Using R on HPC Systems

Hessisches Kompetenzzentrum fiir Hochleistungsrechnen (HKHLR)
René Sitt

25.02.2025

JUSTUS-LIEBIG-
UNIVERSITAT
GIESSEN

TECHNISCHE
UNIVERSITAT
DARMSTADT

HESSEN

6

HKHLR is funded by the Hessian Ministry of Sciences and Arts

Agenda

Today’s Agenda

First Part: Serial Performance and Language Features
» R Paradigms and Pitfalls
» Vectorized Functions
» Memory Management

» Using R in a Cluster Environment

fir Hochleisty

(HKHLR)

.

Second Part: Parallel Programming with R
» General Hints on Parallel R
» Multicore Functions
» Cluster Functions
» Rmpi

% René Sitt R on HPC

25.02.2025

https://creativecommons.org/licenses/by/4.0/

2/78

E

Motivation

far

Hochleist

Motivation: R and HPC

René Sitt R on HPC 25.02.2025

(HKHLR)

ssssss

https://creativecommons.org/licenses/by/4.0/

3/78 Reasons for using R
I Hesssches Tor Hochie (HKHLR)

Reasons for using R

» Rich package ecosystem

» Strong support especially for statistical analysis, machine
learning, data visualization

» Dynamic and flexible language

» Fast development cycles due to being a script language

» Powerful IDE options available (RStudio, Jupyter)

» Question to the audience: Why do you use R, and

what do you use it for?

|||;
iz

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

4/78 Reasons for using HPC Clusters
I Hesssches o Hochiain (HRHLR)

Reasons for using HPC Clusters

» Provides hardware resources far beyond workstation
capabilities (Memory, CPU cores, Storage)

» Enables running computations that would take weeks or
years to complete locally: capability computing

» Enables running 100's or 1000’s of small computations
concurrently: capacity computing

» Allows automating and managing large calculation
campaigns: Arrays, dependencies, scripting

» Decouples setting up a calculation and running it

» Question to the audience: What do you expect to get
out of HPC with your R usage scenario?

HESSE
% René Sitt R on HPC 25.02.2025

Z

I
®
§O

https://creativecommons.org/licenses/by/4.0/

R vs. HPC

» Script language - interpreted at
runtime

» Interactive workflow

» Dynamic resource usage
(memory, CPU cores, ...)

Hessisches fiar Hochleist (HKHLR)

» Compiled languages preferred
(optimized for performance)

» Batch-/non-interactive workflow

» Static resource contingent -
requested at submit

How to resolve these conflicts?

% René Sitt R on HPC

HESSE

Z

I8
®
§O

25.02.2025

https://creativecommons.org/licenses/by/4.0/

6/78 R vs. HPC
. Hesisches For Hochieat (HKHLR)

It's not as bad as it looks (and e.g. Python has the same problems)!

» script vs. compiled code: R packages that handle numerics often use optimized
libraries as backend (e.g. LAPACK and BLAS for vector and matrix operations)

» interactive vs. non-interactive workflow: Control via commandline parameters
and control constructs

» dynamic vs. static resources: Amount of processes and threads can be controlled
manually; memory footprint can be kept manageable with the right coding choices

Two things are needed to make running R on a cluster worthwhile:

» Correct installation and configuration (done by cluster administrators, R
installation maintainers, R package maintainers)

» Writing efficient R code (done by the R users) — Today’s agenda!

% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

7/78 Interactive vs. Batch

Hessisches fiar Hochleist (HKHLR)

What about interactive Runtimes such as RStudio or Jupyter (with R kernel)?
» Some clusters offer one or both

» Interactive == portion of the runtime is spent waiting for input — 'inefficient’ from
an HPC perspective

» Consequence: If offered, RStudio and/or Jupyter will be restricted w.r.t. maximum
resource usage (especially memory and runtime)

» Result: Useful for development and testing, but long and/or intensive calculations
should be submitted as ’proper’ batch jobs!

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

8/78 R Packages
I Hesssches fir Hochieist (HKHLR)

R Packages

» The two largest package databases are CRAN (https://cran.r-project.org/)
and Bioconductor (https://www.bioconductor.org/)

» Packages can be installed either for all users or on a per-user basis — On HPC
clusters, the central package base is often quite minimal, and each user is expected
to install the packages they need

» Using a (well-maintained) package is almost always faster and less error-prone than
writing a functionality by yourself — No need to 'reinvent the wheel’!

HESSE

Z

I8
®
§O

% René Sitt R on HPC 25.02.2025

https://cran.r-project.org/
https://www.bioconductor.org/
https://creativecommons.org/licenses/by/4.0/

9/78

Course Materials
I

Hessisches fiar Hochleist (HKHLR)

Course Materials

» The materials for this course (slides, exercise sheet, exercise code) are available as a
public git repository

» You can either clone the repository (requires git being installed):
git clone https://git.rwth-aachen.de/hkhlr/using-r-on-hpc.git

» Or download the material as an archive file:
Point your browser to

https://git.rwth-aachen.de/hkhlr/using-r-on-hpc
and click the download button (between CRje—
'Web IDE’ and 'Clone") - e

Z

HESSE
% René Sitt

R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

10/78 Hands on, part 1
I Hesssches fir Hochieist (HKHLR)

Hands on!

