Manual for MRCNN (cluster users)

Version: 13.11.2023

Editor: Stepan Sibirtsev

This manual works for cluster users. If you want to run MRCNN on a cluster, this
manual guides you through the installation and application of MRCNN. If you're
going to run MRCNN on your personal or office computer, please check the manual
for non-cluster users. We recommend training the MRCNN models on a GPU instead
of a CPU to reduce the time required. If you have the opportunity, you should train
your MRCNN models on a GPU cluster, especially if a sensitivity analysis, e.g.,
hyperparameter tuning (see our paper), is performed. Image evaluation with the
MRCNN models trained on a GPU can also be performed on a CPU. The evaluation

is less computationally time-consuming than training, so it works well on a CPU.

These instructions are adapted to Linux as an operating system and RWTH HPC as
cluster. However, if the cluster you use applies the SLURM as workload manager/job
scheduler, these instructions are easy to adapt to the cluster you use.



Table of Contents

1

INSTAIIALION ... 3
1.1 CONNECHON O CIUSTEN ...ttt eannnane 3

L1110 WINSCP . 3

11,2 FASEX i 3
1.2 MRCNN FEPOSIIONY .. ceiieiiiieiee et et e e et e e e e e e e e e et b e e e e e eeeeennnes 4
IR B Y o - Voo ] o = USSP 4
1.4 ANAcoNda ENVIFONMENT .....uuuueieie e e eeeeeeiiiiee e e e e e e e et e e e e e e e e eeeaesan e e e eeeeeeeenees 5
1.5 VGG IMAge ANNOLALOL ....coeeiiiieiiiii et e e e e e eaaans 5
1.6 Weights & Biases (OPIONAI) .......ccoeiiiiiiiiiiiiiiee e 6

Train MRCNN MOEIS ... .o e e e e eeeeees 6
2.1 Preparing training/validation and testing data Sets.............ccccceeeeeieeiiieeeeeeeen, 6
2.2 Preparing Weights & Biases project (optional)...........cooooovviiiiii, 8
2.3 Testing MRCNN ©XECULION.........ccouiiiiiiii e ee e e e e 8
2.4 Creating @ CIUSEET JOD .......uiii i 9
2.5 Submitting @ ClUSter JOD........ccoiii s 10

IMAQGE EVAIUALION ... e e e e e e e e e et e e e e e e eeeannes 10
3.1 Preparing data ...........uuuiiiiiieiiiiiiee e 10
3.2 Creating a ClUSTEr JOD ......ciii e 11
3.3 Submitting @ CIUSLEr JOD......ccooviiiiiiiiiii 11
3.4 Evaluating MRCNN detection performance ..........cccccvvvvveeiiiiiiiiiiieeeeeeeeeeeeeen 12

APPENAIX e 13
4.1 Description of MRCNN repository folders and files ...........ccccccvvvviiiiiiiiinnnnn. 13
4.2 Terminal COMMANGAS ......ccoiiiiiiiiiie e e e e e e e e e eees 15
4.3 SLURM and job parameters...........oeevviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee e 15

4.4 MRCNN training and processing ParametersS...........ceuveeveeeeeeeeeeeeeeeeeeeeeeeeeee. 16



1 Installation

1.1 Connection to cluster

Get an HPC cluster account: https://help.itc.rwth-
aachen.de/service/rhr4fijjutttf/article/14573fc745ee478ba855539¢240108b6/

There are several ways to connect and communicate with the cluster. | prefer

WinSCP for remote file transfer and FastX as desktop client for job submission etc.

1.1.1 Win SCP

1) Visit the WinSCP download page, download and install WinSCP:
https://winscp.net/eng/download.php

2) WIinSCP setup/preparation:
a) Host name: e.g., login18-x-1.hpc.itc.rwth-aachen.de
b) Port number: 22
c) User name: e.g., ab123456 (TIM identifier)
d) Password: your RWTHonline password
3) For further assistance, visit WinSCP Tutorial:
https://help.itc.rwth-
aachen.de/service/slOpOu7tdi5s/article/9229ea232b5f4a1c99ddd57c07a929cb/

