Aufgrund einer Wartung wird GitLab am 04.06. zwischen 8:00 und 10:00 Uhr kurzzeitig nicht zur Verfügung stehen. / Due to maintenance, GitLab will be temporarily unavailable on 04.06. between 8:00 and 10:00 am.

itaHRTF.m 72.5 KB
Newer Older
1 2
classdef  itaHRTF < itaAudio
    
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    %ITAHRTF - class to deal with HRTFs
    %
    %   Examples:
    %   hrtf = itaHRTF('sofa','TU-Berlin_QU_KEMAR_anechoic_radius_1m.sofa')
    %
    % These objects can be used like itaAudios and helps to find HRTF angles
    % quickly. In addition different methods are implemented to evaluate
    % binaural parameters and interpolate the data set.
    %
    % itaHRTF Properties:
    %         dirCoord          Measured directions
    %         EarSide           Ear side ('L' left or 'R' right) of each channel
    %         TF_type           [HRTF DTF Recording]
    %         sphereType        [ring cap sphere undefined]
    %
    %         resAzimuth        resolution in azimuth (only equiangular)
    %         resElevation      resolution in elevation (only equiangular)
    %
    %         rangeAzimuth      min. and max. angle in azimuth
    %         rangeElevation 	min. and max. angle in elevation
    %
    %         nPointsAzimuth    number of directions in azimuth
    %         nPointsElevation  number of directions in elevation
    %
    %         nPoints           total number of directions
    %
    %         mMetadata         stored metadata from a loaded daff file
    %
    % itaHRTF Methods (find & select directions):
    %         HRTFfind  = findnearestHRTF(varargin)
    %         HRTFdir   = direction(idxCoord)
    %         thetaUni  = theta_Unique
    %         phiUni    = phi_Unique
    %         slice     = sphericalSlice(dirID,dir_deg)
    %         HRTF_left   = getEar(earSide)
    %
    % itaHRTF Methods (play):
    %         play_gui(stimulus)
    %
    % itaHRTF Methods (store):
    %         audioHRTF = itaHRTF2itaAudio
    %                     writeDAFFFile(filePath)
    %
    % itaHRTF Methods (binaural parameter):
    %         ITD       = ITD(varargin)
    %         t0        = meanTimeDelay(varargin)
    %         ILD       = ILD(varargin)
    %
    % itaHRTF Methods (manipulation):
    %         DTF       = calcDTF
    %         HRTF_int  = interp(varargin)
    %
    % itaHRTF Methods (plot):
    %         plot_ITD(varargin)
    %         plot_freqSlice(varargin)
    
    %
    %  See also:
    %   itaAudio, test_rbo_postprocessing_HRTF_arc_CropDiv
    %
    %   Reference page in Help browser
    %        <a href="matlab:doc itaHRTF">doc itaHRTF</a>
    
    % <ITA-Toolbox>
    % This file is part of the application HRTF_class for the ITA-Toolbox. All rights reserved.
    % You can find the license for this m-file in the application folder.
    % </ITA-Toolbox>
    
    
    % Author: Ramona Bomhardt -- Email: rbo@akustik.rwth-aachen.de
    % Created:  10-Jul-2014
rbo's avatar
rbo committed
74

75
    properties (Access = private)
76
        mMetadata   = [];
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        mCoordSave  = [];
        mChNames    = [];
        mDirCoord   = itaCoordinates;
        mEarSide    = [];
        mTF_type    = 'HRTF';
        mSphereType = 'undefined';
    end
    
    properties (Dependent = true, Hidden = false)
        dirCoord = itaCoordinates;
        EarSide  = [];
        TF_type  = 'HRTF';
        sphereType = 'undefined';
        
        resAzimuth      = 5;
        resElevation    = 5;
        
        rangeAzimuth    = [0 359];
        rangeElevation  = [0 180];
        
        nPointsAzimuth  = 72;
        nPointsElevation= 37;
        
        nPoints         = [];
        phi_Offset      = zeros(37,1);
    end
    
    properties (Dependent = true, Hidden = true)
        
    end
    
    properties (Dependent = true, SetAccess = private)
109
        openDAFF2itaHRTF;
110 111 112 113 114 115 116 117 118 119
        itaAudio2itaHRTF;
        init;
        hdf2itaHRTF;
        sofa2itaHRTF;
        nDirections = [];
    end
    
    methods % Special functions that implement operations that are usually performed only on instances of the class
        %% Input
        function this = itaHRTF(varargin)
120
            % initialize itaHRTF with itaAudio properties (only for nargin == 1)
rbo's avatar
rbo committed
121 122
            if nargin > 1 || (nargin == 1 && (ischar(varargin{1}) || isa(varargin{1},'itaAudio')))
                iniAudio = [];
rbo's avatar
rbo committed
123 124 125 126 127
            elseif nargin == 1 && isstruct(varargin{1})
                fNames = {'domain','data','signalType','samplingRate'};
                for idxFN = 1:numel(fNames)
                    iniAudio.(fNames{idxFN}) = varargin{1}.(fNames{idxFN});
                end
128 129 130 131
            end
                            
            this = this@itaAudio(iniAudio);

132
            if nargin >1
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                % itaAudio input
                TF_types = this.propertiesTF_type;
                for iTF = 1:numel(TF_types)
                    if ~isempty(find(strcmpi(varargin, TF_types{iTF})==1, 1))
                        this.itaAudio2itaHRTF = varargin{find(strcmpi(varargin, TF_types{iTF})==1)-1};
                        this.TF_type = TF_types(iTF);
                    end
                end
                
                % init
                if nargin == 4
                    this.init = varargin;
                end
                % openDaff input
                if ~isempty(find(strcmpi(varargin,'Daff')==1, 1))
149
                    this.openDAFF2itaHRTF = varargin{find(strcmpi(varargin,'Daff')==1)+1};
150 151 152 153 154 155 156 157 158 159 160
                end
                % hdf5 input
                if ~isempty(find(strcmpi(varargin,'hdf5')==1, 1))
                    this.hdf2itaHRTF = varargin{find(strcmpi(varargin,'hdf5')==1)+1};
                end
                % sofa input
                if ~isempty(find(strcmpi(varargin,'SOFA')==1, 1))
                    this.sofa2itaHRTF = varargin{find(strcmpi(varargin,'SOFA')==1)+1};
                end
                
            elseif nargin == 1
161

162 163 164 165 166 167 168 169 170 171 172 173 174
                if isa(varargin{1},'itaHRTF')
                    this = varargin{1};
                    
                elseif nargin ==1 && isstruct(varargin{1}) % only for loading
                    obj = varargin{1};
                    this.data = obj.data;
                    
                    this.signalType = 'energy';
                    % additional itaHRTF data
                    if datenum(2014,7,5)<obj.dateCreated, objFNsaved = this.propertiesSaved;
                    else objFNsaved = this.oldPropertiesSaved;
                    end
                    objFNload = this.propertiesLoad;
175
                    
176 177 178 179 180 181 182 183 184 185 186 187 188 189
                    for i1 = 1:numel(objFNload)
                        this.(objFNload{i1}) = obj.(objFNsaved{i1});
                    end
                    % saving itaCoordinates in itaHRTF does not work at the
                    % moment
                    this.dirCoord.sph = this.mCoordSave;
                    % saving channelNames in itaHRTF does not work at the
                    % moment
                    for iCh = 1:this.dimensions
                        this.channelNames{iCh} = this.mChNames(iCh,:);
                    end
                    
                elseif isa(varargin{1},'itaAudio')
                    this.itaAudio2itaHRTF = varargin{1};
rbo's avatar
rbo committed
190 191 192 193 194 195 196
                    
                elseif ischar(varargin{1}) % openDaff/ sofa/ hdf5 input
                    if strfind(lower(varargin{1}),'.daff'), this.openDAFF2itaHRTF = varargin{1};
                    elseif strfind(lower(varargin{1}),'.hdf5'), this.hdf2itaHRTF = varargin{1};
                    elseif strfind(lower(varargin{1}),'.sofa'), this.sofa2itaHRTF = varargin{1};
                    end
                 end
197 198 199 200
            end
        end
        
        %% ......................GET.......................................
201
        
202
        function nDirections = get.nDirections(this)
203
            [~,idxDim] =  unique([this.channelCoordinates.phi_deg this.channelCoordinates.theta_deg] ,'rows');
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            nDirections = numel(idxDim);
        end
        
        function dirCoord = get.dirCoord(this)
            dirCoord = this.channelCoordinates.n(1:2:this.dimensions);
        end
        
        function EarSide = get.EarSide(this)
            EarSide = this.mEarSide;
            if numel(this.mEarSide)~=this.dimensions
                EarSide = repmat(['L'; 'R'],this.dirCoord.nPoints, 1);
            end
        end
        
        function TF_type = get.TF_type(this)
            TF_type = this.mTF_type; end
        
        function sphereType = get.sphereType(this)
            % aktuell wird noch nicht erkannt, wenn die theta Winkel
            % kontinuierlich ansteigen. Dann gibt es keinen Bruch...
            
