Manual for MRCNN

Version: 13.11.2023
Editor: Stepan Sibirtsev

This manual works for non-cluster users. If you want to run MRCNN on your
personal or office computer, this manual guides you through the installation and
application of MRCNN. If you're going to run MRCNN on a cluster, please check the
manual for cluster users. We recommend training the MRCNN models on a GPU
instead of a CPU to reduce the time required. If you have the opportunity, you should
train your MRCNN models on a GPU cluster, especially if a sensitivity analysis, e.g.,
hyperparameter tuning (see our paper), is performed. Image evaluation with the
MRCNN models trained on a GPU can also be performed on a CPU. The
evaluation is less computationally time-consuming than training, so it works well on a
CPU.

These instructions are adapted to Windows as an operating system and Visual
Studio Code (VSC) as a source code editor. However, MRCNN can also be run on
Linux, and any source code editor can be used. The instructions must then be

adapted accordingly by the user.



Table of Contents

1

Installation3
1.1 MRCNN repository3
1.2 Visual Studio Code3
1.3 Python3
1.4 Anaconda3
1.5 Anaconda environment3
1.6 Assigning Anaconda environment4
1.7 VGG Image Annotator5
1.8 Weights & Biases (optional)5
Train MRCNN models6
2.1 Preparing images (important information!)Error! Bookmark not defined.
2.2 Preparing training/validation and testing sets6
2.3 Preparing Weights & Biases project (optional)8
2.4 MRCNN training8
Image evaluation9
3.1 Preparing data9
3.2 Processing images with MRCNN model9
3.3 Processing images from the manual evaluation with VIA10
3.4 Evaluating MRCNN detection performancel0
Appendix11
4.1 Description of MRCNN repository folders and files11
4.2 MRCNN training and processing parameters13



1 Installation

1.1 MRCNN repository

Download all folders and files from the MRCNN repository to a folder of your
choice on your personal or office computer. You can find some description of the
repository folders and files in Table 1.

1.2 Visual Studio Code

Download and install Visual Studio Code: https://code.visualstudio.com/

1.3 Python

1) Start the Visual Studio Code.

2) Switch to the "Extensions" tab in the bar on the left of VSC.

3) Search for Python and install it.

4) Sometimes, it is helpful to restart the source code editor or the computer after

installation.

1.4 Anaconda

1) Visit the Anaconda download page: https://www.anaconda.com/download

2) Download the Windows version from the download page and install it. When
installing, be sure to select "Install for: Just Me" (so the installation also works
on the office computer/server without admin rights) and select "Add Anaconda to
my PATH environment variable".

3) For further assistance, visit Installing Anaconda on Windows Tutorial:

https://www.datacamp.com/tutorial

1.5 Anaconda environment

We install the anaconda environment from a YML file, which ensures that the
appropriate and compatible packages are installed directly and automatically into
the environment, avoiding errors and saving time. We provide suitable YML files
depending on the operating system (Windows and Linux) and calculation device
(GPU and CPU) located in the environment folder of the MRCNN repository.


https://code.visualstudio.com/

1)

2)

3)

4)

5)

6)

7

8)

Decide whether you want to run MRCNN on CPU or GPU. If you want to run
MRCNN on GPU, find out which GPU you have, AMD or Nvidia.

Choose the suitable environment located in the environment folder of the MRCNN
repository:

a) Windows & AMD GPU: env_mrcnn_windows_gpu_amd.yml|

b) Windows and Nvidia GPU: env_mrcnn_windows_gpu_nvidia.yml

c) Windows and CPU: env_mrcnn_windows_cpu.yml|

Start the Visual Studio Code and install the suitable environment as follows via
the corresponding <FileName>.yml file:

In the source code editor, navigate to the <FolderName> folder where the
<FileName>.yml file is stored (the '..." are very important here to get into the
folder):

Create the environment for MRCNN with Anaconda based on the

<FileName>.yml file:

Check the list of environments for the installed environment to verify whether the
installation worked correctly. The environment name is the <FileName> of the
used YML file.

Sometimes it is helpful to restart the source code editor or the computer after
installation.

