diff --git a/evaluation/evaluation_readme.md b/evaluation/evaluation_readme.md new file mode 100644 index 0000000000000000000000000000000000000000..4b0c24e6842143706ba3633c0adf5214ed12224f --- /dev/null +++ b/evaluation/evaluation_readme.md @@ -0,0 +1,79 @@ +# Evaluation Pipeline + +We conduct two types of evaluation - qualitative and quantitative. + +### Quantitative evaluations - + +Quantitative metrics can be further categorised into two groups - content variant and content invariant metrics. + +Content variant metrics are useful when the model can generate different samples from a noise vector. \ +These evaluations are carried out to compare different backbone architectures of our unconditional diffusion model. \ +A set of 10,000 generated samples from each model variant is compared with the test set of the real dataset. \ +These evaluations include - +1. FID score +2. Inception score +3. Clean FID score (with CLIP) +4. FID infinity and IS infinity scores + +Content invariant metrics are useful when the model output can be compared w.r.t a ground truth. \ +For example, our model can output the reconstructed version of an input training image (following the entire forward \ +and reverse trajectories). \ +These evaluation include - +1. SSIM (Structural Similarity Index Metric) +2. PSNR + + +### Qualitative evaluations - + +The aim of this set of evaluations is to qualitatively inspect whether our model has overfit to the training images. \ +For this, the entire set of 10,000 generated samples from the best performing model from quanititative evaluation is \ +compared with the training set of the real dataset. \ +Additionally, the quality check is also done on a hand-selected subset of best generations. \ + +The comparison is implemented as MSE values between features of the generated and training samples. The features are \ +extracted by using a pretrained model (ResNet50-Places365/VGGFace or CLIP). Based on the MSE scores we compute - \ +1. kNN - plot the k nearest neighbors of the generated samples +2. Closest pairs - plot the top pairs with smallest MSE value + + +### Argumnets - + +Execution starts with evaluate_full.py file. Input arguments are - + +* <pre>-rp, --realpath : Path to real images (string) </pre> +* <pre>-gp, --genpath : Path to generated images (string) </pre> +* <pre>--size : Resolution of images the model was trained on, default 128 (int) </pre> +* <pre>-a, --arch : Choose between 'cnn' and 'clip'. Chosen pretrained model is used to extract features from the images. + Default = 'clip' (string) + **!!! Currently no CNN models are supported**</pre> +* <pre>-m, --mode : Choose between 'kNN' and 'pairs' (for closest pairs) or both, default = 'both' (string) </pre> +* <pre>-k, --k : k value for kNN, default = 3 (int) </pre> +* <pre>-s, --sample : Choose between an int and 'all'. If mode is 'kNN', plot kNN for this many samples (first s samples + in the directory of generated images). If mode is 'pairs', plot the top s closest pairs from entire + directory of generated images. Default 10 (int or 'all') </pre> +* <pre>-n, --name : Name appendix (string) </pre> +* <pre>--fid : Choose between 'yes' and 'no'. Compute FID, Inception score and their variants. Default 'no' (string) </pre> + + +Path to real images leads to a directory with two sub-directories - train and test. + +<pre> +data +|_ afhq +| |_ train +| |_ cat +| |_ dog +| |_ wild +| |_ test +| |_ cat +| |_ dog +| |_ wild +</pre> + +CLIP features of training images are saved after the first execution. This alleviates the need to recompute \ +features of real images for different sets of generated samples. + + +### Links +3. Clean FID - https://github.com/GaParmar/clean-fid/tree/main +4. FID infinity, IS infinity - https://github.com/mchong6/FID_IS_infinity/tree/master \ No newline at end of file diff --git a/evaluation/helpers/__init__.py b/evaluation/helpers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/evaluation/helpers/__pycache__/__init__.cpython-39.pyc b/evaluation/helpers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4e784a4d38cb2fd7130c2afd8f5260a97e44c696 Binary files /dev/null and b/evaluation/helpers/__pycache__/__init__.cpython-39.pyc differ diff --git a/evaluation/helpers/__pycache__/inception.cpython-39.pyc b/evaluation/helpers/__pycache__/inception.