diff --git a/main.tex b/main.tex index 68f655b50fd548fb52c73a20779adc3864343f71..73cf045b17d1deb680cf7ac93fba9639c1c24d87 100644 --- a/main.tex +++ b/main.tex @@ -79,13 +79,13 @@ superscriptaddress, floatfix, longbibliography]{revtex4-2} (A) at (0,0) {$\phantom{\Delta_{x^2-y^2}}$}; \node[regular polygon, inner sep = -2pt, regular polygon sides=6] (B) at (A) {$\phantom{\Delta_{x^2-y^2}}$}; - \node[draw=none, fill=white, opacity=0.6, text opacity=1, inner sep=0] at (A) {#1}; - \node[] at (B.corner 1) {#2}; - \node[] at (B.corner 2) {#3}; - \node[] at (B.corner 3) {#4}; - \node[] at (B.corner 4) {#5}; - \node[] at (B.corner 5) {#6}; - \node[] at (B.corner 6) {#7}; + \node[draw=none, fill=white, opacity=1, text opacity=1, inner sep=0] at (A) {#1}; + \node[] at (B.corner 1) {$#2$}; + \node[] at (B.corner 2) {$#3$}; + \node[] at (B.corner 3) {$#4$}; + \node[] at (B.corner 4) {$#5$}; + \node[] at (B.corner 5) {$#6$}; + \node[] at (B.corner 6) {$#7$}; \end{tikzpicture} } } @@ -298,20 +298,49 @@ The allowed combinations can be obtained by a careful symmetry analysis. \begin{table} \centering -\begin{tabular}{ccc} \toprule - {$\mu$} & Spatial & Spin \\ \hline - \sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1} & $\hat{\mathbf{d}}_0$ \\ - \sym A 2 & - & $\hat{\mathbf{d}}_z$ \\ - \sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & \\ \hline \\ +\begin{tabular}{cccc} \toprule + {$\mu$} & Spatial & Spin & Total \\ \hline + \sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1} + & $\hat{\mathbf{d}}_0$ + & $\begin{gathered} + \Delta_{s} \hat{\mathbf{d}}_0 \\ + \Delta_{p_x} \hat{\mathbf{d}}_x - \Delta_{p_y} \hat{\mathbf{d}}_y + \end{gathered}$ \\ + \sym A 2 & - & $\hat{\mathbf{d}}_z$ + & $\Delta_{p_y} \hat{\mathbf{d}}_x + \Delta_{p_x} \hat{\mathbf{d}}_y$\\ + \sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & - & - \\ + \sym B 2 & - & - & $\Delta_{f} \hat{\mathbf{d}}_z$ \\ \hline \\ \sym E 1 & - $\left[\numberedHexagon{$\Delta_{p_x}$}{1}{-1}{-2}{-1}{1}{2} - \numberedHexagon{$\Delta_{p_y}$}{1}{1}{0}{-1}{-1}{0} \right] $ - & $[\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$ \\[3em] + $\begin{bmatrix} + \numberedHexagon{$\Delta_{p_x}$}{1}{-1}{-2}{-1}{1}{2} \\ + \numberedHexagon{$\Delta_{p_y}$}{1}{1}{0}{-1}{-1}{0} + \end{bmatrix} $ + & $\begin{bmatrix} + \hat{\mathbf{d}}_x \\ + \hat{\mathbf{d}}_y + \end{bmatrix}$ + & $\begin{bmatrix} + \Delta_{p_x} \\ + \Delta_{p_y} + \end{bmatrix}$ \\[3em] \sym E 2 & - $\left[\numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2} - \numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0} - \right] $ - & \\[3em] \hline + $\left[ + \begin{aligned} + \numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2} \\ + \numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0} + \end{aligned} + \right] $ + & - + & $\begin{gathered} + [\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0 \\ + \Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y] \\ + \begin{aligned} + [\Delta_{p_y} \hat{\mathbf{d}}_x + - \Delta_{p_x} \hat{\mathbf{d}}_y, \\ + \Delta_{p_x} \hat{\mathbf{d}}_x + + \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned} + \end{gathered}$ + \\[3em] \hline \end{tabular} \caption{ \captiontitle{Basis functions of irreducible representations} @@ -321,6 +350,33 @@ The allowed combinations can be obtained by a careful symmetry analysis. \label{tab:mom-irreps} \end{table} +\begin{table} + \centering +\begin{tabular}{cccc} \toprule + {$\mu$} & \multicolumn{3}{c}{Basis functions} \\ \hline + \sym A 1 & $\Delta_{s} \hat{\mathbf{d}}_0$ + & $\Delta_{p_x} \hat{\mathbf{d}}_x - \Delta_{p_y} \hat{\mathbf{d}}_y$ & \\ + \sym A 2 & & $\Delta_{p_y} \hat{\mathbf{d}}_x + \Delta_{p_x} \hat{\mathbf{d}}_y$ & \\ + \sym B 1 & & & \\ + \sym B 2 & $\Delta_{f} \hat{\mathbf{d}}_z$ & & \\ \hline + \sym E 1 & $[\Delta_{p_x},\Delta_{p_y}] \hat{\mathbf{d}}_z$ & & \\ + \sym E 2 & $[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0$ + & $\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$ + & $\begin{aligned} + [\Delta_{p_y} \hat{\mathbf{d}}_x + - \Delta_{p_x} \hat{\mathbf{d}}_y, \\ + \Delta_{p_x} \hat{\mathbf{d}}_x + + \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}$ + \\ \hline +\end{tabular} + \caption{ + \captiontitle{Basis functions of irreducible representation} + We show the possible basis functions for two spins that are + antisymmetric under exchange of quantum indices.} + \label{tab:total-irreps} +\end{table} + + % \begin{table} % \centering % \begin{tabular}{ccc} \toprule @@ -402,31 +458,6 @@ The results is the following decomponsition: All of the basis functions of the combined spin-momentum system are given in Table \ref{tab:total-irreps}. -\begin{table} - \centering -\begin{tabular}{cccc} \toprule - {$\mu$} & \multicolumn{3}{c}{Basis functions} \\ \hline - \sym A 1 & $\Delta_{s} \hat{\mathbf{d}}_0$ - & $\Delta_{p_x} \hat{\mathbf{d}}_x - \Delta_{p_y} \hat{\mathbf{d}}_y$ & \\ - \sym A 2 & & $\Delta_{p_y} \hat{\mathbf{d}}_x + \Delta_{p_x} \hat{\mathbf{d}}_y$ & \\ - \sym B 1 & & & \\ - \sym B 2 & $\Delta_{f} \hat{\mathbf{d}}_z$ & & \\ \hline - \sym E 1 & $[\Delta_{p_x},\Delta_{p_y}] \hat{\mathbf{d}}_z$ & & \\ - \sym E 2 & $[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0$ - & $\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$ - & $\begin{aligned} - [\Delta_{p_y} \hat{\mathbf{d}}_x - - \Delta_{p_x} \hat{\mathbf{d}}_y, \\ - \Delta_{p_x} \hat{\mathbf{d}}_x - + \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}$ - \\ \hline -\end{tabular} - \caption{ - \captiontitle{Basis functions of irreducible representation} - We show the possible basis functions for two spins that are - antisymmetric under exchange of quantum indices.} - \label{tab:total-irreps} -\end{table} \section{Results for the nearest-neighbor model}