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1. For the round-robin algorithm use the MPI Isend version, such that com-
munication and computation can be performed to a certain extent concurrently.

The communication algorithm is conceived to allow communication to be done during
process of serial computation. It is compulsory to have MPI Wait commands because send-
buffer should not be modified before MPI Isend is finished. Consequentially, the location of
MPI Wait affects the concurrency of communication and computation. To realize the con-
currency, MPI Wait can be placed just before ”address swaper”. If this is set before serial
computation, it will block computation until MPI Isend is completely done. Therefore, the
concurrency can be realized by allowing MPI Wait to be just before sendbuffer’s modification
code as close as possible.

// Wait u n i t i l p r ev ious Isend i s f i n i s h e d so t ha t addres se s can be
swaped .

i f ( ( i p e s+rounds ) > 0)
{

MPI Wait(& reques t [ 0 ] , MPI STATUS IGNORE) ;
MPI Wait(& reques t [ 1 ] , MPI STATUS IGNORE) ;
MPI Wait(& reques t [ 2 ] , MPI STATUS IGNORE) ;

}

// Isend communication
// npes −1 + round(=1) = npes i s the l a s t s t ep
i f ( ( i p e s + rounds ) < npes ) {

// wai t u n t i l p r ev ious sending (mxyz , data , node found ) i s
f i n i s h e d

address swaper (&mxyz f ine send , &mxyz f ine ) ;
address swaper (& data f i n e s end , &d a t a f i n e ) ;
address swaper (&node found send , &node found ) ;

MPI Isend (&( mxyz f ine send [ 0 ] [ 0 ] ) , n n c f i n e ∗nsd ,
MPI DOUBLE, next , 0 , MPI COMM WORLD, &reque s t [ 0 ] ) ;

// c a l c u l a t e d data s t o r ed in d a t a f i n e . Send what each
proces sor has now

MPI Isend (&( d a t a f i n e s e n d [ 0 ] [ 0 ] ) , n n c f i n e ∗ndf ,
MPI DOUBLE, next , 1 , MPI COMM WORLD, &reque s t [ 1 ] ) ;

// c a l c u l a t e d data s t o r ed in d a t a f i n e . Send what each
proces sor has now

MPI Isend (&( node found send [ 0 ] ) , nnc f ine , MPI INT , next ,
2 , MPI COMM WORLD, &reque s t [ 2 ] ) ;
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// wai t u n t i l p r ev ious sending ( nnc f ine , o f f s e t n n ) i s
f i n i s h e d

i f ( ( i p e s+rounds ) > 0)
{

MPI Wait(& reques t [ 3 ] , MPI STATUS IGNORE) ;
MPI Wait(& reques t [ 4 ] , MPI STATUS IGNORE) ;

}
n n c f i n e s e n d = n n c f i n e ;
o f f s e t n n f i n e s e n d = o f f s e t n n f i n e ;
MPI Isend (&( n n c f i n e s e n d ) , 1 , MPI INT , next , 3 ,

MPI COMM WORLD, &reque s t [ 3 ] ) ;
MPI Isend (&( o f f s e t n n f i n e s e n d ) , 1 , MPI INT , next , 4 ,

MPI COMM WORLD, &reque s t [ 4 ] ) ;
}

2. For distributing the fine mesh nodes and coarse mesh elements, conceive
an algorithm that splits them as evenly as possible across the different processing
units.

Yes, they will behave differently if size of buffer is too much big. MPI Send and MPI Rsend
do not work with large buffer size. That is because temporary buffer in MPI Send communi-
cation has limited size. If send buffer’s size exceeds a certain amount of memory, temporary
buffer cannot save send buffer’s data. Thus, MPI Send and MPI Rsend should be used
with small amount of send buffer. On computer cluster, it is measured that MPI Send and
MPI Rsend will work with buffer size of 505 at most.

On the other side, MPI Isend works with large buffer size. The reason is that MPI Isend
simply sends buffer’s data when there is a matching MPI Recv. In conclusion, it is recom-
mendable to implement MPI communication with MPI Isend on Round-Robin algorithm.

