Aufgrund einer Wartung wird GitLab am 28.09. zwischen 10:00 und 11:00 Uhr kurzzeitig nicht zur Verfügung stehen. / Due to maintenance, GitLab will be temporarily unavailable on 28.09. between 10:00 and 11:00 am.

itaHRTF.m 75.1 KB
Newer Older
1 2
classdef  itaHRTF < itaAudio
    
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    %ITAHRTF - class to deal with HRTFs
    %
    %   Examples:
    %   hrtf = itaHRTF('sofa','TU-Berlin_QU_KEMAR_anechoic_radius_1m.sofa')
    %
    % These objects can be used like itaAudios and helps to find HRTF angles
    % quickly. In addition different methods are implemented to evaluate
    % binaural parameters and interpolate the data set.
    %
    % itaHRTF Properties:
    %         dirCoord          Measured directions
    %         EarSide           Ear side ('L' left or 'R' right) of each channel
    %         TF_type           [HRTF DTF Recording]
    %         sphereType        [ring cap sphere undefined]
    %
    %         resAzimuth        resolution in azimuth (only equiangular)
    %         resElevation      resolution in elevation (only equiangular)
    %
    %         rangeAzimuth      min. and max. angle in azimuth
    %         rangeElevation 	min. and max. angle in elevation
    %
    %         nPointsAzimuth    number of directions in azimuth
    %         nPointsElevation  number of directions in elevation
    %
    %         nPoints           total number of directions
    %
    %         mMetadata         stored metadata from a loaded daff file
    %
    % itaHRTF Methods (find & select directions):
    %         HRTFfind  = findnearestHRTF(varargin)
    %         HRTFdir   = direction(idxCoord)
    %         thetaUni  = theta_Unique
    %         phiUni    = phi_Unique
    %         slice     = sphericalSlice(dirID,dir_deg)
    %         HRTF_left   = getEar(earSide)
    %
    % itaHRTF Methods (play):
    %         play_gui(stimulus)
    %
    % itaHRTF Methods (store):
    %         audioHRTF = itaHRTF2itaAudio
    %                     writeDAFFFile(filePath)
    %
    % itaHRTF Methods (binaural parameter):
    %         ITD       = ITD(varargin)
    %         t0        = meanTimeDelay(varargin)
    %         ILD       = ILD(varargin)
    %
    % itaHRTF Methods (manipulation):
    %         DTF       = calcDTF
    %         HRTF_int  = interp(varargin)
    %
    % itaHRTF Methods (plot):
    %         plot_ITD(varargin)
    %         plot_freqSlice(varargin)
    
    %
    %  See also:
    %   itaAudio, test_rbo_postprocessing_HRTF_arc_CropDiv
    %
    %   Reference page in Help browser
    %        <a href="matlab:doc itaHRTF">doc itaHRTF</a>
    
    % <ITA-Toolbox>
    % This file is part of the application HRTF_class for the ITA-Toolbox. All rights reserved.
    % You can find the license for this m-file in the application folder.
    % </ITA-Toolbox>
    
    
    % Author: Ramona Bomhardt -- Email: rbo@akustik.rwth-aachen.de
    % Created:  10-Jul-2014
rbo's avatar
rbo committed
74

75
    properties (Access = private)
76
        mMetadata   = [];
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        mCoordSave  = [];
        mChNames    = [];
        mDirCoord   = itaCoordinates;
        mEarSide    = [];
        mTF_type    = 'HRTF';
        mSphereType = 'undefined';
    end
    
    properties (Dependent = true, Hidden = false)
        dirCoord = itaCoordinates;
        EarSide  = [];
        TF_type  = 'HRTF';
        sphereType = 'undefined';
        
        resAzimuth      = 5;
        resElevation    = 5;
        
        rangeAzimuth    = [0 359];
        rangeElevation  = [0 180];
        
        nPointsAzimuth  = 72;
        nPointsElevation= 37;
        
        nPoints         = [];
        phi_Offset      = zeros(37,1);
    end
    
    properties (Dependent = true, Hidden = true)
        
    end
    
    properties (Dependent = true, SetAccess = private)
109
        openDAFF2itaHRTF;
110 111 112 113 114 115 116 117 118 119
        itaAudio2itaHRTF;
        init;
        hdf2itaHRTF;
        sofa2itaHRTF;
        nDirections = [];
    end
    
    methods % Special functions that implement operations that are usually performed only on instances of the class
        %% Input
        function this = itaHRTF(varargin)
120
            iniAudio = [];
121
            % initialize itaHRTF with itaAudio properties (only for nargin == 1)
rbo's avatar
rbo committed
122 123
            if nargin > 1 || (nargin == 1 && (ischar(varargin{1}) || isa(varargin{1},'itaAudio')))
                iniAudio = [];
rbo's avatar
rbo committed
124 125 126 127 128
            elseif nargin == 1 && isstruct(varargin{1})
                fNames = {'domain','data','signalType','samplingRate'};
                for idxFN = 1:numel(fNames)
                    iniAudio.(fNames{idxFN}) = varargin{1}.(fNames{idxFN});
                end
129 130 131 132
            end
                            
            this = this@itaAudio(iniAudio);

133
            if nargin >1
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                % itaAudio input
                TF_types = this.propertiesTF_type;
                for iTF = 1:numel(TF_types)
                    if ~isempty(find(strcmpi(varargin, TF_types{iTF})==1, 1))
                        this.itaAudio2itaHRTF = varargin{find(strcmpi(varargin, TF_types{iTF})==1)-1};
                        this.TF_type = TF_types(iTF);
                    end
                end
                
                % init
                if nargin == 4
                    this.init = varargin;
                end
                % openDaff input
                if ~isempty(find(strcmpi(varargin,'Daff')==1, 1))
150
                    this.openDAFF2itaHRTF = varargin{find(strcmpi(varargin,'Daff')==1)+1};
151 152 153 154 155 156 157 158 159 160 161
                end
                % hdf5 input
                if ~isempty(find(strcmpi(varargin,'hdf5')==1, 1))
                    this.hdf2itaHRTF = varargin{find(strcmpi(varargin,'hdf5')==1)+1};
                end
                % sofa input
                if ~isempty(find(strcmpi(varargin,'SOFA')==1, 1))
                    this.sofa2itaHRTF = varargin{find(strcmpi(varargin,'SOFA')==1)+1};
                end
                
            elseif nargin == 1
162

163 164 165 166 167 168 169 170 171 172 173 174 175
                if isa(varargin{1},'itaHRTF')
                    this = varargin{1};
                    
                elseif nargin ==1 && isstruct(varargin{1}) % only for loading
                    obj = varargin{1};
                    this.data = obj.data;
                    
                    this.signalType = 'energy';
                    % additional itaHRTF data
                    if datenum(2014,7,5)<obj.dateCreated, objFNsaved = this.propertiesSaved;
                    else objFNsaved = this.oldPropertiesSaved;
                    end
                    objFNload = this.propertiesLoad;
176
                    
177 178 179 180 181 182 183 184
                    for i1 = 1:numel(objFNload)
                        this.(objFNload{i1}) = obj.(objFNsaved{i1});
                    end
                    % saving itaCoordinates in itaHRTF does not work at the
                    % moment
                    this.dirCoord.sph = this.mCoordSave;
                    % saving channelNames in itaHRTF does not work at the
                    % moment
185 186
                    this.channelNames = cellstr(this.mChNames);

187 188
                elseif isa(varargin{1},'itaAudio')
                    this.itaAudio2itaHRTF = varargin{1};
rbo's avatar
rbo committed
189 190 191 192 193 194 195
                    
                elseif ischar(varargin{1}) % openDaff/ sofa/ hdf5 input
                    if strfind(lower(varargin{1}),'.daff'), this.openDAFF2itaHRTF = varargin{1};
                    elseif strfind(lower(varargin{1}),'.hdf5'), this.hdf2itaHRTF = varargin{1};
                    elseif strfind(lower(varargin{1}),'.sofa'), this.sofa2itaHRTF = varargin{1};
                    end
                 end
196 197 198 199
            end
        end
        
