Hessisches Kompetenzzentrum

fiir Hochleistungsrechnen R ExerCise

1 Exercises Set 1: Serial Programming

Exercise code files, course slides and this exercise sheet are available for download at
https://git.rwth-aachen.de/hkhlr/using-r-on-hpc
1.1 Package installation

Installing and using packages is fundamental for working with R.

1. Make sure all necessary environment modules are loaded. E.g. on the MaRC3a Cluster in Marburg, we would
do the following to load the default gcc, openmpi, and R modules into a clean environment:

module purge
module load gnu9 openmpi4d R
module list

1 Derzeit geladene Module:

2 1) gnu9/9.4.0 5) openmpi4/4.1.1 9) gdal-hdf5/3.5.2
3 2) hwloc/2.5.0 6) hdf5/1.10.8 10) openblas/0.3.7
4 3) ucx/1.11.2 7) proj/9.1.0 11) R/4.1.2

5 4) libfabric/1.13.0 8) geos/3.11.0

2. Simply type 'R’ to start R’s interactive mode. You should see a start message that lists version, license informa-
tion, and some hints to get started.

3. We will now install some packages that are necessary for later exercises. Note that R package names (and
everything else in R) are case sensitive! To start, type:

[install.packages(c("microbenchmark","foreach","doParallel",]

”SnOW” , Hpryrll))

4. You will be asked if you want to use a personal library and if you want to create that library now. Answer both
questions by typing ’yes’.

5. Then, you will have to choose a download mirror. Preferably choose one that is close to your location (Gottingen
or Erlangen for example). If the download should fail, it is always a good idea to try another mirror before
searching for an error elsewhere.

6. The last package, Rmpi, needs an additional parameter to link to the correct MPI version:

install.packages("Rmpi" configure.args="-with-
mpi=/opt/ohpc/pub/mpi/openmpid-gnu9/4.1.1/")

The paths displayed here are dependent on the system or cluster you are working on!
To find the location of the currently loaded MPI module, you can for example try:

which mpicc

On MaRC3a, the output will look like this:
/opt/ohpc/pub/mpi/openmpi4-gnu9/4.1.1/bin/mpicc

7. You should now be able to load and use all of the above packages by typing

library("<package name>")

8. If you want to quit R, type "qO". You can choose whether to save your workspace environment or discard it.

1.2 Microbenchmark

When trying to write well-performing R code, the "microbenchmark" package offers a great interface to compare
different implementations of the same functionality.

https://wuw.hkhlr.de 1 Version February 2025

https://git.rwth-aachen.de/hkhlr/using-r-on-hpc
https://www.hkhlr.de

1.3

Hessisches Kompetenzzentrum

fiir Hochleistungsrechnen R ExerCise

Change into the exercise directory:

cd exercises/microbenchmark

Open the file growing_objects.R in an editor:

nano growing objects.R

Take note of the check() function, which uses the built-in functionality of microbenchmark to keep a list of all results
for comparison.

Close the file by hitting CTRL+X.

Execute the script from the commandline with

Rscript growing objects.R

or simply

N\

./growing_objects.R

J

(this is possible because of the file has been made executable with chmod u+x <file_name> and includes the "she-
bang" line #!/usr/bin/env Rscript).

Change the values for vec_length and the times parameter and observe how the output changes (do not set the
numbers too high, though!).

Vectorized Functions

Using vectorized functions is essential for writing well-performing and maintainable R code.

1. Change into the exercise directory:

14

cd exercises/vectorized functions

Open the file vecsun.R in an editor:

[nano vecsum.R]

Inspect the code, then close the file and run the script. Check that both functions return the same result.
Modify the script so that vec_2 is only half the length of vec_1.

Run the script again. In the direct sum function, you can see vector recycling in action; vec_2’s contents are
automatically repeated so that its length matches vec_1.

By yourself: Try to modify the script into a microbenchmark for comparing the two functions vecsum_1oop() and
vecsum_direct (). Use the growing_objects.R script from the previous exercise as a template (implementing the
check() function is optional).

Saving and Loading Objects

For this exercise, we will use the interactive shell of R.

