Version control with GIT

Hessisches Kompetenzzentrum fiir Hochleistungsrechnen (HKHLR)

HKHLR
2024/11/05

JUSTUS-LIEBIG-
UNIVERSITAT
GIESSEN

TECHNISCHE
UNIVERSITAT
DARMSTADT

HESSEN

6

HKHLR is funded by the Hessian Ministry of Sciences and Arts



HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

1/57 Overview
. Hesssches Tur Hochle (HKHLR)

1 What is version control?
2 Key Concepts

3 First Steps in GIT

4 GIT Workflow

5 Branching

6 Extras

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

2/57 What is version control?

. Hesisches For Hochieat (HKHLR)
» A system that keeps records of your changes TH 15 G 1T TRACKS COLLABIRFTVE LORK
ON PROJECTS THROUGH A BEAUTIFUL

» Allows for collaborative development o, oD LE ber 1

» Able to see who made changes and when D b e B oM o
IF YOU GET ERRORS, SAVE. YOUR WORK
» Can revert any changes back to a previous state mmmi'%mnwﬁmmmm

ﬁ?ﬁ

: https://xkcd.com/1597/

il:
®
*(S)

HKHLR Version control with GIT 2024/11/05


https://xkcd.com/1597/
https://creativecommons.org/licenses/by/4.0/

3/57 Motivation
. Hesisches Tur Hochle (HKHLR)

Why version control? Familiar example:

“FINAL doc

FINAL.doc! CFINAL_reV,chc

4 Z
FINAL _rev.8.commentsS.
FINAL _rev.6.COMMENTS. doc CORRECTONE ot

oRaE i 02012

- )
FINAL_rev.18.comments?.  ENAL_rev. zzwmnénfs‘ﬁ
corrections?.MORE.30.do¢  corrections.10. #@$%WHYDD
ICOMETOGRADSCHOOL??222.doc

MWW, PHDCOMICS. COM

Src: http://phdcomics.com/comics/archive.php?comicid=1631

% HKHLR Version control with GIT 2024/11/05 E



http://phdcomics.com/comics/archive.php?comicid=1531
https://creativecommons.org/licenses/by/4.0/

4/57 What is Git?
. g

Hessisches fir F (HKHLR)

Snapshots
» With Git we make a “picture” (snapshot) of current state of all files
» Git only stores files that actually have changed

» History of commits is treated as “stream of snapshots”

Obab7448 5fb226a9

ccosa501 B 13500550,

Example of a Snapshot

HESSEN
= ®
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

5/57 Snapshots
I Hesssches fir Hochieist (HKHLR)

» By taking snapshots Git keeps track of our code history

» Git records what all your files look like at a given point in time
» We decide when to take a snapshot and of what files

» We have the ability to go back to visit any snapshot

% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

6/57 Commits
. Hesisches Tor Hochlers (HKHLR)

» Making a “commit” is the act of creating a snapshot
» Essentially, a project is made up of a bunch of commits

» Commits contain three pieces of information:

1 Information about how the files changed from previously
2 A reference to the commit that come before it (called the parent commit)
3 A hash code name (Will look like: edfec504eb864dc557f3f5b9d3d301617036d15f3a)

Commits as small as possible or as big as necessary |

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

7/57 Repositories
I Hesssches fir Hochieist (HKHLR)

» A collection of all the files and the history of those files

» Consists of all your commits
» Place where all your hard work is stored

» Only put source files into version control, never generated files.
» A source file is any file you create, usually by typing in an editor.
» A generated file is something that the computer creates, usually by processing a source
file.
» Never put confidential information into a public repository, e.g.:

» Passwords
» API keys

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

8/57 git config
1 . m— =
Hessisches fiir F (HKHLR)

Configure your GIT information:

1 $ git config --global user.name "YOUR NAME"
2 $ git config --global user.email "your.name@domain.de"

Inspect Configuration:

1 $ git config --list

®
Ho

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

9/57 create repositories

Hessisches far b

the repository

1 $ mkdir myrepo
2 $ cd myrepo
3 § git init

» Initialized empty Git repository in
../myrepo/.git

HESSEN
% HKHLR Version control with GIT 2024/11/05 %

(HKHLR)