3. Comment on possible differences between the OpenMP- and MPI-parallelized
codes with respect to consistency and uniqueness of the generated results. Is
the generated file data.fine the same irrespective of the number of cores used for
execution? We do not require your code to be consistent in that regard.

MPI-parallelized codes will not have uniqueness of generated results, depending on num-
ber of processors. If the number of processors is changed, it will yield different results.
when there is a fine node that does not get into any coarse mesh with 0 tolerance, it will
be interpolated with different coarse elements. That is because that kind of node can be
interpolated with arbitrary element which allows 0.2 tolerance. Changing the number of
processors will yield a change in offsets. Consequentially, processors will have different set of
coarse elements, and try to do interpolation based on what they have. This nature of MPI-
parallelization engenders randomness of result. However, difference between results will be
not so big since tolerance is small.
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On the contrary, the result of OpenMP is independent of the number of threads. The
reason is that every thread has shared memory so that will try to have a look on the same
coarse elements. To verify this in this project. Output file ”data.fine”’s values are compared
using MATLAB.

omp 8 omp 6 MPI 4 proc MPI 8 proc MPI 32 proc
8.75e-4 8.75e-4 9.38e-6 8.84e-4 9.39e-4

Table 1: Relative norm of error with respect to norm of data, made using 1 processor

Table 1 shows relative error of results. Reference is result made by one processor. 2-
norms of errors are calculated using MATLAB. After that, 2-norms of errors were divided
by the norm of the reference result. Regardless of using different number of threads to run
OpenMP, the value of relative error is 8.75e − 4. Still, relative error of MPI depends on
the number of processors. Therefore, the result of MPI depends on the number of proces-
sors. Nevertheless, the difference is negligible since tolerance is small. Also, the result of
computation using MPI will be consistent if the number of processors is constant. That is
because the algorithm to split computational load is only dependent on number of processors.

4. At the end of our round-robin process, if sending fine mesh data, the data
may not reside on the same PE as it started on; this must be accounted by
proper offset before writing the data.

In general, each processors will have different set of nodes other than it used to have.
Therefore, it is important to keep track on offset of each set of nodes. By tracking the offset,
each processor will know where their final data will fit in and write them on proper point.
Below code includes MPI communication to pass offset value to next processor and receiving
one from previous processor.

// To make i t sure t ha t sending nnc , o f f s e t are complete .
i f ( i p e s + rounds >0)
{

// prev ious s t ep ’ s sending nnc f ine complete
MPI Wait(& reques t [ 3 ] , MPI STATUS IGNORE) ;
n n c f i n e s e n d = n n c f i n e ;
MPI Isend (&( n n c f i n e s e n d ) , 1 , MPI INT , next , 3 ,

MPI COMM WORLD, &reque s t [ 3 ] ) ;

// sending o f f s e t n n f i n e complete
MPI Wait(& reques t [ 4 ] , MPI STATUS IGNORE) ;
o f f s e t n n f i n e s e n d = o f f s e t n n f i n e ;
MPI Isend (&( o f f s e t n n f i n e s e n d ) , 1 , MPI INT , next , 4 ,

MPI COMM WORLD, &reque s t [ 4 ] ) ;
}
else
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{
n n c f i n e s e n d = n n c f i n e ;
o f f s e t n n f i n e s e n d = o f f s e t n n f i n e ;
MPI Isend (&( n n c f i n e s e n d ) , 1 , MPI INT , next , 3 ,

MPI COMM WORLD, &reque s t [ 3 ] ) ;
MPI Isend (&( o f f s e t n n f i n e s e n d ) , 1 , MPI INT , next , 4 ,

MPI COMM WORLD, &reque s t [ 4 ] ) ;
}

5. Tracking analysis of MPI communication

It is necessary to check how processors have communicated by visualizing it. Red bar
means time interval for MPI commands. In figure 2, it is seen that processors do commu-
nication with neighbour processors. In the first time interval, from 2.5 to 7.5 sec, several
processors finished communication very early and the others took more time. It means that
computational load, dependent on structure of mesh, is biased. If a processor has more
computational load, it will finish serial computation later. It lets next processor to wait
until the slow processor finishes. Also, it is seen that long red MPI Recv bar is propagating
from 0-th processor to 11-th processor. It shows that computational bias can be amplified
as communication goes on.

