©)J. Najman et al. Confidential Page 1 of 17

MAING” - implemented functions

Jaromit Najman, Dominik Bongartz, Susanne Sass, Hatim Djelassi, Daniel Jungen, Alexan-
der Mitsos™*

Process Systems Engineering (AVT.SVT)
RWTH Aachen University
Forckenbeckstrale 51

52074 Aachen, Germany

Abstract: This short report summarizes non-elementary intrinsic functions currently im-
plemented in the AVT.SVT in-house solver MAINGO, where elementary instrinsic denotes
functions such as addition, multiplication, division, exp, ™. The latter can be found in
the documentation of MC++. Using the non-elementary intrinsic functions (as opposed to
implementing them by hand in the model using elementary functions) will in most cases

result in tighter relaxations. In most cases, the ALE-syntax is also supported in C++.

1 Simple functions

1.1 square(z)

Form: x?
How to call in C++: sqr (x)
How to call in ALE: sqr (x)
Domain: R

1.2 x-log(z)

Form: x - log(x)
How to call in C++: xlog(x),
xlogx (x)
How to call in ALE: xlogx(x)
Domain: x>0

1.3 exp(x)-y

Form: exp(x) -y
How to call in C++: expx_times_y(x,y),
xexpy (y,x)
How to call in ALE: xexpy(y,x)
Domain: R2
Remarks: The formula can be found in [1]. Note that in ALE-

syntax, the ordering of the variables is swapped.

Corresponding author: *A. Mitsos
Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany
E-mail: amitsos@alum.mit.edu

MAING

2.7.2020

a1

1.4 a2-z+Y,b;-y;

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

1.5

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

1.6 z-exp(a-x)

Form:

How to call in C++:
How to call in ALE:

Domain:
Remarks:

1.7 x? 4+ y?

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

1.8 Error function

Form:

How to call in C++:
How to call in ALE:

Domain:

©J. Najman et al.

sum_div(vars, coeff) where vars is a vector of size n
and coeff is a vector of size n + 1. It is coeff [0] = a;,
coeff[1]= as, coeff[2]= by, coeff[3]= 0o, ...

sum div(x,y1,...,Yn,A1,02,b01,...,bn)

(x,y) =vars e R, a;,b; € Ryg

The idea and derivation of the formula for 2D can be
found in Section 2 of [9] or in [8].

x-log(a-x+ > b;-y;)

x-logla-x+ > b - yi)

xlog_sum(vars, coeff) where vars is a vector of size
n and coeff is a vector of size n. It is coeff[0]= a,
coeff[1]= by, coeff[2]= bo, ...
xlog_sum(x,y1,...,Yn,a,b1,...,by,)

(x,y) =vars e R2, a,b; € Rog

The idea and derivation of the formula for 2D can be
found in [3].

x - exp(a - x)

xexpax(x,a)

xexpax(x,a)

R

a is a constant. More details can be found in [4].

V2 + y?

euclidean norm 2d(x,y),

norm2(x,y)

norm2(x,y)

R2

This function is convex and not differentiable at x =
y = 0.

ﬁ Sii exp(—t?)dt
erf (x)

erf (x)

R

Confidential

Page 2 of 17

MAING

2.7.2020

1.9 Complementary error function

Form:

How to call in C++:
How to call in ALE:
Domain:

1.10 |z|-z

Form:
How to call in C++:

How to call in ALE:
Domain:

L1l

Form:

How to call in C++:
How to call in ALE:
Domain:

1-— ﬁ §°, exp(—t?)dt
erfc(x)

erfc(x)

R

|| - 2
fabsx_times x(x),
xabsx (x)

xabsx (x)

R

Y
Va+b-x?

regnormal(x,a,b)
regnormal (x,a,b)
reR,a,be Ry

1.12 Printing output

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

std::cout << "Object Type #" << number << ":"

<< x << std::endl
mc_print (x,number)
N/A

R

This can be used for debugging. To reduce output turn

off pre-processing.

