
Manual for MRCNN (cluster users)

Version: 13.11.2023

Editor: Stepan Sibirtsev

This manual works for cluster users. If you want to run MRCNN on a cluster, this

manual guides you through the installation and application of MRCNN. If you're

going to run MRCNN on your personal or office computer, please check the manual

for non-cluster users. We recommend training the MRCNN models on a GPU instead

of a CPU to reduce the time required. If you have the opportunity, you should train

your MRCNN models on a GPU cluster, especially if a sensitivity analysis, e.g.,

hyperparameter tuning (see our paper), is performed. Image evaluation with the

MRCNN models trained on a GPU can also be performed on a CPU. The evaluation

is less computationally time-consuming than training, so it works well on a CPU.

These instructions are adapted to Linux as an operating system and RWTH HPC as

cluster. However, if the cluster you use applies the SLURM as workload manager/job

scheduler, these instructions are easy to adapt to the cluster you use.

Table of Contents

1 Installation .. 3

1.1 Connection to cluster ... 3

1.1.1 Win SCP .. 3

1.1.2 FastX ... 3

1.2 MRCNN repository ... 4

1.3 Anaconda ... 4

1.4 Anaconda environment .. 5

1.5 VGG Image Annotator ... 5

1.6 Weights & Biases (optional) ... 6

2 Train MRCNN models .. 6

2.1 Preparing training/validation and testing data sets ... 6

2.2 Preparing Weights & Biases project (optional) ... 8

2.3 Testing MRCNN execution... 8

2.4 Creating a cluster job ... 9

2.5 Submitting a cluster job .. 10

3 Image evaluation .. 10

3.1 Preparing data ... 10

3.2 Creating a cluster job ... 11

3.3 Submitting a cluster job .. 11

3.4 Evaluating MRCNN detection performance ... 12

4 Appendix .. 13

4.1 Description of MRCNN repository folders and files 13

4.2 Terminal commands .. 15

4.3 SLURM and job parameters ... 15

4.4 MRCNN training and processing parameters... 16

1 Installation

1.1 Connection to cluster

Get an HPC cluster account: https://help.itc.rwth-

aachen.de/service/rhr4fjjutttf/article/14573fc745ee478ba855539c240108b6/

There are several ways to connect and communicate with the cluster. I prefer

WinSCP for remote file transfer and FastX as desktop client for job submission etc.

1.1.1 Win SCP

1) Visit the WinSCP download page, download and install WinSCP:

https://winscp.net/eng/download.php

2) WinSCP setup/preparation:

a) Host name: e.g., login18-x-1.hpc.itc.rwth-aachen.de

b) Port number: 22

c) User name: e.g., ab123456 (TIM identifier)

d) Password: your RWTHonline password

3) For further assistance, visit WinSCP Tutorial:

https://help.itc.rwth-

aachen.de/service/sl0p0u7tdi5s/article/9229ea232b5f4a1c99ddd57c07a929cb/

1.1.2 FastX

1) Visit the FastX download page, download and install FastX:

https://www.starnet.com/download/fastx-client

2) FastX setup/preparation:

a) Host: e.g., login18-x-1.hpc.itc.rwth-aachen.de

b) User: e.g., ab123456 (TIM identifier)

c) Port number: 22

d) Name: any name

e) Password: your RWTHonline password

3) For further assistance, visit WinSCP Tutorial:

https://help.itc.rwth-

aachen.de/service/rhr4fjjutttf/article/25f576374f984c888bb2a01487fef193/

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/14573fc745ee478ba855539c240108b6/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/14573fc745ee478ba855539c240108b6/
https://winscp.net/eng/download.php
https://help.itc.rwth-aachen.de/service/sl0p0u7tdi5s/article/9229ea232b5f4a1c99ddd57c07a929cb/
https://help.itc.rwth-aachen.de/service/sl0p0u7tdi5s/article/9229ea232b5f4a1c99ddd57c07a929cb/
https://www.starnet.com/download/fastx-client
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/25f576374f984c888bb2a01487fef193/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/25f576374f984c888bb2a01487fef193/

1.2 MRCNN repository

1) Download all folders and files from the MRCNN repository. Connect to the

cluster via WinSCP and transfer the downloaded MRCNN repository to a folder of

your choice on the cluster. You can find some description of the repository folders

and files in Table 1.