        %% ......................GET.......................................
200
        
201
        function nDirections = get.nDirections(this)
202
            [~,idxDim] =  uniquetol([this.channelCoordinates.phi_deg this.channelCoordinates.theta_deg] ,'ByRows',true);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
            nDirections = numel(idxDim);
        end
        
        function dirCoord = get.dirCoord(this)
            dirCoord = this.channelCoordinates.n(1:2:this.dimensions);
        end
        
        function EarSide = get.EarSide(this)
            EarSide = this.mEarSide;
            if numel(this.mEarSide)~=this.dimensions
                EarSide = repmat(['L'; 'R'],this.dirCoord.nPoints, 1);
            end
        end
        
        function TF_type = get.TF_type(this)
            TF_type = this.mTF_type; end
        
        function sphereType = get.sphereType(this)
            % aktuell wird noch nicht erkannt, wenn die theta Winkel
            % kontinuierlich ansteigen. Dann gibt es keinen Bruch...
            
            numPhi = numel(this.phi_Unique);
            numTheta = numel(this.theta_Unique);
            
            deltaPhi_deg = 360/numPhi;
            deltaTheta_deg = 180/numTheta;
            
            gradPhi_deg = gradient(rad2deg(this.phi_Unique)) ;
            gradTheta_deg = gradient(rad2deg(this.theta_Unique));
            
            tmpPhi = round(deltaPhi_deg-gradPhi_deg);
            tmpTheta = round(deltaTheta_deg-gradTheta_deg);
            
            if sum(tmpPhi)==0 && sum(tmpTheta)==0 && sum(gradTheta_deg)==180
                sphereType = 'full';
            elseif sum(tmpPhi)==0 && numel(tmpTheta)==1 && tmpTheta(1)==180
                sphereType = 'ring';
            elseif   sum(tmpPhi)==0 && sum(gradTheta_deg)<180
                sphereType = 'cap';
            else
                sphereType = 'undefined';
            end
        end
        
        function resAzi = get.resAzimuth(this)
            resAzi = round(median(diff(rad2deg(this.phi_Unique))));
        end
        
        function resElevation = get.resElevation(this)
            resElevation = round(median(diff(rad2deg(this.theta_Unique))));
        end
        
        function nPointsAzi = get.nPointsAzimuth(this)
            nPointsAzi = numel(this.phi_Unique);
        end
        
        function nPointsEle = get.nPointsElevation(this)
            nPointsEle = numel(this.theta_Unique);
        end
        
        function rangeAzi = get.rangeAzimuth(this)
            rangeAzi = uint16([min(rad2deg(this.phi_Unique)) max(rad2deg(this.phi_Unique))]);
        end
        
        function rangeEle = get.rangeElevation(this)
            rangeEle = uint16([min(rad2deg(this.theta_Unique)) max(rad2deg(this.theta_Unique))]);
        end
        
        function phi_Offset = get.phi_Offset(this)
            thetaU      = this.theta_Unique;
            phi_Offset  = zeros(numel(thetaU),1);
            for idxT = 1:numel(thetaU)
                phi_Offset(idxT,1) = test_rbo_azimuthOffset0(this.sphericalSlice('theta_deg',rad2deg(thetaU(idxT))));
            end
        end
        %% ..............SET PRIVAT........................................
279
        
280 281 282 283 284 285 286 287 288 289 290 291
        function this = set.itaAudio2itaHRTF(this,HRTF)
            if isa(HRTF,'itaAudio'),
                % Multi instance?
                if numel(HRTF)>1,
                    if numel(HRTF)>1000 % takes a while
                        ita_verbose_info(' A lot of data ...please wait... don''t use itaAudio multi instances for the next time!', 0);
                    end
                    coordinates = HRTF(1).channelCoordinates;
                    if (coordinates.nPoints == 2) & (sum(isnan(coordinates.sph)) < numel(coordinates.sph))
                        ita_verbose_info('Found NaNs in the coordinates. I will copy existing coordinates');
                        
                        for index = 1:length(HRTF)
292 293 294
                            coordinates = HRTF(index).channelCoordinates;
                            coordinates.sph = repmat(coordinates.sph(1,:),2,1);
                            HRTF(index).channelCoordinates = coordinates;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
                        end
                        
                    end
                    HRTFc = HRTF.merge;
                    
                else HRTFc = HRTF;
                end
                
                % coordinates available?
                if isnan(HRTFc.channelCoordinates.cart)
                    error('itaHRTF:Def', ' No channelCoordinates available')
                end
                
                coord = HRTFc.channelCoordinates;
                
                % find the corresponding left and right channel
                pairs  = zeros(coord.nPoints/2,2);
                
                if coord.nPoints>10000 % takes a while
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
314
                    ita_verbose_info([num2str(coord.nPoints) ' Points have to be sorted ...please wait...'], 0);
315 316 317 318 319 320 321 322 323 324 325 326 327 328
                end
                
                
                counter = 1;
                thetaPhi = round([coord.theta_deg coord.phi_deg]*10)/10;
                deletedChannel = 0;
                for i1 = 1:coord.nPoints
                    coordCurrent = thetaPhi(i1,:);
                    if isempty(find(pairs(:) == i1, 1)) % only if the corresponding channel is not found
                        % find corresponding channel
                        coordComp = thetaPhi([1:i1-1 i1+1:coord.nPoints],:);
                        diffCoord = bsxfun(@minus,coordCurrent,coordComp)== zeros(size(coordComp));
                        idxCoord =  find(diffCoord(:,1).*diffCoord(:,2) ==1);
                        if length(idxCoord) > 1
329
                            %                             deletedChannel = deletedChannel + length(idxCoord) -1;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                            idxCoord = idxCoord(1);
                        end
                        % store the corresponding channel
                        pairs(counter,1) = i1;
                        if idxCoord <i1
                            pairs(counter,2) = idxCoord;
                        else
                            pairs(counter,2) = idxCoord+1;
                        end
                        counter = counter+1;
                    end
                    % break if all corresponding channels are found
                    if sum(pairs(:))== sum(1:coord.nPoints),break
                    end
                end
                % ........................................................
                
                % split data in right and left channel
                idxLeft = pairs(:,1); % odd number
                idxRight = pairs(:,2);  % even number
                numNewChannels = length(pairs)*2;
                this.data = zeros(HRTFc.nSamples, numNewChannels);
                this.data(:,1:2:numNewChannels) = HRTFc.timeData(:,idxLeft);
                this.data(:,2:2:numNewChannels) = HRTFc.timeData(:,idxRight);
                
                this.domain = 'time';
                pairsT = pairs';
                
                this.channelCoordinates = HRTFc.channelCoordinates.n(pairsT(:));
                this.mEarSide = repmat(['L'; 'R'],numNewChannels/2, 1);
                this.samplingRate = HRTFc.samplingRate;
                
                
                % store coordinates
                this.mDirCoord = this.channelCoordinates.n(1:2:numNewChannels);
                this.signalType = 'energy';
                % channelnames coordinates
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide ,...
                    this.channelCoordinates.theta_deg, this.channelCoordinates.phi_deg );
            end
        end
        
373 374 375
        function this = set.openDAFF2itaHRTF( this, daff_file_path )
            
            try_daff_old_version = false;
376
            metadata=[];
377 378 379 380
            % First try new version (v17)
            try
                handleDaff = DAFFv17( 'open', daff_file_path );
                props = DAFFv17( 'getProperties', handleDaff);
381
                
382 383 384
                counter = 1;
                data = zeros(props.filterLength,props.numRecords*2,'double' ) ;
                coordDaff = zeros(props.numRecords,2) ;
385
                
386 387 388 389 390
                for iDir = 1:props.numRecords
                    data(:,[counter counter+1]) = DAFFv17( 'getRecordByIndex', handleDaff,iDir )';
                    coordDaff(iDir,:) = DAFFv17( 'getRecordCoords', handleDaff, 'data', iDir )';
                    counter= counter+2;
                end
391
                
