©J. Najman et al. Confidential Page 1 of 15

MANG~Z" - implemented functions

Jaromil Najman, Dominik Bongartz, Susanne Sass, Hatim Djelassi, Daniel Jun-
gen, Alexander Mitsos™*

Process Systems Engineering (AVT.SVT)
RWTH Aachen University
Forckenbeckstrafle 51

52074 Aachen, Germany

Abstract: This short report summarizes non-elementary intrinsic functions
currently implemented in the AVT.SVT in-house solver MAINGO, where ele-
mentary instrinsic denotes functions such as addition, multiplication, division,
exp, ™. The latter can be found in the documentation of MC-++. Using the
non-elementary intrinsic functions (as opposed to implementing them by hand
in the model using elementary functions) will in most cases result in tighter
relaxations. In most cases, the ALE-syntax is also supported in C++.

1 Simple functions

1.1 square(z)

Form: x?
How to call in C++: sqr(x)
How to call in ALE: sqr (x)
Domain: R

1.2 z-log(x)

Form: x - log(x)
How to call in C++: xlog(x),
xlogx (x)
How to call in ALE: xlogx(x)
Domain: x>0

1.3 exp(z)-y

Form: exp(x) -y
How to call in C++: expx_times_y(x,y),
xexpy (y,%)
How to call in ALE: xexpy(y,x)
Domain: R?
Remarks: The formula can be found in [1]. Note that in ALE-

syntax, the ordering of the variables is swapped.

Corresponding author: * A. Mitsos
Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany
E-mail: amitsos@alum.mit.edu

MANG~

14.2.2020

ai-x
1.4 az-x+),b;-y;

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

ai-xT
az-z+y, biy;
sum_div(vars, coeff) where vars is a vector of size n

and coeff is a vector of size n + 1. It is coeff [0]= a,
coeff[1]= as, coeff[2]= by, coeff[3]= b, ...
sum_div(z,y1,...,Yn,Q1,02,b1,...,b0,)

(z,y) = vars € RZ, a;,b; € Rog

The idea and derivation of the formula for 2D can be
found in Section 2 of [9] or in [8].

1.5 z-log(a-z+)b -y;)

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

1.6 z-exp(a-x)

Form:

How to call in C++:
How to call in ALE:

Domain:
Remarks:

1.7 x? 4 12

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

1.8 Error function

Form:

How to call in C++:
How to call in ALE:

Domain:

(©J. Najman et al.

z-log(a-z+ 31 - yi)

xlog sum(vars, coeff) where vars is a vector of size
n and coeff is a vector of size n. It is coeff [0]= a,
coeff[1]= by, coeff[2]= by, ...
xlog_sum(x,y1,...,Yn,q,01,...,b,)

(x,y) =vars € R, a,b; € Rog

The idea and derivation of the formula for 2D can be

found in [3].

x-exp(a-x)

xexpax(x,a)

xexpax(x,a)

R

a is a constant. More details can be found in [4].

V2 + y?

euclidean norm 2d(x,y),

norm2(x,y)

norm2(x,y)

R2

This function is convex and not differentiable at x =
y=0.

ﬁ §°, exp(—t?)dt
erf (x)

erf (x)

R

Confidential Page 2 of 15

MANG~

14.2.2020

1.9 Complementary error function

Form:

How to call in C++:
How to call in ALE:
Domain:

1.10 |z| -z

Form:
How to call in C++:

How to call in ALE:
Domain:

1

Form:

How to call in C++:
How to call in ALE:
Domain:

1-— ﬁ §7 exp(—t?)dt
erfc(x)
erfc(x)

R

2| -z

fabsx_times x(x),
xabsx (x)

xabsx (x)

R

T
Va+b-x?

regnormal (x,a,b)
regnormal(x,a,b)
reR,a,be Ry

1.12 Printing output

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

std::cout << "Object Type #" << number << ":"

<< x << std::endl
mc_print (x,number)
N/A

R

This can be used for debugging. To reduce output turn

off pre-processing.

2 Bounding functions

These functions can be used to exploit valid bounds that are known to the user.

The functions cut off the relaxations at a given value.

It is up to the user to make sure the bounds are actually valid! If
they are not, the resulting relaxations may be wrong, and MAiNGO
may or may not detect this and (possibly) throw an exception.

©J. Najman et al.

