% _— Exercises for the Slurm scheduler
fiir Hochleistungsrechnen VeI"Sion Of February 277 2025

Login to the HPC cluster

1. If you are using a Windows machine, make sure that you have an ssh client (preferably
MobaXTerm) installed. Depending on the local cluster access policies you may have to use
your university’s VPN to get access.

2. Copy the content of the exercises_material/tasks-sLurM directory to a working directory on the
HPC cluster. In case your local machine runs Linux, MacOS or a current Windows version
(10 or 11), you can use scp Or rsync for this purpose. On Windows you can use WinSCP,
FileZilla, or MobaXTerm’s builtin file browser.

Prepare the exercise

1. Every cluster has its own policies, parameter defaults, and assumptions. The Slurm versions
have been tested on Darmstadt’s Lichtenberg cluster. If you are working on a different
cluster, other or additional parameter restrictions may apply.

2. If you are unsure, try to submit the job script simpile.siurm and note any error messages.
The exact steps to submit these jobs are described in Exercise 1. Slurm’s error messages
are usually quite straightforward and comprehensible if there are mandatory parameters
missing.

3. If you have to make any additions to simpie.siurm to make it run correctly, remember to also
apply these changes to the other example scripts.

Exercise

A Simple Job Script

You can incorporate a lot of non-trivial logic inside job scripts. However, to start out we will
use a very bare-bones template. If you start to work on a new system, it is often preferable to
keep the first tests very simple. This eases debugging and lets you use them as templates for more
complex tasks later on.

1. Take a look at the script to find out what it is supposed to do. Use nano, 1ess, vim, Or any
other text editor / text viewer you prefer:

> nano simple.slurm

2. Check if there are any parameters you are not familiar with. If so, try the manual page of
your cluster’s job submit command, i.e.:

> man sbatch

or the Slurm website for the sbaten command.

Hint: On manpages, you can forward-search for a term by typing /<searchterm>. There are
more options for searching, which you can find on the manpage for 1ess, the default display
application for manpages.

3. If everything looks okay to you, submit the job:

> sbatch simple.slurm

https://slurm.schedmd.com/sbatch.html
https://creativecommons.org/licenses/by/4.0/

% _— Exercises for the Slurm scheduler
fiir Hochleistungsrechnen VeI"Sion Of February 277 2025

Track its state via the squeve command.

4. Once the job is finished, check its generated output file(s) to verify it ran without error.

Task Arrays

Task arrays are an effective and simple way to start a swarm of similar jobs through a single
job script. Although it is not applicable in all situations, any workload that can be transformed
into a task array can make your workflow much more efficient.

1. As in the previous exercise, take a look at the example script first before you submit them.
Make sure to understand what each line and parameter is supposed to do. The script is
named array.slurm.

2. Note that some scheduler directives are commented out by adding an extra # This is to
show different ways of defining task array indices and additional directions like how many
tasks should be allowed to run concurrently. To test these different settings, try commenting
out (adding another #) and commenting in (removing a #) different array directives. Check
how many overall tasks are running, how many are concurrently running, and which indices
they have.

Dependencies

Dependencies are great to set up job pipelines without having to wait for the first job to finish.
This can save significant amounts of time if. For instance, if you have to partition a big calculation
into several shorter steps to fit within the cluster’s maximum runtime constraints.

1. As in the previous exercises, inspect the job files for this example and figure the purpose of
each line. The files are dependency_1.slurm and dependency_2.slurm.

2. Start the first job, take note of its job ID, then start the second job depending on the first.

Check the job status (squewe command) to verify that the second job does not start until the
first job has finished:

> sbatch dependency_1.slurm
Submitted batch job <jobID>
> sbatch -d afterok:<jobID> dependency_2.slurm

Note: The option -4 is short for --dependency for Slurm. Both commands can be used inter-
changeably.

Noon Break Exercise: Putting It All Together

With the help of the slides and previous examples, design three job scripts that accomplish
the following:

1. The first script should generate a task array with indices 2, 5, and 8. It should execute
./square.sh value Where value=$((SLURM_ARRAY_TASK_ID * 1000)). Write the output into task-specific

output files named task_<task_10>.0ut. Also add a sieep 60 command so it takes a bit of time to
finish.

Hint: Inspect the line with the --output parameter in the array.siurm job script.

O

https://creativecommons.org/licenses/by/4.0/

% _— Exercises for the Slurm scheduler
fiir Hochleistungsrechnen VeI"Sion Of February 277 2025

2. The second script should also generate a task array. The array should have the same array
indices as the previous job array (there is a 1-to-1 correspondence between the task indices
of the current job array and previous array). Each task reads from a single previous task’s
output file. There are multiple ways to do this in bash, for example:

input=$(cat task_${SLURM_ARRAY_TASK_ID}.out)

You can then use the input variable to execute ./add_seif.sh $input. Again, add a sieep 60 com-
mand at the end.

Reminder: You will need Slurm’s --dependency=aftercorr command for this to work, and the
second array must have ezactly the same task indices as the first one. Let the second task
array write its outputs in files named task2_<task_10>.out

3. The third script should be a single job that reads all of the second job’s output files and
computes the sum of all values contained in the files. You can just execute ./summarize.snh within

the job file, as long as the output of the previous jobs are contained in the task2_<task_10>.out
files.

4. When submitting, chain all of the three jobs through dependency directives so you can
submit them back-to-back without having to wait for them to finish.

5. Augment the dependency_wrapper.sh script so you can submit all three jobs in one go.

6. If you get stuck or keep getting error messages, try to find the error with the help of the
course materials or the links to further documentation below!

References

e Slurm manpage for the shatch command: https://slurm.schedmd.com/sbatch.html

O

https://slurm.schedmd.com/sbatch.html
https://creativecommons.org/licenses/by/4.0/

