
Manual for MRCNN

Version: 13.11.2023

Editor: Stepan Sibirtsev

This manual works for non-cluster users. If you want to run MRCNN on your

personal or office computer, this manual guides you through the installation and

application of MRCNN. If you're going to run MRCNN on a cluster, please check the

manual for cluster users. We recommend training the MRCNN models on a GPU

instead of a CPU to reduce the time required. If you have the opportunity, you should

train your MRCNN models on a GPU cluster, especially if a sensitivity analysis, e.g.,

hyperparameter tuning (see our paper), is performed. Image evaluation with the

MRCNN models trained on a GPU can also be performed on a CPU. The

evaluation is less computationally time-consuming than training, so it works well on a

CPU.

These instructions are adapted to Windows as an operating system and Visual

Studio Code (VSC) as a source code editor. However, MRCNN can also be run on

Linux, and any source code editor can be used. The instructions must then be

adapted accordingly by the user.

Table of Contents

1 Installation3

1.1 MRCNN repository3

1.2 Visual Studio Code3

1.3 Python3

1.4 Anaconda3

1.5 Anaconda environment3

1.6 Assigning Anaconda environment4

1.7 VGG Image Annotator5

1.8 Weights & Biases (optional)5

2 Train MRCNN models6

2.1 Preparing images (important information!)Error! Bookmark not defined.

2.2 Preparing training/validation and testing sets6

2.3 Preparing Weights & Biases project (optional)8

2.4 MRCNN training8

3 Image evaluation9

3.1 Preparing data9

3.2 Processing images with MRCNN model9

3.3 Processing images from the manual evaluation with VIA10

3.4 Evaluating MRCNN detection performance10

4 Appendix11

4.1 Description of MRCNN repository folders and files11

4.2 MRCNN training and processing parameters13

1 Installation

1.1 MRCNN repository

Download all folders and files from the MRCNN repository to a folder of your

choice on your personal or office computer. You can find some description of the

repository folders and files in Table 1.

1.2 Visual Studio Code

Download and install Visual Studio Code: https://code.visualstudio.com/

1.3 Python

1) Start the Visual Studio Code.

2) Switch to the "Extensions" tab in the bar on the left of VSC.

3) Search for Python and install it.

4) Sometimes, it is helpful to restart the source code editor or the computer after

installation.

1.4 Anaconda

1) Visit the Anaconda download page: https://www.anaconda.com/download

2) Download the Windows version from the download page and install it. When

installing, be sure to select "Install for: Just Me" (so the installation also works

on the office computer/server without admin rights) and select "Add Anaconda to

my PATH environment variable".

3) For further assistance, visit Installing Anaconda on Windows Tutorial:

https://www.datacamp.com/tutorial

1.5 Anaconda environment

We install the anaconda environment from a YML file, which ensures that the

appropriate and compatible packages are installed directly and automatically into

the environment, avoiding errors and saving time. We provide suitable YML files

depending on the operating system (Windows and Linux) and calculation device

(GPU and CPU) located in the environment folder of the MRCNN repository.

https://code.visualstudio.com/

1) Decide whether you want to run MRCNN on CPU or GPU. If you want to run

MRCNN on GPU, find out which GPU you have, AMD or Nvidia.

2) Choose the suitable environment located in the environment folder of the MRCNN

repository:

a) Windows & AMD GPU: env_mrcnn_windows_gpu_amd.yml

b) Windows and Nvidia GPU: env_mrcnn_windows_gpu_nvidia.yml

c) Windows and CPU: env_mrcnn_windows_cpu.yml

3) Start the Visual Studio Code and install the suitable environment as follows via

the corresponding <FileName>.yml file:

4) In the source code editor, navigate to the <FolderName> folder where the

<FileName>.yml file is stored (the '...' are very important here to get into the

folder):

cd '...\<FolderName>\'

5) Create the environment for MRCNN with Anaconda based on the

<FileName>.yml file:

conda env create -f <FileName>.yml

6) Check the list of environments for the installed environment to verify whether the

installation worked correctly. The environment name is the <FileName> of the

used YML file.

conda env list

7) Sometimes it is helpful to restart the source code editor or the computer after

installation.

