From 1df7b1580550fcf401b8f97e0079dd23f0bc90a2 Mon Sep 17 00:00:00 2001 From: ssibirtsev <sibi_ballad@gmx.de> Date: Wed, 15 Nov 2023 14:48:57 +0100 Subject: [PATCH] Upload New File --- manual/cluster_job_CPU_training_template.job | 81 ++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 manual/cluster_job_CPU_training_template.job diff --git a/manual/cluster_job_CPU_training_template.job b/manual/cluster_job_CPU_training_template.job new file mode 100644 index 0000000..f4df59c --- /dev/null +++ b/manual/cluster_job_CPU_training_template.job @@ -0,0 +1,81 @@ +#!/usr/bin/zsh + +############################################## +##### Batch script for the MRCNN training #### +############################################## + +#### CREATE SBATCH ENTRIES #### +#### Paths and parameters must be adapted accordingly. + +#### job name +#SBATCH --job-name=<JobName> + +#### Path and name of the output file of the job execution +#SBATCH --output=/home/<UserID>/.../<JobOutputFolderName>/%x_%J_output.txt + +#### Job runtime determined by testing jobs on the GPU node (see manual). +#### Multiply the computing time per epoch resulting from the test by the number of epochs to be trained. +#### Add a safety factor, e.g. multiply with 1.2 +#SBATCH --time=0-00:00:00 + +#### Memory requirement per CPU determined by testing jobs on the GPU node (see manual). +#### Add a safety factor, e.g. multiply with 1.2. +#### For example: resulting value is 5GB --> --mem-per-cpu=5G +#SBATCH --mem-per-cpu=5G + +#### E-mail address +#SBATCH --mail-user=<EmailAdress> + +#### E-mails to be received +#SBATCH --mail-type=ALL + +#### Number of tasks to be performed +#SBATCH --ntasks=1 + +#### CREATE TERMINAL ENTRIES #### +#### Paths and parameters must be adapted accordingly + +#### Export path in which Anaconda is located +export PATH=$PATH:/home/<UserID>/anaconda3/bin + +#### Activate environment +source activate env_mrcnn_cpu + +#### Navigate to the path where the droplet.py script is located +cd /home/<UserID>/.../samples/droplet/ + +#### Run the droplet.py script. +#### These are the required training parameters to be specified. +#### Optional training parameters can be found below. +#### Description/default settings of all training parameters see manual. +python train_droplet.py --dataset_path=<TrainValidationFolderName> --file_format=<FileFormat> --image_max=<Integer> --images_gpu=<Integer> --device=False + +#### Optional training parameters: +#### --name_result_file +#### --new_weights_path +#### --base_weights +#### --train_all_layers +#### --masks +#### --dataset_quantity +#### --cross_validation +#### --k_fold +#### --k_fold_val +#### --epochs +#### --early_stopping +#### --early_loss +#### --use_wandb +#### --wandb_entity +#### --wandb_project +#### --wandb_group +#### --wandb_run +#### --backbone_type +#### --learning +#### --momentum +#### --w_decay +#### --augmentation +#### --flip +#### --cropandpad +#### --rotate +#### --noise +#### --gamma +#### --contrast \ No newline at end of file -- GitLab