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be41bb7f878b99656f1890f1480d12f3e3a0ff83 Binary files /dev/null and b/evaluation/helpers/__pycache__/inception.cpython-39.pyc differ diff --git a/evaluation/helpers/__pycache__/kNN.cpython-39.pyc b/evaluation/helpers/__pycache__/kNN.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2a38f88d4a57f4d7868c8388d8f35949446d7038 Binary files /dev/null and b/evaluation/helpers/__pycache__/kNN.cpython-39.pyc differ diff --git a/evaluation/helpers/__pycache__/metrics.cpython-39.pyc b/evaluation/helpers/__pycache__/metrics.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e6966f95bbd6388953180eef69f20d8f35c6bab4 Binary files /dev/null and b/evaluation/helpers/__pycache__/metrics.cpython-39.pyc differ diff --git a/evaluation/helpers/__pycache__/score_infinity.cpython-39.pyc b/evaluation/helpers/__pycache__/score_infinity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..90689d79ccc3697c24e2e013bbf11a8443bb102f Binary files /dev/null and b/evaluation/helpers/__pycache__/score_infinity.cpython-39.pyc differ diff --git a/evaluation/helpers/__pycache__/vggface.cpython-39.pyc b/evaluation/helpers/__pycache__/vggface.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b793827af5561c5635da291b4278f40e2c5feea Binary files /dev/null and b/evaluation/helpers/__pycache__/vggface.cpython-39.pyc differ diff --git a/evaluation/helpers/inception.py b/evaluation/helpers/inception.py new file mode 100644 index 0000000000000000000000000000000000000000..246e3bbe82bf477ae31ad327c7f778486b52d8e9 --- /dev/null +++ b/evaluation/helpers/inception.py @@ -0,0 +1,74 @@ +# Source - https://github.com/mchong6/FID_IS_infinity + +import torch +import torch.nn as nn +from torch.nn import Parameter as P +from torchvision.models.inception import inception_v3 +import torch.nn.functional as F + +# Module that wraps the inception network to enable use with dataparallel and +# returning pool features and logits. +class WrapInception(nn.Module): + def __init__(self, net): + super(WrapInception,self).__init__() + self.net = net + self.mean = P(torch.tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1), + requires_grad=False) + self.std = P(torch.tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1), + requires_grad=False) + def forward(self, x): + x = (x - self.mean) / self.std + # Upsample if necessary + if x.shape[2] != 299 or x.shape[3] != 299: + x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True) + # 299 x 299 x 3 + x = self.net.Conv2d_1a_3x3(x) + # 149 x 149 x 32 + x = self.net.Conv2d_2a_3x3(x) + # 147 x 147 x 32 + x = self.net.Conv2d_2b_3x3(x) + # 147 x 147 x 64 + x = F.max_pool2d(x, kernel_size=3, stride=2) + # 73 x 73 x 64 + x = self.net.Conv2d_3b_1x1(x) + # 73 x 73 x 80 + x = self.net.Conv2d_4a_3x3(x) + # 71 x 71 x 192 + x = F.max_pool2d(x, kernel_size=3, stride=2) + # 35 x 35 x 192 + x = self.net.Mixed_5b(x) + # 35 x 35 x 256 + x = self.net.Mixed_5c(x) + # 35 x 35 x 288 + x = self.net.Mixed_5d(x) + # 35 x 35 x 288 + x = self.net.Mixed_6a(x) + # 17 x 17 x 768 + x = self.net.Mixed_6b(x) + # 17 x 17 x 768 + x = self.net.Mixed_6c(x) + # 17 x 17 x 768 + x = self.net.Mixed_6d(x) + # 17 x 17 x 768 + x = self.net.Mixed_6e(x) + # 17 x 17 x 768 + # 17 x 17 x 768 + x = self.net.Mixed_7a(x) + # 8 x 8 x 1280 + x = self.net.Mixed_7b(x) + # 8 x 8 x 2048 + x = self.net.Mixed_7c(x) + # 8 x 8 x 2048 + pool = torch.mean(x.view(x.size(0), x.size(1), -1), 2) + # 1 x 1 x 2048 + logits = self.net.fc(F.dropout(pool, training=False).view(pool.size(0), -1)) + # 1000 (num_classes) + return pool, logits + +# Load and wrap the Inception model +def load_inception_net(parallel=False): + inception_model = inception_v3(pretrained=True, transform_input=False) + inception_model = WrapInception(inception_model.eval()).cuda() + if parallel: + inception_model = nn.DataParallel(inception_model) + return inception_model diff --git a/evaluation/helpers/kNN.py b/evaluation/helpers/kNN.py new file mode 100644 index 0000000000000000000000000000000000000000..60876dd3edd4a90903fa7eabdafa06b9fd39e960 --- /dev/null +++ b/evaluation/helpers/kNN.py @@ -0,0 +1,177 @@ +import os +from pathlib import Path +import torch +import torchvision.transforms as transforms +from torch.utils.data import DataLoader +from PIL import Image +import matplotlib.pyplot as plt +from collections import OrderedDict + + +class kNN(): + + def __init__(self): + pass + + def get_images(self, path, transform, size=128, *args, **kwargs): + ''' + returns + names: list of filenames + image_tensor: tensor with all images + ''' + # path to real image files + image_files = [] + for p, subdirs, files in os.walk(path): + for f in files: + image_files.append(os.path.join(p,f)) + # list to store filenames + names = [] + # list to store images (transformed to tensors) + images_list = [] + + for file in image_files: + if file.endswith('.jpg') or file.endswith('.png'): + filepath = os.path.join(path, file) + names.append(file) + im = Image.open(filepath) + if im.size[0] != size: + im = im.resize((size,size)) # DDPM was trained on 128x128 images + im = transform(im) + images_list.append(im) + + # tensor with all real image tensors + image_tensor = torch.stack(images_list) + + return names, image_tensor + + def feature_extractor(self, images, model, device='cpu', bs=128, *args, **kwargs): + ''' + returns + real_features: VGGFace features for real images + generated_features: VGGFace features for generated images + ''' + # extract features for real and generated images + dataloader = DataLoader(images, batch_size=bs, shuffle=False) + features_list = [] + if model._get_name() == 'CLIP': + with torch.no_grad(): + for item in dataloader: + features = model.encode_image(item.to(device)) + features_list.append(features) + else: + with torch.no_grad(): + for item in dataloader: + features = model(item.to(device)) + features_list.append(features) + + features = torch.cat(features_list, dim=0) + return features + + + def kNN(self, output_path, real_names, generated_names, + real_features, generated_features, + path_to_real_images, path_to_generated_images, + k=3, + sample=10, size=128, + name_appendix='', + *args, **kwargs): + ''' + creates a plot with (generated image: k nearest real images) pairs + ''' + if sample > 50: + print('Cannot plot for more than 50 samples! sample <= 50') + fig, ax = plt.subplots(sample, k+1, figsize=((k+1)*3,sample*2)) + + for i in range(len(generated_features)): + # l2 norm of one generated feature and all real features + dist = torch.linalg.vector_norm(real_features - generated_features[i], ord=2, dim=1) + + # draw the generated image + im = Image.open(os.path.join(path_to_generated_images, generated_names[i])) + ax[i, 0].imshow(im) + ax[i, 0].set_xticks([]) + ax[i, 0].set_yticks([]) + ax[i, 0].set_title(f'Generated: {"_".join(generated_names[i].split("/")[-1].split("_")[1:])[:-4]}', fontsize=8) + + # kNN of the generated image + knn = dist.topk(k, largest=False) + j=1 + + # draw the k real images + for idx in knn.indices: + im = Image.open(os.path.join(path_to_real_images, real_names[idx.item()])) + if im.size[0] != size: + im = im.resize((size,size)) + ax[i, j].imshow(im) + ax[i, j].set_xticks([]) + ax[i, j].set_yticks([]) + ax[i, j].set_title(f'{"_".join(real_names[idx.item()].split("/")[-1].split("_")[1:])[:-4]}, {knn.values[j-1].item():.2f}', fontsize=8) + #ax[i, 1].set_title(f'{"_".join(real_names[idx.item()].split("/")[-1].split("_")[1:])[:-4]}', fontsize=8) + j += 1 + if i == sample-1: + break + + # savefig + if not output_path.is_dir(): + os.mkdir(output_path) + plot_name = f'{k}NN_{sample}_samples' + if name_appendix != '': + plot_name = plot_name + '_' + name_appendix + '.png' + fig.savefig(os.path.join(output_path, plot_name)) + + def nearest_neighbor(self, output_path, real_names, generated_names, + real_features, generated_features, + path_to_real_images, path_to_generated_images, + sample=10, size=128, + name_appendix='', + *args, **kwargs): + + print('Computing nearest neighbors...') + if sample > 50: + print('Cannot plot for more than 50 samples! sample <= 50') + fig, ax = plt.subplots(sample, 2, figsize=(2*3,sample*2)) + nn_dict = OrderedDict() + + for i in range(len(generated_features)): + # l2 norm of one generated feature and all real features + #dist = torch.linalg.vector_norm(real_features - generated_features[i], ord=2, dim=1) # no mps support + dist = torch.norm(real_features - generated_features[i], dim=1, p=2) # soon to be deprecated + + # nearest neighbor of the generated image + knn = dist.topk(1, largest=False) + # insert to the dict: generated_image: (distance, index of the nearest neighbor) + nn_dict[generated_names[i]] = (knn.values.item(), knn.indices.item()) + print('Finding closest pairs...') + # sort to get the generated-real pairs that were the closest + nn_dict_sorted = OrderedDict(sorted(nn_dict.items(), key=lambda item: item[1][0])) + # names of the generated images that look closest to the real images + gen_names = list(nn_dict_sorted.keys()) + print('Drawing the plot...') + for i in range(sample): + # draw the generated image + #im = Image.open(os.path.join(path_to_generated_images, gen_names[i])) + im = Image.open(gen_names[i]) + ax[i, 0].imshow(im) + ax[i, 0].set_xticks([]) + ax[i, 0].set_yticks([]) + ax[i, 0].set_title(f'Generated: {"_".join(generated_names[i].split("/")[-1].split("_")[1:])[:-4]}', fontsize=8) + + # draw the real image + knn_score, real_img_idx = nn_dict_sorted[gen_names[i]] + #im = Image.open(os.path.join(path_to_real_images, real_names[real_img_idx])) + im = Image.open(real_names[real_img_idx]) + if im.size[0] != size: + im = im.resize((size,size)) + ax[i, 1].imshow(im) + ax[i, 1].set_xticks([]) + ax[i, 1].set_yticks([]) + ax[i, 1].set_title(f'{"_".join(real_names[real_img_idx].split("/")[-1].split("_")[1:])[:-4]}, {knn_score:.2f}', fontsize=8) + + #savefig + if not output_path.is_dir(): + os.mkdir(output_path) + plot_name = f'closest_pairs_top_{sample}' + if name_appendix != '': + plot_name = plot_name + '_' + name_appendix + '.png' + fig.savefig(os.path.join(output_path, plot_name)) + \ No newline at end of file diff --git a/evaluation/helpers/metrics.py b/evaluation/helpers/metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..93b11a4ad0236930e5a8ec852c0da2866cfb9c78 --- /dev/null +++ b/evaluation/helpers/metrics.py @@ -0,0 +1,101 @@ +import os +import torch +from tqdm import tqdm +from PIL import Image +from torchvision import transforms +from torch.utils.data import DataLoader +from itertools import cycle +from torchmetrics.image.fid import FrechetInceptionDistance +from torchmetrics.image.inception import InceptionScore +from torchmetrics.image.kid import KernelInceptionDistance +from torchmetrics.image import StructuralSimilarityIndexMeasure, PeakSignalNoiseRatio +from cleanfid import fid +from evaluation.helpers.score_infinity import calculate_FID_infinity_path, calculate_IS_infinity_path + +def image_to_tensor(path, sample='all', device='cpu'): + + transform_resize = transforms.Compose([transforms.ToTensor(), transforms.Resize(128), transforms.Lambda(lambda x: (x * 255).type(torch.uint8))]) + transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: (x * 255).type(torch.uint8)) ]) + filelist = [] + for p, subdirs, files in os.walk(path): + for f in files: + filelist.append(os.path.join(p,f)) + print(len(filelist)) + print(filelist[0]) + if sample == 'all': + sample_size = -1 + else: + sample_size = sample + image_list = [] + for file in filelist: + if file.endswith('.jpg') or file.endswith('.png'): + filepath = os.path.join(path, file) + im = Image.open(filepath) + if im.size[0] != 128: + im = transform_resize(im) + else: + im = transform(im) + image_list.append(im) + if len(image_list) == 20:#sample_size: + break + print(f'current sample size: {len(image_list)}') + # convert list of tensors to tensor + image_tensor = torch.stack(image_list).to(device) + return image_tensor + + +def compute_scores(real, generated, device): + + real_dataloader = DataLoader(real, batch_size=128, shuffle=True) + generated_dataloader = DataLoader(generated, batch_size=128, shuffle=True) + + fid = FrechetInceptionDistance().to(device) + #kid = KernelInceptionDistance().to(device) # subset_size < samples ! + inception = InceptionScore().to(device) + + for r, g in zip(real_dataloader, cycle(generated_dataloader)): + r = r.to(device) + g = g.to(device) + fid.update(r, real=True) + fid.update(g, real=False) + #kid.update(r, real=True) + #kid.update(g, real=False) + inception.update(g) + + fid_score = fid.compute() + #kid_score = kid.compute() + kid_score = 0.0 + is_score = inception.compute() + return fid_score, kid_score, is_score + + +def clean_fid(path_to_real_images, path_to_generated_images): + + clean_fid_score = fid.compute_fid(path_to_real_images, path_to_generated_images, mode="clean", num_workers=0) + clip_clean_fid_score = fid.compute_fid(path_to_real_images, path_to_generated_images, mode="clean", model_name="clip_vit_b_32") + + return clean_fid_score, clip_clean_fid_score + + +def fid_inf_is_inf(path_to_real_images, path_to_generated_images, batchsize=128): + + fid_infinity = calculate_FID_infinity_path(path_to_real_images, path_to_generated_images, batch_size=batchsize) + is_infinity = calculate_IS_infinity_path(path_to_generated_images, batch_size=batchsize) + + return fid_infinity, is_infinity + + +def compute_ssim_psnr_scores(real, generated, device): + real_dataloader = DataLoader(real, batch_size=128, shuffle=False) + generated_dataloader = DataLoader(generated, batch_size=128, shuffle=False) + + ssim = StructuralSimilarityIndexMeasure(data_range=1.0).to(device) + psnr = PeakSignalNoiseRatio().to(device) + for r, g in zip(real_dataloader, cycle(generated_dataloader)): + r = r.to(device) + g = g.to(device) + ssim.update(preds=g, target=r) + psnr.update(preds=g, target=r) + ssim_score = ssim.compute() + psnr_score = psnr.compute() + return psnr_score, ssim_score \ No newline at end of file diff --git a/evaluation/helpers/score_infinity.py b/evaluation/helpers/score_infinity.py new file mode 100644 index 0000000000000000000000000000000000000000..638f7306a7d82e30d9dae8b0d938306990710a67 --- /dev/null +++ b/evaluation/helpers/score_infinity.py @@ -0,0 +1,433 @@ +# Source - https://github.com/mchong6/FID_IS_infinity + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data import Dataset +import torchvision.transforms as transforms +from botorch.sampling.qmc import NormalQMCEngine +import numpy as np +import math +from sklearn.linear_model import LinearRegression +import math +import os +import glob +from tqdm import tqdm +from PIL import Image +from scipy import linalg +from evaluation.helpers.inception import * + +class randn_sampler(): + """ + Generates z~N(0,1) using random sampling or scrambled Sobol sequences. + Args: + ndim: (int) + The dimension of z. + use_sobol: (bool) + If True, sample z from scrambled Sobol sequence. Else, sample + from standard normal distribution. + Default: False + use_inv: (bool) + If True, use inverse CDF to transform z from U[0,1] to N(0,1). + Else, use Box-Muller transformation. + Default: True + cache: (bool) + If True, we cache some amount of Sobol points and reorder them. + This is mainly used for training GANs when we use two separate + Sobol generators which helps stabilize the training. + Default: False + + Examples:: + + >>> sampler = randn_sampler(128, True) + >>> z = sampler.draw(10) # Generates [10, 128] vector + """ + + def __init__(self, ndim, use_sobol=False, use_inv=True, cache=False): + self.ndim = ndim + self.cache = cache + if use_sobol: + self.sampler = NormalQMCEngine(d=ndim, inv_transform=use_inv) + self.cached_points = torch.tensor([]) + else: + self.sampler = None + + def draw(self, batch_size): + if self.sampler is None: + return torch.randn([batch_size, self.ndim]) + else: + if self.cache: + if len(self.cached_points) < batch_size: + # sample from sampler and reorder the points + self.cached_points = self.sampler.draw(int(1e6))[torch.randperm(int(1e6))] + + # Sample without replacement from cached points + samples = self.cached_points[:batch_size] + self.cached_points = self.cached_points[batch_size:] + return samples + else: + return self.sampler.draw(batch_size) + +def calculate_FID_infinity(gen_model, ndim, batch_size, gt_path, num_im=50000, num_points=15): + """ + Calculates effectively unbiased FID_inf using extrapolation + Args: + gen_model: (nn.Module) + The trained generator. Generator takes in z~N(0,1) and outputs + an image of [-1, 1]. + ndim: (int) + The dimension of z. + batch_size: (int) + The batch size of generator + gt_path: (str) + Path to saved FID statistics of true data. + num_im: (int) + Number of images we are generating to evaluate FID_inf. + Default: 50000 + num_points: (int) + Number of FID_N we evaluate to fit a line. + Default: 15 + """ + # load pretrained inception model + inception_model = load_inception_net() + + # define a sobol_inv sampler + z_sampler = randn_sampler(ndim, True) + + # get all activations of generated images + activations, _ = accumulate_activations(gen_model, inception_model, num_im, z_sampler, batch_size) + + fids = [] + + # Choose the number of images to evaluate FID_N at regular intervals over N + fid_batches = np.linspace(5000, num_im, num_points).astype('int32') + + # Evaluate FID_N + for fid_batch_size in fid_batches: + # sample with replacement + np.random.shuffle(activations) + fid_activations = activations[:fid_batch_size] + fids.append(calculate_FID(inception_model, fid_activations, gt_path)) + fids = np.array(fids).reshape(-1, 1) + + # Fit linear