1.1.2 FastX

1) Visit the FastX download page, download and install FastX:

https://www.starnet.com/download/fastx-client

2) FastX setup/preparation:
a) Host: e.g., login18-x-1.hpc.itc.rwth-aachen.de
b) User: e.g., ab123456 (TIM identifier)
c) Port number: 22
d) Name: any name
e) Password: your RWTHonline password
3) For further assistance, visit WinSCP Tutorial:
https://help.itc.rwth-
aachen.de/service/rhrafjjutttf/article/25f576374f984c888bb2a01487fef193/



https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/14573fc745ee478ba855539c240108b6/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/14573fc745ee478ba855539c240108b6/
https://winscp.net/eng/download.php
https://help.itc.rwth-aachen.de/service/sl0p0u7tdi5s/article/9229ea232b5f4a1c99ddd57c07a929cb/
https://help.itc.rwth-aachen.de/service/sl0p0u7tdi5s/article/9229ea232b5f4a1c99ddd57c07a929cb/
https://www.starnet.com/download/fastx-client
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/25f576374f984c888bb2a01487fef193/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/25f576374f984c888bb2a01487fef193/

1.2 MRCNN repository

1) Download all folders and files from the MRCNN repository. Connect to the
cluster via WinSCP and transfer the downloaded MRCNN repository to a folder of
your choice on the cluster. You can find some description of the repository folders
and files in Table 1.

2) Navigate to the path "...\samples\droplet" and open the train_droplet.py script.
Set the variable cluster to True (cluster=True), save and close the script.

3) Repeat step 2 for the scripts process_automated_droplet.py and

proces_manual_droplet.py

1.3 Anaconda

1) Connect to the cluster via FastX (Launch Session > XFCE)
2) Visit the Anaconda download page on the cluster:
https://www.anaconda.com/download
3) Select the Linux version on the download page and copy the download link.
4) Launch terminal, navigate to the home directory, create a temporary (tmp) folder
and navigate to it:
$cd~
$ mkdir tmp
$ cd tmp
5) Download Anaconda bash script into the tmp folder using the copied Anaconda
download link:
$ wget https://repo.continuum.io/archive/Anaconda3<Release>.sh
6) Navigate to the folder where the bash script was saved and install Anaconda
using the downloaded bash script:
$ Is Anaconda3<Release>.sh (it's a small L, not an |)
$ bash Anaconda3<Release>.sh
7) Restart terminal and verify the installation:
$cd~
$ source .bashrc
$ python
8) If the Anaconda installation was successful, the following is displayed:
Python 3.6.5 |Anaconda, Inc.|...



9)

Exit Python:
$ exit()

10)For further assistance, visit Installing Anaconda on Linux Tutorial:

https://problemsolvingwithpython.com/01-Orientation/01.05-Installing-Anaconda-

on-Linux/

1.4 Anaconda environment

1)
2)
3)

4)

5)

6)

7

We install the anaconda environment from a YML file, which ensures that the
appropriate and compatible packages are installed directly and automatically into
the environment, avoiding errors and saving time. We provide suitable YML files
depending on the calculation device (GPU and CPU) located in the environment
folder of the MRCNN repository.

Connect to the cluster via FastX (Launch Session - XFCE)

Decide whether you want to run MRCNN on CPU or GPU

Choose the suitable environment located in the environment folder of the
MRCNN repository:

a) Linux & GPU: env_mrcnn_linux_gpu.yml

b) Linux and CPU: env_mrcnn_linux_cpu.yml

Navigate to the folder where the <FileName>.yml file is stored and open a
terminal there (right-click > open terminal here)

Create the environment for MRCNN with Anaconda based on the
<FileName>.yml file:

$ conda env create -f <FileName>.ym|

Check whether Anaconda environment has been installed:

$ conda env list

For further assistance, visit the Managing Environments Tutorial:
https://docs.conda.io/projects/conda/en/4.6.1/user-guide/tasks/manage-

environments.html#create-env-file-manually

1.5 VGG Image Annotator

VGG Image Annotator (VIA) is used to manually mark the droplets in images to
create a JSON file that contains the marked droplets as coordinates. This JSON
file and the corresponding images are used to train and test the MRCNN. In our

work, we use VIA version 1.0.6. You can open this VIA version under the


https://problemsolvingwithpython.com/01-Orientation/01.05-Installing-Anaconda-on-Linux/
https://problemsolvingwithpython.com/01-Orientation/01.05-Installing-Anaconda-on-Linux/

following link and use it in your internet browser:
https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html
For further assistance and information, visit:

https://www.robots.ox.ac.uk/~vgg/software/via/

1.6 Weights & Biases (optional)

2

Weights & Biases is used to track the sensitivity analysis (see our paper) and
to get an overview of the performance of the trained models. Weights & Biases is
not necessary but useful, e.g., to easily compare the model performance to each
other. You can create a Weights & Biases account under the following link:

https://wandb.ai/site

For further assistance and information, visit:

https://docs.wandb.ai/

Train MRCNN models

2.1 Preparing training/validation and testing data sets

1)

