diff --git a/lectures/04_NLResistiveCompanion/NL_RC.html b/lectures/04_NLResistiveCompanion/Lecture_SimExample_NLResistiveCompanion.html similarity index 71% rename from lectures/04_NLResistiveCompanion/NL_RC.html rename to lectures/04_NLResistiveCompanion/Lecture_SimExample_NLResistiveCompanion.html index 86a59f34ec92850511215489272116050f5fb366..b7a27752201ca251784dca64f31b6f632d30dc0c 100644 --- a/lectures/04_NLResistiveCompanion/NL_RC.html +++ b/lectures/04_NLResistiveCompanion/Lecture_SimExample_NLResistiveCompanion.html @@ -1,9 +1,14 @@ <!DOCTYPE html> <html> -<head><meta charset="utf-8" /> -<title>NL_RC</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> +<head><meta charset="utf-8"> + +<title>Lecture_SimExample_NLResistiveCompanion</title> + +<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script> + + <style type="text/css"> /*! * @@ -199,7 +204,6 @@ th { *:before, *:after { background: transparent !important; - color: #000 !important; box-shadow: none !important; text-shadow: none !important; } @@ -6744,15 +6748,15 @@ button.close { * */ /*! - * Font Awesome 4.2.0 by @davegandy - http://fontawesome.io - @fontawesome + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) */ /* FONT PATH * -------------------------- */ @font-face { font-family: 'FontAwesome'; - src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.2.0'); - src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.2.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.2.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.2.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.2.0#fontawesomeregular') format('svg'); + src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.7.0'); + src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.7.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff2?v=4.7.0') format('woff2'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.7.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.7.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular') format('svg'); font-weight: normal; font-style: normal; } @@ -6809,6 +6813,19 @@ button.close { border: solid 0.08em #eee; border-radius: .1em; } +.fa-pull-left { + float: left; +} +.fa-pull-right { + float: right; +} +.fa.fa-pull-left { + margin-right: .3em; +} +.fa.fa-pull-right { + margin-left: .3em; +} +/* Deprecated as of 4.4.0 */ .pull-right { float: right; } @@ -6825,6 +6842,10 @@ button.close { -webkit-animation: fa-spin 2s infinite linear; animation: fa-spin 2s infinite linear; } +.fa-pulse { + -webkit-animation: fa-spin 1s infinite steps(8); + animation: fa-spin 1s infinite steps(8); +} @-webkit-keyframes fa-spin { 0% { -webkit-transform: rotate(0deg); @@ -6846,31 +6867,31 @@ button.close { } } .fa-rotate-90 { - filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=1); + -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=1)"; -webkit-transform: rotate(90deg); -ms-transform: rotate(90deg); transform: rotate(90deg); } .fa-rotate-180 { - filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2); + -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=2)"; -webkit-transform: rotate(180deg); -ms-transform: rotate(180deg); transform: rotate(180deg); } .fa-rotate-270 { - filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=3); + -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=3)"; -webkit-transform: rotate(270deg); -ms-transform: rotate(270deg); transform: rotate(270deg); } .fa-flip-horizontal { - filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1); + -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)"; -webkit-transform: scale(-1, 1); -ms-transform: scale(-1, 1); transform: scale(-1, 1); } .fa-flip-vertical { - filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1); + -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)"; -webkit-transform: scale(1, -1); -ms-transform: scale(1, -1); transform: scale(1, -1); @@ -7355,6 +7376,7 @@ button.close { .fa-twitter:before { content: "\f099"; } +.fa-facebook-f:before, .fa-facebook:before { content: "\f09a"; } @@ -7367,6 +7389,7 @@ button.close { .fa-credit-card:before { content: "\f09d"; } +.fa-feed:before, .fa-rss:before { content: "\f09e"; } @@ -8004,7 +8027,8 @@ button.close { .fa-male:before { content: "\f183"; } -.fa-gittip:before { +.fa-gittip:before, +.fa-gratipay:before { content: "\f184"; } .fa-sun-o:before { @@ -8108,7 +8132,7 @@ button.close { .fa-digg:before { content: "\f1a6"; } -.fa-pied-piper:before { +.fa-pied-piper-pp:before { content: "\f1a7"; } .fa-pied-piper-alt:before { @@ -8234,6 +8258,7 @@ button.close { content: "\f1ce"; } .fa-ra:before, +.fa-resistance:before, .fa-rebel:before { content: "\f1d0"; } @@ -8247,6 +8272,8 @@ button.close { .fa-git:before { content: "\f1d3"; } +.fa-y-combinator-square:before, +.fa-yc-square:before, .fa-hacker-news:before { content: "\f1d4"; } @@ -8415,6 +8442,657 @@ button.close { .fa-meanpath:before { content: "\f20c"; } +.fa-buysellads:before { + content: "\f20d"; +} +.fa-connectdevelop:before { + content: "\f20e"; +} +.fa-dashcube:before { + content: "\f210"; +} +.fa-forumbee:before { + content: "\f211"; +} +.fa-leanpub:before { + content: "\f212"; +} +.fa-sellsy:before { + content: "\f213"; +} +.fa-shirtsinbulk:before { + content: "\f214"; +} +.fa-simplybuilt:before { + content: "\f215"; +} +.fa-skyatlas:before { + content: "\f216"; +} +.fa-cart-plus:before { + content: "\f217"; +} +.fa-cart-arrow-down:before { + content: "\f218"; +} +.fa-diamond:before { + content: "\f219"; +} +.fa-ship:before { + content: "\f21a"; +} +.fa-user-secret:before { + content: "\f21b"; +} +.fa-motorcycle:before { + content: "\f21c"; +} +.fa-street-view:before { + content: "\f21d"; +} +.fa-heartbeat:before { + content: "\f21e"; +} +.fa-venus:before { + content: "\f221"; +} +.fa-mars:before { + content: "\f222"; +} +.fa-mercury:before { + content: "\f223"; +} +.fa-intersex:before, +.fa-transgender:before { + content: "\f224"; +} +.fa-transgender-alt:before { + content: "\f225"; +} +.fa-venus-double:before { + content: "\f226"; +} +.fa-mars-double:before { + content: "\f227"; +} +.fa-venus-mars:before { + content: "\f228"; +} +.fa-mars-stroke:before { + content: "\f229"; +} +.fa-mars-stroke-v:before { + content: "\f22a"; +} +.fa-mars-stroke-h:before { + content: "\f22b"; +} +.fa-neuter:before { + content: "\f22c"; +} +.fa-genderless:before { + content: "\f22d"; +} +.fa-facebook-official:before { + content: "\f230"; +} +.fa-pinterest-p:before { + content: "\f231"; +} +.fa-whatsapp:before { + content: "\f232"; +} +.fa-server:before { + content: "\f233"; +} +.fa-user-plus:before { + content: "\f234"; +} +.fa-user-times:before { + content: "\f235"; +} +.fa-hotel:before, +.fa-bed:before { + content: "\f236"; +} +.fa-viacoin:before { + content: "\f237"; +} +.fa-train:before { + content: "\f238"; +} +.fa-subway:before { + content: "\f239"; +} +.fa-medium:before { + content: "\f23a"; +} +.fa-yc:before, +.fa-y-combinator:before { + content: "\f23b"; +} +.fa-optin-monster:before { + content: "\f23c"; +} +.fa-opencart:before { + content: "\f23d"; +} +.fa-expeditedssl:before { + content: "\f23e"; +} +.fa-battery-4:before, +.fa-battery:before, +.fa-battery-full:before { + content: "\f240"; +} +.fa-battery-3:before, +.fa-battery-three-quarters:before { + content: "\f241"; +} +.fa-battery-2:before, +.fa-battery-half:before { + content: "\f242"; +} +.fa-battery-1:before, +.fa-battery-quarter:before { + content: "\f243"; +} +.fa-battery-0:before, +.fa-battery-empty:before { + content: "\f244"; +} +.fa-mouse-pointer:before { + content: "\f245"; +} +.fa-i-cursor:before { + content: "\f246"; +} +.fa-object-group:before { + content: "\f247"; +} +.fa-object-ungroup:before { + content: "\f248"; +} +.fa-sticky-note:before { + content: "\f249"; +} +.fa-sticky-note-o:before { + content: "\f24a"; +} +.fa-cc-jcb:before { + content: "\f24b"; +} +.fa-cc-diners-club:before { + content: "\f24c"; +} +.fa-clone:before { + content: "\f24d"; +} +.fa-balance-scale:before { + content: "\f24e"; +} +.fa-hourglass-o:before { + content: "\f250"; +} +.fa-hourglass-1:before, +.fa-hourglass-start:before { + content: "\f251"; +} +.fa-hourglass-2:before, +.fa-hourglass-half:before { + content: "\f252"; +} +.fa-hourglass-3:before, +.fa-hourglass-end:before { + content: "\f253"; +} +.fa-hourglass:before { + content: "\f254"; +} +.fa-hand-grab-o:before, +.fa-hand-rock-o:before { + content: "\f255"; +} +.fa-hand-stop-o:before, +.fa-hand-paper-o:before { + content: "\f256"; +} +.fa-hand-scissors-o:before { + content: "\f257"; +} +.fa-hand-lizard-o:before { + content: "\f258"; +} +.fa-hand-spock-o:before { + content: "\f259"; +} +.fa-hand-pointer-o:before { + content: "\f25a"; +} +.fa-hand-peace-o:before { + content: "\f25b"; +} +.fa-trademark:before { + content: "\f25c"; +} +.fa-registered:before { + content: "\f25d"; +} +.fa-creative-commons:before { + content: "\f25e"; +} +.fa-gg:before { + content: "\f260"; +} +.fa-gg-circle:before { + content: "\f261"; +} +.fa-tripadvisor:before { + content: "\f262"; +} +.fa-odnoklassniki:before { + content: "\f263"; +} +.fa-odnoklassniki-square:before { + content: "\f264"; +} +.fa-get-pocket:before { + content: "\f265"; +} +.fa-wikipedia-w:before { + content: "\f266"; +} +.fa-safari:before { + content: "\f267"; +} +.fa-chrome:before { + content: "\f268"; +} +.fa-firefox:before { + content: "\f269"; +} +.fa-opera:before { + content: "\f26a"; +} +.fa-internet-explorer:before { + content: "\f26b"; +} +.fa-tv:before, +.fa-television:before { + content: "\f26c"; +} +.fa-contao:before { + content: "\f26d"; +} +.fa-500px:before { + content: "\f26e"; +} +.fa-amazon:before { + content: "\f270"; +} +.fa-calendar-plus-o:before { + content: "\f271"; +} +.fa-calendar-minus-o:before { + content: "\f272"; +} +.fa-calendar-times-o:before { + content: "\f273"; +} +.fa-calendar-check-o:before { + content: "\f274"; +} +.fa-industry:before { + content: "\f275"; +} +.fa-map-pin:before { + content: "\f276"; +} +.fa-map-signs:before { + content: "\f277"; +} +.fa-map-o:before { + content: "\f278"; +} +.fa-map:before { + content: "\f279"; +} +.fa-commenting:before { + content: "\f27a"; +} +.fa-commenting-o:before { + content: "\f27b"; +} +.fa-houzz:before { + content: "\f27c"; +} +.fa-vimeo:before { + content: "\f27d"; +} +.fa-black-tie:before { + content: "\f27e"; +} +.fa-fonticons:before { + content: "\f280"; +} +.fa-reddit-alien:before { + content: "\f281"; +} +.fa-edge:before { + content: "\f282"; +} +.fa-credit-card-alt:before { + content: "\f283"; +} +.fa-codiepie:before { + content: "\f284"; +} +.fa-modx:before { + content: "\f285"; +} +.fa-fort-awesome:before { + content: "\f286"; +} +.fa-usb:before { + content: "\f287"; +} +.fa-product-hunt:before { + content: "\f288"; +} +.fa-mixcloud:before { + content: "\f289"; +} +.fa-scribd:before { + content: "\f28a"; +} +.fa-pause-circle:before { + content: "\f28b"; +} +.fa-pause-circle-o:before { + content: "\f28c"; +} +.fa-stop-circle:before { + content: "\f28d"; +} +.fa-stop-circle-o:before { + content: "\f28e"; +} +.fa-shopping-bag:before { + content: "\f290"; +} +.fa-shopping-basket:before { + content: "\f291"; +} +.fa-hashtag:before { + content: "\f292"; +} +.fa-bluetooth:before { + content: "\f293"; +} +.fa-bluetooth-b:before { + content: "\f294"; +} +.fa-percent:before { + content: "\f295"; +} +.fa-gitlab:before { + content: "\f296"; +} +.fa-wpbeginner:before { + content: "\f297"; +} +.fa-wpforms:before { + content: "\f298"; +} +.fa-envira:before { + content: "\f299"; +} +.fa-universal-access:before { + content: "\f29a"; +} +.fa-wheelchair-alt:before { + content: "\f29b"; +} +.fa-question-circle-o:before { + content: "\f29c"; +} +.fa-blind:before { + content: "\f29d"; +} +.fa-audio-description:before { + content: "\f29e"; +} +.fa-volume-control-phone:before { + content: "\f2a0"; +} +.fa-braille:before { + content: "\f2a1"; +} +.fa-assistive-listening-systems:before { + content: "\f2a2"; +} +.fa-asl-interpreting:before, +.fa-american-sign-language-interpreting:before { + content: "\f2a3"; +} +.fa-deafness:before, +.fa-hard-of-hearing:before, +.fa-deaf:before { + content: "\f2a4"; +} +.fa-glide:before { + content: "\f2a5"; +} +.fa-glide-g:before { + content: "\f2a6"; +} +.fa-signing:before, +.fa-sign-language:before { + content: "\f2a7"; +} +.fa-low-vision:before { + content: "\f2a8"; +} +.fa-viadeo:before { + content: "\f2a9"; +} +.fa-viadeo-square:before { + content: "\f2aa"; +} +.fa-snapchat:before { + content: "\f2ab"; +} +.fa-snapchat-ghost:before { + content: "\f2ac"; +} +.fa-snapchat-square:before { + content: "\f2ad"; +} +.fa-pied-piper:before { + content: "\f2ae"; +} +.fa-first-order:before { + content: "\f2b0"; +} +.fa-yoast:before { + content: "\f2b1"; +} +.fa-themeisle:before { + content: "\f2b2"; +} +.fa-google-plus-circle:before, +.fa-google-plus-official:before { + content: "\f2b3"; +} +.fa-fa:before, +.fa-font-awesome:before { + content: "\f2b4"; +} +.fa-handshake-o:before { + content: "\f2b5"; +} +.fa-envelope-open:before { + content: "\f2b6"; +} +.fa-envelope-open-o:before { + content: "\f2b7"; +} +.fa-linode:before { + content: "\f2b8"; +} +.fa-address-book:before { + content: "\f2b9"; +} +.fa-address-book-o:before { + content: "\f2ba"; +} +.fa-vcard:before, +.fa-address-card:before { + content: "\f2bb"; +} +.fa-vcard-o:before, +.fa-address-card-o:before { + content: "\f2bc"; +} +.fa-user-circle:before { + content: "\f2bd"; +} +.fa-user-circle-o:before { + content: "\f2be"; +} +.fa-user-o:before { + content: "\f2c0"; +} +.fa-id-badge:before { + content: "\f2c1"; +} +.fa-drivers-license:before, +.fa-id-card:before { + content: "\f2c2"; +} +.fa-drivers-license-o:before, +.fa-id-card-o:before { + content: "\f2c3"; +} +.fa-quora:before { + content: "\f2c4"; +} +.fa-free-code-camp:before { + content: "\f2c5"; +} +.fa-telegram:before { + content: "\f2c6"; +} +.fa-thermometer-4:before, +.fa-thermometer:before, +.fa-thermometer-full:before { + content: "\f2c7"; +} +.fa-thermometer-3:before, +.fa-thermometer-three-quarters:before { + content: "\f2c8"; +} +.fa-thermometer-2:before, +.fa-thermometer-half:before { + content: "\f2c9"; +} +.fa-thermometer-1:before, +.fa-thermometer-quarter:before { + content: "\f2ca"; +} +.fa-thermometer-0:before, +.fa-thermometer-empty:before { + content: "\f2cb"; +} +.fa-shower:before { + content: "\f2cc"; +} +.fa-bathtub:before, +.fa-s15:before, +.fa-bath:before { + content: "\f2cd"; +} +.fa-podcast:before { + content: "\f2ce"; +} +.fa-window-maximize:before { + content: "\f2d0"; +} +.fa-window-minimize:before { + content: "\f2d1"; +} +.fa-window-restore:before { + content: "\f2d2"; +} +.fa-times-rectangle:before, +.fa-window-close:before { + content: "\f2d3"; +} +.fa-times-rectangle-o:before, +.fa-window-close-o:before { + content: "\f2d4"; +} +.fa-bandcamp:before { + content: "\f2d5"; +} +.fa-grav:before { + content: "\f2d6"; +} +.fa-etsy:before { + content: "\f2d7"; +} +.fa-imdb:before { + content: "\f2d8"; +} +.fa-ravelry:before { + content: "\f2d9"; +} +.fa-eercast:before { + content: "\f2da"; +} +.fa-microchip:before { + content: "\f2db"; +} +.fa-snowflake-o:before { + content: "\f2dc"; +} +.fa-superpowers:before { + content: "\f2dd"; +} +.fa-wpexplorer:before { + content: "\f2de"; +} +.fa-meetup:before { + content: "\f2e0"; +} +.sr-only { + position: absolute; + width: 1px; + height: 1px; + padding: 0; + margin: -1px; + overflow: hidden; + clip: rect(0, 0, 0, 0); + border: 0; +} +.sr-only-focusable:active, +.sr-only-focusable:focus { + position: static; + width: auto; + height: auto; + margin: 0; + overflow: visible; + clip: auto; +} +.sr-only-focusable:active, +.sr-only-focusable:focus { + position: static; + width: auto; + height: auto; + margin: 0; + overflow: visible; + clip: auto; +} /*! * * IPython base @@ -8694,6 +9372,10 @@ div.traceback-wrapper { max-width: 800px; margin: auto; } +div.traceback-wrapper pre.traceback { + max-height: 600px; + overflow: auto; +} /** * Primary styles * @@ -8719,6 +9401,10 @@ body > #header { z-index: 100; } body > #header #header-container { + display: flex; + flex-direction: row; + justify-content: space-between; + padding: 5px; padding-bottom: 5px; padding-top: 5px; box-sizing: border-box; @@ -8750,13 +9436,16 @@ body > #header .header-bar { padding-top: 1px; padding-bottom: 1px; } -@media (max-width: 991px) { - #ipython_notebook { - margin-left: 10px; - } -} [dir="rtl"] #ipython_notebook { + margin-right: 10px; + margin-left: 0; +} +[dir="rtl"] #ipython_notebook.pull-left { float: right !important; + float: right; +} +.flex-spacer { + flex: 1; } #noscript { width: auto; @@ -8791,9 +9480,15 @@ body > #header .header-bar { input.ui-button { padding: 0.3em 0.9em; } +span#kernel_logo_widget { + margin: 0 10px; +} span#login_widget { float: right; } +[dir="rtl"] span#login_widget { + float: left; +} span#login_widget > .button, #logout { color: #333; @@ -8908,6 +9603,9 @@ span#login_widget > .button .badge, overflow: auto; flex: 1; } +.modal-header { + cursor: move; +} @media (min-width: 768px) { .modal .modal-dialog { width: 700px; @@ -8928,6 +9626,19 @@ span#login_widget > .button .badge, display: inline-block; margin-bottom: -4px; } +[dir="rtl"] .center-nav form.pull-left { + float: right !important; + float: right; +} +[dir="rtl"] .center-nav .navbar-text { + float: right; +} +[dir="rtl"] .navbar-inner { + text-align: right; +} +[dir="rtl"] div.text-left { + text-align: right; +} /*! * * IPython tree view @@ -8944,35 +9655,43 @@ span#login_widget > .button .badge, margin: 0; } .alternate_upload input.fileinput { - text-align: center; - vertical-align: middle; - display: inline; + position: absolute; + display: block; + width: 100%; + height: 100%; + overflow: hidden; + cursor: pointer; opacity: 0; z-index: 2; - width: 12ex; - margin-right: -12ex; +} +.alternate_upload .btn-xs > input.fileinput { + margin: -1px -5px; } .alternate_upload .btn-upload { + position: relative; height: 22px; } +::-webkit-file-upload-button { + cursor: pointer; +} /** * Primary styles * * Author: Jupyter Development Team */ -[dir="rtl"] #tabs li { - float: right; -} ul#tabs { margin-bottom: 4px; } -[dir="rtl"] ul#tabs { - margin-right: 0px; -} ul#tabs a { padding-top: 6px; padding-bottom: 4px; } +[dir="rtl"] ul#tabs.nav-tabs > li { + float: right; +} +[dir="rtl"] ul#tabs.nav.nav-tabs { + padding-right: 0; +} ul.breadcrumb a:focus, ul.breadcrumb a:hover { text-decoration: none; @@ -8991,15 +9710,13 @@ ul.breadcrumb span { .list_toolbar .tree-buttons { padding-top: 1px; } -[dir="rtl"] .list_toolbar .tree-buttons { - float: left !important; -} -[dir="rtl"] .list_toolbar .pull-right { - padding-top: 1px; +[dir="rtl"] .list_toolbar .tree-buttons .pull-right { float: left !important; + float: left; } -[dir="rtl"] .list_toolbar .pull-left { - float: right !important; +[dir="rtl"] .list_toolbar .col-sm-4, +[dir="rtl"] .list_toolbar .col-sm-8 { + float: right; } .dynamic-buttons { padding-top: 3px; @@ -9055,7 +9772,7 @@ ul.breadcrumb span { .list_item > div input { margin-right: 7px; margin-left: 14px; - vertical-align: baseline; + vertical-align: text-bottom; line-height: 22px; position: relative; top: -1px; @@ -9066,6 +9783,9 @@ ul.breadcrumb span { vertical-align: baseline; line-height: 22px; } +[dir="rtl"] .list_item > div input { + margin-right: 0; +} .new-file input[type=checkbox] { visibility: hidden; } @@ -9081,6 +9801,14 @@ ul.breadcrumb span { line-height: 22px; vertical-align: baseline; } +.item_modified { + margin-right: 7px; + margin-left: 7px; +} +[dir="rtl"] .item_modified.pull-right { + float: left !important; + float: left; +} .item_buttons { line-height: 1em; margin-left: -5px; @@ -9108,6 +9836,14 @@ ul.breadcrumb span { margin-right: 7px; float: left; } +[dir="rtl"] .item_buttons.pull-right { + float: left !important; + float: left; +} +[dir="rtl"] .item_buttons .kernel-name { + margin-left: 7px; + float: right; +} .toolbar_info { height: 24px; line-height: 24px; @@ -9133,18 +9869,32 @@ ul.breadcrumb span { background-color: transparent; font-weight: bold; } +.sort_button { + display: inline-block; + padding-left: 7px; +} +[dir="rtl"] .sort_button.pull-right { + float: left !important; + float: left; +} #tree-selector { padding-right: 0px; } -[dir="rtl"] #tree-selector a { - float: right; -} #button-select-all { min-width: 50px; } +[dir="rtl"] #button-select-all.btn { + float: right ; +} #select-all { margin-left: 7px; margin-right: 2px; + margin-top: 2px; + height: 16px; +} +[dir="rtl"] #select-all.pull-left { + float: right !important; + float: right; } .menu_icon { margin-right: 2px; @@ -9162,6 +9912,12 @@ ul.breadcrumb span { -moz-osx-font-smoothing: grayscale; content: "\f114"; } +.folder_icon:before.fa-pull-left { + margin-right: .3em; +} +.folder_icon:before.fa-pull-right { + margin-left: .3em; +} .folder_icon:before.pull-left { margin-right: .3em; } @@ -9179,6 +9935,12 @@ ul.breadcrumb span { position: relative; top: -1px; } +.notebook_icon:before.fa-pull-left { + margin-right: .3em; +} +.notebook_icon:before.fa-pull-right { + margin-left: .3em; +} .notebook_icon:before.pull-left { margin-right: .3em; } @@ -9197,6 +9959,12 @@ ul.breadcrumb span { top: -1px; color: #5cb85c; } +.running_notebook_icon:before.fa-pull-left { + margin-right: .3em; +} +.running_notebook_icon:before.fa-pull-right { + margin-left: .3em; +} .running_notebook_icon:before.pull-left { margin-right: .3em; } @@ -9214,6 +9982,12 @@ ul.breadcrumb span { position: relative; top: -2px; } +.file_icon:before.fa-pull-left { + margin-right: .3em; +} +.file_icon:before.fa-pull-right { + margin-left: .3em; +} .file_icon:before.pull-left { margin-right: .3em; } @@ -9228,8 +10002,11 @@ ul#new-menu { left: auto; right: 0; } -[dir="rtl"] #new-menu { - text-align: right; +#new-menu .dropdown-header { + font-size: 10px; + border-bottom: 1px solid #e5e5e5; + padding: 0 0 3px; + margin: -3px 20px 0; } .kernel-menu-icon { padding-right: 12px; @@ -9276,9 +10053,6 @@ ul#new-menu { #running .panel-group .panel .panel-body .list_container .list_item:last-child { border-bottom: 0px; } -[dir="rtl"] #running .col-sm-8 { - float: right !important; -} .delete-button { display: none; } @@ -9288,6 +10062,12 @@ ul#new-menu { .rename-button { display: none; } +.move-button { + display: none; +} +.download-button { + display: none; +} .shutdown-button { display: none; } @@ -9328,6 +10108,12 @@ ul#new-menu { -moz-osx-font-smoothing: grayscale; width: 20px; } +.dirty-indicator.fa-pull-left { + margin-right: .3em; +} +.dirty-indicator.fa-pull-right { + margin-left: .3em; +} .dirty-indicator.pull-left { margin-right: .3em; } @@ -9343,6 +10129,12 @@ ul#new-menu { -moz-osx-font-smoothing: grayscale; width: 20px; } +.dirty-indicator-dirty.fa-pull-left { + margin-right: .3em; +} +.dirty-indicator-dirty.fa-pull-right { + margin-left: .3em; +} .dirty-indicator-dirty.pull-left { margin-right: .3em; } @@ -9358,6 +10150,12 @@ ul#new-menu { -moz-osx-font-smoothing: grayscale; width: 20px; } +.dirty-indicator-clean.fa-pull-left { + margin-right: .3em; +} +.dirty-indicator-clean.fa-pull-right { + margin-left: .3em; +} .dirty-indicator-clean.pull-left { margin-right: .3em; } @@ -9373,6 +10171,12 @@ ul#new-menu { -moz-osx-font-smoothing: grayscale; content: "\f00c"; } +.dirty-indicator-clean:before.fa-pull-left { + margin-right: .3em; +} +.dirty-indicator-clean:before.fa-pull-right { + margin-left: .3em; +} .dirty-indicator-clean:before.pull-left { margin-right: .3em; } @@ -9417,15 +10221,133 @@ ul#new-menu { box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); } } +.CodeMirror-dialog { + background-color: #fff; +} /*! * * IPython notebook * */ -/* CSS font colors for translated ANSI colors. */ +/* CSS font colors for translated ANSI escape sequences */ +/* The color values are a mix of + http://www.xcolors.net/dl/baskerville-ivorylight and + http://www.xcolors.net/dl/euphrasia */ +.ansi-black-fg { + color: #3E424D; +} +.ansi-black-bg { + background-color: #3E424D; +} +.ansi-black-intense-fg { + color: #282C36; +} +.ansi-black-intense-bg { + background-color: #282C36; +} +.ansi-red-fg { + color: #E75C58; +} +.ansi-red-bg { + background-color: #E75C58; +} +.ansi-red-intense-fg { + color: #B22B31; +} +.ansi-red-intense-bg { + background-color: #B22B31; +} +.ansi-green-fg { + color: #00A250; +} +.ansi-green-bg { + background-color: #00A250; +} +.ansi-green-intense-fg { + color: #007427; +} +.ansi-green-intense-bg { + background-color: #007427; +} +.ansi-yellow-fg { + color: #DDB62B; +} +.ansi-yellow-bg { + background-color: #DDB62B; +} +.ansi-yellow-intense-fg { + color: #B27D12; +} +.ansi-yellow-intense-bg { + background-color: #B27D12; +} +.ansi-blue-fg { + color: #208FFB; +} +.ansi-blue-bg { + background-color: #208FFB; +} +.ansi-blue-intense-fg { + color: #0065CA; +} +.ansi-blue-intense-bg { + background-color: #0065CA; +} +.ansi-magenta-fg { + color: #D160C4; +} +.ansi-magenta-bg { + background-color: #D160C4; +} +.ansi-magenta-intense-fg { + color: #A03196; +} +.ansi-magenta-intense-bg { + background-color: #A03196; +} +.ansi-cyan-fg { + color: #60C6C8; +} +.ansi-cyan-bg { + background-color: #60C6C8; +} +.ansi-cyan-intense-fg { + color: #258F8F; +} +.ansi-cyan-intense-bg { + background-color: #258F8F; +} +.ansi-white-fg { + color: #C5C1B4; +} +.ansi-white-bg { + background-color: #C5C1B4; +} +.ansi-white-intense-fg { + color: #A1A6B2; +} +.ansi-white-intense-bg { + background-color: #A1A6B2; +} +.ansi-default-inverse-fg { + color: #FFFFFF; +} +.ansi-default-inverse-bg { + background-color: #000000; +} +.ansi-bold { + font-weight: bold; +} +.ansi-underline { + text-decoration: underline; +} +/* The following styles are deprecated an will be removed in a future version */ .ansibold { font-weight: bold; } +.ansi-inverse { + outline: 0.5px dotted; +} /* use dark versions for foreground, to improve visibility */ .ansiblack { color: black; @@ -9503,12 +10425,20 @@ div.cell { /* This acts as a spacer between cells, that is