2) Navigate to the path "...\samples\droplet" and open the train_droplet.py script.

Set the variable cluster to True (cluster=True), save and close the script.

3) Repeat step 2 for the scripts process_automated_droplet.py and

proces_manual_droplet.py

1.3 Anaconda

1) Connect to the cluster via FastX (Launch Session → XFCE)

2) Visit the Anaconda download page on the cluster:

https://www.anaconda.com/download

3) Select the Linux version on the download page and copy the download link.

4) Launch terminal, navigate to the home directory, create a temporary (tmp) folder

and navigate to it:

$ cd ~

$ mkdir tmp

$ cd tmp

5) Download Anaconda bash script into the tmp folder using the copied Anaconda

download link:

$ wget https://repo.continuum.io/archive/Anaconda3<Release>.sh

6) Navigate to the folder where the bash script was saved and install Anaconda

using the downloaded bash script:

$ ls Anaconda3<Release>.sh (it’s a small L, not an I)

$ bash Anaconda3<Release>.sh

7) Restart terminal and verify the installation:

$ cd ~

$ source .bashrc

$ python

8) If the Anaconda installation was successful, the following is displayed:

Python 3.6.5 |Anaconda, Inc.|...

9) Exit Python:

$ exit()

10) For further assistance, visit Installing Anaconda on Linux Tutorial:

https://problemsolvingwithpython.com/01-Orientation/01.05-Installing-Anaconda-

on-Linux/

1.4 Anaconda environment

We install the anaconda environment from a YML file, which ensures that the

appropriate and compatible packages are installed directly and automatically into

the environment, avoiding errors and saving time. We provide suitable YML files

depending on the calculation device (GPU and CPU) located in the environment

folder of the MRCNN repository.

1) Connect to the cluster via FastX (Launch Session → XFCE)

2) Decide whether you want to run MRCNN on CPU or GPU

3) Choose the suitable environment located in the environment folder of the

MRCNN repository:

a) Linux & GPU: env_mrcnn_linux_gpu.yml

b) Linux and CPU: env_mrcnn_linux_cpu.yml

4) Navigate to the folder where the <FileName>.yml file is stored and open a

terminal there (right-click → open terminal here)

5) Create the environment for MRCNN with Anaconda based on the

<FileName>.yml file:

$ conda env create -f <FileName>.yml

6) Check whether Anaconda environment has been installed:

$ conda env list

7) For further assistance, visit the Managing Environments Tutorial:

https://docs.conda.io/projects/conda/en/4.6.1/user-guide/tasks/manage-

environments.html#create-env-file-manually

1.5 VGG Image Annotator

VGG Image Annotator (VIA) is used to manually mark the droplets in images to

create a JSON file that contains the marked droplets as coordinates. This JSON

file and the corresponding images are used to train and test the MRCNN. In our

work, we use VIA version 1.0.6. You can open this VIA version under the

https://problemsolvingwithpython.com/01-Orientation/01.05-Installing-Anaconda-on-Linux/
https://problemsolvingwithpython.com/01-Orientation/01.05-Installing-Anaconda-on-Linux/

following link and use it in your internet browser:

https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html

For further assistance and information, visit:

https://www.robots.ox.ac.uk/~vgg/software/via/

1.6 Weights & Biases (optional)

Weights & Biases is used to track the sensitivity analysis (see our paper) and

to get an overview of the performance of the trained models. Weights & Biases is

not necessary but useful, e.g., to easily compare the model performance to each

other. You can create a Weights & Biases account under the following link:

https://wandb.ai/site

For further assistance and information, visit:

https://docs.wandb.ai/

2 Train MRCNN models

2.1 Preparing training/validation and testing data sets

The preparation of data sets is performed on your personal or office computer.