The preparation of data sets is performed on your personal or office computer.

Important information before procedure:

If you need to crop the images, do it before manually evaluating them with the

VIA (section 2.1). You can use the contrast_normalization.py script to crop

images if required. The script is located in the following folder of the MRCNN

repository:

...Ipre_processing/contrast_normalization/

- The pre-processing method CLAHE can also be applied after evaluating the
images manually with the VIA (section 2.1).

- Training/validation images should not exceed a size of approx. 1MB.

Otherwise, problems may occur during training depending on the GPU used

due to excessive data volume (allocation of data for several epochs on GPU

memory). This point does not apply to the images you want to evaluate with

the MRCNN model.

- The image resolution does not have to be the same within an image quality


https://wandb.ai/site
https://docs.wandb.ai/

2)

3)

4)

5)

- If you want to train MRCNN on several image qualities, e.g., for MRCNN
generalization, individual data sets must be created (section 2.1), one
training/validation and one testing data set for each image quality.
Moreover, each training/validation data set must contain the same number of
images.

- The number of images within a training/validation data set multiplied with
the MRCNN parameter dataset_quantity (s. Table 5) and divided by the
MRCNN parameter k_fold (s. Table 5) must result in a whole number
because the number of images in each fold must correspond to a whole
number and must be the same size.

Split images into a training/validation and a testing data set, e.g., 90% of

images to training/validation data set and 10% to testing data set, and store the

data sets in respective folders, e.g., a training and a testing folder. If you want to
train MRCNN on several image qualities, individual data sets must be created,
one training/validation and one testing data set for each image quality.

Manually evaluate the images of each training/validation and testing data set

using the VIA program. Proceed as follows for each individual data set:

a) Open the VIA program in the internet browser and load the images of the data
set via the "Image" — "Load or Add Images" tab.

b) Use the appropriate "Region Shape" to mark the object to be trained (e.g.,
drops) in each image.

c) Save the manual evaluation under the "Annotation" — "Save as JSON" tab
respectively as train.json or test.json file in the corresponding folder.

If you want to use the pre-processing method CLAHE on your training/validation

dataset, you have to process the images at this point as follows. Otherwise, skip

this step.

a) Copy the training/validation images to the downloaded MRCNN repository
under the following path:

...Ipre_processing/contrast_normalization/input/

b) Open the contrast_normalization.py script and specify the script parameter.
Run the script. The processed output images are saved in the following folder:
...Ipre_processing/contrast_normalization/output/

Connect to the cluster via WinSCP



6) Store the training files (training/validation images and train.json files) in the
downloaded MRCNN repository on the cluster under the following paths,
depending on the number of image qualities i:
- .../datasets/input/<FolderName>/original/Quality 1
- .../datasets/input/<FolderName>/original/Quality_2
- .../datasets/input/<TrainValidationFolderName>/original/Quality i
Each “Quality_i” folder must contain the same number of images and one
corresponding JSON file.
If you have only one image quality, you have only one training/validation image
set and thus only the folder “Quality _1".
If you use the CLAHE, the paths change as follows:
.../datasets/input/<FolderName>/clahe/Quality i

7) The manually evaluated testing files (testing images and test.json files) are used

in section 3.

2.2 Preparing Weights & Biases project (optional)

This step is performed on your personal or office computer. The YML environment

files in our MRCNN repository include all necessary Weights & Biases packages.

1) Visit your Weights & Biases account and create a new project.