outside the border */ margin: 0px; outline: none; - border-left-width: 1px; - padding-left: 5px; - background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%); + position: relative; + overflow: visible; +} +div.cell:before { + position: absolute; + display: block; + top: -1px; + left: -1px; + width: 5px; + height: calc(100% + 2px); + content: ''; + background: transparent; } div.cell.jupyter-soft-selected { - border-left-color: #90CAF9; border-left-color: #E3F2FD; border-left-width: 1px; padding-left: 5px; @@ -9521,27 +10451,39 @@ div.cell.jupyter-soft-selected { border-color: transparent; } } -div.cell.selected { +div.cell.selected, +div.cell.selected.jupyter-soft-selected { border-color: #ababab; - border-left-width: 0px; - padding-left: 6px; - background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%); +} +div.cell.selected:before, +div.cell.selected.jupyter-soft-selected:before { + position: absolute; + display: block; + top: -1px; + left: -1px; + width: 5px; + height: calc(100% + 2px); + content: ''; + background: #42A5F5; } @media print { - div.cell.selected { + div.cell.selected, + div.cell.selected.jupyter-soft-selected { border-color: transparent; } } -div.cell.selected.jupyter-soft-selected { - border-left-width: 0; - padding-left: 6px; - background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%); -} .edit_mode div.cell.selected { border-color: #66BB6A; - border-left-width: 0px; - padding-left: 6px; - background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%); +} +.edit_mode div.cell.selected:before { + position: absolute; + display: block; + top: -1px; + left: -1px; + width: 5px; + height: calc(100% + 2px); + content: ''; + background: #66BB6A; } @media print { .edit_mode div.cell.selected { @@ -9737,7 +10679,9 @@ div.input_area > div.highlight > pre { .CodeMirror-lines { /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */ /* we have set a different line-height and want this to scale with that. */ - padding: 0.4em; + /* Note that this should set vertical padding only, since CodeMirror assumes + that horizontal padding will be set on CodeMirror pre */ + padding: 0.4em 0; } .CodeMirror-linenumber { padding: 0 8px 0 4px; @@ -9747,12 +10691,25 @@ div.input_area > div.highlight > pre { border-top-left-radius: 2px; } .CodeMirror pre { - /* In CM3 this went to 4px from 0 in CM2. We need the 0 value because of how we size */ - /* .CodeMirror-lines */ - padding: 0; + /* In CM3 this went to 4px from 0 in CM2. This sets horizontal padding only, + use .CodeMirror-lines for vertical */ + padding: 0 0.4em; border: 0; border-radius: 0; } +.CodeMirror-cursor { + border-left: 1.4px solid black; +} +@media screen and (min-width: 2138px) and (max-width: 4319px) { + .CodeMirror-cursor { + border-left: 2px solid black; + } +} +@media screen and (min-width: 4320px) { + .CodeMirror-cursor { + border-left: 4px solid black; + } +} /* Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org> @@ -10005,6 +10962,9 @@ div.output_area img.unconfined, div.output_area svg.unconfined { max-width: none; } +div.output_area .mglyph > img { + max-width: none; +} /* This is needed to protect the pre formating from global settings such as that of bootstrap */ .output { @@ -10043,7 +11003,7 @@ div.output_area svg.unconfined { } div.output_area pre { margin: 0; - padding: 0; + padding: 1px 0 1px 0; border: 0; vertical-align: baseline; color: black; @@ -10203,39 +11163,35 @@ div.output_unrecognized a:hover { .rendered_html h6:first-child { margin-top: 1em; } +.rendered_html ul:not(.list-inline), +.rendered_html ol:not(.list-inline) { + padding-left: 2em; +} .rendered_html ul { list-style: disc; - margin: 0em 2em; - padding-left: 0px; } .rendered_html ul ul { list-style: square; - margin: 0em 2em; + margin-top: 0; } .rendered_html ul ul ul { list-style: circle; - margin: 0em 2em; } .rendered_html ol { list-style: decimal; - margin: 0em 2em; - padding-left: 0px; } .rendered_html ol ol { list-style: upper-alpha; - margin: 0em 2em; + margin-top: 0; } .rendered_html ol ol ol { list-style: lower-alpha; - margin: 0em 2em; } .rendered_html ol ol ol ol { list-style: lower-roman; - margin: 0em 2em; } .rendered_html ol ol ol ol ol { list-style: decimal; - margin: 0em 2em; } .rendered_html * + ul { margin-top: 1em; @@ -10249,14 +11205,23 @@ div.output_unrecognized a:hover { } .rendered_html pre { margin: 1em 2em; + padding: 0px; + background-color: #fff; +} +.rendered_html code { + background-color: #eff0f1; +} +.rendered_html p code { + padding: 1px 5px; +} +.rendered_html pre code { + background-color: #fff; } .rendered_html pre, .rendered_html code { border: 0; - background-color: #fff; color: #000; font-size: 100%; - padding: 0px; } .rendered_html blockquote { margin: 1em 2em; @@ -10264,25 +11229,37 @@ div.output_unrecognized a:hover { .rendered_html table { margin-left: auto; margin-right: auto; - border: 1px solid black; + border: none; border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; } .rendered_html tr, .rendered_html th, .rendered_html td { - border: 1px solid black; - border-collapse: collapse; - margin: 1em 2em; -} -.rendered_html td, -.rendered_html th { - text-align: left; + text-align: right; vertical-align: middle; - padding: 4px; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; } .rendered_html th { font-weight: bold; } +.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} .rendered_html * + table { margin-top: 1em; } @@ -10309,6 +11286,15 @@ div.output_unrecognized a:hover { .rendered_html svg.unconfined { max-width: none; } +.rendered_html .alert { + margin-bottom: initial; +} +.rendered_html * + .alert { + margin-top: 1em; +} +[dir="rtl"] .rendered_html p { + text-align: right; +} div.text_cell { /* Old browsers */ display: -webkit-box; @@ -10362,9 +11348,18 @@ h6:hover .anchor-link { overflow-x: auto; overflow-y: hidden; } +.text_cell.rendered .rendered_html tr, +.text_cell.rendered .rendered_html th, +.text_cell.rendered .rendered_html td { + max-width: none; +} .text_cell.unrendered .text_cell_render { display: none; } +.text_cell .dropzone .input_area { + border: 2px dashed #bababa; + margin: -1px; +} .cm-header-1, .cm-header-2, .cm-header-3, @@ -10500,6 +11495,28 @@ kbd { padding-top: 1px; padding-bottom: 1px; } +.jupyter-keybindings { + padding: 1px; + line-height: 24px; + border-bottom: 1px solid gray; +} +.jupyter-keybindings input { + margin: 0; + padding: 0; + border: none; +} +.jupyter-keybindings i { + padding: 6px; +} +.well