ITAThirdOctaveFIRFilterGenerator.cpp 4.63 KB
Newer Older
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
1
2
3
4
5
6
7
8
9
10
#include <ITAThirdOctaveFIRFilterGenerator.h>

#include <ITAConstants.h>
#include <ITAFastMath.h>
#include <ITANumericUtils.h>
#include <ITAStringUtils.h>
#include <ITAThirdOctaveMagnitudeSpectrum.h>

#include <spline.h>

11
12
using namespace ITABase;

Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
13
14
15
16
17
18
19
20
21
22
CITAThirdOctaveFIRFilterGenerator::CITAThirdOctaveFIRFilterGenerator( const double dSampleRate, const int iFilterLength )
	: m_dSamplerate( dSampleRate )
	, m_iFilterLength( iFilterLength )
	, m_ypp( nullptr )
	, m_pfInputFreqs( nullptr )
	, m_pfInputData( nullptr )
	, m_pfBuf1( nullptr )
	, m_pfBuf2( nullptr )
	, m_bWindow( false )
{
23
	m_iInputFreqs = CThirdOctaveGainMagnitudeSpectrum::GetNumBands() + 2;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
24
25
	m_pfInputFreqs = fm_falloc( m_iInputFreqs, true );
	m_pfInputFreqs[ 0 ] = 0;	// Left margin
26
27
	for( int i = 0; i < CThirdOctaveGainMagnitudeSpectrum::GetNumBands(); i++ )
		m_pfInputFreqs[ i + 1 ] = CThirdOctaveGainMagnitudeSpectrum::GetCenterFrequencies()[ i ];
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
	m_pfInputFreqs[ m_iInputFreqs - 1 ] = ( float ) dSampleRate / 2;	// Right margin: Nyquist frequency

	m_pfInputData = fm_falloc( m_iInputFreqs, true );

	// DFT frequency bandwidth
	m_fDeltaF = ( float ) dSampleRate / ( float ) iFilterLength;

	// Number of symetric DFT coefficients;
	m_iDFTCoeffs = iFilterLength / 2 + 1;

	m_pfBuf1 = fm_falloc( 2 * m_iDFTCoeffs, false );
	m_pfBuf2 = fm_falloc( iFilterLength, false );
	m_pfWindow = fm_falloc( iFilterLength, false );

	// Windowing function (Hann window)
	float c = 2 * ITAConstants::PI_F / ( float ) ( m_iFilterLength - 1 );
	for( int i = 0; i < m_iFilterLength; i++ )
	{
46
		m_pfWindow[ i ] = 0.5F * ( 1 - cos( c * i ) );
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
	}

	m_ifft.plan( ITAFFT::IFFT_C2R, iFilterLength, m_pfBuf1, m_pfBuf2 );

	m_sDumpFilename = "interpolated_magnitudes.csv";
}

CITAThirdOctaveFIRFilterGenerator::~CITAThirdOctaveFIRFilterGenerator()
{
	fm_free( m_pfInputFreqs );
	fm_free( m_pfInputData );
	fm_free( m_pfBuf1 );
	fm_free( m_pfBuf2 );
	fm_free( m_pfWindow );
}

int CITAThirdOctaveFIRFilterGenerator::GetFilterLength() const
{
	return m_iFilterLength;
}
int CITAThirdOctaveFIRFilterGenerator::GetLatency() const
{
	// Latency = Half DFT period (ceil)
	return uprdiv( m_iFilterLength, 2 );
}

double CITAThirdOctaveFIRFilterGenerator::GetAverageRuntime() const
{
	return m_sw.mean();
}

void CITAThirdOctaveFIRFilterGenerator::SetDumpFilename( const std::string& sFilename )
{
	m_sDumpFilename = sFilename;
}

83
void CITAThirdOctaveFIRFilterGenerator::GenerateFilter( const ITABase::CThirdOctaveGainMagnitudeSpectrum& oTOGainMagnitudes, float* pfFilterCoeffs, bool bMinimumPhase /*=false*/ )
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
84
85
86
{
	m_sw.start();

87
	if( oTOGainMagnitudes.IsZero() )
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
88
	{
89
90
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = 0.0f;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
91
92
93
		return;
	}

94
	if( oTOGainMagnitudes.IsIdentity() )
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
95
	{
96
97
98
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = 0.0f;
		pfFilterCoeffs[ int( m_iFilterLength / 2 ) ] = 1.0f;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
99
100
		return;
	}
101

Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
102
103
	// 1st step: Interpolate the magnitudes

104
105
	for( int i = 0; i < CThirdOctaveGainMagnitudeSpectrum::GetNumBands(); i++ )
		m_pfInputData[ 1 + i ] = float( oTOGainMagnitudes[ i ] );
106
107
108
109

	// Bounndaries must be defined in a meaningful way.
	m_pfInputData[ 0 ] = m_pfInputData[ 1 ];
	m_pfInputData[ m_iInputFreqs - 1 ] = 0.0f;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
110
111

	// Initialize cubic spline interpolation
112
	m_ypp = spline_cubic_set( m_iInputFreqs,
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
113
114
115
116
117
		m_pfInputFreqs,
		m_pfInputData,
		1, // Left boundary condition => 1st derivative m=0
		0,
		1, // Right boundary condition => 1st derivative m=0
118
		0 );
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
119
	float fDummy;
120
	const float fScale = 1 / ( float ) m_iFilterLength;
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
121
122

	// No DC offset, ever!
123
124
	m_pfBuf1[ 0 ] = 0;
	m_pfBuf1[ 1 ] = 0;
125
126


127
128
	if( bMinimumPhase ) {
		for( int i = 1; i < m_iDFTCoeffs; i++ )
129
		{
130
			float x = spline_cubic_val( m_iInputFreqs,
131
132
133
134
135
				m_pfInputFreqs,
				i*m_fDeltaF,
				m_pfInputData,
				m_ypp,
				&fDummy,
136
				&fDummy );
137
138

			// Phase-shift by half the FFT-period
139
140
			m_pfBuf1[ 2 * i ] = pow( x * fScale, 2 ) * m_iFilterLength; //minimum phase
			m_pfBuf1[ 2 * i + 1 ] = 0;
141
142
143
		}
	}
	else {
144
		for( int i = 1; i < m_iDFTCoeffs; i++ )
145
		{
146
			float x = spline_cubic_val( m_iInputFreqs,
147
148
149
150
151
				m_pfInputFreqs,
				i*m_fDeltaF,
				m_pfInputData,
				m_ypp,
				&fDummy,
152
				&fDummy );
153
154

			// Phase-shift by half the FFT-period: Negate all odd DFT coefficients
155
156
			m_pfBuf1[ 2 * i ] = ( ( i % 2 ) == 0 ) ? x * fScale : -x * fScale;
			m_pfBuf1[ 2 * i + 1 ] = 0;
157
		}
Dipl.-Ing. Jonas Stienen's avatar
Dipl.-Ing. Jonas Stienen committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
	}

	// 2nd step: Convert into time-domain (out-of-place C2R-IFFT)
	m_ifft.execute();

	// 3rd (optional) step: Hann window in the time-domain (optional)
	if( m_bWindow )
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = m_pfBuf2[ i ] * m_pfWindow[ i ];
	}
	else
	{
		for( int i = 0; i < m_iFilterLength; i++ )
			pfFilterCoeffs[ i ] = m_pfBuf2[ i ];
	}

	// @todo: Minimum-phase?

	m_sw.stop();
}