Guided Exercise:
1.1 Package installation

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
EO

https://creativecommons.org/licenses/by/4.0/

11/78 R Help
I Hesssches Tor Hochlait (HKHLR)

Getting Help in R
» R has an extensive online help system
» Help on a specific topic, package, or function is invoked with ?<topic> Or help(<topic>)

» If the topic is vague or does not have its own help page, ?7<topic> or
help.search(<topic>) searches for a term within the documentation texts

» You get back to the commandline by typing q

HESSE

Z

I8
®
§O

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

12/78

sssssssss

R Language Concepts and
Paradigms

René Sitt R on HPC 25.02.2025

ssssss

https://creativecommons.org/licenses/by/4.0/

13/78 R Concepts & Paradigms
I Hesssches fir Hochieist (HKHLR)

Concepts and Paradigms of R
“To understand computations in R, two slogans are helpful: Everything that exists
is an object. Everything that happens is a function call.”
- John M. Chambers, R developer

» The meaning of "object" and "function" depends on the listings/r_objects.R
. 1 >x <=2
programming language , e
» Probably meant here: R does not distinguish between 3 (112
0o e epe I n n . 4 > str(x)
primitive" types / operators and "complex" types (i.e. 5 .
objects) / functions 6 > x <= c(x,3)
7> X
» Even a simple number is actually a vector of length 1! ;47 2 3
9 > str(x)

=
o

num [1:2] 2 3

HESSE
% René Sitt R on HPC 25.02.2025

Z

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

14/78 R Concepts & Paradigms
I Hesssches fir Hochieist (HKHLR)

Concepts and Paradigms of R (cont.)

R as a language of objects and functions

» R functions are also objects. They may be assigned to a variable and act as
arguments for other functions.

» Most R functions (including "+", "-", etc.) are designed to act on whole
vectors of data instead of single elements.

What does that mean for R programmers?

» Whenever possible, make use of working on whole vectors of data instead of
single values, and avoid explicit loops

» Whenever possible, write code that utilizes pure functions (see next slides),
and avoid relying on side effects

HESSEN

R on HPC 25.02.2025 % @.@J

René Sitt

https://creativecommons.org/licenses/by/4.0/

15/78 Side Effects
. Hesssches For Hochieat (HKHLR)

Intermission:
Side Effects and Ildempotency

ssssss

% René Sitt R on HPC 25.02.2025 @

https://creativecommons.org/licenses/by/4.0/

© O N OO A W N R

16/78 Side Effects
. Hesisches

fiar Hochleist (HKHLR)

Side Effects, ldempotency, Pure Functions

A function is said to have a side effect if, besides returning a value, it has any effect
on the state outside its scope, i.e. changing a global variable or producing output.

listings/sideeffect.R

listings/no_sideeffect.R

increment.with.SE <- function(n) { increment.no.SE <- function(n) {
n <<- n+l1 # global assignment n <- n+l # local assignment

} }

n<-0 n <- 0

print(n) # n is 0
increment.with.SE(n)
print(n) # n is 1
increment.with.SE(n)
print(n) # n is 2

E

René Sitt

© ® N oA W N R

R on HPC

print(n) # n is O
increment.no.SE(n)
print(n) # n is still O
m <- increment.no.SE(n)
print(m) # m is n+1 = 1

HESSE

Il|
iz

25.02.2025

https://creativecommons.org/licenses/by/4.0/

17/78 Idempotency
I Hesssches fir Hochieist (HKHLR)

Side Effects, ldempotency, Pure Functions

Idempotency

A function is said to be idempotent if its output depends solely on its input and
not on any additional external state.

listings/non_idempotent.R listings/idempotent.R

add.not.IP <- function(n) { add.IP <- function(a,m) {

n <- n+tm # m is a global var n <- n+m
+ }
n<-1 n<-1
m <- 3 m<- 3

sum <- add.IP(n,m)
print(sum) # sum is n+m
...[changes in the global environment]...

m <- 4
sum2 <- add.not.IP(n) # same command sum2 <- add.IP(n,m) # same command
print(sum2) # sum2 is still n+m

Erint(squ) # same input, different output
René Sitt R on HPC 25.02.2025

sum <- add.not.IP(n)
print(sum) # sum is n+m

© ® N OGN WN R

-
o

HESSE

Il|
iz

https://creativecommons.org/licenses/by/4.0/

18/78 Pure Functions
. Hesisches For Hochieat (HKHLR)

Side Effects, ldempotency, Pure Functions

Pure Functions

» A function is said to be a pure function if it is both idempotent and has no
side effects.

» While “function” in programming normally implies nothing about the
existence of side effects or idempotency, a “function” as defined by
mathematics implies a pure function.

» It is not strictly enforced to write pure functions in R, but it often makes
vectorization and parallelization easier

» The "apply" functions, their parallel equivalents, and the "foreach" package
rely on using pure functions

J
HESSEN
% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

19/78

E

René Sitt

Common Pitfalls in R Programming

Hessisches

Common Pitfalls

R on HPC

25.02.2025

fiar Hochleist (HKHLR)

ssssss

https://creativecommons.org/licenses/by/4.0/

HESSE
% René Sitt R on HPC 25.02.2025

20/78 Common Pitfalls in R Programming
I Hesssches o Hochiain (HRHLR)

Pitfalls in R Programming: Growing Objects
» Dynamically growing objects in a loop can have a huge performance impact
» Functions that do this are e.g. ¢(), cbind(), and rbind()

listings/growing_object.R
concat <- function(n) {
vec <- numeric(0) # Create a vector of length 0
for(i in 1:n) vec <- c(vec,i) # Concatenate 1,2,....0n
return(vec) }

£ill <- function(n) {
vec <- numeric(n) # Create a vector of length n
for(i in 1:n) vec[i] <- i # Fill vector with 1,2,...,n
return(vec) }

assign <- function(n) {
vec <- 1:n # Assign a vecor with length n containing 1,2,...,n
return(vec) }

Il|
iz

https://creativecommons.org/licenses/by/4.0/

21/78 Common Pitfalls in R Programming
I

Hessisches fiar Hochleist (HKHLR)

Pitfalls in R Programming: Growing Objects (cont.)