Confidential

Page 3 of 15

MANG~

14.2.2020

2.1 DPositive

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

2.2 Negative

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

[only cuts off the convex relaxation at €]

pos (x)

pos (%)

r=2e>0

Used to make sure that the convex relaxation stays pos-
itive; € is the McCormick tolerance specified in the set-
tings file. If the function is evaluated at some & < ¢, an
exception is thrown. It is especially useful in cases when
interval extensions provide nonpositive values.

[only cuts off the concave relaxation at —¢]

neg(x)

neg(x)

r<—e<(

Used to make sure that the concave relaxation stays
negative; € is the McCormick tolerance specified in the
settings file. If the function is evaluated at some & > —e,
an exception is thrown. It is especially useful in cases
when interval extensions provide nonnegative values.

2.3 Lower bounding function

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

[only cuts off the convex relaxation at (D]
1b_func(x,1b)

1b_func(x,1b)

z=lbelR

Used to make sure that the convex relaxation stays
above [b. If the function is evaluated at some & < [b, an
exception is thrown. It is especially useful in cases when
interval extensions provide values strictly lower than [b.

2.4 Upper bounding function

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

©J. Najman et al.

[only cuts off the concave relaxation at ub]
ub_func(x,ub)

ub_func(x,ub)

r<ubeR

Used to make sure that the concave relaxation stays
under ub. If the function is evaluated at some & > ub,
an exception is thrown. It is especially useful in cases
when interval extensions provide values strictly lower
than wub.

Confidential Page 4 of 15

MANG~

14.2.2020

2.5 Bounding function

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

2.6 Squash node

Form:
How to call in C++:
How to call in ALE:

Domain:
Remarks:

©J. Najman et al.

[only cuts off the convex relaxation at Ib and the concave
relaxation at ub]

bounding func(x,1lb,ub)

bounding func(x,1lb,ub)

b < x < wubwith lb,z,ube R

Used to make sure that the relaxations stay between
Ib and ub. If the function is evaluated at some & ¢
[Ib, ub], an exception is thrown. It is especially useful in
cases when interval extensions provide values not within
[Ib, ub].

[only cuts off the convex relaxation at {b and the concave
relaxation at ub)

squash_node (x,1b,ub),

squash(x,1b,ub)

squash (x,1b,ub)

Ib < x < ubwith Ib,x,ube R

Used to make sure that the relaxations stay between
Ib and ub. In order to properly use this function, the
user has to define squash inequalities Ib < z < wub.
This function’s main purpose is to reduce the number
of variables and equality constraints. It works espe-
cially well when removing linear equality constraints.
The only difference between squash node(x,1lb,ub)
and bounding func(x,lb,ub) is that the former will
not raise an exception, since the user has to provide
valid squash inequalities.

Confidential Page 5 of 15

MANG~ 14.2.2020

3 Physically motivated functions

3.1 Arrhenius function

Form: exp(f%)
How to call in C++: arh(x,k)
How to call in ALE: arh(x,k)
Domain: x>0

3.2 Logarithmic mean temperature difference
) AT, AT,
Form: log(ATlﬁflog(zATg)
How to call in C++: Imtd (AT, AT,)
How to call in ALE: Imtd (AT, AT)

Domain: AT, AT >0
Remarks: Used for heat exchangers. More details can be found in
[2, 5].

3.3 Reciprocal of logarithmic mean temperature differ-

ence

. log(AT)—log(ATs)
Form: AT AT,

How to call in C++: rimtd (AT, ATs)
How to call in ALE: rimtd (AT ,ATs)

Domain: AT, AT, >0
Remarks: Used for heat exchangers. More details can be found in
[2].

3.4 Vapor pressure

There are four functions for vapor pressure.

All functions are assumed to be convex and increasing.

While this is true for all physically reasonable parameter sets [4], it should be
checked whether it holds in any given case (e.g., by plotting the function on a
sufficiently fine grid).

1. Extended Antoine

Form: exp (p1 + 7 +pa- T+ ps - 1og(T) + pg - T’”)
How to call in C++: vapor_pressure(T,1,p1,P2,D03,P4,P5,06,P7),

ext_antoine psat (T,p1,D2,D3,P4:D5:06,07),
ext_antoine_psat(T,p), with p a vector of length 7
How to call in ALE: ext_antoine_psat (T,p1,P2,D3,DP4 D5 D6 D7)
Domain: T>0
Remarks: p1—p7 are constant parameters.