2) If you want to perform a grid search, create a new “sweep”. Otherwise, skip this
step. You can find an example for the sweep configuration in the
sweep_example.txt file located in the templates folder of the downloaded
MRCNN repository. For a description and default settings of the training
parameters, see Table 5. For further assistance, visit the Seeps Tutorial:

https://docs.wandb.ai/guides/sweeps

2.3 Testing MRCNN execution

We recommend to perform this step before finally submitting the training jobs to the

cluster in order to test whether MRCNN is executed on cluster correctly.

1) Connect to the cluster via FastX (Launch Session - XFCE) and launch a

terminal



2)

3)

4)

5)

6)

7

8)
9)

Connect to a GPU node (if job will be performed on CPU, skip this step):

$ ssh -I <Userld> <NodeName>.hpc.itc.rwth-aachen.de

(HPC GPU nodes: https://help.itc.rwth-
aachen.de/service/rhrafjjutttf/article/3fb4cb953142422dbbb656¢1c3253cff/)
Load the Cuda modul (if job will be performed on CPU, skip this step):

$ module load cuda/10.0

Export the path in which Anaconda is located:

$ export PATH=$PATH:/home/<UserID>/anaconda3/bin

Activate Anaconda environment:

$ source activate env_mrcnn_gpu (for GPU job) or

$ source activate env_mrcnn_cpu (for CPU job)

Navigate to the path where the train_droplet.py script is located:

$ cd /home/<UserID>/.../[samples/droplet/

Execute the train_droplet.py script with memory tracker:

$ r_memusage python train_droplet.py --
dataset_path=<TrainValidationFolderName> --file_format=<FileFormat> --
image_max=<Integer> --images_gpu=<Integer> --device=<Boolean>

Enter command in one piece. These are the required training parameters to be
specified. Description/default settings of all training parameters see Table 5.
Cancel after 10 minutes with “Ctrl + Shift + C”

Round up the entry for "peak usage: physical memory" to gigabytes and the

calculation time per epoch to minutes, and remember/note the values.

2.4 Creating a cluster job

1)

2)

3)

Create a <FileName>.job file on your personal or office computer and open it
with Notepad, Visual Studio Code or an alternative text editor. You can find
examples and templates of the JOB files in the templates folder of the
downloaded MRCNN repository.

Change the <FileName>.job file to Unix conversion. Otherwise, the cluster has
troubles to handle the file.

In Notepad click on Edit > EOL Conversion = Unix (LF).

Specify the #SBATCH, job and training parameters of the job (for
description/default settings of the parameters, see Table 3, Table 4 and

Table 5). Note the required training parameters to be specified.



4)
5)

Save the <FileName>.job file.
Connect to the cluster via WinSCP and transfer the <FileName>.job file to a

folder of your choice on the cluster.

2.5 Submitting a cluster job

1)
2)

3)

4)

5)
6)

7

3

Connect to the cluster via FastX (Launch Session - XFCE)

Navigate to the folder where the <FileName>.job file is stored and open a
terminal there (right-click = open terminal here)

Submit the job:

$ sbatch <FileName>.job

Check whether the job has arrived in the queue:

$ squeue -u <UserID>

As soon as the job starts, you will receive a notification by email.

As soon as the job is finished or is terminated due to an error, you will receive a
notification by email. The <FileName>.txt job output file with the documented job
history (terminal output of the MRCNN) is saved in the job output file folder
specified in the <FileName>.job file:
/home/<UserID>/.../<JobOutputFolderName>/

In case of a job termination, the <FileName>.txt job output file can give you
information about the occurring errors.

As soon as the job is finished, the output files of the MRCNN training are saved in
the following folder:

.../droplet_logs/<WeightsFolderName>/

The output files include an Excel file and the weights of each epoch in H5 file
format. The Excel file lists the distribution of the input images to the folds. Each

epoch corresponds to one MRCNN model.

Image evaluation

3.1 Preparing data

1)
2)

Connect to the cluster via WinSCP

For image processing with an MRCNN model, store the images you want to
evaluate, e.g., images of the testing data set, in the following folder on the cluster:
...\datasets\input\<ProcessingFolderName>



3) For processing images from the manual evaluation with VIA, store the images of
the testing data set with the corresponding JSON file in the following folder on the
cluster:

...\datasets\input\<ProcessingFolderName>

3.2 Creating a cluster job

6) Create a <FileName>.job file on your personal or office computer and open it
with Notepad, Visual Studio Code or an alternative text editor. You can find
examples and templates of the JOB files in the templates folder of the
downloaded MRCNN repository.