regression + reg = LinearRegression().fit(1/fid_batches.reshape(-1, 1), fids) + fid_infinity = reg.predict(np.array([[0]]))[0,0] + + return fid_infinity + +def calculate_FID_infinity_path(real_path, fake_path, batch_size=50, min_fake=1000, num_points=15): + """ + Calculates effectively unbiased FID_inf using extrapolation given + paths to real and fake data + Args: + real_path: (str) + Path to real dataset or precomputed .npz statistics. + fake_path: (str) + Path to fake dataset. + batch_size: (int) + The batch size for dataloader. + Default: 50 + min_fake: (int) + Minimum number of images to evaluate FID on. + Default: 5000 + num_points: (int) + Number of FID_N we evaluate to fit a line. + Default: 15 + """ + # load pretrained inception model + inception_model = load_inception_net() + + # get all activations of generated images + if real_path.endswith('.npz'): + real_m, real_s = load_path_statistics(real_path) + else: + real_act, _ = compute_path_statistics(real_path, batch_size, model=inception_model) + real_m, real_s = np.mean(real_act, axis=0), np.cov(real_act, rowvar=False) + + fake_act, _ = compute_path_statistics(fake_path, batch_size, model=inception_model) + + num_fake = len(fake_act) + assert num_fake > min_fake, \ + 'number of fake data must be greater than the minimum point for extrapolation' + + fids = [] + + # Choose the number of images to evaluate FID_N at regular intervals over N + fid_batches = np.linspace(min_fake, num_fake, num_points).astype('int32') + + # Evaluate FID_N + for fid_batch_size in fid_batches: + # sample with replacement + np.random.shuffle(fake_act) + fid_activations = fake_act[:fid_batch_size] + m, s = np.mean(fid_activations, axis=0), np.cov(fid_activations, rowvar=False) + FID = numpy_calculate_frechet_distance(m, s, real_m, real_s) + fids.append(FID) + fids = np.array(fids).reshape(-1, 1) + + # Fit linear regression + reg = LinearRegression().fit(1/fid_batches.reshape(-1, 1), fids) + fid_infinity = reg.predict(np.array([[0]]))[0,0] + + return fid_infinity + +def calculate_IS_infinity(gen_model, ndim, batch_size, num_im=50000, num_points=15): + """ + Calculates effectively unbiased IS_inf using extrapolation + Args: + gen_model: (nn.Module) + The trained generator. Generator takes in z~N(0,1) and outputs + an image of [-1, 1]. + ndim: (int) + The dimension of z. + batch_size: (int) + The batch size of generator + num_im: (int) + Number of images we are generating to evaluate IS_inf. + Default: 50000 + num_points: (int) + Number of IS_N we evaluate to fit a line. + Default: 15 + """ + # load pretrained inception model + inception_model = load_inception_net() + + # define a sobol_inv sampler + z_sampler = randn_sampler(ndim, True) + + # get all activations of generated images + _, logits = accumulate_activations(gen_model, inception_model, num_im, z_sampler, batch_size) + + IS = [] + + # Choose the number of images to evaluate IS_N at regular intervals over N + IS_batches = np.linspace(5000, num_im, num_points).astype('int32') + + # Evaluate IS_N + for IS_batch_size in IS_batches: + # sample with replacement + np.random.shuffle(logits) + IS_logits = logits[:IS_batch_size] + IS.append(calculate_inception_score(IS_logits)[0]) + IS = np.array(IS).reshape(-1, 1) + + # Fit linear regression + reg = LinearRegression().fit(1/IS_batches.reshape(-1, 1), IS) + IS_infinity = reg.predict(np.array([[0]]))[0,0] + + return IS_infinity + +def calculate_IS_infinity_path(path, batch_size=50, min_fake=1000, num_points=15): + """ + Calculates effectively unbiased IS_inf using extrapolation given + paths to real and fake data + Args: + path: (str) + Path to fake dataset. + batch_size: (int) + The batch size for dataloader. + Default: 50 + min_fake: (int) + Minimum number of images to evaluate IS on. + Default: 5000 + num_points: (int) + Number of IS_N we evaluate to fit a line. + Default: 15 + """ + # load pretrained inception model + inception_model = load_inception_net() + + # get all activations of generated images + _, logits = compute_path_statistics(path, batch_size, model=inception_model) + + num_fake = len(logits) + assert num_fake > min_fake, \ + 'number of fake data must be greater than the minimum point for extrapolation' + + IS = [] + + # Choose the number of images to evaluate FID_N at regular intervals over N + IS_batches = np.linspace(min_fake, num_fake, num_points).astype('int32') + + # Evaluate