""" MRCNN Particle Detection Process images with MRCNN model trained on the droplet class. The source code of "MRCNN Particle Detection" (https://git.rwth-aachen.de/avt-fvt/private/mrcnn-particle-detection) is based on the source code of "Mask R-CNN" (https://github.com/matterport/Mask_RCNN). The source code of "Mask R-CNN" is licensed under the MIT License (MIT). Copyright (c) 2017 Matterport, Inc. Written by Waleed Abdulla All source code modifications to the source code of "Mask R-CNN" in "MRCNN Particle Detection" are licensed under the Eclipse Public License v2.0 (EPL 2.0). Copyright (c) 2022-2023 Fluid Process Engineering (AVT.FVT), RWTH Aachen University Edited by Stepan Sibirtsev, Mathias Neufang & Jakob Seiler The coyprights and license terms are given in LICENSE. Ideas and a small code snippets were adapted from these sources: https://github.com/mat02/Mask_RCNN """ ### ----------------------------------- ### ### Necessary Parameters and Data Names ### ### ----------------------------------- ### # is the script executed on the cluster, e.g., RWTH High Performance Computing cluster? True = yes, False = no cluster = False ### please specify only for non-cluster evaluations # generate detection masks? True = yes, False = no masks = False # is the program execution done on GPU or CPU? True = GPU, False = CPU device = True # input dataset path to find in "...\datasets\input\..." dataset_path = r"test" # path to save the output images "...\datasets\output\..." save_path = r"test" # name of the excel results file to find in "...\datasets\output\..." name_result_file = "test" # path of the MRCNN model to find in "...\models\..." weights_path = r"test" # MRCNN model name to find in "Mask_R_CNN\models\ weights_name = r"test" # file format of images file_format = "jpg" # save n-th result image save_nth_image = 1 # pixel size in [µm/px]. To read from Sopat log file enter pixelsize = 0 pixelsize = 1 # specify if you want the image to be center cropped before detection (x, y) image_crop = None #(1931, 1521) ### specifications for the processing parameters # number of images to process with on each GPU. # a 12GB GPU can typically handle 2 images of 1024x1024px. # adjust based on your GPU memory and image sizes. # if only one GPU is used, this parameter is equivalent to batch size (BATCH_SIZE --> config.py). images_gpu = 1 # max. image size # select the value the MRCNN model was trained with. image_max = 2048 # skip detections with confidence < value confidence = 0.1 ### specifications for filters # detect reflections in droplets? Yes = True, No = False detect_reflections = False # detect/mark oval droplets? True = yes, False = no detect_oval_droplets = True # minimum aspect ratio: filter for elliptical shapes min_aspect_ratio = 0.9 # detect adhesive droplets? detect_adhesive_droplets = False # save coordinates of adhesive droplets detected save_coordinates = False # minimum velocity: threshold to filter adhesive droplets # minimum distance [% of droplet mean diameter] that a droplet has to travel between 2 frames min_velocity = 0.2 # minimum size difference: threshold to filter adhesive droplets # [%] to be consindered a different droplet min_size_diff = 0.4 # number of images that are being compared, this is necessary because adhesive droplets may not get detected every frame n_images_compared = 3 # number of times a droplet has to be detected at a similar position to be defined as adhesive n_adhesive_high = 3 n_adhesive_low = 2 low_distance_threshold = 0.05 # edge threshold: filter for image border intersecting droplets edge_tolerance = 0.01 # use contrast adjustment? 