code { + background-color: #ffffff; + border-color: #ababab; + border-width: 1px; + border-style: solid; + padding: 2px; + padding-top: 1px; + padding-bottom: 1px; +} /* CSS for the cell toolbar */ .celltoolbar { border: thin solid #CFCFCF; @@ -10632,6 +11649,152 @@ select[multiple].celltoolbar select { margin-left: 5px; margin-right: 5px; } +.tags_button_container { + width: 100%; + display: flex; +} +.tag-container { + display: flex; + flex-direction: row; + flex-grow: 1; + overflow: hidden; + position: relative; +} +.tag-container > * { + margin: 0 4px; +} +.remove-tag-btn { + margin-left: 4px; +} +.tags-input { + display: flex; +} +.cell-tag:last-child:after { + content: ""; + position: absolute; + right: 0; + width: 40px; + height: 100%; + /* Fade to background color of cell toolbar */ + background: linear-gradient(to right, rgba(0, 0, 0, 0), #EEE); +} +.tags-input > * { + margin-left: 4px; +} +.cell-tag, +.tags-input input, +.tags-input button { + display: block; + width: 100%; + height: 32px; + padding: 6px 12px; + font-size: 13px; + line-height: 1.42857143; + color: #555555; + background-color: #fff; + background-image: none; + border: 1px solid #ccc; + border-radius: 2px; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); + -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; + -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; + transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; + height: 30px; + padding: 5px 10px; + font-size: 12px; + line-height: 1.5; + border-radius: 1px; + box-shadow: none; + width: inherit; + font-size: inherit; + height: 22px; + line-height: 22px; + padding: 0px 4px; + display: inline-block; +} +.cell-tag:focus, +.tags-input input:focus, +.tags-input button:focus { + border-color: #66afe9; + outline: 0; + -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6); + box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6); +} +.cell-tag::-moz-placeholder, +.tags-input input::-moz-placeholder, +.tags-input button::-moz-placeholder { + color: #999; + opacity: 1; +} +.cell-tag:-ms-input-placeholder, +.tags-input input:-ms-input-placeholder, +.tags-input button:-ms-input-placeholder { + color: #999; +} +.cell-tag::-webkit-input-placeholder, +.tags-input input::-webkit-input-placeholder, +.tags-input button::-webkit-input-placeholder { + color: #999; +} +.cell-tag::-ms-expand, +.tags-input input::-ms-expand, +.tags-input button::-ms-expand { + border: 0; + background-color: transparent; +} +.cell-tag[disabled], +.tags-input input[disabled], +.tags-input button[disabled], +.cell-tag[readonly], +.tags-input input[readonly], +.tags-input button[readonly], +fieldset[disabled] .cell-tag, +fieldset[disabled] .tags-input input, +fieldset[disabled] .tags-input button { + background-color: #eeeeee; + opacity: 1; +} +.cell-tag[disabled], +.tags-input input[disabled], +.tags-input button[disabled], +fieldset[disabled] .cell-tag, +fieldset[disabled] .tags-input input, +fieldset[disabled] .tags-input button { + cursor: not-allowed; +} +textarea.cell-tag, +textarea.tags-input input, +textarea.tags-input button { + height: auto; +} +select.cell-tag, +select.tags-input input, +select.tags-input button { + height: 30px; + line-height: 30px; +} +textarea.cell-tag, +textarea.tags-input input, +textarea.tags-input button, +select[multiple].cell-tag, +select[multiple].tags-input input, +select[multiple].tags-input button { + height: auto; +} +.cell-tag, +.tags-input button { + padding: 0px 4px; +} +.cell-tag { + background-color: #fff; + white-space: nowrap; +} +.tags-input input[type=text]:focus { + outline: none; + box-shadow: none; + border-color: #ccc; +} .completions { position: absolute; z-index: 110; @@ -10657,10 +11820,6 @@ select[multiple].celltoolbar select { .completions select option.context { color: #286090; } -#kernel_logo_widget { - float: right !important; - float: right; -} #kernel_logo_widget .current_kernel_logo { display: none; margin-top: -1px; @@ -10668,6 +11827,22 @@ select[multiple].celltoolbar select { width: 32px; height: 32px; } +[dir="rtl"] #kernel_logo_widget { + float: left !important; + float: left; +} +.modal .modal-body .move-path { + display: flex; + flex-direction: row; + justify-content: space; + align-items: center; +} +.modal .modal-body .move-path .server-root { + padding-right: 20px; +} +.modal .modal-body .move-path .path-input { + flex: 1; +} #menubar { box-sizing: border-box; -moz-box-sizing: border-box; @@ -10688,12 +11863,42 @@ select[multiple].celltoolbar select { #menubar .navbar-collapse { clear: left; } +[dir="rtl"] #menubar .navbar-toggle { + float: right; +} +[dir="rtl"] #menubar .navbar-collapse { + clear: right; +} +[dir="rtl"] #menubar .navbar-nav { + float: right; +} +[dir="rtl"] #menubar .nav { + padding-right: 0px; +} +[dir="rtl"] #menubar .navbar-nav > li { + float: right; +} +[dir="rtl"] #menubar .navbar-right { + float: left !important; +} +[dir="rtl"] ul.dropdown-menu { + text-align: right; + left: auto; +} +[dir="rtl"] ul#new-menu.dropdown-menu { + right: auto; + left: 0; +} .nav-wrapper { border-bottom: 1px solid #e7e7e7; } i.menu-icon { padding-top: 4px; } +[dir="rtl"] i.menu-icon.pull-right { + float: left !important; + float: left; +} ul#help_menu li a { overflow: hidden; padding-right: 2.2em; @@ -10701,6 +11906,17 @@ ul#help_menu li a { ul#help_menu li a i { margin-right: -1.2em; } +[dir="rtl"] ul#help_menu li a { + padding-left: 2.2em; +} +[dir="rtl"] ul#help_menu li a i { + margin-right: 0; + margin-left: -1.2em; +} +[dir="rtl"] ul#help_menu li a i.pull-right { + float: left !important; + float: left; +} .dropdown-submenu { position: relative; } @@ -10710,6 +11926,10 @@ ul#help_menu li a i { margin-top: -6px; margin-left: -1px; } +[dir="rtl"] .dropdown-submenu > .dropdown-menu { + right: 100%; + margin-right: -1px; +} .dropdown-submenu:hover > .dropdown-menu { display: block; } @@ -10727,12 +11947,24 @@ ul#help_menu li a i { margin-top: 2px; margin-right: -10px; } +.dropdown-submenu > a:after.fa-pull-left { + margin-right: .3em; +} +.dropdown-submenu > a:after.fa-pull-right { + margin-left: .3em; +} .dropdown-submenu > a:after.pull-left { margin-right: .3em; } .dropdown-submenu > a:after.pull-right { margin-left: .3em; } +[dir="rtl"] .dropdown-submenu > a:after { + float: left; + content: "\f0d9"; + margin-right: 0; + margin-left: -10px; +} .dropdown-submenu:hover > a:after { color: #262626; } @@ -10748,6 +11980,10 @@ ul#help_menu li a i { float: right; z-index: 