ITAThirdOctaveFIRFilterGenerator.cpp 4.54 KB
Newer Older
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
1
2
3
4
5
6
7
8
9
10
#include <ITAThirdOctaveFIRFilterGenerator.h>

#include <ITAConstants.h>
#include <ITAFastMath.h>
#include <ITANumericUtils.h>
#include <ITAStringUtils.h>
#include <ITAThirdOctaveMagnitudeSpectrum.h>

#include <spline.h>

11
12
using namespace ITABase;

Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
13
14
15
16
17
18
19
20
21
22
CITAThirdOctaveFIRFilterGenerator::CITAThirdOctaveFIRFilterGenerator( const double dSampleRate, const int iFilterLength )
	: m_dSamplerate( dSampleRate )
	, m_iFilterLength( iFilterLength )
	, m_ypp( nullptr )
	, m_pfInputFreqs( nullptr )
	, m_pfInputData( nullptr )
	, m_pfBuf1( nullptr )
	, m_pfBuf2( nullptr )
	, m_bWindow( false )
{
23
	m_iInputFreqs = CThirdOctaveGainMagnitudeSpectrum::GetNumBands() + 2;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
24
25
	m_pfInputFreqs = fm_falloc( m_iInputFreqs, true );
	m_pfInputFreqs[ 0 ] = 0;	// Left margin
26
27
	for( int i = 0; i < CThirdOctaveGainMagnitudeSpectrum::GetNumBands(); i++ )
		m_pfInputFreqs[ i + 1 ] = CThirdOctaveGainMagnitudeSpectrum::GetCenterFrequencies()[ i ];
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
	m_pfInputFreqs[ m_iInputFreqs - 1 ] = ( float ) dSampleRate / 2;	// Right margin: Nyquist frequency

	m_pfInputData = fm_falloc( m_iInputFreqs, true );

	// DFT frequency bandwidth
	m_fDeltaF = ( float ) dSampleRate / ( float ) iFilterLength;

	// Number of symetric DFT coefficients;
	m_iDFTCoeffs = iFilterLength / 2 + 1;

	m_pfBuf1 = fm_falloc( 2 * m_iDFTCoeffs, false );
	m_pfBuf2 = fm_falloc( iFilterLength, false );
	m_pfWindow = fm_falloc( iFilterLength, false );

	// Windowing function (Hann window)
	float c = 2 * ITAConstants::PI_F / ( float ) ( m_iFilterLength - 1 );
	for( int i = 0; i < m_iFilterLength; i++ )
	{
46
		m_pfWindow[ i ] = 0.5F * ( 1 - cos( c * i ) );
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
	}

	m_ifft.plan( ITAFFT::IFFT_C2R, iFilterLength, m_pfBuf1, m_pfBuf2 );

	m_sDumpFilename = "interpolated_magnitudes.csv";
}

CITAThirdOctaveFIRFilterGenerator::~CITAThirdOctaveFIRFilterGenerator()
{
	fm_free( m_pfInputFreqs );
	fm_free( m_pfInputData );
	fm_free( m_pfBuf1 );
	fm_free( m_pfBuf2 );
	fm_free( m_pfWindow );
}

int CITAThirdOctaveFIRFilterGenerator::GetFilterLength() const
{
	return m_iFilterLength;
}
int CITAThirdOctaveFIRFilterGenerator::GetLatency() const
{
	// Latency = Half DFT period (ceil)
	return uprdiv( m_iFilterLength, 2 );
}

double CITAThirdOctaveFIRFilterGenerator::GetAverageRuntime() const
{
	return m_sw.mean();
}

void CITAThirdOctaveFIRFilterGenerator::SetDumpFilename( const std::string& sFilename )
{
	m_sDumpFilename = sFilename;
}

83
void CITAThirdOctaveFIRFilterGenerator::GenerateFilter(const ITABase::CThirdOctaveGainMagnitudeSpectrum& oTOGainMagnitudes, float* pfFilterCoeffs, bool bMinimumPhase /*=false*/)
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
84
85
86
{
	m_sw.start();

87
	if (oTOGainMagnitudes.IsZero())
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
88
	{
89
90
		for (int i = 0; i < m_iFilterLength; i++)
			pfFilterCoeffs[i] = 0.0f;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
91
92
93
		return;
	}

94
	if (oTOGainMagnitudes.IsIdentity())
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
95
	{
96
97
98
		for (int i = 0; i < m_iFilterLength; i++)
			pfFilterCoeffs[i] = 0.0f;
		pfFilterCoeffs[int(m_iFilterLength / 2)] = 1.0f;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
99
100
		return;
	}
101

Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
102
103
	// 1st step: Interpolate the magnitudes

104
105
106
107
	m_pfInputData[0] = 1.0f;
	for (int i = 0; i < CThirdOctaveGainMagnitudeSpectrum::GetNumBands(); i++)
		m_pfInputData[1 + i] = float(oTOGainMagnitudes[i]);
	m_pfInputData[m_iInputFreqs - 1] = 0.0f; // @todo jst: check if this is good
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
108
109

	// Initialize cubic spline interpolation
110
	m_ypp = spline_cubic_set(m_iInputFreqs,
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
111
112
113
114
115
		m_pfInputFreqs,
		m_pfInputData,
		1, // Left boundary condition => 1st derivative m=0
		0,
		1, // Right boundary condition => 1st derivative m=0
116
		0);
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
117
	float fDummy;
118
	const float fScale = 1 / (float)m_iFilterLength;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
119
120

	// No DC offset, ever!
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	m_pfBuf1[0] = 0;
	m_pfBuf1[1] = 0;


	if (bMinimumPhase) {
		for (int i = 1; i < m_iDFTCoeffs; i++)
		{
			float x = spline_cubic_val(m_iInputFreqs,
				m_pfInputFreqs,
				i*m_fDeltaF,
				m_pfInputData,
				m_ypp,
				&fDummy,
				&fDummy);

			// Phase-shift by half the FFT-period
			m_pfBuf1[2 * i] =  pow( x * fScale, 2 ) * m_iFilterLength; //minimum phase
			m_pfBuf1[2 * i + 1] = 0;
		}
	}
	else {
		for (int i = 1; i < m_iDFTCoeffs; i++)
		{
			float x = spline_cubic_val(m_iInputFreqs,
				m_pfInputFreqs,
				i*m_fDeltaF,
				m_pfInputData,
				m_ypp,
				&fDummy,
				&fDummy);

			// Phase-shift by half the FFT-period: Negate all odd DFT coefficients
			m_pfBuf1[2 * i] = ((i % 2) == 0) ? x * fScale : -x * fScale;
			m_pfBuf1[2 * i + 1] = 0;
		}
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
	}

	// 2nd step: Convert into time-domain (out-of-place C2R-IFFT)
	m_ifft.execute();

	// 3rd (optional) step: Hann window in the time-domain (optional)
	if( m_bWindow )
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = m_pfBuf2[ i ] * m_pfWindow[ i ];
	}
	else
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = m_pfBuf2[ i ];
	}

	// @todo: Minimum-phase?

	m_sw.stop();
}