diff --git a/edml/core/client.py b/edml/core/client.py index 05404ed95f94c91b7392a2139f42f19678172fe4..9802a84b8227421d0dd7c5a1acf17d7968d81d1f 100644 --- a/edml/core/client.py +++ b/edml/core/client.py @@ -2,7 +2,7 @@ from __future__ import annotations import itertools import time -from typing import Optional, Tuple, TYPE_CHECKING +from typing import Optional, Tuple, TYPE_CHECKING, Any import torch from omegaconf import DictConfig @@ -187,7 +187,9 @@ class DeviceClient: ) @check_device_set() - def backward_single_batch(self, gradients) -> DiagnosticMetricResultContainer: + def backward_single_batch( + self, gradients + ) -> Tuple[DiagnosticMetricResultContainer, torch.Tensor]: torch.cuda.set_device(self._device) batch_data, smashed_data, start_time, end_time = ( self._psl_cache["batch_data"], @@ -203,7 +205,11 @@ class DeviceClient: ) # 2x for backward pass gradients = gradients.to(self._device) smashed_data.backward(gradients) - self._optimizer.step() + print(smashed_data.grad) + # self._optimizer.step() + + # We need to store a reference to the smashed_data to make it possible to finalize the training step. + self._psl_cache["smashed_data"] = smashed_data end_time_2 = time.time() @@ -215,8 +221,7 @@ class DeviceClient: ) metrics_container = DiagnosticMetricResultContainer([metric]) - self._psl_cache = None - return metrics_container + return metrics_container, smashed_data.grad def get_approximated_num_batches(self) -> int: return len(self._train_data) @@ -366,3 +371,9 @@ class DeviceClient: ) ) return diagnostic_metric_results + + def set_gradient_and_finalize_training(self, gradients: Any): + smashed_data = self._psl_cache["smashed_data"] + smashed_data.grad = gradients + self._optimizer.step() + self._psl_cache = None diff --git a/edml/core/device.py b/edml/core/device.py index 7fc7d8fb1638792077bf04dd2e8d7c5257c5cc5c..694775c1825a7cb51f120a4c743a2498057d66a1 100644 --- a/edml/core/device.py +++ b/edml/core/device.py @@ -31,6 +31,7 @@ from edml.generated.connection_pb2 import ( SingleBatchTrainingResponse, SingleBatchBackwardRequest, TrainGlobalParallelSplitLearningResponse, + SingleBatchBackwardResponse, ) from edml.generated.connection_pb2_grpc import DeviceServicer, DeviceStub from edml.generated.datastructures_pb2 import ( @@ -212,8 +213,25 @@ class Device(ABC): def backpropagation_on_client_only_on(self, client_id: str, gradients: Any): """""" + @abstractmethod + def set_gradient_and_finalize_training_on_client_only_on( + self, client_id: str, gradients: Any + ): + """""" + class NetworkDevice(Device): + @update_battery + def set_gradient_and_finalize_training_on_client_only_on( + self, client_id: str, gradients: Any + ): + if client_id == self.device_id: + self.client.set_gradient_and_finalize_training(gradients) + else: + return self.request_dispatcher.set_gradient_and_finalize_training_on_client_only( + client_id, gradients + ) + @update_battery @log_execution_time("logger", "train_parallel_split_learning") def train_parallel_split_learning( @@ -977,16 +995,37 @@ class DeviceRequestDispatcher: def backpropagation_on_client_only(self, device_id, gradients): try: - response: Empty = self._get_connection( + response: SingleBatchBackwardResponse = self._get_connection( device_id ).BackwardPropagationSingleBatchOnClient( connection_pb2.SingleBatchBackwardRequest( gradients=Gradients(gradients=tensor_to_proto(gradients)) ) ) - return response + return ( + response.metrics, + response.gradients, + ) except grpc.RpcError: self._handle_rpc_error(device_id) except KeyError: self._handle_unknown_device_id(device_id) return False + + def set_gradient_and_finalize_training_on_client_only( + self, client_id: str, gradients: Any + ): + try: + response: Empty = self._get_connection( + client_id + ).SetGradientsAndFinalizeTrainingStep( + connection_pb2.SetGradientsRequest( + gradients=Gradients(gradients=tensor_to_proto(gradients)) + ) + ) + return response + except grpc.RpcError: + self._handle_rpc_error(client_id) + except KeyError: + self._handle_unknown_device_id(client_id) + return False diff --git a/edml/core/server.py b/edml/core/server.py index 885b22fb0d2aafe93ed2da750f43428d9350dbda..bd5628a72401fd449f05f3430904b626d9970b9e 100644 --- a/edml/core/server.py +++ b/edml/core/server.py @@ -219,16 +219,26 @@ class DeviceServer: adaptive_learning_threshold: Optional[float] = None, optimizer_state: dict[str, Any] = None, ): - def