test_pdi_otpa_tps.m 7.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
ccx

% <ITA-Toolbox>
% This file is part of the application TPA-TPS for the ITA-Toolbox. All rights reserved. 
% You can find the license for this m-file in the application folder. 
% </ITA-Toolbox>

a = ita_generate('impulse',1,44100,16);
b = a* 0;
a_mat = [a, b; b*2, -2*a];
b_mat = [1*a, 1*a; 1*a, 1*a];

c = [1 1; 1 1];



%% Y matrix
fft_degree = 16;
folder = '/Users/pascaldietrich/MATLAB/__Bosch/BOSCH - auralizationBox otpa/vonMLI/Y_r';
for idx = 1:3
    for jdx = 1:3
        Yr(idx,jdx) = ita_extract_dat(ita_read([folder filesep 'y' num2str(idx) num2str(jdx) '.ita']),fft_degree,'symmetric');
    end
end


folder = '/Users/pascaldietrich/MATLAB/__Bosch/BOSCH - auralizationBox otpa/vonMLI/Ys_model';
for idx = 1:3
    for jdx = 1:3
        Ys(idx,jdx) = ita_extract_dat(ita_mpb_filter( ita_read([folder filesep 'y' num2str(idx) num2str(jdx) '.ita']),[10 0], 'zerophase'),fft_degree,'symmetric');
    end
end


%% fit
tic
for idx = 1:3
    for jdx = 1:3
        x = ita_frequency_dependent_time_window(Ys(idx,jdx),[0.6 0.7; 0.2 0.3; 0.05 0.06], [1000 3000], 'symmetric');
        Ys_fit(idx,jdx) = ita_audio2zpk_rationalfit(x,'degree',80,'freqRange',[30 8000]);
    end
end

for idx = 1:3
    for jdx = 1:3
        x = ita_frequency_dependent_time_window(Yr(idx,jdx),[0.6 0.7; 0.2 0.3; 0.05 0.06], [1000 3000], 'symmetric');
        Yr_fit(idx,jdx) = ita_audio2zpk_rationalfit(Yr(idx,jdx),'degree',80,'freqRange',[30 8000],'mode','log');
    end
end
toc

%% write
folder = 'E:\pdi_daten\MATLAB\TPA-TPS';

ita_write(Ys_fit,[folder filesep 'Ys_fit.ita'])
ita_write(Yr_fit,[folder filesep 'Yr_fit.ita'])

%% load
folder = 'E:\pdi_daten\MATLAB\TPA-TPS';

Ys_fit = load([folder filesep 'Ys_fit.ita'],'-mat');
Yr_fit = ita_read([folder filesep 'Yr_fit.ita']);

%%

for idx = 1:3
    for jdx = 1:3
        Ys_test(idx,jdx) = Ys_fit(idx,jdx)';% / Ys(idx,jdx);
        Yr_test(idx,jdx) = Yr_fit(idx,jdx)';% / Yr(idx,jdx);
    end
end


%% coupling
tic
K = Ys / (Yr + Ys);
toc

%%
% K_fit = Ys_fit / (Yr_fit + Ys_fit);
for idx = 1:3
    for jdx = 1:3
%         K_fit(idx,jdx).channelNames{1} = ['K' num2str(idx) num2str(jdx)];
        K(idx,jdx).channelNames{1}     = ['K' num2str(idx) num2str(jdx)];
    end
end

%%
K_test = Ys_test / (Yr_test + Ys_test);


%%
for idx = 1:3
    for jdx = 1:3
        K(idx,jdx).channelNames{1} = ['K' num2str(idx) num2str(jdx)];
    end
end
ita_plot_spkphase(merge(K))


%%
res1 = a_mat * c;
ita_plot_spk(merge(res1),'nodb','ylim',[-5 5])

res2 = a_mat * b_mat;
ita_plot_spk(merge(res2),'nodb','ylim',[-5 5])

%% coupling
Ys = [1 0; 0, 1];
Yr = [0.9 0.1; 0.1 0.9];