8) For further assistance, visit the Managing Environments Tutorial:

https://docs.conda.io/projects/conda/en/4.6.1/user-guide/tasks/manage-

environments.html#create-env-file-manually

1.6 Assigning Anaconda environment

1) Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN

repository with the Visual Studio Code.

2) Depending on your VSC version, there are several ways to assign the installed

Anaconda environment to the MRCNN Python scripts:

a) Specify the Python default interpreter path for your workspace:

Press "Ctrl + Shift +P" → enter "Preferences: Open User Settings" →

navigate to "Workspace → Extensions → Python" → enter the Default

Interpreter Path of the Anaconda environment (e.g.:

"C:\Anaconda3\envs\env_mrcnn_windows_gpu_nvidia\python.exe").

b) Assign the Anaconda environment to the MRCNN Python scripts individually:

i) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,

navigate to classes/droplet/, and open the train_droplet.py script.

ii) Assign the Anaconda environment to the train_droplet.py script:

Press "Ctrl + Shift + P" → enter "Python: Select Interpreter" → select the

installed Anaconda environment (e.g.: Python 3.6.10

(env_mrcnn_windows_gpu_nvidia)

iii) Repeat steps 2-3 if necessary for the scripts proces_manual_droplet.py

and process_automated_droplet.py

1.7 VGG Image Annotator

VGG Image Annotator (VIA) is used to manually mark the droplets in images to

create a JSON file that contains the marked droplets as coordinates. This JSON

file and the corresponding images are used to train and test the MRCNN. In our

work, we use VIA version 1.0.6. You can open this VIA version under the

following link and use it in your internet browser:

https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html

For further assistance and information, visit:

https://www.robots.ox.ac.uk/~vgg/software/via/

1.8 Weights & Biases (optional)

Weights & Biases is used to track the sensitivity analysis (see our paper) and to

get an overview of the performance of the trained models. Weights & Biases is

not necessary but useful, e.g., to easily compare the model performance to each

other. You can create a Weights & Biases account under the following link:

https://wandb.ai/site

For further assistance and information, visit:

https://docs.wandb.ai/

https://wandb.ai/site
https://docs.wandb.ai/

2 Train MRCNN models

2.1 Preparing training/validation and testing sets

1) Important information before procedure:

- If you need to crop the images, do it before manually evaluating them with the

VIA (section 2.1). You can use the contrast_normalization.py script to crop

images if required. The script is located in the following folder of the MRCNN

repository:

…/pre_processing/contrast_normalization/

- The pre-processing method CLAHE can also be applied after evaluating the

images manually with the VIA (section 2.1).

- Training/validation images should not exceed a size of approx. 1MB.

Otherwise, problems may occur during training depending on the GPU used

due to excessive data volume (allocation of data for several epochs on GPU

memory). This point does not apply to the images you want to evaluate with

the MRCNN model.

- The image resolution does not have to be the same within an image quality

- If you want to train MRCNN on several image qualities, e.g., for MRCNN

generalization, individual data sets must be created (section 2.1), one

training/validation and one testing data set for each image quality.

Moreover, each training/validation data set must contain the same number of

images.

- The number of images within a training/validation data set multiplied with

the MRCNN parameter dataset_quantity (s. Table 2) and divided by the

MRCNN parameter k_fold (s. Table 2) must result in a whole number because

the number of images in each fold must correspond to a whole number and

must be the same size.

2) Split images into a training/validation and a testing data set, e.g., 90% of

images to training/validation data set and 10% to testing data set, and store the

data sets in respective folders, e.g., a training and a testing folder. If you want to

train MRCNN on several image qualities, individual data sets must be created,

one training/validation and one testing data set for each image quality.

3) Manually evaluate the images of each training/validation and testing data set

using the VIA program. Proceed as follows for each individual data set:

a) Open the VIA program in the internet browser and load the images of the data

set via the "Image" → "Load or Add Images" tab.

b) Use the appropriate "Region Shape" to mark the object to be trained (e.g.,

drops) in each image.

c) Save the manual evaluation under the "Annotation" → "Save as JSON" tab

respectively as train.json or test.json file in the corresponding folder.

