test_pdi_otpa_tps.m 7.95 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
ccx

% <ITA-Toolbox>
% This file is part of the application TPA-TPS for the ITA-Toolbox. All rights reserved. 
% You can find the license for this m-file in the application folder. 
% </ITA-Toolbox>

a = ita_generate('impulse',1,44100,16);
b = a* 0;
a_mat = [a, b; b*2, -2*a];
b_mat = [1*a, 1*a; 1*a, 1*a];

c = [1 1; 1 1];



%% Y matrix
fft_degree = 16;
folder = '/Users/pascaldietrich/MATLAB/__Bosch/BOSCH - auralizationBox otpa/vonMLI/Y_r';
for idx = 1:3
    for jdx = 1:3
        Yr(idx,jdx) = ita_extract_dat(ita_read([folder filesep 'y' num2str(idx) num2str(jdx) '.ita']),fft_degree,'symmetric');
    end
end


folder = '/Users/pascaldietrich/MATLAB/__Bosch/BOSCH - auralizationBox otpa/vonMLI/Ys_model';
for idx = 1:3
    for jdx = 1:3
        Ys(idx,jdx) = ita_extract_dat(ita_mpb_filter( ita_read([folder filesep 'y' num2str(idx) num2str(jdx) '.ita']),[10 0], 'zerophase'),fft_degree,'symmetric');
    end
end


%% fit
tic
for idx = 1:3
    for jdx = 1:3
        x = ita_frequency_dependent_time_window(Ys(idx,jdx),[0.6 0.7; 0.2 0.3; 0.05 0.06], [1000 3000], 'symmetric');
        Ys_fit(idx,jdx) = ita_audio2zpk_rationalfit(x,'degree',80,'freqRange',[30 8000]);
    end
end

for idx = 1:3
    for jdx = 1:3
        x = ita_frequency_dependent_time_window(Yr(idx,jdx),[0.6 0.7; 0.2 0.3; 0.05 0.06], [1000 3000], 'symmetric');
        Yr_fit(idx,jdx) = ita_audio2zpk_rationalfit(Yr(idx,jdx),'degree',80,'freqRange',[30 8000],'mode','log');
    end
end
toc

%% write
folder = 'E:\pdi_daten\MATLAB\TPA-TPS';

ita_write(Ys_fit,[folder filesep 'Ys_fit.ita'])
ita_write(Yr_fit,[folder filesep 'Yr_fit.ita'])

%% load
folder = 'E:\pdi_daten\MATLAB\TPA-TPS';

Ys_fit = load([folder filesep 'Ys_fit.ita'],'-mat');
Yr_fit = ita_read([folder filesep 'Yr_fit.ita']);

%%

for idx = 1:3
    for jdx = 1:3
        Ys_test(idx,jdx) = Ys_fit(idx,jdx)';% / Ys(idx,jdx);
        Yr_test(idx,jdx) = Yr_fit(idx,jdx)';% / Yr(idx,jdx);
    end
end


%% coupling
tic
K = Ys / (Yr + Ys);
toc

%%
% K_fit = Ys_fit / (Yr_fit + Ys_fit);
for idx = 1:3
    for jdx = 1:3
%         K_fit(idx,jdx).channelNames{1} = ['K' num2str(idx) num2str(jdx)];
        K(idx,jdx).channelNames{1}     = ['K' num2str(idx) num2str(jdx)];
    end
end

%%
K_test = Ys_test / (Yr_test + Ys_test);


%%
for idx = 1:3
    for jdx = 1:3
        K(idx,jdx).channelNames{1} = ['K' num2str(idx) num2str(jdx)];
    end
end
ita_plot_spkphase(merge(K))


%%
res1 = a_mat * c;
ita_plot_spk(merge(res1),'nodb','ylim',[-5 5])

res2 = a_mat * b_mat;
ita_plot_spk(merge(res2),'nodb','ylim',[-5 5])

%% coupling
Ys = [1 0; 0, 1];
Yr = [0.9 0.1; 0.1 0.9];