» directory will be become the working tree for


https://creativecommons.org/licenses/by/4.0/

9/57 create repositories

Hessisches fiir Hochlei (HKHLR)

» directory will be become the working tree for
the repository

1 $ mkdir myrepo
2 $ cd myrepo
3 § git init

» Initialized empty Git repository in
../myrepo/.git

> repository is created without a working tree and it is used as a remote repository that
is sharing a repository among teammates

1 $ git init --bare

For shared repositories pay attention to the file permissions.
% recommended to prohibit changing the history. _— I

HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

10/57 Git's Three States
. Hesisches Tor Hochieist (HKHLR)

Git defines three main stages that a file can be in:
Commited File is safely stored in the local repository
Modified The file has undergone changes but yet has to be committed to the
local repository
Staged A modified file that is marked in its current state to go into the next
commit

untracked File is not tracked by git

Fa
Z

m
ﬁ

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

11/57 git status
. Hesssches Tor Fochier (HKHLR)

1§ git status

On branch master
Initial commit

nothing to commit (create/copy files and use "git add" to track)

HESSEN
% HKHLR Version control with GIT 2024/11/05 %



https://creativecommons.org/licenses/by/4.0/

11/57 git status
. Hesssches Tor Fochier (HKHLR)

1§ git status

On branch master
Initial commit

nothing to commit (create/copy files and use "git add" to track)

Add a file

1 $ echo "Hello World" > doc.md

== @
HKHLR Version control with GIT 2024/11/05 =


https://creativecommons.org/licenses/by/4.0/

12/57 git status
. Hesssches Tor Fochier (HKHLR)

$ git status

-

On branch master
Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

© o N o o B~ W N

10 doc.md

12 nothing added to commit but untracked files present (use "git add" to \
track)

|]

% HKHLR Version control with GIT 2024/11/05 ==


https://creativecommons.org/licenses/by/4.0/

13/57 git add
. Hesssches Tor Fochier (HKHLR)

1 $ git add doc.md

$ git status

2

3

4

5 On branch master
6

7 Initial commit

8

o Changes to be committed:

10 (use "git rm --cached <file>..." to unstage)
11

12 new file: doc.md

. J

HESSEN
% HKHLR Version control with GIT 2024/11/05 %



https://creativecommons.org/licenses/by/4.0/

git add

(HKHLR)

14/57

. Hesssches far

1 $ git add doc.md
2 $ git add *.md

create as small as possible, logically separated commits

long version:

short version:

1 $ git add --patch

1 $ git add -p
2 $ git add --interactive

> $ git add -i

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

15/57 git commit
. Hesssches Tor Fochier (HKHLR)

1 $ git commit -m "creating doc.md"

[master (root-commit) 25b09b9] creating doc.md
1 file changed, 3 insertions(+)
create mode 100755 doc.md

$ git status

© o N o o B~ W N

On branch master
nothing to commit, working directory clean

fun
o

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

16/57 git commit
. Hesssches Tor Fochier (HKHLR)

A commit should contain a single, self-contained idea.

$ git commit -m "My first commit"

1

2

3 [master 8345967] changed

4 1 files changed, 1 insertions(+), 1 deletions (-)

edit last commit-message

1 $ git commit --amend

©)
Ho

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

17/57 Quiz announcement
. Hesisches Tur Hochle (HKHLR)

Time for interactive quiz 1!

> make QUIZ

il:
®
(S

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

18/57 Quiz 1 Question 1
I

Hessisches fiar Hochleist (HKHLR)

What is the first thing to do after installing git?

A: Define the contents of working directory, staging area, and repository with git define.
B: Configure mail address, name, and preferred editor with git config.

C: Initialize an empty repository or clone an existing one with git init Or git clone.

D

Choose a hashing algorithm with git hash.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

18/57 Quiz 1 Question 1
I

Hessisches fiar Hochleist (HKHLR)

What is the first thing to do after installing git?

A: Define the contents of working directory, staging area, and repository with git define.
B: Configure mail address, name, and preferred editor with git config.

C: Initialize an empty repository or clone an existing one with git init Or git clone.

D

Choose a hashing algorithm with git hash.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

19/57
. Hesisches

A Git Repository is essentially made up a bunch of commits. What is a commit?

A:

B:
C:
D

Quiz 1 Question 2

A commit contains the author who has changed your files.
A commit is done by git automatically once in a while.
Each file has its own commit.

A commit is a snapshot of the current state of your project.

HKHLR Version control with GIT 2024/11/05

fiar Hochleist (HKHLR)


https://creativecommons.org/licenses/by/4.0/

19/57

Quiz 1 Question 2

. Hesssches Tar Hochiest (HIHLR)

A Git Repository is essentially made up a bunch of commits. What is a commit?

A:

B:
C:
D

A commit contains the author who has changed your files.
A commit is done by git automatically once in a while.
Each file has its own commit.

A commit is a snapshot of the current state of your project.

HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

20/57 Quiz 1 Question 3
I— w—

Hessisches fir F (HKHLR)

Where can you find further help about git?

A: git help <command like commit or add>
B: man git
C. git —help
D: Online e.g. https://git-scm.com/docs.

Fa
Z

m
ﬁ

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

20/57

Quiz 1 Question 3

.
Where can you find further help about git?

A: git help <command like commit or add>
B: man git

C. git —help

D: Online e.g. https://git-scm.com/docs.

% HKHLR Version control with GIT

fir Hochleisty

2024/11/05

(HKHLR)


https://creativecommons.org/licenses/by/4.0/

21/57

Quiz 1 Question 4

Hessisches

What does the command ‘git add‘ do?

A: It marks changes to a file to go into the next commit.
B: It adds a line to a file.

C: It adds a new file to the repository.

D

It adds a file to the remote repository.

% HKHLR Version control with GIT 2024/11/05

fiar Hochleist (HKHLR)


https://creativecommons.org/licenses/by/4.0/

21/57 Quiz 1 Question 4
I Hesssches Tor Hochlait (HKHLR)
What does the command ‘git add‘ do?
A: It marks changes to a file to go into the next commit.
B: It adds a line to a file.
C: It adds a new file to the repository.
D: It adds a file to the remote repository.
% HKHLR Version control with GIT 2024/11/05 E


https://creativecommons.org/licenses/by/4.0/

22/57 Quiz 1 Question 5
. g

Hessisches fir F (HKHLR)

What are the git states a file can be in?

A: commited (and unmodified)
B: changed (and not staged)
C: untracked

D: staged

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

22/57 Quiz 1 Question 5
I Hesssches fir Hochleist (HKHLR)

What are the git states a file can be in?

A: commited (and unmodified)
B: changed (and not staged)
C: untracked

D: staged

I
Z

m
ﬁ

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

23/57

Quiz 1 Question 6

Hessisches

Why is git useful?

A: Because it allows you to collaborate with others.

B: Because it keeps track on who did which changes.
C: Because it does not allow for code-breaking changes.
D

Because it allows you to revisit any previous version.

% HKHLR Version control with GIT 2024/11/05

fiar Hochleist (HKHLR)

I
Z

®
o)


https://creativecommons.org/licenses/by/4.0/

23/57 Quiz 1 Question 6
I

Hessisches fiar Hochleist (HKHLR)

Why is git useful?

A: Because it allows you to collaborate with others.

B: Because it keeps track on who did which changes.
C: Because it does not allow for code-breaking changes.
D

Because it allows you to revisit any previous version.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

24/57
.

Quiz 1 Question 7

Hessisches fiir Hochleisty

Which statements are true for public repositories?

A:

B:
C:
D

It is always up to date with your local copy.
You can even have multiple public remotes.
Never put confidential information like passwords in a public repo.

It can be used to collaborate with others.

Fa
Z

®
o)

HKHLR Version control with GIT 2024/11/05

(HKHLR)


https://creativecommons.org/licenses/by/4.0/

24/57 Quiz 1 Question 7
I

Hessisches fiar Hochleist (HKHLR)

Which statements are true for public repositories?

A: It is always up to date with your local copy.

B: You can even have multiple public remotes.

C: Never put confidential information like passwords in a public repo.
D: It can be used to collaborate with others.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

25/57 Questions
. Hesssches Tur Hochle (HKHLR)

» Questions?

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

26/57 Working with Remote Repositories
I Hesssches Tor Hochie (HKHLR)

Only four major Git commands which actually talk to remote repos and do any
communication:

» clone
» fetch
» pull

» push

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

27/57 git clone
I Hesssches Tor Hochie (HKHLR)

If you have the address of a known repository and you want to create a local copy:

$ git clone git@host:/path/to/repository/testing.git mydir

remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused O (delta 0)

1

2

3 Cloning into ’mydir’

4

5

6 Receiving objects: 1007 (3/3), done.

Note: "Remote" repo may also be a local (group) directory initialized with
git init --bare

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

28/57 git fetch
I Hesssches Tor Hochlait (HKHLR)

» Every branch that exists on the remote when you cloned the repo will have a branch
in remotes/origin

> git fetch does is update all of the remotes/origin branches.

> git fetch will modify only the branches stored in remotes/origin and not any of
your local branches

Idea J

Get the remote changes without chainging something locally

% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

29/57 git pull
. Hesssches Tor Fochier (HKHLR)

» git pull is the combination of two other commands:
First, perform a git fetch to update the remotes/origin branches. Second, if
the branch you are on is tracking a remote branch, then it does a git merge of the
corresponding remote/origin branch to your branch.

1 $ git pull

2  remote: Counting objects: 7, done.

3 remote: Compressing objects: 100% (4/4), done.

4 remote: Total 4 (delta 2), reused O (delta 0)

5 Updating 361303d..£f2cd831

6 Fast forward

7 doc.md | 1+

8 1 files changed, 1 insertions (+), O deletions (-)

% HKHLR Version control with GIT 2024/11/05 ==


https://creativecommons.org/licenses/by/4.0/

30/57 git push
. Hesssches Tor Fochier (HKHLR)

git push makes your new commits available on the remote server

1 $ git push

2 Counting objects: 5, done.

3 Writing objects: 100% (3/3), 272 bytes, done.
4 Total 3 (delta 0), reused O (delta 0)

5 To git@host:/path/to/repository/testing.git
6 edfecb0..2fc284e master --> master

1 $ git push [remote-name] [remote-branch-name]

Fa
|z

®
o)

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

31/57

. Hesssches

@ B B

© 0N O RA W N

git remote

git remote add origin <server>
git remote add origin git@host:/path/to/repository/testing.git
git push origin master

Counting objects: 3, dome.

Writing objects: 100% (3/3), 231 bytes, done.

Total 3 (delta 0), reused O (delta 0)

To git@host:/path/to/repository/testing.git
[new branch] master --> master

far b

(HKHLR)

HKHLR Version control with GIT 2024/11/05

HESSEN


https://creativecommons.org/licenses/by/4.0/

32/57 git log
. Hesssches Tor Fochier THIRHLR)

1 $ git log

2 commit edfecb04eb864dc557£3f5b9d3d301617036d15f3a
3 Author: Nikolas Luke <niko.lukeQuni-kassel.de>

4 Date: Thu Oct 18 14:00:20 2018 +0200
5

6

My First Commit

search in history

1 $ git log —-pretty=short --since=2weeks
2 $§ git log —-pretty=short --author="likolas Luke" --grep="comment'

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

33/57 Restore

Hessisches fiir Hochlei (HKHLR)

1 $ git checkout -- <filename>
2 $ git checkout -- doc.md

Go back to a certain snapshot:

1 $ git checkout <commit>
2 $§ git checkout edfec504eb864dc557£3f5b9d3d301617036d15f3a

Be Aware that git checkout will overwrite the current status of your work with
the old state!

HESSEN
% HKHLR Version control with GIT 2024/11/05



https://creativecommons.org/licenses/by/4.0/

34/57 Git Branches: Intro
. g

Hessisches fir F (HKHLR)

» A branch represents an independent line of development
» Branches are an integral part of software development with Git

» Branches are the basis for team projects and an efficient software development
process

» Standard branch in Git: master branch

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

35/57 Creating a New Branch 1/2
. Hessches Koms Tor Fochier (HKHLR)

creating a new branch creates a new pointer refering to commits in a line of development.

1 $ git branch feature 1 $ git checkout feature

= Not yet on new branch! = Now we switched branches!

£

eso

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

35/57 Creating a New Branch 2/2
C = m—

Hessisches fir F (HKHLR)

creating a new branch creates a new pointer refering to commits in a line of development.