4) If you want to use the pre-processing method CLAHE on your training/validation

dataset, you have to process the images at this point as follows. Otherwise, skip

this step.

a) Copy the training/validation images to the downloaded MRCNN repository

under the following path:

…/pre_processing/contrast_normalization/input/

b) Open the contrast_normalization.py script and specify the script parameter.

Run the script. The processed output images are saved in the following folder:

…/pre_processing/contrast_normalization/output/

5) Store the training files (training/validation images and train.json files, see chapter

2.1) in the downloaded MRCNN repository under the following paths, depending

on the number of image qualities i:

- .../datasets/input/<FolderName>/original/Quality_1

- .../datasets/input/<FolderName>/original/Quality_2

- …

- .../datasets/input/<TrainValidationFolderName>/original/Quality_i

Each “Quality_i” folder must contain the same number of images and one

corresponding JSON file.

If you have only one image quality, you have only one training/validation image

set and thus only the folder “Quality_1”.

If you use the CLAHE, the paths change as follows:

.../datasets/input/<FolderName>/clahe/Quality_i

6) The manually evaluated testing files (testing images and test.json files) are used

in section Error! Reference source not found..

2.2 Preparing Weights & Biases project (optional)

Visit your Weights & Biases account and create a new project. The YML

environment files in our MRCNN repository include all necessary Weights &

Biases packages.

2.3 MRCNN training

1) Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN

repository with the Visual Studio Code.

2) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,

navigate to classes/droplet/, and open the train_droplet.py script.

3) Specify input training parameters under the "input training parameters" section

in the train_droplet.py script. For a description and default settings of the training

parameters, see Table 2.

4) Click on the "Terminal" tab at the top bar of the VSC and open a new terminal via

"New Terminal".

5) Click on the "Run" tab at the top bar of the VSC and execute the script via "Run

Without Debugging".

6) As soon as the script is finished, the output files of the MRCNN training are saved

in the following folder:

.../models/<WeightsFolderName>/

The output files include an Excel file and the weights of each epoch in H5 file

format. The Excel file lists the distribution of the input images to the folds. Each

epoch corresponds to one MRCNN model.

3 Image evaluation

3.1 Preparing data

1) For image processing with an MRCNN model, store the images you want to

evaluate, e.g., images of the testing data set, in the following folder:

...\datasets\input\<EvaluationFolderName>

2) For processing images from the manual evaluation with VIA, store the images of

the testing data set with the corresponding JSON file in the following folder:

…\datasets\input\<EvaluationFolderName>

3.2 Processing images with MRCNN model

1) Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN

repository with the Visual Studio Code.

2) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,

navigate to classes/droplet/, and open the process_automated_droplet.py

script.

3) Specify input processing parameters under the "input processing parameters"

section in the process_automated_droplet.py script. For a description and

default settings of the processing parameters, see Table 3.

4) Click on the "Terminal" tab at the top bar of the VSC and open a new terminal via

"New Terminal".

5) Click on the "Run" tab at the top bar of the VSC and execute the script via "Run

Without Debugging".

6) As soon as the script is finished, the output files of the MRCNN training are saved

in the following folder:

.../datasets/output/<OutputFolderName>/

The output files include an Excel file and the evaluated images. The Excel file lists

the sizes of the detected droplets. The detected droplets are marked in the

evaluated images.

3.3 Processing images from the manual evaluation with

VIA

7) Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN

repository with the Visual Studio Code.

8) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,

navigate to classes/droplet/, and open the process_manual_droplet.py script.

9) Specify input processing parameters under the "input processing parameters"

section in the process_automated_droplet.py script. For a description and

default settings of the processing parameters, see Table 3.

10) Click on the "Terminal" tab at the top bar of the VSC and open a new terminal via

"New Terminal".

11) Click on the "Run" tab at the top bar of the VSC and execute the script via "Run

Without Debugging".