            numPhi = numel(this.phi_Unique);
            numTheta = numel(this.theta_Unique);
            
            deltaPhi_deg = 360/numPhi;
            deltaTheta_deg = 180/numTheta;
            
            gradPhi_deg = gradient(rad2deg(this.phi_Unique)) ;
            gradTheta_deg = gradient(rad2deg(this.theta_Unique));
            
            tmpPhi = round(deltaPhi_deg-gradPhi_deg);
            tmpTheta = round(deltaTheta_deg-gradTheta_deg);
            
            if sum(tmpPhi)==0 && sum(tmpTheta)==0 && sum(gradTheta_deg)==180
                sphereType = 'full';
            elseif sum(tmpPhi)==0 && numel(tmpTheta)==1 && tmpTheta(1)==180
                sphereType = 'ring';
            elseif   sum(tmpPhi)==0 && sum(gradTheta_deg)<180
                sphereType = 'cap';
            else
                sphereType = 'undefined';
            end
        end
        
        function resAzi = get.resAzimuth(this)
            resAzi = round(median(diff(rad2deg(this.phi_Unique))));
        end
        
        function resElevation = get.resElevation(this)
            resElevation = round(median(diff(rad2deg(this.theta_Unique))));
        end
        
        function nPointsAzi = get.nPointsAzimuth(this)
            nPointsAzi = numel(this.phi_Unique);
        end
        
        function nPointsEle = get.nPointsElevation(this)
            nPointsEle = numel(this.theta_Unique);
        end
        
        function rangeAzi = get.rangeAzimuth(this)
            rangeAzi = uint16([min(rad2deg(this.phi_Unique)) max(rad2deg(this.phi_Unique))]);
        end
        
        function rangeEle = get.rangeElevation(this)
            rangeEle = uint16([min(rad2deg(this.theta_Unique)) max(rad2deg(this.theta_Unique))]);
        end
        
        function phi_Offset = get.phi_Offset(this)
            thetaU      = this.theta_Unique;
            phi_Offset  = zeros(numel(thetaU),1);
            for idxT = 1:numel(thetaU)
                phi_Offset(idxT,1) = test_rbo_azimuthOffset0(this.sphericalSlice('theta_deg',rad2deg(thetaU(idxT))));
            end
        end
        %% ..............SET PRIVAT........................................
280
        
281 282 283 284 285 286 287 288 289 290 291 292
        function this = set.itaAudio2itaHRTF(this,HRTF)
            if isa(HRTF,'itaAudio'),
                % Multi instance?
                if numel(HRTF)>1,
                    if numel(HRTF)>1000 % takes a while
                        ita_verbose_info(' A lot of data ...please wait... don''t use itaAudio multi instances for the next time!', 0);
                    end
                    coordinates = HRTF(1).channelCoordinates;
                    if (coordinates.nPoints == 2) & (sum(isnan(coordinates.sph)) < numel(coordinates.sph))
                        ita_verbose_info('Found NaNs in the coordinates. I will copy existing coordinates');
                        
                        for index = 1:length(HRTF)
293 294 295
                            coordinates = HRTF(index).channelCoordinates;
                            coordinates.sph = repmat(coordinates.sph(1,:),2,1);
                            HRTF(index).channelCoordinates = coordinates;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                        end
                        
                    end
                    HRTFc = HRTF.merge;
                    
                else HRTFc = HRTF;
                end
                
                % coordinates available?
                if isnan(HRTFc.channelCoordinates.cart)
                    error('itaHRTF:Def', ' No channelCoordinates available')
                end
                
                coord = HRTFc.channelCoordinates;
                
                % find the corresponding left and right channel
                pairs  = zeros(coord.nPoints/2,2);
                
                if coord.nPoints>10000 % takes a while
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
315
                    ita_verbose_info([num2str(coord.nPoints) ' Points have to be sorted ...please wait...'], 0);
316 317 318 319 320 321 322 323 324 325 326 327 328 329
                end
                
                
                counter = 1;
                thetaPhi = round([coord.theta_deg coord.phi_deg]*10)/10;
                deletedChannel = 0;
                for i1 = 1:coord.nPoints
                    coordCurrent = thetaPhi(i1,:);
                    if isempty(find(pairs(:) == i1, 1)) % only if the corresponding channel is not found
                        % find corresponding channel
                        coordComp = thetaPhi([1:i1-1 i1+1:coord.nPoints],:);
                        diffCoord = bsxfun(@minus,coordCurrent,coordComp)== zeros(size(coordComp));
                        idxCoord =  find(diffCoord(:,1).*diffCoord(:,2) ==1);
                        if length(idxCoord) > 1
330
                            %                             deletedChannel = deletedChannel + length(idxCoord) -1;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                            idxCoord = idxCoord(1);
                        end
                        % store the corresponding channel
                        pairs(counter,1) = i1;
                        if idxCoord <i1
                            pairs(counter,2) = idxCoord;
                        else
                            pairs(counter,2) = idxCoord+1;
                        end
                        counter = counter+1;
                    end
                    % break if all corresponding channels are found
                    if sum(pairs(:))== sum(1:coord.nPoints),break
                    end
                end
                % ........................................................
                
                % split data in right and left channel
                idxLeft = pairs(:,1); % odd number
                idxRight = pairs(:,2);  % even number
                numNewChannels = length(pairs)*2;
                this.data = zeros(HRTFc.nSamples, numNewChannels);
                this.data(:,1:2:numNewChannels) = HRTFc.timeData(:,idxLeft);
                this.data(:,2:2:numNewChannels) = HRTFc.timeData(:,idxRight);
                
                this.domain = 'time';
                pairsT = pairs';
                
                this.channelCoordinates = HRTFc.channelCoordinates.n(pairsT(:));
                this.mEarSide = repmat(['L'; 'R'],numNewChannels/2, 1);
                this.samplingRate = HRTFc.samplingRate;
                
                
                % store coordinates
                this.mDirCoord = this.channelCoordinates.n(1:2:numNewChannels);
                this.signalType = 'energy';
                % channelnames coordinates
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide ,...
                    this.channelCoordinates.theta_deg, this.channelCoordinates.phi_deg );
            end
        end
        
374 375 376
        function this = set.openDAFF2itaHRTF( this, daff_file_path )
            
            try_daff_old_version = false;
377
            metadata=[];
378 379 380 381
            % First try new version (v17)
            try
                handleDaff = DAFFv17( 'open', daff_file_path );
                props = DAFFv17( 'getProperties', handleDaff);
382
                
383 384 385
                counter = 1;
                data = zeros(props.filterLength,props.numRecords*2,'double' ) ;
                coordDaff = zeros(props.numRecords,2) ;
386
                
387 388 389 390 391
                for iDir = 1:props.numRecords
                    data(:,[counter counter+1]) = DAFFv17( 'getRecordByIndex', handleDaff,iDir )';
                    coordDaff(iDir,:) = DAFFv17( 'getRecordCoords', handleDaff, 'data', iDir )';
                    counter= counter+2;
                end
392
                
393
                metadata = DAFFv17('getMetadata', handleDaff);
394
                
395 396 397
            catch
                disp( 'Could not read DAFF file right away, falling back to old version and retrying ...' );
                try_daff_old_version = true;
398
            end
399
            
400 401 402 403
            if try_daff_old_version
                % Old version (v15)
                handleDaff = DAFFv15( 'open',daff_file_path);
                props = DAFFv15( 'getProperties', handleDaff);
404
                
405 406 407
                counter = 1;
                data = zeros(props.filterLength,props.numRecords*2,'double' ) ;
                coordDaff = zeros(props.numRecords,2) ;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                                
                tempMetadata = DAFFv15('getMetadata', handleDaff);
                
                % Convert old-style metadata format to v17.
                names = fieldnames( tempMetadata );
                for k = 1:numel( tempMetadata )
                    switch class(tempMetadata.(names{k}))
                        case 'logical'
                            datatype='bool';
                        case 'char'
                            datatype='string';
                        case 'double'
                            if rem(tempMetadata.(names{k}),1)==0
                                datatype='int';
                            else
                                datatype='float';
                            end
                    end
                    metadata = daffv17_add_metadata( metadata,cell2mat(names(k)),datatype,tempMetadata.(names{k}) );
                end
                
429 430 431 432 433 434
                for iDir = 1:props.numRecords
                    data(:,[counter counter+1]) = DAFFv15( 'getRecordByIndex', handleDaff,iDir )';
                    coordDaff(iDir,:) = DAFFv15( 'getRecordCoords', handleDaff, 'data', iDir )';
                    counter= counter+2;
                end
            end
435
            
