diff --git a/main.tex b/main.tex
index 68f655b50fd548fb52c73a20779adc3864343f71..73cf045b17d1deb680cf7ac93fba9639c1c24d87 100644
--- a/main.tex
+++ b/main.tex
@@ -79,13 +79,13 @@ superscriptaddress, floatfix, longbibliography]{revtex4-2}
             (A) at (0,0) {$\phantom{\Delta_{x^2-y^2}}$};
         \node[regular polygon, inner sep = -2pt, regular polygon sides=6]
             (B) at (A) {$\phantom{\Delta_{x^2-y^2}}$};
-        \node[draw=none, fill=white, opacity=0.6, text opacity=1, inner sep=0] at (A) {#1};
-        \node[] at (B.corner 1) {#2};
-        \node[] at (B.corner 2) {#3};
-        \node[] at (B.corner 3) {#4};
-        \node[] at (B.corner 4) {#5};
-        \node[] at (B.corner 5) {#6};
-        \node[] at (B.corner 6) {#7};
+        \node[draw=none, fill=white, opacity=1, text opacity=1, inner sep=0] at (A) {#1};
+        \node[] at (B.corner 1) {$#2$};
+        \node[] at (B.corner 2) {$#3$};
+        \node[] at (B.corner 3) {$#4$};
+        \node[] at (B.corner 4) {$#5$};
+        \node[] at (B.corner 5) {$#6$};
+        \node[] at (B.corner 6) {$#7$};
         \end{tikzpicture}
     }
 }
@@ -298,20 +298,49 @@ The allowed combinations can be obtained by a careful symmetry analysis.
 
 \begin{table}
 \centering
-\begin{tabular}{ccc} \toprule
-    {$\mu$} & Spatial & Spin  \\ \hline
-    \sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1} & $\hat{\mathbf{d}}_0$ \\
-    \sym A 2 &    -  & $\hat{\mathbf{d}}_z$ \\
-    \sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & \\ \hline \\
+\begin{tabular}{cccc} \toprule
+    {$\mu$} & Spatial & Spin & Total  \\ \hline
+    \sym A 1    & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1} 
+                & $\hat{\mathbf{d}}_0$ 
+                &  $\begin{gathered}
+                    \Delta_{s} \hat{\mathbf{d}}_0 \\
+                    \Delta_{p_x} \hat{\mathbf{d}}_x  - \Delta_{p_y} \hat{\mathbf{d}}_y 
+                   \end{gathered}$ \\
+    \sym A 2    & -  & $\hat{\mathbf{d}}_z$ 
+                & $\Delta_{p_y} \hat{\mathbf{d}}_x  + \Delta_{p_x} \hat{\mathbf{d}}_y$\\
+    \sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & - & - \\ 
+    \sym B 2 & - & - & $\Delta_{f} \hat{\mathbf{d}}_z$ \\ \hline \\
     \sym E 1 &
-        $\left[\numberedHexagon{$\Delta_{p_x}$}{1}{-1}{-2}{-1}{1}{2}
-        \numberedHexagon{$\Delta_{p_y}$}{1}{1}{0}{-1}{-1}{0} \right] $
-        & $[\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$ \\[3em]
+        $\begin{bmatrix}
+            \numberedHexagon{$\Delta_{p_x}$}{1}{-1}{-2}{-1}{1}{2} \\
+            \numberedHexagon{$\Delta_{p_y}$}{1}{1}{0}{-1}{-1}{0} 
+        \end{bmatrix} $
+        & $\begin{bmatrix} 
+            \hat{\mathbf{d}}_x \\
+            \hat{\mathbf{d}}_y
+        \end{bmatrix}$ 
+        & $\begin{bmatrix} 
+            \Delta_{p_x} \\ 
+            \Delta_{p_y} 
+        \end{bmatrix}$  \\[3em]
     \sym E 2 &
-        $\left[\numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2}
-        \numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0}
-        \right] $
-        & \\[3em] \hline
+        $\left[
+            \begin{aligned}
+                \numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2} \\
+                \numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0}
+            \end{aligned}
+        \right] $ 
+        & - 
+        & $\begin{gathered}
+            [\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0 \\
+            \Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y] \\
+            \begin{aligned}
+            [\Delta_{p_y} \hat{\mathbf{d}}_x
+                - \Delta_{p_x} \hat{\mathbf{d}}_y, \\
+            \Delta_{p_x} \hat{\mathbf{d}}_x
+            + \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}
+        \end{gathered}$
+            \\[3em] \hline
 \end{tabular}
     \caption{
         \captiontitle{Basis functions of irreducible representations}
@@ -321,6 +350,33 @@ The allowed combinations can be obtained by a careful symmetry analysis.
     \label{tab:mom-irreps}
 \end{table}
 
