Commit 0aebe66e authored by Philipp Schäfer's avatar Philipp Schäfer
Browse files

ART - ODESolver

- bugfix regarding export
parent 5d0734dc
......@@ -35,13 +35,13 @@ namespace ITAPropagationPathSim
namespace ODESolver
{
//! Converts a wavefront normal to a slowness vector for given altitude in stratified atmosphere
VistaVector3D ITA_PROPAGATION_PATH_SIM_API NormalToSlowness(const VistaVector3D& n, const double& rz, const ITAGeo::CStratifiedAtmosphere& atmosphere);
ITA_PROPAGATION_PATH_SIM_API VistaVector3D NormalToSlowness(const VistaVector3D& n, const double& rz, const ITAGeo::CStratifiedAtmosphere& atmosphere);
//! Converts a slowness vector to a wavefront normal
/**
* The wavefront normal has the same direction as the slowness vector (n = s / norm(s))
*/
VistaVector3D ITA_PROPAGATION_PATH_SIM_API SlownessToNormal(const VistaVector3D& s);
ITA_PROPAGATION_PATH_SIM_API VistaVector3D SlownessToNormal(const VistaVector3D& s);
//! Solves the ordinary differential equations (ODEs) of ray propagation in a stratified medium using the Euler method
......@@ -51,7 +51,7 @@ namespace ITAPropagationPathSim
* @param[in] dt Time step for integration
* @param[in] atmosphere Stratified atmosphere
*/
void ITA_PROPAGATION_PATH_SIM_API Euler(VistaVector3D& r, VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere);
ITA_PROPAGATION_PATH_SIM_API void Euler(VistaVector3D& r, VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere);
//! Solves the ordinary differential equations (ODEs) of ray propagation in a stratified medium using the Euler method
......@@ -69,7 +69,7 @@ namespace ITAPropagationPathSim
* The differential equations are taken from the slowness vector approach described in:
* A. D. Pierce. Acoustics: An Introduction to Its Physical Principles and Applications, volume 20. McGraw-Hill New York, 1981.
*/
void ITA_PROPAGATION_PATH_SIM_API Euler(const VistaVector3D& r, const VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere, VistaVector3D& rNew, VistaVector3D& sNew);
ITA_PROPAGATION_PATH_SIM_API void Euler(const VistaVector3D& r, const VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere, VistaVector3D& rNew, VistaVector3D& sNew);
//! Solves the ordinary differential equations (ODEs) of ray propagation in a stratified medium using the classical Runge-Kutta method (RK4)
......@@ -79,7 +79,7 @@ namespace ITAPropagationPathSim
* @param[in] dt Time step for integration
* @param[in] atmosphere Stratified atmosphere
*/
void ITA_PROPAGATION_PATH_SIM_API RungeKutta(VistaVector3D& r, VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere);
ITA_PROPAGATION_PATH_SIM_API void RungeKutta(VistaVector3D& r, VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere);
//! Solves the ordinary differential equations (ODEs) of ray propagation in a stratified medium using the classical Runge-Kutta method (RK4)
......@@ -97,7 +97,7 @@ namespace ITAPropagationPathSim
* The differential equations are taken from the slowness vector approach described in:
* A. D. Pierce. Acoustics: An Introduction to Its Physical Principles and Applications, volume 20. McGraw-Hill New York, 1981.
*/
void ITA_PROPAGATION_PATH_SIM_API RungeKutta(const VistaVector3D& r, const VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere, VistaVector3D& rNew, VistaVector3D& sNew);
ITA_PROPAGATION_PATH_SIM_API void RungeKutta(const VistaVector3D& r, const VistaVector3D& s, const double& dt, const ITAGeo::CStratifiedAtmosphere& atmosphere, VistaVector3D& rNew, VistaVector3D& sNew);
}
}
}
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment