

based scheme. The virtual uniaxial stretch experiments are performed using the FFT-based

scheme combined with those damage models. The macroscopic deformation gradient F0

at each loading step is defined as follows:

F0 =


li 0 0

0 1/li 0

0 0 1

 li ∈ [1, lf ] (5.1)

where li is the principal stretch in x-direction at i-th loading step and monotonously increas-

ing from 1 to lf . lf is the stretch at the final step.
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5.2.1 Local Damage Model

In this section, the simulation results of the local damage model are presented. By using dif-

ferent discretizations, the grid convergence of those results is investigated. The comparison

of simulations is presented in Figure 5.4

FIGURE 5.4: Simulations of the local damage model with different discretization.

In Figure 5.4, the number in each label indicates the level of discretization. For example,

the pink curve in Figure 5.4 represents a grid having 32× 32 grid points in two dimensional

space. As it is shown in Figure 5.4, those curves in the figure have severe drop-down be-

haviors. The "snap-back" is possible to happen when a material goes through a process

of strain localization, M. A. Crisfield [26]. As the principal stretch of the macroscopic de-

formation gradient F0 is always increasing, the loading condition in equation (5.1) cannot

represent the phenomenon of snap-back. Consequently, at the drop-down points, the FFT-

based had to calculate a solution while skipping a number of loading steps. The problem of

the local damage model is that those points of drop-down do not converge towards a point.

From the peak point, the localization of damage zone becomes severe so that fractured

zones are generated in each RVE. Those graphs show individual softening behaviors after
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the peak points. Even worse, they have totally different fractured profiles in Figure 5.5. In

Figure 5.5, the results are arranged from the first quadrant to the fourth quadrant

FIGURE 5.5: Fractured configurations of the local damage model. There are 32 × 32,
64× 64, 128× 128, and 256× 256 grid points in each quadrant. The contour interval of the

damage variable is 0.2.

Figure 5.5 shows that the spatial refinement does not lead to a convergence toward an

unique solution. In conclusion, the local damage model does not have a converged solution

in the softening region.

5.2.2 Nonlocal Damage Model

The defect of the local damage model that spatial refinement does not guarantee the exis-

tence of a unique solution motivates one to apply the nonlocal damage model. The results

are displayed in Figure 5.6
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FIGURE 5.6: Simulations of the nonlocal damage model with different discretizations.

As it is shown in Figure 5.6, Those curves’ points of drop-down converge toward one point

(1.01685, 198.314). However, simulations of the nonlocal damage model will show differ-

ent softening-behavior depending on the level of discretization. For the construction of the

simultaneous scheme, the Laplacian was approximated using the central finite-difference

scheme, equation (4.20). Spatial resolution affects not only the FFT-based scheme but also

the approximation of the Laplacian. This fact makes the diffusion of D̄ to be dependent on

a spatial resolution. For this reason, in Figure 5.6, the result of the coarsest grid shows the

smoothest softening-behavior because the stencil of the central finite difference scheme,

Figure 4.1, is the widest. Figure 5.7 backs up this investigation that the coarsest grid has

the widest damage zone. As a consequence, the large damage zone in the coarsest grid

could make strain localization to be less severe. On the other hand, finer ones show sharper

transitions in softening regions. Nevertheless, in the case of the nonlocal damage model, it

is promising that spatial refinement leads to closer softening regions in Figure 5.6.

Moreover, it is also promising that the fractured configurations of RVEs shown in Figure 5.7

have consistent fractures
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FIGURE 5.7: Fractured configurations of the nonlocal damage model. There are 32 × 32,
64 × 64, 128 × 128, and 256 × 256 grid points in each quadrant. The contour interval of

damage variable is 0.2.

This is a good indication that the nonlocal damage model results in consistent results when

the spatial discretization becomes finer. Figure 5.7 also supports the fact that the approxi-

mation of the Laplacian on a coarser grid results in more diffusive damage field.

5.3 Problem of Multiple Inclusions

In this section, an RVE consists of randomly distributed multiple inclusions is investigated.

The RVEs containing multiple inclusions are visualized in Figure 5.8a and 5.8b

(A) An RVE having multiple cylindrical inclusions. (B) Periodically distributed RVEs.