Figure 2: Overall communication graph

In summary, this tracking analysis insists that evenly distributed computational load is
crucial to shorten total runtime.

6. Considerations about scalability

In order to study how much MPI makes the program faster, runtime is measured. For
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each number of processors, runtime is measured three times and average value is calculated.
Runtime, scalability, and parallel efficiency is visualized below.

Figure 3: MPI Runtime

Figure 4: MPI Scalability
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Figure 5: MPI Efficiency

The scalability is linearly increasing with respect to number of processors, according to
Figure 4. At the same time, parallel Efficiency decreases inverse proportionally. It coincides
with Figure 2 that larger number of MPI communication will waste time on MPI Recv. It
can be inferred from Figure 2 that as communication step goes on, it is more likely to waste
time on MPI Recv. MPI communication with more processor is accompanied by more com-
munication steps, and it leads to bad parallel efficiency.

7. Another algorithm to improve scalability

As it is seen from previous Figures, the program is made to allow the concurrency but
wastes much time on MPI Recv. I changed the position of MPI Wait to be right after
MPI Recv. Runtime is measured in the same way as it has been done. The alternative
algorithm’s MPI Wait looks like below code.

// Round−rob in loop
for ( int i p e s =0; i p e s <= npes−1; i p e s++) {

// I r ecv communication to ge t new data
i f ( ( i p e s + rounds ) > 0) {

MPI Recv(&( n n c f i n e ) , 1 , MPI INT , prev , 3 ,
MPI COMM WORLD, MPI STATUS IGNORE) ;

MPI Recv(&( mxyz f ine [ 0 ] [ 0 ] ) , n n c f i n e ∗nsd ,
MPI DOUBLE, prev , 0 , MPI COMM WORLD,

7



MPI STATUS IGNORE) ;
MPI Recv(&( d a t a f i n e [ 0 ] [ 0 ] ) , n n c f i n e ∗ndf ,

MPI DOUBLE, prev , 1 , MPI COMM WORLD,
MPI STATUS IGNORE) ;

MPI Recv(&( node found [ 0 ] ) , nnc f ine , MPI INT , prev
, 2 , MPI COMM WORLD, MPI STATUS IGNORE) ;

MPI Recv(&( o f f s e t n n f i n e ) , 1 , MPI INT , prev , 4 ,
MPI COMM WORLD, MPI STATUS IGNORE) ;

// wai t u n t i l sending (mxyz , data , node found ) i s f i n i s h e d
MPI Wait(& reques t [ 0 ] , MPI STATUS IGNORE) ;
MPI Wait(& reques t [ 1 ] , MPI STATUS IGNORE) ;
MPI Wait(& reques t [ 2 ] , MPI STATUS IGNORE) ;
p r i n t f ( ”[%d ] MPI Recv done , message s i z e %d \n” ,

mype , n n c f i n e ) ;
}

This code’s runtime and pattern of MPI communication prove that it is more fast and
efficient compared to the previous algorithm.

Figure 6: MPI Runtime Comparison
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Figure 7: MPI Scalability Comparison

Figure 8: MPI Efficiency Comparison

This result is unexpected at the first time since the first algorithm looks faster. The
computational is undertaken to compare two MPI communications. Figure 9 represents the
alternative MPI communication.
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Figure 9: Overall communication graph

By comparing Figure 9 with Figure 2, it is clear that the alternative algorithm consumes
less time for MPI communication. In Figure 2, MPI Recv takes 134 seconds but the alter-
native one takes only 37 seconds. Nevertheless, the alternative needs about 8 seconds more
to undertake MPI Wait. This drawback is negligible since the alternative algorithm saves
97 seconds for MPI Recv. Visually, Figure 9 looks that it has more structured and short
communication pattern compared to Figure 2. Although, the alternative algorithm does
not allow the concurrency between serial computation and MPI communication, it is much
faster.

It is evident that there should be another factor that affects MPI communication perfor-
mance other than the concurrency. Depending on structure of serial computational program
or interactions of MPI communication, sometimes, trying another method that opposites to
intuitive idea will be better.
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