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            
            phiM = coordDaff(:,1)*pi/180;
            %phiM = mod(coordDaff(:,1),360)*pi/180;
            %if ~isempty(find(0<coordDaff(:,2),1,'first'))
            thetaM = coordDaff(:,2)*pi/180;
            %thetaM = mod(180-(coordDaff(:,2)+90),180)*pi/180;
            %else
            %    thetaM = coordDaff(:,2)*pi/180;
            %end
            radius = ones(props.numRecords,1);

            chCoord = itaCoordinates;
            chCoord.sph = ones(size(data,2),3);

            chCoord.phi(1:2:2*props.numRecords) = phiM;
            chCoord.phi(2:2:2*props.numRecords) = phiM;
            chCoord.theta(1:2:2*props.numRecords) = thetaM;
            chCoord.theta(2:2:2*props.numRecords) = thetaM;

            this.mMetadata = metadata;
            this.data = data;
            this.mDirCoord = itaCoordinates([radius thetaM phiM],'sph');
            this.channelCoordinates = chCoord;
            this.mEarSide = repmat(['L'; 'R'],props.numRecords, 1);
            this.signalType = 'energy';
            % channelnames coordinates
            this.channelNames = ita_sprintf('%s ( %2.0f, \\theta= %2.0f)',...
                this.mEarSide ,   this.channelCoordinates.theta_deg,  this.channelCoordinates.phi_deg);

        end
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            
            function this = set.init(this,var)
                % TO DO !!!!!!!!!!!!!!!!!!!!!!!!!!!
                % Make it nicer and combine it with itaAudio2itaHRTF!!!
                % TO DO !!!!!!!!!!!!!!!!!!!!!!
                
                coord = var{find(strcmp(var,'dirCoord')==1)+1};
                this.domain = 'time';
                nSamples = var{find(strcmp(var,'nSamples')==1)+1};
                this.data = zeros(nSamples ,coord.nPoints*2);
                this.channelCoordinates.sph(1:2:coord.nPoints*2,:) = coord.sph;
                this.channelCoordinates.sph(2:2:coord.nPoints*2,:) = coord.sph;
                this.mEarSide = repmat(['L'; 'R'],coord.nPoints, 1);
                
                this.signalType = 'energy';
                % channelnames coordinates
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide , ...
                    this.channelCoordinates.theta_deg,this.channelCoordinates.phi_deg );
485
            end
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            
            function this = set.hdf2itaHRTF(this,pathHDF5)
                handleHDF5 = itaHDF5(pathHDF5);
                
                names  = fieldnames(handleHDF5);
                HRTF   = handleHDF5.(names{4});
                
                dataHDF5 = HRTF.get_time;
                
                data = zeros(size(dataHDF5,1),HRTF.coordinates.nPoints*2);
                data(:,1:2:HRTF.coordinates.nPoints*2) = dataHDF5(:,:,1);
                data(:,2:2:HRTF.coordinates.nPoints*2) = dataHDF5(:,:,2);
                
                chCoord     = itaCoordinates;
                chCoord.sph = ones(HRTF.coordinates.nPoints*2,3);
                
                chCoord.phi(1:2:2*HRTF.size_time(2))   = HRTF.coordinates.phi;
                chCoord.phi(2:2:2*HRTF.size_time(2))   = HRTF.coordinates.phi;
                chCoord.theta(1:2:2*HRTF.size_time(2)) = HRTF.coordinates.theta;
                chCoord.theta(2:2:2*HRTF.size_time(2)) = HRTF.coordinates.theta;
                
                radius = ones(HRTF.coordinates.nPoints,1);
                
                this.data = data;
                this.mDirCoord = itaCoordinates([radius HRTF.coordinates.theta HRTF.coordinates.phi],'sph');
                this.channelCoordinates = chCoord;
                this.mEarSide = repmat(['L'; 'R'],HRTF.size_time(2), 1);
                this.signalType = 'energy';
                
                % channelnames coordinates
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide , ...
                    this.channelCoordinates.theta_deg, this.channelCoordinates.phi_deg);
519
            end
520 521 522 523 524 525
            
            
            function this = set.sofa2itaHRTF(this,pathFile)
                if ~exist(pathFile,'file')
                    f=filesep;
                    pathFile=[SOFAdbPath f 'SOFA' f pathFile];
526
                end
527 528 529 530 531 532 533 534
                handleSofa = SOFAload(pathFile);
                
                % get the number of measurement positions
                numPositions = length(handleSofa.SourcePosition);
                
                
                % data
                % the data is saved as positions x channel x filterdata
Jan-Gerrit Richter's avatar
Jan-Gerrit Richter committed
535
                this.samplingRate = handleSofa.Data.SamplingRate;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
                
                data = zeros(size(handleSofa.Data.IR,3),numPositions*2);
                data(:,1:2:numPositions*2) = squeeze(handleSofa.Data.IR(:,1,:)).';
                data(:,2:2:numPositions*2) = squeeze(handleSofa.Data.IR(:,2,:)).';
                
                % coordinates
                
                coordinates = ita_sofa_getCoordinates(handleSofa,'channelCoordinateType','SourcePosition');
                
                % duplicate the coordinates for both channels
                channelCoordinates = itaCoordinates(numPositions*2);
                channelCoordinates.x(1:2:numPositions*2) = coordinates.x;
                channelCoordinates.x(2:2:numPositions*2) = coordinates.x;
                channelCoordinates.y(1:2:numPositions*2) = coordinates.y;
                channelCoordinates.y(2:2:numPositions*2) = coordinates.y;
                channelCoordinates.z(1:2:numPositions*2) = coordinates.z;
                channelCoordinates.z(2:2:numPositions*2) = coordinates.z;
                
                
                % added view and up vector
                this.objectViewVector = itaCoordinates(handleSofa.ListenerView);
                this.objectUpVector = itaCoordinates(handleSofa.ListenerUp);
                this.objectCoordinates = itaCoordinates(handleSofa.ListenerPosition);
                warning('ITA_HRTF: Sofa Up and View vectors are ignored');
                this.data = data;
                this.channelCoordinates = channelCoordinates;
                this.mDirCoord = coordinates;
                this.mEarSide = repmat(['L'; 'R'],numPositions, 1);
                this.signalType = 'energy';
                
                
                this.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide ,...
                    this.channelCoordinates.theta_deg, this.channelCoordinates.phi_deg );
                
                
                %% user data
                userDataFields = {'GLOBAL_Conventions','GLOBAL_Version','GLOBAL_SOFAConventions','GLOBAL_SOFAConventionsVersion' ...
                    ,'GLOBAL_APIName','GLOBAL_APIVersion','GLOBAL_ApplicationName','GLOBAL_ApplicationVersion','GLOBAL_AuthorContact' ...
                    ,'GLOBAL_Comment','GLOBAL_DataType','GLOBAL_History','GLOBAL_License','GLOBAL_Organization','GLOBAL_References' ...
                    ,'GLOBAL_RoomType','GLOBAL_Origin','GLOBAL_DateCreated','GLOBAL_DateModified','GLOBAL_Title','GLOBAL_DatabaseName' ...
                    ,'GLOBAL_RoomDescription','GLOBAL_ListenerShortName','API','ListenerPosition','ListenerPosition_Type','ListenerPosition_Units'...
                    ,'EmitterPosition','EmitterPosition_Type','EmitterPosition_Units','RoomCornerA','RoomCornerA_Type','RoomCornerA_Units' ...
                    ,'RoomCornerB','RoomCornerB_Type','RoomCornerB_Units','','','','','','',''};
                
                
                for index = 1:length(userDataFields)
                    if isfield(handleSofa,userDataFields{index})
                        userData.(userDataFields{index}) =  handleSofa.(userDataFields{index});
585 586
                    end
                end
587
                this.userData = userData;
588 589 590
            end
            
            
591
            %% .......................SET......................................
592
            
593 594 595 596 597 598
            function this = set.dirCoord(this,dirCoord)
                if isa(dirCoord,'itaCoordinates')
                    this.mDirCoord = dirCoord;
                    this.channelCoordinates.sph(1:2:end,:) = dirCoord.sph;
                    this.channelCoordinates.sph(2:2:end,:) = dirCoord.sph;
                end
599 600
            end
            
601 602 603 604
            function this = set.EarSide(this,Side)
                if sum(uint16(Side) == uint16('L') | uint16(Side) == uint16('R')) ==numel(Side)
                    this.mEarSide = Side;
                end
605 606
            end
            
607 608 609 610
            function this = set.TF_type(this,type)
                TF_types = this.propertiesTF_type;
                if sum(strcmpi(type, TF_types))==1
                    this.mTF_type = TF_types{strcmpi(type, TF_types)};
611 612
                end
            end
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
            
            %% ......................FUNCTIONS.................................
            