0 = no, 1 = contrast limited adaptive histogramm equalization, 2 = contrast stretching contrast = 0 ### ----------------------------------- ### ### Initialization ### ### ----------------------------------- ### from PIL import Image import os import json import sys import random import math import re import time import glob import itertools import numpy as np import tensorflow as tf import matplotlib import matplotlib.image as mpimg import matplotlib.pyplot as plt import matplotlib.patches as patches import cv2 import pandas as pd from numpy import asarray from random import random from skimage import exposure from pathlib import Path matplotlib.use("agg") start_time = time.time() tf.to_float = lambda x: tf.cast(x, tf.float32) # Root directory of the project if cluster is False: ROOT_DIR = os.path.abspath("") WEIGHTS_DIR = os.path.join(ROOT_DIR, "models", weights_path, weights_name + '.h5') DATASET_DIR = os.path.join(ROOT_DIR, "datasets\\input", dataset_path) SAVE_DIR = os.path.join(ROOT_DIR, "datasets\\output", save_path) EXCEL_DIR = os.path.join(SAVE_DIR, name_result_file + '.xlsx') IMAGE_MAX = image_max MASKS = masks DEVICE = device IMAGES_GPU = images_gpu SAVE_NTH_IMAGE = save_nth_image DETECT_OVAL_DROPLETS = detect_oval_droplets DETECT_REFLECTIONS = detect_reflections MIN_ASPECT_RATIO = min_aspect_ratio PIXELSIZE = pixelsize DETECT_ADHESIVE_DROPLETS = detect_adhesive_droplets SAVE_COORDINATES = save_coordinates MIN_VELOCITY = min_velocity MIN_SIZE_DIFF = min_size_diff N_IMAGES_COMPARED = n_images_compared N_ADHESIVE_HIGH = n_adhesive_high N_ADHESIVE_LOW = n_adhesive_low LOW_DISTANCE_THRESHOLD = low_distance_threshold EDGE_TOLERANCE = edge_tolerance IMAGE_CROP = image_crop CONTRAST = contrast CONFIDENCE = confidence FILE_FORMAT = file_format else: import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='evaluation on cluster') parser.add_argument('--dataset_path', required=True, help='Dataset path to find in Mask_R_CNN\datasets\input') parser.add_argument('--save_path', required=True, help='Save path to find in Mask_R_CNN\datasets\output') parser.add_argument('--name_result_file', required=True, help='Name of the excel result file to find in Mask_R_CNN\datasets\output') parser.add_argument('--weights_path', required=True, help='Weights path to find in Mask_R_CNN\models') parser.add_argument('--weights_name', required=True, help='Choose Neuronal Network / Epoch to find in Mask_R_CNN\models') parser.add_argument('--file_format', required=True, help='') parser.add_argument('--masks', required=False, type=str, default="False", help='Generate detection masks?') parser.add_argument('--device', required=False, type=str, default="True", help='is the evaluation done on CPU or GPU? 1=GPU, 0=CPU') parser.add_argument('--detect_oval_droplets', required=True, type=str, default="False", help="") parser.add_argument('--detect_reflections', required=True, type=str, default="False", help="") parser.add_argument('--detect_adhesive_droplets', required=False, type=str, default="False", help="") parser.add_argument('--save_coordinates', required=False, type=str, default="False", help="") parser.add_argument('--images_gpu', required=False, type=int, default=1, help='Number of images to train with on each GPU') parser.add_argument('--image_max', required=False, type=int, default=1024, help="max. image size") parser.add_argument('--save_nth_image', required=False, type=int, default=1, help="") parser.add_argument('--n_images_compared', required=False, type=int, default=3, help="") parser.add_argument('--n_adhesive_high', required=False, type=int, default=3, help="") parser.add_argument('--n_adhesive_low', required=False, type=int, default=2, help="") parser.add_argument('--image_crop', required=False, type=int, default=None, help="") parser.add_argument('--contrast', required=False, type=int, default=0, help="") parser.add_argument('--min_aspect_ratio', required=False, type=float, default=0.9, help="") parser.add_argument('--pixelsize', required=False, type=float, default=1, help="") parser.add_argument('--min_velocity', required=False, type=float, default=0.2, help="") parser.add_argument('--min_size_diff', required=False, type=float, default=0.4, help="") parser.add_argument('--low_distance_threshold', required=False, type=float, default=0.05, help="") parser.add_argument('--edge_tolerance', required=False, type=float, default=0.01, help="") parser.add_argument('--confidence', required=False, type=float, default=0.5, help="") args = parser.parse_args() ROOT_DIR = os.path.join("/rwthfs/rz/cluster", os.path.abspath("../..")) WEIGHTS_DIR = os.path.join(ROOT_DIR, "models", args.weights_path, args.weights_name + '.h5') DATASET_DIR = os.path.join(ROOT_DIR, "datasets/input", args.dataset_path) SAVE_DIR = os.path.join(ROOT_DIR, "datasets/output", args.save_path) EXCEL_DIR = os.path.join(SAVE_DIR, args.name_result_file + '.xlsx') FILE_FORMAT = args.file_format if args.detect_oval_droplets == "True": DETECT_OVAL_DROPLETS = True elif args.detect_oval_droplets == "False": DETECT_OVAL_DROPLETS = False if args.detect_reflections == "True": DETECT_REFLECTIONS = True elif args.detect_reflections == "False": DETECT_REFLECTIONS = False if args.masks == "True": MASKS = True elif args.masks == "False": MASKS = False if args.device == "True": DEVICE = True elif args.device == "False": DEVICE = False if args.detect_adhesive_droplets == "True": DETECT_ADHESIVE_DROPLETS = True elif args.detect_adhesive_droplets == "False": DETECT_ADHESIVE_DROPLETS = False if args.save_coordinates == "True": SAVE_COORDINATES = True elif args.save_coordinates == "False": SAVE_COORDINATES = False # IMAGE_MAX = args.image_max IMAGES_GPU = args.images_gpu SAVE_NTH_IMAGE = args.save_nth_image N_IMAGES_COMPARED = args.n_images_compared N_ADHESIVE_HIGH = args.n_adhesive_high N_ADHESIVE_LOW = args.n_adhesive_low IMAGE_CROP = args.image_crop CONTRAST = args.contrast # MIN_ASPECT_RATIO = args.min_aspect_ratio PIXELSIZE = args.pixelsize MIN_VELOCITY = args.min_velocity MIN_SIZE_DIFF = args.min_size_diff LOW_DISTANCE_THRESHOLD = args.low_distance_threshold EDGE_TOLERANCE = args.edge_tolerance CONFIDENCE = args.confidence # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "models") Path(SAVE_DIR).mkdir(parents=True, exist_ok=True) ### mean pixel detectieren images_mean_pixel = [] images_path = glob.glob(DATASET_DIR + "/*." + FILE_FORMAT) for img_path in images_path: img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if CONTRAST == 1: # adaptive Equalization img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = exposure.equalize_adapthist(img) img = img.astype('float32') * 255 images_mean_pixel.append(img) color_sum=[0,0,0] for img2 in images_mean_pixel: pixels = asarray(img2) pixels = pixels.astype('float32') # calculate per-channel means and standard deviations means = pixels.mean(axis=(0, 1), dtype='float64') color_sum += means mean_pixel = color_sum/len(images_mean_pixel) # read pixelsize from JSON-File (if input data is from a Sopat measurement) if PIXELSIZE == 0: sopat_find = [file for file in os.listdir(DATASET_DIR) if file.endswith('.json')] sopat_name = (DATASET_DIR + '/' + sopat_find[0]) sopat_name_new = (DATASET_DIR + '/Sopat_Log.json') with open(sopat_name, "r",encoding="utf-8") as sopat_content: content_lines = sopat_content.readlines() current_line = 1 with open(sopat_name_new, "w",encoding="utf-8") as sopat_content_new: for line in content_lines: if current_line == 30: pass else: sopat_content_new.write(line) current_line += 1 sopat_data = json.load(open(sopat_name_new, "r", encoding="utf-8")) PIXELSIZE = sopat_data["sopatCamControlAcquisitionLog"]["conversionMicronsPerPx"] # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils from mrcnn import visualize from mrcnn.visualize import display_images import mrcnn.model as modellib from mrcnn.model import log from mrcnn.config import Config class DropletConfig(Config): """Configuration for training on the toy dataset. Derives from the base Config class and overrides some values. """ # Give the configuration a recognizable name NAME = "droplet" # NUMBER OF GPUs to use. When using only a CPU, this needs to be set to 1. GPU_COUNT = 1 # Backbone network architecture # Supported values are: resnet50, resnet101. # You can also provide a callable that should have the signature # of model.resnet_graph. If you do so, you need to supply a callable # to COMPUTE_BACKBONE_SHAPE as well BACKBONE = "resnet50" # Generate detection masks # False: Output only bounding boxes like in Faster-RCNN # True: Generate masks as in Mask-RCNN if MASKS is True: GENERATE_MASKS = True else: GENERATE_MASKS = False # We use a GPU with 12GB memory, which can fit two images. # Adjust down if you use a smaller GPU. if DEVICE is True: IMAGES_PER_GPU = IMAGES_GPU else: IMAGES_PER_GPU = 1 # Number of classes (including background) NUM_CLASSES = 1 + 1 # Background + droplet # Skip detections with confidence < value DETECTION_MIN_CONFIDENCE = CONFIDENCE # Input image resizing IMAGE_MAX_DIM = IMAGE_MAX IMAGE_MIN_DIM = IMAGE_MAX_DIM MEAN_PIXEL = mean_pixel ### Configurations config = DropletConfig() config.display() ### Notebook Preferences # Device to load the neural network on. # Useful if you're training a model on the same # machine, in which case use CPU and leave the # GPU for training. if DEVICE is True: dev = "/gpu:0" # /cpu:0 or /gpu:0 else: dev = "/cpu:0" # /cpu:0 or /gpu:0 # Inspect the model in training or inference modes # values: 'inference' or 'training' # TODO: code for 'training' test mode not ready yet TEST_MODE = "inference" def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Adjust the size attribute to control how big to render images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax ### Load Model # Create model in inference mode with tf.device(dev): model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights print("Loading weights ", WEIGHTS_DIR) model.load_weights(WEIGHTS_DIR, by_name=True) ### Run Detection class Droplet: """Class to structure Droplet information in memory and calculate values for comparison """ def __init__(self, roi, mask, img): self.roi = roi if config.GENERATE_MASKS: self.mask = mask # calculate edge lengths and center of roi. roi[1]-roi[3]=box_width. roi[0]-roi[2]=image_height self.range = (abs(roi[1] - roi[3]), abs(roi[0] - roi[2])) self.center = (abs((roi[0]+roi[2])//2), abs((roi[1]+roi[3])//2)) # self.mean_diameter = abs((self.range[0]+self.range[1]+2)/2) self.mean_diameter = ((self.range[1]+1)*(self.range[0]+1)**2)**(1/3) self.mean_diameter_mm = round(self.mean_diameter * PIXELSIZE / 1000, 3) self.stuck = [] self.check_roi() self.img = img def check_roi(self): """Run at Droplet creation to check for aspect ratio and whether it touches the edge """ global DETECT_OVAL_DROPLETS, EDGE_TOLERANCE, MIN_ASPECT_RATIO, image_height, image_width if DETECT_OVAL_DROPLETS is True: if( # checks if bbox touches the edge self.roi[0] <= image_height*EDGE_TOLERANCE or self.roi[1] <= image_width*EDGE_TOLERANCE or self.roi[2] >= image_height*(1-EDGE_TOLERANCE) or self.roi[3] >= image_width*(1-EDGE_TOLERANCE) ): self.fault = 1 else: self.fault = 0 else: if( # checks if bbox touches the edge self.roi[0] <= image_height*EDGE_TOLERANCE or self.roi[1] <= image_width*EDGE_TOLERANCE or self.roi[2] >= image_height*(1-EDGE_TOLERANCE) or self.roi[3] >= image_width*(1-EDGE_TOLERANCE) or # checks if bbox is within allowed aspect ratio self.range[0] / self.range[1] >= 1 / MIN_ASPECT_RATIO or self.range[0] / self.range[1] <= MIN_ASPECT_RATIO ): self.fault = 1 else: self.fault = 0 # Parameter um klebende Tropfen zu erkennen def distance(self, center): """Returns distance to given coordinates """ offset = np.array([center[0]-self.center[0], center[1]-self.center[1]]) dist = np.linalg.norm(offset) dist /= self.mean_diameter return dist def size_difference(self, range): """Returns size difference in percent compared to given ranges """ size_diff = abs( 1-((self.range[0]*self.range[1]) / (range[0]*range[1]))) return size_diff def visualize_result(memory,counter_1): """collects all necessary parameters from the first entry in memory and then calls visualize.display_instances() Also appends droplet diameter to mean_diameter_total if no fault was determined """ # Create Lists to pass onto display_instances() global stuck_droplet_data ax = get_ax(size=8) rois, masks, colors, diameter_vis_list = [], [], [], [] xl = False if memory[0][0]: print(f"Visualizing {memory[0][0][0].img}") for droplet in memory[0][0]: rois.append(droplet.roi) diameter_vis_list.append(droplet.mean_diameter_mm) if config.GENERATE_MASKS: masks.append(droplet.mask) if droplet.fault == 0: mean_diameter_total.append(droplet.mean_diameter) colors.append((0, 1, 0)) elif droplet.fault == 1: colors.append((1, 0, 0)) elif droplet.fault == 4: colors.append((0, 0, 1)) elif DETECT_ADHESIVE_DROPLETS is False: mean_diameter_total.append(droplet.mean_diameter) colors.append((0, 1, 0)) elif droplet.fault == 2: if len(droplet.stuck) >= N_ADHESIVE_HIGH: colors.append((1, 0.65, 0)) if not xl: stuck_droplet_data.append( [droplet.img, droplet.mean_diameter_mm, "", droplet.stuck[0][0], droplet.stuck[0][1], droplet.stuck[0][2], droplet.stuck[0][3], droplet.stuck[0][4]]) xl = True else: stuck_droplet_data.append( ["", droplet.mean_diameter_mm, "", droplet.stuck[0][0], droplet.stuck[0][1], droplet.stuck[0][2], droplet.stuck[0][3], droplet.stuck[0][4]]) for data in droplet.stuck[1:]: stuck_droplet_data.append( ["", "", "", data[0], data[1], data[2], data[3], data[4]]) else: mean_diameter_total.append(droplet.mean_diameter) colors.append((0, 1, 0)) elif droplet.fault == 3: if len(droplet.stuck) >= N_ADHESIVE_LOW: colors.append((1, 0.65, 0)) if not xl: stuck_droplet_data.append( [droplet.img, droplet.mean_diameter_mm, "<5%", droplet.stuck[0][0], droplet.stuck[0][1], droplet.stuck[0][2], droplet.stuck[0][3], droplet.stuck[0][4]]) xl = True else: stuck_droplet_data.append( ["", droplet.mean_diameter_mm, "<5%", droplet.stuck[0][0], droplet.stuck[0][1], droplet.stuck[0][2], droplet.stuck[0][3], droplet.stuck[0][4]]) for data in droplet.stuck[1:]: stuck_droplet_data.append( ["", "", "<5%", data[0], data[1], data[2], data[3], data[4]]) else: mean_diameter_total.append(droplet.mean_diameter) colors.append((0, 1, 0)) # Convert Lists to numpy arrays and create placeholders for class_ids and scores rois = np.array(rois) masks = np.array(masks) class_ids = np.array(range(len(colors))) scores = np.array([1]*len(colors)) img_name = "result_{}.jpg".format(os.path.splitext(memory[0][2])[0]) if masks.any(): masks = np.stack(masks, axis=-1) if config.GENERATE_MASKS: visualize.display_instances(memory[0][1], rois, masks, class_ids, scores, ax=ax, colors=colors, captions=diameter_vis_list, title=None, save_dir=SAVE_DIR, img_name=img_name, save_img=True, number_saved_images=SAVE_NTH_IMAGE, counter_1=counter_1) else: visualize.display_instances(memory[0][1], rois, None, class_ids, scores, ax=ax, show_mask=False, colors=colors, captions=diameter_vis_list, title=None, save_dir=SAVE_DIR, img_name=img_name, save_img=True, number_saved_images=SAVE_NTH_IMAGE, counter_1=counter_1) def pre_processing(image, crop=None, size_y=1024, size_x=1024, contrast=0): """Crops image and optional contrast adjustments """ if crop: size_x = crop[0] size_y = crop[1] image_height, image_width, _ = image.shape # center crop image to given size crop_y = (image_height-size_y)//2 crop_x = (image_width-size_x)//2 image = image[crop_y:crop_y+size_y, crop_x:crop_x+size_x] #im = Image.fromarray(image.astype(np.uint8)) #im.save(os.path.join(SAVE_DIR, 'test.bmp')) # original = image.copy() if CONTRAST != 0: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if CONTRAST == 1: # adaptive Equalization image = exposure.equalize_adapthist(image) image = image.astype('float32') * 255 elif CONTRAST == 2: # contrast stretching p2, p98 = np.percentile(image, (2, 98)) image = exposure.rescale_intensity(image, in_range=(p2, p98)) return image # Tropfendetektion & Erkennung von klebenden Tropfen memory = [] mean_diameter_total = [] measurements = [] stuck_droplet_data = [] counter_1 = SAVE_NTH_IMAGE for filename in os.listdir(DATASET_DIR): if not filename.endswith('.json'): image = cv2.imread(os.path.join(DATASET_DIR, filename)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # pre process image if IMAGE_CROP or CONTRAST != 0: image = pre_processing(image, crop=IMAGE_CROP, contrast=CONTRAST) image_height, image_width, _ = image.shape image_length_max = max([image_width, image_height]) results = model.detect([image], filename=filename, verbose=1) r = results[0] # Creates a List of Droplet Objects with detected information # Droplet object checks if droplet is too close to edge and whether aspec ratio is off on initialization droplets = [] if config.GENERATE_MASKS: for i, roi in enumerate(r['rois']): droplets.append(Droplet(roi, r['masks'][:, :, i], filename)) else: for roi in r['rois']: droplets.append(Droplet(roi, None, filename)) print(f"Images in memory: {len(memory)}") if DETECT_REFLECTIONS == True: for a, b in itertools.combinations(droplets, 2): if( a.center[0] > b.center[0]*0.95 and a.center[0] < b.center[0]*1.05 and a.center[1] > b.center[1]*0.95 and a.center[1] < b.center[1]*1.05 ): if a.mean_diameter_mm < b.mean_diameter_mm: a.fault = 4 else: b.fault = 4 # If memory is not empty iterate through droplets in current picture if memory: for current in droplets: # If droplet has no faults so far compare to all droplets in memory if current.fault == 0: shortest_distance = 2048 closest_size_diff = 0 # iterate memory from the back (most recent picture first) # t is a variable for time between reference image and current memory entry for t, img in enumerate(reversed(memory), 1): for droplet in img[0]: measured_distance = current.distance(droplet.center) measured_size_diff = current.size_difference(droplet.range) measurements.append([measured_distance, measured_distance/t, measured_size_diff]) # Checks whether measured distance and size diff is within defined threshholds if(measured_distance < MIN_VELOCITY * t and measured_size_diff < MIN_SIZE_DIFF ): shortest_distance = measured_distance / t closest_size_diff = measured_size_diff current.stuck.append(((-1*t), droplet.mean_diameter_mm, measured_distance, measured_distance/t, measured_size_diff)) droplet.stuck.append((t, current.mean_diameter_mm, measured_distance, measured_distance/t, measured_size_diff)) if measured_distance < LOW_DISTANCE_THRESHOLD: current.fault = 3 else: current.fault = 2 if droplet.fault == 2 or droplet.fault == 0: droplet.fault = current.fault break # Keeps track of shortest distances to help adjust threshholds elif measured_distance < shortest_distance: shortest_distance = measured_distance / t closest_size_diff = measured_size_diff if current.fault == 0: print("Droplet is valid:") print(f"\tshortest distance to any box:\t{round(shortest_distance,2)}") print(f"\tsize difference to closest box:\t{round(closest_size_diff*100,2)}%") else: print("Droplet is stuck to Lens:") print(f"\tdistance too close to box:\t{round(shortest_distance,2)}") print(f"\tsize difference to that box:\t{round(closest_size_diff*100,2)}%") else: print( "Droplet is either to close to the edge or aspect ratio is off") # Depending on the number of images campared, visualizes the one furthest back and removes it from the list if(len(memory) == N_IMAGES_COMPARED): visualize_result(memory,counter_1) memory.pop(0) # Append List of current droplets and image information to the memory memory.append((droplets, image, filename)) print("\n") if counter_1 == SAVE_NTH_IMAGE: counter_1 = 0 counter_1 = counter_1 + 1 # Visualizes the remaining pictures while memory: visualize_result(memory,counter_1) memory.pop(0) if counter_1 == SAVE_NTH_IMAGE: counter_1 = 0 counter_1 = counter_1 + 1 ### Translate Mean Diameter In Actual Droplet Sizes (mm) # recalculate mean diameter mean_diameter_total_resize = [(i * PIXELSIZE / 1000) for i in mean_diameter_total] ### Convert Mean Diameter To Excel df = pd.DataFrame(mean_diameter_total_resize).to_excel( EXCEL_DIR, header=False, index=False) ### Save measured data for threshold tuning if SAVE_COORDINATES is True: pd.DataFrame(measurements).to_excel( os.path.join(SAVE_DIR, "xyz_measurements.xlsx"), header=False, index=False) pd.DataFrame(stuck_droplet_data).to_excel( os.path.join(SAVE_DIR, "stuck_droplet_data.xlsx"), header=False, index=False) print("--- %s seconds ---" % (time.time() - start_time))