1. On the command line, enter 'R’ to start the interactive shell and load the 'pryr’ package.

2. We can now check the currently used memory of our R environment:

R
(...some lines of text from R startup...)
library("pryr")

mem _used()

or

gc()

https://wuw.hkhlr.de 2 Version February 2025

https://www.hkhlr.de

Hessisches Kompetenzzentrum

fiir Hochleistungsrechnen R ExerCise

3. Now, we will create two large matrices and check their memory footprint.

m_ 1 <- matrix(rnorm(1000000),nrow=1000)
m_ 2 <- matrix(rnorm(1000000),nrow=1000)
mem__used()

4. If we want to see all currently active objects, we can use 1s()
Is()

Take the time in between the following steps using 1s() and mem_used() to observe how the environment changes.

N\

J

5. We will now save m__1 as an RDS file and then throw away the object:

saveRDS(m_ 1,file="m_1.rds")

rm(m_1)

6. Then, we load it back into a new variable:

m_3 <- readRDS(file="m _1.rds")

7. To save multiple objects in an Rdata file, we do:

save(m_2,m_ 3 file="objects.Rdata")

8. We remove the objects from the environment and load them again:

rm(m_2m_3)
load(file="objects.Rdata")

J

Take note that 10ad() does not need a variable, but just dumps the objects back into the environment with the
names they had before.

9. Once you quit the R interactive shell with q(), take note of the two created files m_1.rds and objects.Rdata.These
are a persistent store of your objects and may be moved, copied, and opened elsewhere.
1.5 Running R Jobs on a Cluster

In this exercise, we will look at submitting R jobs to a cluster scheduler and also how to set and read R script
parameters.

1. Change into the exercise directory:

cd exercises/submit _serial

2. Open the file simple_R_job.sh.

nano simple R _job.sh

J

3. This is a simple, but typical SLURM submit script. Take note that we load the same modules that we also
loaded to work with R locally. The executed code is the same as the one from the "Microbenchmark" exercise.
Submit it with:

sbatch simple R _job.sh

4. You can check on your job’s progress with the squeue command.

5. After your job has finished, look inside the exercise directory; there should be files called simple_R_job.<jobID>.err
and simple_R_job.<jobID>.out. Inspect these files using nano or 1ess.

6. What if we wanted to do several tests with different vector lenghts? The modified code in growing_objects_param.R
takes a command-line argument that sets the vector length and saves the benchmark results into an RDS file.

7. We could submit several jobs for different lengths, or we could submit a task array. The submit script
tasked_R_job.sh does the latter and will emit 4 tasks that will run the benchmark for lengths 4000, 6000, 8000,
and 10000.

https://wuw.hkhlr.de 3 Version February 2025

https://www.hkhlr.de

8.

9.

10.

Hessisches Kompetenzzentrum

fiir Hochleistungsrechnen R ExerCise

Inspect the input files, then submit the task array:
sbatch tasked R_job.sh]

Check the job output and verify all files have been created. You could now, at any time, read these objects back
into an R script, for example in a following job that further operates on and/or combines the results. Note: To
get back the original formatting, the "microbenchmark" package has to be loaded when reading
the objects.

With the information on how to read RDS files from the previous exercise, can you write an R script that displays
all results from the RDS files produced by the task array? Bonus points if you can do it without hard-coding
the file names!

2 Exercises Set 2: Parallel Programming

2.1

Using mclapply

The mclapply and mcmapply functions are the easiest way to parallelize an R function on Linux.

1.

2.2

Change into the exercise directory:

[cd exercises/mclapply]

. Open the file nclapply.r and compare the serial and parallel function calls.

There is also a SLURM submit script called mclapply_R_job.sh, which will run the R code on the cluster. Take a
look at its content and then submit it:

sbatch mclapply R job.sh]

Check the job output and verify that the parallel routine was faster.

Augment the code in mclapply.R so that the amount of CPU cores can be set as a script parameter (e.g. so that
the command Rscript mclapply.R 8 would use 8 CPU cores for mclapply).

Use the file growing_objects_param.R from the previous exercise as a template on how to handle command-line
parameters in R.

Using the R Cluster Functions

The cluster function family offers a flexible interface to parallelize R code.

1.

3.

Change into the exercise directory:

cd exercises/cluster]

. This is the same function as in the mclapply exercise, but this time, we will use both parLapply and foreach to

parallelize it. Check the content of the file cluster_1.R and take note of the additional function calls.

We will first submit the job by using the provided job script:
[sbatch cluster 1 R job.sh]

Foreach seems to be significantly slower than parLapply. On the slides, there is a hint on what is the issue here.