» Runtimes of the functions from previous slide in milliseconds, median of 100 runs, for
different vector sizes

] n \ concat \ fill \ assign \
100 0.075 ms | 0.023 ms | 0.002 ms

1000 2.045 ms 0.165 ms | 0.003 ms
10000 | 152.476 ms | 1.776 ms | 0.016 ms

Possible strategies to avoid growing objects

» Avoid loops if vectorized value assignment is possible
» If the final size of an object is known, construct it prior to the loop

» Collect the loop results in a list and construct the object after the loop

EEEEEE
% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

22/78 Hands on, part 2
I Hesssches fir Hochieist (HKHLR)

Hands on!

Guided Exercise:
1.2 Microbenchmark

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
EO

https://creativecommons.org/licenses/by/4.0/

23/78

Common Pitfalls in R Programming

Hessisches fiar Hochleist (HKHLR)

Pitfalls in R Programming: Rounding and Numerical Error

» Floating point math means that accuracy is
limited to the precision of a number's internal

representation

» Comparing floating point numbers might yield

surprising results

» To test floating point (near-)equality,

all.equal(target, current, ...) Can be used

» R hides a lot of these imprecisions for the sake of

readability (default print precision: 7 digits)

» You can change that default by setting

options(digits=<x>) (n1ax. 22)

% René Sitt

R on HPC

N N

listings/fpmath.r
0.3/3
[1] 0.1
0.1 == 0.3/3
[1] FALSE
0.1 - (0.3/3)
[1] 1.387779e-17

listings/fpdisplay.r
print(7/13 - 3/31)
[1] 0.4416873
print(7/13 - 3/31,digits=16)
[1] 0.4416873449131513

HESSE

Z

I8
®
§O

25.02.2025

https://creativecommons.org/licenses/by/4.0/

24/78 Common Pitfalls in R Programming
I

Hessisches fiar Hochleist (HKHLR)

Pitfalls in R Programming: Rounding and Numerical Error (cont.)

» The R rouna() function uses “round half to even” instead listings/rounding. R
of the more commonly known “round half up” ; >[1§°2nd(4‘5)
» Rounding half to even is the standard procedure for 3 >[1§°an(3‘5)
floating point math (conforming to IEEE 754) B round(2.5)
> A .5 value is always rounded towards nearest even integer, ° £11m2md(1 5
i.e. <even_value>.5 is always rounded down and 8 [1] 2
<odd_value>.5 is always rounded up 9 ETeund(0b)
10 [1] O

» Question to the audience: What might be the
statistical reasoning for preferring round half to even
instead of round half up?

HESSEN
% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

© 0 N oA W N R

25/78 R rounding demo
I Hesssches o Hochiain (HRHLR)

Round half up vs. round half to even demo

listings /rounding_demo.R

Define a round-half-up function
taken from: https://gist.github.com/sotoattanito/8e6fad4b7322ceae9f14£342985£1681
round.off <- function (x, digits=0)
{
posneg = sign(x)
z = trunc(abs(x) * 10 ~ (digits + 1)) / 10
z = floor(z * posneg + 0.5) / 10 ~ digits
return(z)
}

vecl <- rnorm(1000000) # Create a large normal distribution (centered on 0)

vec2 <- round.off(vecl) # Apply round half up

vec3 <- round(vecl) # Apply round half to even

Compare mean values - round half up will deviate further from O than round half to even
mean(vecl)

mean (vec2)

mean (vec3)

HESSEN
% René Sitt R on HPC 25.02.2025 @

https://creativecommons.org/licenses/by/4.0/

26/78

E

René Sitt

Vectorization

Vectorized Functions

R on HPC 25.02.2025

fiar Hochleist (HKHLR)

ssssss

https://creativecommons.org/licenses/by/4.0/

27/78 Vectorization

. Hesssches Tar Hochiest (HIHLR)

Writing Efficient R Code: Vectorized Functions

Vectorization

» “Vectorized" in an R sense means that a function acts on a whole vector (or
matrix) of data at once

» It does not necessarily mean that the code uses “vector instructions” (i.e.
SSE, AVX, etc.) or even parallelization

» R has an extensive library of vectorized functions which are generally much faster
than doing an element-wise calculation (e.g. sunO), meanO), ...)

» Before you write a for or wnile loop, always check whether there is a function that
can do the operation on the whole data at once

HESSE

|z

I8
®
§O

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

28/78

Vectorization

Hessisches fiar Hochleist (HKHLR)

Writing Efficient R Code: Vectorized Functions (cont.)