For further assistance, visit the Managing Environments Tutorial:
https://docs.conda.io/projects/conda/en/4.6.1/user-guide/tasks/manage-

environments.html#create-env-file-manually

1.6 Assigning Anaconda environment

1)

2)

Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN
repository with the Visual Studio Code.
Depending on your VSC version, there are several ways to assign the installed
Anaconda environment to the MRCNN Python scripts:
a) Specify the Python default interpreter path for your workspace:
Press "Ctrl + Shift +P" — enter "Preferences: Open User Settings" —
navigate to "Workspace - Extensions - Python" — enter the Default



Interpreter Path of the Anaconda environment (e.g.:
"C:\Anaconda3\envs\env_mrcnn_windows_gpu_nvidia\python.exe").
b) Assign the Anaconda environment to the MRCNN Python scripts individually:

i) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,
navigate to classes/droplet/, and open the train_droplet.py script.

i) Assign the Anaconda environment to the train_droplet.py script:
Press "Ctrl + Shift + P" — enter "Python: Select Interpreter" — select the
installed Anaconda environment (e.g.: Python 3.6.10
(env_mrcnn_windows_gpu_nvidia)

iii) Repeat steps 2-3 if necessary for the scripts proces_manual_droplet.py

and process_automated_droplet.py

1.7 VGG Image Annotator

VGG Image Annotator (VIA) is used to manually mark the droplets in images to
create a JSON file that contains the marked droplets as coordinates. This JSON
file and the corresponding images are used to train and test the MRCNN. In our
work, we use VIA version 1.0.6. You can open this VIA version under the
following link and use it in your internet browser:
https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html

For further assistance and information, visit:

https://www.robots.ox.ac.uk/~vgg/software/via/

1.8 Weights & Biases (optional)

Weights & Biases is used to track the sensitivity analysis (see our paper) and to
get an overview of the performance of the trained models. Weights & Biases is
not necessary but useful, e.g., to easily compare the model performance to each
other. You can create a Weights & Biases account under the following link:

https://wandb.ai/site

For further assistance and information, visit:

https://docs.wandb.ai/



https://wandb.ai/site
https://docs.wandb.ai/

2

Train MRCNN models

2.1 Preparing training/validation and testing sets

1)

2)

Important information before procedure:

- If you need to crop the images, do it before manually evaluating them with the
VIA (section 2.1). You can use the contrast_normalization.py script to crop
images if required. The script is located in the following folder of the MRCNN
repository:

...Ipre_processing/contrast_normalization/

- The pre-processing method CLAHE can also be applied after evaluating the
images manually with the VIA (section 2.1).

- Training/validation images should not exceed a size of approx. 1MB.
Otherwise, problems may occur during training depending on the GPU used
due to excessive data volume (allocation of data for several epochs on GPU
memory). This point does not apply to the images you want to evaluate with
the MRCNN model.

- The image resolution does not have to be the same within an image quality

- If you want to train MRCNN on several image qualities, e.g., for MRCNN
generalization, individual data sets must be created (section 2.1), one
training/validation and one testing data set for each image quality.
Moreover, each training/validation data set must contain the same number of
images.

- The number of images within a training/validation data set multiplied with
the MRCNN parameter dataset_quantity (s. Table 2) and divided by the
MRCNN parameter k_fold (s. Table 2) must result in a whole number because
the number of images in each fold must correspond to a whole number and
must be the same size.

Split images into a training/validation and a testing data set, e.g., 90% of

images to training/validation data set and 10% to testing data set, and store the

data sets in respective folders, e.g., a training and a testing folder. If you want to
train MRCNN on several image qualities, individual data sets must be created,
one training/validation and one testing data set for each image quality.



3)

4)

5)

6)

Manually evaluate the images of each training/validation and testing data set

using the VIA program. Proceed as follows for each individual data set:

a) Open the VIA program in the internet browser and load the images of the data
set via the "Image" — "Load or Add Images" tab.

b) Use the appropriate "Region Shape" to mark the object to be trained (e.g.,
drops) in each image.

c) Save the manual evaluation under the "Annotation" — "Save as JSON" tab
respectively as train.json or test.json file in the corresponding folder.

