
Workflows on HPC Systems
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

T. Jammer R. Sitt Dr. C. Iwainsky

HKHLR is funded by the Hessian Ministry of Sciences and Arts

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

3/60 Course Contents
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Template for a scientific HPC workflow
▶ How to upload the data to the cluster in a structured way
▶ Pre-processing of the data
▶ Organisation of calculations
▶ Post-processing / aggregation
▶ Documentation and archiving of the workflow (following FAIR Principles)

▶ Focus on practical examples

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

4/60 Agenda
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Morning session
▶ A scientific HPC workflow template
▶ Mapping a “problem” to the workflow: a practical example
▶ Introduction to the OpenFOAM example

DYI exercise session
▶ Exercise: map OpenFOAM example to the workflow

Afternoon session
▶ Mob-coding: solving the exercise
▶ Wrap-up / Q&A

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

5/60 Motivation & FAIR Principles
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Scientific Method:
▶ Experiments can be repeated
▶ Results can be reproduced

FAIR Principles
▶ Findable
▶ Accessible
▶ Interoperable
▶ Reusable

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

6/60 Terminology
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Problem:
▶ a research question, or particular computation need.
▶ de-composed in 1 or more runs;

▶ Run:
▶ complete sub-component of the problem, that can be computed front to back
▶ possible daisy chains
▶ split in separate aspects

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

7/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer E

Transfer from and to the HPC system and the
users device

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

8/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing E

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

9/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing E

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

10/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1 E

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

11/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n E…

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

12/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing E…

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

13/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing E

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n

…

… Runspecific
Postprocessing

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

14/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing E

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n

…

… Runspecific
Postprocessing

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n… Runspecific

Postprocessing

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

15/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing
General

Postprocessing E

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n

…

… Runspecific
Postprocessing

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n… Runspecific

Postprocessing

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

16/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing
General

Postprocessing
FileTransfer E

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n

…

… Runspecific
Postprocessing

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n… Runspecific

Postprocessing

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

17/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing
General

Postprocessing
FileTransfer E

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n

…

… Runspecific
Postprocessing

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n… Runspecific

Postprocessing

Compute on HPC SystemCompute on Frontend Node Compute on Frontend Node

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

w
o

rk

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

18/60 The general workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

S FileTransfer
General

Preprocessing
Runspecific

Preprocessing
Run

Part #1
Run

Part #2
Run

Part #n
Runspecific

Postprocessing
General

Postprocessing
FileTransfer E

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n

…

… Runspecific
Postprocessing

Runspecific
Preprocessing

Run
Part #1

Run
Part #2

Run
Part #n… Runspecific

Postprocessing

Compute on HPC System Compute on Frontend
Node

Transfer from and to the HPC system and the
users device

Generic pre-&post-processing of data, like
generating the mesh

Case/Run specific pre &- post processing

Possible concurrent, possibly segmented HPC
work

w
o

rk

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

19/60 Ideal configuration
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

An ideal implementation of the workflow pipeline can utilize:

▶ multiple independent instances of computation
▶ segment a single computation into multiple subsequent iterative steps
▶ failure recovery to restart instances in case of failure
▶ incorporate new data-sets after principal computation has started
▶ documents whole research pipeline as a digital artifact
▶ generates final results directly from data without manual intervention

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

20/60 Example problem: machine-learning of Housenumbers
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ General problem description:
▶ Train Deep Neural Network to regognize what number is displayed
▶ Input: Image of a house number sign, shield, emblem, etc.
▶ Output: The number displayed on this house
▶ Input parameter: Hyperparameter to train the model (e.g. the number of neurons)
▶ Task: Find the best hyperparameters for maximum model efficiency

Image from : http://ufldl.stanford.edu/housenumbers, Non commercial use only
T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

http://ufldl.stanford.edu/housenumbers
https://creativecommons.org/licenses/by/4.0/

21/60 Sidenote on software
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Software sources:
Check local availability
▶ local “free-to-use” software
▶ local preinstalled commercial software with licenses

▶ ‘module’-system
▶ self-installed software

▶ packaged software PIP, spack, easybuild
▶ self-compiled software
▶ binary releases (TAR, o.s.)