2 Bounding functions

These functions can be used to exploit valid bounds that are known to the user. The func-
tions cut off the relaxations at a given value.
It is up to the user to make sure the bounds are actually valid! If they are not,
the resulting relaxations may be wrong, and MAINGO may or may not detect
this and (possibly) throw an exception.

@J. Najman et al.

Confidential

Page 3 of 17

MAING 2.7.2020

2.1 Positive

Form: [only cuts off the convex relaxation at €|

How to call in C++: pos(x)

How to call in ALE: pos(x)

Domain: r=2e>0

Remarks: Used to make sure that the convex relaxation stays pos-

itive; € is the McCormick tolerance specified in the set-
tings file. If the function is evaluated at some & < €, an
exception is thrown. It is especially useful in cases when
interval extensions provide nonpositive values.

2.2 Negative

Form: [only cuts off the concave relaxation at —¢]

How to call in C++: neg(x)

How to call in ALE: neg(x)

Domain: r< —e<0

Remarks: Used to make sure that the concave relaxation stays
negative; € is the McCormick tolerance specified in the
settings file. If the function is evaluated at some & > —e,
an exception is thrown. It is especially useful in cases
when interval extensions provide nonnegative values.

2.3 Lower bounding function

Form: [only cuts off the convex relaxation at {b]

How to call in C++: 1b_func(x,1b)

How to call in ALE: 1b_func(x,1b)

Domain: rz=lbelR

Remarks: Used to make sure that the convex relaxation stays
above [b. If the function is evaluated at some & < [b, an
exception is thrown. It is especially useful in cases when
interval extensions provide values strictly lower than [b.

2.4 Upper bounding function

Form: [only cuts off the concave relaxation at ub]

How to call in C++: ub_func(x,ub)

How to call in ALE: ub_func(x,ub)

Domain: r<ubelR

Remarks: Used to make sure that the concave relaxation stays
under ub. If the function is evaluated at some & > ub,
an exception is thrown. It is especially useful in cases
when interval extensions provide values strictly lower
than ub.

©)J. Najman et al. Confidential Page 4 of 17

MAING 2.7.2020

2.5 Bounding function

Form: [only cuts off the convex relaxation at (b and the concave
relaxation at ub

How to call in C++: bounding func(x,1lb,ub)

How to call in ALE: bounding func(x,1lb,ub)

Domain: Ib <z < ubwith Ib,z,ube R

Remarks: Used to make sure that the relaxations stay between
Ib and ub. If the function is evaluated at some = ¢
[Ib, ub], an exception is thrown. It is especially useful in
cases when interval extensions provide values not within

[1b, ub].
2.6 Squash node

Form: [only cuts off the convex relaxation at [b and the concave
relaxation at ub]

How to call in C++: squash node (x,1b,ub),
squash(x,1b,ub)

How to call in ALE: squash (x,1b,ub)

Domain: Ib < x < ub with b, z,ube R

Remarks: Used to make sure that the relaxations stay between

lb and ub. In order to properly use this function, the
user has to define squash inequalities [b < x < wub.
This function’s main purpose is to reduce the number
of variables and equality constraints. It works espe-
cially well when removing linear equality constraints.
The only difference between squash node(x,1lb,ub)
and bounding func(x,1lb,ub) is that the former will
not raise an exception, since the user has to provide
valid squash inequalities.

©)J. Najman et al. Confidential Page 5 of 17

MAING 2.7.2020

3 Physically motivated functions

3.1 Arrhenius function

Form: exp(—%)
How to call in C++: arh(x,k)
How to call in ALE: arh(x,k)
Domain: z >0

3.2 Logarithmic mean temperature difference

. AT, —AT:
Form: log(ATll)flog(zATz)
How to call in C++: Imtd (AT, ATy)

How to call in ALE: Imtd(ATy, ATy)

Domain: AT, AT, >0
Remarks: Used for heat exchangers. More details can be found in
[2, 5].

