daffv15_write.m 43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
%
%  OpenDAFF - A free, open-source software package for directional audio data,
%  OpenDAFF is distributed under the terms of the GNU Lesser Public License (LGPL)
%
%  Copyright (C) Institute of Technical Acoustics, RWTH Aachen University
%
%  Visit the OpenDAFF homepage: http://www.opendaff.org
%
%  -------------------------------------------------------------------------------
%
%  File:    daff_write.m
%  Purpose: Writer DAFF files
%  Author:  Frank Wefers (Frank.Wefers@akustik.rwth-aachen.de)
%
%  $Id: daff_write.m,v 1.7 2010/03/08 14:32:41 stienen Exp $
%

% <ITA-Toolbox>
% This file is part of the application openDAFF for the ITA-Toolbox. All rights reserved.
% You can find the license for this m-file in the application folder.
% </ITA-Toolbox>



% Jan 2014 - Pascal Dietrich - changed strcmp() to strcmpi() - BUGFIX

function [] = daffv15_write( varargin )
%DAFF_WRITE Writes DAFF files
%   ...
%
%  --= General parameters =--
%
%  pretend      none        Do not write a DAFF file, just analyze
%  quiet        none        Suppress information and warning messages
%  verbose      none        Extra informative output
%
%  --= Required parameters =--
%
%  filename     char        Output filename (*.daff)
%  content      char        Content type
%                           ('IR' => Impulse responses,
%                            'MS' => Magnitude spectra,
%                            'PS' => Phase spectra,
%                            'MPS' => Magnitude phase spectra,
%                            'DFT' => discrete Fourier spectra)
%  datafunc     function    Data function (delivers the data for a direction)
%  dataset      function    Dataset containing all records
%  orient       vector-3    Orientation [yaw pitch roll] angles []
%  channels     int         Number of channels
%
%  alphares     float       Resolution of alpha-angles
%  betares      float       Resolution of beta-angles
%  alphapoints  int         Number of points in alpha direction
%  betapoints   int         Number of points in beta direction
%
%  You must either specify a dataset or a data function, but not both.
%  You must either specify resolutions or points, but not both.
%
%  --= Optional parameters =--
%
%  basepath     char        Base path for all input files
%  metadata     struct      Global metadata
%
%  alpharange   vector-2    Range of alpha-angles
%  betarange    vector-2    Range of beta-angles
%
%  --= IR content parameters =--
%
%  samplerate       float   Sampling rate [Hertz]
%  quantization     char    Quantization (int16|int24|float32)
%  zthreshold       float   Detection threshold for zero-coefficients (default: -inf)
%
%  --= DFT content parameters =--
%
%  transformsize    int     Discrete Fourier transform size
%  symmetric        logical Complex-conjugate symmetric spectra
%                           Write only first ceil(N+1/2) DFT coefficients
%                           Used for real-valued input data
%
%  --= MS|PS|MPS content parameters =--
%
%  freqs            vector  Support frequencies [Hertz]
%

% --= Option definitions =--

% Options with logical arguments (true|false)
boolarg = {};

% Options with integer number > 0 arguments
ingzarg = {'alphapoints', 'betapoints', 'channels', 'transformsize'};

% Options with floating point number arguments
floatarg = {'zthreshold'};

% Options with floating point number >= 0 arguments
pfloatarg = {'alphares', 'betares', 'samplerate'};

floatvecarg = {'alpharange', 'betarange', 'freqs', 'orient'};

% Options with string parameters
strarg = {'filename', 'basepath', 'content', 'quantization'};

% Options without an argument
nonarg = {'pretend', 'quiet', 'verbose', 'symmetric'};

% Options with one argument
onearg = [boolarg ingzarg floatarg pfloatarg floatvecarg strarg 'datafunc' 'dataset', 'metadata'];

% Required options
reqarg = {'filename', 'content'};


% +------------------------------------------------+
% |                                                |
% |   Parsing and validation of input parameters   |
% |                                                |
% +------------------------------------------------+

% Parse the arguments
args = struct();
for i=1:length(nonarg), args.(nonarg{i}) = false; end

i=1;
while i<=nargin
    if ~ischar(varargin{i}), error(['Parameter ' num2str(i) ': String expected']); end
    key = lower(varargin{i});
    i = i+1;
    r = nargin-i+1; % Number of remaining arguments
    
    switch key
        % Flag options without argument
        case nonarg
            args.(key) = true;
            
            % Options with one argument
        case onearg
            if (r < 1), error(['Option ''' key ''' requires an argument']); end
            args.(key) = varargin{i};
            i = i+1;
            
        otherwise
            error(['Invalid option (''' key ''')']);
    end
end

% Validate the arguments
for i=1:length(reqarg)
    key = reqarg{i};
    if ~isfield(args, key), error(['Option ''' key ''' must be specified']); end
end

for i=1:length(boolarg)
    key = boolarg{i};
    if isfield(args, key)
        if ~islogical(args.(key))
            error(['Argument for option ''' key ''' must be logical']);
        else
            % Type cast
            args.(key) = logical( args.(key) );
        end
    end
end

for i=1:length(ingzarg)
    key = ingzarg{i};
    if isfield(args, key)
        if (~isscalar(args.(key)) || ~any(isfinite(args.(key))) || ~isreal(args.(key)) || (ceil(args.(key)) ~= args.(key)) || (args.(key) <= 0))
            error(['Argument for option ''' key ''' must be an integer > 0']);
        else
            % Type cast
            args.(key) = int32( args.(key) );
        end
    end
end

