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Motivation Background: Continuous-time Bayesian Nets (CTBN)
= Scalable learning of directed networks from time = Factorized Markov Chain = (Can be expressed in terms of individual processes:
series data D N

= Dynamics in continuous-time via conditional intensities:

(X' x | u) = lim P;(Xi(t+ h) = x" | X;(t) = x, Ui(t) = u)
I | h—0 h

= |f data is noisy there exist two bottlenecks:
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= Path likelihood, P(X[OT] | {I’,‘},';l _____ N) — ]—”V:1 Hx,x’,u I’,'(X,X' | u)M"(X’X/‘”)e—Ti(X|U)ri(X,X|U)

M;(x, x" | u) Ti(x | u)
= number of transitions = time spend in configuration

|. Latent state estimation (exponential)
ll. Structure search (super-exponential)

In terms of sufficient statistics:

time

Background: CTBN structure learning Method

= Based on marginal likelihood we define our objective
function for structure learning (lLog-posterior lower-bound)

Fi|] Ezm’um’x’x,{ln M (ai(x, X" | um)) — &i(x, x" | um)InBi(x | um)}—l—ln Dir(m; | ¢)

= Realization of conditional intensities unimportant for
structure learning

= Marginalzation possible analytically under
Gamma-prior

ri(x,x" | u) ~ Gam(a, B)

P(Xjo,11 1 G) o< TTi T, T (@i (x, X" [ ) Bi(x | )~ &ilexle)

&i(x,x" | u) = Mi(x,x" | u) + &, Bi(x | u)=Ti(x|u)+pB

= Optimal mixture (structure) can be computed via: 7 = arg max,,ea; {Fi[7]}

Incomplete data

= For incomplete data, sufficient statistics are latent and need to be
estimated — intractable for large systems

= Solution: Variational inference [1]

/ /
Model: Mixture Conditional Intensities Filml = Filg. ) Mi0x x| um) = EqlMi0x X7 [ um)], - Tilx | um) = EqlTi(x | um)]
= Yields an EM-Algorithm: 77 = arg maxy,ca,; {maxq, {Filq, 7]}}
= Central assumption: Conditional intensities can be
written as a mixture of conditional intensities of different

parent-support

= Restricting mi(m) yields different strategies:

Restricted exhaustive:

c P(parg (i), gCG

Exhaustive:

c P(parg(i))

Greedy:
S {m 2 P(parg(i)) | Im| < K}

ri(X'X/ ‘ U) = ZmE’P(parg(i)) ﬂ-i(m)ri(X'X, | Um)

= Probability for an edge can be represented via these
mixtures

pleij = 1) = 2 pmep(pary () M(M)L(I € m)

Variational Perturbation theory
= Central assumption: KL-divergence can be expanded [1]

KL(qllp) = fVq] +efWg] + O(?) N
KL(qllp) = —>_ Filai, m] + O(e?)

=1
= Expectation step is performed by solving set of ODEs (forward-backward):

ditpi(t) = Q7 (t)pi(t), :

= A marginal likelihood lower-bound can be computed

M(&i(x,x [um)) = KL-divergence decomposes:

'D(X[O,T] ‘ 7T) Z ]_[i Hm,um,x,x’ Bi(x|um)&;(x,x’|um)

ai(x, x" | un) = mi(mM;(x, x" | um)

Bi(x | um) = mi(m)Ti(x | um)+ B

Q,

Zai(t) = G (D27 (0)

Results

Scalable Structure Learning of Continuous-Time Bayesian Networks

Synthetic data
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Figure 1: a) AUROCs and b) AUPRs for varying number of trajectories. c) ROC and d) PR curve for 40 trajectories. In all

plots (red) denotes the exhaustive, (blue/dashed) the greedy-algorithm. e) ROC-curve f) PR-curve for different initials, where
(red) denotes heuristic and (grey/dashed) random. Confidence intervals are given by 75% and 25% percentiles of the results
from 30 random graphs, generated as explained in the main text.

Real-world data

= |IRMA gene-regulatory
network dataset [2]
= Has been implemented
on cultures of yeast for.

benchmarking

= British Household dataset [3]

= Time-course of questionaires
of british citicents about
various facts about their lives
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method switch on switch off
steady state = knockout 0.68 (0.42) 0.81 (0.50)
DBN G1DBN 0.78 (0.64) 0.61 (0.34)
VBSSM 0.79 (0.70) 0.76 (0.60)
ODE TNSI 0.68 (0.51) 0.68 (0.42)
NDS GP4GRN 0.73 (0.61) 0.76 (0.57)
csSld 0.63 (0.46) 0.86 (0.72)
CSlI¢ 0.64 (0.39) 0.73(0.59)
GC GCCA 0.71 (0.55) 0.74 (0.65)
CTBN exhaustive  0.81(0.86) 0.93 (0.92)
greedy K=2 0.88 (0.85) 0.91 (0.89)
random 0.65 (0.45) 0.65 (0.45)

Table 1: AUROC (AUPR) of different methods on IRMA-data (top

performers in bold).
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Figure 2: Learned structure using gradient-based greedy structure
learning with maximal K=2 parents from 600 trajectories.
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