10; } +[dir="rtl"] #notification_area { + float: left !important; + float: left; +} .indicator_area { float: right !important; float: right; @@ -10759,6 +11995,10 @@ ul#help_menu li a i { text-align: center; width: auto; } +[dir="rtl"] .indicator_area { + float: left !important; + float: left; +} #kernel_indicator { float: right !important; float: right; @@ -10775,6 +12015,12 @@ ul#help_menu li a i { padding-left: 5px; padding-right: 5px; } +[dir="rtl"] #kernel_indicator { + float: left !important; + float: left; + border-left: 0; + border-right: 1px solid; +} #modal_indicator { float: right !important; float: right; @@ -10786,6 +12032,10 @@ ul#help_menu li a i { text-align: center; width: auto; } +[dir="rtl"] #modal_indicator { + float: left !important; + float: left; +} #readonly-indicator { float: right !important; float: right; @@ -10815,6 +12065,12 @@ ul#help_menu li a i { -moz-osx-font-smoothing: grayscale; content: "\f040"; } +.edit_mode .modal_indicator:before.fa-pull-left { + margin-right: .3em; +} +.edit_mode .modal_indicator:before.fa-pull-right { + margin-left: .3em; +} .edit_mode .modal_indicator:before.pull-left { margin-right: .3em; } @@ -10830,6 +12086,12 @@ ul#help_menu li a i { -moz-osx-font-smoothing: grayscale; content: ' '; } +.command_mode .modal_indicator:before.fa-pull-left { + margin-right: .3em; +} +.command_mode .modal_indicator:before.fa-pull-right { + margin-left: .3em; +} .command_mode .modal_indicator:before.pull-left { margin-right: .3em; } @@ -10845,6 +12107,12 @@ ul#help_menu li a i { -moz-osx-font-smoothing: grayscale; content: "\f10c"; } +.kernel_idle_icon:before.fa-pull-left { + margin-right: .3em; +} +.kernel_idle_icon:before.fa-pull-right { + margin-left: .3em; +} .kernel_idle_icon:before.pull-left { margin-right: .3em; } @@ -10860,6 +12128,12 @@ ul#help_menu li a i { -moz-osx-font-smoothing: grayscale; content: "\f111"; } +.kernel_busy_icon:before.fa-pull-left { + margin-right: .3em; +} +.kernel_busy_icon:before.fa-pull-right { + margin-left: .3em; +} .kernel_busy_icon:before.pull-left { margin-right: .3em; } @@ -10875,6 +12149,12 @@ ul#help_menu li a i { -moz-osx-font-smoothing: grayscale; content: "\f1e2"; } +.kernel_dead_icon:before.fa-pull-left { + margin-right: .3em; +} +.kernel_dead_icon:before.fa-pull-right { + margin-left: .3em; +} .kernel_dead_icon:before.pull-left { margin-right: .3em; } @@ -10890,6 +12170,12 @@ ul#help_menu li a i { -moz-osx-font-smoothing: grayscale; content: "\f127"; } +.kernel_disconnected_icon:before.fa-pull-left { + margin-right: .3em; +} +.kernel_disconnected_icon:before.fa-pull-right { + margin-left: .3em; +} .kernel_disconnected_icon:before.pull-left { margin-right: .3em; } @@ -11279,27 +12565,46 @@ div#pager .ui-resizable-handle::after { flex: 1; } span.save_widget { - margin-top: 6px; + height: 30px; + margin-top: 4px; + display: flex; + justify-content: flex-start; + align-items: baseline; + width: 50%; + flex: 1; } span.save_widget span.filename { - height: 1em; + height: 100%; line-height: 1em; - padding: 3px; margin-left: 16px; border: none; font-size: 146.5%; + text-overflow: ellipsis; + overflow: hidden; + white-space: nowrap; border-radius: 2px; } span.save_widget span.filename:hover { background-color: #e6e6e6; } +[dir="rtl"] span.save_widget.pull-left { + float: right !important; + float: right; +} +[dir="rtl"] span.save_widget span.filename { + margin-left: 0; + margin-right: 16px; +} span.checkpoint_status, span.autosave_status { font-size: small; + white-space: nowrap; + padding: 0 5px; } @media (max-width: 767px) { span.save_widget { font-size: small; + padding: 0 0 0 5px; } span.checkpoint_status, span.autosave_status { @@ -11343,6 +12648,9 @@ span.autosave_status { margin-top: 0px; margin-left: 5px; } +.toolbar-btn-label { + margin-left: 6px; +} #maintoolbar { margin-bottom: -3px; margin-top: -8px; @@ -11363,6 +12671,10 @@ span.autosave_status { .select-xs { height: 24px; } +[dir="rtl"] .btn-group > .btn, +.btn-group-vertical > .btn { + float: right; +} .pulse, .dropdown-menu > li > a.pulse, li.pulse > a.dropdown-toggle, @@ -11512,6 +12824,10 @@ ul.typeahead-list i { margin-left: -10px; width: 18px; } +[dir="rtl"] ul.typeahead-list i { + margin-left: 0; + margin-right: -10px; +} ul.typeahead-list { max-height: 80vh; overflow: auto; @@ -11521,6 +12837,13 @@ ul.typeahead-list > li > a { /* see https://github.com/jupyter/notebook/issues/559 */ white-space: normal; } +ul.typeahead-list > li > a.pull-right { + float: left !important; + float: left; +} +[dir="rtl"] .typeahead-list { + text-align: right; +} .cmd-palette .modal-body { padding: 7px; } @@ -11531,10 +12854,19 @@ ul.typeahead-list > li > a { outline: none; } .no-shortcut { - display: none; + min-width: 20px; + color: transparent; +} +[dir="rtl"] .no-shortcut.pull-right { + float: left !important; + float: left; +} +[dir="rtl"] .command-shortcut.pull-right { + float: left !important; + float: left; } .command-shortcut:before { - content: "(command)"; + content: "(command mode)"; padding-right: 3px; color: #777777; } @@ -11543,6 +12875,10 @@ ul.typeahead-list > li > a { padding-right: 3px; color: #777777; } +[dir="rtl"] .edit-shortcut.pull-right { + float: left !important; + float: left; +} #find-and-replace #replace-preview .match, #find-and-replace #replace-preview .insert { background-color: #BBDEFB; @@ -11551,6 +12887,12 @@ ul.typeahead-list > li > a { border-width: 1px; border-radius: 0px; } +[dir="ltr"] #find-and-replace .input-group-btn + .form-control { + border-left: none; +} +[dir="rtl"] #find-and-replace .input-group-btn + .form-control { + border-right: none; +} #find-and-replace #replace-preview .replace .match { background-color: #FFCDD2; border-color: #EF9A9A; @@ -11747,7 +13089,7 @@ div#notebook { <!-- Loading mathjax macro --> <!-- Load mathjax --> - <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML"></script> + <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS_HTML"></script> <!