for i=1:length(floatarg)
    key = floatarg{i};
    if isfield(args, key)
        if (~isscalar(args.(key)) || ~any(isfinite(args.(key))) || ~isreal(args.(key)))
            error(['Argument for option ''' key ''' must be a real number']);
        else
            % Type cast
            args.(key) = double( args.(key) );
        end
    end
end

for i=1:length(pfloatarg)
    key = pfloatarg{i};
    if isfield(args, key)
        if (~isscalar(args.(key)) || ~any(isfinite(args.(key))) || ~isreal(args.(key)) || (args.(key) < 0))
            error(['Argument for option ''' key ''' must be a non-negative real number']);
        else
            % Type cast
            args.(key) = double( args.(key) );
        end
    end
end

for i=1:length(floatvecarg)
    key = floatvecarg{i};
    if isfield(args, key)
        if (~isvector(args.(key)) || ~any(isfinite(args.(key))) || ~isreal(args.(key)))
            error(['Argument for option ''' key ''' must be a vector of real numbers']);
        else
            % Type cast
            args.(key) = double( args.(key) );
        end
    end
end

for i=1:length(strarg)
    key = strarg{i};
    if isfield(args, key)
        if (~ischar(args.(key)) || (isempty(args.(key))))
            error(['Argument for option ''' key ''' must be a non-empty string']);
        end
    end
end

% More validation ;-)

% Note: We validate fields in 'args' and compile a seperate 'props' structure
% from all the necessary arguments.

props.filename = args.filename;
props.quiet = args.quiet;
props.verbose = args.verbose;

% Verbose overrides quiet
if (props.verbose)
    props.quiet = false;
end

% Content
props.content = upper(args.content);
switch props.content
    case 'IR'
        props.contentStr = 'Impulse responses';
        props.contentType = 0; % DAFF_IMPULSE_RESPONSE
    case 'MS'
        props.contentStr = 'Magnitude spectra';
        props.contentType = 1; % DAFF_MAGNITUDE_SPECTRUM
    case 'PS'
        props.contentStr = 'Phase spectra';
        props.contentType = 2; % DAFF_PHASE_SPECTRUM
    case 'MPS'
        props.contentStr = 'Magnitude phase spectra';
        props.contentType = 3; % DAFF_MAGNITUDE_PHASE_SPECTRUM
    case 'DFT'
        props.contentStr = 'Discrete Fourier spectra';
        props.contentType = 4; % DAFF_DFT_SPECTRUM
        
    otherwise
        error(['Invalid content type (' args.content ')']);
end

% Data function or dataset
props.hasDatafunc = isfield(args, 'datafunc');
props.hasDataset = isfield(args, 'dataset');

if (~xor(props.hasDatafunc, props.hasDataset))
    error('You must specify either ''datafunc'' or ''dataset'', but not both');
end

if (props.hasDataset)
    % Case: Dataset supplied
    
    % Note: Some arguments are not applicable when using datasets
    
    if (isfield(args, 'channels'))
        error('When using a dataset you cannot not specify ''channels''');
    end
    
    if (isfield(args, 'alphapoints'))
        error('When using a dataset you cannot not specify ''alphapoints''');
    end
    
    if (isfield(args, 'alphares'))
        error('When using a dataset you cannot not specify ''alphares''');
    end
    
    if (isfield(args, 'alpharange'))
        error('When using a dataset you cannot not specify ''alpharange''');
    end
    
    if (isfield(args, 'betapoints'))
        error('When using a dataset you cannot not specify ''betapoints''');
    end
    
    if (isfield(args, 'betares'))
        error('When using a dataset you cannot not specify ''betares''');
    end
    
    if (isfield(args, 'betarange'))
        error('When using a dataset you cannot not specify ''betarange''');
    end
    
    % Copy values from the dataset
    props.dataset = args.dataset;
    
else
    
    % Case: Data function supplied
    
    props.datafunc = args.datafunc;
    
    if (~isfield(args, 'channels'))
        error('When using a data function you must specify ''channels''');
    end
    props.channels = args.channels;
    
    % TODO: Check the number of arguments
    % Momentarily deactivated
    %     if nargin(args.datafunc) ~= 1
    %         error('Argument for option ''datafunc'' must be a function which takes exactly one input argument');
    %     end
    %
    %     if nargout(args.datafunc) ~= 1
    %         error('Argument for option ''datafunc'' must be a function which returns exactly one output argument');
    %     end
    
    % Angular ranges default values
    if isfield(args, 'alpharange')
        props.alpharange = args.alpharange;
    else
        % Default range
        props.alpharange = [0 360];
    end
    
    if isfield(args, 'betarange')
        props.betarange = args.betarange;
    else
        % Default range
        props.betarange = [0 180];
    end
    
    % Check range specifications
    if (length(props.alpharange) ~= 2)
        error('Argument for ''alpharange'' must be a two element vector');
    end
    
    if (length(props.betarange) ~= 2)
        error('Argument for ''betarange'' must be a two element vector');
    end
    
    % Correct angular range ordering
    props.alphastart = props.alpharange(1);
    props.alphaend = props.alpharange(2);
    props.betastart = min(props.betarange);
    props.betaend = max(props.betarange);
    
    if ((props.alphastart < 0) || (props.alphastart > 360))
        error('Alpha range values must lie within the interval [0, 360]');
    end
    
    if ((props.betastart < 0) || (props.betastart > 180))
        error('Beta range values must lie within the interval [0, 180]');
    end
    
    if (props.alphastart>  props.alphaend)
        props.alphaspan = 360 - props.alphastart + props.alphaend;
    else
        props.alphaspan = props.alphaend - props.alphastart;
    end
    props.betaspan = props.betaend - props.betastart;
    