Ys_mat = [1*a, 0*a; 0*a, 1*a];
Yr_mat = [.9*a, .1*a; .1*a, .9*a];


K = Ys / (Yr + Ys)
for idx = 1:3
    for jdx = 1:3
        Yr(idx,jdx) = ita_extract_dat(ita_read([folder filesep 'y' num2str(idx) num2str(jdx) '.ita']),fft_degree,'symmetric');
    end
end


K_mat = Ys_mat / (Yr_mat + Ys_mat)



%%
ccx

%% mli raw TP with hammer

clear TP
for foot_idx = 1:3
    for idx = [1]
        data = ita_read(['\\verdi\scratch\lievens\pdi\steel_cones\tps\Yc_foot' num2str(foot_idx) '_MDF_25e-3__pvc_run' num2str(idx) '.ita']);
        
        F = ita_time_window(data.ch(1),[0.02 0 0.5 0.7],'time');
        p = data.ch(2:6);
        TP = p/F;
        
    end
    res(foot_idx) = ita_time_window(TP,[0.9 1.1],'time');
    
end




%% mli
data = ita_read('Z:\lievens\pdi\steel_cones\Fvp__4-20Hz_expsweep_fft20_8WashT.ita');
a = data.ch([2 3 1]);
p = data.ch([7:11]);
F = data.ch(4:6);
% imp = F.ch(1)*0;
% imp.timeData(:,1) = imp.nSamples;
% F = merge(F,imp);

%% OPA
TP = ita_otpa(p,F,'blocksize',4096*8,'overlap',0.5,'tol',0.01,'window',@hann);
TPopa = merge(TP.ch(1));
TPopa.plot_spk

x = ita_time_window(TPopa,[0.002 0 double(TPopa.trackLength)*[0.9 0.99]],'time');
x.plot_spk

%% pre-white spectrum
TP = ita_otpa(p,F,'blocksize',4096*8,'overlap',0.5,'tol',0.1,'window',@hann,'prewhite');
for idx = 1:TP(1).nChannels
    TPopa(idx) = merge(TP.ch(idx));
end
% TPopa(2).plot_spk
% x = ita_time_window(TPopa,[0.002 0 double(TPopa.trackLength)*[0.5 0.99]],'time');
% x.plot_spk

%% comparison
close all
idx = 1;
TP(idx).plot_spk('ylim',[-40 0]);
x = merge(res.ch(idx));
x.plot_spk('ylim',[-40 0]);


%% synthesis
for pidx = 1:numel(TP)
    p_test(pidx) = ita_sum(F * ita_extend_dat(TP(pidx),a.nSamples,'symmetric'));
end
p_test = merge(p_test);



%% hammer messung
data_hammer = ita_read('Z:\lievens\pdi\steel_cones\Yc_foot1_MDF_25e-3__pvc_run1.ita');
data_hammer = ita_time_shift(data_hammer,'30dB');
data_hammer = ita_time_shift(data_hammer,0.025,'time');
data_hammer = ita_time_window(data_hammer,[0.02 0],'time');
data_hammer = ita_frequency_dependent_time_window(data_hammer,[0.5 1; 0.05 0.1],500);

res = ita_divide_spk( data_hammer.ch([1:3 5:12]),data_hammer.ch(4),'regularization',[20 4000]);

TPorig = ita_divide_spk(res,res.ch(4),'regularization',[20 4000]);
TPorigF = TPorig.ch(7:11);
TPorigF.plot_spk

%% synthesis with orig
for pidx = 1:numel(TP)
    p_test_orig(pidx) = ita_sum(F * ita_extend_dat(TPorigF.ch(pidx),a.nSamples,'symmetric'));
end
p_test_orig = merge(p_test_orig);


%% OPA with synthesis data
TP = ita_otpa(p_test_orig,F,'blocksize',4096,'overlap',0.5,'tol',0.00000000001,'window',@hann);
TPopa = merge(TP.ch(1))
TPopa.plot_spk


