diff --git a/.gitignore b/.gitignore
index 0ffc9575a2d120e1cfad342dedb833397cdb99bc..742b4519a237e22b6c4a6352873c58a4c8166e50 100644
--- a/.gitignore
+++ b/.gitignore
@@ -3,4 +3,5 @@
 */trained_ddpm
 root
 experiments
-trainer/__pycache__
\ No newline at end of file
+.ipynb_checkpoints
+trainer/__pycache__
diff --git a/.ipynb_checkpoints/experiment_creator-checkpoint.ipynb b/.ipynb_checkpoints/experiment_creator-checkpoint.ipynb
deleted file mode 100644
index 2e35c4ee2b0852f0c14234c07a8669da508e5f5b..0000000000000000000000000000000000000000
--- a/.ipynb_checkpoints/experiment_creator-checkpoint.ipynb
+++ /dev/null
@@ -1,189 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from trainer.train import *\n",
-    "from dataloader.load import  *\n",
-    "from models.Framework import *\n",
-    "from models.unet_unconditional_diffusion import *\n",
-    "import torch \n",
-    "from torch import nn \n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Prepare experiment\n",
-    "1. Adapt settings below (for data path, only use absolute paths!!)\n",
-    "2. run both cells of the notebook, this creates a folder containing the json setting files \n",
-    "2. put the folder  on the HPC\n",
-    "3. the following command starts the training `python main.py train \"<absolute path of folder in hpc>\"`  add it to the batch file "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import torch \n",
-    "\n",
-    "#path to store, path to load data , path to checkpoint \n",
-    "\n",
-    "#basic settings:\n",
-    "learning_rate = 0.0001\n",
-    "batchsize = 8\n",
-    "datapath = \"/work/lect0100/lhq_256\"\n",
-    "checkpoint_path = None #when training from checkpoint\n",
-    "experimentname = \"/Users/gonzalo/Desktop/testing/\" + \"test1\"  #always change experiment name! \n",
-    "epochs = 20\n",
-    "diffusion_steps = 25\n",
-    "image_size = 64\n",
-    "channels = 3\n",
-    "store_iter = 5\n",
-    "optimizername = \"torch.optim.AdamW\"\n",
-    "name_appendix = 'DM_bottleneck'# id for WANDB\n",
-    "\n",
-    "#advanced settings: change directly in dictionary \n",
-    "meta_setting = dict(modelname = \"UNet_Unconditional_Diffusion_Bottleneck_Variant\",\n",
-    "                    dataset = \"UnconditionalDataset\",\n",
-    "                    framework = \"DDPM\",\n",
-    "                    trainloop_function = \"ddpm_trainer\",\n",
-    "                    batchsize = batchsize,\n",
-    "                    )\n",
-    "\n",
-    "\n",
-    "dataset_setting = dict(fpath = datapath,\n",
-    "                                img_size = image_size,\n",
-    "                                frac =0.8,\n",
-    "                                skip_first_n = 0,\n",
-    "                                ext = \".png\",\n",
-    "                                transform=True\n",
-    "                                )\n",
-    "\n",
-    "\n",
-    "model_setting = dict( channels_in=channels,                 \n",
-    "               channels_out =channels ,                \n",
-    "               activation='relu',           # activation function. Options: {'relu', 'leakyrelu', 'selu', 'gelu', 'silu'/'swish'}\n",
-    "               weight_init='he',            # weight initialization. Options: {'he', 'torch'}\n",
-    "               projection_features=64,      # number of image features after first convolution layer\n",
-    "               time_dim=batchsize,                 #dont chnage!!!\n",
-    "               time_channels=diffusion_steps,           # number of time channels #TODO same as diffusion steps? \n",
-    "               num_stages=4,                # number of stages in contracting/expansive path\n",
-    "               stage_list=None,             # specify number of features produced by stages\n",
-    "               num_blocks=1,                # number of ConvResBlock in each contracting/expansive path\n",
-    "               num_groupnorm_groups=32,     # number of groups used in Group Normalization inside a ConvResBlock\n",
-    "               dropout=0.1,                 # drop-out to be applied inside a ConvResBlock\n",
-    "               attention_list=None,         # specify MHA pattern across stages\n",
-    "               num_attention_heads=1,\n",
-    "               )\n",
-    "\n",
-    "\n",
-    "framework_setting = dict(\n",
-    "                 diffusion_steps = diffusion_steps,  # dont change!!\n",
-    "                 out_shape = (channels,image_size,image_size),  # dont change!!\n",
-    "                 noise_schedule = 'linear', \n",
-    "                 beta_1 = 1e-4, \n",
-    "                 beta_T = 0.02,\n",
-    "                 alpha_bar_lower_bound = 0.9,\n",
-    "                 var_schedule = 'same', \n",
-    "                 kl_loss = 'simplified', \n",
-    "                 recon_loss = 'none',\n",
-    "                 \n",
-    "                 )\n",
-    "\n",
-    "\n",
-    "training_setting = dict(\n",
-    "                        epochs = epochs,\n",
-    "                        store_iter = store_iter,\n",
-    "                        eval_iter = 3,\n",
-    "                        optimizer_class=optimizername, \n",
-    "                        optimizer_params=dict(lr=learning_rate), # don't change!\n",
-    "                        scheduler_class= None, \n",
-    "                        scheduler_params=None,\n",
-    "                        last_epoch=-1,\n",
-    "                        learning_rate = learning_rate,\n",
-    "                        lr_schedule = False,\n",
-    "                        verbose = True,\n",
-    "                        name_appendix=name_appendix,\n",
-    "                        checkpoint_path= checkpoint_path,\n",
-    "                        )"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "path already exists, pick a new name!\n",
-      "break\n"
-     ]
-    }
-   ],
-   "source": [
-    "import os\n",
-    "import json\n",
-    "f =  experimentname\n",
-    "if os.path.exists(f):\n",
-    "    print(\"path already exists, pick a new name!\")\n",
-    "    print(\"break\")\n",
-    "else:\n",
-    "    print(\"create folder\")\n",
-    "    os.mkdir(f)\n",
-    "    print(\"folder created \")\n",
-    "    with open(f+\"/meta_setting.json\",\"w+\") as fp:\n",
-    "        json.dump(meta_setting,fp)\n",
-    "\n",
-    "    with open(f+\"/dataset_setting.json\",\"w+\") as fp:\n",
-    "        json.dump(dataset_setting,fp)\n",
-    "    \n",
-    "    with open(f+\"/model_setting.json\",\"w+\") as fp:\n",
-    "        json.dump(model_setting,fp)\n",
-    "    \n",
-    "    with open(f+\"/framework_setting.json\",\"w+\") as fp:\n",
-    "        json.dump(framework_setting,fp)\n",
-    "\n",
-    "    with open(f+\"/training_setting.json\",\"w+\") as fp:\n",
-    "        json.dump(training_setting,fp)\n",
-    "\n",
-    "    print(\"stored json files in folder\")\n",
-    "    print(meta_setting)\n",
-    "    print(dataset_setting)\n",
-    "    print(model_setting)\n",
-    "    print(framework_setting)\n",
-    "    print(training_setting)\n",
-    "    "
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3.9 (pytorch)",
-   "language": "python",
-   "name": "pytorch"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.9.16"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}