3.3 Reciprocal of logarithmic mean temperature difference

. log(ATl)flog(ATg)
Form: AT AT,

How to call in C++: rimtd (AT} ,AT5)
How to call in ALE: rimtd (AT ,AT5)

Domain: AT, AT, >0
Remarks: Used for heat exchangers. More details can be found in
[2].

3.4 Vapor pressure

There are four functions for vapor pressure.

All functions are assumed to be convexr and increasing.

While this is true for all physically reasonable parameter sets [4], it should be checked
whether it holds in any given case (e.g., by plotting the function on a sufficiently fine grid).

1. Extended Antoine

Form: exp (p1 + 75+ pa T+ ps - log(T) + pe - Tp7)

How to call in C++: vapor_pressure(T,1,p1,D2,D3,D4,D5,D6 D07,
ext_antoine_psat (T,p1,P2,D3,DP4,D5,D6,D07),
ext_antoine_psat(T,p), with p a vector of length 7

How to call in ALE: ext_antoine_psat (T, p1,P2,P3,P45D055P6,P7)

Domain: T>0

Remarks: p1—p7 are constant parameters.

2. Antoine

©)J. Najman et al. Confidential Page 6 of 17

MAING

2.7.2020

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3. Wagner

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

4. IK-CAPE
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

@J. Najman et al.

107~ 7T

vapor_pressure(T,2,p1,p2,D3),
ext_antoine_psat(T,p;,p2,p3),
ext_antoine_psat(T,p), with p a vector of length 3
antoine_psat(T,p;,p2,p3)

T>0

p1—p3 are constant parameters.

c

- (m-(l{>+p2-(1{>1-5§p3-<1TT.)3+p4-(1TTJG>
vapor_pressure (T’ 3 sP1,P2,P3,P4 :Tc :pﬁ))
wagner_psat (T,p1,p2,p3,p4,Le,D6),

wagner _psat (T,p), with p a vector of length 6
wagner_psat (T,p1,p2,P3,p4,1c,P6)

T>0

p1—p4 and T, are constant parameters.

exp(p1 +p2-T+p3-T? +ps-T° +ps-T* +pg-T° +pr -
T +ps-T7 +py - T+ pro - T°)
vapor_pressure(T,4,p1,P2,D03,D4,P5,06 D07 P8 509 DP10)
ik,cape,psat (T »P15P25P35P45P55P65P7 P8 P9 3p10) s
ik_cape_psat(T,p), with p a vector of length 10
ik,cape,psat (T sP15P25P35P4,5P5,P6 sP75P8 » P9 ,pm)
T>0

Pp1—P1o are constant parameters.

Confidential Page 7 of 17

MAING 2.7.2020

3.5 Saturation temperature

There are four functions for saturation temperature, which are the inverse of the vapor
pressure functions listed above. Currently only the Antoine saturation temperature is im-
plemented.

All functions are assumed to be concave and increasing.

While this is true for all physically reasonable parameter sets [4], it should be checked
whether it holds in any given case (e.g., by plotting the function on a sufficiently fine grid).

1. Extended Antoine

Form:

How to call in C++:
How to call in ALE:

T+p3
Not implemented
Not implemented

—1
exp (101+ P +p4'T+105'10g(T)+p6'Tp7)

Domain: T>0
Remarks: p1—p7 are constant parameters. The computation of the
inverse is performed numerically.
2. Antoine
Form: ey — P3
P17 Tog(10)

How to call in C++:

How to call in ALE:

saturation_temperature(T,2,p;,p2,P3),
antoine tsat(T,p;,p2,p3),
antoine_tsat(T,p), with p a vector of length 3
antoine_tsat(T,p;,p2,p3)

Domain: T>0
Remarks: p1—p3 are constant parameters.
3. Wagner
< -1
p1-(1— 2) +p2-(1— 2)P 4ps-(1— L)+ py-(1-£)8
FOI‘m: eXp 1 (Tu) 2 (Tc) - 3 (Tc) 4 (Tc)
TC

How to call in C++:
How to call in ALE:

Not implemented
Not implemented

Domain: T>0
Remarks: p1—p4 and T, are constant parameters. The computation
of the inverse is performed numerically.
4. IK-CAPE
Form: exp(pr +p2-T+p3-T? +ps-T> +ps-T* +pg-T° +pr -

How to call in C++:
How to call in ALE:

Domain:
Remarks:

©J. Najman et al.