If you want to use the pre-processing method CLAHE on your training/validation

dataset, you have to process the images at this point as follows. Otherwise, skip

this step.

a) Copy the training/validation images to the downloaded MRCNN repository
under the following path:

...Ipre_processing/contrast_normalization/input/

b) Open the contrast_normalization.py script and specify the script parameter.
Run the script. The processed output images are saved in the following folder:
...Ipre_processing/contrast_normalization/output/

Store the training files (training/validation images and train.json files, see chapter

2.1) in the downloaded MRCNN repository under the following paths, depending

on the number of image qualities i:

- .../datasets/input/<FolderName>/original/Quality_1

- .../datasets/input/<FolderName>/original/Quality 2

- .../datasets/input/<TrainValidationFolderName>/original/Quality i

Each “Quality_i” folder must contain the same number of images and one

corresponding JSON file.

If you have only one image quality, you have only one training/validation image

set and thus only the folder “Quality_1".

If you use the CLAHE, the paths change as follows:

.../datasets/input/<FolderName>/clahe/Quality i

The manually evaluated testing files (testing images and test.json files) are used

in section Error! Reference source not found..



2.2 Preparing Weights & Biases project (optional)

Visit your Weights & Biases account and create a new project. The YML
environment files in our MRCNN repository include all necessary Weights &

Biases packages.

2.3 MRCNN training

1)

2)

3)

4)

5)

6)

Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN
repository with the Visual Studio Code.

Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,
navigate to classes/droplet/, and open the train_droplet.py script.

Specify input training parameters under the "input training parameters" section
in the train_droplet.py script. For a description and default settings of the training
parameters, see Table 2.

Click on the "Terminal" tab at the top bar of the VSC and open a new terminal via
"New Terminal".

Click on the "Run" tab at the top bar of the VSC and execute the script via "Run
Without Debugging".

As soon as the script is finished, the output files of the MRCNN training are saved
in the following folder:

...Imodels/<WeightsFolderName>/

The output files include an Excel file and the weights of each epoch in H5 file
format. The Excel file lists the distribution of the input images to the folds. Each
epoch corresponds to one MRCNN model.



3 Image evaluation

3.1 Preparing data

1) For image processing with an MRCNN model, store the images you want to
evaluate, e.g., images of the testing data set, in the following folder:
...\datasets\input\<EvaluationFolderName>

2) For processing images from the manual evaluation with VIA, store the images of
the testing data set with the corresponding JSON file in the following folder:

...\datasets\input\<EvaluationFolderName>

3.2 Processing images with MRCNN model

1) Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN
repository with the Visual Studio Code.

2) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,
navigate to classes/droplet/, and open the process_automated_droplet.py
script.

3) Specify input processing parameters under the "input processing parameters"
section in the process_automated_droplet.py script. For a description and
default settings of the processing parameters, see Table 3.

4) Click on the "Terminal" tab at the top bar of the VSC and open a new terminal via
"New Terminal”.

5) Click on the "Run" tab at the top bar of the VSC and execute the script via "Run
Without Debugging".

6) As soon as the script is finished, the output files of the MRCNN training are saved
in the following folder:

.../datasets/output/<OutputFolderName>/
The output files include an Excel file and the evaluated images. The Excel file lists
the sizes of the detected droplets. The detected droplets are marked in the

evaluated images.



3.3 Processing images from the manual evaluation with
VIA

7) Open the Mask_RCNN.code-workspace file located in the downloaded MRCNN
repository with the Visual Studio Code.

8) Navigate to the MRCNN (WORKSPACE) in the explorer on the left of VSC,
navigate to classes/droplet/, and open the process_manual_droplet.py script.

9) Specify input processing parameters under the "input processing parameters”
section in the process_automated_droplet.py script. For a description and
default settings of the processing parameters, see Table 3.

10)Click on the "Terminal” tab at the top bar of the VSC and open a new terminal via
"New Terminal®.

11)Click on the "Run" tab at the top bar of the VSC and execute the script via "Run
Without Debugging".

