ita_sph_wignerD.m 5.76 KB
 Jan-Gerrit Richter committed Jul 29, 2016 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 ``````function [D, d] = ita_sph_wignerD(nmax, alpha, beta, gamma) %ITA_SPH_WIGNERD - Wigner-D matrix % function [D, d] = ita_sph_wignerD(nmax, alpha, beta, gamma) % % creates the Wigner-D matrix to rotate a spherical function % % The used convention rotates mathematically positive around the axes, % namely around the Z-Y-Z-axes. The reduced Wigner-d matrix (d) can be % helpful to precompute to implement faster rotations. % % application: F_rot(n,m) = D * F(n,m) % % algorythm from "FFTs on the Rotation Group", Kostelec a.o., 2003 % % Martin Pollow (mpo@akustik.rwth-aachen.de) % Institute of Technical Acoustics, RWTH Aachen, Germany % 03.09.2008 % % This file is part of the application SphericalHarmonics for the ITA-Toolbox. All rights reserved. % You can find the license for this m-file in the application folder. % if nargin < 3 beta = alpha(2); gamma = alpha(3); alpha = alpha(1); end % bring the rotations to the given convention (math.pos) alpha = -alpha; beta = -beta; gamma = -gamma; % number of coefficients lengthSH = (nmax+1)^2; if beta == 0 d = eye(lengthSH); else d = wigner_smallD(nmax, beta); end % initialize % D = zeros(lengthSH); exp_alpha = zeros(lengthSH); exp_gamma = zeros(lengthSH); % make exeption for l=0: % D(1,1) = 1; % D(n,interv(J+l+1)) = exp(-j * J * alpha) .* exp(-j * M * gamma) .* d(n,interv(J+l+1)); for n = 1:lengthSH lm = n2lm(n); m = lm(2); exp_alpha(:,n) = exp(j * m * alpha); exp_gamma(n,:) = exp(j * m * gamma); end D = exp_alpha .* d .* exp_gamma; % ------------------------------------------------------------- function d = wigner_smallD(nmax, beta) % function d = wigner_smallD(beta) % % rotates a set of SH-coefficients % using the Wigner-D matrix % % algorythm: "FFTs on the Rotation Group", Kostelec a.o., 2003 % if nargin < 3 % beta = alpha(2); % end cosb = cos(beta/2); sinb = sin(beta/2); % highest degree maxl = nmax; %sqrt(lengthSH)-1; %maxl = 2; linsize = (maxl+1).^2; % initialize d = zeros(linsize); % define square root of (26) wterm = wurzelterm(linsize); % make exeption for l=0: d(1,1) = 1; % loop each row of matrix for n = 2:lm2n(maxl) lm = n2lm(n); l = lm(1); M = lm(2); interv = ((l^2)+1):((l+1)^2); for J = -l:l % d^l_{J,M} % (26) 1st eq. if (J == l) d(n,interv(J+l+1)) = wterm(lm2n(l,M)) .* cosb^(l+M) .* (-sinb)^(l-M); % (26) 2nd eq. elseif (J == -l) d(n,interv(J+l+1)) = wterm(lm2n(l,M)) .* cosb^(l-M) .* sinb^(l+M); % (26) 3rd eq. elseif (M == l) d(n,interv(J+l+1)) = wterm(lm2n(l,J)) .* cosb^(l+J) .* sinb^(l-J); % (26) 4th eq. elseif (M == -l) d(n,interv(J+l+1)) = wterm(lm2n(l,J)) .* cosb^(l-J) .* (-sinb)^(l+J); else % copy old square out of recurrence (25) M2 = J; Ms2 = M; J2 = l-1; term_pos = plusterm(J2,M2,Ms2); term_neu = neutralterm(J2,M2,Ms2,beta); term_neg = negativterm(J2,M2,Ms2); if l-1 >= max(abs([J M])) dneu = d(lm2n_fast(J2,M),lm2n_fast(J2,J)); else dneu = 0; end; if l-2 >= max(abs([J M])) dneg = d(lm2n_fast(J2-1,M),lm2n_fast(J2-1,J)); else dneg = 0; end; d(n,interv(J+l+1)) = - term_neu ./ term_pos .* dneu - term_neg ./ term_pos .* dneg; end end end % ------------------------------------------------------------- function erg = wurzelterm(linsize) % using the same indexing as with the spherical harmonics % n = erg = zeros(1,linsize); for n=1:linsize JM = n2lm(n); J = JM(1); M = JM(2); erg(n) = sqrt(factorial(2*J) ./ (factorial(J+M).*factorial(J-M))); end % ------------------------------------------------------------- function erg = plusterm(J,M,Ms) if J + 1 < max(abs(M), abs(Ms)); error('erg = 0'); end erg = sqrt(((J+1)^2 - M^2) * (((J+1)^2) - Ms^2)) ./ ((J+1) * (2*J+1)); % (25) root.... FFTs on rot groups % ------------------------------------------------------------- function erg = neutralterm(J,M,Ms,beta) if J < max(abs(M), abs(Ms)); error('erg = 0'); end % exception J=0 if J == 0 && ((M == 0) || (Ms == 0)) erg = M + Ms - cos(beta); else erg = (((M*Ms) / (J*(J+1))) - cos(beta)); % (25) root.... FFTs on rot groups end % ------------------------------------------------------------- function erg = negativterm(J,M,Ms) if J - 1 < max(abs(M), abs(Ms)); erg = 0; else erg = sqrt((J^2 - M^2) * ((J^2) - Ms^2)) ./ (J * (2*J+1)); % (25) root.... FFTs on rot groups end % ------------------------------------------------------------- function lm = n2lm(n) % converts the linear 1D-index (n) of the spherical harmonics % to the 2D-index (l,m) if n < 1 error('n has to be positive'); end l = ceil(sqrt(n)) - 1; m = n - l.^2 - l -1; lm = [l; m]; % ------------------------------------------------------------- function n = lm2n(l,m) % function n = lm2n(l,m) % % converts the 2D-index (l,m) of the spherical harmonics % to the linear 1D-index (n) if l < 0 n = -1; return; end if nargin < 2 m = l; end % if abs(m) > l % error('order m has to be between -l and l (degree l)'); % end n = l.^2 + l + m + 1; % ------------------------------------------------------------- function n = lm2n_fast(l,m) % function n = lm2n(l,m) % % converts the 2D-index (l,m) of the spherical harmonics % to the linear 1D-index (n) % pdi: only used if l and m are correct numbers n = l.^2 + l + m + 1; ``````