FIGURE 5.8: Visualizations of RVEs with multiple cylindrical inclusions.

In Figure 5.8b, it is shown that the RVE satisfies the geometric continuity across the bound-

aries. The RVE in Figure 5.8a is used to conduct virtual experiments of uniaxial stretches
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in x and y directions and a shear deformation. The virtual experiments are conducted using

the local and the nonlocal damage models to be compared to each other.

5.3.1 Uniaxial Stretch in X-Direction

Uniaxial stretch simulations are performed on the RVEs with different spatial discretizations.

In this case, the macroscopic deformation gradient at each loading step is defined as it is for

the single inclusion simulations, (5.1). First, the effective stress-principal stretch curves of

grids are compared to investigate a grid convergence. Next, the fractured configurations at

principal stretch 1.02 are compared to investigate the consistency in the fractured shapes.

5.3.1.1 Stress Curves

The stress-principal stretch curves of the local and the nonlocal damage models are shown

in Figures 5.9a and 5.9b respectively
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(A) The local damage model.

(B) The nonlocal damage model.

FIGURE 5.9: The effective response of the damage models under the uniaxial stretch in
x-direction.
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In Figure 5.9a, the spatial refinement for the local damage model does not lead to a con-

verged solution. Specifically, those three curves’ drop-down points differ from each other.

As a result, it is hard to predict the loading step where a composite breaks down using the

local damage model.

On the other hand, the drop-down points in Figure 5.9b converges toward the point (1.016, 214.431).

Still, curves in Figure 5.9b show individual profiles depending on the level of spatial dis-

cretizations.

5.3.1.2 Fractured Configurations

The fractured configurations of the local and the nonlocal damage models are shown in

Figures 5.10a and 5.10b respectively. In Figure 5.10a, the results of the local damage model

show inconsistent fractured configurations. The result of the finest grid is different from the

others. On the other hand, the fractures of the nonlocal damage model are consistent.

Fractured regions of different grids match each other at boundaries in Figure 5.10b. In

conclusion, the nonlocal damage model yields the consistent fractures while the local one

does not.
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(A) The result of the local damage model under an uniaxial stretch in x-
direction.

(B) The result of the nonlocal damage model under an uniaxial stretch in
x-direction.

FIGURE 5.10: There are 64× 64, 128× 128, and 256× 256 points in each quadrant. The
principal stretch is 1.02. The contour interval of the damage variable is 0.2.
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5.3.2 Uniaxial Stretch in Y-Direction

The macroscopic deformation gradient for the simulations in y-direction is given by:

F0 =


1/li 0 0

0 li 0

0 0 1

 li ∈ [1, lf ] (5.2)

where li is the principal stretch in y-direction at i-th loading step and monotonously increas-

ing from 1 to lf . lf is the principal stretch at the final loading step. Likewise, the local and

the nonlocal damage models are used to simulate this loading condition 5.2.

5.3.2.1 Stress Curves

The effective responses of the local and the nonlocal damage models are described in

Figure 5.11a and 5.11b respectively.
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(A) The local damage model.

(B) The nonlocal damage model.

FIGURE 5.11: The effective response of the damage models under the uniaxial stretch in
y-direction.
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The effective responses under the stretch in y-direction are very similar to those in x-

direction, Figures 5.9a and 5.9b. The similarity implies that the RVE 5.8a has an isotropic

effective response. This can happen because the RVE is made of randomly distributed

circular inclusions. Also, the isotropic Neo-Hooken solid model is used for both the matrix

material and the inclusions. According to I. M. Gitman et al. [27], an RVE does not neces-

sarily have to be uniquely defined for an arbitrary heterogeneous microstructure. If the RVE

in Figure 5.8a is rotated 90 degrees clockwise, the rotated RVE still has similar statistical

properties. First, the rotated one has the same amount of density of the inclusions. Second,

since those inclusions are randomly distributed, the rotated one has the similar standard

variation in the distribution of those inclusions. As a consequence, the rotated one is eligi-

ble to be an RVE of the microstructure as well, Figure 5.8b. Therefore, this inference leads

to the conclusion that the effective response of the RVE is isotropic.