» Technically, there are two different types of vectorized functions: Those that apply a
function element-wise, and those that combine vector elements into a result

» The former case’s result and input keep the same shape while the latter's result has

a different shape than its input

» An example for the first type is vector addition, or the 10g() function

» An example for the second type are the mean() and sun() functions

1
2
3

+
+
+

4
5

5
7

René Sitt

1
2
3

R on HPC

= 14+2+3=6

25.02.2025 %

https://creativecommons.org/licenses/by/4.0/

20/78 Vectorization
. Hesisches Tor Hochieist (HKHLR)

Vectorized Functions: apply()

» The app1y() function family applies a specified function to a list, vector, matrix, or
array of inputs

» It is not (much) faster than a loop, but often much more efficient to write
» The applied function is generally assumed to be a pure function

» Many parallelization functions are using the same principle as app1y(), so using it
from the start facilitates later parallelization

l Name \ Parameters \ Output Type \ Comment ‘
apply X, MARGIN, FUN vector, array, or list most general
lapply X, FUN list ‘L'="List’
sapply X, FUN vector, matrix, or array ‘S'="Simplify’
mapply FUN, X, Y, ... vector, matrix, or array | ‘M’'="Multivariate’

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

30,78 Vectorization
. Hesisches Tor Hochieist THKHLR)

Vector Recycling

» If the length of two vector arguments does not match, the shorter vector's
entries will be repeated to match the longer vector's length

» There is no warning message to indicate that vector recycling has
happened and this can lead to unexpected results

listings/recycling.R

> vec_1 <- 1:10
> vec_1

[11 1 2 3 4 5 6 7 8 9 10
> vec_2 <- 1:5
> vec_2

[11] 1 2345
> vec_1 + vec_2

[11 2 4 6 8 10 7 9 11 13 15

% René Sitt R on HPC 25.02.2025 ="

©® N O GR W N R

|%
Z

®
§O

https://creativecommons.org/licenses/by/4.0/

31/78 Hands on, part 3
I Hesssches Tor Hochier: THRHLR)

Hands on!

Guided Exercise:
1.3 Vectorized Functions

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
§O

https://creativecommons.org/licenses/by/4.0/

32/78

Memory Management
far H

ssssssssss

Memory Management

René Sitt R on HPC 25.02.2025

ssssss

(HKHLR)

https://creativecommons.org/licenses/by/4.0/

33/78 Memory Considerations

. Hesssches Tar Hochiest (HIHLR)

Memory Management in R
» R holds all currently active objects in memory, which can fill up available RAM space
very fast
» When working with large data sets, it is not uncommon to hit the memory ceiling

» R has a built-in garbage collector that will periodically clean up unused objects

HESSE

|z

I8
®
§O

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

34/78 Memory Considerations
I Hesssches o Hochiain (HRHLR)

Checking Memory Usage in R
» There are several ways to check current memory usage in R:

» Invoking the garbage collector with gc()

» Overall memory usage: On Windows memory.size() works; on Linux, the function
mem_used() from package pryr has to be used

» The size of a single object can be displayed with object.size(<object>)

listings/mem_display.R

> library()
> mat <- matrix(rnorm(1000) ,nrow=10)
> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 370576 19.8 641837 34.3 641837 34.3
Vcells 705637 5.4 8388608 64.0 1754294 13.4
> mem_used()
26.4 MB
> object.size(mat)
8216 bytes

HESSE
% René Sitt R on HPC 25.02.2025 ="

© 0N OGO R W N

-
o

Z

®
§O

https://creativecommons.org/licenses/by/4.0/

35/78 Memory Considerations
I

Hessisches fiar Hochleist (HKHLR)

Strategies for Managing Memory

» Only use global objects (i.e. objects and data structures that exist outside of a
function) when it is necessary

» Delete objects that are no longer needed with rm(<object>)
» For large data sets, check if they can be partitioned into several independent tasks

» Partitioning and gathering data from tasks can often be done by caching R objects
on disk (see next slide)

Taf_lf_lTaﬁZ Ta’_s;\k 3
@1020§\
04{|05/06
07/08/09,

EEEEEE
% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

36/78 Saving and Loading Data

Hessisches fiar Hochleist (HKHLR)

Human-readable formats: Table and CSV

P urite.table(), write.csv() and their counterparts read.table() and read.csv()
produce and read from text files

» Mainly used to output structured data that is to be read either by a human or
e.g. a spreadsheet program

» Saving and restoring complex objects might be difficult

Compressed formats: save and saveRDS

P> save(), saveRDS() and their counterparts 10ad() and readrDs() produce and read
from compressed R object files

» Complex objects are kept exactly as-is, as long as all packages they may
depend on are also loaded

S
% René Sitt R on HPC 25.02.2025

llg
w2

I

https://creativecommons.org/licenses/by/4.0/

37/78 Hands on, part 4
I Hesssches fir Hochieist (HKHLR)

Hands on!

Guided Exercise:
1.4 Saving and Loading Objects

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
EO

https://creativecommons.org/licenses/by/4.0/

38/78

% René Sitt

Using R in a Cluster Environment

R on HPC

ssssssssss

25.02.2025

EEEEEE

https://creativecommons.org/licenses/by/4.0/

39/78

R on a Cluster

Running R in a Cluster Environment

| 2

Most work on HPC clusters is done with batch jobs, i.e.

scripts that run your code with no "live" user input

» Old R scripts sometimes use r cup BATCH, Which is
deprecated and should not be used anymore

Instead, to run R code via script, use

Rscript <your_R_code>

> Rscript also allows setting additional parameters to be

read in by the R script

% René Sitt R on HPC

Hessisches

fiar Hochleist (HKHLR)

25.02.2025

https://creativecommons.org/licenses/by/4.0/

40/78 R on a Cluster
. Hesisches Tor Hochieist (HKHLR)

Running R in a Cluster Environment (cont.)