Ys_mat = [1*a, 0*a; 0*a, 1*a];
Yr_mat = [.9*a, .1*a; .1*a, .9*a];


K = Ys / (Yr + Ys)
for idx = 1:3
    for jdx = 1:3
        Yr(idx,jdx) = ita_extract_dat(ita_read([folder filesep 'y' num2str(idx) num2str(jdx) '.ita']),fft_degree,'symmetric');
    end
end


K_mat = Ys_mat / (Yr_mat + Ys_mat)



%%
ccx

%% mli raw TP with hammer

clear TP
for foot_idx = 1:3
    for idx = [1]
        data = ita_read(['\\verdi\scratch\lievens\pdi\steel_cones\tps\Yc_foot' num2str(foot_idx) '_MDF_25e-3__pvc_run' num2str(idx) '.ita']);
        
        F = ita_time_window(data.ch(1),[0.02 0 0.5 0.7],'time');
        p = data.ch(2:6);
        TP = p/F;
        
    end
    res(foot_idx) = ita_time_window(TP,[0.9 1.1],'time');
    
end




%% mli
data = ita_read('Z:\lievens\pdi\steel_cones\Fvp__4-20Hz_expsweep_fft20_8WashT.ita');
a = data.ch([2 3 1]);
p = data.ch([7:11]);
F = data.ch(4:6);
% imp = F.ch(1)*0;
% imp.timeData(:,1) = imp.nSamples;
% F = merge(F,imp);

%% OPA
TP = ita_otpa(p,F,'blocksize',4096*8,'overlap',0.5,'tol',0.01,'window',@hann);
TPopa = merge(TP.ch(1));
TPopa.plot_spk

x = ita_time_window(TPopa,[0.002 0 double(TPopa.trackLength)*[0.9 0.99]],'time');
x.plot_spk

%% pre-white spectrum
TP = ita_otpa(p,F,'blocksize',4096*8,'overlap',0.5,'tol',0.1,'window',@hann,'prewhite');
for idx = 1:TP(1).nChannels
    TPopa(idx) = merge(TP.ch(idx));
end
% TPopa(2).plot_spk
% x = ita_time_window(TPopa,[0.002 0 double(TPopa.trackLength)*[0.5 0.99]],'time');
% x.plot_spk

%% comparison
close all
idx = 1;
TP(idx).plot_spk('ylim',[-40 0]);
x = merge(res.ch(idx));
x.plot_spk('ylim',[-40 0]);


%% synthesis
for pidx = 1:numel(TP)
    p_test(pidx) = ita_sum(F * ita_extend_dat(TP(pidx),a.nSamples,'symmetric'));
end
p_test = merge(p_test);



%% hammer messung
data_hammer = ita_read('Z:\lievens\pdi\steel_cones\Yc_foot1_MDF_25e-3__pvc_run1.ita');
data_hammer = ita_time_shift(data_hammer,'30dB');
data_hammer = ita_time_shift(data_hammer,0.025,'time');
data_hammer = ita_time_window(data_hammer,[0.02 0],'time');
data_hammer = ita_frequency_dependent_time_window(data_hammer,[0.5 1; 0.05 0.1],500);

res = ita_divide_spk( data_hammer.ch([1:3 5:12]),data_hammer.ch(4),'regularization',[20 4000]);

TPorig = ita_divide_spk(res,res.ch(4),'regularization',[20 4000]);
TPorigF = TPorig.ch(7:11);
TPorigF.plot_spk

%% synthesis with orig
for pidx = 1:numel(TP)
    p_test_orig(pidx) = ita_sum(F * ita_extend_dat(TPorigF.ch(pidx),a.nSamples,'symmetric'));
end
p_test_orig = merge(p_test_orig);


%% OPA with synthesis data
TP = ita_otpa(p_test_orig,F,'blocksize',4096,'overlap',0.5,'tol',0.00000000001,'window',@hann);
TPopa = merge(TP.ch(1))
TPopa.plot_spk