    % Alpha points and resolution
    hasAlphaPoints = isfield(args, 'alphapoints');
    hasAlphaRes = isfield(args, 'alphares');
    if (~xor(hasAlphaPoints, hasAlphaRes))
        error('You must specify either ''alphapoints'' or ''alphares'', but not both');
    end
    
    if isfield(args, 'alphares')
        % Alpha resolution speficied
        props.alphares = args.alphares;
        
        % [fwe] Bugfix 2011-07-05
        % If the azimuth span does not wrap around the whole sphere
        % we need to add another point. Otherwise there will not be
        % a point at alphaend. Moreover we need to cast to double
        % explicitly, otherwise the division is evaluated in integers.
        
        if (props.alphaspan == 360)
            % Full alpha coverage
            % Last point of the interval (360) coincides with the first (0)
            props.alphapoints = props.alphaspan / double( props.alphares );
        else
            % Partial alpha coverage
            % First and last point do not coincide.
            % Therefore the last point is within the span
            props.alphapoints = props.alphaspan / double( props.alphares ) + 1;
        end
        
        if (ceil(props.alphapoints) ~= props.alphapoints)
            error('Alpha range and alpha resolution are not an integer multiple')
        end
        
    else
        % Alpha points speficied
        props.alphapoints = args.alphapoints;
        
        % [fwe] Bugfix 2011-07-05 (see above)
        if (props.alphaspan == 360)
            props.alphares = props.alphaspan / double( props.alphapoints );
        else
            props.alphares = props.alphaspan / double( props.alphapoints - 1 );
        end
    end
    
    % Beta points and resolution
    hasBetaPoints = isfield(args, 'betapoints');
    hasBetaRes = isfield(args, 'betares');
    if (~xor(hasBetaPoints, hasBetaRes))
        error('You can specify either ''betapoints'' or ''betares'', but not both');
    end
    
    if isfield(args, 'betares')
        % Beta resolution specified
        props.betares = args.betares;
        
        % [fwe] Bugfix 2011-07-05
        % We need to cast to double explicitly, otherwise
        % the division is evaluated in integers.
        
        props.betapoints = (props.betaspan / double( props.betares )) + 1;
        if (ceil(props.betares) ~= props.betares)
            error('Beta range and beta resolution are not an integer multiple')
        end
    else
        % Beta points specified
        props.betapoints = args.betapoints;
        
        props.betares = props.betaspan / double( props.betapoints-1 );
    end
    
    % Create an empty helper dataset, which contains all directions
    % (angular pairs). Then we can just iterate over all records,
    % making iteration over directions a lot less complicated
442
    props.dataset = daffv15_create_dataset('channels', props.channels, ...
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        'alpharange', props.alpharange, ...
        'alphapoints', props.alphapoints, ...
        'betarange', props.betarange, ...
        'betapoints', props.betapoints, ...
        'quiet');
end % -- Endif: Case: Dataset | data function --

% Sampling rate
if isfield(args, 'samplerate')
    props.dataset.samplerate = args.samplerate;
end

% Frequency support
if isfield(args, 'freqs')
    props.dataset.freqs = args.freqs;
end

% Tranform size support
if isfield(args, 'transformsize')
    props.dataset.transformsize = args.transformsize;
end

% Symmetric spectra
if isfield(args, 'symmetric')
    props.symmetric = args.symmetric;
end

% Metadata
if isfield(args, 'metadata')
    props.dataset.metadata = args.metadata;
end

% Orientation
if isfield(args, 'orient')
    if (length(args.orient) ~= 3)
        error('Argument for ''orient'' must be a three element vector [yaw pitch roll]');
    end
    props.orient = args.orient;
else
    % Default orientation
    props.orient = [0 0 0];
end

% Default quantization
if ~isfield(args, 'quantization')
    if (props.contentType == 0)
        % For time-domain data => 16-Bit signed integer
        props.quantization = 'int16';
    else
        % For all other data => 32-Bit floating points
        props.quantization = 'float32';
    end
else
    props.quantization = lower(args.quantization);
end

% Validate quantization
switch props.quantization
    case 'int16'
        props.quantizationStr = '16-bit signed integer';
        props.quantizationType = 0; % DAFF_INT16
        
    case 'int24'
        props.quantizationStr = '24-bit signed integer';
        props.quantizationType = 1; % DAFF_INT24
        
    case 'float32'
        props.quantizationStr = '32-bit floating point';
        props.quantizationType = 2; % DAFF_FLOAT32
        
    otherwise
        error(['Invalid quantization (' args.quantization ')']);
end

% --= Content specific validations =--

if strcmpi(props.content, 'IR')
    % Validation for IR content
    
    % Sampling rate must be provided
    if (~isfield(props.dataset, 'samplerate'))
        error('When writing impulse response content, you must specify ''samplerate''');
    end
    
    % Note: All quantizations are allowed for IR content
    
    % Zero-threshold
    if isfield(args, 'zthreshold')
        props.zthreshold = args.zthreshold;
        props.zthreshold_value = 10^(props.zthreshold/20);
    else
        % Default value = 0 (disabled)
        props.zthreshold = -inf;
        props.zthreshold_value = 0;
    end;
end

if strcmpi(props.content, 'MS')
    % Validation for MS content
    
    % Frequencies must be provided
    if ~isfield(props.dataset, 'freqs')
545
546
547
        warning('When writing magnitude spectrum content, you should specify ''freqs''');
        warning('Frequency vector set to ANSI center frequencies (20 Hz - 20 kHz)');
        props.dataset.freqs = ita_ANSI_center_frequencies;
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    end
    props.numfreqs = length(props.dataset.freqs);
    