12)As soon as the script is finished, the output files of the MRCNN training are saved
in the following folder:
.../datasets/output/<OutputFolderName>/
The output files include an Excel file and the evaluated images. The Excel file lists
the sizes of the droplets from the manual evaluation with VIA. The droplets from

the manual evaluation with VIA are marked in the evaluated images.

3.4 Evaluating MRCNN detection performance

To evaluate the detection performance of an MRCNN model, you compare the
results of the image processing with the MRCNN model (excel output file and
evaluated images from section 3.2) with the results of image processing from the
manual evaluation with VIA (excel output file and evaluated images from section
3.2). For a qualitative evaluation, you compare the images. For a quantitative
evaluation, the Excel output files. This procedure is performed for all
epochs/models of the training with a specific training and processing parameter
set to identify the epoch/model with the best detection performance. Analogously,
the entire process (training, processing, and evaluation) is carried out with
modified training and processing parameters to identify the most suitable

parameters. For further information, please read our papers.



4 Appendix

4.1 Description of MRCNN repository folders and files

Table 1: Description of MRCNN repository folders and files

Folder/file name

Description

classes

Folders for classes, e.g., droplet, are located here

.../droplet

Script files for the class droplet are located here

...l...[train_droplet.py

Script file for training the MRCNN on the class droplet

...l...Jprocess_automated_droplet.py

Script file for automated processing of images with the
trained MRCNN to detect the class droplet

...l.../Jprocess_manual_droplet.py

Script file for manual processing of images with marked

droplets used the VGG Image Annotator

database

This folder is an archive folder only. The MRCNN has no
access to this folder during the training. Databases for
MRCNN training are located in a different folder. Here,
each database folder contains a ZIP file with images of
droplets and the corresponding JSON file with the
manually marked droplets. In this folder, you can find the
database used in our work/publications. Moreover, you
can upload your database here to share it with other

users.

datasets

Input files for the MRCNN training as well as input and

output files for the MRCNN processing are located here.

...Jlinput

Input files (images and corresponding JSON file) for the
MRCNN training and processing are located here. The
input files must be stored in a folder. The folders must
have the following folder structure.

For training, depending on the number of image qualities
i:
- datasets/input/<FolderName>/original/Quality 1/

- datasets/input/<FolderName>/original/Quality 2/

Each “Quality_i” folder must contain the same number of
images and one, corresponding JSON file. The number
of images multiplied with the MRCNN parameter
dataset_quantity (s. Table 2) and divided by the MRCNN
parameter k_fold (s. Table 2) must result in an integer
(whole number). If the CLAHE is used the folder

structure changes to:




- datasets/input/<FolderName>/clahe/Quality 1/

datasets/input/<FolderName>/

For manual processing, folder must contain images and
one, corresponding JSON file. For automated

processing, folder must contain images.

...Jlinput

Contains folders with processing results. The folder
names are defined in the corresponding .py script by the

user.

environment

Contains the environment .yml files suitable for the
operating system Windows and Linux and calculation
devices CPU and GPU (AMD and Nvidia).

.../env_mrcnn_linux_cpu.yml

Environment for Linux and CPU

.../env_mrcnn_linux_gpu.yml

Environment for Linux and GPU

...lenv_mrcnn_windows_cpu.yml

Environment for Windows and CPU

.../lenv_mrcnn_windows_gpu_amd.yml

Environment for Windows and AMD GPU

.../lenv_mrcnn_windows_gpu_nvidia.yml

Environment for Windows and Nvidia GPU

manual Manuals are located here. Moreover, example JOB file
for clusterjob on RWTH HPC cluster is located here.

models The trained MRCNN models are saved and stored here.

.../Ibenchmark MRCNN benchmark models trained on one specific
image quality are located here.

.../coco MRCNN model trained on the COCO database is

located here.

.../generalization

MRCNN generalized models trained on several image

qualities are located here.

mrcnn MRCNN architecture is located in this folder.

.../__init__.py -

...Iconfig.py Base configuration class of MRCNN. All MRCNN
training parameter are located here.

.../model.py The main MRCNN model implementation.

...Iparallel_model.py

Multi-GPU Support for Keras.