5.3.2.2 Fractured Configurations

The fractured configurations of the local and the nonlocal damage models are shown in

Figures 5.12a and 5.12b respectively.
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(A) The result of the local damage model under an uniaxial stretch in y-
direction.

(B) The result of the nonlocal damage model under an uniaxial stretch in
y-direction.

FIGURE 5.12: There are 64× 64, 128× 128, and 256× 256 points in each quadrant. The
principal stretch is 1.02. The contour interval of the damage variable is 0.2.

As it is discussed in previous section 5.3.2.1, because of the isotropic response, the frac-

tured configurations of the local and the nonlocal damage models are almost same to those

under the loading in the x-direction.
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5.3.3 Shear Deformation

The macroscopic deformation gradient under a shear deformation is defined in the following

manner:

F0 =


1 li 0

li 1 0

0 0 1

 li ∈ [1, lf ] (5.3)

where li is the amount of shear deformation at i-th loading step and monotonously increas-

ing from 1 to lf . When li is small enough, F0 becomes the deformation gradient of a pure

shear problem. The macroscopic small strain tensor εεε0 can be expressed in terms of F0 in

the following manner:

εεε0 =
1

2
(F0 + FT

0 )− I (5.4)

When F0 is given as equation (5.3), εεε0 reads as follows:

εεε0 =


0 li 0

li 0 0

0 0 0

 li ∈ [1, lf ] (5.5)

When li is small enough, F0 in equation (5.3) becomes the deformation gradient of a pure

shear deformation. Finally, the results of the local and the nonlocal damage models are

introduced in the following sections.

5.3.3.1 Stress Curves

The effective responses of the microstructure under the shear deformation are calculated

using the local and the nonlocal damage models. These responses are described in Figures

5.13a and 5.13b
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(A) The local damage model.

(B) The nonlocal damage model.

FIGURE 5.13: The effective response of the damage models under the shear deformation.
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Those two graphs of the local and the nonlocal damage models look very similar to each

other. This similarity can be explained by examining the fractured configurations.

5.3.3.2 Fractured Configurations

The fractured configurations are shown in Figures 5.12a and 5.14b respectively. Both figures

have vertical fractures. In this case, the local damage model shows consistent fractured

configurations. In the previous case studies on the RVE with a single inclusion, the fractured

configurations generated from the local damage model are individual in Figure 5.5. That is

because there are multiple possibilities of fractures to be generated in the matrix. However,

certain weak regions in an RVE can be determined from its microstructure and a loading

condition. Considering the microstructure of the RVE, it is obvious that fractures will be

generated in the matrix located between inclusions because inclusions are purely elastic.

Since weak regions are obvious in the RVE, the problem of the local damage model may be

well-posed on the RVE under the shear deformation. Therefore, the local and the nonlocal

damage models yield similar the consistent results in this special case
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(A) The result of the local damage model under a shear deformation.

(B) The result of the nonlocal damage model under a shear deformation.

FIGURE 5.14: There are 64× 64, 128× 128, and 256× 256 points in each quadrant. The
principal stretch is 1.02. The contour interval of the damage variable is 0.2.



Chapter 6

Conclusions

6.1 Summary of Major Investigations

In summary, the implementation of the gradient-extended damage model in the FFT-based

scheme and its numerical examples are investigated in this thesis. In conclusion, the non-

local damage model (3.29) implemented using the simultaneous scheme’s algorithm 10, is

recommended to replace the local damage model. One reason is that the nonlocal damage

model shows the grid convergence until a severe strain localization takes place. Further-

more, the nonlocal damage model yields consistent fractured configurations for different

spatial discretizations. The investigations and remarks in this paper are summarized as

follows:

• According to Figures 4.3 and 4.4 in Chapter 4, it is shown that the simultaneous

scheme is stable and the fastest coupling scheme for the current research.

• The RVE having cylindrical inclusions, Figure 5.8a, shows almost isotropic effective

behavior. That is because those inclusions are circular in 2D and randomly distributed.

If the inclusions are other geometric objects like a triangle or elliptic curves, the effec-

tive response of an RVE might be anisotropic.