2. Antoine

©J. Najman et al. Confidential Page 6 of 15

MANG~

14.2.2020

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3. Wagner

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

4. IK-CAPE
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

©J. Najman et al.

107~ 7T

vapor_pressure(T,2,p1,p2,P3),

ext_antoine psat(T,p;,p2,p3),
ext_antoine_psat(T,p), with p a vector of length 3
antoine_psat(T,p;,p2,p3)

T>0

p1—ps3 are constant parameters.

Do - exp <p1.(1TTC>+p2~(1TT6)1-5T:p3~(1%;)3+p4~(1TTC)6)
vapor_pressure(T,3,p1,p2,p3,P4,1c,p6),

wagner _psat(T,p1,p2,p3,p4,1c,p6),

wagner_psat (T,p), with p a vector of length 6
wagner_psat (T sP1sP2,P3,P4 »Tc ’pG)

T>0

p1—p4 and T, are constant parameters.

exp(p1 +ps-T+ps-T? +ps-T? +ps- T+ ps-T° + p7 -
T +ps-T7 +py-T% + pro - T°)

vapor._pressure (T ,4,]71 sP25>P35P45P55P6 5P75P8 P9 ’plo) 5
ik_cape_psat(T,pi,D2,D3,D4,D5,D6,D7,D8,DP9,D10)
ik_cape_psat(T,p), with p a vector of length 10
ik_cape_psat(T,p1,D2,P3,P4,D5,D6P7 P8 »P9P10)
T>0

p1—p1o are constant parameters.

Confidential Page 7 of 15

MANG~ 14.2.2020

3.5 Saturation temperature

There are four functions for saturation temperature, which are the inverse of the
vapor pressure functions listed above. Currently only the Antoine saturation
temperature is implemented.

All functions are assumed to be concave and increasing.

While this is true for all physically reasonable parameter sets [4], it should be
checked whether it holds in any given case (e.g., by plotting the function on a
sufficiently fine grid).

1. Extended Antoine

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

2. Antoine
Form:

How to call in C++:

How to call in ALE:
Domain:
Remarks:

3. Wagner

Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

4. IK-CAPE
Form:

How to call in C++:
How to call in ALE:
Domain:

Remarks:

(©J. Najman et al.

-1
Tios T pa- T+ ps - 1log(T) + pg - Tp7)

Not implemented

Not implemented

T>0

p1—p7 are constant parameters. The computation of the

inverse is performed numerically.

exp (pl +

P2
saturation_temperature(T,2,p;,p2,p3),
antoine_tsat(T,p1,p2,pP3),
antoine_tsat(T,p), with p a vector of length 3
antoine_tsat(T,p1,p2,p3)

T>0

p1—p3 are constant parameters.

5 . N\ -1
exp (m-(£>+p2-<1£>1-0;p3-<1TTC>3+p4-<1TTC>6>
T
Not implemented
Not implemented
T>0
p1—p4 and T, are constant parameters. The computation

of the inverse is performed numerically.

exp(pr+p2-T+ps-T? +ps-T3+ps-T*+pg-T° +pr-
T6 + ps .T7 + Do T8 + P1o -Tg)_l

Not implemented

Not implemented

T>0

p1—p1o are constant parameters. The computation of
the inverse is performed numerically.

Confidential Page 8 of 15

MANG~ 14.2.2020

3.6 Ideal gas enthalpy

There are four functions for ideal gas enthalpy, which correspond to an integra-
tion over four different heat capacity models from Tj to T.

All functions are assumed to be convexr and increasing.

While for all physically reasonable parameter sets it should be increasing and
in most cases it should also be convex [4], it should be checked whether it holds
in any given case (e.g., by plotting the function on a sufficiently fine grid).

1. Aspen polynomial

Form:
How to call in C++:

How to call in ALE:
Domain:
Remarks:

S;)pl +p2'T+p3 T2 +p4~T3 + ps 'T4+p6"f5dT
ideal gas_enthalpy (T, To,1,p1,p2,P3:P4,P5,P6)
aSPenllig(T, TO sP1>P2,P3,P4,P5 :pﬁ)u
aspen_hig(T,Ty,p), with p a vector of length 6
aspen-hig(T',Ty,p1,P2,P3,P4,P55P6)

T>0

p1—Pe are constant parameters, Ty is the reference tem-
perature.

