Skip to content
Snippets Groups Projects
Athith Boloor's avatar
Athith Boloor authored
Final Merge

See merge request !2
0f14a4e1
History

Object detection on Carbon Fibres

References

To use google colab

To get the code

  • get the source code folder from gitlab !git clone -b dev https://git.rwth-aachen.de/athith.boloor/defect_detection_carbon_fibre.git

Populate the pre trained model folder

  • run the code !wget http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz
  • extract the file using the command !tar xvzf ssd_inception_v2_coco_2018_01_28.tar.gz -C defect_detection_carbon_fibre/pre-trained-model/
  • Cut/Move the content of this folder outside(one level above)mv defect_detection_carbon_fibre/pre-trained-model/ssd_inception_v2_coco_2018_01_28/* defect_detection_carbon_fibre/pre-trained-model/

Populate the data

  • get the data stored in zip format from Amazon s3 !wget https://thesis-master.s3-eu-west-1.amazonaws.com/project/images.zip
  • unzip to the folder images using the following command !unzip images.zip -d defect_detection_carbon_fibre/images/

Train and save the model

  • Change the directory from /content to /content/defect_detection_carbon_fibre by executing this code import os os.chdir(os.getcwd()+"/defect_detection_carbon_fibre/")
  • execute the command !python train.py
  • first download the saved model (To carry out the inference later)and convert it into the zip format and save it in AmazonS3

Inference

Retrieve the trained model

  • retrieve the saved model from Amazon s3 using the command !wget https://thesis-master.s3-eu-west-1.amazonaws.com/project/trained_model.zip
  • unzip the model into the directory defect_detection_carbon_fibre/training/ using !unzip trained_model.zip -d defect_detection_carbon_fibre/training/

Exporting a trained inference graph

  • change working directory to /defect_detection_carbon_fibre/ using the command import os andos.chdir(os.getcwd()+"/defect_detection_carbon_fibre/")
  • run the following command to generate trained inference graph in the directorytrained-inference-graphs/output_inference_graph_v1.pb using the following command !python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssd_inception_v2_coco.config --trained_checkpoint_prefix training/model.ckpt-20000 --output_directory trained-inference-graphs/output_inference_graph_v1.pb

Predict on test data

  • run !python infer.py to make predictions on the test images.