    % Allowed quantizations for MS content: Only float32
    if ~strcmpi(props.quantization, 'float32')
        error('MS content may only be quantized with 32-bit floating points (float32)');
    end
end

if strcmpi(props.content, 'PS')
    % Validation for PS content
    
    % Frequencies must be provided
    if ~isfield(props.dataset, 'freqs')
        error('When writing phase spectrum content, you must specify ''freqs''');
    end
    props.numfreqs = length(props.dataset.freqs);
    
    % Allowed quantizations for PS content: Only float32
    if ~strcmpi(props.quantization, 'float32')
        error('PS content may only be quantized with 32-bit floating points (float32)');
    end
end

if strcmpi(props.content, 'MPS')
    % Validation for MPS content
    
    % Frequencies must be provided
    if ~isfield(props.dataset, 'freqs')
        error('When writing magnitude-phase spectrum content, you must specify ''freqs''');
    end
    props.numfreqs = length(props.dataset.freqs);
    
    % Allowed quantizations for MPS content: Only float32
    if ~strcmpi(props.quantization, 'float32')
        error('MPS content may only be quantized with 32-bit floating points (float32)');
    end
end

if strcmpi(props.content, 'DFT')
    % Validation for DFT content
    
    % Sampling rate must be provided
    if (~isfield(props.dataset, 'samplerate'))
        error('When writing impulse response content, you must specify ''samplerate''');
    end
    
    % Transform size must be provided
    if ~isfield(props.dataset, 'transformsize')
        error('When writing DFT spectrum content, you must specify ''transformsize''');
    end
    
    if isfield(props, 'symmetric') && props.symmetric
        % Compute the number of complex-conjugate symmetric DFT coefficients
        props.numDFTCoeffs = ceil( (double(props.dataset.transformsize) + 1) / 2 );
    else
        props.numDFTCoeffs = props.dataset.transformsize;
    end
    
    % Allowed quantizations for DFT content: Only float32
    if ~strcmpi(props.quantization, 'float32')
        error('DFT content may only be quantized with 32-bit floating points (float32)');
    end
end

% Default value for base path
if isfield(args, 'basepath')
    props.basepath = args.basepath;
else
    props.basepath = '';
end

% Now all parameters are parsed
% Clear all arguments. Everything we need is now stored in 'props'.
clear args;

%% --= End of parameter parsing and validation =--


% +------------------------------------------------+
% |                                                |
% |   Writing of the output file                   |
% |                                                |
% +------------------------------------------------+

% File format version of this daff_write
% Current version = 0.105
fileFormatVersion = 0105;

% Very important! 'l' -> little endian
% (DAFF files are always little endian)
fid = fopen(props.filename, 'wb', 'l');

% Structure for remembering offsets in the file
% for inserting values later
fpos = struct;

% Structure for file block data
fblocks = struct;

%
%  1st step: Write the file header
%

fwrite(fid, 'FW', 'char');
fwrite(fid, fileFormatVersion, 'int32');
fpos.numFileBlocksOffset = ftell(fid);
fwrite(fid, 0, 'int32'); % Placeholder

% File block entries
% Note: We write placeholders for yet unknown block sizes
%       and update the offsets and sizes later.

% Main header entry (FILEBLOCK_DAFF1_MAIN_HEADER = 0x0001)
fwrite(fid, hex2dec('0001'), 'int32');
fpos.mainHeaderOffset = ftell(fid);
fwrite(fid, 0, 'uint64');
fpos.mainHeaderSize = ftell(fid);
fwrite(fid, 0, 'uint64');

% Content header entry (FILEBLOCK_DAFF1_CONTENT_HEADER = 0x0002)
fwrite(fid, hex2dec('0002'), 'int32');
fpos.contentHeaderOffset = ftell(fid);
fwrite(fid, 0, 'uint64');
fpos.contentHeaderSize = ftell(fid);
fwrite(fid, 0, 'uint64');

% Record descriptor block entry (FILEBLOCK_DAFF1_RECORD_DESC = 0x0003)
fwrite(fid, hex2dec('0003'), 'int32');
fpos.recordDescOffset = ftell(fid);
fwrite(fid, 0, 'uint64');
fpos.recordDescSize = ftell(fid);
fwrite(fid, 0, 'uint64');

% Data block entry (FILEBLOCK_DAFF1_DATA  = 0x0004)
fwrite(fid, hex2dec('0004'), 'int32');
fpos.dataOffset = ftell(fid);
fwrite(fid, 0, 'uint64');
fpos.dataSize = ftell(fid);
fwrite(fid, 0, 'uint64');

% Metadata block entry (FILEBLOCK_DAFF1_METADATA = 0x0005)
fwrite(fid, hex2dec('0005'), 'int32');
fpos.metadataOffset = ftell(fid);
fwrite(fid, 0, 'uint64');
fpos.metadataSize = ftell(fid);
fwrite(fid, 0, 'uint64');

%
%  2nd step: Write a placeholder for the main header
%

fblocks.mainHeaderOffset = ftell(fid);

% Main header: 15*4 = 60 Bytes
fwrite(fid, zeros(1, 60, 'uint8'), 'uint8');

fblocks.mainHeaderSize = ftell(fid) - fblocks.mainHeaderOffset;