Scientific workflow:
▶ Document version and libraries (if applicable)

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

22/60 Scientific Workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Step 1: File Transfer
▶ HPC systems operate as “remote” batch-driven systems

▶ Interactive use possible, but not recommended
▶ Explicit transfer of files from desktop/laptop to remote system

▶ different tools exists: wget, scp, rsync, sftp
▶ some remote terminal software includes file-transfer

▶ DOS/Windows/Linux Line Feed
▶ Dos2unix

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

23/60 Live Demo: Tranfering data to the HPC system
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ upload the python scripts to the cluster
▶ download the data to the cluster

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

24/60 Scientific Workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Step 1: File Transfer
▶ HPC systems operate as “remote” batch-driven systems

▶ Interactive use possible, but not recommended
▶ Explicit transfer of files from desktop/laptop to remote system

▶ different tools exists: wget, scp, rsync, sftp
▶ some remote terminal software includes file-transfer

▶ DOS/Windows/Linux Line Feed
▶ Dos2unix

Step 2: General preprocessing
▶ Shared preparation work applicable for all runs of the problem

▶ unpacking,
▶ setup of directory structure,
▶ clearing of aggregation files, workspace documentation

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

25/60 Live Demo: Setup of directories & launch-script
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ unpack the data
▶ set up a working python environment
▶ test if the environment works correctly

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

26/60 Scientific Workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Step 3: Job-specific preprocessing
▶ Many applications require case / problem specific preprocessing and setup steps

▶ Example: partitioning of the domain according to parallelization
▶ Copying input files to the work-directory
▶ Downloading specific dataset and preparing computation

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

27/60 Live Demo:
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ generation of Input Parameters for each training run
▶ test if the slurm script was set up correctly

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

28/60 Scientific Workflow
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Step 3: Job-specific preprocessing
▶ Many applications require case / problem specific preprocessing and setup steps

▶ Example: partitioning of the domain according to parallelization
▶ Copying input files to the work-directory
▶ Downloading specific dataset and preparing computation

Step 4: Case-specific work
▶ Job-script and job dependency

▶ The usual HPC job

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

29/60 Tangent: Batch-system, Job-Chains, Job-Dependencies
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Batch-systems allows to manage jobs, job-chains, job-steps and job-arrays

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

30/60 Recap: SLURM
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Linear workflow with each job
depending on its predecessor.

"Trivially" parallel workflow with independent
jobs. Work is parallelized "by hand".
Oftentimes the the most efficient way to
parallelize a workflow.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

31/60 Recap: SLURM - Job Arrays
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Slurm supports a feature called array jobs. To make use of this, we need the –array option
inside of the jobs script.

▶ Submitting multiple jobs at once, with a single job script and a single command
▶ Each array task will reserve the full amount of resources that are requested by the job

script (e.g. −−ntasks is the amount of processes that every array task can start)
▶ Each array task has a unique ID, which can be referenced in the job script via the

SLURM_ARRAY_TASK_ID variable
▶ Task IDs can be set explicitly and as a range, with or without a stepsize (see examples)
▶ The number of maximum tasks that can execute simultaneously can also be set (see

examples)

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

32/60 Recap: SLURM - —
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

In some workflows jobs depend on each other. Slurm offers the −−dependency option to
make jobs relate to others.

▶ Set dependencies from other jobs: <type>:<job_ID>
▶ “after”: Can begin after the specified jobs have begun execution
▶ “afterany”: Can begin after the specified jobs have terminated
▶ “afternotok”: Specified jobs have terminated in some failed state
▶ “afterok” Specified jobs have successfully executed
▶ “aftercorr”: “After correlated” (later)
▶ “singleton”: Can begin after all other jobs with the same job name have ended

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

33/60 Complex workflows
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

We can also imagine more complicated workflows with arrays and dependencies.

Linear workflow with each job
depending on its predecessor.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

34/60 Step 5 + 6: General and Job specific postprocessing
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Run-specifc postprocessing
▶ Collect run data,
▶ Clean-up work-directories
▶ Extract run-specific data

Problem-specific postprocessing
▶ Collect data from individual runs
▶ Process data, i.e. generate figures, graphs or visualization
▶ Collect & process execution parameters, i.e. accounting information, efficiency . . .

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

35/60 Live Demo:
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Aggregation and visualization of the result data

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

36/60 FAIR Principles
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Principles
▶ Findable
▶ Accessible
▶ Interoperable
▶ Reusable

Note
The job scripts serves as an important part of the workflow’s documentation

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

37/60 Best Practices
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Follow a consistent naming scheme

▶ Use version control for your scripts as well

▶ Job script should be self-contained:
▶ define all slurm Parameters inside of the job scripts
▶ use the long form of slurm parameters (--cpu-per-task instead of -c)
▶ include all used environment modules (with version) or environment variables in job script

▶ Don’t hardcode absolute paths (use a variable instead)