7) Change the <FileName>.job file to Unix conversion. Otherwise, the cluster has
troubles to handle the file.

In Notepad click on Edit > EOL Conversion - Unix (LF).

8) Specify the #SBATCH, job and processing parameters of the job (for
description/default settings of the parameters, see Table 3, Table 4 and
Table 6). Note the required training parameters to be specified. For
processing images with MRCNN model choose the
process_automated_droplet.py script. For processing images from the manual
evaluation with VIA choose the process_manual_droplet.py script.

9) Save the <FileName>.job file.

10)Connect to the cluster via WinSCP and transfer the <FileName>.job file to a

folder of your choice on the cluster.

3.3 Submitting a cluster job

8) Connect to the cluster via FastX (Launch Session > XFCE)

9) Navigate to the folder where the <FileName>.job file is stored and open a
terminal there (right-click = open terminal here)

10)Submit the job:
$ sbatch <FileName>.job

11)Check whether the job has arrived in the queue:
$ squeue -u <UserID>

12)As soon as the job starts, you will receive a notification by email.



13)As soon as the job is finished or is terminated due to an error, you will receive a
notification by email. The <FileName>.txt job output file with the documented job
history (terminal output of the MRCNN) is saved in the job output file folder
specified in the <FileName>.job file:
/home/<UserID>/.../<JobOutputFolderName>/

In case of a job termination, the <FileName>.txt job output file can give you
information about the occurring errors.

14)As soon as the job is finished, the output files of the MRCNN training are saved in
the following folder:

.../datasets/output/<OutputFolderName>/
The output files include an Excel file and the evaluated images. The Excel file lists
the sizes of the detected droplets. The detected droplets are marked in the

evaluated images.

3.4 Evaluating MRCNN detection performance

To evaluate the detection performance of an MRCNN model, you compare the
results of the image processing with the MRCNN model (excel output file and
evaluated images from section 3.2) with the results of image processing from the
manual evaluation with VIA (excel output file and evaluated images from section
3.2). For a qualitative evaluation, you compare the images. For a quantitative
evaluation, the Excel output files are compared. This procedure is performed for
all epochs/models of the training with a specific training and processing parameter
set to identify the epoch/model with the best detection performance. Analogously,
the entire process (training, processing, and evaluation) is carried out with
modified training and processing parameters to identify the most suitable
parameters. You can use the information about the MRCNN training at Weights &
Biases to get an overview of the training performance. For further information,

please read our papers.



4 Appendix

4.1 Description of MRCNN repository folders and files

Table 1: Description of MRCNN repository folders and files

Folder/file name Description
classes Folders for classes, e.g., droplet, are located here
.../droplet Script files for the class droplet are located here

.../...[train_droplet.py

Script file for training the MRCNN on the class droplet

...l...Jprocess_automated_droplet.py

Script file for automated processing of images with the
trained MRCNN to detect the class droplet

...l...IJprocess_manual_droplet.py

Script file for manual processing of images with marked
droplets used the VGG Image Annotator

database

This folder is an archive folder only. The MRCNN has no
access to this folder during the training. Databases for
MRCNN training are located in a different folder. Here,
each database folder contains a ZIP file with images of
droplets and the corresponding JSON file with the
manually marked droplets. In this folder, you can find the
database used in our work/publications. Moreover, you
can upload your database here to share it with other

users.

datasets

Input files for the MRCNN training as well as input and

output files for the MRCNN processing are located here.

...[input

Input files (images and corresponding JSON file) for the
MRCNN training and processing are located here. The
input files must be stored in a folder. The folders must
have the following folder structure.

For training, depending on the number of image qualities
i:
- datasets/input/<FolderName>/original/Quality_1/

- datasets/input/<FolderName>/original/Quality_2/

Each “Quality_i” folder must contain the same number of
images and one, corresponding JSON file. The number
of images multiplied with the MRCNN parameter
dataset_quantity (s. Table 5) and divided by the

MRCNN parameter k_fold (s. Table 5) must result in an

integer (whole number). If the CLAHE is used the folder
structure changes to:




- datasets/input/<FolderName>/clahe/Quality 1/

datasets/input/<FolderName>/

For manual processing, folder must contain images and
one, corresponding JSON file. For automated

processing, folder must contain images.