%% OPA with randomized phase
TPrand = ita_otpa(ita_randomize_phase(p),ita_randomize_phase(F),'blocksize',4096*8,'overlap',0.5,'tol',0.00000000001,'window',@hann);
TPoparand = merge(TPrand.ch(1))
TPoparand.plot_spk


%% ************************************************************************
%% Excitation Signal
F0 = itaAudio();
F0.samplingRate = 100;
F0.time = zeros(100,1);
F0.time = 0.2*sin(2*F0.timeVector* pi);
F0.time(1) = 1;
F0.time(20) = -1;
n = itaAudio; n.trackLength = 15;
n.time = (n.timeVector / n.trackLength)*50 + 20; 
% n.time = 500 * n.time * 0;


F1 = F0;
F1.time = sin(1*F1.timeVector*2*pi) + 0.3 * sin(2*F1.timeVector*2*pi) + cos(4*F1.timeVector*2*pi);
n1 = itaAudio; n1.trackLength = double(n.trackLength);
n1.time = (n.timeVector / n1.trackLength)*1300 + 100+ 20*sin(40*n.timeVector/double(n1.trackLength) * 2 * pi); 

excitationsignal(1) = ita_normalize_dat( ita_iem_force_transform (F0, n,'oversample',100,'periodic',true));
excitationsignal(2) = 0.1 * ita_normalize_dat( ita_iem_force_transform (F1, n1)); 

%%
amp = 1;
sr = n.samplingRate;
nSamples = n1.samplingRate * double(n1.trackLength);
freq_vec = [20 10000];
stop_margin = 1;
NTIcoeffs = [1 0.2];

% Generating a long MLS signal
mls_raw = ita_generate('mls', amp, sr, 20);

% Performing a hole in the MLS signal
mls = mls_raw;
mls.timeData(1:30000) = 0;

% Sweep and compensation
sweep = amp*ita_generate('linsweep',freq_vec,0.1,sr,nSamples);
sweep = ita_extend_dat(sweep,mls.nSamples);
% sweep = ita_time_shift(sweep,stop_margin/4);
sweep.signalType = 'energy'; % because acts as a filter

silencesweep = mls*sweep;

silencesweep = ita_extend_dat(silencesweep,nSamples);


% Silence Sweep
excitationsignal(3) = ita_normalize_dat(silencesweep);


%% expsweep




%% playback
test = merge(excitationsignal);

%%
ita_portaudio(test,'OutputChannels',[3 4 1])

%%
ita_portaudio(test.ch(3),'OutputChannels',[1])

%% MS
MS = ita_measurement

%% MS messung
ex = ita_amplify(  MS.excitation ,'-15dB');
ex.trackLength = 10;
ex = merge(ex,0.5*ita_time_shift(ex,3,'time'),ita_time_shift(ex,6,'time'));

ex = ita_time_shift(ex,1,'time');

%%
ita_portaudio(ex,'OutputChannels',[3 4 1]);

%%
ita_portaudio(ex.ch(1),'OutputChannels',[1]);


%% test motor
out_ch = [3 2];

motor_sweep = ita_generate('expsweep',[5000 17000],0.1,sr,nSamples);

ita_portaudio(motor_sweep,'OutputChannels',out_ch)

%% folder
folder = '/Users/pascaldietrich/MATLAB/BOSCH - auralizationBox otpa';
cd (folder)


%% auswertung
F_ch = 1:3;
p_ch = 13:15;
TP = ita_otpa(data.ch(p_ch),data.ch(F_ch),'blocksize',4096,'overlap',0.5,'tol',0.00000000001,'window',@hann);

%% deconv
ir = ita_divide_spk(data,data.ch(14),'regularization',[20 10000]);
ir_win = ita_time_window(ir,[0.5 1],'symmetric');

%% ls sweep hexaeder 
ls_sweep = ita_generate('expsweep',[20 17000],0.1,19);
ita_portaudio( ita_amplify(   ls_sweep ,'-20dB'), 'OutputChannels', 3);