%
%  3rd step: Write a placeholder for the content specific header
%

fblocks.contentHeaderOffset = ftell(fid);

if strcmpi(props.content, 'IR')
    % Impulse response content header: 4+4+4 = 12 Bytes
    fwrite(fid, zeros(1, 12, 'uint8'), 'uint8');
end

if strcmpi(props.content, 'MS')
    % Magnitude spectra content header: 4+4+(numfreqs*4) Bytes
    fwrite(fid, zeros(1, 8+props.numfreqs*4, 'uint8'), 'uint8');
end

if strcmpi(props.content, 'PS')
    % Phase spectra content header: 4+(numfreqs*4) Bytes
    fwrite(fid, zeros(1, 4+props.numfreqs*4, 'uint8'), 'uint8');
end

if strcmpi(props.content, 'MPS')
    % Magnitude-phase spectra content header: 4+4+(nfreqs*4) Bytes
    fwrite(fid, zeros(1, 8+props.numfreqs*4, 'uint8'), 'uint8');
end

if strcmpi(props.content, 'DFT')
    % DFT spectra content header: 4+4+4+4 = 16 Bytes
    fwrite(fid, zeros(1, 16, 'uint8'), 'uint8');
end

fblocks.contentHeaderSize = ftell(fid) - fblocks.contentHeaderOffset;

%
%  4th step: Write a placeholder for the record descriptor table
%

% Start at a 16-Byte boundary
daffv15_fpad16(fid);
fblocks.recordDescOffset = ftell(fid);

% Note: Each record has a channel desc for each channel

if strcmpi(props.content, 'IR')
    % A single IR record channel desc is 4+4+4+8 Byte = 20 Bytes
    fwrite(fid, zeros(1, 20*props.dataset.numrecords*props.dataset.channels, 'uint8'), 'uint8');
else
    % All other content use a default record channel desc (MS/PS/MPS/DFT)
    % which is 8 Bytes
    fwrite(fid, zeros(1, 8*props.dataset.numrecords*props.dataset.channels, 'uint8'), 'uint8');
end

% Finally we write a placeholder for the list of record metadata indices
% Each entry is 4 Bytes
fpos.recordMetadataList = ftell(fid);
fwrite(fid, zeros(1, 4*props.dataset.numrecords, 'uint8'), 'uint8');

% Now the record descriptor block ends
fblocks.recordDescSize = ftell(fid) - fblocks.recordDescOffset;

%
%  5th step: Write the data itself
%

% Start at a 16-Byte boundary
daffv15_fpad16(fid);
fblocks.dataOffset = ftell(fid);

% Structure for record information
recordDesc = cell(1, props.dataset.numrecords);

props.globalPeak = 0;
props.minEffFilterOffset = -1;
props.maxEffFilterLength = -1;

for i=1:props.dataset.numrecords
    record = props.dataset.records{i};
    
    if (props.hasDatafunc)
        % Obtain the record data using the data function
        
        if strcmpi(props.content, 'IR')
            [data, samplerate, metadata] = props.datafunc(record.alpha, record.beta, props.basepath);
            record.data = data;
            record.metadata = metadata;
            
            % Recheck sampling rate
            if (samplerate ~= props.dataset.samplerate)
                error('For record %d (A%0.1f, B%0.1f): Data function delivered different samplerate then expected', i, record.alpha, record.beta);
            end
        end
        
        if strcmpi(props.content, 'MS')
            [freqs, mags, metadata] = props.datafunc(record.alpha, record.beta, props.basepath);
            record.data = mags;
            record.metadata = metadata;
            
            % Recheck sampling rate
            if (isequal(freqs, props.dataset.freqs))
                error('For record %d (A%0.1f, B%0.1f): Data function delivered different frequencies then expected', i, record.alpha, record.beta);
            end
        end
        
        % TODO: Implement other datafunctions
    end
    
    
    % --= Validate the data =--
    
    % Empty data is now allowed
    if isempty(record.data)
        error('For record %d (A%0.1f, B%0.1f): No data provided', i, record.alpha, record.beta);
    end
    
    if ~isnumeric(record.data)
        error('For record %d (A%0.1f, B%0.1f): Data must be numerical', i, record.alpha, record.beta);
    end
    
    % Implicit datatype conversion to double
    if ~strcmpi(class(record.data), 'double')
        data = double( record.data );
    else
        data = record.data;
    end
    
    % Check metadata types
    if isfield(record, 'metadata')
        if ~isstruct(record.metadata)
            error('For record %d (A%0.1f, B%0.1f): Metadata must be at least an empty structure', i, record.alpha, record.beta);
        end
    end
    
    
    % Note: From here we use local data variable: data
    
    [channels, numelements] = size(data);
    
    % Test for correct numnber of channels
    if (channels ~= props.dataset.channels)
        error('For record (A%0.1f, B%0.1f): Wrong number of channels', i, record.alpha, record.beta);
    end
    
    % Elements per records
    if isfield(props, 'elementsPerRecord')
        if (numelements ~= props.elementsPerRecord)
            error('For record (A%0.1f, B%0.1f): Wrong data size', i, record.alpha, record.beta);
        end
    else
        % The first record defines the number of elements/record
        props.elementsPerRecord = numelements;
    end
    
    
    % Test for real-valued data (IR, MS)
    if (strcmpi(props.content, 'IR') || strcmpi(props.content, 'MS'))
        if ~isreal(data)
            error('For record (A%0.1f, B%0.1f): Data must be real-valued', i, record.alpha, record.beta);
        end
    end
    
    % Peak detection
    recordDesc{i}.peak = max(max(abs(data)));
    props.globalPeak = max([props.globalPeak  recordDesc{i}.peak]);
    
    if props.verbose && (recordDesc{i}.peak > 1)
        %         fprintf('For record (A%0.1f, B%0.1f): Peak value %0.3f greater then 1', i, record.alpha, record.beta, recordDesc{i}.peak);
        fprintf('For record %d: Peak value %0.3f greater then 1\n', i, recordDesc{i}.peak);
    end
    