...Jutils.py

Common utility functions and classes.

...Ivisualize.py

Display and visualization functions.

pre_processing

Consists separate scripts for pre-preocessing, e.g., the
CLAHE

LICENSE

License.

MRCNN.code-workspace

Workspace.




4.2 MRCNN training and processing parameters

Table 2: MRCNN training parameters

Parameter

Description

Default value

(best practice)

Cluster = <Boolean>

Is the script executed on the cluster?
E.g., RWTH High Performance
Computing cluster?

True = yes, False = no

False

e ”

be used for training [%], e.g., to
determine minimum required number
of images in training/validation set for

accurate detection performance

file_format = <FileFormat> File format of images ipg
dataset_path = <InputFolderName> Input dataset folder located in path: [‘test”
"...\datasets\input\..."
new_weights_path = <WeightsFolderName> |output weights folder located in path: [‘test”
"...\models\...
\Weights of the individual epochs =
MRCNN models
name_result_file = <ExcelFileName> Name of the excel output file located [‘test”
in path:
"...\models\<WeightsFolderName>\".
This excel file shows the distribution
of the input images to the folds.
masks = <Boolean> Generate detection masks? False
True = yes, False = no
device = <Boolean> Use GPU or CPU? True
True = GPU, False = CPU
epochs = <NumberEpochs> Epochs to train 50
early_stopping = <Integer> Should early stopping be used? 0
0 = no, otherwise value is number of
epochs without improvement
early_loss = <LossName> Loss monitored by early stopping "val_loss"
base_weights = <WeightsName> Base weights the training starts from [‘coco”
dataset_quantity = <QuantityDataset> Percentage of the training dataset to (100

use_wandb = <Boolean>

Use Weights & Biases to track

training data? True = yes, False = no

False

wandb_entity = "test"

Enter W&B entity name (check

projects in Weights & Biases, entity

"test”




name is next to the project name)

wandb_project = "test"

Enter W&B project name

"test"

wandb_group = "test"

Enter group name within the W&B

project

"test"

wandb_name = "test"

Enter run name within the group of
W&B project

"test”

cross_validation = <Boolean>

Perform a k-fold cross-validation? If
lyou want to train the final models,

choose False. True = yes, False = no

True

k fold = <NumberFolds>

Number of folds for k-fold cross

\validation

k_fold_val = <FoldNumber>

\Validation fold. Starting with 0. The
remaining folds are training folds

backbone_type = <Integer>

backbone (see BACKBONE
parameter in config.py).
0 = "resnet50", 1 = "resnet101"

train_all_layers = <Boolean>

\Which layers should be trained?
True = train all layers,

False = train only heads

True

images_gpu = <Numberimages>

Number of images used to train the
model on each GPU. If only one GPU
is used, this parameter is equivalent
to batch size (see BATCH_SIZE
parameter in config.py). A 12GB
GPU can typically handle 2 images of
1024x1024px resolution. Adjust this
parameter based on your GPU

memory and image resolution.

learning = <Integer>

Learning rate (see
LEARNING_RATE parameter in

config.py).
0=0.01,1=0.001, 2 =0.0001

image_max = <Integer>

Image resolution (see
IMAGE_MAX_DIM parameter in
config.py). Select the closest value
corresponding to the largest side of
the image.

0=512,1=1024, 2 =2048

momentum = <Integer>

Learning momentum (see
LEARNING_MOMENTUM parameter
in config.py).




0=0.8,1=0.9,2=0.99

w_decay = <Integer>

Weight decay (see WEIGHT_DECAY
parameter in config.py).
0 =0.0001,1=0.001,2=0.01

augmentation = <Boolean>

Use augmentation methods?
True = yes, False = no

False

flip = <Integer>

Use augmentation method flip?
0=no,1=(0.5,0.5)

cropandpad = <Integer>

Use augmentation method crop?
0=no, 1=(-0.25,0), 2 =(-0.1, 0)

rotate = <Integer>

Use augmentation method rotate?
0 =no, 1 = (-45, 45), 2 = (-90, 90)

noise = <Integer>

Use augmentation method additive
Gaussian noise?
0=no,1=0.01,2=0.02

o

gamma = <Integer>

Use augmentation method gamma

contrast? 0 = no, 1 = yes

o

contrast = <Integer>

Use contrast adjustment? 0 = no,
1 = contrast limited adaptive
histogram equalization,

2 = contrast stretching

Table 3: MRCNN processing parameters

Parameter

Description

Default value

(best practice)

Cluster = <Boolean>

Is the script executed on the cluster?
E.g., RWTH High Performance
Computing cluster?