client_training_job(client_id: str, batch_index: int) -> SLTrainBatchResult: - return self.node_device.train_batch_on_client_only_on( + def client_training_job(client_id: str, batch_index: int): + result = self.node_device.train_batch_on_client_only_on( device_id=client_id, batch_index=batch_index ) + return (client_id, result) def client_backpropagation_job(client_id: str, gradients: Any): return self.node_device.backpropagation_on_client_only_on( client_id=client_id, gradients=gradients ) + def client_set_gradient_and_finalize_training_job( + client_id: str, gradients: Any + ): + return ( + self.node_device.set_gradient_and_finalize_training_on_client_only_on( + client_id=client_id, gradients=gradients + ) + ) + if optimizer_state is not None: self._optimizer.load_state_dict(optimizer_state) @@ -243,27 +253,31 @@ class DeviceServer: num_batches = self.node_device.client.get_approximated_num_batches() print(f"\n\n:: BATCHES :: {num_batches}\n\n") for batch_index in range(num_batches): - batches = [] + client_forward_pass_responses = [] futures = [ executor.submit(client_training_job, client_id, batch_index) for client_id in clients ] for future in concurrent.futures.as_completed(futures): - batches.append(future.result()) + client_forward_pass_responses.append(future.result()) + + # We want to split up the responses into a list of client IDs and batches again. + client_ids = [b[0] for b in client_forward_pass_responses] + client_batches = [b[1] for b in client_forward_pass_responses] - if _empty_batches(batches): - # Only last batch anyway. + if _empty_batches(client_batches): + # Only the last batch anyway. break - print(f"\n\n\nBATCHES: {len(batches)}\n\n\n") + print(f"\n\n\nBATCHES: {len(client_batches)}\n\n\n") # batches2 = [b for b in batches if b is not None] # print(f"\n\n\nBATCHES FILTERED: {len(batches)}\n\n\n") server_batch = _concat_smashed_data( - [b[0].to(self._device) for b in batches] + [b[0].to(self._device) for b in client_batches] ) server_labels = _concat_smashed_data( - [b[1].to(self._device) for b in batches] + [b[1].to(self._device) for b in client_batches] ) # Train the part on the server. Then send the gradients to each client, continuing the calculation. We need @@ -287,30 +301,46 @@ class DeviceServer: self.node_device.log({"adaptive_learning_threshold_applied": True}) continue - num_client_gradients = len(batches) + num_client_gradients = len(client_forward_pass_responses) print( f"::: tensor shape: {server_gradients.shape} -> {server_gradients.size(0)} with metrics: {server_metrics is not None}" ) client_gradients = torch.chunk(server_gradients, num_client_gradients) - print(f"::: result shape: {client_gradients[1].shape}") - concatenated_client_gradients = torch.stack(client_gradients, dim=0) - mean_tensor = torch.mean(concatenated_client_gradients, dim=0) - print(f"::: -> {mean_tensor.shape}") + # print(f"::: result shape: {client_gradients[1].shape}") + # concatenated_client_gradients = torch.stack(client_gradients, dim=0) + # mean_tensor = torch.mean(concatenated_client_gradients, dim=0) + # print(f"::: -> {mean_tensor.shape}") futures = [ - executor.submit(client_backpropagation_job, client_id, mean_tensor) - for client_id in clients + executor.submit( + client_backpropagation_job, client_id, client_gradients[idx] + ) + for (client_id, idx) in enumerate(client_ids) ] - diagnostic_results = [] + client_backpropagation_results = [] for future in concurrent.futures.as_completed(futures): - diagnostic_results.append(future.result()) - # Has to be done outside the loop due to thread-safety. - # for diagnostic_result in diagnostic_results: - # diagnostic_metrics.merge(diagnostic_result) + client_backpropagation_results.append(future.result()) + + client_backpropagation_gradients = [ + result[1] for result in client_backpropagation_results + ] - # # Resetting batches since we only need them per-batch-iteration. - # batches = [] + # We want to average the client's backpropagation gradients and send them over again to finalize the + # current training step. + averaged_gradient = _calculate_gradient_mean( + client_backpropagation_gradients + ) + futures = [ + executor.submit( + client_set_gradient_and_finalize_training_job, + client_id, + averaged_gradient, + ) + for client_id in clients + ] + for future in concurrent.futures.as_completed(futures): + future.result() # Now we have to determine the model metrics for each