12) As soon as the script is finished, the output files of the MRCNN training are saved

in the following folder:

.../datasets/output/<OutputFolderName>/

The output files include an Excel file and the evaluated images. The Excel file lists

the sizes of the droplets from the manual evaluation with VIA. The droplets from

the manual evaluation with VIA are marked in the evaluated images.

3.4 Evaluating MRCNN detection performance

To evaluate the detection performance of an MRCNN model, you compare the

results of the image processing with the MRCNN model (excel output file and

evaluated images from section 3.2) with the results of image processing from the

manual evaluation with VIA (excel output file and evaluated images from section

3.2). For a qualitative evaluation, you compare the images. For a quantitative

evaluation, the Excel output files. This procedure is performed for all

epochs/models of the training with a specific training and processing parameter

set to identify the epoch/model with the best detection performance. Analogously,

the entire process (training, processing, and evaluation) is carried out with

modified training and processing parameters to identify the most suitable

parameters. For further information, please read our papers.

4 Appendix

4.1 Description of MRCNN repository folders and files

Table 1: Description of MRCNN repository folders and files

Folder/file name Description

classes Folders for classes, e.g., droplet, are located here

…/droplet Script files for the class droplet are located here

…/…/train_droplet.py Script file for training the MRCNN on the class droplet

…/…/process_automated_droplet.py Script file for automated processing of images with the

trained MRCNN to detect the class droplet

…/…/process_manual_droplet.py Script file for manual processing of images with marked

droplets used the VGG Image Annotator

database This folder is an archive folder only. The MRCNN has no

access to this folder during the training. Databases for

MRCNN training are located in a different folder. Here,

each database folder contains a ZIP file with images of

droplets and the corresponding JSON file with the

manually marked droplets. In this folder, you can find the

database used in our work/publications. Moreover, you

can upload your database here to share it with other

users.

datasets Input files for the MRCNN training as well as input and

output files for the MRCNN processing are located here.

…/input Input files (images and corresponding JSON file) for the

MRCNN training and processing are located here. The

input files must be stored in a folder. The folders must

have the following folder structure.

For training, depending on the number of image qualities

i:

- datasets/input/<FolderName>/original/Quality_1/

- datasets/input/<FolderName>/original/Quality_2/

- ….

Each “Quality_i” folder must contain the same number of

images and one, corresponding JSON file. The number

of images multiplied with the MRCNN parameter

dataset_quantity (s. Table 2) and divided by the MRCNN

parameter k_fold (s. Table 2) must result in an integer

(whole number). If the CLAHE is used the folder

structure changes to:

- datasets/input/<FolderName>/clahe/Quality_1/

- …

For processing:

datasets/input/<FolderName>/

For manual processing, folder must contain images and

one, corresponding JSON file. For automated

processing, folder must contain images.

…/input Contains folders with processing results. The folder

names are defined in the corresponding .py script by the

user.

environment Contains the environment .yml files suitable for the

operating system Windows and Linux and calculation

devices CPU and GPU (AMD and Nvidia).

…/env_mrcnn_linux_cpu.yml Environment for Linux and CPU

…/env_mrcnn_linux_gpu.yml Environment for Linux and GPU

…/env_mrcnn_windows_cpu.yml Environment for Windows and CPU

…/env_mrcnn_windows_gpu_amd.yml Environment for Windows and AMD GPU

…/env_mrcnn_windows_gpu_nvidia.yml Environment for Windows and Nvidia GPU

manual Manuals are located here. Moreover, example JOB file

for clusterjob on RWTH HPC cluster is located here.

models The trained MRCNN models are saved and stored here.

…/benchmark MRCNN benchmark models trained on one specific

image quality are located here.

…/coco MRCNN model trained on the COCO database is

located here.

…/generalization MRCNN generalized models trained on several image

qualities are located here.

mrcnn MRCNN architecture is located in this folder.

…/__init__.py -

…/config.py Base configuration class of MRCNN. All MRCNN

training parameter are located here.

…/model.py The main MRCNN model implementation.

…/parallel_model.py Multi-GPU Support for Keras.

…/utils.py Common utility functions and classes.

…/visualize.py Display and visualization functions.

pre_processing Consists separate scripts for pre-preocessing, e.g., the

CLAHE

LICENSE License.