▶ Add comments if something is not immediately clear

▶ Include a file explaining the steps necessary outside of the job script

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

38/60 A second workflow example: OpenFOAM
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ We will apply the general idea of an HPC workflow to a different use case
▶ OpenFOAM represents a good example of a ‘traditional’ HPC problem
▶ We will skip over (most of) the intricacies of computational fluid dynamics and focus

on the workflow steps that are necessary for executing OpenFOAM simulations on an
HPC cluster

▶ Nevertheless, a general understanding of what’s happening will be helpful
▶ The following workflow is adapted from the OpenFOAM tutorial part 2.1, which can

be found here:

https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-
driven-cavity-flow#

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-driven-cavity-flow#
https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-driven-cavity-flow#
https://creativecommons.org/licenses/by/4.0/

39/60 Some CFD basics
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ OpenFOAM’s main purpose is to run simulations in the field of Computational Fluid
Dynamics (CFD).

▶ CFD applications simulate flows, pressures, velocities, and other properties of
macroscopic systems (e.g. simulating air flow around an airplane wing, simulating flow
and temperature transport in a cooling circuit, etc.)

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

40/60 Structure of a CFD simulation
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ In general a CFD simulation has a starting state, defining the system’s boundaries,
substance properties (e.g. viscosity), and initial pressure, velocity, etc.

▶ The simulation then calculates how the system’s observables progress and change over
time, until reaching an end state (either arbitrary or some stable equilibrium)

▶ Calculations happen on a grid or mesh, which partitions the system into parts where
the relevant equations can be solved piece-by-piece. Mesh setup and refining are vital
parts of preparing simulations.

▶ More complex systems require more complex meshes, and computational cost for each
simulation step scales with the number of mesh points.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

41/60 A simple CFD use case
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ We will be looking at a very simple CFD case: Four walls enclosing a flat square, with
three of them stationary and one moving at a constant speed. The moving wall causes
pressure and velocity differences in the enclosed substance.

▶ In OpenFOAM’s case, the preprocessing step consists of creating and refining the
mesh, the compute step runs the actual simulation, and postprocessing consists of
visualizing the simulation and determining whether further refinement is needed.

▶ The process is iterative; we start at a coarse simulation and progressively refine the
simulation parameters until a satisfactory result is obtained.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

42/60 General considerations
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

Data flow
▶ CFD simulations, like many ‘traditional’ simulation tasks, tend to produce data.
▶ That means they start with a moderate (text-form) input and can generate arbitrarily

large outputs (depending on simulation length and complexity).

Computational demand
▶ Preprocessing (mesh generation) and postprocessing (visualization) are comparatively

lightweight. Very complex systems might need to move them to a compute node (in
the visualization case, maybe to a specialized ‘visualization node’), but for smaller
cases they can be executed directly on a login node.

▶ The simulation step constitutes the main computational load and should thus be
executed as a batch job - even if the example we show here is very short, any
real-world use case will need a significant amount of resources.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

43/60 Data layout
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ OpenFOAM has a data structure that is very common for ‘classical’ simulation
applications:
▶ Each simulation run has its own subfolder. In OpenFOAM, these are called cases.
▶ A case contains the run parameters inside the sub-subfolders system and constant.

OpenFOAM will detect these folders and files automatically when given a case folder.
▶ Simulation outputs are also written inside the case folder; in OpenFOAM’s case, a new

subfolder is created for each timestep that is written out (write interval can be changed
in the input files).

▶ Since we don’t care about the exact contents and syntax of the input, we will
download a set of pre-written tutorial files.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

44/60 Input data acquisition
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The files we need are found at
https://develop.openfoam.com/Development/openfoam/-
/tree/master/tutorials/incompressible/icoFoam/cavity

▶ Since we don’t want to clone the complete OpenFOAM git, we can use Gitlab’s option
of downloading subdirectories (click on the ‘Code’ button, then at the bottom
‘Download this directory’ as .zip or .tar.gz)

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://develop.openfoam.com/Development/openfoam/-/tree/master/tutorials/incompressible/icoFoam/cavity
https://develop.openfoam.com/Development/openfoam/-/tree/master/tutorials/incompressible/icoFoam/cavity
https://creativecommons.org/licenses/by/4.0/

45/60 Input data transfer
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The downloaded archive will be placed on your local machine.
▶ Use the techniques we discussed during the other example to transfer the files into

your cluster home directory (useable tools: scp, rsync, FTP clients)
▶ Once the compressed archive has been copied to the cluster, we’ll need to extract the

files, either with unzip (for .zip) or tar (for .tar, .tar.gz and .tar.bz2).

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

46/60 Used software
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ We need an OpenFOAM installation that provides the subprograms blockMesh,
mapFields, and icoFoam.