» R packages can either be installed into the global library (done by someone with root
access) or into a user's local library
» The decision on when to do which is dependent on:

» The preference of the local cluster maintainers (some might prefer global installations
while others might not)

» The availability of disk space (local installations might take a significant portion of the
/home directory)

» The complexity and - occasionally - external dependencies of a package installation

If you are maintaining an R installation yourself, make sure that R is properly

linked to a fast, optimized BLAS and LAPACK library or overall performance
might be significantly worse!

HESSEN
% René Sitt R on HPC 25.02.2025 %

https://creativecommons.org/licenses/by/4.0/

41/78 R on a Cluster
. Hesisches For Hochieat (HKHLR)

Structured Job Organization on a Cluster

» The scheduling software allows to submit several similar jobs at once, and defining
dependencies between jobs

» This may be used for a "coarse-grained" parallelism

» Cluster jobs often involve doing the same calculation on a wide range of parameters
(parameter sweep)

» Another use case is having each task working on a portion of a very large data set
(and possibly having a single job collecting the results afterwards)

% René Sitt R on HPC 25.02.2025 @

https://creativecommons.org/licenses/by/4.0/

42/78

Using Commandline Arguments

. Hesssches Tar Hochiest (HIHLR)

Using Commandline Arguments

>

Having to slightly change the code whenever making a calculation that requires
different parameters is not very efficient

Providing the parameters via the commandline allows for code flexibility
The simplest way in R is using commandArgs ()

commandArgs () returns an array of all provided commandline arguments, in order of
input

» Arguments are provided as a character vector; if you want to use numerical
values, you will need to convert them first (e.g. using as.integer(<value>))!

» Checking the correct amount and order of arguments, as well as providing
default values for missing arguments, must be done manually!

E

René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

43/78 Using Commandline Arguments
I Hesssches o Hochiain (HRHLR)

Using Commandline Arguments - Simple Example

exercises/submit_serial /growing_objects_param.R

P trailingOnly=TRUE Means we are

args <- commandArgs(trailingOnly=TRUE) getting on/y the arguments we

if (length(args) < 1) { explicitly put in
vec_length <- 10000L
} else {

vec_length <- as.integer(args[1])*1000L
Iy

An alternative to commandArgs: optparse

» The alternative package optparse offers a more detailed and feature-rich
interface for commandline argument parsing that is modeled after Python's
optparse module

HESSE
% René Sitt R on HPC 25.02.2025 ="

Il|
iz

https://creativecommons.org/licenses/by/4.0/

44/78 Hands on, part 5
I Hesssches fir Hochieist (HKHLR)

Hands on!

Guided Exercise:
1.5 Running R Jobs on a Cluster

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
EO

https://creativecommons.org/licenses/by/4.0/

45/78

René Sitt

R on HPC

ssssssssss

25.02.2025

EEEEEE

https://creativecommons.org/licenses/by/4.0/

46/78 General Hints and Tips
I Hesssches o Hochiain (HRHLR)

General Hints and Tips on Parallelization

» R calculations are often more a problem of HTC (High Throughput Computing)
than HPC (High Performance Computing)

Size of a single job often ranges from 1 to 32 cores
Several hundreds or thousands of similar jobs/tasks

Parallel scalability is limited by the amount of serial code (cf. Amdahl’s Law)

vvyyy

Good data partitioning and data organization are often more effective than just
"making it parallel somehow"!

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

47/78 Fork-Join-Parallelism
. Hesisches Tor Hochieist (HKHLR)

R’s parallelism model
» Most of R's parallel functionality is based on Fork-Join-Parallelism
» More specifically, the parallel part(s) of R code are mostly limited to single functions

» General scheme: Serial setup (read in/prepare data) — Parallel computation
(process data) — Serial finalization (output/plot results)

Fork-Join

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

48/78 Parallelization Levels
.

Hessisches fiar Hochleist (HKHLR)

Levels of Parallelization
» A code can be parallelized on multiple levels
» All kinds of parallelization have their own use cases, advantages and challenges

» Rule of thumb: As process coupling (i.e. amount of possible communication between
units) decreases, the parallelization scope (and possible scalability) increases

| Type [Parallelized Unit [Parallel Scope [Communication ‘
Job Array Job Cluster None
Socket/MPI Cluster Process Cluster Messages
Fork Cluster Process Node Shared Memory
OpenMP /Multithread Thread Node Shared Memory
Vectorization CPU Instruction CPU Core Shared Registers

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

49/78 Parallel R - Preliminaries
.

Hessisches fiar Hochleist (HKHLR)

Parallel Programming with R
» There are multiple packages for the parallelization of R code

» There is no single "right way" to parallelize; there are different techniques and
packages that are well-suited for different tasks

» We will give an overview over of the most common packages and how they are used,
in order from most simple to most complex

l Type \ Parallelized Unit \ Parallel Scope \ Communication ‘
Job Array Job Cluster None
Socket/MPI Cluster Process Cluster Messages
Fork Cluster Process Node Shared Memory
OpenMP /Multithread Thread Node Shared Memory
Vectorization CPU Instruction CPU Core Shared Registers

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

50/78 OpenMP parallelism
I Hesssches o Hochiain (HRHLR)

OpenMP Multithreading
» Some of R’s backend libraries are multithreading-capable without additional
programming input
» This especially includes libraries handling vector- and matrix-operations or numerics
(BLAS, LAPACK, FFTW, ...)

» OpenMP multithreading is generally on a lower parallelism level (read: Better than
serial, but often less efficient than explicitly parallel routines) and needs to be
controlled /switched off when parallelizing on a higher level!

» Otherwise, each parallel process might start multiple threads, which leads to CPU
core oversubscription and slowdown

Recommendation

Always set export oMP_NUM_THREADS=1 in R job scripts!

% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

51/78

Parallel R - Packages with built-in Parallelism

. Hesssches Tar Hochiest (HIHLR)

Package- /Function-level parallelism

>
>

E

Some packages already offer parallelized functions out-of-the-box

A well-tested, prebuilt parallelization is preferrable to a 'roll-your-own’ solution in
most cases!

Check for function parameters like num.threads

Many functions will default to using all CPU cores that they can 'see’ - make sure
that the number of threads or processes is explicitly set to the amount of cores that
the job script asks for!

Example: The ranger package (Random Forest implementation) is parallelized and
will use all available CPU cores by default

» On the cluster: Set --nodes=1, --ntasks=1, and --cpus-per-task and the ranger functions’
num.threads both to the same value

HESSE

Z

I8
®
§O

René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

52/78

Random Numbers, Parallelization, Reproduceability

. Hesssches Tar Hochiest (HIHLR)

Random Numbers, Parallelization, and Reproduceability

>

>

v

vvyyy

E

R code often requires random numbers, e.g. for initializing model weights with a
random component, or randomly selecting samples

The parai1e1 package provides an RNG implementation that ensures that all worker
processes get an independent sequence of random numbers: The L’Ecuyer CMRG

With a given seed, every substream will produce the same (independent!) number
sequence on every run

For the ciuster interface, US€ clusterSetRNGStream(cluster_object, iseed)
For mc*apply, it be selected with set.seed(iseed, kind="L’Ecuyer-CMRG")
Setting iseed to nuLL will initialize the RNG differently on every run

We will use a different technique for reproduceability to be able to compare serial
with parallel runs, but occasions where you would normally use the L'Ecuyer-CMRG
are marked and commented out in the exercise code

HESSEN

René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

53/78 Code for parallel exercises
I Hesssches o Hochiain (HRHLR)

Code for parallel R exercises: gim_iris.R
» The basic function for all following parallel demos/exercises will be always the same

» We do this to maintain comparability between the different examples and to show
how the approaches differ from each other

» The base setup looks like this:

» We start with the well-known iris dataset, which contains 150 entries in total

» Each entry has four measurements (sepal length, sepal width, petal length, petal width)
and a subspecies label (setosa, versicolor, virginica)

» We generate a generalized linear model describing the relation between sepal length and
species for versicolor and virginica species while resampling the dataset a large number
of times

» Since each sampled run is independent, we can parallelize these runs and have a
multitude of options to do so

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

54/78 Examples base function
I Hesssches Tor Hochie (HKHLR)

Iris data generalized linear model

listings/glm_iris.R
library(stats)

Get iris dataset, but only columns ’Sepal.length’ and ’Species’,
We filter out ’setosa’ so we only have two species to fit to
get_data <- function() {

iris[which(iris[,5] != "setosa"), c(1,5)]

}

Fit a generalized linear model relating iris sepal length with iris species
boot_fx <- function(trial,data) {
Normally we wouldn’t hard-set a seed here, but we do so
for comparing results from different methods!
set.seed(trial)
ind <- sample(100,100,replace=TRUE) # Every call resamples the data indices randomly
resultl <- glm(data[ind,2]~datalind,1],family=binomial(logit)) # Fit the model
r <- coefficients(resultl) # Get model coefficients
We would usually create a dataframe row; we omit it for easier result comparison
#res <- rbind(data.frame(),r)

HESSEN
% René Sitt R on HPC 25.02.2025 % @

https://creativecommons.org/licenses/by/4.0/

55/78

E

René Sitt

Multicore

Multicore Apply

R on HPC

25.02.2025

fiar Hochleist (HKHLR)

ssssss

https://creativecommons.org/licenses/by/4.0/

56/78 mc-apply
. Hestscnes o Hochiain THRHLR)

The mc*apply() Functions
» The mcxappiy() function family is a multicore wrapper around the app1y() functions
» It applies a function to a vector of values and takes the amount of cores it should use
as additional argument nc.cores
» mclapply, mcmapply, and mcMap are the parallel versions of 1apply, mapply, and Map
» Advantages:

» Does not need additional setup besides library(’parallel?’)
» Relatively small overhead

» Disadvantages:

» Parallelizes only a single function at a time
» Function has to be in (or has to be transformable to) a form that works with app1y(

» Does not work on Windows

HESSE

Il|
iz

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

57/78 Hands on, part 6
I Hesssches Tor Hochier: THRHLR)

Hands on!

Guided Exercise:
2.1 Using mclapply

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
§O

https://creativecommons.org/licenses/by/4.0/

58/78 Cluster Functions
. Hesisches Tor Hochieist (HKHLR)

R Cluster Functions

ssssss
% René Sitt R on HPC 25.02.2025 @

https://creativecommons.org/licenses/by/4.0/

59/78

R Cluster Interface

. Hesssches Tar Hochiest (HIHLR)

R Cluster Interface

>
>
>

E

The R ciuster functions provide a more detailed interface to multicore programming
There are multiple "parallel backends" can can be used in exactly the same way

Most commonly used backends are FORK (on Linux only) and PSOCK (on Windows
and Linux)

PSOCK handles process communication via sockets and is available on both
Windows and Linux systems

FORK works by spawning child processes through Linux’s fork() function; this
reduces memory consumption but does not work on Windows machines

We will concentrate on the FORK variant in this course

HESSE

Z

I8
®
§O

René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

60,78 R Cluster Interface
. Hesisches Tor Hochieist (HKHLR)

