ITAThirdOctaveFIRFilterGenerator.cpp 4.15 KB
Newer Older
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <ITAThirdOctaveFIRFilterGenerator.h>

#include <ITAConstants.h>
#include <ITAFastMath.h>
#include <ITANumericUtils.h>
#include <ITAStringUtils.h>
#include <ITAThirdOctaveMagnitudeSpectrum.h>

#include <spline.h>

CITAThirdOctaveFIRFilterGenerator::CITAThirdOctaveFIRFilterGenerator( const double dSampleRate, const int iFilterLength )
	: m_dSamplerate( dSampleRate )
	, m_iFilterLength( iFilterLength )
	, m_ypp( nullptr )
	, m_pfInputFreqs( nullptr )
	, m_pfInputData( nullptr )
	, m_pfBuf1( nullptr )
	, m_pfBuf2( nullptr )
	, m_bWindow( false )
{
	m_iInputFreqs = CITAThirdOctaveMagnitudeSpectrum::GetNumBands() + 2;
	m_pfInputFreqs = fm_falloc( m_iInputFreqs, true );
	m_pfInputFreqs[ 0 ] = 0;	// Left margin
	for( int i = 0; i < CITAThirdOctaveMagnitudeSpectrum::GetNumBands(); i++ )
		m_pfInputFreqs[ i + 1 ] = CITAThirdOctaveMagnitudeSpectrum::GetCenterFrequencies()[ i ];
	m_pfInputFreqs[ m_iInputFreqs - 1 ] = ( float ) dSampleRate / 2;	// Right margin: Nyquist frequency

	m_pfInputData = fm_falloc( m_iInputFreqs, true );

	// DFT frequency bandwidth
	m_fDeltaF = ( float ) dSampleRate / ( float ) iFilterLength;

	// Number of symetric DFT coefficients;
	m_iDFTCoeffs = iFilterLength / 2 + 1;

	m_pfBuf1 = fm_falloc( 2 * m_iDFTCoeffs, false );
	m_pfBuf2 = fm_falloc( iFilterLength, false );
	m_pfWindow = fm_falloc( iFilterLength, false );

	// Windowing function (Hann window)
	float c = 2 * ITAConstants::PI_F / ( float ) ( m_iFilterLength - 1 );
	for( int i = 0; i < m_iFilterLength; i++ )
	{
44
		m_pfWindow[ i ] = 0.5F * ( 1 - cos( c * i ) );
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
	}

	m_ifft.plan( ITAFFT::IFFT_C2R, iFilterLength, m_pfBuf1, m_pfBuf2 );

	m_sDumpFilename = "interpolated_magnitudes.csv";
}

CITAThirdOctaveFIRFilterGenerator::~CITAThirdOctaveFIRFilterGenerator()
{
	fm_free( m_pfInputFreqs );
	fm_free( m_pfInputData );
	fm_free( m_pfBuf1 );
	fm_free( m_pfBuf2 );
	fm_free( m_pfWindow );
}

int CITAThirdOctaveFIRFilterGenerator::GetFilterLength() const
{
	return m_iFilterLength;
}
int CITAThirdOctaveFIRFilterGenerator::GetLatency() const
{
	// Latency = Half DFT period (ceil)
	return uprdiv( m_iFilterLength, 2 );
}

double CITAThirdOctaveFIRFilterGenerator::GetAverageRuntime() const
{
	return m_sw.mean();
}

void CITAThirdOctaveFIRFilterGenerator::SetDumpFilename( const std::string& sFilename )
{
	m_sDumpFilename = sFilename;
}

81
void CITAThirdOctaveFIRFilterGenerator::GenerateFilter( const CITAThirdOctaveGainMagnitudeSpectrum& oTOGainMagnitudes, float* pfFilterCoeffs )
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
82
83
84
{
	m_sw.start();

85
	if( oTOGainMagnitudes.IsZero() )
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
86
87
88
89
90
91
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = 0.0f;
		return;
	}

92
	if( oTOGainMagnitudes.IsIdentity() )
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
93
94
95
96
97
98
99
100
101
102
103
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = 0.0f;
		pfFilterCoeffs[ int( m_iFilterLength / 2 ) ] = 1.0f;
		return;
	}
	
	// 1st step: Interpolate the magnitudes

	m_pfInputData[ 0 ] = 1.0f;
	for( int i = 0; i < CITAThirdOctaveMagnitudeSpectrum::GetNumBands(); i++ )
104
		 m_pfInputData[ 1 + i ] = float( oTOGainMagnitudes[ i ] );
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
	m_pfInputData[ m_iInputFreqs - 1 ] = 0.0f; // @todo jst: check if this is good

	// Initialize cubic spline interpolation
	m_ypp = spline_cubic_set( m_iInputFreqs,
		m_pfInputFreqs,
		m_pfInputData,
		1, // Left boundary condition => 1st derivative m=0
		0,
		1, // Right boundary condition => 1st derivative m=0
		0 );
	float fDummy;
	const float fScale = 1 / ( float ) m_iFilterLength;

	// No DC offset, ever!
	m_pfBuf1[ 0 ] = 0;
	m_pfBuf1[ 1 ] = 0;

	for( int i = 1; i < m_iDFTCoeffs; i++ )
	{
		float x = spline_cubic_val( m_iInputFreqs,
			m_pfInputFreqs,
			i*m_fDeltaF,
			m_pfInputData,
			m_ypp,
			&fDummy,
			&fDummy );

		// Phase-shift by half the FFT-period: Negate all odd DFT coefficients
		m_pfBuf1[ 2 * i ] = ( ( i % 2 ) == 0 ) ? x*fScale : -x*fScale;
		m_pfBuf1[ 2 * i + 1 ] = 0;
	}


	// 2nd step: Convert into time-domain (out-of-place C2R-IFFT)
	m_ifft.execute();

	// 3rd (optional) step: Hann window in the time-domain (optional)
	if( m_bWindow )
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = m_pfBuf2[ i ] * m_pfWindow[ i ];
	}
	else
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = m_pfBuf2[ i ];
	}

	// @todo: Minimum-phase?

	m_sw.stop();
}