...Jlinput

Contains folders with processing results. The folder
names are defined in the corresponding .py script by the

user.

environment

Contains the environment .yml files suitable for the
operating system Windows and Linux and calculation
devices CPU and GPU (AMD and Nvidia).

.../env_mrcnn_linux_cpu.yml

Environment for Linux and CPU

.../Jenv_mrcnn_linux_gpu.yml

Environment for Linux and GPU

...lenv_mrcnn_windows_cpu.yml

Environment for Windows and CPU

.../lenv_mrcnn_windows_gpu_amd.yml

Environment for Windows and AMD GPU

.../lenv_mrcnn_windows_gpu_nvidia.yml

Environment for Windows and Nvidia GPU

manual Manuals are located here.

models The trained MRCNN models are saved and stored here.

.../benchmark MRCNN benchmark models trained on one specific
image quality are located here.

.../coco MRCNN model trained on the COCO database is

located here.

.../generalization

MRCNN generalized models trained on several image

qualities are located here.

mrcnn MRCNN architecture is located in this folder.

.../__init__.py -

.../config.py Base configuration class of MRCNN. All MRCNN
training parameter are located here.

.../model.py The main MRCNN model implementation.

...Iparallel_model.py Multi-GPU Support for Keras.

...Jutils.py Common utility functions and classes.

...Ivisualize.py Display and visualization functions.

pre_processing

Consists separate scripts for pre-preocessing, e.g., the
CLAHE

templates Templates and examples are located here, e.g., JOB file
for jobs on the RWTH HPC cluster.
LICENSE License.

MRCNN.code-workspace

Workspace.




4.2 Terminal commands

Table 2: Terminal commands

Command

Description

$ r_memusage <PythonScript>.py
To abort: Shift +Ctrl + C

Starts the Python script and returns the amount of

memory used after it was aborted

$ sbatch <JobScript>.job

Submit job

$ squeue -u <UserID>

Displays running jobs and jobs in the user's queue

$ scancel <JobID>

Cancel job

$ sinfo

Displays cluster status with the list of running jobs and

jobs in the queue

$r_wlm_usage -q

Display core hours consumption

4.3 SLURM and job parameters

Table 3: SLURM parameters (write #SBATCH before each parameter)

Parameter Description Default, example
or best practice
value

#1/usr/bin/zsh Must appear at the beginning of

every job script.
--account=<ProjectName> Submitting the job via a project |-
--job-name=<JobName> Job name test

--output=/home/<UserID>/.../%x_%J_output.txt |Storage location of the job -

execution output file.
"%x" takes the name of the file.
"%J" adds the job ID

--time=d-hh:mm:ss

Duration of the job in 0-03:00:00

days-hours:minutes:seconds

--mail-user=<EmailAdress>

Email address to receive -

information about job progress

--mail-type=BEGIN
--mail-type=END
--mail-type=ALL

Information about job progress  |ALL
that you would like to receive by

email

--ntasks=<NumberTasks>

For Processes/MPI. Number of |1

tasks

--mem-per-cpu=<AmountMemory>

Memory requirement per CPU 5
(not per task!), e.g. 10 G.
K(ilobyte)|G(igabyte)|T(erabyte)
Specify only for CP jobs.




--mem-per-gpu=<AmountMemory> Memory requirement per GPU 5

(not per task!), e.g., 10 G.
K(ilobyte)|G(igabyte)|T(erabyte)
Specify only for GPU jobs.

--gres=gpu:1l Number of GPUs required per 1

--gres=gpu:2 node. The partition is

automatically selected by the
SLURM system.
Specify only for GPU jobs.

--array=x-y Definition of the array job, starting |0-4

at 0

Table 4: Job parameters

Parameter

Description

export PATH=$PATH:/home/<UserID>/anaconda3/bin

Export path in which Anaconda is located

source activate <EnvironmentName>

Activate environment

cd /home/<UserID>/.../samples/droplet/

Navigate to the path where the droplet.py

script is located

python <ScriptName>.py
--<ScriptParameterNamel>=<ScriptParameterValuel>
--<ScriptParameterName2>=<ScriptParameterValue2>

--<ScriptParameterName3>=<ScriptParameterValue3>

Run a Python script with specified script
parameter. The Python script is the
train_droplet.py,
proces_manual_droplet.py or
process_automated_droplet.py script,
depending on the job. The script parameters
are training or processing parameters
depending on the script, see Table 5 and

Table 6. Write -- before each script parameter.