R Cluster Interface (cont.)
» Advantages:

» Provides a common interface for different parallel backends
» Possibility to parallelize is not restricted to functions that can be app1y()ed

» Disadvantages:
» Larger overhead and more package dependencies
» Needs more code to work correctly; more possibilities to make errors
»> Master process is not included in the worker process group (i.e. a cluster with n_cores=8
runs 8 workers and one master process)
» Any global objects may need to be explicitly exported to be available for worker
processes

Il|
iz

HESSE
% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

61/78 R Cluster Interface

Hessisches fiar Hochleist (HKHLR)

R Cluster Interface (cont.)

par*apply

» Yet another parallel version of appiy()
» As long as the declared cluster is of PSOCK type, it also works on Windows

Parallel foreach

» Looks almost like a regular for loop, but works more like a function
» More flexible than appiy0

» Partitioning of iterations between processes has to be done by the developer!

3
Z

I%

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

62/78

R Cluster Interface

Structure of an R Cluster Call

1 Initialization
» Set up the cluster and specify amount
of cores, parallel backend, etc.
» Register the parallel backend for
foreach
» Export needed global objects into the
cluster environment
2 Parallel function calls
» Foreach, par*apply, and cluster*
functions
3 Finalization
» Cleanup and stopping the cluster

E

René Sitt

Hessisches fiir Hochleisty

(HKHLR)

listings/cluster_init.R

cl <- makeCluster(<cores>, type=<backend>)

2 registerDoParallel(cl)

w

N

R on HPC

clusterExport(cl, <global_vars>)

listings/cluster_call.R

ret <- parLapply(cl, <range>, <function>)
ret <- foreach(<range>) Y%dopar’, {<function>}

listings/cluster_finalize.R

stopCluster(cl)

HESSE

Il|
iz

25.02.2025

https://creativecommons.org/licenses/by/4.0/

63/78

Foreach

Hessisches fiar Hochleist (HKHLR)

Foreach

» Although foreach looks similar to a for loop, it behaves much more like a function

» Regular loops do work through side effects, but foreach in general does not interact
with global program state

» The result of a foreach is not its side effects, but its return value

» If multiple values should be returned by foreach, they have to be organized in a
vector, list, array, or dataframe

» Dataframes are able to hold data of different types simultaneously, thus allowing for

E

some flexibility

HESSE

Z

I8
®
§O

René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

64/78 Hands on, part 7
I Hesssches fir Hochieist (HKHLR)

Hands on!

Guided Exercise:
2.2 Using the R Cluster Functions

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
EO

https://creativecommons.org/licenses/by/4.0/

65/78 Rmpi
. Hesssches Tor Fochier (HKHLR)

Rmpi

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

66/78 Rmpi - Motivation
I Hesssches o Hochiain (HRHLR)

» Another parallelization mechanism?!

All previous techniques are mostly confined to a single cluster node
In theory, a PSOCK cluster can utilize multiple nodes, but it is not well-integrated
into the cluster environment:
» Needs info which hosts to use, which has to be extracted manually
» Compute nodes might not be set up to allow socket communication
» By contrast, virtually every HPC cluster's MPI integration handles process
distribution, opening of communication channels, etc. mostly automatically
» MPI is by far the most popular and convenient way to manage calculations that span
multiple nodes on HPC clusters

vy

| Type | Parallelized Unit | Parallel Scope | Communication |
Job Cluster None
Socket/MPI Cluster Process Cluster Messages
Process Node Shared Memory
OpenMP /Multithread Thread Node Shared Memory
Vectorization CPU Instruction CPU Core Shared Registers | =
% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

67/78 Rmpi
I Hesssches Tor Hochlait (HKHLR)

The Rmpi Package
» Rmpi is an R wrapper for the MPI (Message Passing Interface) library

» It can be used in two different ways:
» As yet another backend for the cluster package, utilizing the rMPISNOW wrapper
» As a simple wrapper for using MPI functions inside R code, analogous to how it is used
in C/C++ or FORTRAN code
» The snow package functions look very similar to the paralie1 interface, but have a
slightly different syntax in some cases

» The simple wrapper variant is based on a somewhat different idea of parallelism than
what we have seen until now

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

©O~NOUAWNR

68/78 Rmpi + snow
I Hesssches Tor Hochlait (HKHLR)

Rmpi + snow
» The name snow stands for Simple Network of Workstations

» We will restrict ourselves to snow's MPI backend in this course

snow overrides several functions of the parai1e1 packages and vice versa

» If you want to make sure that the right implementation is used, add an
explicit package prefix (snow: :<function> OF parallel: :<:Eunction>)!

listings/snow__parallel_override.R

> library(parallel)
> library(snow)

Attache Paket:
The following objects are masked from

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, clusterSplit,
makeCluster, parApply, parCapply, parLapply, parRapply, parSapply, splitIndices, stopCluster

René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

69/78 Rmpi + snow usage
I Hesssches fir Hochieist (HKHLR)

Rmpi + snow usage

» Similar to parallel, but snow gets some listings/ cluster_usage_snow.R
info (e.g. # of processes) through its el < snow::makeCluster()

. registerDoParallel(cl)
RMPISNOW Wrapper automatically snow: : clusterExport(cl, <global_vars>)

» par*apply() and clusterx() functions work
like their paraliel equivalents

ret <- snow::parLapply(cl, X, <function>)

ret <- foreach(snow::clusterSplit(cl, <range>)\
%dopary, {<function>}

> As Iong aS registerDoParallel(<cluster>) 7

is set, foreach Y%dopary works as expected @& snow::stopCluster(cl)

> R COde invocation: Instead Of RSCI‘ipt, listings /rmpisnow__invocation.sh
we have to use MPI| execute command 1 mpiexec -np <procs> RMPISNOW < <R_code>.R
+ rMPISNOW wrapper script + R code

% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by/4.0/

70/78 Hands on, part 8
I Hesssches Tor Hochier: THRHLR)

Hands on!