2. NASA 9-Coefficient

Form:
How to call in C++:

How to call in ALE:
Domain:
Remarks:

3. DIPPR 107
Form:

How to call in C++:

How to call in ALE:
Domain:
Remarks:

4. DIPPR 127

Form:

How to call in C++:

How to call in ALE:
Domain:
Remarks:

©J. Najman et al.

T - - - .
STO% +p?2 +p3+pa-T+ps-T?+pg- T3+ pr - THT
ideal gas_enthalpy(7,T0,2,p1,p2,P3,P1,P5,P6,P7)
nasa9-hig(T",To,p1,p2,P3,P4,P5,P6,P7)
nasa9-hig(7,T,,p), with p a vector of length 7
nasa9 hig(T",To,p1,P25P3,P45P5,P6P7)

T>0

p1—p7 are constant parameters, T is the reference tem-
perature.

T p3 2 s 2
S5+ v (i) + s (i) o7
ideal_gas_enthalpy(T',Ty,3,p1,P2,D3,P4,P5),
dlppI'lO?Jllg(T, TO sP1,P2,P3,P4 5p5) ’
dippri107_hig(7T,Ty,p), with p a vector of length 5
dippr107_ hig(T,Ty,p1,P2,P3P45D5)

T>0
p1—ps are constant parameters, T is the reference tem-
perature.

exp(72)

T p3 2
STopl + P2 (?) Cop(ZE-1)? + P4

2 _ew(®) 2 _ew(¥) 2
((pT) e) tre (%) st) O

ideal*gas*enthalpy(T’ TO ’4’101 sP25D35P45D5,P6 3p7))
dlppr127lllg(T 1o sP15P25P3,P45P55P6 ,p’?))
dippr127_hig(T,Ty,p), with p a vector of length 7
dippr127_ hig(T,To,p1,P2,P3,P45P5,D6P7)

T>0

p1—p7 are constant parameters, Ty is the reference tem-
perature.

Confidential Page 9 of 15

MANG~

14.2.2020

3.7 Enthalpy of vaporization

There are two functions for enthalpy of vaporization. The functional forms listed
below are only used for T' < T,. For T' > T, the enthalpy of vaporization is
set to zero. This makes it possible to extrapolate correctly beyond the critical

point.

All functions are assumed to be concave and decreasing below T,.
While for all physically reasonable parameter sets it should be decreasing and
in most cases it should also be concave [4], it should be checked whether it holds
in any given case (e.g., by plotting the function on a sufficiently fine grid).

1. Watson
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

2. DIPPR
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

©J. Najman et al.

_T T
dHT) - (Lj%)a-&-b'(l—ﬁ)

enthalpy_of vaporization(T,1,7,,a,b,T},dHT}),
watson_dhvap(T,T.,a,b,T1 ,dHT})
watson_dhvap(T,p), with p a vector of length 5
watson_dhvap(T,T,.,a,b,T1,dHTY)

T>0

Te,a,b,Ty,dHT; are constant parameters.

pr-(1— Tlc)erps'(T%)?ﬂ%‘(T%)a
enthalpy_of _vaporization(T,2,7T.,p1,P2,P3,P4,P5),

dippr106_dhvap(T,T.,p1,P2,D35Pa,P5),
dippr106_dhvap(T,p), with p a vector of length 6

dippr106_dhvap(T,T,,p1,P2,P3,P4,P5)
T>0

p1—ps and T, are constant parameters.

Confidential Page 10 of 15

MANG~

14.2.2020

3.8 Functions for NRTL

All analyzes can be found in [4].

3.8.1 7

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

dr
3.82 &

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3.83 G

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3.84 G-1

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

3.85 G-I

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

(©J. Najman et al.

a+%+e~logT+f~T
nrtl_tau(T,a,b,e,f),

nrtl_tau(T,p), with p a vector of length 4
nrtl_tau(T,a,b,e,f)

T>0

a,b, e, f are constant parameters.