True = yes, False = no

False

e ”

file_format = <FileFormat> File format of images irg
dataset_path = <InputFolderName> Input dataset folder located in path: [test”
"...\datasets\input\..."
save_path = <OutputFolderName> Output images folder located in path: {‘test”
"...\datasets\output\..."
name_result_file = <ExcelFileName> Name of the excel output file located [‘test”
in path:
"...\models\<WeightsFolderName>\".
This excel file shows the distribution
of the input images to the folds.
weights_path = <WeightsFolderName> Folder of the MRCNN model located [‘test”




in: "..\models\..."
\Weights of the individual epochs =
MRCNN models

weights_name = <ModelName>

MRCNN model name located in

path: "models\

“test”

masks = <Boolean>

Generate detection masks?

True = yes, False = no

False

device = <Boolean>

Use GPU or CPU?
True = GPU, False = CPU

True

save_nth_image = <Integer>

Save n-th result image

pixelsize = <Double>

Pixel size in [um/px].
To read from Sopat log file enter
pixelsize = 0 (Sopat generates a

JSON file with including information)

image_crop = <Coordinates>

Do you want the image to be center
cropped before detection?

no = None, yes = (X, y) coordinates
(e.g.: image_crop = (1000, 1500))

None

images_gpu = <Numberimages>

Number of images used to evaluate
with the MRCNN model on each
GPU. If only one GPU is used, this
parameter is equivalent to batch size
(see BATCH_SIZE parameter in
config.py). A 12GB GPU can typically
handle 2 images of 1024x1024px
resolution. Adjust this parameter
based on your GPU memory and

image resolution.

image_max = <Integer>

Image resolution (see
IMAGE_MAX_DIM parameter in
config.py). Select the closest value
corresponding to the largest side of
the image.

0=512,1=1024,2 =2048

confidence = <Double>

Skip detections with confidence <

specified confidence parameter value

detect_reflections = <Boolean>

Detect and mark reflections in
droplets? The detected reflections
are excluded from the evaluation and
do not appear in the excel output file.

Marking color is blue.

False




True = yes, False = no

detect_oval_droplets = <Boolean>

Detect and mark oval droplets?

The detected oval droplets are
excluded from the evaluation and do
not appear in the excel output file.
Marking color is red.

True = yes, False = no

True

min_aspect_ratio = <Double>

Minimum aspect ratio: filter for

elliptical shapes

0.9

detect_adhesive_droplets = <Boolean>

Detect and mark adhesive droplets?
The detected adhesive droplets are
excluded from the evaluation and do
not appear in the excel output file.
Marking color is orange.

True = yes, False = no

False

save_coordinates = <Boolean>

Save coordinates of detected
adhesive droplets in excel output

file? True = yes, False = no

False

min_velocity = <Double>

Minimum velocity: threshold to filter
adhesive droplets minimum distance
[% of droplet mean diameter] that a
droplet has to travel between 2

frames

min_size_diff = <Double>

Minimum size difference: threshold to
filter adhesive droplets [%] to be

considered a different droplet

n_images_compared = <Integer>

Number of images that are being
compared. This is necessary
because adhesive droplets may not

get detected every frame.

n_adhesive_high = <Integer>
n_adhesive_low = <Integer>

low_distance_threshold = <Double>

Number of times a droplet has to be
detected at a similar position to be

defined as adhesive.

0.05

edge_tolerance = <Double>

Edge threshold: filter for image
border intersecting droplets. Image
border intersecting droplets are

marked in color red.

contrast = <Integer>

Use contrast adjustment? 0 = no,
1 = contrast limited adaptive
histogram equalization,

2 = contrast stretching