• The local damage model shows non-unique fractured configurations in the softening

regions depending on the level of spatial discretizations, shown in Figures 5.5, 5.10a,

and 5.12a. Nevertheless, it does not necessarily mean that the local damage model

always fails to have a unique solution. Depending on a combination of the geometry

of an RVE and loading conditions, the problem of the local damage model in softening

regions can be well-posed in certain cases, shown in Figure 5.14a.

• The nonlocal damage model has shown consistent fractured configurations in every

case study, Figures 5.7, 5.10a, 5.12a, and 5.14a.

71



Conclusions 72

• When it comes to hardening or softening regions, both damage models show drop-

down phenomena of effective behaviors. For example, Figures 5.9a and 5.9b.

The following topics are suggested to develop more robust and realistic simulations in the

future.

• For ductile simulations, plasticity models can be also taken into account since plasticity

and damage evolution are likely to take place at the same time.

• The Newton-Raphson based methods can be more stable and accelerate the speed

of computations by means of the quadratic convergence, M. Kabel [3]. It can be used

to run simulations with higher spatial resolution or 3D problems.

• In order to heal the drop-down phenomena possibly arising from the snap-back prob-

lems, artificial-viscosity can be applied.

• The gradient-extended damage model with the micromorphic approach can be also

implemented in an FEA software. The concept of the homogenization technique can

be applied in an FEA software. In each loading step, the periodic boundary condition

and a macroscopic deformation gradient can be used to define boundary conditions

in FEA. For structural inclusions, the spatial discretization using finite elements can

represent a geometry of an inclusion neatly. FEA can be more stable and efficient

platform than the FFT-based scheme in that case.



Appendix A

The Sparse Matrix Format

In order to reduce hardware memory occupancy for expressing a huge size matrix, sparse

matrix formats are devised to express only nonzero entries in a matrix. The Compressed

Sparse Row (CSR) and Compressed Sparse Column (CSC) formats are widely used. Those

sparse matrix formats are very useful when an iterative solver is used to solve a linear

equation. In that case, a matrix does not need to be directly inverted, but only matrix-vector

multiplications are necessary to solve a linear problem. In C/C++, a multidimensional array

is represented in a row-major format. On the other hand, in Fortran, that is done in a column-

major format. To keep the consistency with the standard data storage format in C/C++, the

CSR format is employed. This consistency is advantageous when a matrix in a dense form

is converted into the CSR format since it is possible to utilize cache-hit. On top of that, each

row of the approximation of the Laplacian using the central finite difference scheme (4.20) is

calculated sequentially, it is easier to construct the approximation (4.20) in the CSR format.

From the development reference for Intel Math Kernel Library 2018 - Fortran (Beta) [28],

descriptions and an example of the CSR format can be found. It is supposed that a matrix

has m rows, n columns, and nnz nonzero entries. The arrays in terms of the nonzero

values, row, and column positions of a matrix are described in the following Table:

values This array contains every nonzero values in a matrix. In the CSR format,

nonzero values are saved in this array in the row-major sequence. The size

of the array is equal to the number of nonzero values nnz.

columns Column indexes of nonzero values are stored in this array. The size of the

array is equal to the number of nonzero values nnz.

rowIndex Locations of first elements in each row are saved in this array. Basically,

this array has size of m. On top of that, the last entry of this array saves

(nnz + 1). As a result, this array has size of (m+ 1).
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For an instance, a matrix in the dense format is given as an example

B =



−1 1 ∗ −3 ∗
−2 5 ∗ ∗ ∗
∗ ∗ 4 6 4

−4 ∗ 2 7 ∗
∗ 8 ∗ ∗ −5


(A.1)

The matrix B can be represented in the CSR format in the following manner in Table A.1:

Storage arrays for a Matrix in the CSR Format

one-based indexing

Values = (-1 1 -3 -2 5 4 6 4 -4 2 7 8 -5)

Columns = (1 2 4 1 2 3 4 5 1 3 4 2 5)

RowIndex = (1 4 6 9 12 14)

zero-based indexing

Values = (-1 1 -3 -2 5 4 6 4 -4 2 7 8 -5)

Columns = (0 1 3 0 1 2 3 4 0 2 3 1 4)

RowIndex = (0 3 5 8 11 13)

TABLE A.1: The representation of the matrix B in the CSR format.
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