            %% Functions of this class
            function HRTFout = findnearestHRTF(this,varargin)
                if nargin ==2
                    coordC = varargin{1};
                    if isa(coordC, 'itaCoordinates') && this.dirCoord.nPoints~=0
                        coordC.r = ones(coordC.nPoints,1)*mean(this.dirCoord.r); % use the existing radius
                    else
                        error('itaHRTF:Def', ' Input must be itaCoordinates or HRTF has no coordinates.')
                    end
                else % rbo mode (theta,phi)
                    thetaC = deg2rad(varargin{1});
                    phiC = deg2rad(varargin{2});
                    r = ones(numel(phiC)*numel(thetaC),1)*mean(this.mDirCoord.r);
                    
                    if numel(thetaC)~=1 && numel(phiC)==1,
                        phiC = ones(numel(thetaC),1)*phiC;
                        if size(thetaC,2)>1,
                            thetaC = thetaC';
                        end
                    elseif numel(thetaC)==1 && numel(phiC)~=1,
                        thetaC = ones(numel(phiC),1)*thetaC;
                        if size(phiC,2)>1,
                            phiC = phiC';
                        end
                    end
                    coordC = itaCoordinates([r thetaC phiC],'sph');
642 643
                end
                
644
                idxCoord = this.dirCoord.findnearest(coordC);
645
                
646 647
                [~, I] = unique(idxCoord);
                idxCoordUnique = idxCoord(I);
648
                
649 650 651
                % idxCoordUnique = unique(idxCoord,'stable');
                if numel(idxCoord)~= numel(idxCoordUnique)
                    ita_verbose_info('Multiple coordinates are neglected!', 0);
652 653
                end
                
654 655 656 657 658 659 660 661 662
                if sum(this.EarSide == 'R') ~= sum(this.EarSide == 'L') % only one ear is available
                    ita_verbose_info('You use only one Ear! Conversion to itaAudio.', 0);
                    idxCoord = this.channelCoordinates.findnearest(coordC);
                    [~, I] = unique(idxCoord);
                    idxCoordUnique = idxCoord(I);
                    HRTFout = this.ch(idxCoordUnique).itaHRTF2itaAudio;
                else
                    HRTFout = this.direction(idxCoordUnique);
                end
663
                
664
                %HRTFout = this.direction(idxCoord);
665 666
            end
            
667 668 669 670 671 672 673 674 675 676
            function obj = direction(this, idxCoord)
                idxDir = zeros(numel(idxCoord)*2,1);
                idxDir(1:2:numel(idxCoord)*2,:) = 2*idxCoord-1;
                idxDir(idxDir==0)=1;
                idxDir(2:2:numel(idxCoord)*2) = idxDir(1:2:numel(idxCoord)*2,:)+1;
                
                hrtfTMP = this.ch(idxDir);
                hrtfTMP.channelCoordinates = this.channelCoordinates.n(idxDir);
                hrtfTMP.EarSide = this.EarSide(idxDir);
                obj = itaHRTF(hrtfTMP);
677 678
            end
            
679
            function thetaUni = theta_Unique(this,varargin)
680
                thetaUni = uniquetol(this.dirCoord.theta,eps);
681 682 683 684
                if nargin == 2
                    thetaUni = unique(this.dirCoord.theta,'stable');
                end
            end
685
            
686
            function phiUni = phi_Unique(this,varargin)
687
                phiUni = uniquetol(this.dirCoord.phi,eps);
688 689 690 691
                if nargin == 2
                    phiUni = unique(this.dirCoord.phi,'stable');
                end
            end
692
            
693 694 695
            function thetaUni = theta_UniqueDeg(this,varargin)
                thetaUni = rad2deg(theta_Unique(this,varargin));
            end
696
            
697 698 699
            function phiUni = phi_UniqueDeg(this,varargin)
                phiUni = rad2deg(phi_Unique(this,varargin));
            end
700
            
701
            function slice = sphericalSlice(this,dirID,dir_deg,exactSearch)
702 703
                % dir in degree
                % dirID [phi, theta]
704 705 706
                if ~exist('exactSearch','var')
                    exactSearch = 0;
                end
707
                
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
                if ~exactSearch
                    phiU = rad2deg(this.phi_Unique);
                    thetaU = rad2deg(this.theta_Unique);
                else
                    earCoords = this.getEar('L').channelCoordinates;
                    switch dirID
                        case {'phi_deg', 'p'}
                            phiValues = unique(earCoords.phi_deg);
                            [~,index] = min(abs(phiValues - dir_deg));
                            exactPhiValue = phiValues(index);
                            tmp = earCoords.n(earCoords.phi_deg == exactPhiValue);
                            thetaU = tmp.theta_deg;
                            
                            slice = this.findnearestHRTF(thetaU,dir_deg);
                        case {'theta_deg', 't'}
                            thetaValues = unique(earCoords.theta_deg);
                            [~,index] = min(abs(thetaValues - dir_deg));
                            exactThetaValue = thetaValues(index);
                            tmp = earCoords.n(earCoords.theta_deg == exactThetaValue);
                            phiU = tmp.phi_deg;
                            
                            slice = this.findnearestHRTF(dir_deg,phiU);
                    end
                end
732 733 734 735 736 737 738
                switch dirID
                    case {'phi_deg', 'p'}
                        slice = this.findnearestHRTF(thetaU,dir_deg);
                    case {'theta_deg', 't'}
                        slice = this.findnearestHRTF(dir_deg,phiU);
                end
            end
739
            
740 741 742
            function slice = ss(this,dirID,dir_deg)
                slice = this.sphericalSlice(dirID,dir_deg);
            end
743
            
744 745 746 747 748 749 750 751 752
            function HRTFout = getEar(this,earSide)
                switch earSide
                    case 'L',
                        HRTFout = this.ch(this.EarSide	== 'L');
                        HRTFout.mEarSide = repmat('L',HRTFout.nChannels,1);
                    case 'R',
                        HRTFout = this.ch(this.EarSide == 'R');
                        HRTFout.mEarSide = repmat('R',HRTFout.nChannels,1);
                end
753 754
            end
            
755 756 757 758 759 760 761 762 763 764
            %% ITA Toolbox Functions
            function stimuli = conv(this,stimulus)
                if isa(stimulus, 'itaAudio')
                    stimuli = itaAudio(this.nDirections,1);
                    idxCh = 1:2:this.dimensions;
                    for idxDir = 1:this.nDirections
                        stimuli(idxDir) = ita_convolve(stimulus,this.ch([idxCh(idxDir) idxCh(idxDir)+1]));
                    end
                end
            end
765
            
766 767
            function play_gui(this,stimulus)
                if isa(stimulus, 'itaAudio')
768
                    
769 770 771 772 773
                    % check size of input data
                    if this.nDirections>75,
                        thisTmp = this.direction(1:75);
                        ita_verbose_info(' A lot of data ... you cannot show everything in the GUI!', 0);
                    else thisTmp = this;
774 775
                    end
                    
776 777
                    % convolve
                    stimuli = thisTmp.conv(stimulus);
778
                    
779 780 781 782
                    % normalize level
                    stimuliAll = stimuli.merge;
                    maxLevel =  max(abs(stimuliAll.timeData(:)))*1.05;
                    stimuliNorm = stimuli;
783
                    
784 785
                    for idxDir = 1:thisTmp.nDirections
                        stimuliNorm(idxDir) = stimuli(idxDir)/maxLevel;
786 787
                    end
                    
788
                    % play gui
789
                    
790 791 792 793 794
                    ita_play_gui(stimuliNorm, thisTmp.channelNames(1:2:thisTmp.dimensions));
                    %ita_play_gui(stimuliNorm, ita_sprintf('phi= %2.0f� theta= %2.0f�',...
                    %    thisTmp.dirCoord.phi_deg,thisTmp.dirCoord.theta_deg));
                end
                