392
                metadata = DAFFv17('getMetadata', handleDaff);
393
                
394 395 396
            catch
                disp( 'Could not read DAFF file right away, falling back to old version and retrying ...' );
                try_daff_old_version = true;
397
            end
398
            
399 400 401 402
            if try_daff_old_version
                % Old version (v15)
                handleDaff = DAFFv15( 'open',daff_file_path);
                props = DAFFv15( 'getProperties', handleDaff);
403
                
404 405 406
                counter = 1;
                data = zeros(props.filterLength,props.numRecords*2,'double' ) ;
                coordDaff = zeros(props.numRecords,2) ;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
                                
                tempMetadata = DAFFv15('getMetadata', handleDaff);
                
                % Convert old-style metadata format to v17.
                names = fieldnames( tempMetadata );
                for k = 1:numel( tempMetadata )
                    switch class(tempMetadata.(names{k}))
                        case 'logical'
                            datatype='bool';
                        case 'char'
                            datatype='string';
                        case 'double'
                            if rem(tempMetadata.(names{k}),1)==0
                                datatype='int';
                            else
                                datatype='float';
                            end
                    end
                    metadata = daffv17_add_metadata( metadata,cell2mat(names(k)),datatype,tempMetadata.(names{k}) );
                end
                
428 429 430 431 432 433
                for iDir = 1:props.numRecords
                    data(:,[counter counter+1]) = DAFFv15( 'getRecordByIndex', handleDaff,iDir )';
                    coordDaff(iDir,:) = DAFFv15( 'getRecordCoords', handleDaff, 'data', iDir )';
                    counter= counter+2;
                end
            end
434
            
435
            % Proceed (version independent)
436 437 438
            phiM = coordDaff(:,1)*pi/180;
            %phiM = mod(coordDaff(:,1),360)*pi/180;
            %if ~isempty(find(0<coordDaff(:,2),1,'first'))
439 440 441
            thetaM = mod(180-(coordDaff(:,2)),180)*pi/180;
%             thetaM = coordDaff(:,2)*pi/180;

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            %else
            %    thetaM = coordDaff(:,2)*pi/180;
            %end
            radius = ones(props.numRecords,1);

            chCoord = itaCoordinates;
            chCoord.sph = ones(size(data,2),3);

            chCoord.phi(1:2:2*props.numRecords) = phiM;
            chCoord.phi(2:2:2*props.numRecords) = phiM;
            chCoord.theta(1:2:2*props.numRecords) = thetaM;
            chCoord.theta(2:2:2*props.numRecords) = thetaM;

            this.mMetadata = metadata;
            this.data = data;
            this.mDirCoord = itaCoordinates([radius thetaM phiM],'sph');
            this.channelCoordinates = chCoord;
            this.mEarSide = repmat(['L'; 'R'],props.numRecords, 1);
            this.signalType = 'energy';
            % channelnames coordinates
            this.channelNames = ita_sprintf('%s ( %2.0f, \\theta= %2.0f)',...
                this.mEarSide ,   this.channelCoordinates.theta_deg,  this.channelCoordinates.phi_deg);

        end
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            
            function this = set.init(this,var)
                % TO DO !!!!!!!!!!!!!!!!!!!!!!!!!!!
                % Make it nicer and combine it with itaAudio2itaHRTF!!!
                % TO DO !!!!!!!!!!!!!!!!!!!!!!
                
                coord = var{find(strcmp(var,'dirCoord')==1)+1};
                this.domain = 'time';
                nSamples = var{find(strcmp(var,'nSamples')==1)+1};
                this.data = zeros(nSamples ,coord.nPoints*2);
                this.channelCoordinates.sph(1:2:coord.nPoints*2,:) = coord.sph;
                this.channelCoordinates.sph(2:2:coord.nPoints*2,:) = coord.sph;
                this.mEarSide = repmat(['L'; 'R'],coord.nPoints, 1);
                
                this.signalType = 'energy';
                % channelnames coordinates
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide , ...
                    this.channelCoordinates.theta_deg,this.channelCoordinates.phi_deg );
485
            end
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            
            function this = set.hdf2itaHRTF(this,pathHDF5)
                handleHDF5 = itaHDF5(pathHDF5);
                
                names  = fieldnames(handleHDF5);
                HRTF   = handleHDF5.(names{4});
                
                dataHDF5 = HRTF.get_time;
                
                data = zeros(size(dataHDF5,1),HRTF.coordinates.nPoints*2);
                data(:,1:2:HRTF.coordinates.nPoints*2) = dataHDF5(:,:,1);
                data(:,2:2:HRTF.coordinates.nPoints*2) = dataHDF5(:,:,2);
                
                chCoord     = itaCoordinates;
                chCoord.sph = ones(HRTF.coordinates.nPoints*2,3);
                
                chCoord.phi(1:2:2*HRTF.size_time(2))   = HRTF.coordinates.phi;
                chCoord.phi(2:2:2*HRTF.size_time(2))   = HRTF.coordinates.phi;
                chCoord.theta(1:2:2*HRTF.size_time(2)) = HRTF.coordinates.theta;
                chCoord.theta(2:2:2*HRTF.size_time(2)) = HRTF.coordinates.theta;
                
                radius = ones(HRTF.coordinates.nPoints,1);
                
                this.data = data;
                this.mDirCoord = itaCoordinates([radius HRTF.coordinates.theta HRTF.coordinates.phi],'sph');
                this.channelCoordinates = chCoord;
                this.mEarSide = repmat(['L'; 'R'],HRTF.size_time(2), 1);
                this.signalType = 'energy';
                
                % channelnames coordinates
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide , ...
                    this.channelCoordinates.theta_deg, this.channelCoordinates.phi_deg);
519
            end
520 521 522
            
            
            function this = set.sofa2itaHRTF(this,pathFile)
523 524 525 526
                %% check if sofa is installed
                if ~exist('SOFAstart.m','file')
                    error('SOFA not installed. Run ita_sofa_install');
                end
527 528 529
                if ~exist(pathFile,'file')
                    f=filesep;
                    pathFile=[SOFAdbPath f 'SOFA' f pathFile];
530
                end
531 532 533 534 535 536 537 538
                handleSofa = SOFAload(pathFile);
                
                % get the number of measurement positions
                numPositions = length(handleSofa.SourcePosition);
                
                
                % data
                % the data is saved as positions x channel x filterdata
Jan-Gerrit Richter's avatar
bugfix:  
Jan-Gerrit Richter committed
539
                this.samplingRate = handleSofa.Data.SamplingRate;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
                
                data = zeros(size(handleSofa.Data.IR,3),numPositions*2);
                data(:,1:2:numPositions*2) = squeeze(handleSofa.Data.IR(:,1,:)).';
                data(:,2:2:numPositions*2) = squeeze(handleSofa.Data.IR(:,2,:)).';
                
                % coordinates
                
                coordinates = ita_sofa_getCoordinates(handleSofa,'channelCoordinateType','SourcePosition');
                
                % duplicate the coordinates for both channels
                channelCoordinates = itaCoordinates(numPositions*2);
                channelCoordinates.x(1:2:numPositions*2) = coordinates.x;
                channelCoordinates.x(2:2:numPositions*2) = coordinates.x;
                channelCoordinates.y(1:2:numPositions*2) = coordinates.y;
                channelCoordinates.y(2:2:numPositions*2) = coordinates.y;
                channelCoordinates.z(1:2:numPositions*2) = coordinates.z;
                channelCoordinates.z(2:2:numPositions*2) = coordinates.z;
                
                
                % added view and up vector
                this.objectViewVector = itaCoordinates(handleSofa.ListenerView);
                this.objectUpVector = itaCoordinates(handleSofa.ListenerUp);
                this.objectCoordinates = itaCoordinates(handleSofa.ListenerPosition);
                warning('ITA_HRTF: Sofa Up and View vectors are ignored');
                this.data = data;
                this.channelCoordinates = channelCoordinates;
                this.mDirCoord = coordinates;
                this.mEarSide = repmat(['L'; 'R'],numPositions, 1);
                this.signalType = 'energy';
                