MRCNN.code-workspace Workspace.

4.2 MRCNN training and processing parameters

Table 2: MRCNN training parameters

Parameter Description Default value

(best practice)

Cluster = <Boolean>

Is the script executed on the cluster?

E.g., RWTH High Performance

Computing cluster?

True = yes, False = no

False

file_format = <FileFormat> File format of images “jpg”

dataset_path = <InputFolderName>

Input dataset folder located in path:

"...\datasets\input\..."

“test”

new_weights_path = <WeightsFolderName> output weights folder located in path:

"...\models\…

Weights of the individual epochs =

MRCNN models

“test”

name_result_file = <ExcelFileName> Name of the excel output file located

in path:

"...\models\<WeightsFolderName>\".

This excel file shows the distribution

of the input images to the folds.

“test”

masks = <Boolean> Generate detection masks?

True = yes, False = no

False

device = <Boolean> Use GPU or CPU?

True = GPU, False = CPU

True

epochs = <NumberEpochs> Epochs to train 50

early_stopping = <Integer> Should early stopping be used?

0 = no, otherwise value is number of

epochs without improvement

0

early_loss = <LossName> Loss monitored by early stopping "val_loss"

base_weights = <WeightsName> Base weights the training starts from “coco”

dataset_quantity = <QuantityDataset> Percentage of the training dataset to

be used for training [%], e.g., to

determine minimum required number

of images in training/validation set for

accurate detection performance

100

use_wandb = <Boolean> Use Weights & Biases to track

training data? True = yes, False = no

False

wandb_entity = "test" Enter W&B entity name (check

projects in Weights & Biases, entity

"test"

name is next to the project name)

wandb_project = "test" Enter W&B project name "test"

wandb_group = "test" Enter group name within the W&B

project

"test"

wandb_name = "test" Enter run name within the group of

W&B project

"test"

cross_validation = <Boolean> Perform a k-fold cross-validation? If

you want to train the final models,

choose False. True = yes, False = no

True

k_fold = <NumberFolds> Number of folds for k-fold cross

validation

5

k_fold_val = <FoldNumber> Validation fold. Starting with 0. The

remaining folds are training folds

0

backbone_type = <Integer> backbone (see BACKBONE

parameter in config.py).

0 = "resnet50", 1 = "resnet101"

0

train_all_layers = <Boolean> Which layers should be trained?

True = train all layers,

False = train only heads

True

images_gpu = <NumberImages> Number of images used to train the

model on each GPU. If only one GPU

is used, this parameter is equivalent

to batch size (see BATCH_SIZE

parameter in config.py). A 12GB

GPU can typically handle 2 images of

1024x1024px resolution. Adjust this

parameter based on your GPU

memory and image resolution.

1

learning = <Integer> Learning rate (see

LEARNING_RATE parameter in

config.py).

0 = 0.01, 1 = 0.001, 2 = 0.0001

1

image_max = <Integer> Image resolution (see

IMAGE_MAX_DIM parameter in

config.py). Select the closest value

corresponding to the largest side of

the image.

0 = 512, 1 = 1024, 2 = 2048

1

momentum = <Integer> Learning momentum (see

LEARNING_MOMENTUM parameter

in config.py).

1

0 = 0.8, 1 = 0.9, 2 = 0.99

w_decay = <Integer> Weight decay (see WEIGHT_DECAY

parameter in config.py).

0 = 0.0001, 1 = 0.001, 2 = 0.01

0

augmentation = <Boolean> Use augmentation methods?

True = yes, False = no

False

flip = <Integer> Use augmentation method flip?

0 = no, 1 = (0.5, 0.5)

0

cropandpad = <Integer> Use augmentation method crop?

0 = no, 1 = (-0.25, 0), 2 = (-0.1, 0)

0

rotate = <Integer> Use augmentation method rotate?

0 = no, 1 = (-45, 45), 2 = (-90, 90)

0

noise = <Integer> Use augmentation method additive

Gaussian noise?