795 796
            end
            
797 798 799 800 801 802 803 804 805 806 807 808
            function audioHRTF = itaHRTF2itaAudio(this)
                audioHRTF                       = itaAudio;
                audioHRTF.samplingRate          = this.samplingRate;
                audioHRTF.timeData              = this.timeData;
                audioHRTF.channelNames = ita_sprintf('%s ( %2.0f, %2.0f)',...
                    this.mEarSide , this.channelCoordinates.theta_deg,this.channelCoordinates.phi_deg );
                
                audioHRTF.channelCoordinates    = this.channelCoordinates;
                audioHRTF.signalType            = 'energy';
            end
            
            function surf(varargin)
Jan-Gerrit Richter's avatar
...  
Jan-Gerrit Richter committed
809
                sArgs  = struct('pos1_data','itaHRTF', 'earSide', 'L', 'freq' , 1000,'type','directivity','log',0);
810
                [this,sArgs,unused]   = ita_parse_arguments(sArgs,varargin);
811 812 813 814 815
                
                idxF = this.freq2index(sArgs.freq);
                
                position = get(0,'ScreenSize');
                figure('Position',[10 50 position(3:4)*0.85]);
816 817 818 819 820
                if sArgs.log 
                    freqData_dB = this.getEar(sArgs.earSide).freqData_dB;
                else
                    freqData_dB = this.getEar(sArgs.earSide).freqData;
                end
821 822
                switch sArgs.type
                    case 'directivity'
823
                        surf(this.dirCoord,freqData_dB(idxF,:),unused{:});
824 825
                        c = colorbar; ylabel(c,'Magnitude in dB')
                    case 'sphere'
826
                        surf(this.dirCoord,this.dirCoord.r,freqData_dB(idxF,:),unused{:});
827 828 829
                        c = colorbar;ylabel(c,'Magnitude in dB')
                    case 'phase'
                        phase = unwrap(angle(this.getEar(sArgs.earSide).freqData(idxF,:)));
830
                        surf(this.dirCoord,freqData_dB(idxF,:),phase,unused{:});
831
                        c = colorbar;ylabel(c,'Phase in rad')
832
                end
833
                title([sArgs.earSide ', f = ' num2str(round(this.freqVector(idxF)/100)/10) ' kHz'])
834 835
            end
            
836
            function display(this)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
                if numel(this) == 0
                    disp('****** nothing to do, empty object ******')
                elseif numel(this) > 1
                    disp(['size(' inputname(1) ') = [' num2str(size(this))  ']; (for full display, pick a single instance)']);
                else
                    this.displayLineStart
                    this.disp
                    
                    dir = num2str(this.nDirections,5);
                    stringD = [dir ' Directions (Type = ' this.mTF_type ')'];
                    
                    middleLine = this.LINE_MIDDLE;
                    middleLine(3:(2+length(stringD))) = stringD;
                    fprintf([middleLine '\n']);
                end
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
                
            end
            
            function disp(this)
                
                disp@itaAudio(this)
                
                sphType = [this.sphereType repmat(' ',1,9-length(this.sphereType))];
                string = ['      Sphere Type   = ' sphType ];
                
                % this block adds the class name
                classnamestring = ['^--|' mfilename('class') '|'];
                fullline = repmat(' ',1,this.LINE_LENGTH);
                fullline(1:numel(string)) = string;
                startvalue = length(classnamestring);
                fullline(length(fullline)-startvalue+1:end) = classnamestring;
                disp(fullline);
                
                % end line
871 872
            end
            
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
            %% Ramonas' Functions
            
            function varargout = ITD(varargin)
                % -----------------------------------------------------------------
                % See methods and options below
                % -----------------------------------------------------------------
                % Input
                sArgs  = struct('pos1_data','itaHRTF', 'method', 'phase_delay', 'filter' , [200 2000] ,...
                    'thresh','10dB','energy',true,'centroid',false,'reshape',true);
                [this,sArgs]   = ita_parse_arguments(sArgs,varargin);
                
                if numel(this.theta_Unique)>1
                    ita_verbose_info(' More than one elevation in this object!', 0);
                    %this = this.sphericalSlice('theta_deg',90);
                end
                
                % -------------------------------------------------------------
                % methods: phase_delay, xcorr, threshold
                % -------------------------------------------------------------
                % Katz, Brian F. G.; Noisternig, Markus (2014): A comparative
                % study of interaural time delay estimation methods. In: The
                % Journal of the Acoustical Society of America 135 (6), S.
                % 3530-3540.
                
                switch sArgs.method
                    case 'phase_delay'
                        % .....................................................
                        % options: filter
                        % .....................................................
                        [~,tau] = ita_time_shift(this,'0dB');
                        [~,idxMin] = max(tau); % shift of trackLength/3 seems to be good for plotting - No idea
                        thisC = ita_time_shift(this,tau(idxMin)-this.trackLength/3,'time');
                        
                        if ischar(sArgs.filter) % frequency dependent
                            p1 = thisC.freqData(:,1:2:thisC.dimensions);
                            p2 = thisC.freqData(:,2:2:thisC.dimensions);
                            
                            phase1 = unwrap(angle(p1));
                            phase2 = unwrap(angle(p2));
                            phasenDiff = phase1 - phase2;
                            
                            ITD = phasenDiff./(2*pi*repmat(thisC.freqVector,1,size(phase1,2)));
                        else % averaged
                            phase = unwrap(angle(thisC.freqData));
                            t0_freq = bsxfun(@rdivide, phase,2*pi*thisC.freqVector);
                            t0_freq = t0_freq(~isnan(t0_freq(:,1)),:);
                            t0_mean = mean(t0_freq(unique(thisC.freq2index(sArgs.filter(1)):thisC.freq2index(sArgs.filter(2))),:)); %mean is smoother than max; lower freq smooths also the result
                            ITD =  t0_mean(thisC.EarSide == 'L') - t0_mean(thisC.EarSide == 'R');
                        end
                    case 'xcorr'
                        % .....................................................
                        % options: energy, filter, centroid
                        % .....................................................
                        if ischar(sArgs.filter),  thisF = this; % FILTER
                        else thisF = ita_mpb_filter(this,[sArgs.filter(1), sArgs.filter(2)]);
                        end
                        
                        % Interpolation for smoother curves
                        xUpSample = 5;
                        SR = xUpSample*thisF.samplingRate;
                        tV_Interp = 0:1/SR:thisF.trackLength;
                        timeData_Interp = interp1(thisF.timeVector,thisF.timeData,tV_Interp,'spline');
                        
                        % case: energy
                        if sArgs.energy ,timeData_Interp  = timeData_Interp.^2;
                        end
                        
                        idxL = find(thisF.EarSide== 'L'); idxR = find(thisF.EarSide == 'R');
                        corrIR = zeros(2*numel(tV_Interp)-1,this.nDirections);
                        for idxDir = 1:thisF.nDirections
                            corrIR(:,idxDir) =  xcorr(timeData_Interp(:,idxL(idxDir)),timeData_Interp(:,idxR(idxDir)));
                        end
                        
                        if ~sArgs.centroid      % max
                            [~, idxMax] =  max(abs(corrIR));
                            ITD  = (numel(tV_Interp)- idxMax)/SR;
                        else                    % centroid
                            tV = 0:1/SR:(2*numel(tV_Interp)-2)/SR;
                            C = sum(bsxfun(@times,abs(corrIR),tV'))./sum(abs(corrIR));
                            ITD = thisF.trackLength-C;
                        end
                    case 'threshold'
                        % .....................................................
                        % options: filter
                        % .....................................................
                        if ischar(sArgs.filter),  thisF = this; % FILTER
                        else thisF = ita_mpb_filter(this,[sArgs.filter(1), sArgs.filter(2)]);
                        end
                        
                        [~,tau] = ita_time_shift(thisF,sArgs.thresh);
                        ITD = tau(thisF.EarSide== 'L')-tau(thisF.EarSide == 'R');
                end
                
                % Reshape the ITD in a matrix where the column defines the phi-
                % direction and the row the theta-direction
                if sArgs.reshape && ~ischar(sArgs.filter)
                    nPhi    = numel(this.phi_Unique);
                    nTheta  = numel(this.theta_Unique);
                    if nPhi*nTheta == this.nDirections
                        sITD = reshape(ITD,nTheta,nPhi);
                    else
                        ita_verbose_info(' ITD could not be reshape: nPhi*nTheta ~= nDir!', 0);
                        sITD = ITD;
                    end
                else
                    sITD = ITD;
                end
                
                varargout{1} = sITD;
                if nargout == 2, varargout{2} = rad2deg(this.phi_Unique('stable'));
983 984
                end
            end
985 986 987 988 989 990
            
            function t0 = meanTimeDelay(this,varargin)
                %-- OLD -------------------------------------------------------
                [~,tau] = ita_time_shift(this,'0dB');
                [~,idxMin] = max(tau); % shift of trackLength/3 seems to be good for plotting - No idea
                thisC = ita_time_shift(this,tau(idxMin)-this.trackLength*0.33,'time');
991
                
992 993 994 995 996 997 998 999 1000 1001 1002 1003
                phase = unwrap(angle(thisC.freqData));
                t0_freq = bsxfun(@rdivide, phase,2*pi*thisC.freqVector);
                %t0_mean = t0_freq(thisC.freq2index(1000),:);
                t0_mean = mean(t0_freq(thisC.freq2index(500):thisC.freq2index(2000),:)); %mean is smoother than max; lower freq smooths also the result
                if nargin==2
                    if strcmpi(varargin{1},'L')
                        t0 =  t0_mean(thisC.EarSide == 'L');
                    elseif strcmpi(varargin{1},'R')
                        t0 =  t0_mean(thisC.EarSide == 'R');
                    end
                else t0 =  t0_mean;
                end
1004
            end
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
            
            function varargout = calcDTF(this)
                if ~strcmpi(this.TF_type,'DTF')
                    [DTF,comm] = test_rbo_DTF_itaHRTF(this);
                    
                    varargout{1} =DTF;
                    if nargout ==2,varargout{2} = comm;end
                end
            end
            