                
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide ,...
                    this.channelCoordinates.theta_deg, this.channelCoordinates.phi_deg );
                
                
                %% user data
                userDataFields = {'GLOBAL_Conventions','GLOBAL_Version','GLOBAL_SOFAConventions','GLOBAL_SOFAConventionsVersion' ...
                    ,'GLOBAL_APIName','GLOBAL_APIVersion','GLOBAL_ApplicationName','GLOBAL_ApplicationVersion','GLOBAL_AuthorContact' ...
                    ,'GLOBAL_Comment','GLOBAL_DataType','GLOBAL_History','GLOBAL_License','GLOBAL_Organization','GLOBAL_References' ...
                    ,'GLOBAL_RoomType','GLOBAL_Origin','GLOBAL_DateCreated','GLOBAL_DateModified','GLOBAL_Title','GLOBAL_DatabaseName' ...
                    ,'GLOBAL_RoomDescription','GLOBAL_ListenerShortName','API','ListenerPosition','ListenerPosition_Type','ListenerPosition_Units'...
                    ,'EmitterPosition','EmitterPosition_Type','EmitterPosition_Units','RoomCornerA','RoomCornerA_Type','RoomCornerA_Units' ...
                    ,'RoomCornerB','RoomCornerB_Type','RoomCornerB_Units','','','','','','',''};
                
                
                for index = 1:length(userDataFields)
                    if isfield(handleSofa,userDataFields{index})
                        userData.(userDataFields{index}) =  handleSofa.(userDataFields{index});
589 590
                    end
                end
591
                this.userData = userData;
592 593 594
            end
            
            
595
            %% .......................SET......................................
596
            
597 598 599 600 601 602
            function this = set.dirCoord(this,dirCoord)
                if isa(dirCoord,'itaCoordinates')
                    this.mDirCoord = dirCoord;
                    this.channelCoordinates.sph(1:2:end,:) = dirCoord.sph;
                    this.channelCoordinates.sph(2:2:end,:) = dirCoord.sph;
                end
603 604
            end
            
605 606 607 608
            function this = set.EarSide(this,Side)
                if sum(uint16(Side) == uint16('L') | uint16(Side) == uint16('R')) ==numel(Side)
                    this.mEarSide = Side;
                end
609 610
            end
            
611 612 613 614
            function this = set.TF_type(this,type)
                TF_types = this.propertiesTF_type;
                if sum(strcmpi(type, TF_types))==1
                    this.mTF_type = TF_types{strcmpi(type, TF_types)};
615 616
                end
            end
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
            
            %% ......................FUNCTIONS.................................
            
            %% Functions of this class
            function HRTFout = findnearestHRTF(this,varargin)
                if nargin ==2
                    coordC = varargin{1};
                    if isa(coordC, 'itaCoordinates') && this.dirCoord.nPoints~=0
                        coordC.r = ones(coordC.nPoints,1)*mean(this.dirCoord.r); % use the existing radius
                    else
                        error('itaHRTF:Def', ' Input must be itaCoordinates or HRTF has no coordinates.')
                    end
                else % rbo mode (theta,phi)
                    thetaC = deg2rad(varargin{1});
                    phiC = deg2rad(varargin{2});
                    r = ones(numel(phiC)*numel(thetaC),1)*mean(this.mDirCoord.r);
                    
                    if numel(thetaC)~=1 && numel(phiC)==1,
                        phiC = ones(numel(thetaC),1)*phiC;
                        if size(thetaC,2)>1,
                            thetaC = thetaC';
                        end
                    elseif numel(thetaC)==1 && numel(phiC)~=1,
                        thetaC = ones(numel(phiC),1)*thetaC;
                        if size(phiC,2)>1,
                            phiC = phiC';
                        end
                    end
                    coordC = itaCoordinates([r thetaC phiC],'sph');
646 647
                end
                
648
                idxCoord = this.dirCoord.findnearest(coordC);
649
                
650 651
                [~, I] = unique(idxCoord);
                idxCoordUnique = idxCoord(I);
652
                
653 654 655
                % idxCoordUnique = unique(idxCoord,'stable');
                if numel(idxCoord)~= numel(idxCoordUnique)
                    ita_verbose_info('Multiple coordinates are neglected!', 0);
656 657
                end
                
658 659 660 661 662 663 664 665 666
                if sum(this.EarSide == 'R') ~= sum(this.EarSide == 'L') % only one ear is available
                    ita_verbose_info('You use only one Ear! Conversion to itaAudio.', 0);
                    idxCoord = this.channelCoordinates.findnearest(coordC);
                    [~, I] = unique(idxCoord);
                    idxCoordUnique = idxCoord(I);
                    HRTFout = this.ch(idxCoordUnique).itaHRTF2itaAudio;
                else
                    HRTFout = this.direction(idxCoordUnique);
                end
667
                
668
                %HRTFout = this.direction(idxCoord);
669 670
            end
            
671 672 673 674
            function this = buildsearchdatabase(this)
               this.dirCoord = this.dirCoord.build_search_database; 
            end
            
675
            function obj = direction(this, idxCoord)
676 677 678 679 680 681 682 683
                %return the HRTF (L&R) for a/multiple given direction indices
                %   hOut = hObj.direction(idxCoord)
                %       
                %       idxCoord: index of the direction in hObj.dirCoord
                %
                %           hOut: HRTF in given direction    
                %
                % see also: hObj.findnearestHRTF
684 685 686 687 688 689 690 691 692
                idxDir = zeros(numel(idxCoord)*2,1);
                idxDir(1:2:numel(idxCoord)*2,:) = 2*idxCoord-1;
                idxDir(idxDir==0)=1;
                idxDir(2:2:numel(idxCoord)*2) = idxDir(1:2:numel(idxCoord)*2,:)+1;
                
                hrtfTMP = this.ch(idxDir);
                hrtfTMP.channelCoordinates = this.channelCoordinates.n(idxDir);
                hrtfTMP.EarSide = this.EarSide(idxDir);
                obj = itaHRTF(hrtfTMP);
693 694
            end
            
695
            function thetaUni = theta_Unique(this,varargin)
696
                thetaUni = uniquetol(this.dirCoord.theta,eps);
697 698 699 700
                if nargin == 2
                    thetaUni = unique(this.dirCoord.theta,'stable');
                end
            end
701
            
702
            function phiUni = phi_Unique(this,varargin)
703
                phiUni = uniquetol(this.dirCoord.phi,eps);
704 705 706 707
                if nargin == 2
                    phiUni = unique(this.dirCoord.phi,'stable');
                end
            end
708
            
709
            function thetaUni = theta_UniqueDeg(this,varargin)
710
                thetaUni = rad2deg(theta_Unique(this,varargin{:}));
711
            end
712
            
713
            function phiUni = phi_UniqueDeg(this,varargin)
714
                phiUni = rad2deg(phi_Unique(this,varargin{:}));
715
            end
716
            
717
            function slice = sphericalSlice(this,dirID,dir_deg,exactSearch)
718 719
                % dir in degree
                % dirID [phi, theta]
720 721 722
                if ~exist('exactSearch','var')
                    exactSearch = 0;
                end
723
                
724 725 726
                if ~exactSearch
                    phiU = rad2deg(this.phi_Unique);
                    thetaU = rad2deg(this.theta_Unique);
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
727 728 729 730 731 732
                    switch dirID
                        case {'phi_deg', 'p'}
                            slice = this.findnearestHRTF(thetaU,dir_deg);
                        case {'theta_deg', 't'}
                            slice = this.findnearestHRTF(dir_deg,phiU);
                    end
733 734 735 736
                else
                    earCoords = this.getEar('L').channelCoordinates;
                    switch dirID
                        case {'phi_deg', 'p'}
737
                            phiValues = uniquetol(earCoords.phi_deg);
738 739 740 741 742 743 744
                            [~,index] = min(abs(phiValues - dir_deg));
                            exactPhiValue = phiValues(index);
                            tmp = earCoords.n(earCoords.phi_deg == exactPhiValue);
                            thetaU = tmp.theta_deg;
                            