1) Important information before procedure:

- If you need to crop the images, do it before manually evaluating them with the

VIA (section 2.1). You can use the contrast_normalization.py script to crop

images if required. The script is located in the following folder of the MRCNN

repository:

…/pre_processing/contrast_normalization/

- The pre-processing method CLAHE can also be applied after evaluating the

images manually with the VIA (section 2.1).

- Training/validation images should not exceed a size of approx. 1MB.

Otherwise, problems may occur during training depending on the GPU used

due to excessive data volume (allocation of data for several epochs on GPU

memory). This point does not apply to the images you want to evaluate with

the MRCNN model.

- The image resolution does not have to be the same within an image quality

https://wandb.ai/site
https://docs.wandb.ai/

- If you want to train MRCNN on several image qualities, e.g., for MRCNN

generalization, individual data sets must be created (section 2.1), one

training/validation and one testing data set for each image quality.

Moreover, each training/validation data set must contain the same number of

images.

- The number of images within a training/validation data set multiplied with

the MRCNN parameter dataset_quantity (s. Table 5) and divided by the

MRCNN parameter k_fold (s. Table 5) must result in a whole number

because the number of images in each fold must correspond to a whole

number and must be the same size.

2) Split images into a training/validation and a testing data set, e.g., 90% of

images to training/validation data set and 10% to testing data set, and store the

data sets in respective folders, e.g., a training and a testing folder. If you want to

train MRCNN on several image qualities, individual data sets must be created,

one training/validation and one testing data set for each image quality.

3) Manually evaluate the images of each training/validation and testing data set

using the VIA program. Proceed as follows for each individual data set:

a) Open the VIA program in the internet browser and load the images of the data

set via the "Image" → "Load or Add Images" tab.

b) Use the appropriate "Region Shape" to mark the object to be trained (e.g.,

drops) in each image.

c) Save the manual evaluation under the "Annotation" → "Save as JSON" tab

respectively as train.json or test.json file in the corresponding folder.

4) If you want to use the pre-processing method CLAHE on your training/validation

dataset, you have to process the images at this point as follows. Otherwise, skip

this step.

a) Copy the training/validation images to the downloaded MRCNN repository

under the following path:

…/pre_processing/contrast_normalization/input/

b) Open the contrast_normalization.py script and specify the script parameter.

Run the script. The processed output images are saved in the following folder:

…/pre_processing/contrast_normalization/output/

5) Connect to the cluster via WinSCP

6) Store the training files (training/validation images and train.json files) in the

downloaded MRCNN repository on the cluster under the following paths,

depending on the number of image qualities i:

- .../datasets/input/<FolderName>/original/Quality_1

- .../datasets/input/<FolderName>/original/Quality_2

- …

- .../datasets/input/<TrainValidationFolderName>/original/Quality_i

Each “Quality_i” folder must contain the same number of images and one

corresponding JSON file.

If you have only one image quality, you have only one training/validation image

set and thus only the folder “Quality_1”.

If you use the CLAHE, the paths change as follows:

.../datasets/input/<FolderName>/clahe/Quality_i

7) The manually evaluated testing files (testing images and test.json files) are used

in section 3.

2.2 Preparing Weights & Biases project (optional)

This step is performed on your personal or office computer. The YML environment

files in our MRCNN repository include all necessary Weights & Biases packages.

1) Visit your Weights & Biases account and create a new project.

2) If you want to perform a grid search, create a new “sweep”. Otherwise, skip this

step. You can find an example for the sweep configuration in the

sweep_example.txt file located in the templates folder of the downloaded

MRCNN repository. For a description and default settings of the training

parameters, see Table 5. For further assistance, visit the Seeps Tutorial:

https://docs.wandb.ai/guides/sweeps

2.3 Testing MRCNN execution

We recommend to perform this step before finally submitting the training jobs to the

cluster in order to test whether MRCNN is executed on cluster correctly.

