
Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

Contents

Live demo on command line usage of Git 1
Commonly used Git commands . 1
Working with a local repo . 2

Initialise a local repo . 2
Set the local config . 2
Query current repo status . 2
Adding a file to the repo . 2
Mark file for next commit . 3
Make a first commit . 3
Modify the commited file . 4
Commit most recent changes . 4
Review the commit history . 4
Amending a commit . 4

Locally working with branches . 6
Create a feature branch for in-place addition . 6
Merge back to master branch . 6
Create a feature branch for multiplication and division 7
Add tests for multiplication and divison on master 8
Integrating changes from divergent branches . 8

Live demo on command line usage of Git

Commonly used Git commands

In our live demo we will use the following commands that are essential for working with Git from the
command line:

These commands are used when working with a local repo only:

• git config: Set/Query repo options.
• git init: Initialise an empty Git repo.
• git status: Show the working tree status.
• git add: Add file content to the staging area to prepare the next commit.
• git commit: Add staged changes to the repo.
• git merge: Join two or more development histories together.
• git rebase: Reapply commits from one branch to tip of another branch.

HKHLR 1

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

Working with a local repo

Navigate to theDemosdirectory and locate thePython_complex-class sub-directory. It contains
several other sub-directories which we will use in the following for our live demonstration.

Initialise a local repo

We start by initialising a local repo in some directory on our current system.

$ mkdir -vp $HOME/tmp/prothpc-git/local-repo
$ cd $HOME/tmp/prothpc-git/local-repo
$ git init

Set the local config

We will configure some information for the local repo only. You can set up your global configs later.

$ git config --local user.name "Niko Luke"
$ git config --local user.email "niko.luke@uni-kassel.de"
$ git config --list | grep user # check the user settings

Query current repo status

At this point we have clean new repo. We can query the repo status with

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Adding a file to the repo

From theDemos/Python_complex-class/0_initdirectory copy the filecomplex_class.py.
Please make sure to adapt the path to your current directory layout.

HKHLR 2

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

$ cp -av ../Demos/Python_complex-class/0_init/complex_class.py .

We again query the status of the local repo with the git status command. We see that the file
complex_class.py is listed as being untracked.

$ git status
some lines of output here
Untracked files:

(use "git add <file>..." to include in what will be committed)
complex_class.py

some lines of output here

Mark file for next commit

In order to make Git track the file we must first add it and put in into the staging area. After having
git added the file we again query the current status of the repo.

$ git add complex_class.py
$ git status
some lines of output here
Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: complex_class.py

some lines of output here

We can see that we have prepared complex_class.py be tracked by Git after the commit.

Make a first commit

We now commit the staged files to make Git track them in the future.

$ git commit -m "Skeleton version of custom complex number class in
Python."↪→

some lines of output here

The file complex_class.py is now successfully committed and safely stored in the local repo.

HKHLR 3

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

Modify the commited file

We now will start developing our custom complex number class.

Next, copy the file Demos/Python_complex-class/1_abs-value/complex_class.py to
the local repo.

Copying the file simulates us changing the file manually.
$ cp -av ../Demos/Python_complex-class/1_abs-value/complex_class.py .
$ git status
some lines of output here
modified: complex_class.py
some lines of output here

complex_class.py is now in the modified stage. If you are interested in the changes we applied to
the file, execute the git diff command. We have added a class method that returns the absolute
value of a complex number.

Commit most recent changes

We now add and commit the file to make a snapshot of the current state of our small software
project.

$ git add complex_class.py
$ git commit -m "Add method to compute absolute value."

Review the commit history

We can now have a look at our recent commits by using the git log command:

$ git log --oneline # short output, one commit per line
$ git log --grep "absolute value" # use search pattern for filtering

Amending a commit

We further develop our complex number class by adding methods add/subtract values to our complex
number objects. For this we must add the __add__ and __sub__ magic methods to our Python
class.

HKHLR 4

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

$ cp -av ../Demos/Python_complex-class/2.1_add-sub/complex_class.py .
$ git diff # inspect the changes
$ git add complex_class.py
$ git commit -m "Add methods for adding and subtracting values."

But wait a moment?

We can now only add values to if value (e.g. a Python float or int) is on the right hand side of
an instance of the complex class (let’s call it complex_value) and obtain another instance: com-
plex_value + value. We cannot add complex_value to value and obtain another instance:
value + complex_value. We forgot to add the __radd__ and __rsub__ methods for reverse
addition/subtraction.

$ cp -av ../Demos/Python_complex-class/2.2_radd-rsub_amend/complex_class.py
.↪→

$ git diff
$ git add complex_class.py

Now we could of course make an additional commit stating that we added methods for reverse addition
and subtraction. However, we want these changes to be part of the previous commit as well. We will
amend our previous commit.

Before we do actually do this, let’s recall the hash string of this commit (why will become clear in a
moment):

$ git log --oneline | grep adding
978861b Add methods for adding and subtracting values.

Mind: Your commit hash might look different from mine.

Now let’s really apply the changes by amending the previous commit.