                            slice = this.findnearestHRTF(thetaU,dir_deg);
                        case {'theta_deg', 't'}
745
                            thetaValues = uniquetol(earCoords.theta_deg);
746 747 748 749 750 751 752
                            [~,index] = min(abs(thetaValues - dir_deg));
                            exactThetaValue = thetaValues(index);
                            tmp = earCoords.n(earCoords.theta_deg == exactThetaValue);
                            phiU = tmp.phi_deg;
                            
                            slice = this.findnearestHRTF(dir_deg,phiU);
                    end
753
                end
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
754

755
            end
756
            
757 758 759
            function slice = ss(this,dirID,dir_deg)
                slice = this.sphericalSlice(dirID,dir_deg);
            end
760
            
761 762 763 764 765 766 767 768 769
            function HRTFout = getEar(this,earSide)
                switch earSide
                    case 'L',
                        HRTFout = this.ch(this.EarSide	== 'L');
                        HRTFout.mEarSide = repmat('L',HRTFout.nChannels,1);
                    case 'R',
                        HRTFout = this.ch(this.EarSide == 'R');
                        HRTFout.mEarSide = repmat('R',HRTFout.nChannels,1);
                end
770 771
            end
            
772 773 774 775 776 777 778 779 780 781
            %% ITA Toolbox Functions
            function stimuli = conv(this,stimulus)
                if isa(stimulus, 'itaAudio')
                    stimuli = itaAudio(this.nDirections,1);
                    idxCh = 1:2:this.dimensions;
                    for idxDir = 1:this.nDirections
                        stimuli(idxDir) = ita_convolve(stimulus,this.ch([idxCh(idxDir) idxCh(idxDir)+1]));
                    end
                end
            end
782
            
783 784
            function play_gui(this,stimulus)
                if isa(stimulus, 'itaAudio')
785
                    
786 787 788 789 790
                    % check size of input data
                    if this.nDirections>75,
                        thisTmp = this.direction(1:75);
                        ita_verbose_info(' A lot of data ... you cannot show everything in the GUI!', 0);
                    else thisTmp = this;
791 792
                    end
                    
793 794
                    % convolve
                    stimuli = thisTmp.conv(stimulus);
795
                    
796 797 798 799
                    % normalize level
                    stimuliAll = stimuli.merge;
                    maxLevel =  max(abs(stimuliAll.timeData(:)))*1.05;
                    stimuliNorm = stimuli;
800
                    
801 802
                    for idxDir = 1:thisTmp.nDirections
                        stimuliNorm(idxDir) = stimuli(idxDir)/maxLevel;
803 804
                    end
                    
805
                    % play gui
806
                    
807 808 809 810 811
                    ita_play_gui(stimuliNorm, thisTmp.channelNames(1:2:thisTmp.dimensions));
                    %ita_play_gui(stimuliNorm, ita_sprintf('phi= %2.0f� theta= %2.0f�',...
                    %    thisTmp.dirCoord.phi_deg,thisTmp.dirCoord.theta_deg));
                end
                
812 813
            end
            
814 815 816 817 818 819 820 821 822 823 824 825
            function audioHRTF = itaHRTF2itaAudio(this)
                audioHRTF                       = itaAudio;
                audioHRTF.samplingRate          = this.samplingRate;
                audioHRTF.timeData              = this.timeData;
                audioHRTF.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide , this.channelCoordinates.theta_deg,this.channelCoordinates.phi_deg );
                
                audioHRTF.channelCoordinates    = this.channelCoordinates;
                audioHRTF.signalType            = 'energy';
            end
            
            function surf(varargin)
Jan-Gerrit Richter's avatar
...  
Jan-Gerrit Richter committed
826
                sArgs  = struct('pos1_data','itaHRTF', 'earSide', 'L', 'freq' , 1000,'type','directivity','log',0);
827
                [this,sArgs,unused]   = ita_parse_arguments(sArgs,varargin);
828 829 830
                
                idxF = this.freq2index(sArgs.freq);
                
831 832
                if ~(~isempty(unused) && find(strcmp(unused,'parent')))
                    position = get(0,'ScreenSize');
833
                    figure('units','normalized','outerposition',[0 0 1 1]);
834
                end
835 836 837 838 839
                if sArgs.log 
                    freqData_dB = this.getEar(sArgs.earSide).freqData_dB;
                else
                    freqData_dB = this.getEar(sArgs.earSide).freqData;
                end
840 841
                switch sArgs.type
                    case 'directivity'
842
                        surf(this.dirCoord,freqData_dB(idxF,:),unused{:});
843 844
                        c = colorbar; ylabel(c,'Magnitude in dB')
                    case 'sphere'
845
                        surf(this.dirCoord,this.dirCoord.r,freqData_dB(idxF,:),unused{:});
846 847 848
                        c = colorbar;ylabel(c,'Magnitude in dB')
                    case 'phase'
                        phase = unwrap(angle(this.getEar(sArgs.earSide).freqData(idxF,:)));
849
                        surf(this.dirCoord,freqData_dB(idxF,:),phase,unused{:});
850
                        c = colorbar;ylabel(c,'Phase in rad')
851
                end
852
                title([sArgs.earSide ', f = ' num2str(round(this.freqVector(idxF)/100)/10) ' kHz'])
853 854
            end
            
855
            function display(this)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
                if numel(this) == 0
                    disp('****** nothing to do, empty object ******')
                elseif numel(this) > 1
                    disp(['size(' inputname(1) ') = [' num2str(size(this))  ']; (for full display, pick a single instance)']);
                else
                    this.displayLineStart
                    this.disp
                    
                    dir = num2str(this.nDirections,5);
                    stringD = [dir ' Directions (Type = ' this.mTF_type ')'];
                    
                    middleLine = this.LINE_MIDDLE;
                    middleLine(3:(2+length(stringD))) = stringD;
                    fprintf([middleLine '\n']);
                end
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                
            end
            
            function disp(this)
                
                disp@itaAudio(this)
                
                sphType = [this.sphereType repmat(' ',1,9-length(this.sphereType))];
                string = ['      Sphere Type   = ' sphType ];
                
                % this block adds the class name
                classnamestring = ['^--|' mfilename('class') '|'];
                fullline = repmat(' ',1,this.LINE_LENGTH);
                fullline(1:numel(string)) = string;
                startvalue = length(classnamestring);
                fullline(length(fullline)-startvalue+1:end) = classnamestring;
                disp(fullline);
                
                % end line
890 891
            end
            
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
            %% Ramonas' Functions
            
            function varargout = ITD(varargin)
                % -----------------------------------------------------------------
                % See methods and options below
                % -----------------------------------------------------------------
                % Input
                sArgs  = struct('pos1_data','itaHRTF', 'method', 'phase_delay', 'filter' , [200 2000] ,...
                    'thresh','10dB','energy',true,'centroid',false,'reshape',true);
                [this,sArgs]   = ita_parse_arguments(sArgs,varargin);
                
                if numel(this.theta_Unique)>1
                    ita_verbose_info(' More than one elevation in this object!', 0);
                    %this = this.sphericalSlice('theta_deg',90);
                end
                
                % -------------------------------------------------------------
                % methods: phase_delay, xcorr, threshold
                % -------------------------------------------------------------
                % Katz, Brian F. G.; Noisternig, Markus (2014): A comparative
                % study of interaural time delay estimation methods. In: The
                % Journal of the Acoustical Society of America 135 (6), S.
                % 3530-3540.
                