1) Connect to the cluster via FastX (Launch Session → XFCE) and launch a

terminal

2) Connect to a GPU node (if job will be performed on CPU, skip this step):

$ ssh -l <UserId> <NodeName>.hpc.itc.rwth-aachen.de

(HPC GPU nodes: https://help.itc.rwth-

aachen.de/service/rhr4fjjutttf/article/3fb4cb953142422dbbb656c1c3253cff/)

3) Load the Cuda modul (if job will be performed on CPU, skip this step):

$ module load cuda/10.0

4) Export the path in which Anaconda is located:

$ export PATH=$PATH:/home/<UserID>/anaconda3/bin

5) Activate Anaconda environment:

$ source activate env_mrcnn_gpu (for GPU job) or

$ source activate env_mrcnn_cpu (for CPU job)

6) Navigate to the path where the train_droplet.py script is located:

$ cd /home/<UserID>/.../samples/droplet/

7) Execute the train_droplet.py script with memory tracker:

$ r_memusage python train_droplet.py --

dataset_path=<TrainValidationFolderName> --file_format=<FileFormat> --

image_max=<Integer> --images_gpu=<Integer> --device=<Boolean>

Enter command in one piece. These are the required training parameters to be

specified. Description/default settings of all training parameters see Table 5.

8) Cancel after 10 minutes with “Ctrl + Shift + C”

9) Round up the entry for "peak usage: physical memory" to gigabytes and the

calculation time per epoch to minutes, and remember/note the values.

2.4 Creating a cluster job

1) Create a <FileName>.job file on your personal or office computer and open it

with Notepad, Visual Studio Code or an alternative text editor. You can find

examples and templates of the JOB files in the templates folder of the

downloaded MRCNN repository.

2) Change the <FileName>.job file to Unix conversion. Otherwise, the cluster has

troubles to handle the file.

In Notepad click on Edit → EOL Conversion → Unix (LF).

3) Specify the #SBATCH, job and training parameters of the job (for

description/default settings of the parameters, see Table 3, Table 4 and

Table 5). Note the required training parameters to be specified.

4) Save the <FileName>.job file.

5) Connect to the cluster via WinSCP and transfer the <FileName>.job file to a

folder of your choice on the cluster.

2.5 Submitting a cluster job

1) Connect to the cluster via FastX (Launch Session → XFCE)

2) Navigate to the folder where the <FileName>.job file is stored and open a

terminal there (right-click → open terminal here)

3) Submit the job:

$ sbatch <FileName>.job

4) Check whether the job has arrived in the queue:

$ squeue -u <UserID>

5) As soon as the job starts, you will receive a notification by email.

6) As soon as the job is finished or is terminated due to an error, you will receive a

notification by email. The <FileName>.txt job output file with the documented job

history (terminal output of the MRCNN) is saved in the job output file folder

specified in the <FileName>.job file:

/home/<UserID>/.../<JobOutputFolderName>/

In case of a job termination, the <FileName>.txt job output file can give you

information about the occurring errors.

7) As soon as the job is finished, the output files of the MRCNN training are saved in

the following folder:

.../droplet_logs/<WeightsFolderName>/

The output files include an Excel file and the weights of each epoch in H5 file

format. The Excel file lists the distribution of the input images to the folds. Each

epoch corresponds to one MRCNN model.

3 Image evaluation

3.1 Preparing data

1) Connect to the cluster via WinSCP

2) For image processing with an MRCNN model, store the images you want to

evaluate, e.g., images of the testing data set, in the following folder on the cluster:

…\datasets\input\<ProcessingFolderName>

3) For processing images from the manual evaluation with VIA, store the images of

the testing data set with the corresponding JSON file in the following folder on the

cluster:

…\datasets\input\<ProcessingFolderName>

3.2 Creating a cluster job

6) Create a <FileName>.job file on your personal or office computer and open it

with Notepad, Visual Studio Code or an alternative text editor. You can find

examples and templates of the JOB files in the templates folder of the

downloaded MRCNN repository.

7) Change the <FileName>.job file to Unix conversion. Otherwise, the cluster has

troubles to handle the file.

In Notepad click on Edit → EOL Conversion → Unix (LF).

8) Specify the #SBATCH, job and processing parameters of the job (for

description/default settings of the parameters, see Table 3, Table 4 and

Table 6). Note the required training parameters to be specified. For

processing images with MRCNN model choose the

process_automated_droplet.py script. For processing images from the manual

evaluation with VIA choose the process_manual_droplet.py script.