1 $ git branch feature 1 $ git checkout feature

All-in-one command:

1 $ git checkout -b feature # execute on master branch

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

36/57 Committing on a New Branch

Hessisches fiir Hochlei (HKHLR)

git checkout -b feature

$ git checkout master
$ vim <otherfile>
$ git add <otherfile>

$
$ vim <file> # do some work
$
$ $ git commit -m <message>

git add <file>
g

2w N R

it commit -m <message>

-

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

37/57 Commands for Working with Branches 1/2
. Hestuthes Koy far Hochier (HKHLR)

Create a branch and switch to it:

1 $ git branch feature && git checkout feature
2 $ git checkout -b feature

List branches

it branch # local branches in your repository

1$g
2 § git branch -r # remote branches
3% g

it branch -a # all local and remote branches

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

37/57 Commands for Working with Branches 2/2
. Hestuthes Koy far Hochier (HKHLR)

Rename (move) a branch: old-feature — new-feature

1 $ git branch -m old-feature new-feature

Delete a branch:

1 $ git branch -d new-feature

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

38/57 Basic Branching and Merging

. Hesssches far (HIHLR)

Common | NEESH

ancestor l

Commit to
merge into

Commit to
merge in

Merge feature into master:

git checkout master # switch to master branch

1 $
2 § git merge feature # merge feature into master
3 $§ git branch -d feature # delete feature branch (OPTIONAL!)

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

30/57 Basic Branching and Merging (cont.)

. Hesssches far

This is the situation after the merge (feature branch not yet deleted).

|‘

C6 is called the “merge commit”.

Fa
Z

®
o)

% HKHLR Version control with GIT 2024/11/05

(HKHLR)


https://creativecommons.org/licenses/by/4.0/

a0/57 Rebasing: A Different Way to “Merge” Branches
I Hesssches Tor Hochie (HKHLR)

Branches diverged. Commits
were made in both branches
after checking out feature. ]

. 1 $ git checkout master
Integrate branches by merging 2 § @it merps feature
feature into master.

Merge
commit

Fa
Z

0
ﬁ

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

a1/57 Rebasing: A Different Way to “Merge” Branches
I Hesssches Tor Hochie (HKHLR)

Branches diverged. Commits were
made in both branches after

checking out feature. Replay the 1 $ git checkout feature
. 2 $ git rebase master
changes made in master onto 3
commits in feature. 4 $ git merge feature # fast-forward merge
master
After merging
feature—ma

ca'l

cs’

feature.

= Like we had checked out after C3! = C4’, C5’ are new commits!

% HKHLR Version control with GIT 2024/11/05

Fa
|z

®
o)


https://creativecommons.org/licenses/by/4.0/

42/57 Notes on Rebasing
I Hesssches o Hochiain (HRHLR)

» The feature branch is moved to the tip of the master branch (i.e., all the changes
in feature are effectively integrated into master); new commits are created in the
feature branch

» After merging back to master the logs look linear: Seems like all the work happened
in series (although it happened in parallel) since there is no merge commit
(fast-forward merge)

» We change history and lose traceability; we replace existing commits with others that
are similar but different
Golden Rule of Rebasing

Do not rebase commits that exist outside your repository and people may have based
work on them (meaning that you should never rebase a shared/public branch)!

7
z

®
o)

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

43/57 Interactive Rebasing
I

—
Hessisches fiir Hochlei (HKHLR)

The git rebase command can also be used in an interactive mode. It may for example
be used to!

» Fix older commits (older than just the previous one)
» Squash several commits into one single commit

Example fixing the last 5 commits:

1 $ git rebase —-interactive HEAD~5

%IA very comprehensive account of changing the commit history with rebasing s

can be fomnd on https://git-rebase. ¥@son control with GIT 2024/11/05 =


https://git-rebase.io/
https://creativecommons.org/licenses/by/4.0/

a4/57 Dealing with Merge Conflicts
I Hesssches fir Hochieist (HKHLR)

» Handling a git pull request with merge conflict

» When working with git, the relatively complex tasks are issuing a pull request & then merging with conflicts

Step 1 Verify your local repository Step 4 Resolve the merge conflict If you get
git checkout pinc the message, that there is a merge

conflict & it cannot automatically

. merge the change, you can resolve

Ensur_e that th.e files on.local the conflict manually. Open the file

rep05|tor¥ are |n-.sync with your & you'll need to fix this.