                switch sArgs.method
                    case 'phase_delay'
                        % .....................................................
                        % options: filter
                        % .....................................................
                        [~,tau] = ita_time_shift(this,'0dB');
                        [~,idxMin] = max(tau); % shift of trackLength/3 seems to be good for plotting - No idea
                        thisC = ita_time_shift(this,tau(idxMin)-this.trackLength/3,'time');
                        
                        if ischar(sArgs.filter) % frequency dependent
                            p1 = thisC.freqData(:,1:2:thisC.dimensions);
                            p2 = thisC.freqData(:,2:2:thisC.dimensions);
                            
                            phase1 = unwrap(angle(p1));
                            phase2 = unwrap(angle(p2));
                            phasenDiff = phase1 - phase2;
                            
                            ITD = phasenDiff./(2*pi*repmat(thisC.freqVector,1,size(phase1,2)));
                        else % averaged
935
                            usedBins = thisC.freq2index(sArgs.filter(1)):thisC.freq2index(sArgs.filter(2));
936
                            phase = unwrap(angle(thisC.freqData(3:end,:)));
937
                            freqVector = thisC.freqVector;
938
                            t0_freq = bsxfun(@rdivide, phase,2*pi*freqVector(3:end));
939
                            t0_freq = t0_freq(~isnan(t0_freq(:,1)),:);
940
                            t0_mean = mean(t0_freq(3+usedBins,:)); %mean is smoother than max; lower freq smooths also the result
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
                            ITD =  t0_mean(thisC.EarSide == 'L') - t0_mean(thisC.EarSide == 'R');
                        end
                    case 'xcorr'
                        % .....................................................
                        % options: energy, filter, centroid
                        % .....................................................
                        if ischar(sArgs.filter),  thisF = this; % FILTER
                        else thisF = ita_mpb_filter(this,[sArgs.filter(1), sArgs.filter(2)]);
                        end
                        
                        % Interpolation for smoother curves
                        xUpSample = 5;
                        SR = xUpSample*thisF.samplingRate;
                        tV_Interp = 0:1/SR:thisF.trackLength;
                        timeData_Interp = interp1(thisF.timeVector,thisF.timeData,tV_Interp,'spline');
                        
                        % case: energy
                        if sArgs.energy ,timeData_Interp  = timeData_Interp.^2;
                        end
                        
                        idxL = find(thisF.EarSide== 'L'); idxR = find(thisF.EarSide == 'R');
                        corrIR = zeros(2*numel(tV_Interp)-1,this.nDirections);
                        for idxDir = 1:thisF.nDirections
                            corrIR(:,idxDir) =  xcorr(timeData_Interp(:,idxL(idxDir)),timeData_Interp(:,idxR(idxDir)));
                        end
                        
                        if ~sArgs.centroid      % max
                            [~, idxMax] =  max(abs(corrIR));
                            ITD  = (numel(tV_Interp)- idxMax)/SR;
                        else                    % centroid
                            tV = 0:1/SR:(2*numel(tV_Interp)-2)/SR;
                            C = sum(bsxfun(@times,abs(corrIR),tV'))./sum(abs(corrIR));
                            ITD = thisF.trackLength-C;
                        end
                    case 'threshold'
                        % .....................................................
                        % options: filter
                        % .....................................................
                        if ischar(sArgs.filter),  thisF = this; % FILTER
                        else thisF = ita_mpb_filter(this,[sArgs.filter(1), sArgs.filter(2)]);
                        end
                        
                        [~,tau] = ita_time_shift(thisF,sArgs.thresh);
                        ITD = tau(thisF.EarSide== 'L')-tau(thisF.EarSide == 'R');
                end
                
                % Reshape the ITD in a matrix where the column defines the phi-
                % direction and the row the theta-direction
                if sArgs.reshape && ~ischar(sArgs.filter)
                    nPhi    = numel(this.phi_Unique);
                    nTheta  = numel(this.theta_Unique);
                    if nPhi*nTheta == this.nDirections
                        sITD = reshape(ITD,nTheta,nPhi);
                    else
                        ita_verbose_info(' ITD could not be reshape: nPhi*nTheta ~= nDir!', 0);
                        sITD = ITD;
                    end
                else
                    sITD = ITD;
                end
                
                varargout{1} = sITD;
                if nargout == 2, varargout{2} = rad2deg(this.phi_Unique('stable'));
1004 1005
                end
            end
1006 1007 1008 1009 1010 1011
            
            function t0 = meanTimeDelay(this,varargin)
                %-- OLD -------------------------------------------------------
                [~,tau] = ita_time_shift(this,'0dB');
                [~,idxMin] = max(tau); % shift of trackLength/3 seems to be good for plotting - No idea
                thisC = ita_time_shift(this,tau(idxMin)-this.trackLength*0.33,'time');
1012
                
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                phase = unwrap(angle(thisC.freqData));
                t0_freq = bsxfun(@rdivide, phase,2*pi*thisC.freqVector);
                %t0_mean = t0_freq(thisC.freq2index(1000),:);
                t0_mean = mean(t0_freq(thisC.freq2index(500):thisC.freq2index(2000),:)); %mean is smoother than max; lower freq smooths also the result
                if nargin==2
                    if strcmpi(varargin{1},'L')
                        t0 =  t0_mean(thisC.EarSide == 'L');
                    elseif strcmpi(varargin{1},'R')
                        t0 =  t0_mean(thisC.EarSide == 'R');
                    end
                else t0 =  t0_mean;
                end
1025
            end
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            
            function varargout = calcDTF(this)
                if ~strcmpi(this.TF_type,'DTF')
                    [DTF,comm] = test_rbo_DTF_itaHRTF(this);
                    
                    varargout{1} =DTF;
                    if nargout ==2,varargout{2} = comm;end
                end
            end
            
1036
            this = interp(varargin);
1037 1038 1039 1040 1041
            %
            % Function to calculate HRTFs for arbitrary field points using a N-th order
            % spherical harmonics (SH) interpolation / range extrapolation, as described in [1],
            % SH expansion coefficients are calculated by means of a least-squares
            % approach with Tikhonov regularization
1042
            %
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
            % Function may also be used for spatial smoothing of HRTF using
            % the method described in [2]. As field input use the original
            % measurement grid and set the desired order of the SH matrix /
            % truncation order.
            %
            % INPUT:
            %     varargin{1}      ...  itaCoordinates object (required)
            %                           varargin{1}.phi: desired azimuth angles for HRTF interpolation [0 2*pi)
            %                           varargin{1}.theta: desired zenith angles for HRTF interpolation [0 pi]
            %                           varargin{1}.r: (optional) desired radius used for range extrapolation in [m],
            %                                    set to 1 if no range extrapolation is required
            %     order            ...  order of spherical harmonics matrix (default: 50)
            %     epsilon          ...  regularization coefficient (default: 1e-8)
            %
            % OUTPUT:
            %     itaHRTF object
            %     .freqData: interpolated / range-extrapolated HRTFs for defined field points
            %     .timeData: interpolated / range-extrapolated HRIRs for defined field points
            %     .dirCoord: itaCoordinates object
            %
            % Required: SphericalHarmonics functions of ITA Toolbox
            %
            % [1] Pollow, Martin et al., "Calculation of Head-Related Transfer Functions
            %     for Arbitrary Field Points Using Spherical Harmonics Decomposition",
            %     Acta Acustica united with Acustica, Volume 98, Number 1, January/February 2012,
            %     pp. 72-82(11)
            %
            % Author:  Florian Pausch <fpa@akustik.rwth-aachen.de>
            % Version: 2016-02-05
            
            
1074 1075
            this = reduce_spatial(this,coords,varargin);
            % Function to spatially reduce the HRTF. 
1076
            