1015 1016 1017 1018 1019 1020
            % function this = interp(varargin)
            %
            % Function to calculate HRTFs for arbitrary field points using a N-th order
            % spherical harmonics (SH) interpolation / range extrapolation, as described in [1],
            % SH expansion coefficients are calculated by means of a least-squares
            % approach with Tikhonov regularization
1021
            %
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            % Function may also be used for spatial smoothing of HRTF using
            % the method described in [2]. As field input use the original
            % measurement grid and set the desired order of the SH matrix /
            % truncation order.
            %
            % INPUT:
            %     varargin{1}      ...  itaCoordinates object (required)
            %                           varargin{1}.phi: desired azimuth angles for HRTF interpolation [0 2*pi)
            %                           varargin{1}.theta: desired zenith angles for HRTF interpolation [0 pi]
            %                           varargin{1}.r: (optional) desired radius used for range extrapolation in [m],
            %                                    set to 1 if no range extrapolation is required
            %     order            ...  order of spherical harmonics matrix (default: 50)
            %     epsilon          ...  regularization coefficient (default: 1e-8)
            %
            % OUTPUT:
            %     itaHRTF object
            %     .freqData: interpolated / range-extrapolated HRTFs for defined field points
            %     .timeData: interpolated / range-extrapolated HRIRs for defined field points
            %     .dirCoord: itaCoordinates object
            %
            % Required: SphericalHarmonics functions of ITA Toolbox
            %
            % [1] Pollow, Martin et al., "Calculation of Head-Related Transfer Functions
            %     for Arbitrary Field Points Using Spherical Harmonics Decomposition",
            %     Acta Acustica united with Acustica, Volume 98, Number 1, January/February 2012,
            %     pp. 72-82(11)
            %
            % Author:  Florian Pausch <fpa@akustik.rwth-aachen.de>
            % Version: 2016-02-05
            
            
            
            
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            function this = smooth_linphase(this,varargin)
                % function this = smooth_linphase(varargin)
                %
                % Function to smooth HRTFs in the frequency domain based on the method proposed by Rasumov et al. in [3], complex smoothing
                % is done via ita_smooth()
                %
                % Parameters:
                % 'f_lin'       ... frequency above which the phase is approximated by a linear phase term
                % 'smoothtype'  ... smoothing method, 'LinTimeSec', 'LinTimeSamp', 'LinFreqHertz', 'LinFreqBins',
                %                                     'LogFreqOctave1' (default), 'LogFreqOctave2' or 'Gammatone'
                % 'windowWidth' ... bandwidth of filter (depends on smoothtype - type help ita_smooth), e.g. 1/9 (default) in frequency domain
                % 'dataTypes'   ... defines on which data type smoothing is applied, 'Real', 'Complex', 'Abs' (default), 'GDelay', 'Abs+GDelay'
                %                                                                    or 'Abs+Phase' (type help ita_smooth)
                %
                % [2] Rasumow, Eugen et al, "Smoothing individual head-related transfer functions in the frequency and spatial domains"
                % The Journal of the Acoustical Society of America, 135, 2012-2025 (2014), DOI:http://dx.doi.org/10.1121/1.4867372
                %
                % Author:  Florian Pausch <fpa@akustik.rwth-aachen.de>
                % Version: 2015-11-04
                
                sArgs         = struct('f_lin',5000,'smoothtype','LogFreqOctave1','windowWidth',1/9,'dataTypes','Abs');
                sArgs         = ita_parse_arguments(sArgs,varargin,1);
                f_lin         = sArgs.f_lin;                       % frequency above which the phase is approximated by a linear phase term (f_lin=5000, default)
                
                % parameters for ita_smooth()
                smoothtype    = sArgs.smoothtype;                  % smoothing method, 'LinTimeSec', 'LinTimeSamp', 'LinFreqHertz', 'LinFreqBins',
                % 'LogFreqOctave1' (default), 'LogFreqOctave2' or 'Gammatone'
                windowWidth   = sArgs.windowWidth;                 % bandwidth of filter (depends on smoothtype - type help ita_smooth), e.g. 1/9 (default) in frequency domain
                dataTypes     = sArgs.dataTypes;                   % 'Real', 'Complex', 'Abs' (default), 'GDelay', 'Abs+GDelay' or 'Abs+Phase' (type help ita_smooth)
                
                %% Step I: Estimation of the delay of the HRTF peak and the resulting linear phase
                %             HRTF_env      = ita_envelope(this);                      % calculate the envelope of the HRIR
                tau           = ita_start_IR(ita_mpb_filter(this,[200,10000]),'threshold',0,'correlation',true);
                tau           = tau/this.samplingRate;
                
                linphase      = exp( -1i*2*pi .* repmat(this.freqVector(this.freq2index(f_lin)+1:end)',1,this.nChannels).*...
                    repmat(tau,length(this.freqVector(this.freq2index(f_lin)+1:end)),1) );        % linear phase of evaluated HRTF set
                
                %% Step II: Linearize phase for f >= f_lin
                this.freqData = abs(this.freqData) .* [exp( 1i*angle(this.freqData(1:this.freq2index(f_lin),:)) );...
                    linphase ] ;
                
                %% Step III: Remove delay tau
                this          = ita_time_shift(this,-tau,'samples');
                
                %% Step IV: Complex smoothing
                this_smooth   = ita_smooth(this,smoothtype,windowWidth,dataTypes);
                this.timeData = this_smooth.timeData;
                
                %% Step V: Reconstruct delay tau
                this          = ita_time_shift(this,tau,'samples');
                
1107 1108
            end
            
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
            function thisS = smooth_spatial(this, varargin)
                % function this = smooth_spatial(varargin)
                %
                % Function to smooth HRTFs in the spatial domain as shown in [3]
                %
                % Parameters
                %     'N'              ...  order of truncated spherical harmonics matrix (default: 4)
                %                           a lower order results in less spatial detail/high-frequency detail
                %                           in smoothed HRTF data set
                %     'epsilon'        ...  regularization coefficient (default: 1e-8)
                %
                % Required: SphericalHarmonics functions of ITA Toolbox
                %
                % [3] Romigh, G.D.; Brungart, D.S.; Stern, R.M.; Simpson, B.D., "Efficient Real Spherical Harmonic Representation of Head-Related
                % Transfer Functions," in Selected Topics in Signal Processing, IEEE Journal of , vol.9, no.5, pp.921-930, Aug. 2015
                % doi: 10.1109/JSTSP.2015.2421876
                %
                % Author:  Florian Pausch <fpa@akustik.rwth-aachen.de>
                % Version: 2016-02-12
                
                tic;
                
                sArgs   = struct('N',4,'epsilon',1e-8,'type','min');
                sArgs   = ita_parse_arguments(sArgs,varargin);
                N       = sArgs.N;
                epsilon = sArgs.epsilon;
                
                Nmeas   = floor(sqrt(this.nDirections/4)-1); % SH order of measurement grid (assuming equiangular grid)
                
                if N>Nmeas
                    fprintf('[\b[itaHRTF.smooth_spatial] Chosen SH order is too high. Order is set to maximum SH order of measurement grid!]\b\n')
                    fprintf('[\b[itaHRTF.smooth_spatial] N = Nmeas = %s (assuming equiangular sampling)]\b\n',num2str(Nmeas))
                    N=Nmeas;
                end
                
                %% Weighting + regularization
                regweights          = ita_sph_degreeorder2linear(0:Nmeas,0);      % construct vector of length (Nmeas+1) regularization weights
                regweights_rep      = zeros(sum(2*(0:Nmeas)'+1),1);
                regweights_rep(1)   = regweights(1);
                cntr                = 2;
                for n=1:Nmeas % repeat regularization weights to get a (Nmeas+1)^2 x 1 vector (TODO: more elegant solution needed)
                    nTimes                              = 2*n+1;
                    regweights_rep(cntr:cntr+nTimes-1)  = regweights(n+1)*ones(nTimes,1);
                    cntr                                = cntr + nTimes;
                end
                
                [~, vWeights]   = this.dirCoord.spherical_voronoi;         % calculate weighting coefficients (Voronoi surfaces <-> measurement points)
                W               = diag(vWeights);                                      % diagonal matrix containing weights
                D               = diag(regweights_rep);                                % decomposition order-dependent Tikhonov regularization
                