—dr+ S+ f

nrtl_dtau(T,b,e,f),

nrtl_dtau(T,p), with p a vector of length 3
nrtl_dtau(T,b,e,f)

T>0

b, e, f are constant parameters.

exp(—a-(a+ 2 +e-logT+ f-T))
nrtl G(T,a,b,e,f,a),

nrtl g(T,a,b,e,f,a),

nrtl_g(T,p), with p a vector of length 5
nrtl g(T,a,b,e,f,a)

T>0

a, b, e, f,a are constant parameters.

exp(—a-(a+ 2 +elogT+f-T)) (a+ L +elogT+f-T)
nrtl_Gtau(T,a,b,e,f,q),

nrtl _gtau(T,a,b,e,f,a),

nrtl_gtau(T,p), with p a vector of length 5
nrtl_gtau(T,a,b,e,f,a)

T>0

a, b, e, f,a are constant parameters.

exp(—a-(a+ 2 +e-logT+f-T)) (2 + %+ f)
nrtl_Gdtau(T,a,b,e,f,a),
nrtl_gdtau(T,a,b,e,f,a),

nrtl_gdtau(T,p), with p a vector of length 5
nrtl_gdtau(T,a,b,e,f,a)

T7>0

a,b,e, f,a are constant parameters. Monotonicity and
convexity are determined heuristically for e, f # 0.

Confidential Page 11 of 15

MANG~

14.2.2020

dG
3.8.6 9.7

Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

(©J. Najman et al.

—a-exp(—a-(a+2+e-logT+f-T)) (- + %+

f)(a+L2+elogT+f-T)
nrtl_dGtau(T,a,b,e,f,q),
nrtl_dgtau(T,a,b,e,f,a),
nrtl_dgtau(T,p), with p a vector of length 5
nrtl_dgtau(T,a,b,e,f,qa)

T>0
a,b, e, f,a are constant parameters. Monotonicity and

convexity are determined heuristically.

Confidential Page 12 of 15

MANG~ 14.2.2020

3.9 Schroeder functions

The following functions implement special correlations for thermodynamic prop-
erties of ethanol [6].

Functions 3.9.1 and 3.9.2 are convexr and increasing for T' < 514.71K.
Function 3.9.3 is concave and decreasing for 290.3 < T < 514.7T1K.

3.9.1 p saturation ethanol

Form: 62.68 - exp(MEM - (=8.94161 - (1 — z70=) + 1.61761 -

(1= 7)™ — 51,1428 - (1 — oo)** + 53.1360 - (1 —
sitr)”0) |
514.71

How to call in C++: p_sat_ethanol_schroeder(T),
schroeder_ethanol_p(T)

How to call in ALE: schroeder_ethanol_p(T)

Domain: T > 514.71

3.9.2 p vapor saturation ethanol

Form: 273.195 - exp(—1.75362 - (1 — z13=7)"* —10.5323 - (1 —
) — 376407 - (1 — 2=)%* — 129.762 - (1 —
T)10))
514.71
How to call in C++: rho_vap_sat_ethanol_schroeder(T),

schroeder_ethanol_rhovap(T)
How to call in ALE: schroeder_ethanol_rhovap(T)
Domain: T > 514.71

3.9.3 p liquid saturation ethanol

Form: 273.195 - exp(9.00921 - (1 — 51171)0'5 —23.1668 - (1 —
51;71)?8 +30.9092 - (1 — T51f7§ gli — 16.5459 - (1 —
siaar) 364294 (1 — 57547)°7))

How to call in C++: rho_liq_sat_ethanol_schroeder(T),

schroeder_ethanol_rholiq(T)
How to call in ALE: schroeder_ethanol_rholiq(T)
Domain: T > 514.71

©J. Najman et al. Confidential Page 13 of 15

MANG~

14.2.2020

4 Cost functions

Currently, only one cost function is implemented.

1. Guthrie
Form:

How to call in C++:

How to call in ALE:

Domain:
Remarks:

1P +Pp210810(2)+ps: (logyo (2))?

cost_function(x,1,p1,p2,p3),
cost_turton(x,pi,p2,p3),

cost_turton(x,p), with p a vector of length 3
cost_turton(x,p1,p2,p3)

x>0

Function for equipment costing based on a character-
istic sizing variable x. p;—p3 are constant parameters.
The analysis of this function can be found in [4]. More
information on the Guthrie cost function can be found
in [10].

5 Neural Networks

5.1 Hyperbolic tangent

Form:

How to call in C++:
How to call in ALE:

Domain:
Remarks:

tanh(z)

tanh (x)

tanh (x)

R

More information can be found in [7].