9) Save the <FileName>.job file.

10) Connect to the cluster via WinSCP and transfer the <FileName>.job file to a

folder of your choice on the cluster.

3.3 Submitting a cluster job

8) Connect to the cluster via FastX (Launch Session → XFCE)

9) Navigate to the folder where the <FileName>.job file is stored and open a

terminal there (right-click → open terminal here)

10) Submit the job:

$ sbatch <FileName>.job

11) Check whether the job has arrived in the queue:

$ squeue -u <UserID>

12) As soon as the job starts, you will receive a notification by email.

13) As soon as the job is finished or is terminated due to an error, you will receive a

notification by email. The <FileName>.txt job output file with the documented job

history (terminal output of the MRCNN) is saved in the job output file folder

specified in the <FileName>.job file:

/home/<UserID>/.../<JobOutputFolderName>/

In case of a job termination, the <FileName>.txt job output file can give you

information about the occurring errors.

14) As soon as the job is finished, the output files of the MRCNN training are saved in

the following folder:

.../datasets/output/<OutputFolderName>/

The output files include an Excel file and the evaluated images. The Excel file lists

the sizes of the detected droplets. The detected droplets are marked in the

evaluated images.

3.4 Evaluating MRCNN detection performance

To evaluate the detection performance of an MRCNN model, you compare the

results of the image processing with the MRCNN model (excel output file and

evaluated images from section 3.2) with the results of image processing from the

manual evaluation with VIA (excel output file and evaluated images from section

3.2). For a qualitative evaluation, you compare the images. For a quantitative

evaluation, the Excel output files are compared. This procedure is performed for

all epochs/models of the training with a specific training and processing parameter

set to identify the epoch/model with the best detection performance. Analogously,

the entire process (training, processing, and evaluation) is carried out with

modified training and processing parameters to identify the most suitable

parameters. You can use the information about the MRCNN training at Weights &

Biases to get an overview of the training performance. For further information,

please read our papers.

4 Appendix

4.1 Description of MRCNN repository folders and files

Table 1: Description of MRCNN repository folders and files

Folder/file name Description

classes Folders for classes, e.g., droplet, are located here

…/droplet Script files for the class droplet are located here

…/…/train_droplet.py Script file for training the MRCNN on the class droplet

…/…/process_automated_droplet.py Script file for automated processing of images with the

trained MRCNN to detect the class droplet

…/…/process_manual_droplet.py Script file for manual processing of images with marked

droplets used the VGG Image Annotator

database This folder is an archive folder only. The MRCNN has no

access to this folder during the training. Databases for

MRCNN training are located in a different folder. Here,

each database folder contains a ZIP file with images of

droplets and the corresponding JSON file with the

manually marked droplets. In this folder, you can find the

database used in our work/publications. Moreover, you

can upload your database here to share it with other

users.

datasets Input files for the MRCNN training as well as input and

output files for the MRCNN processing are located here.

…/input Input files (images and corresponding JSON file) for the

MRCNN training and processing are located here. The

input files must be stored in a folder. The folders must

have the following folder structure.

For training, depending on the number of image qualities

i:

- datasets/input/<FolderName>/original/Quality_1/

- datasets/input/<FolderName>/original/Quality_2/

- ….

Each “Quality_i” folder must contain the same number of

images and one, corresponding JSON file. The number

of images multiplied with the MRCNN parameter

dataset_quantity (s. Table 5) and divided by the

MRCNN parameter k_fold (s. Table 5) must result in an

integer (whole number). If the CLAHE is used the folder

structure changes to:

- datasets/input/<FolderName>/clahe/Quality_1/

- …

For processing:

datasets/input/<FolderName>/

For manual processing, folder must contain images and

one, corresponding JSON file. For automated

processing, folder must contain images.

…/input Contains folders with processing results. The folder

names are defined in the corresponding .py script by the

user.

environment Contains the environment .yml files suitable for the

operating system Windows and Linux and calculation

devices CPU and GPU (AMD and Nvidia).