▶ The first two are needed for preprocessing (generating and updating the mesh), while
the latter is running the simulation proper (‘ico’ = ‘incompressible’; it is used for
incompressible laminar flows, a rather uncomplicated variant of CFD).

▶ For postprocessing, we need either paraFoam (visualizer included in OpenFOAM), or
an external paraview installation.

▶ The exact commands needed may vary depending on how OpenFOAM is installed
(built from scratch or provided as a container).
▶ E.g.: In case of MaRC3 (Marburg), all OpenFOAM commands are prefixed with

openfoam, which starts the container (i.e. openfoam blockMesh, openfoam icoFoam,
etc.)

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

47/60 ParaView
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The ParaView interface can seem somewhat overwhelming and obscure at first, since
it has many incredibly detailed options that are only useful for domain experts.

▶ The main principle is opening a data source (in our case a *.foam file in the case
folder) and applying ‘filters’ to it to visualize aspects of this data.

▶ A full ParaView tutorial would be beyond the scope of this course; for a few ideas on
what to visualize, we can refer to paragraph 2.1.4 in

https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-
driven-cavity-flow#

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-driven-cavity-flow#
https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-driven-cavity-flow#
https://creativecommons.org/licenses/by/4.0/

48/60 First workflow iteration: Preprocessing
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ As a first step, we will generate a simple 2D 20x20 mesh to run the simulation.
▶ Since the case is very small, we can do this without submitting it as a batch job

▶ However, it’s a good practice for setting up a simple HPC job!
▶ To generate the mesh, we need to run the following command inside the

cavity/cavity/ directory:

blockMesh

▶ Remember that we can run the command from anywhere in the file tree by adding a
-case <path> parameter:

blockMesh -case /home/<username>/<path_to_cavity_folder>

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

49/60 First workflow iteration: Compute
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The simulation proper is run by calling icoFoam from inside the case directory, or
icoFoam -case <path> from anywhere.

▶ Although it is not strictly needed since the calculation will only take a few seconds, we
nevertheless should submit it as a batch job - any real-world use case would require it.

▶ The resource requirements for this job are minimal (1 CPU core, 4GB of memory, and
10 minutes of runtime should suffice)

▶ You can either store job files inside the case directory, or collect batch job inputs and
outputs in a different folder. What are the advantages and disadvantages of either?

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

50/60 First workflow iteration: Postprocessing
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The postprocess step in OpenFOAM consisty of visualizing the simulation and
checking whether further refinement might be beneficial.

▶ Visualization is done with ParaView. If the OpenFOAM installation includes the
paraFoam module, we simply need to start the tool from inside the case folder (check
if X-Forwarding is switched on in your SSH session!).

▶ With external ParaView, we need to generate a dummy file in the case directory and
then load it:

Inside the case folder:
touch cavity.foam
paraview cavity.foam

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

51/60 Second workflow iteration: Preprocessing 1 - New mesh
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The mesh for the first simulation is rather coarse. We’ll generate a second finer mesh
(double resolution), map the final step of the previous iteration onto it, and prepare to
simulate further steps with the new resolution.

▶ In OpenFOAM’s logic, this marks a new case. First of all, we copy the results from
last iteration into a new subfolder:

cp -r cavity cavityFine

▶ In the new cavityFine case folder, we need to edit the file
./system/blockMeshDict to change the mesh resolution; find the line starting with
hex and change (20 20 1) to (40 40 1). This effectively doubles the resolution
along the x and y axis.

▶ We can now generate the new mesh:

blockMesh

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

52/60 Second workflow iteration: Preprocessing 2 - Mesh mapping and simulation steps
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ We want to map the new mesh onto the last step of the previous simulation; to
communicate this to OpenFOAM, we open system/controlDict and change the line
for startTime from 0.0 to 0.5 (i.e. to the last step of the previous run) and delete
the numbered folders (0, 0.1, . . . , 0.5) (we’ll recreate this folder while mapping).

▶ Then, we let OpenFOAM map the new mesh onto the old result:

mapFields ../cavity -consistent

▶ Further changes to system/controlDict:
▶ Change deltaT from 0.005 to 0.0025 (a finer resolution needs smaller time steps for

numerical reasons)
▶ Change endTime from 0.5 to 0.7 (otherwise startTime would be identical to endTime)
▶ Set writeControl to runTime and writeInterval to 0.1 (keeps the output interval

at ‘every 0.1 seconds’ with new step size).