client. for client_id in clients: @@ -353,6 +383,11 @@ class DeviceServer: ) +def _calculate_gradient_mean(gradients: List[Variable]) -> Variable: + """Calculates the mean of a list of gradients.""" + return torch.mean(torch.stack(gradients), dim=0) + + def _concat_smashed_data(data: List[Any]) -> Any: """Creates a single batch tensor from a list of tensors.""" return torch.cat(data, dim=0) diff --git a/edml/generated/connection_pb2.py b/edml/generated/connection_pb2.py index d8899e228ac061499659d0d55c7575241674ad32..ce271bbab4fa5d30e0e8c5a0a8b309d96eaccf07 100644 --- a/edml/generated/connection_pb2.py +++ b/edml/generated/connection_pb2.py @@ -14,7 +14,7 @@ _sym_db = _symbol_database.Default() import datastructures_pb2 as datastructures__pb2 -DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x10\x63onnection.proto\x1a\x14\x64\x61tastructures.proto\"5\n\x14UpdateWeightsRequest\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\";\n\x1aSingleBatchBackwardRequest\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\"8\n\x1bSingleBatchBackwardResponse\x12\x19\n\x07metrics\x18\x01 \x01(\x0b\x32\x08.Metrics\"1\n\x1aSingleBatchTrainingRequest\x12\x13\n\x0b\x62\x61tch_index\x18\x01 \x01(\x05\"\x80\x01\n\x1bSingleBatchTrainingResponse\x12\'\n\x0csmashed_data\x18\x01 \x01(\x0b\x32\x0c.ActivationsH\x00\x88\x01\x01\x12\x1c\n\x06labels\x18\x02 \x01(\x0b\x32\x07.LabelsH\x01\x88\x01\x01\x42\x0f\n\r_smashed_dataB\t\n\x07_labels\"\xd5\x01\n\'TrainGlobalParallelSplitLearningRequest\x12\x15\n\x08round_no\x18\x01 \x01(\x05H\x00\x88\x01\x01\x12(\n\x1b\x61\x64\x61ptive_learning_threshold\x18\x02 \x01(\x01H\x01\x88\x01\x01\x12(\n\x0foptimizer_state\x18\x03 \x01(\x0b\x32\n.StateDictH\x02\x88\x01\x01\x42\x0b\n\t_round_noB\x1e\n\x1c_adaptive_learning_thresholdB\x12\n\x10_optimizer_state\"\x89\x02\n(TrainGlobalParallelSplitLearningResponse\x12 \n\x0e\x63lient_weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12 \n\x0eserver_weights\x18\x02 \x01(\x0b\x32\x08.Weights\x12\x19\n\x07metrics\x18\x03 \x01(\x0b\x32\x08.Metrics\x12(\n\x0foptimizer_state\x18\x04 \x01(\x0b\x32\n.StateDictH\x00\x88\x01\x01\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x01\x88\x01\x01\x42\x12\n\x10_optimizer_stateB\x15\n\x13_diagnostic_metrics\"\x86\x01\n\x12TrainGlobalRequest\x12\x0e\n\x06\x65pochs\x18\x01 \x01(\x05\x12\x15\n\x08round_no\x18\x02 \x01(\x05H\x00\x88\x01\x01\x12(\n\x0foptimizer_state\x18\x03 \x01(\x0b\x32\n.StateDictH\x01\x88\x01\x01\x42\x0b\n\t_round_noB\x12\n\x10_optimizer_state\"\xf4\x01\n\x13TrainGlobalResponse\x12 \n\x0e\x63lient_weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12 \n\x0eserver_weights\x18\x02 \x01(\x0b\x32\x08.Weights\x12\x19\n\x07metrics\x18\x03 \x01(\x0b\x32\x08.Metrics\x12(\n\x0foptimizer_state\x18\x04 \x01(\x0b\x32\n.StateDictH\x00\x88\x01\x01\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x01\x88\x01\x01\x42\x12\n\x10_optimizer_stateB\x15\n\x13_diagnostic_metrics\"A\n\x11SetWeightsRequest\x12\x19\n\x07weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12\x11\n\ton_client\x18\x02 \x01(\x08\"V\n\x12SetWeightsResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"T\n\x11TrainEpochRequest\x12\x1b\n\x06server\x18\x01 \x01(\x0b\x32\x0b.DeviceInfo\x12\x15\n\x08round_no\x18\x02 \x01(\x05H\x00\x88\x01\x01\x42\x0b\n\t_round_no\"q\n\x12TrainEpochResponse\x12\x19\n\x07weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"P\n\x11TrainBatchRequest\x12\"\n\x0csmashed_data\x18\x01 \x01(\x0b\x32\x0c.Activations\x12\x17\n\x06labels\x18\x02 \x01(\x0b\x32\x07.Labels\"\x91\x01\n\x12TrainBatchResponse\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x12\x11\n\x04loss\x18\x03 \x01(\x01H\x01\x88\x01\x01\x42\x15\n\x13_diagnostic_metricsB\x07\n\x05_loss\":\n\x11\x45valGlobalRequest\x12\x12\n\nvalidation\x18\x01 \x01(\x08\x12\x11\n\tfederated\x18\x02 \x01(\x08\"q\n\x12\x45valGlobalResponse\x12\x19\n\x07metrics\x18\x01 \x01(\x0b\x32\x08.Metrics\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\">\n\x0b\x45valRequest\x12\x1b\n\x06server\x18\x01 \x01(\x0b\x32\x0b.DeviceInfo\x12\x12\n\nvalidation\x18\x02 \x01(\x08\"P\n\x0c\x45valResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"O\n\x10\x45valBatchRequest\x12\"\n\x0csmashed_data\x18\x01 \x01(\x0b\x32\x0c.Activations\x12\x17\n\x06labels\x18\x02 \x01(\x0b\x32\x07.Labels\"p\n\x11\x45valBatchResponse\x12\x19\n\x07metrics\x18\x01 \x01(\x0b\x32\x08.Metrics\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\";\n\x15\x46ullModelTrainRequest\x12\x15\n\x08round_no\x18\x01 \x01(\x05H\x00\x88\x01\x01\x42\x0b\n\t_round_no\"\xce\x01\n\x16\x46ullModelTrainResponse\x12 \n\x0e\x63lient_weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12 \n\x0eserver_weights\x18\x02 \x01(\x0b\x32\x08.Weights\x12\x13\n\x0bnum_samples\x18\x03 \x01(\x05\x12\x19\n\x07metrics\x18\x04 \x01(\x0b\x32\x08.Metrics\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x18\n\x16StartExperimentRequest\"[\n\x17StartExperimentResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x16\n\x14\x45ndExperimentRequest\"Y\n\x15\x45ndExperimentResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x16\n\x14\x42\x61tteryStatusRequest\"y\n\x15\x42\x61tteryStatusResponse\x12\x1e\n\x06status\x18\x01 \x01(\x0b\x32\x0e.BatteryStatus\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x19\n\x17\x44\x61tasetModelInfoRequest\"\xc7\x01\n\x18\x44\x61tasetModelInfoResponse\x12\x15\n\rtrain_samples\x18\x01 \x01(\x05\x12\x1a\n\x12validation_samples\x18\x02 \x01(\x05\x12\x1a\n\x12\x63lient_model_flops\x18\x03 \x01(\x05\x12\x1a\n\x12server_model_flops\x18\x04 \x01(\x05\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics2\xb1\x08\n\x06\x44\x65vice\x12:\n\x0bTrainGlobal\x12\x13.TrainGlobalRequest\x1a\x14.TrainGlobalResponse\"\x00\x12\x37\n\nSetWeights\x12\x12.SetWeightsRequest\x1a\x13.SetWeightsResponse\"\x00\x12\x37\n\nTrainEpoch\x12\x12.TrainEpochRequest\x1a\x13.TrainEpochResponse\"\x00\x12\x37\n\nTrainBatch\x12\x12.TrainBatchRequest\x1a\x13.TrainBatchResponse\"\x00\x12;\n\x0e\x45valuateGlobal\x12\x12.EvalGlobalRequest\x1a\x13.EvalGlobalResponse\"\x00\x12)\n\x08\x45valuate\x12\x0c.EvalRequest\x1a\r.EvalResponse\"\x00\x12\x38\n\rEvaluateBatch\x12\x11.EvalBatchRequest\x1a\x12.EvalBatchResponse\"\x00\x12\x46\n\x11\x46ullModelTraining\x12\x16.FullModelTrainRequest\x1a\x17.FullModelTrainResponse\"\x00\x12\x46\n\x0fStartExperiment\x12\x17.StartExperimentRequest\x1a\x18.StartExperimentResponse\"\x00\x12@\n\rEndExperiment\x12\x15.EndExperimentRequest\x1a\x16.EndExperimentResponse\"\x00\x12\x43\n\x10GetBatteryStatus\x12\x15.BatteryStatusRequest\x1a\x16.BatteryStatusResponse\"\x00\x12L\n\x13GetDatasetModelInfo\x12\x18.DatasetModelInfoRequest\x1a\x19.DatasetModelInfoResponse\"\x00\x12y\n TrainGlobalParallelSplitLearning\x12(.TrainGlobalParallelSplitLearningRequest\x1a).TrainGlobalParallelSplitLearningResponse\"\x00\x12W\n\x18TrainSingleBatchOnClient\x12\x1b.SingleBatchTrainingRequest\x1a\x1c.SingleBatchTrainingResponse\"\x00\x12\x65\n&BackwardPropagationSingleBatchOnClient\x12\x1b.SingleBatchBackwardRequest\x1a\x1c.SingleBatchBackwardResponse\"\x00\x62\x06proto3') +DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x10\x63onnection.proto\x1a\x14\x64\x61tastructures.proto\"4\n\x13SetGradientsRequest\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\"5\n\x14UpdateWeightsRequest\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\";\n\x1aSingleBatchBackwardRequest\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\"j\n\x1bSingleBatchBackwardResponse\x12\x19\n\x07metrics\x18\x01 \x01(\x0b\x32\x08.Metrics\x12\"\n\tgradients\x18\x02 \x01(\x0b\x32\n.GradientsH\x00\x88\x01\x01\x42\x0c\n\n_gradients\"1\n\x1aSingleBatchTrainingRequest\x12\x13\n\x0b\x62\x61tch_index\x18\x01 \x01(\x05\"\x80\x01\n\x1bSingleBatchTrainingResponse\x12\'\n\x0csmashed_data\x18\x01 \x01(\x0b\x32\x0c.ActivationsH\x00\x88\x01\x01\x12\x1c\n\x06labels\x18\x02 \x01(\x0b\x32\x07.LabelsH\x01\x88\x01\x01\x42\x0f\n\r_smashed_dataB\t\n\x07_labels\"\xd5\x01\n\'TrainGlobalParallelSplitLearningRequest\x12\x15\n\x08round_no\x18\x01 \x01(\x05H\x00\x88\x01\x01\x12(\n\x1b\x61\x64\x61ptive_learning_threshold\x18\x02 \x01(\x01H\x01\x88\x01\x01\x12(\n\x0foptimizer_state\x18\x03 \x01(\x0b\x32\n.StateDictH\x02\x88\x01\x01\x42\x0b\n\t_round_noB\x1e\n\x1c_adaptive_learning_thresholdB\x12\n\x10_optimizer_state\"\x89\x02\n(TrainGlobalParallelSplitLearningResponse\x12 \n\x0e\x63lient_weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12 \n\x0eserver_weights\x18\x02 \x01(\x0b\x32\x08.Weights\x12\x19\n\x07metrics\x18\x03 \x01(\x0b\x32\x08.Metrics\x12(\n\x0foptimizer_state\x18\x04 \x01(\x0b\x32\n.StateDictH\x00\x88\x01\x01\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x01\x88\x01\x01\x42\x12\n\x10_optimizer_stateB\x15\n\x13_diagnostic_metrics\"\x86\x01\n\x12TrainGlobalRequest\x12\x0e\n\x06\x65pochs\x18\x01 \x01(\x05\x12\x15\n\x08round_no\x18\x02 \x01(\x05H\x00\x88\x01\x01\x12(\n\x0foptimizer_state\x18\x03 \x01(\x0b\x32\n.StateDictH\x01\x88\x01\x01\x42\x0b\n\t_round_noB\x12\n\x10_optimizer_state\"\xf4\x01\n\x13TrainGlobalResponse\x12 \n\x0e\x63lient_weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12 \n\x0eserver_weights\x18\x02 \x01(\x0b\x32\x08.Weights\x12\x19\n\x07metrics\x18\x03 \x01(\x0b\x32\x08.Metrics\x12(\n\x0foptimizer_state\x18\x04 \x01(\x0b\x32\n.StateDictH\x00\x88\x01\x01\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x01\x88\x01\x01\x42\x12\n\x10_optimizer_stateB\x15\n\x13_diagnostic_metrics\"A\n\x11SetWeightsRequest\x12\x19\n\x07weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12\x11\n\ton_client\x18\x02 \x01(\x08\"V\n\x12SetWeightsResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"T\n\x11TrainEpochRequest\x12\x1b\n\x06server\x18\x01 \x01(\x0b\x32\x0b.DeviceInfo\x12\x15\n\x08round_no\x18\x02 \x01(\x05H\x00\x88\x01\x01\x42\x0b\n\t_round_no\"q\n\x12TrainEpochResponse\x12\x19\n\x07weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"P\n\x11TrainBatchRequest\x12\"\n\x0csmashed_data\x18\x01 \x01(\x0b\x32\x0c.Activations\x12\x17\n\x06labels\x18\x02 \x01(\x0b\x32\x07.Labels\"\x91\x01\n\x12TrainBatchResponse\x12\x1d\n\tgradients\x18\x01 \x01(\x0b\x32\n.Gradients\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x12\x11\n\x04loss\x18\x03 \x01(\x01H\x01\x88\x01\x01\x42\x15\n\x13_diagnostic_metricsB\x07\n\x05_loss\":\n\x11\x45valGlobalRequest\x12\x12\n\nvalidation\x18\x01 \x01(\x08\x12\x11\n\tfederated\x18\x02 \x01(\x08\"q\n\x12\x45valGlobalResponse\x12\x19\n\x07metrics\x18\x01 \x01(\x0b\x32\x08.Metrics\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\">\n\x0b\x45valRequest\x12\x1b\n\x06server\x18\x01 \x01(\x0b\x32\x0b.DeviceInfo\x12\x12\n\nvalidation\x18\x02 \x01(\x08\"P\n\x0c\x45valResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"O\n\x10\x45valBatchRequest\x12\"\n\x0csmashed_data\x18\x01 \x01(\x0b\x32\x0c.Activations\x12\x17\n\x06labels\x18\x02 \x01(\x0b\x32\x07.Labels\"p\n\x11\x45valBatchResponse\x12\x19\n\x07metrics\x18\x01 \x01(\x0b\x32\x08.Metrics\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\";\n\x15\x46ullModelTrainRequest\x12\x15\n\x08round_no\x18\x01 \x01(\x05H\x00\x88\x01\x01\x42\x0b\n\t_round_no\"\xce\x01\n\x16\x46ullModelTrainResponse\x12 \n\x0e\x63lient_weights\x18\x01 \x01(\x0b\x32\x08.Weights\x12 \n\x0eserver_weights\x18\x02 \x01(\x0b\x32\x08.Weights\x12\x13\n\x0bnum_samples\x18\x03 \x01(\x05\x12\x19\n\x07metrics\x18\x04 \x01(\x0b\x32\x08.Metrics\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x18\n\x16StartExperimentRequest\"[\n\x17StartExperimentResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x16\n\x14\x45ndExperimentRequest\"Y\n\x15\x45ndExperimentResponse\x12)\n\x12\x64iagnostic_metrics\x18\x01 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x16\n\x14\x42\x61tteryStatusRequest\"y\n\x15\x42\x61tteryStatusResponse\x12\x1e\n\x06status\x18\x01 \x01(\x0b\x32\x0e.BatteryStatus\x12)\n\x12\x64iagnostic_metrics\x18\x02 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics\"\x19\n\x17\x44\x61tasetModelInfoRequest\"\xc7\x01\n\x18\x44\x61tasetModelInfoResponse\x12\x15\n\rtrain_samples\x18\x01 \x01(\x05\x12\x1a\n\x12validation_samples\x18\x02 \x01(\x05\x12\x1a\n\x12\x63lient_model_flops\x18\x03 \x01(\x05\x12\x1a\n\x12server_model_flops\x18\x04 \x01(\x05\x12)\n\x12\x64iagnostic_metrics\x18\x05 \x01(\x0b\x32\x08.MetricsH\x00\x88\x01\x01\x42\x15\n\x13_diagnostic_metrics2\xf8\x08\n\x06\x44\x65vice\x12:\n\x0bTrainGlobal\x12\x13.TrainGlobalRequest\x1a\x14.TrainGlobalResponse\"\x00\x12\x37\n\nSetWeights\x12\x12.SetWeightsRequest\x1a\x13.SetWeightsResponse\"\x00\x12\x37\n\nTrainEpoch\x12\x12.TrainEpochRequest\x1a\x13.TrainEpochResponse\"\x00\x12\x37\n\nTrainBatch\x12\x12.TrainBatchRequest\x1a\x13.TrainBatchResponse\"\x00\x12;\n\x0e\x45valuateGlobal\x12\x12.EvalGlobalRequest\x1a\x13.EvalGlobalResponse\"\x00\x12)\n\x08\x45valuate\x12\x0c.EvalRequest\x1a\r.EvalResponse\"\x00\x12\x38\n\rEvaluateBatch\x12\x11.EvalBatchRequest\x1a\x12.EvalBatchResponse\"\x00\x12\x46\n\x11\x46ullModelTraining\x12\x16.FullModelTrainRequest\x1a\x17.FullModelTrainResponse\"\x00\x12\x46\n\x0fStartExperiment\x12\x17.StartExperimentRequest\x1a\x18.StartExperimentResponse\"\x00\x12@\n\rEndExperiment\x12\x15.EndExperimentRequest\x1a\x16.EndExperimentResponse\"\x00\x12\x43\n\x10GetBatteryStatus\x12\x15.BatteryStatusRequest\x1a\x16.BatteryStatusResponse\"\x00\x12L\n\x13GetDatasetModelInfo\x12\x18.DatasetModelInfoRequest\x1a\x19.DatasetModelInfoResponse\"\x00\x12y\n