TC +pg-T" +pg-T% +pro-T9)"

Not implemented

Not implemented

T>0

p1—p1o are constant parameters. The computation of
the inverse is performed numerically.

Confidential Page 8 of 17

MAING 2.7.2020

3.6 Ideal gas enthalpy

There are four functions for ideal gas enthalpy, which correspond to an integration over four
different heat capacity models from Ty to T'.

All functions are assumed to be convex and increasing.

While for all physically reasonable parameter sets it should be increasing and in most cases
it should also be convex [4], it should be checked whether it holds in any given case (e.g.,
by plotting the function on a sufficiently fine grid).

1. Aspen polynomial
Form:
How to call in C++:

S;Opl +p2-T+ps-T?+py-T?+ps-T*+pg - T°dT
idealfgasfenthalpy(T 10,1 sP15P25P3,P4,P5 spﬁ)u
aSpenllig(T,TO sP1-,P2,P3,P4,D5 :p6))
aspen_hig(T,Ty,p), with p a vector of length 6

How to call in ALE: aspen_hig(T,Ty,p1,P2,P3,04,P5,P6)

Domain: T>0
Remarks: p1—pe are constant parameters, Ty is the reference tem-
perature.
2. NASA 9-Coefficient . _ B ~ o
Form: STO%4—%2+p3+p4-T+p5-T2+p6-T3+p7-T4dT

How to call in C++: ideal gas_enthalpy (7 ,70,2,p1,P2,P3,P4>P5>P6>P7)
nasaghig(T:TO sP15P2,P35P4,P5 D6 :P7))
nasa9 hig(7T,Ty,p), with p a vector of length 7

How to call in ALE: nasa9 hig(T,Ty,p1,P2,D3 D4 D5 D6 D7)

Domain: T>0
Remarks: p1—p7 are constant parameters, T is the reference tem-
perature.

3. DIPPR 107

T p3 2 p5 2
Form: Sp, 01+ D2 (7SinhT(L_3)) +pg - (7cosh7£p%r’)> ar
T T
idealfgasfenthalpy(T s TO »3 sP1,P2,P3,P4 :p5))

dippr107 hig(T,Ty,p1,p2,P35P4>P5),
dippr107_hig(T,Ty,p), with p a vector of length 5

dippr107_hig(T',Ty,p1,p2,P3,P4,P5)

How to call in C++:

How to call in ALE:

Domain: T>0
Remarks: p1—ps are constant parameters, T is the reference tem-
perature.
4. DIPPR 127
T . T D3 2 exp()
orm: STopl +t 2o ((T) 'eXp(?1)2> T P

2 P5 2
exp(22)
<<”T) p(pTTn> P <(”T)

ideal,gas,enthalpy(T ’ TO > 4 sP1,P2,P3,P4,P55P6 ’p7))

dlpprlQ?lllg (T7T0 sP1,P2,P3,P4,P55P6 1p7))
dippr127_hig(T,Ty,p), with p a vector of length 7

exp(22) > JF

’ exp(r%fl)2

How to call in C++:

How to call in ALE:

Domain:
Remarks:

©J. Najman et al.

dippri127-hig(T', Ty, p1,P2,P3,P45D5,D6 D7)
T>0

p1—p7 are constant parameters, T is the reference tem-
perature.

Confidential

Page 9 of 17

MAING

3.7 Enthalpy of vaporization

There are two functions for enthalpy of vaporization. The functional forms listed below are
only used for T' < T,.. For T' > T, the enthalpy of vaporization is set to zero. This makes

it possible to extrapolate correctly beyond the critical point.
All functions are assumed to be concave and decreasing below T..