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
            function this = smooth_linphase(this,varargin)
                % function this = smooth_linphase(varargin)
                %
                % Function to smooth HRTFs in the frequency domain based on the method proposed by Rasumov et al. in [3], complex smoothing
                % is done via ita_smooth()
                %
                % Parameters:
                % 'f_lin'       ... frequency above which the phase is approximated by a linear phase term
                % 'smoothtype'  ... smoothing method, 'LinTimeSec', 'LinTimeSamp', 'LinFreqHertz', 'LinFreqBins',
                %                                     'LogFreqOctave1' (default), 'LogFreqOctave2' or 'Gammatone'
                % 'windowWidth' ... bandwidth of filter (depends on smoothtype - type help ita_smooth), e.g. 1/9 (default) in frequency domain
                % 'dataTypes'   ... defines on which data type smoothing is applied, 'Real', 'Complex', 'Abs' (default), 'GDelay', 'Abs+GDelay'
                %                                                                    or 'Abs+Phase' (type help ita_smooth)
                %
                % [2] Rasumow, Eugen et al, "Smoothing individual head-related transfer functions in the frequency and spatial domains"
                % The Journal of the Acoustical Society of America, 135, 2012-2025 (2014), DOI:http://dx.doi.org/10.1121/1.4867372
                %
                % Author:  Florian Pausch <fpa@akustik.rwth-aachen.de>
                % Version: 2015-11-04
                
                sArgs         = struct('f_lin',5000,'smoothtype','LogFreqOctave1','windowWidth',1/9,'dataTypes','Abs');
                sArgs         = ita_parse_arguments(sArgs,varargin,1);
                f_lin         = sArgs.f_lin;                       % frequency above which the phase is approximated by a linear phase term (f_lin=5000, default)
                
                % parameters for ita_smooth()
                smoothtype    = sArgs.smoothtype;                  % smoothing method, 'LinTimeSec', 'LinTimeSamp', 'LinFreqHertz', 'LinFreqBins',
                % 'LogFreqOctave1' (default), 'LogFreqOctave2' or 'Gammatone'
                windowWidth   = sArgs.windowWidth;                 % bandwidth of filter (depends on smoothtype - type help ita_smooth), e.g. 1/9 (default) in frequency domain
                dataTypes     = sArgs.dataTypes;                   % 'Real', 'Complex', 'Abs' (default), 'GDelay', 'Abs+GDelay' or 'Abs+Phase' (type help ita_smooth)
                
                %% Step I: Estimation of the delay of the HRTF peak and the resulting linear phase
                %             HRTF_env      = ita_envelope(this);                      % calculate the envelope of the HRIR
                tau           = ita_start_IR(ita_mpb_filter(this,[200,10000]),'threshold',0,'correlation',true);
                tau           = tau/this.samplingRate;
                
                linphase      = exp( -1i*2*pi .* repmat(this.freqVector(this.freq2index(f_lin)+1:end)',1,this.nChannels).*...
                    repmat(tau,length(this.freqVector(this.freq2index(f_lin)+1:end)),1) );        % linear phase of evaluated HRTF set
                
                %% Step II: Linearize phase for f >= f_lin
                this.freqData = abs(this.freqData) .* [exp( 1i*angle(this.freqData(1:this.freq2index(f_lin),:)) );...
                    linphase ] ;
                
                %% Step III: Remove delay tau
                this          = ita_time_shift(this,-tau,'samples');
                
                %% Step IV: Complex smoothing
                this_smooth   = ita_smooth(this,smoothtype,windowWidth,dataTypes);
                this.timeData = this_smooth.timeData;
                
                %% Step V: Reconstruct delay tau
                this          = ita_time_shift(this,tau,'samples');
                
1129 1130
            end
            
1131 1132
            
            % JRI: isn't this the same as itaHRTF.interp? 
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
            function thisS = smooth_spatial(this, varargin)
                % function this = smooth_spatial(varargin)
                %
                % Function to smooth HRTFs in the spatial domain as shown in [3]
                %
                % Parameters
                %     'N'              ...  order of truncated spherical harmonics matrix (default: 4)
                %                           a lower order results in less spatial detail/high-frequency detail
                %                           in smoothed HRTF data set
                %     'epsilon'        ...  regularization coefficient (default: 1e-8)
                %
                % Required: SphericalHarmonics functions of ITA Toolbox
                %
                % [3] Romigh, G.D.; Brungart, D.S.; Stern, R.M.; Simpson, B.D., "Efficient Real Spherical Harmonic Representation of Head-Related
                % Transfer Functions," in Selected Topics in Signal Processing, IEEE Journal of , vol.9, no.5, pp.921-930, Aug. 2015
                % doi: 10.1109/JSTSP.2015.2421876
                %
                % Author:  Florian Pausch <fpa@akustik.rwth-aachen.de>
                % Version: 2016-02-12
                
                tic;
                
                sArgs   = struct('N',4,'epsilon',1e-8,'type','min');
                sArgs   = ita_parse_arguments(sArgs,varargin);
                N       = sArgs.N;
                epsilon = sArgs.epsilon;
                
                Nmeas   = floor(sqrt(this.nDirections/4)-1); % SH order of measurement grid (assuming equiangular grid)
                
                if N>Nmeas
                    fprintf('[\b[itaHRTF.smooth_spatial] Chosen SH order is too high. Order is set to maximum SH order of measurement grid!]\b\n')
                    fprintf('[\b[itaHRTF.smooth_spatial] N = Nmeas = %s (assuming equiangular sampling)]\b\n',num2str(Nmeas))
                    N=Nmeas;
                end
                
                %% Weighting + regularization
                regweights          = ita_sph_degreeorder2linear(0:Nmeas,0);      % construct vector of length (Nmeas+1) regularization weights
                regweights_rep      = zeros(sum(2*(0:Nmeas)'+1),1);
                regweights_rep(1)   = regweights(1);
                cntr                = 2;
                for n=1:Nmeas % repeat regularization weights to get a (Nmeas+1)^2 x 1 vector (TODO: more elegant solution needed)
                    nTimes                              = 2*n+1;
                    regweights_rep(cntr:cntr+nTimes-1)  = regweights(n+1)*ones(nTimes,1);
                    cntr                                = cntr + nTimes;
                end
                
                [~, vWeights]   = this.dirCoord.spherical_voronoi;         % calculate weighting coefficients (Voronoi surfaces <-> measurement points)
                W               = diag(vWeights);                                      % diagonal matrix containing weights
                D               = diag(regweights_rep);                                % decomposition order-dependent Tikhonov regularization
                
1183
                Y               = ita_sph_base(this.dirCoord,Nmeas,'real');   % calculate real-valued SHs using the measurement grid (high SH-order)
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
                
                %% Calculate spatially smoothed HRTF data set
                hrtf_smoo_wo_ITD = zeros(this.nBins,2*this.dirCoord.nPoints); % init.: columns: LRLRLR...
                for ear=1:2
                    % decompose logarithmic magnitude spectra of measured HRTF set into SH basis functions, as done in [3]
                    
                    switch sArgs.type
                        case 'complex'
                            freqData_temp   = this.freqData(:,ear:2:end);
                            a0              = (Y.'*W*Y + epsilon*D) \ Y.'*W * freqData_temp.';     % calculate weighted SH coefficients using a decomposition order-dependent Tikhonov regularization
                        otherwise
                            freqData_dB     = this.freqData_dB;
                            freqData_temp   = freqData_dB(:,ear:2:end);
                            a0              = (Y.'*W*Y + epsilon*D) \ Y.'*W * freqData_temp.';     % calculate weighted SH coefficients using a decomposition order-dependent Tikhonov regularization
                    end
                    Yest        = Y(:,1:(N+1)^2);                                    % eat first (N+1)^2 SH basis functions
                    a0_trunc    = a0(1:(N+1)^2,:);                               % reduce number of coefficients
                    hrtf_smoo_wo_ITD(:,ear:2:end) = (Yest*a0_trunc).';        % spatially smoothed HRTF due to reduction of SH decomposition order
                end
                
                %             % calculate magnitude spectrum and add original HRIR delays as linear phase component
                %             linphase = exp( -1i*2*pi * repmat(this.freqVector,1,this.nChannels).*...
                %                                        repmat(idxIRs_orig/this.samplingRate,this.nBins,1) );
                %             thisS = this;
                %             thisS.freqData = 10.^(hrtf_smoo_wo_ITD/20) .* linphase;
                