…/env_mrcnn_linux_cpu.yml Environment for Linux and CPU

…/env_mrcnn_linux_gpu.yml Environment for Linux and GPU

…/env_mrcnn_windows_cpu.yml Environment for Windows and CPU

…/env_mrcnn_windows_gpu_amd.yml Environment for Windows and AMD GPU

…/env_mrcnn_windows_gpu_nvidia.yml Environment for Windows and Nvidia GPU

manual Manuals are located here.

models The trained MRCNN models are saved and stored here.

…/benchmark MRCNN benchmark models trained on one specific

image quality are located here.

…/coco MRCNN model trained on the COCO database is

located here.

…/generalization MRCNN generalized models trained on several image

qualities are located here.

mrcnn MRCNN architecture is located in this folder.

…/__init__.py -

…/config.py Base configuration class of MRCNN. All MRCNN

training parameter are located here.

…/model.py The main MRCNN model implementation.

…/parallel_model.py Multi-GPU Support for Keras.

…/utils.py Common utility functions and classes.

…/visualize.py Display and visualization functions.

pre_processing Consists separate scripts for pre-preocessing, e.g., the

CLAHE

templates Templates and examples are located here, e.g., JOB file

for jobs on the RWTH HPC cluster.

LICENSE License.

MRCNN.code-workspace Workspace.

4.2 Terminal commands

Table 2: Terminal commands

Command Description

$ r_memusage <PythonScript>.py

To abort: Shift +Ctrl + C

Starts the Python script and returns the amount of

memory used after it was aborted

$ sbatch <JobScript>.job Submit job

$ squeue -u <UserID> Displays running jobs and jobs in the user's queue

$ scancel <JobID> Cancel job

$ sinfo Displays cluster status with the list of running jobs and

jobs in the queue

$ r_wlm_usage -q Display core hours consumption

4.3 SLURM and job parameters

Table 3: SLURM parameters (write #SBATCH before each parameter)

Parameter Description Default, example

or best practice

value

#!/usr/bin/zsh Must appear at the beginning of

every job script.

--account=<ProjectName> Submitting the job via a project -

--job-name=<JobName> Job name test

--output=/home/<UserID>/…/%x_%J_output.txt Storage location of the job

execution output file.

"%x" takes the name of the file.

"%J" adds the job ID

-

--time=d-hh:mm:ss Duration of the job in

days-hours:minutes:seconds

0-03:00:00

--mail-user=<EmailAdress> Email address to receive

information about job progress

-

--mail-type=BEGIN

--mail-type=END

--mail-type=ALL

Information about job progress

that you would like to receive by

email

ALL

--ntasks=<NumberTasks> For Processes/MPI. Number of

tasks

1

--mem-per-cpu=<AmountMemory> Memory requirement per CPU

(not per task!), e.g. 10 G.

K(ilobyte)|G(igabyte)|T(erabyte)

Specify only for CP jobs.

5

--mem-per-gpu=<AmountMemory> Memory requirement per GPU

(not per task!), e.g., 10 G.

K(ilobyte)|G(igabyte)|T(erabyte)

Specify only for GPU jobs.

5

--gres=gpu:1

--gres=gpu:2

Number of GPUs required per

node. The partition is

automatically selected by the

SLURM system.

Specify only for GPU jobs.

1

--array=x-y Definition of the array job, starting

at 0

0-4

Table 4: Job parameters

Parameter Description

export PATH=$PATH:/home/<UserID>/anaconda3/bin Export path in which Anaconda is located

source activate <EnvironmentName> Activate environment

cd /home/<UserID>/.../samples/droplet/ Navigate to the path where the droplet.py

script is located

python <ScriptName>.py

--<ScriptParameterName1>=<ScriptParameterValue1>

--<ScriptParameterName2>=<ScriptParameterValue2>

--<ScriptParameterName3>=<ScriptParameterValue3>

…

Run a Python script with specified script

parameter. The Python script is the

train_droplet.py,

proces_manual_droplet.py or

process_automated_droplet.py script,

depending on the job. The script parameters

are training or processing parameters

depending on the script, see Table 5 and

Table 6. Write -- before each script parameter.