6 (Gaussian Processes

6.1 Covariance functions

1. Matérn %
Form:

How to call in C++:

How to call in ALE:

Domain:

2. Matérn %
Form:

How to call in C++:

How to call in ALE:

Domain:

3. Matérn g

Form:

How to call in C++:

How to call in ALE:

Domain:

(©J. Najman et al.

exp(—+/7)
covariance_function(x,1),
covar_matern_1(x)
covar_matern_1(x)

z=0

(14 v/3y/x) - exp(—v/3+/7)
covariance_function(x,2),
covar_matern_3(x)
covar_matern_3(x)

z=0

(1+VByx + 32) - exp(—V/54/x)
covariance_function(x,3),
covar_matern_5(x)
covar_matern_5(x)

z=0

Confidential Page 14 of 15

MANG~ 14.2.2020

4. Squared Exponential

Form: exp(—32)

How to call in C++: covariance function(x,4),
covar_sqrexp (x)

How to call in ALE: covar_sqrexp(x)

Domain: z=0

6.2 Probability Functions
Gaussian Probability Density Function

1

2
Form: Norl exp(—%)
How to call in C++: gaussian_probability_density_function(x),

gpdf (x)

How to call in ALE: gpdf (x)
Domain: zeR

References

(1]
2]

(3]

(4]

[5]

[6]

7]

(8]

(10]

A. Khajavirad and N. V. Sahinidis. Convex envelopes generated from finitely many
compact convex sets. Mathematical Programming, 137(1-2):371-408, 2013.

M. Mistry and R. Misener. Optimising heat exchanger network synthesis using convex-
ity properties of the logarithmic mean temperature difference. Computers & Chemical
Engineering, 94:1 — 17, 2016.

J. Najman, D. Bongartz, and A. Mitsos. Convex relaxations of componentwise convex
functions. Computers € Chemical Engineering, 130:106527, 2019.

J. Najman, D. Bongartz, and A. Mitsos. Relaxations of thermodynamic property and
costing models in process engineering. Computers € Chemical Engineering, 130:106571,
2019.

J. Najman and A. Mitsos. Convergence order of McCormick relaxations of LMTD func-
tion in heat exchanger networks. In Z. Kravanja and M. Bogataj, editors, 26th European
Symposium on Computer Aided Process Engineering, volume 38 of Computer Aided
Chemical Engineering, pages 1605 — 1610. Elsevier, 2016.

J. Schroeder, S. Penoncello, and J. Schroeder. A fundamental equation of state for
ethanol. Journal of Physical and Chemical Reference Data, 43(4):043102, 2014.

A. M. Schweidtmann and A. Mitsos. Global Deterministic Optimization with Artificial
Neural Networks Embedded. Journal of Optimization Theory and Applications, 180(3),
2019.

M. Tawarmalani and N. V. Sahinidis. Semidefinite relaxations of fractional programs via
novel convexification techniques. Journal of Global Optimization, 20(2):133-154, 2001.
M. Tawarmalani and N. V. Sahinidis. Convezification and global optimization in con-
tinuous and mized-integer nonlinear programming: theory, algorithms, software, and
applications, volume 65. Springer Science & Business Media, 2002.

R. Turton, R. Bailie, W. Whiting, and J. Shaeiwitz. Analysis, Synthesis, and Design of
Chemical Processes. Prentice Hall PTR, Upper Saddle River, NJ., 2009.

©J. Najman et al. Confidential Page 15 of 15

	Simple functions
	square(x)
	xlogx
	expxy
	sumdiv
	xlogsum
	xexpax
	euclid2d
	Error function
	Complementary error function
	fabsxTimesX
	regNormal
	Printing output

	Bounding functions
	Positive
	Negative
	Lower bounding function
	Upper bounding function
	Bounding function
	Squash node

	Physically motivated functions
	Arrhenius function
	Logarithmic mean temperature difference
	Reciprocal of logarithmic mean temperature difference
	Vapor pressure
	Saturation temperature
	Ideal gas enthalpy
	Enthalpy of vaporization
	Functions for NRTL
	tau
	dtau
	G
	Gtau
	Gdtau
	dGtau

	Schroeder functions
	p saturation ethanol
	rho vapor saturation ethanol
	rho liquid saturation ethanol

	Cost functions
	Neural Networks
	Hyperbolic tangent

	Gaussian Processes
	Covariance functions
	Probability Functions