While for all physically reasonable parameter sets it should be decreasing and in most cases
it should also be concave [4], it should be checked whether it holds in any given case (e.g.,

by plotting the function on a sufficiently fine grid).

1. Watson
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

2. DIPPR
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

©J. Najman et al.

_T T
dHT; - (L%é)wb-(l—ﬁ)

enthalpy_of vaporization(T,1,7,,a,b,T1,dHT}),
watson_dhvap(T,T.,a,b,T1,dHT})
watson_dhvap(T,p), with p a vector of length 5
watson_dhvap(T,T,,a,b,Ty,dHT})

T>0

Te,a,b,Ty,dHT; are constant parameters.

p1 - (]_ —
enthalpy_of vaporization(T,2,7,,p1,P2,P3,P4,P5),
dippr106_dhvap(T,T.,p1,D2,P3,P1,P5),
dippr106_dhvap(T,p), with p a vector of length 6
dippr106_dhvap(T,Tc,p1,p2,P3,P4,P5)

T>0

p1—ps and T, are constant parameters.

l)P2+P3'(%)2+P5'(%)3
Te i i

Confidential Page 10 of 17

MAING

2.7.2020

3.8 Functions for NRTL

All analyzes can be found in [4].

3.8.1 T

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

dr
3.82 9o

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3.83 G

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3.84 G-71

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3.85 G- -4

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

@J. Najman et al.

a+%+e-10gT+f—T
nrtl_tau(T,a,b,e,f),

nrtl_tau(T,p), with p a vector of length 4
nrtl_tau(T,a,b,e,f)

T>0

a,b,e, f are constant parameters.

— s+ f

nrtl_dtau(T,b,e,f),

nrtl_dtau(T,p), with p a vector of length 3
nrtl_dtau(T,b,e,f)

T>0

b,e, f are constant parameters.

exp(—a-(a+ 2 +e-logT+ f- 1))
nrtl G(T,a,b,e,f,a),

nrtl g(T,a,b,e,f,a),

nrtl_g(T,p), with p a vector of length 5
nrtl g(T,a,b,e,f,a)

T>0

a,b, e, f,a are constant parameters.

exp(—a-(a+L2+elogT+f-T)) (a+L+elogT+f-T)
nrtl Gtau(T,a,b,e,f,q),

nrtl_gtau(T,a,b,e,f,a),

nrtl_gtau(T,p), with p a vector of length 5

nrtl gtau(T,a,b,e,f,a)

T>0

a,b, e, f,a are constant parameters.

exp(—a-(a+ 2 +e-logT+f-T)) (- +5+f)
nrtl_Gdtau(T,a,b,e,f,a),

nrtl gdtau(T,a,b,e,f,a),

nrtl_gdtau(T,p), with p a vector of length 5
nrtl_gdtau(T,a,b,e,f,q)

T>0

a,b, e, f,a are constant parameters. Monotonicity and
convexity are determined heuristically for e, f # 0.

Confidential

Page 11 of 17

MAING 2.7.2020

dGg
3.8.6 4G .;

Form: —a-exp(—a-(a+ 2 +e-logT+ f-T)) (== + %+
fa+2+e-logT+f-T)

How to call in C++: nrtl_dGtau(T,a,b,e,f,a),
nrtl dgtau(T,a,b,e,f,q),
nrtl_dgtau(T,p), with p a vector of length 5

How to call in ALE: nrtl_dgtau(T,a,b,e,f,q)

Domain: T>0

Remarks: a,b, e, f,a are constant parameters. Monotonicity and
convexity are determined heuristically.

©)J. Najman et al. Confidential Page 12 of 17

MAING

2.7.2020

3.9 Schroeder functions

The following functions implement special correlations for thermodynamic properties of

ethanol [6].