TrainGlobalParallelSplitLearning\x12(.TrainGlobalParallelSplitLearningRequest\x1a).TrainGlobalParallelSplitLearningResponse\"\x00\x12W\n\x18TrainSingleBatchOnClient\x12\x1b.SingleBatchTrainingRequest\x1a\x1c.SingleBatchTrainingResponse\"\x00\x12\x65\n&BackwardPropagationSingleBatchOnClient\x12\x1b.SingleBatchBackwardRequest\x1a\x1c.SingleBatchBackwardResponse\"\x00\x12\x45\n#SetGradientsAndFinalizeTrainingStep\x12\x14.SetGradientsRequest\x1a\x06.Empty\"\x00\x62\x06proto3') _globals = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) @@ -22,68 +22,70 @@ _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'connection_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None - _globals['_UPDATEWEIGHTSREQUEST']._serialized_start=42 - _globals['_UPDATEWEIGHTSREQUEST']._serialized_end=95 - _globals['_SINGLEBATCHBACKWARDREQUEST']._serialized_start=97 - _globals['_SINGLEBATCHBACKWARDREQUEST']._serialized_end=156 - _globals['_SINGLEBATCHBACKWARDRESPONSE']._serialized_start=158 - _globals['_SINGLEBATCHBACKWARDRESPONSE']._serialized_end=214 - _globals['_SINGLEBATCHTRAININGREQUEST']._serialized_start=216 - _globals['_SINGLEBATCHTRAININGREQUEST']._serialized_end=265 - _globals['_SINGLEBATCHTRAININGRESPONSE']._serialized_start=268 - _globals['_SINGLEBATCHTRAININGRESPONSE']._serialized_end=396 - _globals['_TRAINGLOBALPARALLELSPLITLEARNINGREQUEST']._serialized_start=399 - _globals['_TRAINGLOBALPARALLELSPLITLEARNINGREQUEST']._serialized_end=612 - _globals['_TRAINGLOBALPARALLELSPLITLEARNINGRESPONSE']._serialized_start=615 - _globals['_TRAINGLOBALPARALLELSPLITLEARNINGRESPONSE']._serialized_end=880 - _globals['_TRAINGLOBALREQUEST']._serialized_start=883 - _globals['_TRAINGLOBALREQUEST']._serialized_end=1017 - _globals['_TRAINGLOBALRESPONSE']._serialized_start=1020 - _globals['_TRAINGLOBALRESPONSE']._serialized_end=1264 - _globals['_SETWEIGHTSREQUEST']._serialized_start=1266 - _globals['_SETWEIGHTSREQUEST']._serialized_end=1331 - _globals['_SETWEIGHTSRESPONSE']._serialized_start=1333 - _globals['_SETWEIGHTSRESPONSE']._serialized_end=1419 - _globals['_TRAINEPOCHREQUEST']._serialized_start=1421 - _globals['_TRAINEPOCHREQUEST']._serialized_end=1505 - _globals['_TRAINEPOCHRESPONSE']._serialized_start=1507 - _globals['_TRAINEPOCHRESPONSE']._serialized_end=1620 - _globals['_TRAINBATCHREQUEST']._serialized_start=1622 - _globals['_TRAINBATCHREQUEST']._serialized_end=1702 - _globals['_TRAINBATCHRESPONSE']._serialized_start=1705 - _globals['_TRAINBATCHRESPONSE']._serialized_end=1850 - _globals['_EVALGLOBALREQUEST']._serialized_start=1852 - _globals['_EVALGLOBALREQUEST']._serialized_end=1910 - _globals['_EVALGLOBALRESPONSE']._serialized_start=1912 - _globals['_EVALGLOBALRESPONSE']._serialized_end=2025 - _globals['_EVALREQUEST']._serialized_start=2027 - _globals['_EVALREQUEST']._serialized_end=2089 - _globals['_EVALRESPONSE']._serialized_start=2091 - _globals['_EVALRESPONSE']._serialized_end=2171 - _globals['_EVALBATCHREQUEST']._serialized_start=2173 - _globals['_EVALBATCHREQUEST']._serialized_end=2252 - _globals['_EVALBATCHRESPONSE']._serialized_start=2254 - _globals['_EVALBATCHRESPONSE']._serialized_end=2366 - _globals['_FULLMODELTRAINREQUEST']._serialized_start=2368 - _globals['_FULLMODELTRAINREQUEST']._serialized_end=2427 - _globals['_FULLMODELTRAINRESPONSE']._serialized_start=2430 - _globals['_FULLMODELTRAINRESPONSE']._serialized_end=2636 - _globals['_STARTEXPERIMENTREQUEST']._serialized_start=2638 - _globals['_STARTEXPERIMENTREQUEST']._serialized_end=2662 - _globals['_STARTEXPERIMENTRESPONSE']._serialized_start=2664 - _globals['_STARTEXPERIMENTRESPONSE']._serialized_end=2755 - _globals['_ENDEXPERIMENTREQUEST']._serialized_start=2757 - _globals['_ENDEXPERIMENTREQUEST']._serialized_end=2779 - _globals['_ENDEXPERIMENTRESPONSE']._serialized_start=2781 - _globals['_ENDEXPERIMENTRESPONSE']._serialized_end=2870 - _globals['_BATTERYSTATUSREQUEST']._serialized_start=2872 - _globals['_BATTERYSTATUSREQUEST']._serialized_end=2894 - _globals['_BATTERYSTATUSRESPONSE']._serialized_start=2896 - _globals['_BATTERYSTATUSRESPONSE']._serialized_end=3017 - _globals['_DATASETMODELINFOREQUEST']._serialized_start=3019 - _globals['_DATASETMODELINFOREQUEST']._serialized_end=3044 - _globals['_DATASETMODELINFORESPONSE']._serialized_start=3047 - _globals['_DATASETMODELINFORESPONSE']._serialized_end=3246 - _globals['_DEVICE']._serialized_start=3249 - _globals['_DEVICE']._serialized_end=4322 + _globals['_SETGRADIENTSREQUEST']._serialized_start=42 + _globals['_SETGRADIENTSREQUEST']._serialized_end=94 + _globals['_UPDATEWEIGHTSREQUEST']._serialized_start=96 + _globals['_UPDATEWEIGHTSREQUEST']._serialized_end=149 + _globals['_SINGLEBATCHBACKWARDREQUEST']._serialized_start=151 + _globals['_SINGLEBATCHBACKWARDREQUEST']._serialized_end=210 + _globals['_SINGLEBATCHBACKWARDRESPONSE']._serialized_start=212 + _globals['_SINGLEBATCHBACKWARDRESPONSE']._serialized_end=318 + _globals['_SINGLEBATCHTRAININGREQUEST']._serialized_start=320 + _globals['_SINGLEBATCHTRAININGREQUEST']._serialized_end=369 + _globals['_SINGLEBATCHTRAININGRESPONSE']._serialized_start=372 + _globals['_SINGLEBATCHTRAININGRESPONSE']._serialized_end=500 + _globals['_TRAINGLOBALPARALLELSPLITLEARNINGREQUEST']._serialized_start=503 + _globals['_TRAINGLOBALPARALLELSPLITLEARNINGREQUEST']._serialized_end=716 + _globals['_TRAINGLOBALPARALLELSPLITLEARNINGRESPONSE']._serialized_start=719 + _globals['_TRAINGLOBALPARALLELSPLITLEARNINGRESPONSE']._serialized_end=984 + _globals['_TRAINGLOBALREQUEST']._serialized_start=987 + _globals['_TRAINGLOBALREQUEST']._serialized_end=1121 + _globals['_TRAINGLOBALRESPONSE']._serialized_start=1124 + _globals['_TRAINGLOBALRESPONSE']._serialized_end=1368 + _globals['_SETWEIGHTSREQUEST']._serialized_start=1370 + _globals['_SETWEIGHTSREQUEST']._serialized_end=1435 + _globals['_SETWEIGHTSRESPONSE']._serialized_start=1437 + _globals['_SETWEIGHTSRESPONSE']._serialized_end=1523 + _globals['_TRAINEPOCHREQUEST']._serialized_start=1525 + _globals['_TRAINEPOCHREQUEST']._serialized_end=1609 + _globals['_TRAINEPOCHRESPONSE']._serialized_start=1611 + _globals['_TRAINEPOCHRESPONSE']._serialized_end=1724 + _globals['_TRAINBATCHREQUEST']._serialized_start=1726 + _globals['_TRAINBATCHREQUEST']._serialized_end=1806 + _globals['_TRAINBATCHRESPONSE']._serialized_start=1809 + _globals['_TRAINBATCHRESPONSE']._serialized_end=1954 + _globals['_EVALGLOBALREQUEST']._serialized_start=1956 + _globals['_EVALGLOBALREQUEST']._serialized_end=2014 + _globals['_EVALGLOBALRESPONSE']._serialized_start=2016 + _globals['_EVALGLOBALRESPONSE']._serialized_end=2129 + _globals['_EVALREQUEST']._serialized_start=2131 + _globals['_EVALREQUEST']._serialized_end=2193 + _globals['_EVALRESPONSE']._serialized_start=2195 + _globals['_EVALRESPONSE']._serialized_end=2275 + _globals['_EVALBATCHREQUEST']._serialized_start=2277 + _globals['_EVALBATCHREQUEST']._serialized_end=2356 + _globals['_EVALBATCHRESPONSE']._serialized_start=2358 + _globals['_EVALBATCHRESPONSE']._serialized_end=2470 + _globals['_FULLMODELTRAINREQUEST']._serialized_start=2472 + _globals['_FULLMODELTRAINREQUEST']._serialized_end=2531 + _globals['_FULLMODELTRAINRESPONSE']._serialized_start=2534 + _globals['_FULLMODELTRAINRESPONSE']._serialized_end=2740 + _globals['_STARTEXPERIMENTREQUEST']._serialized_start=2742 + _globals['_STARTEXPERIMENTREQUEST']._serialized_end=2766 + _globals['_STARTEXPERIMENTRESPONSE']._serialized_start=2768 + _globals['_STARTEXPERIMENTRESPONSE']._serialized_end=2859 + _globals['_ENDEXPERIMENTREQUEST']._serialized_start=2861 + _globals['_ENDEXPERIMENTREQUEST']._serialized_end=2883 + _globals['_ENDEXPERIMENTRESPONSE']._serialized_start=2885 + _globals['_ENDEXPERIMENTRESPONSE']._serialized_end=2974 + _globals['_BATTERYSTATUSREQUEST']._serialized_start=2976 + _globals['_BATTERYSTATUSREQUEST']._serialized_end=2998 + _globals['_BATTERYSTATUSRESPONSE']._serialized_start=3000 + _globals['_BATTERYSTATUSRESPONSE']._serialized_end=3121 + _globals['_DATASETMODELINFOREQUEST']._serialized_start=3123 + _globals['_DATASETMODELINFOREQUEST']._serialized_end=3148 + _globals['_DATASETMODELINFORESPONSE']._serialized_start=3151 + _globals['_DATASETMODELINFORESPONSE']._serialized_end=3350 + _globals['_DEVICE']._serialized_start=3353 + _globals['_DEVICE']._serialized_end=4497 # @@protoc_insertion_point(module_scope) diff --git a/edml/generated/connection_pb2.pyi b/edml/generated/connection_pb2.pyi index 730bf6e320c91c3d08548a1cbac1607352c85cad..a9735505e808ee35b156158e972ab6b206e90b0a 100644 --- a/edml/generated/connection_pb2.pyi +++ b/edml/generated/connection_pb2.pyi @@ -5,6 +5,12 @@ from typing import ClassVar as _ClassVar, Mapping as _Mapping, Optional as _Opti DESCRIPTOR: _descriptor.FileDescriptor +class SetGradientsRequest(_message.Message): + __slots__ = ["gradients"] + GRADIENTS_FIELD_NUMBER: _ClassVar[int] + gradients: _datastructures_pb2.Gradients + def __init__(self, gradients: _Optional[_Union[_datastructures_pb2.Gradients, _Mapping]] = ...) -> None: ... + class UpdateWeightsRequest(_message.Message): __slots__ = ["gradients"] GRADIENTS_FIELD_NUMBER: _ClassVar[int] @@ -18,10 +24,12 @@ class SingleBatchBackwardRequest(_message.Message): def __init__(self, gradients: _Optional[_Union[_datastructures_pb2.Gradients, _Mapping]] = ...) -> None: ... class SingleBatchBackwardResponse(_message.Message): - __slots__ = ["metrics"] + __slots__ = ["metrics", "gradients"] METRICS_FIELD_NUMBER: _ClassVar[int] + GRADIENTS_FIELD_NUMBER: _ClassVar[int] metrics: _datastructures_pb2.Metrics - def __init__(self, metrics: _Optional[_Union[_datastructures_pb2.Metrics, _Mapping]] = ...) -> None: ... + gradients: _datastructures_pb2.Gradients + def __init__(self, metrics: _Optional[_Union[_datastructures_pb2.Metrics, _Mapping]] = ..., gradients: _Optional[_Union[_datastructures_pb2.Gradients, _Mapping]] = ...) -> None: ... class SingleBatchTrainingRequest(_message.Message): __slots__ = ["batch_index"] diff --git a/edml/generated/connection_pb2_grpc.py b/edml/generated/connection_pb2_grpc.py index 7d833927b4ebe5c4ae2ab97481bb073510f41a5d..c5b692413f8f3dcb6b06ba9e57d7aa31118ba740 100644 --- a/edml/generated/connection_pb2_grpc.py +++ b/edml/generated/connection_pb2_grpc.py @@ -3,6 +3,7 @@ import grpc import connection_pb2 as connection__pb2 +import datastructures_pb2 as datastructures__pb2 class DeviceStub(object): @@ -89,6 +90,11 @@ class DeviceStub(object): request_serializer=connection__pb2.SingleBatchBackwardRequest.SerializeToString, response_deserializer=connection__pb2.SingleBatchBackwardResponse.FromString, ) + self.SetGradientsAndFinalizeTrainingStep = channel.unary_unary( + '/Device/SetGradientsAndFinalizeTrainingStep', + request_serializer=connection__pb2.SetGradientsRequest.SerializeToString, + response_deserializer=datastructures__pb2.Empty.FromString, + ) class DeviceServicer(object): @@ -185,6 +191,12 @@ class DeviceServicer(object): context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') + def SetGradientsAndFinalizeTrainingStep(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + def add_DeviceServicer_to_server(servicer, server): rpc_method_handlers = { @@ -263,6 +275,11 @@ def add_DeviceServicer_to_server(servicer, server): request_deserializer=connection__pb2.SingleBatchBackwardRequest.FromString, response_serializer=connection__pb2.SingleBatchBackwardResponse.SerializeToString, ), + 'SetGradientsAndFinalizeTrainingStep': grpc.unary_unary_rpc_method_handler( + servicer.SetGradientsAndFinalizeTrainingStep, + request_deserializer=connection__pb2.SetGradientsRequest.FromString, + response_serializer=datastructures__pb2.Empty.SerializeToString, + ), } generic_handler = grpc.method_handlers_generic_handler( 'Device', rpc_method_handlers) @@ -527,3 +544,20 @@ class Device(object): connection__pb2.SingleBatchBackwardResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def SetGradientsAndFinalizeTrainingStep(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/Device/SetGradientsAndFinalizeTrainingStep', + connection__pb2.SetGradientsRequest.SerializeToString, + datastructures__pb2.Empty.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) diff --git a/edml/proto/connection.proto b/edml/proto/connection.proto index d03d2d1ec39b7f884673de4baf6b46a0643d0cdd..2f12881a1cf7e3ee6ae2e076b2f9005141cfece2 100644 --- a/edml/proto/connection.proto +++ b/edml/proto/connection.proto @@ -19,6 +19,11 @@ service Device { rpc TrainGlobalParallelSplitLearning (TrainGlobalParallelSplitLearningRequest) returns (TrainGlobalParallelSplitLearningResponse) {} rpc TrainSingleBatchOnClient (SingleBatchTrainingRequest) returns (SingleBatchTrainingResponse) {} rpc BackwardPropagationSingleBatchOnClient(SingleBatchBackwardRequest) returns (SingleBatchBackwardResponse) {} + rpc SetGradientsAndFinalizeTrainingStep(SetGradientsRequest) returns (Empty) {} +} + +message SetGradientsRequest { + Gradients gradients = 1; } message UpdateWeightsRequest { @@ -31,6 +36,7 @@ message SingleBatchBackwardRequest { message SingleBatchBackwardResponse { Metrics metrics = 1; + optional Gradients gradients = 2; } message SingleBatchTrainingRequest {