                
1211
                switch sArgs.type
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
                    case 'min'
                        this_minphase   = ita_minimumphase(this);
                        idxIRs_orig     = ita_start_IR(ita_mpb_filter(this,[200,2000]),'threshold',0,'correlation',true);
                        deltaT          = idxIRs_orig./this_minphase.samplingRate*1.3;
                        if min(deltaT)  < 0 % no negative shifts
                            deltaT      = deltaT-min(deltaT);
                        end
                        
                        thisMin         = this; %smoothed HRTF
                        thisMin.freqData= 10.^(hrtf_smoo_wo_ITD/20);
                        thisS           = test_rbo_FIR_lagrange_delay(deltaT,thisMin);
                        
                        %thisS           = ita_mpb_filter(thisS,[200 20000]);
                    case 'old'
                        oldPhase        = angle(this.freqData);% rbo test
                        thisS           = itaHRTF(this);
                        thisS.freqData  = 10.^(hrtf_smoo_wo_ITD/20) .* exp(1i.*oldPhase); %rbo test
                        
                        %thisS           = ita_mpb_filter(thisS,[200 20000]);
1231
                    case 'complex'
1232 1233
                        thisS = this;
                        thisS.freqData  = hrtf_smoo_wo_ITD; %rbo test
1234
                end
1235 1236 1237 1238 1239
                
                t2 = toc;
                
                fprintf(['[itaHRTF.smooth_spatial] Calculation finished after ',num2str(round(t2*100/60)/100),' min\n'])
                
1240 1241
            end
            
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
            
            % calculate diffuse field HRTF from data
            % taken from 
            % Equalization methods in binaural technology
            % Veronique Larcher et al
            function returnData = getDiffuseFieldHRTF(this)
                coords = this.getEar('L').channelCoordinates;
                [~,weights] = coords.spherical_voronoi;
                returnData = itaAudio;
                tmp(:,1) = sum(bsxfun(@times,abs(this.getEar('L').freqData).^2,weights.'),2)./(4*pi);
                tmp(:,2) = sum(bsxfun(@times,abs(this.getEar('R').freqData).^2,weights.'),2)./(4*pi);
                returnData.freqData = tmp;
                
                returnData.signalType = 'power';
                returnData.channelNames = {'Left Ear','Right Ear'};
                returnData.comment = 'Diffuse Field HRTF';
            end
           
            
            
1262
            %% Plot
1263
            
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
            function plot_ITD(varargin)
                % init
                sArgs  = struct('pos1_data','itaHRTF', 'method', 'phase_delay', 'filter' , [200 2000] ,...
                    'thresh','10dB','energy',true,'centroid',false,'reshape',true,...
                    'theta_deg',[],'plot_type','color');
                [this,sArgs]   = ita_parse_arguments(sArgs,varargin);
                
                % calculate ITD
                if ~isempty(sArgs.theta_deg)
                    thisS = this.sphericalSlice('theta_deg',sArgs.theta_deg);
                else thisS = this;
                end
                
                thetaC_deg  = rad2deg(thisS.theta_Unique);
1278
                phiC_deg    = sort(mod(rad2deg(thisS.phi_Unique),360));
1279 1280
                nTheta      = numel(thetaC_deg);
                nPhi        = numel(phiC_deg);
1281
                coord       = reshape(mod(thisS.dirCoord.phi_deg,360),nTheta,nPhi);
1282
                [~, idxC]   = sort(coord,2);
1283
                [~, idxCT]  = uniquetol(thisS.dirCoord.theta_deg,eps);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
                
                ITD    = thisS.ITD('method',...
                    sArgs.method, 'filter' , sArgs.filter , 'thresh',sArgs.thresh,...
                    'energy',sArgs.energy,'centroid',sArgs.centroid,'reshape',true);
                
                ITD_S = ITD;
                for idxT = 1:nTheta
                    ITD_S(idxT,:) = ITD(idxT,idxC(idxT,:));
                end
                ITD_SS = ITD_S(idxCT(1:nTheta),:);
                
                %..............................................................
                % create figure
                position = get(0,'ScreenSize');
                figure
                set(gcf,'Position',[10 50 position(3:4)*0.85]);
                if strcmp(sArgs.method,'phase_delay') && ischar(sArgs.filter) % frequency dependent ITD
                    pcolor(phiC_deg,this.freqVector,ITD)
                    title(strcat('\phi = ', num2str(round(thetaC_deg)), '�'))
                    shading flat
                    colorbar
                    
                    ylabel('frequency');
                    ylim([this.freqVector(1)  this.freqVector(end)])
                    xlabel('azimuth angle');
                    set(gca, 'YScale', 'log');
1310
                    
1311 1312
                    [xticks, xlabels] = ita_plottools_ticks('log');
                    set(gca,'yTick',xticks,'yticklabel',xlabels)
1313
                    
1314 1315
                    cMax = max(max(ITD(2:end,:)));
                    cMin = abs(min(min(ITD(2:end,:))));
1316
                    
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                    if cMax>cMin,caxis([-cMax cMax]);
                    else caxis([-cMin cMin]);
                    end
                elseif strcmp(sArgs.plot_type,'color') && numel(sArgs.theta_deg)~= 1
                    % angle dependent ITD (theta & phi)
                    pcolor(thetaC_deg, phiC_deg,ITD_SS'*1000)
                    shading flat
                    colorbar
                    cMax = max(abs(ITD_SS(:)));
                    caxis([-cMax cMax]*1100);
                    grid on
                    set(gca,'layer','top')
                    xlabel('Zenith Angle in Degree');
                    ylabel('Azimuth Angle in Degree');
                    set(gca,'xTick',0:15:360,'yTick',0:30:360)
                    title('ITD in Milliseconds')
                elseif strcmp(sArgs.plot_type,'line') || numel(sArgs.theta_deg)== 1
                    % angle dependent ITD (phi)
                    plot(phiC_deg,ITD_SS*1000)
                    yMax = max(abs(ITD_SS(:)));
                    ylim([-yMax yMax]*1100);
                    grid on
                    set(gca,'layer','top')
                    xlabel('Azimuth Angle in Degree');
                    ylabel('ITD in Milliseconds');
                    set(gca,'xTick',0:30:360)
1343
                    legend(ita_sprintf('%i^\circ', round(thetaC_deg)))
1344
                end
1345 1346
            end
            
1347 1348
            function plot_freqSlice(varargin)
                % init
1349
                sArgs       = struct('pos1_data','itaHRTF', 'earSide', 'L','plane','horizontal','axes_handle',gca,'plotData','magnitude');
1350 1351 1352
                [this,sArgs]= ita_parse_arguments(sArgs,varargin);
                ah          = sArgs.axes_handle;
                
HBR's avatar
HBR committed
1353 1354 1355
                %round to 0.5Deg
                phiC_deg    = unique(round(this.phi_UniqueDeg *2)/2);
                thetaC_deg  = unique(round(this.theta_UniqueDeg *2)/2);
1356 1357 1358 1359 1360 1361
                
                % create slice
                if numel(thetaC_deg)>1 && numel( phiC_deg)>1
                    ita_verbose_info(' More than one elevation in this object!', 0);
                    if strcmp(sArgs.plane,'horizontal')
                        thetaC_deg  = 90;
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
1362
                        thisC       = this.sphericalSlice('theta_deg', thetaC_deg,1);
1363 1364
                    elseif strcmp(sArgs.plane,'median')
                        phiC_deg    = 0;
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
1365
                        thisC       = this.sphericalSlice('phi_deg', phiC_deg,1);
1366 1367
                    else
                       error('Unknown plane option: Either horizontal or median'); 
1368 1369 1370 1371 1372 1373 1374
                    end
                else thisC = this;
                end
                
                % multi defined coordinates
                if numel(phiC_deg)<thisC.dirCoord.nPoints && numel(thetaC_deg) ==1
                    ita_verbose_info(' Coordinates are not unique!', 0);