Functions 3.9.1 and 3.9.2 are convex and increasing for T
3.9.3 is concave and decreasing for 290.3 < T < 514.71K.

3.9.1 p saturation ethanol

< 514.71K. Function

+ 1.61761 -

Form: 62.68 - exp(24T - (~8.94161 - (1
(1— 55 — 51,1428 - (1 — 51ty)3 44 53.1360 - (1 —
T 3.'7)) ’
514.71

How to call in C++: p_sat_ethanol_schroeder(T),

schroeder_ethanol_p(T)
How to call in ALE: schroeder_ethanol_p(T)
Domain: T > 514.71

3.9.2 p vapor saturation ethanol

Form: 273.195 - exp(—1.75362 - (=
=)t — 37.6407 - (1)
T 10
514.71)))

How to call in C++: rho_vap_sat_ethanol_schroeder(T),

schroeder_ethanol _rhovap(T)
How to call in ALE: schroeder_ethanol _rhovap(T)
Domain: T > 514.71

3.9.3 p liquid saturation ethanol

Form: 273.195 - exp(9.00921 - (1 — 2{71)05 — 23.1668 -
stirr)" + 30.9092 - (1 — syt

)15 1364204 - (1 — L)%

How to call in C++: rho_liq_sat_ethanol_schroeder(T),

schroeder_ethanol_rholiq(T)
How to call in ALE: schroeder_ethanol rholiq(T)
Domain: T > 514.71

©)J. Najman et al. Confidential

1 — 16.5459 -

T__y0-21 _ 105323 - (1 —
3.4 . (

(1 -
(1 -

Page 13 of 17

MAING 2.7.2020

4 Cost functions

Currently, only one cost function is implemented.

1. Guthrie

Form: 10P1+p2-logio(2) +ps-(logyo(2))*

How to call in C++: cost_function(x,1,p1,p2,p3),
cost_turton(x,p1,p2,p3),
cost_turton(x,p), with p a vector of length 3

How to call in ALE: cost_turton(x,pi,p2,p3)

Domain: x>0

Remarks: Function for equipment costing based on a character-
istic sizing variable x. p;—p3 are constant parameters.
The analysis of this function can be found in [4]. More
information on the Guthrie cost function can be found
in [10].

©)J. Najman et al. Confidential Page 14 of 17

MAING

2.7.2020

5 Neural Networks

5.1 Hyperbolic tangent

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

©J. Najman et al.

tanh(z)
tanh (x)
tanh (x)
R

More information can be found in [7].

Confidential

Page 15 of 17

MAING

2.7.2020

6 (Gaussian Processes

6.1 Covariance functions

1. Matérn %
Form:

How to call in C++:

How to call in ALE:

Domain:

2. Matérn %
Form:
How to call in C++:

How to call in ALE:
Domain:

3. Matérn %
Form:
How to call in C++:

How to call in ALE:
Domain:

exp(—/7)
covariance_function(x,1),
covar_matern_1(x)
covar_matern_1(x)

z=0

(14 v/3y/x) - exp(—v/3/x)
covariance_function(x,2),
covar_matern_3(x)
covar_matern_3(x)

z=0

(1+ 5y + 32) - exp(—/54/x)
covariance_function(x,3),
covar_matern_5(x)
covar_matern_5(x)

z =0

4. Squared Exponential

Form:
How to call in C++:

How to call in ALE:
Domain:

exp(—5)
covariance_function(x,4),
covar_sqrexp (x)
covar_sqrexp (x)

=0

6.2 Acquisition Functions

1. Lower Confidence Bound

Form:
How to call in C++:

How to call in ALE:
Domain:

Uw—FK-o

acquisition function(u,o,1,k),
af 1cb(u,0,k)

af 1cb(u,o,K)

peR,o>=0

2. Expected Improvement

Form:
How to call in C++:

How to call in ALE:
Domain:

©J. Najman et al.