4.4 MRCNN training and processing parameters

Table 5: MRCNN training parameters (write

-- before each parameter)

required training parameters to be specified

Parameter Description Default,

example or
best practice

value

Computing cluster?
True=yes, False=no

Must be specified directly in the Python

cluster=<Boolean> Is the script executed on the cluster? True
E.g., RWTH High Performance




script.

1A ”

in Weights & Biases, entity name is next

to the project name)

file_format=<FileFormat> File format of images ipg
dataset_path=<InputFolderName> Input dataset folder located in path: ‘test_input”
"...\datasets\input\..."
new_weights_path=<WeightsFolderName> |output weights folder located in path: “weights”
"...\models\...
\Weights of the individual
epochs=MRCNN models
name_result_file=<ExcelFileName> Name of the excel output file located in {*folds”
path;
"...\models\<WeightsFolderName>\",
This Excel file shows the distribution of
the input images to the folds.
masks=<Boolean> Generate detection masks? False
True=yes, False=no
device=<Boolean> Use GPU or CPU? True
True=GPU, False=CPU
epochs=<NumberEpochs> Epochs to train 50
early_stopping=<Integer> Should early stopping be used? 0
0=no, otherwise value is number of
epochs without improvement
early _loss=<LossName> Loss monitored by early stopping "val_loss"
base weights=<WeightsName> Base weights the training starts from “coco”
dataset_quantity=<QuantityDataset> Percentage of the training dataset to be {100
used for training [%)], e.g., to determine
minimum required number of images in
training/validation set for accurate
detection performance
use_wandb=<Boolean> Use Weights & Biases to track training |False
data? True=yes, False=no
wandb_entity="test" Enter W&B entity name (check projects ['test_entity "

wandb_project="test"

Enter W&B project name

"test_project”

want to train the final models, choose

wandb_group="test" Enter group name within the W&B "test_group”
project

wandb_run="test" Enter run name within the group of W&B ["test_run"
project

cross_validation=<Boolean> Perform a k-fold cross-validation? If you [False




False. True=yes, False=no

model on each GPU. If only one GPU is
used, this parameter is equivalent to
batch size (see BATCH_SIZE parameter
in config.py). A 12GB GPU can typically
handle 2 images of 1024x1024px
resolution. Adjust this parameter based
on your GPU memory and image

resolution.

k_fold=<NumberFolds> Number of folds for k-fold cross 5
\validation
k_fold_val=<FoldNumber> \Validation fold. Starting with 0. The 0
remaining folds are training folds
backbone_type=<Integer> backbone (see BACKBONE parameter |0
in config.py).
0="resnet50", 1="resnet101"
train_all_layers=<Boolean> \Which layers should be trained? True
True=train all layers,
False=train only heads
images_gpu=<Numberimages> Number of images used to train the 1

learning=<Integer>

Learning rate (see LEARNING_RATE
parameter in config.py).
0=0.01, 1=0.001, 2=0.0001

image_max=<Integer>

Image resolution (see
IMAGE_MAX_DIM parameter in
config.py). Select the closest value
corresponding to the largest side of the
image.

0=512, 1=1024, 2=2048

momentum=<Integer>

Learning momentum (see
LEARNING_MOMENTUM parameter in

config.py).
0=0.8, 1=0.9, 2=0.99

w_decay=<Integer>

\Weight decay (see WEIGHT_DECAY
parameter in config.py).
0=0.0001, 1=0.001, 2=0.01

augmentation=<Boolean>

Use augmentation methods?

True=yes, False=no

False

flip=<Integer>

Use augmentation method flip?
0=no, 1=(0.5, 0.5)

cropandpad=<Integer>

Use augmentation method crop?




