Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.

MeLOn
MeLOn - Machine Learning models for Optimization

Thank you for using the beta version of MeLOn! If you have any issues, concerns, or comments, please communicate them using the "Issues" functionality in GitLab or send an e-mail to artur.schweidtmann@rwth-aachen.de.

About

MeLOn provides scripts for the training of various machine-learning models and their C++ implementation which can be used in the open-source solver MAiNGO. The machine-learning module git repository currently contains the following models:

  • Artificial neural networks for regression
  • Gaussian processes for regression (also known as Kriging)
  • Support vector machine for regression
  • One-class support vector classification
  • Convex hull of point cloud

Further models are under current develpment and will be published soon.

Optimization Methods

Example Applications

The proposed machine-learning models have been used in various applications.

Applications of deterministic global optimization with artificial neural networks embedded

Applications of deterministic global optimization with Gaussian processes embedded

How to Cite This Work

@article{schweidtmann2019deterministic,
  title={Deterministic global optimization with artificial neural networks embedded},
  author={Schweidtmann, Artur M and Mitsos, Alexander},
  journal={Journal of Optimization Theory and Applications},
  volume={180},
  number={3},
  pages={925--948},
  year={2019},
  publisher={Springer},
  doi={10.1007/s10957-018-1396-0},
  url={https://doi.org/10.1007/s10957-018-1396-0}
}

References

  • Rall, D., Menne, D., Schweidtmann, A. M., Kamp, J., von Kolzenberg, L., Mitsos, A., & Wessling, M. (2019). Rational design of ion separation membranes. Journal of membrane science, 569, 209-219. https://doi.org/10.1016/j.memsci.2018.10.013
  • Rall, D., Schweidtmann, A. M., Aumeier, B. M., Kamp, J., Karwe, J., Ostendorf, K., Mitsos, A. & Wessling, M. (2020). Simultaneous rational design of ion separation membranes and processes. Journal of Membrane Science, 117860. https://doi.org/10.1016/j.memsci.2020.117860
  • Rall, D., Schweidtmann, A. M., Kruse, M., Evdochenko, E., Mitsos, A. & Wessling, M. (2020). Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning. Journal of Membrane Science, In Press. https://doi.org/10.1016/j.memsci.2020.117860
  • Schweidtmann, A. M., & Mitsos, A. (2019). Deterministic global optimization with artificial neural networks embedded. Journal of Optimization Theory and Applications, 180(3), 925-948. https://doi.org/10.1007/s10957-018-1396-0
  • Schweidtmann, A. M., Huster, W. R., Lüthje, J. T., & Mitsos, A. (2019). Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks. Computers & Chemical Engineering, 121, 67-74. https://doi.org/10.1016/j.compchemeng.2018.10.007
  • Schweidtmann, A. M., Bongartz, D., Huster, W. R., & Mitsos, A. (2019). Deterministic Global Process Optimization: Flash Calculations via Artificial Neural Networks. In Computer Aided Chemical Engineering (Vol. 46, pp. 937-942). Elsevier. https://doi.org/10.1016/B978-0-12-818634-3.50157-0
  • Schweidtmann, A. M., Bongartz, D., Grothe, D., Kerkenhoff, T., Lin, X., Najman, J., & Mitsos, A. (2020). Global optimization of Gaussian processes. Submitted. Preprint available on https://arxiv.org/abs/2005.10902.
  • Schweidtmann, A. M., Weber, J., Wende, C., Netze, L., & Mitsos, A. (2020). Obey validity domains of data-driven models. Submitted. Preprint available on https://arxiv.org/abs/2010.03405.
  • Huster, W. R., Schweidtmann, A. M., & Mitsos, A. (2019). Impact of accurate working fluid properties on the globally optimal design of an organic Rankine cycle. In Computer Aided Chemical Engineering (Vol. 47, pp. 427-432). Elsevier.https://doi.org/10.1016/B978-0-12-818597-1.50068-0
  • Huster, W. R., Schweidtmann, A. M., & Mitsos, A. (2020). Working fluid selection for organic rankine cycles via deterministic global optimization of design and operation. Optimization and Engineering, (Vol. 21, pp. 517-536).https://doi.org/10.1007/s11081-019-09454-1
  • Schäfer, P., Schweidtmann, A. M., Lenz, P. H., Markgraf, H. M., & Mitsos, A. (2020). Wavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices. Computers & Chemical Engineering, 132, 106598. https://doi.org/10.1016/j.compchemeng.2019.106598
  • Kunde, C., Mendez, R., & Kienle, A. (2022). Deterministic global optimization of multistage layer melt crystallization using surrogate models and reduced space formulations. In Computer Aided Chemical Engineering (Vol. 51, pp. 727-732). Elsevier.https://doi.org/10.1016/B978-0-323-95879-0.50122-3