1159
                Y               = ita_sph_base(this.dirCoord,Nmeas,'real');   % calculate real-valued SHs using the measurement grid (high SH-order)
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                
                %% Calculate spatially smoothed HRTF data set
                hrtf_smoo_wo_ITD = zeros(this.nBins,2*this.dirCoord.nPoints); % init.: columns: LRLRLR...
                for ear=1:2
                    % decompose logarithmic magnitude spectra of measured HRTF set into SH basis functions, as done in [3]
                    
                    switch sArgs.type
                        case 'complex'
                            freqData_temp   = this.freqData(:,ear:2:end);
                            a0              = (Y.'*W*Y + epsilon*D) \ Y.'*W * freqData_temp.';     % calculate weighted SH coefficients using a decomposition order-dependent Tikhonov regularization
                        otherwise
                            freqData_dB     = this.freqData_dB;
                            freqData_temp   = freqData_dB(:,ear:2:end);
                            a0              = (Y.'*W*Y + epsilon*D) \ Y.'*W * freqData_temp.';     % calculate weighted SH coefficients using a decomposition order-dependent Tikhonov regularization
                    end
                    Yest        = Y(:,1:(N+1)^2);                                    % eat first (N+1)^2 SH basis functions
                    a0_trunc    = a0(1:(N+1)^2,:);                               % reduce number of coefficients
                    hrtf_smoo_wo_ITD(:,ear:2:end) = (Yest*a0_trunc).';        % spatially smoothed HRTF due to reduction of SH decomposition order
                end
                
                %             % calculate magnitude spectrum and add original HRIR delays as linear phase component
                %             linphase = exp( -1i*2*pi * repmat(this.freqVector,1,this.nChannels).*...
                %                                        repmat(idxIRs_orig/this.samplingRate,this.nBins,1) );
                %             thisS = this;
                %             thisS.freqData = 10.^(hrtf_smoo_wo_ITD/20) .* linphase;
                
                
1187
                switch sArgs.type
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
                    case 'min'
                        this_minphase   = ita_minimumphase(this);
                        idxIRs_orig     = ita_start_IR(ita_mpb_filter(this,[200,2000]),'threshold',0,'correlation',true);
                        deltaT          = idxIRs_orig./this_minphase.samplingRate*1.3;
                        if min(deltaT)  < 0 % no negative shifts
                            deltaT      = deltaT-min(deltaT);
                        end
                        
                        thisMin         = this; %smoothed HRTF
                        thisMin.freqData= 10.^(hrtf_smoo_wo_ITD/20);
                        thisS           = test_rbo_FIR_lagrange_delay(deltaT,thisMin);
                        
                        %thisS           = ita_mpb_filter(thisS,[200 20000]);
                    case 'old'
                        oldPhase        = angle(this.freqData);% rbo test
                        thisS           = itaHRTF(this);
                        thisS.freqData  = 10.^(hrtf_smoo_wo_ITD/20) .* exp(1i.*oldPhase); %rbo test
                        
                        %thisS           = ita_mpb_filter(thisS,[200 20000]);
1207
                    case 'complex'
1208 1209
                        thisS = this;
                        thisS.freqData  = hrtf_smoo_wo_ITD; %rbo test
1210
                end
1211 1212 1213 1214 1215
                
                t2 = toc;
                
                fprintf(['[itaHRTF.smooth_spatial] Calculation finished after ',num2str(round(t2*100/60)/100),' min\n'])
                
1216 1217
            end
            
1218
            %% Plot
1219
            
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            function plot_ITD(varargin)
                % init
                sArgs  = struct('pos1_data','itaHRTF', 'method', 'phase_delay', 'filter' , [200 2000] ,...
                    'thresh','10dB','energy',true,'centroid',false,'reshape',true,...
                    'theta_deg',[],'plot_type','color');
                [this,sArgs]   = ita_parse_arguments(sArgs,varargin);
                
                % calculate ITD
                if ~isempty(sArgs.theta_deg)
                    thisS = this.sphericalSlice('theta_deg',sArgs.theta_deg);
                else thisS = this;
                end
                
                thetaC_deg  = rad2deg(thisS.theta_Unique);
1234
                phiC_deg    = sort(mod(rad2deg(thisS.phi_Unique),360));
1235 1236
                nTheta      = numel(thetaC_deg);
                nPhi        = numel(phiC_deg);
1237
                coord       = reshape(mod(thisS.dirCoord.phi_deg,360),nTheta,nPhi);
1238
                [~, idxC]   = sort(coord,2);
1239
                [~, idxCT]  = uniquetol(thisS.dirCoord.theta_deg,eps);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
                
                ITD    = thisS.ITD('method',...
                    sArgs.method, 'filter' , sArgs.filter , 'thresh',sArgs.thresh,...
                    'energy',sArgs.energy,'centroid',sArgs.centroid,'reshape',true);
                
                ITD_S = ITD;
                for idxT = 1:nTheta
                    ITD_S(idxT,:) = ITD(idxT,idxC(idxT,:));
                end
                ITD_SS = ITD_S(idxCT(1:nTheta),:);
                
                %..............................................................
                % create figure
                position = get(0,'ScreenSize');
                figure
                set(gcf,'Position',[10 50 position(3:4)*0.85]);
                if strcmp(sArgs.method,'phase_delay') && ischar(sArgs.filter) % frequency dependent ITD
                    pcolor(phiC_deg,this.freqVector,ITD)
                    title(strcat('\phi = ', num2str(round(thetaC_deg)), '�'))
                    shading flat
                    colorbar
                    
                    ylabel('frequency');
                    ylim([this.freqVector(1)  this.freqVector(end)])
                    xlabel('azimuth angle');
                    set(gca, 'YScale', 'log');
1266
                    
1267 1268
                    [xticks, xlabels] = ita_plottools_ticks('log');
                    set(gca,'yTick',xticks,'yticklabel',xlabels)
1269
                    
1270 1271
                    cMax = max(max(ITD(2:end,:)));
                    cMin = abs(min(min(ITD(2:end,:))));
1272
                    
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
                    if cMax>cMin,caxis([-cMax cMax]);
                    else caxis([-cMin cMin]);
                    end
                elseif strcmp(sArgs.plot_type,'color') && numel(sArgs.theta_deg)~= 1
                    % angle dependent ITD (theta & phi)
                    pcolor(thetaC_deg, phiC_deg,ITD_SS'*1000)
                    shading flat
                    colorbar
                    cMax = max(abs(ITD_SS(:)));
                    caxis([-cMax cMax]*1100);
                    grid on
                    set(gca,'layer','top')
                    xlabel('Zenith Angle in Degree');
                    ylabel('Azimuth Angle in Degree');
                    set(gca,'xTick',0:15:360,'yTick',0:30:360)
                    title('ITD in Milliseconds')
                elseif strcmp(sArgs.plot_type,'line') || numel(sArgs.theta_deg)== 1
                    % angle dependent ITD (phi)
                    plot(phiC_deg,ITD_SS*1000)
                    yMax = max(abs(ITD_SS(:)));
                    ylim([-yMax yMax]*1100);
                    grid on
                    set(gca,'layer','top')
                    xlabel('Azimuth Angle in Degree');
                    ylabel('ITD in Milliseconds');
                    set(gca,'xTick',0:30:360)
                    legend(ita_sprintf('%i�', round(thetaC_deg)))
                end
1301 1302
            end
            
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
            function plot_freqSlice(varargin)
                % init
                sArgs       = struct('pos1_data','itaHRTF', 'earSide', 'L','plane','horizontal','axes_handle',gca);
                [this,sArgs]= ita_parse_arguments(sArgs,varargin);
                ah          = sArgs.axes_handle;
                
                phiC_deg    = rad2deg(unique(round(this.phi_Unique*100)/100));
                thetaC_deg  = rad2deg(unique(round(this.theta_Unique*100)/100));
                
                % create slice
                if numel(thetaC_deg)>1 && numel( phiC_deg)>1
                    ita_verbose_info(' More than one elevation in this object!', 0);
                    if strcmp(sArgs.plane,'horizontal')
                        thetaC_deg  = 90;
                        thisC       = this.sphericalSlice('theta_deg', thetaC_deg);
                    elseif strcmp(sArgs.plane,'median')
                        phiC_deg    = 0;
                        thisC       = this.sphericalSlice('phi_deg', phiC_deg);
                    end
                else thisC = this;
                end
                
                % multi defined coordinates
                if numel(phiC_deg)<thisC.dirCoord.nPoints && numel(thetaC_deg) ==1
                    ita_verbose_info(' Coordinates are not unique!', 0);
                    [~,ia] = unique(thisC.dirCoord.phi,'stable');
                    thisC = thisC.direction(ia);
                elseif numel(thetaC_deg)<thisC.dirCoord.nPoints && numel(phiC_deg) ==1
                    ita_verbose_info(' Coordinates are not unique!', 0);
                    [~,ia] = unique(thisC.dirCoord.theta,'stable');
                    thisC = thisC.direction(ia);
                end
                