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

53/60 Second workflow iteration: Compute
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The only thing that has changed for the compute step is the path to the case folder.
▶ There is no need to increase the amount of compute resources; if you have a jo0b

script for the first simulation, adapting it should be trivial.
▶ As before, the simulation proper is run (ideally from within a compute job) with

icoFoam [-case <path_to_cavityFine_folder>]

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

54/60 Second workflow iteration: Postprocessing
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Postprocessing is, again, mostly checking various simulation properties with ParaView.
▶ OpenFOAM includes tools to plot a wide range of system properties, which is fittingly

called postProcess
▶ As an example, we will show how to plot overall magnitude of velocity vectors, and

directional components of velocity:

postProcess -funcs '(components(U) mag(U))'

▶ This data is then available in ParaView for plotting. The filter for this is called ‘Plot
over line’; the line coordinates should be set to (0.05, 0, 0.005) and (0.05,
0.1, 0.005) for Point1 and Point2, and resolution can be set to 100.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

55/60 Third workflow iteration: Preprocessing 1 - Graded mesh
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ In CFD it is common to have different regions in a system, where some undergo big
changes while others barely change during a simulation.

▶ Therefore, meshes are often not completely uniform - instead, they are defined to be
finer in ‘interesting’ regions and allowed to be coarser in ‘uninteresting’ regions. These
are called graded meshes.

▶ The case folder cavityGrade includes a starting configuration for a graded mesh.
▶ At first, we will again generate the mesh:

cd ../cavityGrade
blockMesh

▶ We can also open the case folder in ParaView (don’t forget to generate a .foam file
first if using a standalone ParaView installation) to check the newly generated mesh.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

56/60 Third workflow iteration: Preprocessing 2 - Mesh mapping
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ We will first edit system/controlDict to set starting and ending point for the new
simulation:
▶ Set startTime to 0.7 (the last step of the cavityFine run)
▶ Set endTime to 0.8 (for our simple system, we don’t need to run for longer to achieve a

stable state)
▶ Then, we map the last step of the cavityFine case onto the graded mesh, which we

will use as the starting point of the third simulation:

mapFields ../cavityFine -consistent

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

57/60 Third workflow iteration: Compute
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ As in the second iteration, only the case folder has changed, so we can easily adapt
our previous job script to run the ‘cavityGrade’ case

▶ Once again, the icoFoam module will be used.
▶ By now, you should see the repeating pattern of this workflow. With some preparation,

the predictable folder layout and the submit scripts offer opportunities for automation.
Can you think of some?

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

58/60 Third workflow iteration: Postprocessing
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ The results can again be visualized in various ways with ParaView.
▶ This refinement cycle will go on longer for real use cases - stay aware of the fact that

we are generating data! That means:
▶ While old simulations are used for mapping (and also for reference, if a run needs to be

recreated), they do not need to stay on fast storage indefinitely
▶ If immediate and fast access to old data is no longer needed, it should be archived in a

feasible way (compressed, moved to ‘cold storage’, etc.)
▶ Text-only data such as the simulation input files can be nicely stored in a version control

system (e.g. git), which also means that the whole edit history is kept and any previous
version of the files is readily available.

▶ For the output data, care should be taken to include relevant metadata, so that each
result set can be readily matched to input file versions, software versions, author, etc.

⋆ Apply FAIR principles!

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

59/60 Conclusion
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Having walked through two very different HPC workflows and looking back at the
general principles presented at the start of the course, it should be obvious that even
very different use cases follow similar patterns:
▶ Initial considerations about data layout and data transfer
▶ Preprocessing, compute and postprocessing, often in multiple iterations
▶ Considerations of how, where, and what to save of the results

▶ In a generalized form, these patterns can be applied to any HPC use case. What these
steps may contain in detail is filled out by domain knowledge, experimenting, and
experience.

▶ Ultimately, the idea of a generalized HPC workflow offers guidance on what questions
to ask, since the actual answers will be different for every use case.

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

https://creativecommons.org/licenses/by/4.0/

60/60 Image sources
Hessisches Kompetenzzentrum für Hochleistungsrechnen (HKHLR)

▶ Slide 20: http://ufldl.stanford.edu/housenumbers
▶ Slide 41: https://www.openfoam.com/documentation/tutorial-guide/2-

incompressible-flow/2.1-lid-driven-cavity-flow#
▶ Other images: Own work, © 2024 Competence Center for High Performance

Computing in Hessen (HKHLR)

T. Jammer, R. Sitt, Dr. C. Iwainsky Workflows on HPC Systems

http://ufldl.stanford.edu/housenumbers
https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-driven-cavity-flow#
https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.1-lid-driven-cavity-flow#
https://creativecommons.org/licenses/by/4.0/