0=no, 1=(-0.25, 0), 2=(-0.1, 0)

rotate=<Integer>

Use augmentation method rotate?
0=no, 1=(-45, 45), 2=(-90, 90)

noise=<Integer>

Use augmentation method additive
Gaussian noise?
0=no, 1=0.01, 2=0.02

gamma=<Integer>

Use augmentation method gamma

contrast? O=no, 1=yes

contrast=<Integer>

Use contrast adjustment? 0=no,
1=contrast limited adaptive histogram

equalization,

2=contrast stretching

Table 6: MRCNN processing parameters (write -- before each parameter)

Parameter

required training parameters to be specified

Description

Default, example
or best practice

value

cluster=<Boolean>

Is the script executed on the cluster?
E.g., RWTH High Performance
Computing cluster?

True=yes, False=no

Must be specified directly in the Python

True

"..\datasets\input\..."

script.
file_format=<FileFormat> File format of images “ipg”
dataset_path=<InputFolderName> Input dataset folder located in path: “test_input”

save_path=<OutputFolderName>

Output images folder located in path:

"..\datasets\output\..."

“test_output”

name_result_file=<ExcelFileName>

Name of the excel output file located in
path:
"...\models\<WeightsFolderName>\".
This Excel file shows the distribution of

the input images to the folds.

“DSD”

weights_path=<WeightsFolderName>

Folder of the MRCNN model located
in: "...\models\..."

\Weights of the individual
epochs=MRCNN models

“weights”
See training

output

weights_name=<ModelName>

MRCNN model name located in path:

"models\<WeightsFolderName>\"

“weights_name’

See training

output




masks=<Boolean> Generate detection masks? False
True=yes, False=no

device=<Boolean> Use GPU or CPU? True
True=GPU, False=CPU

save_nth_image=<Integer> Save n-th result image 1

pixelsize=<Double>

Pixel size in [um/px].

To read the pixel size value from Sopat|
log file enter pixelsize=0 (Sopat
generates a JSON file with including

information)

Check camera

specifications

image_crop=<Coordinates>

Do you want the image to be center
cropped before detection?

no=None, yes=(X, y) coordinates (e.g.:
image_crop=(1000, 1500))

None

images_gpu=<Numberimages>

Number of images used to evaluate
with the MRCNN model on each GPU.
If only one GPU is used, this
parameter is equivalent to batch size
(see BATCH_SIZE parameter in
config.py). A 12GB GPU can typically
handle 2 images of 1024x1024px
resolution. Adjust this parameter based
on your GPU memory and image

resolution.

image_max=<Integer>

Image resolution (see
IMAGE_MAX_DIM parameter in
config.py). Select the closest value
corresponding to the largest side of the
image.

0=512, 1=1024, 2=2048

Should be the
same value as for

training

confidence=<Double>

Skip detections with confidence <

specified confidence parameter value

0.7

detect_reflections=<Boolean>

Detect and mark reflections in
droplets? The detected reflections are
excluded from the evaluation and do
not appear in the excel output file.
Marking color is blue.

True=yes, False=no

False

detect_oval_droplets=<Boolean>

Detect and mark oval droplets?
The detected oval droplets are

excluded from the evaluation and do

False




not appear in the excel output file.
Marking color is red.

True=yes, False=no

min_aspect_ratio=<Double>

Minimum aspect ratio: filter for elliptical

shapes

0.9

detect_adhesive_droplets=<Boolean>

Detect and mark adhesive droplets?
The detected adhesive droplets are
excluded from the evaluation and do
not appear in the excel output file.
Marking color is orange.

True=yes, False=no

False

save_coordinates=<Boolean>

Save coordinates of detected adhesive
droplets in excel output file? True=yes,

False=no

False

min_velocity=<Double>

Minimum velocity: threshold to filter
adhesive droplets minimum distance
[% of droplet mean diameter] that a

droplet has to travel between 2 frames

min_size_diff=<Double> Minimum size difference: threshold to (0.3
filter adhesive droplets [%] to be
considered a different droplet

n_images_compared=<Integer> Number of images that are being 3

compared. This is necessary because
adhesive droplets may not get

detected every frame.

n_adhesive _high=<Integer>
n_adhesive_low=<Integer>

low_distance_threshold=<Double>

Number of times a droplet has to be
detected at a similar position to be

defined as adhesive.

0.05

edge_tolerance=<Double>

Edge threshold: filter for image border
intersecting droplets. Image border
intersecting droplets are marked in

color red.

contrast=<Integer>

Use contrast adjustment? 0=no,
1=contrast limited adaptive histogram

equalization,

2=contrast stretching