Splitting the input in as much chunks as there are cores can be done via clusterSplit(). Add an additional entry
to the microbenchmark where foreach splits the input into appropriate chunks. Caution: The function call also
has to be modified (why?).

We can also add a call to mclappy to the microbenchmark, to compare the two methods.

foreach can be much more flexible than *apply since it can execute whole code blocks (including variable assign-
ments, if-else-constructs, loops, etc.)! We can demonstrate that by implementing the code of boot_tx() directly
in foreach instead of calling it.

We have to add some more code if we want to process whole chunks of data (i.e. using clustersplit()), since the
original implementation of boot_£x() only processes a single value on each call!

https://wuw.hkhlr.de 4 Version February 2025

https://www.hkhlr.de

2.3

Hessisches Kompetenzzentrum

fiir Hochleistungsrechnen R ExerCise

Using RMPISNOW

The snow package for R includes a parallel function interface for MPI that shares most functionality with the cluster
package that we have already seen. Calling conventions differ a bit, since snow includes a framework of scripts that
takes care of abstracting away the technicalities of properly starting R from within an MPI context.

1. Change into the exercise directory:

2.4

cd exercises/Rmpi]

Look at the files rmpisnow.R and rmpisnow_R_job.sh. Note the differences to the "cluster.R" example from the
previous exercise, especially how the R processes are started through mpiexec. We also use --no-echo here because
RMPISNOW does not use Rscript and would otherwise echo all code lines to output.

The advantage of using MPI compared to the FORK cluster from the previous exercise is that we are no longer
limited to a single node. Whether our code and problem size is scaling so well that it’s worth using more than
a single node, however, is a different question!

We will submit the job to the cluster by using the provided script:

sbatch rmpisnow R _job.sh]

Once the job has completed, check its output to confirm that the parallel call completed faster than the serial
version.

An Rmpi Wrapper Example

We will look at an example of how the RMPI Wrapper works. MPI is a big and complex topic that cannot be covered
fully in this course; however, Rmpi allows that already obtained or newly acquired skills in using MPI’s C interface
can be implemented almost one-to-one in R code.

1. Change into the exercise directory:

cd exercises/Rmpi]

The MPI code is found in the file mpi.. Open the file and try to figure out what the code will do. Keep
in mind that all processes will execute the same code, the only difference is their rank number (from o to

<number_of_processes>—1) .

There is also a SLURM submit script named mpi_R_job.sh. Open it and check how the R code is invoked with

mpiexec.

Submit the job to the cluster, and check the output once it has finished.
sbatch mpi_ R _job.sh

In the .err file, you'll find an (approximate) timing for the run. Most likely, it will be a bit slower than the other
parallel methods. What could be the reasons? What could be done to improve performance?

The code in mpi.R is a naive implementation meant to showcase MPI’s most basic point-to-point communication.
A more ’serious’ version that uses appropriate collective communications (in this case scatter and gather) can be
found in the file mpi_collective.R. It has an associated job script that we can run:

sbatch mpi_R_job_collective.sh

The output of mpi_collective.R is transformed (additional one-level unlist()) so that it has the same format as
the output from mpi.r. Thus, you can verify that both implementations have the same result by using the shell
command diff.

Online Resources

“The R Inferno” (in-depth analysis of R programming pitfalls):
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf

https://wuw.hkhlr.de 5 Version February 2025

https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.hkhlr.de

Hessisches Kompetenzzentrum

fiir Hochleistungsrechnen R ExerCise

e “R-Bloggers” (great articles about R parallelization):
https://www.r-bloggers.com

e The R Manual (online R package help files):
https://stat.ethz.ch/R-manual/R-devel/doc/html/index.html

e SLURM documentation:
https://slurm.schedmd.com

https://www.hkhlr.de 6

Version February 2025

https://www.r-bloggers.com
https://stat.ethz.ch/R-manual/R-devel/doc/html/index.html
https://slurm.schedmd.com
https://www.hkhlr.de

	Exercises Set 1: Serial Programming
	Package installation
	Microbenchmark
	Vectorized Functions
	Saving and Loading Objects
	Running R Jobs on a Cluster

	Exercises Set 2: Parallel Programming
	Using mclapply
	Using the R Cluster Functions
	Using RMPISNOW
	An Rmpi Wrapper Example