    % --= Write the data =--
    
    % Vectors storing the data offsets for each channel
    recordDesc{i}.dataOffset = zeros(1, props.dataset.channels);
    
    if strcmpi(props.content, 'IR')
        
        % Vectors for offsets, effective lengths, etc.
        recordDesc{i}.effOffset = zeros(1, props.dataset.channels);
        recordDesc{i}.effLength = zeros(1, props.dataset.channels);
        recordDesc{i}.scaling = zeros(1, props.dataset.channels);
        
        for c=1:props.dataset.channels
            % Remember the offset of this channel data
            % Important: Relative to the beginning of the data block
            recordDesc{i}.dataOffset(c) = ftell(fid) - fblocks.dataOffset;
            
            % Scan the effective boundaries (Matlab indices!)
            [lwr, upr] = daffv15_effective_filter_bounds(data(c,:), props.zthreshold_value);
            
            % Keep the offset and length a modulo of 4 (16-byte alignment)
            % (Note: lwr-1 => switch from Matlab indexing to C-indexing)
            elen = upr-lwr+1;
            recordDesc{i}.effOffset(c) = daffv15_lwrmul(lwr-1, 4);
            recordDesc{i}.effLength(c) = daffv15_uprmul(elen, 4);
            
            props.minEffFilterOffset = min([props.minEffFilterOffset recordDesc{i}.effOffset(c)]);
            props.maxEffFilterLength = max([props.maxEffFilterLength recordDesc{i}.effLength(c)]);
            
            % Back to Matlab indices (+1)
            i1 = recordDesc{i}.effOffset(c) + 1;
907
            i2 = i1 + recordDesc{i}.effLength(c) - 1;
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
            
            % Write down the filter coefficients
            switch props.quantization
                case 'int16'
                    % Peak detection within the effective filter coefficients
                    % which defines the scaling for integer quantizations
                    peak = max(abs( data(c,i1:i2) ));
                    
                    % Division by zero protection
                    if (peak == 0)
                        peak = 1;
                    end
                    
                    recordDesc{i}.scaling(c) = peak;
                    
                    % Note: We normalize the data so that -1, +1 maps
                    % to -32767, +32767. The when reading the content
                    % later, we transform -32767, +32767 back to -1, +1
                    % and THEN apply the scaling factor, which is
                    % nothing but the detected peak value in the effective
                    % filter coefficients ...
                    
                    % int16 dynamic range: 2^15-1 = 32767
                    idata = int16( data(c,i1:i2) ./ peak * 32767 );
                    fwrite(fid, idata, 'bit16');
                    clear idata;
                    
                case 'int24'
                    % Peak detection within the effective filter coefficients
                    % which defines the scaling for integer quantizations
                    peak = max(abs( data(c,i1:i2) ));
                    
                    % Division by zero protection
                    if (peak == 0)
                        peak = 1;
                    end
                    
                    recordDesc{i}.scaling(c) = peak;
                    
                    % Note: We normalize the data so that -1, +1 maps
                    % to -8388607, +8388607. The when reading the content
                    % later, we transform -8388607, +8388607 back to -1, +1
                    % and THEN apply the scaling factor, which is
                    % nothing but the detected peak value in the effective
                    % filter coefficients ...
                    
                    % int24 dynamic range: 2^23-1 = 8388607
                    idata = int32( data(c,i1:i2) ./ peak * 8388607 );
                    fwrite(fid, idata, 'bit24');
                    clear idata;
                    
                case 'float32'
                    % Note: Scaling factors are unused for floating points.
                    recordDesc{i}.scaling(c) = 1;
                    fwrite(fid, data(c,i1:i2), 'float32');
            end
        end
    end
    
    if strcmpi(props.content, 'MS') || strcmpi(props.content, 'PS')
        
        for c=1:props.dataset.channels
            % Remember the offset of this channel data
            % Important: Relative to the beginning of the data block
            recordDesc{i}.dataOffset(c) = ftell(fid) - fblocks.dataOffset;
            
            if (props.elementsPerRecord ~= props.numfreqs)
                error('For record (A%0.1f, B%0.1f): Data size does not match the number of frequencies', i, record.alpha, record.beta);
            end
            
            % Write down the magnitudes
            switch props.quantization
                case 'float32'
                    fwrite(fid, data(c,:), 'float32');
            end
        end
        
        clear data;
    end % End-if: Case MS|PS content
    
    if strcmpi(props.content, 'MPS')
        
        for c=1:props.dataset.channels
            % Remember the offset of this channel data
            % Important: Relative to the beginning of the data block
            recordDesc{i}.dataOffset(c) = ftell(fid) - fblocks.dataOffset;
            
            if (props.elementsPerRecord ~= props.numfreqs)
                error('For record (A%0.1f, B%0.1f): Data size does not match the number of frequencies', i, record.alpha, record.beta);
            end
            
            % Write down the magnitudes
            switch props.quantization
                case 'float32'
                    % Write down complex numbers in interleaved format:
                    % Re(1), Im(1), Re(2), Im(2), ...
                    cdata = zeros(1, props.numfreqs*2);
                    for k=1:props.numfreqs
                        cdata(2*(k-1)+1) = real( data(c,k) );
                        cdata(2*(k-1)+2) = imag( data(c,k) );
                    end
                    