%% OPA with randomized phase
TPrand = ita_otpa(ita_randomize_phase(p),ita_randomize_phase(F),'blocksize',4096*8,'overlap',0.5,'tol',0.00000000001,'window',@hann);
TPoparand = merge(TPrand.ch(1))
TPoparand.plot_spk


%% ************************************************************************
%% Excitation Signal
F0 = itaAudio();
F0.samplingRate = 100;
F0.time = zeros(100,1);
F0.time = 0.2*sin(2*F0.timeVector* pi);
F0.time(1) = 1;
F0.time(20) = -1;
n = itaAudio; n.trackLength = 15;
n.time = (n.timeVector / n.trackLength)*50 + 20; 
% n.time = 500 * n.time * 0;


F1 = F0;
F1.time = sin(1*F1.timeVector*2*pi) + 0.3 * sin(2*F1.timeVector*2*pi) + cos(4*F1.timeVector*2*pi);
n1 = itaAudio; n1.trackLength = double(n.trackLength);
n1.time = (n.timeVector / n1.trackLength)*1300 + 100+ 20*sin(40*n.timeVector/double(n1.trackLength) * 2 * pi); 

excitationsignal(1) = ita_normalize_dat( ita_iem_force_transform (F0, n,'oversample',100,'periodic',true));
excitationsignal(2) = 0.1 * ita_normalize_dat( ita_iem_force_transform (F1, n1)); 

%%
amp = 1;
sr = n.samplingRate;
nSamples = n1.samplingRate * double(n1.trackLength);
freq_vec = [20 10000];
stop_margin = 1;
NTIcoeffs = [1 0.2];

% Generating a long MLS signal
mls_raw = ita_generate('mls', amp, sr, 20);

% Performing a hole in the MLS signal
mls = mls_raw;
mls.timeData(1:30000) = 0;

% Sweep and compensation
sweep = amp*ita_generate('linsweep',freq_vec,0.1,sr,nSamples);
sweep = ita_extend_dat(sweep,mls.nSamples);
% sweep = ita_time_shift(sweep,stop_margin/4);
sweep.signalType = 'energy'; % because acts as a filter

silencesweep = mls*sweep;

silencesweep = ita_extend_dat(silencesweep,nSamples);


% Silence Sweep
excitationsignal(3) = ita_normalize_dat(silencesweep);


%% expsweep




%% playback
test = merge(excitationsignal);

%%
ita_portaudio(test,'OutputChannels',[3 4 1])

%%
ita_portaudio(test.ch(3),'OutputChannels',[1])

%% MS
MS = ita_measurement

%% MS messung
ex = ita_amplify(  MS.excitation ,'-15dB');
ex.trackLength = 10;
ex = merge(ex,0.5*ita_time_shift(ex,3,'time'),ita_time_shift(ex,6,'time'));

ex = ita_time_shift(ex,1,'time');

%%
ita_portaudio(ex,'OutputChannels',[3 4 1]);

%%
ita_portaudio(ex.ch(1),'OutputChannels',[1]);


%% test motor
out_ch = [3 2];

motor_sweep = ita_generate('expsweep',[5000 17000],0.1,sr,nSamples);

ita_portaudio(motor_sweep,'OutputChannels',out_ch)

%% folder
folder = '/Users/pascaldietrich/MATLAB/BOSCH - auralizationBox otpa';
cd (folder)


%% auswertung
F_ch = 1:3;
p_ch = 13:15;
TP = ita_otpa(data.ch(p_ch),data.ch(F_ch),'blocksize',4096,'overlap',0.5,'tol',0.00000000001,'window',@hann);

%% deconv
ir = ita_divide_spk(data,data.ch(14),'regularization',[20 10000]);
ir_win = ita_time_window(ir,[0.5 1],'symmetric');

%% ls sweep hexaeder 
ls_sweep = ita_generate('expsweep',[20 17000],0.1,19);
ita_portaudio( ita_amplify(   ls_sweep ,'-20dB'), 'OutputChannels', 3);