remote git repository

git pull origin pinc

Step 5 Check in changes

Step 2 SV\{itCh to branch Commit the fixes to the branch
git checkout feature-1 git add file.py

git pullioriginifeature i git commit -m "some comment"
Switch to the branch that you want
to merge

Ensure that you pull the latest files Step 6 Merge the branch

from your remote server

git push origin feature-1

Step 3 Try to merge
git merge pinc

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

45/57 gitignore

Hessisches fiir Hochlei (HKHLR)

1 $§ cat .gitignore

e.g. IATEX-generated files:

1 *.aux

3 *.vrb

global .gitignore

1 $ git config --global core.excludesfile ~/.gitignore

% HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

46/57 Simple Git Workflow
I Hesssches o Hochiain (HRHLR)

1 git status — Make sure your current area is clean.
git pull — Get the latest version from the remote. This saves merging issues later.

Edit your files and make your changes.

A~ W

git status — Find all files that are changed. Make sure to watch untracked files
too!

o

git add [files] — Add the changed files to the staging area.
6 git commit -m "message" — Make your new commit.

7 git push origin [branch-name] — Push your changes up to the remote.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

47/57 Quiz announcement
. Hesisches Tur Hochle (HKHLR)

Time for interactive quiz 2!

> make QUIZ

il:
®
(S

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

48/57 Quiz 2 Question 1
I Hesssches Tor Hochier: THRHLR)

What is the difference between git fetch and git pu11?

A: git pull downloads the current state from a remote repo while git fetch also applies
this state to your local copy.

B: There is no difference, they are just aliases for the same command.

C: git fetch downloads the current state from a remote repo while git pui1 also applies
this state to your local copy.

HESSEN
= ®
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

48/57 Quiz 2 Question 1
I Hesssches Tor Hochier: THRHLR)

What is the difference between git fetch and git pu11?

A: git pull downloads the current state from a remote repo while git fetch also applies
this state to your local copy.

B: There is no difference, they are just aliases for the same command.

C: git fetch downloads the current state from a remote repo while git pui1l also
applies this state to your local copy.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

49/57 Quiz 2 Question 2
.

Hessisches fiar Hochleist (HKHLR)

How can you recover a past state of your project?

A: Using the git history command.
B: Using the git commit command.
C: Using the git 10 command.
D

Using the git checkout command.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

49/57 Quiz 2 Question 2
.

Hessisches fiar Hochleist (HKHLR)

How can you recover a past state of your project?

A: Using the git history command.
B: Using the git commit command.

C: Using the git 10 command.
D

Using the git checkout command.

HESSEN
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

50/57

Quiz 2 Question 3

Hessisches

What is the purpose of git branches?
A: You can track different developments (e.g. different features).
B: Branching avoids merge conflicts.

C: It is mandatory to use branches in git.

D

You can use different branches to organize collaborative work.

% HKHLR

Version control with GIT 2024/11/05

fiar Hochleist (HKHLR)


https://creativecommons.org/licenses/by/4.0/

50/57 Quiz 2 Question 3
I

Hessisches fiar Hochleist (HKHLR)

What is the purpose of git branches?

A: You can track different developments (e.g. different features).
B: Branching avoids merge conflicts.

C: It is mandatory to use branches in git.

D

You can use different branches to organize collaborative work.

7
Z

% HKHLR

Version control with GIT 2024/11/05

®
o)


https://creativecommons.org/licenses/by/4.0/

51/57 Quiz 2 Question 4
.

Hessisches fiir Hochleist (HKHLR)
Which command creates a new branch (called branchname)?
A: git checkout -b branchname
B: git branch branchname
C: git branch -b branchname
D: git checkout branchname
% HKHLR Version control with GIT 2024/11/05 =


https://creativecommons.org/licenses/by/4.0/

51/57 Quiz 2 Question 4
I

Hessisches fiir Hochleist: (HKHLR)
Which command creates a new branch (called branchname)?
A: git checkout -b branchname
B: git branch branchname
C: git branch -b branchname
D: git checkout branchname
% HKHLR Version control with GIT 2024/11/05 =


https://creativecommons.org/licenses/by/4.0/

52/57 Quiz 2 Question 5
. Hesisches Tor Hochieist (HKHLR)

Which command can we issue to rename a branch "A" to "B"?