                % sort phi from lowest to highest
                if  numel( phiC_deg)>1
                    [~,idxPhiS] = sort(thisC.dirCoord.phi_deg);
                    thisCs = thisC.direction(idxPhiS);
                    yticks = round(min(rad2deg(thisCs.phi_Unique))/10)*10:30:round(max(rad2deg(thisCs.phi_Unique))/10)*10;
                else
                    [~,idxPhiS] = sort(thisC.dirCoord.theta_deg);
                    thisCs = thisC.direction(idxPhiS);
                    yticks = round(min(rad2deg(thisCs.theta_Unique))/10)*10:30: round(max(rad2deg(thisCs.theta_Unique))/10)*10;
                end
                
                % theta or phi slice
                earSidePlot = sArgs.earSide;
                if numel(phiC_deg)>1,
                    xData = phiC_deg;
1351
                    strTitle =[ earSidePlot ' ear, \theta = ' num2str(round(thetaC_deg)) '�'];
1352 1353 1354
                    strXlabel = '\phi in Degree';
                else
                    xData = thetaC_deg;
1355
                    strTitle =[earSidePlot ' ear, \phi = ' num2str(round(phiC_deg)) '�'];
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                    strXlabel = '\theta in Degree';
                end
                
                % Plot properties
                %             position = get(0,'ScreenSize');
                %             figure
                %             set(gcf,'Position',[10 50 position(3:4)*0.85]);
                
                idxfMax = find(this.freqVector>2e4,1,'first');
                if isempty(idxfMax), idxfMax = this.nBins; end
                fMax = thisCs.freqVector(idxfMax);
                [tick, lab] = ita_plottools_ticks('log');
                
                data_dB= thisCs.freqData_dB;
                cMax = max(max(data_dB(2:idxfMax,:)));
                cMin = min(min(data_dB(2:idxfMax,:)))*0.5;
                
                pcolor(ah, thisCs.freqVector,xData,data_dB(:,thisCs.EarSide == earSidePlot)');
                [xticks, xlabels] = ita_plottools_ticks('log');
                
                set(ah,'xTick',xticks,'xticklabel',xlabels)
                set(ah,'yTick',yticks,'xticklabel',yticks)
                
                caxis([cMin cMax]);
                set(ah, 'XScale', 'log')
                
                title(strTitle)
                
                shading interp
                cb  = colorbar;
                zlab = get(cb,'ylabel');
                set(zlab,'String','Level in [dB]');
                
                set(ah,'xtick',tick,'xticklabel',lab)
                xlabel('Frequency in Hertz');xlim([thisCs.freqVector(2) fMax ]);
                ylabel(strXlabel);
                
                grid on;set(ah,'layer','top')
1394 1395
            end
            
1396 1397 1398 1399
            function plot_timeSlice(varargin)
                % init
                sArgs       = struct('pos1_data','itaHRTF', 'earSide', 'L','plane','horizontal');
                [this,sArgs]= ita_parse_arguments(sArgs,varargin);
1400
                
1401 1402
                phiC_deg    = rad2deg(unique(round(this.phi_Unique*100)/100));
                thetaC_deg  = rad2deg(unique(round(this.theta_Unique*100)/100));
1403
                
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
                % create slice
                if numel(thetaC_deg)>1 && numel( phiC_deg)>1
                    ita_verbose_info(' More than one elevation in this object!', 0);
                    if strcmp(sArgs.plane,'horizontal')
                        thetaC_deg  = 90;
                        thisC       = this.sphericalSlice('theta_deg', thetaC_deg);
                    elseif strcmp(sArgs.plane,'median')
                        phiC_deg    = 0;
                        thisC       = this.sphericalSlice('phi_deg', phiC_deg);
                    end
                else thisC = this;
                end
                
                % multi defined coordinates
                if numel(phiC_deg)<thisC.dirCoord.nPoints && numel(thetaC_deg) ==1
                    ita_verbose_info(' Coordinates are not unique!', 0);
                    [~,ia] = unique(thisC.dirCoord.phi,'stable');
                    thisC = thisC.direction(ia);
                elseif numel(thetaC_deg)<thisC.dirCoord.nPoints && numel(phiC_deg) ==1
                    ita_verbose_info(' Coordinates are not unique!', 0);
                    [~,ia] = unique(thisC.dirCoord.theta,'stable');
                    thisC = thisC.direction(ia);
                end
                
                % sort phi from lowest to highest
                if  numel( phiC_deg)>1
                    [~,idxPhiS] = sort(thisC.dirCoord.phi_deg);
                    thisCs = thisC.direction(idxPhiS);
                    yticks = round(min(rad2deg(thisCs.phi_Unique))/10)*10:30:round(max(rad2deg(thisCs.phi_Unique))/10)*10;
                else
                    [~,idxPhiS] = sort(thisC.dirCoord.theta_deg);
                    thisCs = thisC.direction(idxPhiS);
                    yticks = round(min(rad2deg(thisCs.theta_Unique))/10)*10:30: round(max(rad2deg(thisCs.theta_Unique))/10)*10;
                end
1438
                
1439 1440 1441 1442
                % theta or phi slice
                earSidePlot = sArgs.earSide;
                if numel(phiC_deg)>1,
                    xData = phiC_deg;
1443
                    strTitle =[ earSidePlot ' ear, \theta = ' num2str(round(thetaC_deg)) '�'];
1444 1445 1446
                    strXlabel = '\phi in Degree';
                else
                    xData = thetaC_deg;
1447
                    strTitle =[earSidePlot ' ear, \phi = ' num2str(round(phiC_deg)) '�'];
1448
                    strXlabel = '\theta in Degree';
1449
                end
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                
                % Plot properties
                position = get(0,'ScreenSize');
                figure
                set(gcf,'Position',[10 50 position(3:4)*0.85]);
                
                idxfMax = find(this.freqVector>2e4,1,'first');
                if isempty(idxfMax), idxfMax = this.nBins; end
                fMax = thisCs.freqVector(idxfMax);
                [tick, lab] = ita_plottools_ticks('log');
                
                data_dB= thisCs.timeData;
                cMax = max(max(data_dB(2:idxfMax,:)));
                cMin = min(min(data_dB(2:idxfMax,:)))*0.5;
                
                pcolor(thisCs.timeVector,xData,data_dB(:,thisCs.EarSide == earSidePlot)');
                [xticks, xlabels] = ita_plottools_ticks('log');
                
                set(gca,'xTick',xticks,'xticklabel',xlabels)
                set(gca,'yTick',yticks,'xticklabel',yticks)
                
                caxis([cMin cMax]);
                set(gca, 'XScale', 'log')
                
                title(strTitle)
                
                shading interp
                cb  = colorbar;
                zlab = get(cb,'ylabel');
                set(zlab,'String','Level in [dB]');
                
                set(gca,'xtick',tick,'xticklabel',lab)
                xlabel('Frequency in Hertz');xlim([thisCs.freqVector(2) fMax ]);
                ylabel(strXlabel);
                
                grid on;set(gca,'layer','top')
1486
            end
1487 1488
            
            
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        end
        methods(Hidden = true)
            function sObj = saveobj(this)
                % Called whenever an object is saved
                % have to get save objects for both base classes
                
                % Both options doesn't work at the moment...
                this.mCoordSave = this.dirCoord.sph;
                this.mChNames =  char(this.channelNames);
                
                sObj = saveobj@itaAudio(this);
                
                % Copy all properties that were defined to be saved
                propertylist = itaHRTF.propertiesSaved;
                for idx = 1:numel(propertylist)
                    sObj.(propertylist{idx}) = this.(propertylist{idx});
1505 1506
                end
            end
1507 1508 1509 1510 1511
        end
        
        methods(Static)
            function this = loadobj(sObj)
                this = itaHRTF(sObj);
1512 1513
            end
            
1514 1515
            function result = propertiesEarSide
                result = {'L','R'};
1516 1517
            end
            
1518 1519
            function result = propertiesSaved
                result = {'EarSide','sphereType','TF_type','mCoordSave','mChNames'};
1520 1521
            end
            
1522 1523
            function result = oldPropertiesSaved
                result = {'EarSite','sphereType','TF_type','mCoordSave','mChNames'};
1524 1525
            end
            
1526 1527
            function result = propertiesLoad
                result = {'mEarSide','mSphereType','mTF_type','mCoordSave','mChNames'};
1528 1529
            end
            
1530 1531
            function result = propertiesTF_type
                result = {'HRTF', 'DTF','Recording', 'Common'};
1532 1533
            end
            
1534 1535
            function result = propertiesSphereType
                result = {'cap', 'ring','full','undefined'};
rbo's avatar
rbo committed
1536
            end         
1537 1538
            
        end
rbo's avatar
rbo committed
1539 1540
end