4.4 MRCNN training and processing parameters

Table 5: MRCNN training parameters (write -- before each parameter)

Parameter

required training parameters to be specified

Description Default,

example or

best practice

value

cluster=<Boolean>

Is the script executed on the cluster?

E.g., RWTH High Performance

Computing cluster?

True=yes, False=no

Must be specified directly in the Python

True

script.

file_format=<FileFormat> File format of images “jpg”

dataset_path=<InputFolderName>

Input dataset folder located in path:

"...\datasets\input\..."

“test_input”

new_weights_path=<WeightsFolderName> output weights folder located in path:

"...\models\…

Weights of the individual

epochs=MRCNN models

“weights”

name_result_file=<ExcelFileName> Name of the excel output file located in

path:

"...\models\<WeightsFolderName>\".

This Excel file shows the distribution of

the input images to the folds.

“folds”

masks=<Boolean> Generate detection masks?

True=yes, False=no

False

device=<Boolean> Use GPU or CPU?

True=GPU, False=CPU

True

epochs=<NumberEpochs> Epochs to train 50

early_stopping=<Integer> Should early stopping be used?

0=no, otherwise value is number of

epochs without improvement

0

early_loss=<LossName> Loss monitored by early stopping "val_loss"

base_weights=<WeightsName> Base weights the training starts from “coco”

dataset_quantity=<QuantityDataset> Percentage of the training dataset to be

used for training [%], e.g., to determine

minimum required number of images in

training/validation set for accurate

detection performance

100

use_wandb=<Boolean> Use Weights & Biases to track training

data? True=yes, False=no

False

wandb_entity="test" Enter W&B entity name (check projects

in Weights & Biases, entity name is next

to the project name)

"test_entity "

wandb_project="test" Enter W&B project name "test_project"

wandb_group="test" Enter group name within the W&B

project

"test_group"

wandb_run="test" Enter run name within the group of W&B

project

"test_run"

cross_validation=<Boolean> Perform a k-fold cross-validation? If you

want to train the final models, choose

False

False. True=yes, False=no

k_fold=<NumberFolds> Number of folds for k-fold cross

validation

5

k_fold_val=<FoldNumber> Validation fold. Starting with 0. The

remaining folds are training folds

0

backbone_type=<Integer> backbone (see BACKBONE parameter

in config.py).

0="resnet50", 1="resnet101"

0

train_all_layers=<Boolean> Which layers should be trained?

True=train all layers,

False=train only heads

True

images_gpu=<NumberImages> Number of images used to train the

model on each GPU. If only one GPU is

used, this parameter is equivalent to

batch size (see BATCH_SIZE parameter

in config.py). A 12GB GPU can typically

handle 2 images of 1024x1024px

resolution. Adjust this parameter based

on your GPU memory and image

resolution.

1

learning=<Integer> Learning rate (see LEARNING_RATE

parameter in config.py).

0=0.01, 1=0.001, 2=0.0001

1

image_max=<Integer> Image resolution (see

IMAGE_MAX_DIM parameter in

config.py). Select the closest value

corresponding to the largest side of the

image.

0=512, 1=1024, 2=2048

1

momentum=<Integer> Learning momentum (see

LEARNING_MOMENTUM parameter in

config.py).

0=0.8, 1=0.9, 2=0.99

1

w_decay=<Integer> Weight decay (see WEIGHT_DECAY

parameter in config.py).

0=0.0001, 1=0.001, 2=0.01

0

augmentation=<Boolean> Use augmentation methods?

True=yes, False=no

False

flip=<Integer> Use augmentation method flip?

0=no, 1=(0.5, 0.5)

0

cropandpad=<Integer> Use augmentation method crop? 0

0=no, 1=(-0.25, 0), 2=(-0.1, 0)

rotate=<Integer> Use augmentation method rotate?

0=no, 1=(-45, 45), 2=(-90, 90)

0

noise=<Integer> Use augmentation method additive

Gaussian noise?

0=no, 1=0.01, 2=0.02

0

gamma=<Integer> Use augmentation method gamma

contrast? 0=no, 1=yes

0

contrast=<Integer> Use contrast adjustment? 0=no,

1=contrast limited adaptive histogram

equalization,

2=contrast stretching

0

Table 6: MRCNN processing parameters (write -- before each parameter)

Parameter

required training parameters to be specified

Description Default, example

or best practice

value

cluster=<Boolean>

Is the script executed on the cluster?