IS_N + for IS_batch_size in IS_batches: + # sample with replacement + np.random.shuffle(logits) + IS_logits = logits[:IS_batch_size] + IS.append(calculate_inception_score(IS_logits)[0]) + IS = np.array(IS).reshape(-1, 1) + + # Fit linear regression + reg = LinearRegression().fit(1/IS_batches.reshape(-1, 1), IS) + IS_infinity = reg.predict(np.array([[0]]))[0,0] + + return IS_infinity + +################# Functions for calculating and saving dataset inception statistics ################## +class im_dataset(Dataset): + def __init__(self, data_dir): + self.data_dir = data_dir + self.imgpaths = self.get_imgpaths() + + self.transform = transforms.Compose([ + transforms.Resize(64), + transforms.CenterCrop(64), + transforms.ToTensor()]) + + def get_imgpaths(self): + paths = glob.glob(os.path.join(self.data_dir, "**/*.jpg"), recursive=True) +\ + glob.glob(os.path.join(self.data_dir, "**/*.png"), recursive=True) + return paths + + def __getitem__(self, idx): + img_name = self.imgpaths[idx] + image = self.transform(Image.open(img_name)) + return image + + def __len__(self): + return len(self.imgpaths) + +def load_path_statistics(path): + """ + Given path to dataset npz file, load and return mu and sigma + """ + if path.endswith('.npz'): + f = np.load(path) + m, s = f['mu'][:], f['sigma'][:] + f.close() + return m, s + else: + raise RuntimeError('Invalid path: %s' % path) + +def compute_path_statistics(path, batch_size, model=None): + """ + Given path to a dataset, load and compute mu and sigma. + """ + if not os.path.exists(path): + raise RuntimeError('Invalid path: %s' % path) + + if model is None: + model = load_inception_net() + dataset = im_dataset(path) + dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, drop_last=False) + return get_activations(dataloader, model) + +def get_activations(dataloader, model): + """ + Get inception activations from dataset + """ + pool = [] + logits = [] + + for images in tqdm(dataloader): + images = images.cuda() + with torch.no_grad(): + pool_val, logits_val = model(images) + pool += [pool_val] + logits += [F.softmax(logits_val, 1)] + + return torch.cat(pool, 0).cpu().numpy(), torch.cat(logits, 0).cpu().numpy() + +def accumulate_activations(gen_model, inception_model, num_im, z_sampler, batch_size): + """ + Generate images and compute their Inception activations. + """ + pool, logits = [], [] + for i in range(math.ceil(num_im/batch_size)): + with torch.no_grad(): + z = z_sampler.draw(batch_size).cuda() + fake_img = to_img(gen_model(z)) + + pool_val, logits_val = inception_model(fake_img) + pool += [pool_val] + logits += [F.softmax(logits_val, 1)] + + pool = torch.cat(pool, 0)[:num_im] + logits = torch.cat(logits, 0)[:num_im] + + return pool.cpu().numpy(), logits.cpu().numpy() + +def to_img(x): + """ + Normalizes an image from [-1, 1] to [0, 1] + """ + x = 0.5 * (x + 1) + x = x.clamp(0, 1) + return x + + + +####################### Functions to help calculate FID and IS ####################### +def calculate_FID(model, act, gt_npz): + """ + calculate score given activations and path to npz + """ + data_m, data_s = load_path_statistics(gt_npz) + gen_m, gen_s = np.mean(act, axis=0), np.cov(act, rowvar=False) + FID = numpy_calculate_frechet_distance(gen_m, gen_s, data_m, data_s) + + return FID + +def calculate_inception_score(pred, num_splits=1): + scores = [] + for index in range(num_splits): + pred_chunk = pred[index * (pred.shape[0] // num_splits): (index + 1) * (pred.shape[0] // num_splits), :] + kl_inception = pred_chunk * (np.log(pred_chunk) - np.log(np.expand_dims(np.mean(pred_chunk, 0), 0))) + kl_inception = np.mean(np.sum(kl_inception, 1)) + scores.append(np.exp(kl_inception)) + return np.mean(scores), np.std(scores) + + +def numpy_calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): + """Numpy implementation of the Frechet Distance. + The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) + and X_2 ~ N(mu_2, C_2) is + d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). + Stable version by Dougal J. Sutherland. + Params: + -- mu1 : Numpy array containing the activations of a layer of the + inception net (like returned by the function 'get_predictions') + for generated samples. + -- mu2 : The sample mean over activations, precalculated on an + representative data set. + -- sigma1: The covariance matrix over activations for generated