                    % Write the real and imaginary parts
                    fwrite(fid, cdata, 'float32');
            end
        end
        
        clear data;
    end % End-if: Case MPS content
    
    if strcmpi(props.content, 'DFT')
        
        for c=1:props.dataset.channels
            % Remember the offset of this channel data
            % Important: Relative to the beginning of the data block
            recordDesc{i}.dataOffset(c) = ftell(fid) - fblocks.dataOffset;
            
            if (~((props.elementsPerRecord == props.dataset.transformsize) || ...
                    (props.elementsPerRecord == props.numDFTCoeffs)) )
                error('For record (A%0.1f, B%0.1f): Data size does not match transform size or number of symmetric coefficients', i, record.alpha, record.beta);
            end
            
            % Write down the magnitudes
            switch props.quantization
                case 'float32'
                    % Write down complex numbers in interleaved format:
                    % Re(1), Im(1), Re(2), Im(2), ...
                    cdata = zeros(1, props.numDFTCoeffs*2);
                    for k=1:props.numDFTCoeffs
                        cdata(2*(k-1)+1) = real( data(c,k) );
                        cdata(2*(k-1)+2) = imag( data(c,k) );
                    end
                    
                    % Write the real and imaginary parts
                    fwrite(fid, cdata, 'float32');
            end
        end
        
        clear data;
    end % End-if: Case DFT content
    
end % End-for: Writing record data

if (props.minEffFilterOffset == -1)
    props.minEffFilterOffset = 0;
end

if (props.maxEffFilterLength == -1)
    props.maxEffFilterLength = props.elementsPerRecord;
end

fblocks.dataSize = ftell(fid) - fblocks.dataOffset;


%
%  6th step: Write the metadata
%

fblocks.metadataOffset = ftell(fid);

props.globalMetadataIndex = -1;
hasMetadata = false;
metadataIndex = 0;

% Write global metadata
if isfield(props.dataset, 'metadata')
    % Test for empty metadata
    if ~isempty(fieldnames(props.dataset.metadata))
        daffv15_write_metadata(fid, props.dataset.metadata);
        props.globalMetadataIndex = metadataIndex;
        metadataIndex = metadataIndex + 1;
        hasMetadata = true;
    end
end

% Write record metadata

for i=1:props.dataset.numrecords
    record = props.dataset.records{i};
    
    recordDesc{i}.metadataIndex = -1;
    
    if isfield(record, 'metadata')
        if ~isempty(fieldnames(record.metadata))
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
1092
            daffv15_write_metadata(fid, record.metadata);
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
            recordDesc{i}.metadataIndex = metadataIndex;
            metadataIndex = metadataIndex + 1;
            hasMetadata = true;
        end
    end
end

fblocks.metadataSize = ftell(fid) - fblocks.metadataOffset;
props.filesize = ftell(fid);

%
%  Xth step: Update offsets and sizes in the file header
%

fseek(fid, fpos.mainHeaderOffset, 'bof');
fwrite(fid, fblocks.mainHeaderOffset, 'uint64');

fseek(fid, fpos.mainHeaderSize, 'bof');
fwrite(fid, fblocks.mainHeaderSize, 'uint64');

fseek(fid, fpos.contentHeaderOffset, 'bof');
fwrite(fid, fblocks.contentHeaderOffset, 'uint64');

fseek(fid, fpos.contentHeaderSize, 'bof');
fwrite(fid, fblocks.contentHeaderSize, 'uint64');

fseek(fid, fpos.recordDescOffset, 'bof');
fwrite(fid, fblocks.recordDescOffset, 'uint64');

fseek(fid, fpos.recordDescSize, 'bof');
fwrite(fid, fblocks.recordDescSize, 'uint64');

fseek(fid, fpos.dataOffset, 'bof');
fwrite(fid, fblocks.dataOffset, 'uint64');

fseek(fid, fpos.dataSize, 'bof');
fwrite(fid, fblocks.dataSize, 'uint64');

if hasMetadata
    % 5 file blocks, when there is metadata
    fseek(fid, fpos.numFileBlocksOffset, 'bof');
    fwrite(fid, 5, 'int32');
    
    fseek(fid, fpos.metadataOffset, 'bof');
    fwrite(fid, fblocks.metadataOffset, 'uint64');
    
    fseek(fid, fpos.metadataSize, 'bof');
    fwrite(fid, fblocks.metadataSize, 'uint64');
else
    % Just 4 file blocks, when there is no metadata
    fseek(fid, fpos.numFileBlocksOffset, 'bof');
    fwrite(fid, 4, 'int32');
end


%
%  7th step: Update the main header
%

fseek(fid, fblocks.mainHeaderOffset, 'bof');
fwrite(fid, props.contentType, 'int32');
fwrite(fid, props.quantizationType, 'int32');
fwrite(fid, props.dataset.channels, 'int32');
fwrite(fid, props.dataset.numrecords, 'int32');
fwrite(fid, props.elementsPerRecord, 'int32');
fwrite(fid, props.globalMetadataIndex, 'int32');
fwrite(fid, props.dataset.alphapoints, 'int32');
fwrite(fid, props.dataset.alpharange(1), 'float32');
fwrite(fid, props.dataset.alpharange(2), 'float32');
fwrite(fid, props.dataset.betapoints, 'int32');
fwrite(fid, props.dataset.betarange(1), 'float32');
fwrite(fid, props.dataset.betarange(2), 'float32');
fwrite(fid, props.orient(1), 'float32');
fwrite(fid, props.orient(2), 'float32');
fwrite(fid, props.orient(3), 'float32');