E.g., RWTH High Performance

Computing cluster?

True=yes, False=no

Must be specified directly in the Python

script.

True

file_format=<FileFormat> File format of images “jpg”

dataset_path=<InputFolderName>

Input dataset folder located in path:

"...\datasets\input\..."

“test_input”

save_path=<OutputFolderName> Output images folder located in path:

"...\datasets\output\..."

“test_output”

name_result_file=<ExcelFileName> Name of the excel output file located in

path:

"...\models\<WeightsFolderName>\".

This Excel file shows the distribution of

the input images to the folds.

“DSD”

weights_path=<WeightsFolderName>

Folder of the MRCNN model located

in: "...\models\..."

Weights of the individual

epochs=MRCNN models

“weights”

See training

output

weights_name=<ModelName> MRCNN model name located in path:

"models\<WeightsFolderName>\”

“weights_name”

See training

output

masks=<Boolean> Generate detection masks?

True=yes, False=no

False

device=<Boolean> Use GPU or CPU?

True=GPU, False=CPU

True

save_nth_image=<Integer> Save n-th result image 1

pixelsize=<Double> Pixel size in [µm/px].

To read the pixel size value from Sopat

log file enter pixelsize=0 (Sopat

generates a JSON file with including

information)

Check camera

specifications

image_crop=<Coordinates> Do you want the image to be center

cropped before detection?

no=None, yes=(x, y) coordinates (e.g.:

image_crop=(1000, 1500))

None

images_gpu=<NumberImages> Number of images used to evaluate

with the MRCNN model on each GPU.

If only one GPU is used, this

parameter is equivalent to batch size

(see BATCH_SIZE parameter in

config.py). A 12GB GPU can typically

handle 2 images of 1024x1024px

resolution. Adjust this parameter based

on your GPU memory and image

resolution.

1

image_max=<Integer> Image resolution (see

IMAGE_MAX_DIM parameter in

config.py). Select the closest value

corresponding to the largest side of the

image.

0=512, 1=1024, 2=2048

Should be the

same value as for

training

confidence=<Double> Skip detections with confidence <

specified confidence parameter value

0.7

detect_reflections=<Boolean> Detect and mark reflections in

droplets? The detected reflections are

excluded from the evaluation and do

not appear in the excel output file.

Marking color is blue.

True=yes, False=no

False

detect_oval_droplets=<Boolean> Detect and mark oval droplets?

The detected oval droplets are

excluded from the evaluation and do

False

not appear in the excel output file.

Marking color is red.

True=yes, False=no

min_aspect_ratio=<Double> Minimum aspect ratio: filter for elliptical

shapes

0.9

detect_adhesive_droplets=<Boolean> Detect and mark adhesive droplets?

The detected adhesive droplets are

excluded from the evaluation and do

not appear in the excel output file.

Marking color is orange.

True=yes, False=no

False

save_coordinates=<Boolean> Save coordinates of detected adhesive

droplets in excel output file? True=yes,

False=no

False

min_velocity=<Double> Minimum velocity: threshold to filter

adhesive droplets minimum distance

[% of droplet mean diameter] that a

droplet has to travel between 2 frames

0.3

min_size_diff=<Double> Minimum size difference: threshold to

filter adhesive droplets [%] to be

considered a different droplet

0.3

n_images_compared=<Integer> Number of images that are being

compared. This is necessary because

adhesive droplets may not get

detected every frame.

3

n_adhesive_high=<Integer>

n_adhesive_low=<Integer>

low_distance_threshold=<Double>

Number of times a droplet has to be

detected at a similar position to be

defined as adhesive.

3

2

0.05

edge_tolerance=<Double> Edge threshold: filter for image border

intersecting droplets. Image border

intersecting droplets are marked in

color red.

contrast=<Integer> Use contrast adjustment? 0=no,

1=contrast limited adaptive histogram

equalization,

2=contrast stretching

0