$ git commit --amend
An editor will pop up but we will leave the commit message.
$ git log --oneline | grep adding
19d53d2 Add methods for adding and subtracting values.

Please note that we have just changed the commit history! Since the content of our last commit
changed the hash string is different now. That is to say, our new improved commit replaces the old
commit.

For more details on how to rewrite the commit history of a repo see here.

HKHLR 5

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

Locally working with branches

Create a feature branch for in-place addition

Create a new feature branch namedinplace_addition_subraction for adding the__iadd__
and the __isub__ magic methods for in-place addition and subtraction.

$ git checkout -b inplace_addition_subtraction
$ git status
On branch inplace_addition_subtraction
nothing to commit, working tree clean
git log --oneline

We will make two separate commits:

1. Add unit tests for __iadd__ and __isub__.

$ cp -v ../Demos/Python_complex-class/3.1_iadd-isub_feature-
branch/test_complex_class.py
.

↪→

↪→

$ git status
$ git add test_complex_class.py
$ git commit -m "Add unit tests for in-place addition and subtraction."

2. Add implementation for __iadd__ and __isub__methods.

$ cp -v ../Demos/Python_complex-class/3.1_iadd-isub_feature-
branch/complex_class.py
.

↪→

↪→

$ git status
$ git add complex_class.py
$ git commit -m "Add implementation for in-place addition and subtraction."

Note: When creating a branch to add new features to your code, always add a corresponding test as
well!

Merge back to master branch

Now switch back to the master branch and merge the feature added on the branch in-
place_addition_subtraction.

HKHLR 6

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

We are still on the 'inplace_addition_subtraction' branch.
$ git status
On branch inplace_addition_subtraction
nothing to commit, working tree clean
$ git switch master
Switched to branch 'master'
$ git merge inplace_addition_subtraction
some output lines here
Fast-forward # <-- the merge strategy
some output lines here

Finally we delete the inplace_addition_subtraction branch since branches should not live
too long.

$ git branch -d inplace_addition_subraction

Create a feature branch for multiplication and division

From the master branch create a branch named multiplication_division for adding
__mul__, __rmul__ and __imul__ as well as __truediv__, __rtruediv__ and __itrue-
div__methods.

$ git checkout -b multiplication_division

1. Add implemention of __mul__, __rmul__ and __imul__ methods.

$ cp -v ../Demos/Python_complex-class/3.2_mul/complex_class.py .
$ git add complex_class.py
$ git commit -m "Add implementation for multiplication."

2. Add implemention of __truediv__, __rtruediv__ and __itruediv__methods.

$ cp -v ../Demos/Python_complex-class/3.3_div/complex_class.py .
$ git add complex_class.py
$ git commit -m "Add implementation for division."

HKHLR 7

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

Add tests for multiplication and divison on master

We will add the unit tests for multiplication and divison on the master branch.

Note: At this point we will not merge back the multiplication_division branch.

1. Add unit tests for __mul__, __rmul__ and __imul__.

Make sure we are on the master branch
$ git switch master
$ cp -v ../Demos/Python_complex-class/3.2_mul/test_complex_class.py .
$ git add test_complex_class.py
$ git commit -m "Add unit tests for multiplication."

2. Add unit tests for __truediv__, __rtruediv__ and __itruediv__.

$ cp -v ../Demos/Python_complex-class/3.3_div/test_complex_class.py .
$ git add test_complex_class.py
$ git commit -m "Add unit tests for division."

Integrating changes from divergent branches

We first make a copy of the repo:

$ cp -av local-repo local-repo.rebase

We now have two options to integrate the development on master and multiplica-
tion_division.

1. merge the multiplication_division branch to the master branch:

Make sure we are on the master branch.
$ git switch master
$ git merge multiplication_division
Merge made by the 'recursive' strategy.
some output lines here
$ # pytest -v # make sure all tests run without errors

Since commits were made on both branches master and multiplication_division are said
to be diverged. The merge strategy is now is the recursive strategy (instead of a fast-forward merge). Git
will create an extra merge commit for integrating the changes from both branches.

HKHLR 8

Version Control with Git HKHLR Hessen - ProTHPC 2023-11-02

2. rebase the master on multiplication_division and merge back to master:

Switch to the local-repo.rebase directory and execute the following commands:

Make sure we are on the 'mulitplication_division branch
$ git switch multiplication_division
$ git rebase master
Successfully rebased and updated refs/heads/multiplication_division.
$ git switch master
$ git merge multiplication_division # a fast-forward merge
$ # pytest -v # make sure all tests run without errors

HKHLR 9

	Live demo on command line usage of Git
	Commonly used Git commands
	Working with a local repo
	Initialise a local repo
	Set the local config
	Query current repo status
	Adding a file to the repo
	Mark file for next commit
	Make a first commit
	Modify the commited file
	Commit most recent changes
	Review the commit history
	Amending a commit

	Locally working with branches
	Create a feature branch for in-place addition
	Merge back to master branch
	Create a feature branch for multiplication and division
	Add tests for multiplication and divison on master
	Integrating changes from divergent branches