fmin—=#
erf(\5/’5 >
(fmin —p) - | ——=—"+

2

N

max{ fmin — &, 0} 0 =0
acquisition_function(u,0,2, fmin),
af _ei (M,U,fmin)
af,ei(/l,a)fmin)
nelR,o=0

Confidential Page 16 of 17

MAING 2.7.2020

3. Probability of Improvement

fmin=H
erf \(/75
—+

1
Form: 2 3 0>0
0 70—=07fmin<:u'
1 aazovfmin>:u’

How to call in C++: acquisition_function(u,o,3, fmin),
af pi(u,o0, fmin)

How to call in ALE: af pi(u,o, fmin)

Domain: pnelR,o=0

6.3 Probability Functions
Gaussian Probability Density Function

Form: \/% . exp(_L;)

How to call in C++: gaussian_probability_density_function(x),
gpdf (x)

How to call in ALE: gpdf (x)

Domain: zelR

References

[1] A. Khajavirad and N. V. Sahinidis. Convex envelopes generated from finitely many compact convex
sets. Mathematical Programming, 137(1-2):371-408, 2013.

[2] M. Mistry and R. Misener. Optimising heat exchanger network synthesis using convexity properties of
the logarithmic mean temperature difference. Computers € Chemical Engineering, 94:1 — 17, 2016.

[3] J. Najman, D. Bongartz, and A. Mitsos. Convex relaxations of componentwise convex functions.
Computers & Chemical Engineering, 130:106527, 2019.

[4] J. Najman, D. Bongartz, and A. Mitsos. Relaxations of thermodynamic property and costing models
in process engineering. Computers € Chemical Engineering, 130:106571, 2019.

[5] J. Najman and A. Mitsos. Convergence order of McCormick relaxations of LMTD function in heat
exchanger networks. In Z. Kravanja and M. Bogataj, editors, 26th European Symposium on Computer
Aided Process Engineering, volume 38 of Computer Aided Chemical Engineering, pages 1605 — 1610.
Elsevier, 2016.

[6] J. Schroeder, S. Penoncello, and J. Schroeder. A fundamental equation of state for ethanol. Journal of
Physical and Chemical Reference Data, 43(4):043102, 2014.

[7] A.M. Schweidtmann and A. Mitsos. Global Deterministic Optimization with Artificial Neural Networks
Embedded. Journal of Optimization Theory and Applications, 180(3), 2019.

[8] M. Tawarmalani and N. V. Sahinidis. Semidefinite relaxations of fractional programs via novel convex-
ification techniques. Journal of Global Optimization, 20(2):133-154, 2001.

[9] M. Tawarmalani and N. V. Sahinidis. Convezification and global optimization in continuous and mized-
integer nonlinear programming: theory, algorithms, software, and applications, volume 65. Springer
Science & Business Media, 2002.

[10] R. Turton, R. Bailie, W. Whiting, and J. Shaeiwitz. Analysis, Synthesis, and Design of Chemical
Processes. Prentice Hall PTR, Upper Saddle River, NJ., 2009.

©)J. Najman et al. Confidential Page 17 of 17

	Simple functions
	square(x)
	xlogx
	expxy
	sumdiv
	xlogsum
	xexpax
	euclid2d
	Error function
	Complementary error function
	fabsxTimesX
	regNormal
	Printing output

	Bounding functions
	Positive
	Negative
	Lower bounding function
	Upper bounding function
	Bounding function
	Squash node

	Physically motivated functions
	Arrhenius function
	Logarithmic mean temperature difference
	Reciprocal of logarithmic mean temperature difference
	Vapor pressure
	Saturation temperature
	Ideal gas enthalpy
	Enthalpy of vaporization
	Functions for NRTL
	tau
	dtau
	G
	Gtau
	Gdtau
	dGtau

	Schroeder functions
	p saturation ethanol
	rho vapor saturation ethanol
	rho liquid saturation ethanol

	Cost functions
	Neural Networks
	Hyperbolic tangent

	Gaussian Processes
	Covariance functions
	Acquisition Functions
	Probability Functions