0 = no, 1 = 0.01, 2 = 0.02

0

gamma = <Integer> Use augmentation method gamma

contrast? 0 = no, 1 = yes

0

contrast = <Integer> Use contrast adjustment? 0 = no,

1 = contrast limited adaptive

histogram equalization,

2 = contrast stretching

0

Table 3: MRCNN processing parameters

Parameter Description Default value

(best practice)

Cluster = <Boolean>

Is the script executed on the cluster?

E.g., RWTH High Performance

Computing cluster?

True = yes, False = no

False

file_format = <FileFormat> File format of images “jpg”

dataset_path = <InputFolderName>

Input dataset folder located in path:

"...\datasets\input\..."

“test”

save_path = <OutputFolderName> Output images folder located in path:

"...\datasets\output\..."

“test”

name_result_file = <ExcelFileName> Name of the excel output file located

in path:

"...\models\<WeightsFolderName>\".

This excel file shows the distribution

of the input images to the folds.

“test”

weights_path = <WeightsFolderName> Folder of the MRCNN model located “test”

in: "...\models\..."

Weights of the individual epochs =

MRCNN models

weights_name = <ModelName> MRCNN model name located in

path: "models\

“test”

masks = <Boolean> Generate detection masks?

True = yes, False = no

False

device = <Boolean> Use GPU or CPU?

True = GPU, False = CPU

True

save_nth_image = <Integer> Save n-th result image 1

pixelsize = <Double> Pixel size in [µm/px].

To read from Sopat log file enter

pixelsize = 0 (Sopat generates a

JSON file with including information)

1

image_crop = <Coordinates> Do you want the image to be center

cropped before detection?

no = None, yes = (x, y) coordinates

(e.g.: image_crop = (1000, 1500))

None

images_gpu = <NumberImages> Number of images used to evaluate

with the MRCNN model on each

GPU. If only one GPU is used, this

parameter is equivalent to batch size

(see BATCH_SIZE parameter in

config.py). A 12GB GPU can typically

handle 2 images of 1024x1024px

resolution. Adjust this parameter

based on your GPU memory and

image resolution.

1

image_max = <Integer> Image resolution (see

IMAGE_MAX_DIM parameter in

config.py). Select the closest value

corresponding to the largest side of

the image.

0 = 512, 1 = 1024, 2 = 2048

1

confidence = <Double> Skip detections with confidence <

specified confidence parameter value

0.7

detect_reflections = <Boolean> Detect and mark reflections in

droplets? The detected reflections

are excluded from the evaluation and

do not appear in the excel output file.

Marking color is blue.

False

True = yes, False = no

detect_oval_droplets = <Boolean> Detect and mark oval droplets?

The detected oval droplets are

excluded from the evaluation and do

not appear in the excel output file.

Marking color is red.

True = yes, False = no

True

min_aspect_ratio = <Double> Minimum aspect ratio: filter for

elliptical shapes

0.9

detect_adhesive_droplets = <Boolean> Detect and mark adhesive droplets?

The detected adhesive droplets are

excluded from the evaluation and do

not appear in the excel output file.

Marking color is orange.

True = yes, False = no

False

save_coordinates = <Boolean> Save coordinates of detected

adhesive droplets in excel output

file? True = yes, False = no

False

min_velocity = <Double> Minimum velocity: threshold to filter

adhesive droplets minimum distance

[% of droplet mean diameter] that a

droplet has to travel between 2

frames

0.3

min_size_diff = <Double> Minimum size difference: threshold to

filter adhesive droplets [%] to be

considered a different droplet

0.3

n_images_compared = <Integer> Number of images that are being

compared. This is necessary

because adhesive droplets may not

get detected every frame.

3

n_adhesive_high = <Integer>

n_adhesive_low = <Integer>

low_distance_threshold = <Double>

Number of times a droplet has to be

detected at a similar position to be

defined as adhesive.

3

2

0.05

edge_tolerance = <Double> Edge threshold: filter for image

border intersecting droplets. Image

border intersecting droplets are

marked in color red.

contrast = <Integer> Use contrast adjustment? 0 = no,

1 = contrast limited adaptive

histogram equalization,

2 = contrast stretching

0