+\begin{table}
+    \centering
+\begin{tabular}{cccc} \toprule
+    {$\mu$} & \multicolumn{3}{c}{Basis functions} \\ \hline
+    \sym A 1 &  $\Delta_{s} \hat{\mathbf{d}}_0$
+            & $\Delta_{p_x} \hat{\mathbf{d}}_x  - \Delta_{p_y} \hat{\mathbf{d}}_y$ & \\
+    \sym A 2 &  & $\Delta_{p_y} \hat{\mathbf{d}}_x  + \Delta_{p_x} \hat{\mathbf{d}}_y$ & \\
+    \sym B 1 &  & & \\
+    \sym B 2 &  $\Delta_{f} \hat{\mathbf{d}}_z$ & & \\  \hline
+    \sym E 1 &  $[\Delta_{p_x},\Delta_{p_y}] \hat{\mathbf{d}}_z$ & & \\
+    \sym E 2 &  $[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0$
+        & $\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$
+        & $\begin{aligned}
+            [\Delta_{p_y} \hat{\mathbf{d}}_x
+                - \Delta_{p_x} \hat{\mathbf{d}}_y, \\
+            \Delta_{p_x} \hat{\mathbf{d}}_x
+            + \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}$
+        \\ \hline
+\end{tabular}
+    \caption{
+        \captiontitle{Basis functions of irreducible representation}
+        We show the possible basis functions for two spins that are
+        antisymmetric under exchange of quantum indices.}
+    \label{tab:total-irreps}
+\end{table}
+
+
 % \begin{table}
 %     \centering
 %     \begin{tabular}{ccc} \toprule
@@ -402,31 +458,6 @@ The results is the following decomponsition:
 All of the basis functions of the combined spin-momentum system are given in Table 
 \ref{tab:total-irreps}.
 
-\begin{table}
-    \centering
-\begin{tabular}{cccc} \toprule
-    {$\mu$} & \multicolumn{3}{c}{Basis functions} \\ \hline
-    \sym A 1 &  $\Delta_{s} \hat{\mathbf{d}}_0$
-            & $\Delta_{p_x} \hat{\mathbf{d}}_x  - \Delta_{p_y} \hat{\mathbf{d}}_y$ & \\
-    \sym A 2 &  & $\Delta_{p_y} \hat{\mathbf{d}}_x  + \Delta_{p_x} \hat{\mathbf{d}}_y$ & \\
-    \sym B 1 &  & & \\
-    \sym B 2 &  $\Delta_{f} \hat{\mathbf{d}}_z$ & & \\  \hline
-    \sym E 1 &  $[\Delta_{p_x},\Delta_{p_y}] \hat{\mathbf{d}}_z$ & & \\
-    \sym E 2 &  $[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0$
-        & $\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$
-        & $\begin{aligned}
-            [\Delta_{p_y} \hat{\mathbf{d}}_x
-                - \Delta_{p_x} \hat{\mathbf{d}}_y, \\
-            \Delta_{p_x} \hat{\mathbf{d}}_x
-            + \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}$
-        \\ \hline
-\end{tabular}
-    \caption{
-        \captiontitle{Basis functions of irreducible representation}
-        We show the possible basis functions for two spins that are
-        antisymmetric under exchange of quantum indices.}
-    \label{tab:total-irreps}
-\end{table}
 
 
 \section{Results for the nearest-neighbor model}