%
%  8th step: Update the content header
%

fseek(fid, fblocks.contentHeaderOffset, 'bof');

if strcmpi(props.content, 'IR')
    % Impulse response content header
    fwrite(fid, props.dataset.samplerate, 'float32');
    fwrite(fid, props.minEffFilterOffset, 'int32');
    fwrite(fid, props.maxEffFilterLength, 'int32');
end

if strcmpi(props.content, 'MS')
    % Magnitude spectra  content header
    fwrite(fid, props.globalPeak, 'float32');
    fwrite(fid, props.numfreqs, 'int32');
    fwrite(fid, props.dataset.freqs, 'float32');
end

if strcmpi(props.content, 'PS')
    % Phase spectra content header
    fwrite(fid, props.numfreqs, 'int32');
    fwrite(fid, props.dataset.freqs, 'float32');
end

if strcmpi(props.content, 'MPS')
    % Magnitude-phase spectra content header
    fwrite(fid, props.globalPeak, 'float32');
    fwrite(fid, props.numfreqs, 'int32');
    fwrite(fid, props.dataset.freqs, 'float32');
end

if strcmpi(props.content, 'DFT')
    % DFT spectra content header
    fwrite(fid, props.numDFTCoeffs, 'int32');
    fwrite(fid, props.dataset.transformsize, 'int32');
    fwrite(fid, props.dataset.samplerate, 'int32'); % stienen: really? Why not float/double?
    fwrite(fid, props.globalPeak, 'float32');
end


%
%  9th step: Update the record descriptors
%

fseek(fid, fblocks.recordDescOffset, 'bof');

for i=1:props.dataset.numrecords
    if strcmpi(props.content, 'IR')
        % Impulse response content
        
        % Important: For IR content we write an individual descriptor
        % for each channel. This is necessary when we perform zero-compression.
        
        for c=1:props.dataset.channels
            fwrite(fid, recordDesc{i}.effOffset(c), 'int32');
            fwrite(fid, recordDesc{i}.effLength(c), 'int32');
            fwrite(fid, recordDesc{i}.scaling(c), 'float32');
            fwrite(fid, recordDesc{i}.dataOffset(c), 'uint64');
        end
    else
        % All other content (MS,PS,MPS,DFT) uses the default desc
        
        % Also here we write an individual descriptor for each channel
        for c=1:props.dataset.channels
            fwrite(fid, recordDesc{i}.dataOffset(c), 'uint64');
        end
    end
    
    % Afterwards we write the index of the metadata
    fwrite(fid, recordDesc{i}.metadataIndex, 'int32');
end

% Writing is finished
fclose(fid);

if ~props.quiet
    fprintf('\n--= DAFF write summary =----------------------------------------------\n\n');
    
    % Print a intermediate summary of the information
    
    fprintf('  Filename:               \t%s\n', props.filename);
    fprintf('  Filesize:               \t%d Bytes\n', props.filesize);
    fprintf('  Content type:           \t%s\n', props.contentStr);
    fprintf('  Num channels:           \t%d\n', props.dataset.channels);
    fprintf('  Num records:            \t%d\n', props.dataset.numrecords);
    fprintf('  Alpha range:            \t[%0.1f, %0.1f]\n', props.dataset.alpharange(1), props.dataset.alpharange(2));
    fprintf('  Alpha resolution:       \t%0.1f\n', props.dataset.alphares);
    fprintf('  Num alpha points:       \t%d\n', props.dataset.alphapoints);
    fprintf('  Beta range:             \t[%0.1f, %0.1f]\n', props.dataset.betarange(1), props.dataset.betarange(2));
    fprintf('  Beta resolution:        \t%0.1f\n', props.dataset.betares);
    fprintf('  Num beta points:        \t%d\n', props.dataset.betapoints);
    fprintf('  Orientation:            \t(Y%+0.1f, P%+0.1f, R%+0.1f)\n\n', ...
        props.orient(1), props.orient(2), props.orient(3));
    
    if strcmpi(props.content, 'IR')
        fprintf('  Sampling rate:          \t%0.1f Hz\n', props.dataset.samplerate);
        fprintf('  Quantization:           \t%s\n', props.quantizationStr);
        fprintf('  Zero threshold:         \t%+0.1f dB (%0.6f)\n', props.zthreshold, props.zthreshold_value);
    end
    
    if strcmpi(props.content, 'MS')
        fprintf('  Frequencies:            \t%s Hz\n', mat2str(props.dataset.freqs));
    end
    
    if strcmpi(props.content, 'PS')
        fprintf('  Frequencies:            \t%s Hz\n', mat2str(props.dataset.freqs));
    end
    
    if strcmpi(props.content, 'MPS')
        fprintf('  Frequencies:            \t%s Hz\n', mat2str(props.dataset.freqs));
    end
    
    if strcmpi(props.content, 'DFT')
        fprintf('  Sampling rate:          \t%0.1f Hz\n', props.dataset.samplerate);
        fprintf('  Transform size:         \t%d\n', props.dataset.transformsize);
        fprintf('  DFT coefficients stored:\t%d\n', props.numDFTCoeffs);
    end
    
    fprintf('  Global peak:            \t%+0.1f dB (%0.6f)\n\n', 20*log10(props.globalPeak), props.globalPeak);
    
    if props.verbose
        fprintf('  Content header size:    \t%d Bytes\n', fblocks.contentHeaderSize);
        fprintf('  Record descriptor size: \t%d Bytes\n', fblocks.recordDescSize);
        fprintf('  Data size:              \t%d Bytes\n', fblocks.dataSize);
        fprintf('  Metadata size:          \t%d Bytes\n', fblocks.metadataSize);
        fprintf('  Metadata blocks:        \t%d\n\n', metadataIndex);
    end
    
    fprintf('----------------------------------------------------------------------\n\n');
    
    % What we all been waiting for...
    fprintf('DAFF file ''%s'' successfully written\n\n', props.filename);
end
end