samples. + -- sigma2: The covariance matrix over activations, precalculated on an + representative data set. + Returns: + -- : The Frechet Distance. + """ + + mu1 = np.atleast_1d(mu1) + mu2 = np.atleast_1d(mu2) + + sigma1 = np.atleast_2d(sigma1) + sigma2 = np.atleast_2d(sigma2) + + assert mu1.shape == mu2.shape, \ + 'Training and test mean vectors have different lengths' + assert sigma1.shape == sigma2.shape, \ + 'Training and test covariances have different dimensions' + + diff = mu1 - mu2 + + # Product might be almost singular + covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) + if not np.isfinite(covmean).all(): + msg = ('fid calculation produces singular product; ' + 'adding %s to diagonal of cov estimates') % eps + print(msg) + offset = np.eye(sigma1.shape[0]) * eps + covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) + + # Numerical error might give slight imaginary component + if np.iscomplexobj(covmean): + if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): + m = np.max(np.abs(covmean.imag)) + raise ValueError('Imaginary component {}'.format(m)) + covmean = covmean.real + + tr_covmean = np.trace(covmean) + + return (diff.dot(diff) + np.trace(sigma1) + + np.trace(sigma2) - 2 * tr_covmean) diff --git a/evaluation/helpers/vggface.py b/evaluation/helpers/vggface.py new file mode 100644 index 0000000000000000000000000000000000000000..2e4086ea58fd6d99d3a210cee90d916d7e6020e1 --- /dev/null +++ b/evaluation/helpers/vggface.py @@ -0,0 +1,93 @@ +# VGG16 model from https://github.com/prlz77/vgg-face.pytorch + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchfile + +class VGG_16(nn.Module): + """ + Main Class + """ + + def __init__(self): + """ + Constructor + """ + super().__init__() + self.block_size = [2, 2, 3, 3, 3] + self.conv_1_1 = nn.Conv2d(3, 64, 3, stride=1, padding=1) + self.conv_1_2 = nn.Conv2d(64, 64, 3, stride=1, padding=1) + self.conv_2_1 = nn.Conv2d(64, 128, 3, stride=1, padding=1) + self.conv_2_2 = nn.Conv2d(128, 128, 3, stride=1, padding=1) + self.conv_3_1 = nn.Conv2d(128, 256, 3, stride=1, padding=1) + self.conv_3_2 = nn.Conv2d(256, 256, 3, stride=1, padding=1) + self.conv_3_3 = nn.Conv2d(256, 256, 3, stride=1, padding=1) + self.conv_4_1 = nn.Conv2d(256, 512, 3, stride=1, padding=1) + self.conv_4_2 = nn.Conv2d(512, 512, 3, stride=1, padding=1) + self.conv_4_3 = nn.Conv2d(512, 512, 3, stride=1, padding=1) + self.conv_5_1 = nn.Conv2d(512, 512, 3, stride=1, padding=1) + self.conv_5_2 = nn.Conv2d(512, 512, 3, stride=1, padding=1) + self.conv_5_3 = nn.Conv2d(512, 512, 3, stride=1, padding=1) + self.fc6 = nn.Linear(512 * 7 * 7, 4096) + self.fc7 = nn.Linear(4096, 4096) + self.fc8 = nn.Linear(4096, 2622) + + def load_weights(self, path): + """ Function to load luatorch pretrained + + Args: + path: path for the luatorch pretrained + """ + model = torchfile.load(path) + counter = 1 + block = 1 + for i, layer in enumerate(model.modules): + if layer.weight is not None: + if block <= 5: + self_layer = getattr(self, "conv_%d_%d" % (block, counter)) + counter += 1 + if counter > self.block_size[block - 1]: + counter = 1 + block += 1 + self_layer.weight.data[...] = torch.tensor(layer.weight).view_as(self_layer.weight)[...] + self_layer.bias.data[...] = torch.tensor(layer.bias).view_as(self_layer.bias)[...] + else: + self_layer = getattr(self, "fc%d" % (block)) + block += 1 + self_layer.weight.data[...] = torch.tensor(layer.weight).view_as(self_layer.weight)[...] + self_layer.bias.data[...] = torch.tensor(layer.bias).view_as(self_layer.bias)[...] + + def forward(self, x): + """ Pytorch forward + + Args: + x: input image (224x224) + + Returns: class logits + + """ + x = F.relu(self.conv_1_1(x)) + x = F.relu(self.conv_1_2(x)) + x = F.max_pool2d(x, 2, 2) + x = F.relu(self.conv_2_1(x)) + x = F.relu(self.conv_2_2(x)) + x = F.max_pool2d(x, 2, 2) + x = F.relu(self.conv_3_1(x)) + x = F.relu(self.conv_3_2(x)) + x = F.relu(self.conv_3_3(x)) + x = F.max_pool2d(x, 2, 2) + x = F.relu(self.conv_4_1(x)) + x = F.relu(self.conv_4_2(x)) + x = F.relu(self.conv_4_3(x)) + x = F.max_pool2d(x, 2, 2) + x = F.relu(self.conv_5_1(x)) + x = F.relu(self.conv_5_2(x)) + x = F.relu(self.conv_5_3(x)) + x = F.max_pool2d(x, 2, 2) + x = x.view(x.size(0), -1) + x = F.relu(self.fc6(x)) + x = F.dropout(x, 0.5, self.training) + x = F.relu(self.fc7(x)) + x = F.dropout(x, 0.5, self.training) + return self.fc8(x) \ No newline at end of file