#!/usr/bin/python # -*- coding: UTF-8 -*- import numpy as np import pandas as pd import re from .timeseries import * def read_timeseries_Modelica(filename, timeseries_names=None, is_regex=False): from modelicares import SimRes sim = SimRes(filename) if timeseries_names is None and is_regex is False: # No trajectory names or regex specified, thus read in all timeseries = [] for name in sim.names(): timeseries.append(TimeSeries(name, sim(name).times(), sim(name).values())) timeseries_names = sim.names() elif is_regex is True: # Read in variables which match with regex timeseries = [] p = re.compile(timeseries_names) timeseries_names = [name for name in sim.names() if p.search(name)] timeseries_names.sort() for name in timeseries_names: timeseries.append(TimeSeries(name, sim(name).times(), sim(name).values())) else: # Read in specified time series if not isinstance(timeseries_names, list): timeseries = TimeSeries(timeseries_names, sim(timeseries_names).times(), sim(timeseries_names).values()) else: timeseries = [] for name in timeseries_names: timeseries.append(TimeSeries(name, sim(name).times(), sim(name).values())) print('Modelica results column names: ' + str(timeseries_names)) print('Modelica results number: ' + str(len(timeseries_names))) return timeseries def read_timeseries_csv(filename, timeseries_names=None, print_status=True): """Reads complex time series data from DPsim log file. Real and imaginary part are stored in one complex variable. :param filename: name of the csv file that has the data :param timeseries_names: column name which should be read :return: list of Timeseries objects """ pd_df = pd.read_csv(filename) timeseries_list = {} cmpl_result_columns = [] real_result_columns = [] if timeseries_names is None: # No column names specified, thus read in all and strip off spaces pd_df.rename(columns=lambda x: x.strip(), inplace=True) column_names = list(pd_df.columns.values) # Remove timestamps column name and store separately column_names.remove('time') timestamps = pd_df.iloc[:, 0] # Find real and complex variable names suffixes = [ ('_re', '_im'), ('.re', '.im'), ('.real', '.imag') ] for column in column_names: is_complex = False for suffix in suffixes: real_suffix = suffix[0] imag_suffix = suffix[1] if column.endswith(imag_suffix): is_complex = True break # Ignore imag columns if column.endswith(real_suffix): is_complex = True column_base = column.replace(real_suffix, '') if column_base + imag_suffix not in column_names: continue cmpl_result_columns.append(column_base) timeseries_list[column_base] = TimeSeries(column_base, timestamps, np.vectorize(complex)( pd_df[column_base + real_suffix], pd_df[column_base + imag_suffix] ) ) break if is_complex: continue real_result_columns.append(column) timeseries_list[column] = TimeSeries(column, timestamps, pd_df[column]) else: # Read in specified time series print('cannot read specified columns yet') if print_status : print('column number: ' + str(len(timeseries_list))) print('results length: ' + str(len(timestamps))) print('real column names: ' + str(real_result_columns)) print('complex column names: ' + str(cmpl_result_columns)) return timeseries_list def read_timeseries_dpsim(filename, timeseries_names=None, print_status=True): return read_timeseries_csv(filename, timeseries_names, print_status) def read_timeseries_simulink(filename, timeseries_names=None, print_status=True): return read_timeseries_csv(filename, timeseries_names, print_status) def read_dpsim_log(log_path): log_file = open(log_path, "r") log_lines = [line.rstrip() for line in log_file] log_file.close() # Sectionize log_sections = {'init':[], 'none':[], 'sysmat_stamp':[], 'sysmat_final':[], 'sourcevec_stamp':[], 'sourcevec_final':[], 'ludecomp':[]} section = 'init' for line_pos in range(len(log_lines)): if re.search('DEBUG: Stamping .+ into system matrix:', log_lines[line_pos]): section = 'sysmat_stamp' elif re.search('INFO: System matrix:', log_lines[line_pos]): section = 'sysmat_final' elif re.search('DEBUG: Stamping .+ into source vector:', log_lines[line_pos]): section = 'sourcevec_stamp' elif re.search('INFO: Right side vector:', log_lines[line_pos]): section = 'sourcevec_final' elif re.search('INFO: LU decomposition:', log_lines[line_pos]): section = 'ludecomp' elif re.search('INFO: Number of network simulation nodes:', log_lines[line_pos]): section = 'none' elif re.search('INFO: Added .+ to simulation.', log_lines[line_pos]): section = 'none' elif re.search('INFO: Initial switch status:', log_lines[line_pos]): section = 'none' log_sections[section].append(line_pos) return log_lines, log_sections def read_timeseries_PLECS(filename, timeseries_names=None): pd_df = pd.read_csv(filename) timeseries_list = [] if timeseries_names is None: # No trajectory names specified, thus read in all timeseries_names = list(pd_df.columns.values) timeseries_names.remove('Time') for name in timeseries_names: timeseries_list.append(TimeSeries(name, pd_df['Time'].values, pd_df[name].values)) else: # Read in specified time series for name in timeseries_names: timeseries_list.append(TimeSeries(name, pd_df['Time'].values, pd_df[name].values)) print('PLECS results column names: ' + str(timeseries_names)) print('PLECS results number: ' + str(len(timeseries_list))) return timeseries_list def read_timeseries_NEPLAN_loadflow(file_name, timeseries_names=None, is_regex=False): """ Read in NEPLAN loadflow result from result file, the result is in angle notation, amplitude and angle are stored separately To keep consistent with the names of voltage in most cases, the name of voltage variables are changed into '.V*' instead of '.U*' as in the result file :param file_name: name of the mat file for the loadflow result from neplan :param timeseries_names: column name to be read :param is_regex: flag for using regular expression :return: list of Timeseries objects """ str_tmp = open(file_name, "r") # Read in files low = 0 # flag for the start of a new data in str_cmp high = 0 # flag for the end of this new data in str_cmp flag = True # To judge if this is the first line of the file, which will be the names for the data type # Read in data from result file of neplan seq = [] # list for data type names value = [] # list for data namelist = ['U', 'ANGLEU', 'P', 'Q', 'I', 'ANGLEI'] # Suffix of the data name timeseries = [] line_del = [] # a list for the value to be deleted isfloat = re.compile(r'^[-+]?[0-9]+\.[0-9]+$') # regular expression to find float values # Transfer ',' in the floats in result file to '.' for line in str_tmp.readlines(): # Check the data to find out floats with ',' line = line.replace(",", ".") high -= high low -= low del value[:] # read in different data and start processing for letter in line: if letter == " " or letter == "\n": # different data(separated by ' ') or end(/n) if low is not high: # if low is equal to high, no data read in if flag: # first line of the file, list for data-type name seq.append(line[low:high]) else: # not first line of the file,list for data if isfloat.match(line[low:high]): value.append(float(line[low:high])) else: value.append(line[low:high]) else: # no data for this datatype value.append(r'#') # No value, set as # low = high + 1 # refresh low flag high += 1 """ A typical line current in neplan has two parts from both end, but we doesn't have to calculate them with the assumption that the topology of the gird should be correct with which we can validate the current by comparing the voltage of the nodes connected to the ends of the line """ if flag is not True: # flag is true when it's the first line if value[3] is not '#': for m in range(6): timeseries.append(TimeSeries(value[3] + '.' + namelist[m], np.array([0., 1.]), np.array([value[m + 6], value[m + 6]]))) else: for m in range(2): timeseries.append(TimeSeries(value[1] + '.' + namelist[m], np.array([0., 1.]), np.array([value[m + 6], value[m + 6]]))) flag = False str_tmp.close() # Read in variables which match with regex if is_regex is True: p = re.compile(timeseries_names) length = len(timeseries) for rule_check in range(length): if p.search(timeseries[rule_check].name): pass else: line_del.append(rule_check) # Read in specified time series elif timeseries_names is not None: length = len(timeseries) for rule_check in range(length): if timeseries_names == timeseries[rule_check].name: pass else: line_del.append(rule_check) # delete those values that are not needed. line_del = set(line_del) line_del = sorted(line_del) for num_to_del in range(len(line_del)): del timeseries[line_del[len(line_del) - num_to_del - 1]] return timeseries def read_timeseries_simulink_loadflow(file_name, timeseries_names=None, is_regex=False): """ Read in simulink load-flow result from result file(.rep), the result is in angle notation, amplitude and angle are stored separately. A suffix is used to tag different data for a component: .Arms/.IDegree for current/current angle, .Vrms/.VDegree for voltage/voltage angle. :param file_name:path of the .rep file for the loadflow result from simulink :param timeseries_names: specific values to be read :param is_regex: flag for using regular expression :return: list of Timeseries objects """ str_tmp = open(file_name, 'r', encoding='latin-1') # Read in files, using latin-1 to decode /xb0 # Read in data from result file of neplan name = [] # list for data type names value = [] # list for data timeseries = [] line_del = [] # a list for the value to be deleted for line in str_tmp.readlines(): line = line.replace("°", "") del value[:] del name[:] # read in different data and start processing if len(line) > 37: if line[31:35] == '--->': if line[13:17] == 'Arms': name = [line[37:len(line)].rstrip() + '.Arms', line[37:len(line)].rstrip() + '.IDegree'] elif line[13:17] == 'Vrms': name = [line[37:len(line)].rstrip() + '.Vrms', line[37:len(line)].rstrip() + '.VDegree'] value = [float(line[0:13]), float(line[18:31])] timeseries.append(TimeSeries(name[0], np.array([0., 1.]), np.array([value[0], value[0]]))) timeseries.append(TimeSeries(name[1], np.array([0., 1.]), np.array([value[1], value[1]]))) # Read in variables which match with regex if is_regex is True: p = re.compile(timeseries_names) length = len(timeseries) for rule_check in range(length): if p.search(timeseries[rule_check].name): pass else: line_del.append(rule_check) # Read in specified time series elif timeseries_names is not None: length = len(timeseries) for rule_check in range(length): if timeseries_names == timeseries[rule_check].name: pass else: line_del.append(rule_check) # delete those values that are not needed. line_del = set(line_del) line_del = sorted(line_del) for num_to_del in range(len(line_del)): del timeseries[line_del[len(line_del) - num_to_del - 1]] return timeseries