Guided Exercise:
2.3 Using RMPISNOW

% René Sitt R on HPC 25.02.2025 %

https://creativecommons.org/licenses/by/4.0/

71/78 Rmpi Wrapper
I e

S
8

fiar Hochleist (HKHLR)

The Rmpi Wrapper
» The parallelization techniques we have seen so far are mainly of the fork-join type
» With MPI, the processes run in parallel for the whole length of the program, while
data distribution, data gathering, and process synchronization, are coordinated by
messages between the processes (MPl = Message Passing Interface)
» These messages can be one-to-one (send/receive), one-to-all (broadcast, scatter),
all-to-one (gather, reduce), and all-to-all

=] (&) (8] [E]
= é Eé

EEEEEE

Fork-Join :
% René Sitt R on HPC 25.02.2025 ="

=
i
il

https://creativecommons.org/licenses/by/4.0/

72/78 Rmpi Functions

Hessisches fiar Hochleist (HKHLR)

» Invocation: mpi.send(x, type, dest, tag, comm=0)

» x: Data to be sent; type: 1=integer, 2=double, 3=character; dest: Rank of
destination process; tag: (Integer) tag for the message, can be set to zero if
not used; comm: Which communicator to use, the default communicator is
zero.

| \

MPI receive

» Invocation: mpi.recv(x, type, source, tag, comm=0, status=0)

» x: Buffer for the data to be received; type: 1=integer, 2=double,
3=character; source: Rank of the sender; tag: (Integer) tag for the message;
comm: Which communicator to use; status: Status value (normally zero).

https://creativecommons.org/licenses/by/4.0/

73/78 Rmpi Functions
I Hesssches fir Hochieist (HKHLR)

» Since we can only send integers, doubles, or characters, complex data structures
would be excluded

» Rmpi also allows to send whole R objects instead, which is often more convenient

» The parameters are mostly the same as in the simple send and receive functions

MPI send R objects

» Invocation: mpi.send.Robj(obj, dest, tag, comm=0)

MPI receive R objects

» Invocation: mpi.recv.Robj(source, tag, comm=0, status=0)

|||;
iz

% René Sitt R on HPC 25.02.2025

https://creativecommons.org/licenses/by/4.0/

74/78 Hands on, part 9
I Hesssches fir Hochieist (HKHLR)

Hands on!

Guided Exercise:
2.4 An Rmpi Wrapper Example

|%
Z

% René Sitt R on HPC 25.02.2025 ="

®
EO

https://creativecommons.org/licenses/by/4.0/

75/78 Conclusions
. Hesisches Tor Hochlers (HKHLR)

Final Remarks

» You should now have an overview over most of R's features related to HPC and a
working knowlege of how to run R code on a cluster

» Each problem is unique and may require a unique solution; we cannot provide a
catch-all manual, but we can enable you to know where to start searching

» R documentation is spread out onto many sites, with partially deprecated or
conflicting information on the same problems; having some simple, but functional
examples is often a good way to approach a complex task

Z

HESSE
% René Sitt R on HPC 25.02.2025

I8
®
§O

https://creativecommons.org/licenses/by/4.0/

76/78 Sources
. Hesssches Tor Hochlers (HKHLR)

Online Sources and References

» “The R Inferno” (in-depth analysis of R programming pitfalls):
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf

» “R-Bloggers” (great articles about R parallelization):
https://www.r-bloggers.com

» The R Manual (online R package help files):
https://stat.ethz.ch/R-manual/R-devel/doc/html/index.html

» SLURM documentation:
https://slurm.schedmd.com

» Parallel exercises code adapted from:
https://nceas.github.io/oss-lessons/parallel-computing-in-r/

parallel-computing-in-r.html

HESSE
% René Sitt R on HPC 25.02.2025

Il|
iz

https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.r-bloggers.com
https://stat.ethz.ch/R-manual/R-devel/doc/html/index.html
https://slurm.schedmd.com
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
https://creativecommons.org/licenses/by/4.0/

77/78 Image credits
I Hesssches fir Hochieist (HKHLR)

Image credits

» Slides 3, 7: The R logo is ©The R Foundation 2016, usage permitted by CC-BY-SA
4.0
https://creativecommons.org/licenses/by-sa/4.0/

» Slide 4: MaRC3a backplane photo used with permission from Author, ©Marcus
Lechner 2020

» Slide 37: MaRC3a backplane photo used with permission from Author, ©Clemens
Tholken 2022

» HKHLR logo and HKHLR map ©OHKHLR 2014-2023

» Additional graphics created in Inkscape and Gnu Image Manipulation program

EEEEEE
% René Sitt R on HPC 25.02.2025 E=4

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/

78/78 EOF
H fiir Hochleist,

ssssss

% René Sitt R on HPC 25.02.2025 @

https://creativecommons.org/licenses/by/4.0/

	Agenda
	Why Use R?
	R Paradigms
	Concepts
	Common Pitfalls
	Vectorized Functions
	Memory Management
	Using R in a Cluster Environment
	Parallel Programming with R
	Multicore Apply
	Cluster Interface
	Rmpi