A: git branch -m "A" "B"
B: git branch "A" "B"

C. git checkout -b "A" "B"
D: git branch -d "A" "B"

I
Z

m
ﬁ

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

52/57 Quiz 2 Question 5
. Hesssches For Hochieat (HKHLR)

Which command can we issue to rename a branch "A" to "B"?

A: git branch -m "A" "B"
B: git branch "A" "B"

C. git checkout -b "A" "B"
D: git branch -d "A" "B"

I
Z

m
ﬁ

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

53/57 Quiz 2 Question 6
I

Hessisches fiar Hochleist (HKHLR)

What is true for a merge commit?

A: A recursive merge happens when branches have not diverged.

B: A merge commit is created automatically despite a merge conflict having occurred.
C: A merge commit always integrates changes from different branches.
D

Only fast forward merges are possible.

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

53/57 Quiz 2 Question 6
I

Hessisches fiar Hochleist (HKHLR)

What is true for a merge commit?

A: A recursive merge happens when branches have not diverged.

B: A merge commit is created automatically despite a merge conflict having occurred.
C: A merge commit always integrates changes from different branches.
D

Only fast forward merges are possible.

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

54/57 Quiz 2 Question 7
I

Hessisches fiir Hochleist (HKHLR)
When should you avoid rebasing?
A: When git tells you that it is not possible.
B: When a merge without conflicts is possible.
C: When working with multiple remotes.
D: When someone else’'s work is based on yours.
% HKHLR Version control with GIT 2024/11/05 =


https://creativecommons.org/licenses/by/4.0/

54/57 Quiz 2 Question 7
I

Hessisches fiar Hochleist (HKHLR)

When should you avoid rebasing?

A: When git tells you that it is not possible.
B: When a merge without conflicts is possible.

C: When working with multiple remotes.
D

When someone else’s work is based on yours.

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

55/57 Quiz 2 Question 8
I

Hessisches fiar Hochleist (HKHLR)

What is true about workflows?
A: The best workflow combines a development branch with a release branch and feature
branches.

B: Whether you use version control systems or perform everything manually makes little
difference.

C: Each team may have their own workflow and that is a matter of culture.

il:
®
®

HKHLR Version control with GIT 2024/11/05


https://creativecommons.org/licenses/by/4.0/

55/57 Quiz 2 Question 8
I

Hessisches fiar Hochleist (HKHLR)

What is true about workflows?
A: The best workflow combines a development branch with a release branch and feature
branches.

B: Whether you use version control systems or perform everything manually makes little
difference.

C: Each team may have their own workflow and that is a matter of culture.

HESSEN
= ®
% HKHLR Version control with GIT 2024/11/05 %


https://creativecommons.org/licenses/by/4.0/

56/57

Quiz 2 Question 9

Hessisches

What is the purpose of the .gitignore file?
A: You can include ignored files by using the -f option.
It tells git which commits to ignore.

B
C: It tells git which files to ignore.
D.

You can include ignored commits by using the -f option.

% HKHLR

Version control with GIT 2024/11/05

fiar Hochleist (HKHLR)


https://creativecommons.org/licenses/by/4.0/

56/57 Quiz 2 Question 9
I

Hessisches fiar Hochleist (HKHLR)

What is the purpose of the .gitignore file?

A: You can include ignored files by using the -f option.

It tells git which commits to ignore.

B
C: It tells git which files to ignore.
D.

You can include ignored commits by using the -f option.

I
Z

% HKHLR

Version control with GIT 2024/11/05

®
o)


https://creativecommons.org/licenses/by/4.0/

57/57 Some Useful Weblinks
. Hesisches Tor Hochieist (HKHLR)

» General topics: https://git-scm.com/book/en/v2/ and
https://www.atlassian.com/git/tutorials

» Advanced merging:
https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging

» Merge conflicts:
https://de.atlassian.com/git/tutorials/using-branches/merge-conflicts

» Distributed workflow:
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

7
z

L

HKHLR Version control with GIT 2024/11/05


https://git-scm.com/book/en/v2/
https://www.atlassian.com/git/tutorials
https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging
https://de.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://creativecommons.org/licenses/by/4.0/

	What is version control?
	Key Concepts
	First Steps in GIT
	GIT Workflow
	Branching
	Extras