-- MathJax configuration --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ @@ -11772,52 +13114,47 @@ div#notebook { <div class="container" id="notebook-container"> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h1 id="MSP-Simulation-Example---Nonlinear-Resistive-Companion">MSP Simulation Example - Nonlinear Resistive Companion<a class="anchor-link" href="#MSP-Simulation-Example---Nonlinear-Resistive-Companion">¶</a></h1> +<h1 id="MSP-Simulation-Example---Nonlinear-Resistive-Companion">MSP Simulation Example - Nonlinear Resistive Companion<a class="anchor-link" href="#MSP-Simulation-Example---Nonlinear-Resistive-Companion">¶</a></h1> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Sample-Circuit">Sample Circuit<a class="anchor-link" href="#Sample-Circuit">¶</a></h2> +<h2 id="Sample-Circuit">Sample Circuit<a class="anchor-link" href="#Sample-Circuit">¶</a></h2> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAk8AAAHFCAYAAAGcAy3bAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AADtKSURBVHhe7d1trCTVfefx6W4Gs5sYk2V3w3qfxtgGjL0w2FKEIrRgRYsTIgvkPI1fJLYUbQaxL4iwBFosZkYKSMhg8WI3WPsiQrKDjSOBHW2UYcbSjK2NsjgYE5wAQwyBPBESJ5BhwXFix3f/v+5zLueee6qrqruq+lTV9yP9dG9XP1WdPvXv01XV1XsAYOEO9xdozpbLKLzs/tahxtH9HphfatYB9zcrWuBzF/+upOkeddD9vdT9zUa4kE0u8KriechhnnZJztThw4e31ol7mFXc6/72Q2rh68Q9TFVXub9Z0sIULlC00KUJb+/uU4d/nCwtnbl4wevGPUxVqXmp+xibkVr4OnEPs45+NFQGaKiKaKiK8m2oyXS2FcZNrmyd+yZ01lDfc3/7qtMe9Z/d3z7qfNV73P1tgp/5Lhais4Zq44ludn/Pt+jx21yYzhqqjRoVNk7bC7L249d5gDZrVNhobei0oaTJGtWlRl4E/yDaSvnw4t9d2ny1u9BoQy17MMZREb0DFWEcVcOoa1QVnb8iHdKyNbLHZsiN1Kih96bG9LGhNM9lkfjvWhp5kA3rZBloqIpoqDLaDPv006e2Lrl0/9ae2exqN7mP2muoLUeN5TW0/XoTGpnvXQ9y660fd02zs6HE3aRvGmuoHQ/k2iRpMpnd727WJ+28wK5Nkqyh7nY365O1G8r3ph0PFK9uIXeTvmlvvl277GAN+Jq7um/afYHVs3zcpL7q+/x3hoaqiIaqiIaqKK+GOn78+JbiLuaEhsIYNXRk73AdOnToCffvvLHs8nPuIorQqyqy3vQgjQUAGC3/JWmUYKhQkT/fgRps2SGRg7LuSR6a7l3Z9tacZkxn0Xh28W9+VjnlSJuyO4tGJfqMt2rcQ4xDqgHi2M2Kptf1ivubnflCWp6fX0qIFnxpwtu629fhHyfLxjrHsnSB4oVPxW5WNL2uVe6Th1QDVI17CADVDeAomPatc8hQeN9V7r8pr7u/tfVpIZvEalRR0w2l7y8PrvH3ub9NCrdBDaLBVq5RNWXfWFVncHCrSV00VIl4wZc1RBs1qjd8w5Rt2O+qRg3GaFe9umioCoZco7THmk5QggZCuSMW9ZRlAdBzk+n0yzfd9LGtEydO9GpzbKfUMCnu6lG7wv2dc+2yy5h71q63y6Le5Lmbjc6uBaeh0nb1KHFtsgtFPZLqVY888lUaqYgazMdNQhEaqSIaqiIaqiIaqqKqDfWlL33pHs57UJEa6ejRo1n/vl0u6E0V7WgojuotFjfUDe5fRJb2IGu4T7t/UYTVEAAAAACawscrNCZ1thT/y8B0tAHQuXq6fEF1upt7F//O6Tl9chXOW87zmYWiBuqi4fxvlXs5noSqqB38eaDoYBE1iPLo/NIbaKg3+DaKxW2GJWp1KO3H2FTcLHTNd7JNPX/W/Gm7Vm6g1Au9Tuwht84777zkdXEWc9CKeyxrtUufTVymLjOXM1z2upzp8iaXsyxhoyn60YYfcPlBy5tdznZ5i4s6ovJDqRd6ndhjbu3bty95XRy77dtcNCZT3u7yDpd3ulzgcqHLRS7vcrnY5d2W91jCNlE+Y9HYSdnvcpmLrkdTUi90V3GzsGl0qCalXuiu4mZh0+hQaBQdal0cCL8DbbEuOtQOtMW66FA7DLIttFAfWvzbPjrUDoNvi5csDy7+RQcG2aH8lt1c6cgG0QmdvaG8EIPpUFqQk4t/eyFs+PD/a9xf6eOLM5gOFdJCdTaGWpGOvUr9VqTmXenrHvyNd6hwBtSIO8601YA+jaFUnfyRnOpsdyz+7ZWNdij/oxA+Tcl9DDVkG2338MnjGfGH44YD12V0/z6NoYYq6xV51ZnT/XIfQw1Vlh1KM6WxVBMzx3aobmXZodbFGKodVU5iXyW9oBllDNVPeu3OXfw7l0Wn603Pxw76ypjfc5AVOlQ/Zfu60aHysMrroA24ul/VTUSdoEPlYTCvAx0qD3QoNKqfr4OOkgzFl7/22GP8ysdmZNPm4Yykzp00F3ccr2i6TCZTtpR3J4sOpR3BpYdqWKd53fWRWp586iktpL6WjvZl0aHCmUgddDa3rAqVsfu+6h4G7cquQxXO0GQy+7zrH7V84q67sljIkehXW9etUrfffoct4N73ubujff1cedWxDh683nWb3XS9Dca/6G6O7gzn3UCdyP2LzaFDoVF0KDSKDoVG0aGW8b/Xy2/2VjaYdmrqeOftfOYzn9nuTEGnIuVBCRoJjSrtUP6kqRmdPBUZK+wk1oEu8GfhjTuTm8bvj2OXpVXHd6SwQ0X/89vsI6QOsGp2CTrZnfMJGK24syyLfr4CqCTVgXyutgArCTvSL2oCAAAAAABA+7QpAgDyo+rUx19KQKZ4u0Oj4g6ly0pWpwVEf6Q6lBdfh57SmV+6ejH1POHplP3z6nzd/nducqTTQFNFK+i6QsTPoctdPO+qLrX4jpTzfGbhAcv5i3/nZ88Lz+rfhfCcWLm+WOF80aFKFDWQOlcXjafn8J041xcrNV9+mt6iw5+2Hb2wseKficj1Be5a2A5xm6i6+woPR42U6jx0qAXfPqkT6haeZBe7Ve5Q+qbLJuNmo2t0pproUMX0nD5sSmha6kVeJ9dee21yelHcbLTlcYt+2BI1hGvcK5pQR+pFXicHDx6cz0vqulQWc9GKsF3afJ6s6HQ+61qr4VIvso9dvXZSjxvGbtOWeF5GQQs6cdGvJigzlzNc9rqc6fIml7Nc4ob7AZcfdHmzy9kub3E5R0m9yOtkhQr1Nov/CP92l3e4vNPlApcLXS5yeZeLvg2tvNvlPZawTZRLLNpyrux3ucyi6wajiYUJG23jb3kZjaHUFr5drtKEAm3OQ+c2vjCpF7nLuNnYJDpUk1Ivcpdxs7FJdKgmpV7kLuNmY5PoUGgUHQqNokOhUXSodfHrDTvQodZFh9qBDrUuOtQOdKhVqBMVxd2kNann9HE32SQ61LoyeSFzMbi26HyB6FA7DLIt/pelswWjQ+0w6LbQwj20+BcdGcXKRQXpzqDbWge95bqA91rCeRvKCzHYDqUF++XFv9nyja+jHofyJcnBdSh9M6MvCxXOZ/y/oirWN31p+0r6tjBF8xtO71unGlSHkj4tkOZVb3VF51LQGVm6PgvMugbXoaTT7VBrSM2jOpCm9/WF2fh86zQwjy7+3W7Mpuix+rYdKjxPgG+XPtl4h4pnoI0Z2vhC1hDOa5/m29v4PIczoPFEkzOU83aoocqiQ/k0eaJSPV7u26GGKIsOJRo7xBv3dHoYXa8Nf1X1aTvUEG207VWRwqoUzkz4f9VzN9KRNm+jr0H85HGHumLxby10qs3Kuv3jHahV9WU71BBl3+7rzKDuy/FQ3cqyQ2mmtNuhqZ/+yn6tGZBBtzXbobo32PbWgrEdqnlq1ybSG2yH6i//uulvkxu5V0ZH6q8sXzs6VD9l+7rRofqJDoVG0aHQKDrUiKmNm0govJzVL1vFM4rurfoa6H7qTPEXNjaKDrV5g3oN6FCbR4dCo+hQaBQdCo2iQ6FR/X4N/Nlv77///q3Tp09v3XX33TmdEXeM+tnuk+n0Gz/10z+ztcyiU+3VL02iO/3rUOpMp06dct1muQsuvEgLqJ9yRTey6VCakfD7d4UzVlaZYrz9dSqrDhVKzpg6xyomk+lx9xBoV7YdKmnlDkWV6kpWHcqnkD7NrYIO1Zks2lknw3h28e/8BBmFtGlgFXSozmTRzpVnQtuZVkGH6kyWHapwphhDZW/j7ay3Os1EmMIz367SoV544YWtPdPph91DoF0b71C11e1UVKdO9bGt9+7XFvAq6Eyd6217n72sUultjs60Ef1uc20BV8eJw5hpY4azEs87EjaNDoVG0aHQKDoUGkWHQqPoUGgUHQqNokOhUXSoZY4dO7b/+PHjWz5uMorRoZYJOxMdqpJBtZEWptEkOhQpD4okOhTQCDoTGkWHQqOWdqjDhw+/ZLnz0KFDz+mvmwwUKuxQ1oE+bbnV/X8nHQpVLOtQW0G2O5P9r472mrsI7LC0Q7l/t9m0G9y/yeuBsgp1wKIx1DE/bX6loUMhpVanoENB9MKvmh2sUj3h/qVDoRnqSHQmSFh5ygIA3TtiSVUkHwDYPCoTAAAAAAAAAAAAAACteNmiXfGFv/oDAACAgH4imNETgCxxpDWALN1sUXG6Yn4pTddrG5VolPWARdMOagIAtKVs9KTCpevjj39l9wPQkQMWrYzaViN+pR3CCuqXo2h54ul3WHTZtwWqudSidnvWomJ/vrscti1QmzqQ/3gTGkvn0jKqQHu6fO/iX1RU1FeKpgOV+A4UR9tgivh3xiHQu328LH6bFarxfSbOo5aYCn98u9SbIzDnO0kZFSx1JA3dq94H47Buf9B99aYA7OI7l+8g2o6QGlWE/H0A8f3Fj7o1wvbHnZXRbVIjLWBlrRUof+r1McY1wVioKPHRDq2gQLUQ1wRDd40ltayMorA2X5jiNCa14o4lrgmGzO98SEWHdgClzrHEnec+SydSK24usdnbTur6daPl76HnLTvaxmW/BWjUK5ZUZ/PZZ2lVasXNMZdffvl2u3zgAx9I3qZu5g3QL9ttUJB7LBiI1As8uqRW3BzTUoEib+RTFmREL8qmxZ0kzlWWVqVW3Fxy1llnzdtBf2+55ZbkbdbJogV6RR/9w/4RZxXr3BctyuVFSW2DOmnpRGrFHUtcE/TRdRa/LeoLmrAG3+eQGV4Uk1pxxxLXBGNHgcoUL4pJrbhjiWuCsaNAZYoXxaRW3LHENcHYUaAyxYsCUKCyxYsCUKCyNaoXZTKdbSnuIuBRoDJFgQIoUNmiQAEUqGwN8kXxhahu3N0xPhSoTI3qRRl6IQqLbZ24u48ZBSpT/oX5yfmlgWOFRAEKVOb+i8W/SJ/ThCGiQKEABapndN5mXjSMBX29x/6Hxb+AH9YEYGAoUD33UQsvIoaKvt1Dj1v8C9f6aXcHRL8Uot9nS/3YqP6/wnLQ/Y88xK8TMhSeNE7FCetRIVJbpn69VtP4fbZ8UKAypRPM+xfnlzUBjSn6pWQVrqLipNtrdCX6tWW/s0KjMbTHrwPIjH9hRnEcVMdSnV6XVXhSin62W9P4/bZ2pV4rZGQUx0F1zLenT1Fh8nSbBxb/7jnf4gvWAU1Aq/xrNFracOobIZXchvAcB9Ut/+u3ngqULusv2jf6vn6vRQ2Qejf0jaNtEzniOKj2+fYNpaahHaNv62UN0IfG4TgoDNmo+7ZGTVp4jaJCfhifa8NwHBTGIuf1sHXxwvuCpe1SOeE4KIxVvI6Ohj+aWMfEhPyRxNpTk+KLWGjZ7VfFcVDAG+vA6Pi9YSnLGkXT44+EbfDzwHFQGLNl6+Jg+T13ij86OKRjXvz1qT14/rp49NUGjoPCmPm+jxXoKGI1XpfHSnEcFMaEvl6RCkN8rFRqe1SXOA4KQ0eB6jmOg8KQ0bd7iOOgMBYUqB7gOCj00RGL77c5pA59gdx/KVzR/6nzh40Wx0EB3UqdadVTwUpNH6WiRgLQDn/okT+tDpagQAHducbCOlcDjQV0h/WtJhoM6A7rW000GNCdsvWNdTFCgcIQ9OUwg3Dvnf/urf9pMiW30y9tnG8YYOxYFzLEiwIssC5kiBcFWGBdyBAvCrDAupAhXhRggXUhQ7wowALrwsZNp78wmc5et2wVZjL7vN0yt185BtpGgeqaFZtP+sJz660f34ppesqLL764o2i5hwOGjALVFV9YPvvZz7mSk6bbVHHG3jMXhWo2+5B7CmBoKFAB3xhlqXXiKj9iWlaYfPFK5bLL3utuleZv554OGBK/zsFZ1iC1fyRhMp1+WcWjjrq3l4MHr6dIYYiWrY+j1FyDLDZ+uxJS3eyMve6/eq686v0UKQwNBSqgH+JUY+j0nqGVGkjF4qabPubKRzfmBWo6vcnNAtB3FKhAqjH0e3hKbSoWTz99ypWObug5Lc+4WQD6jgLl+HMSp34KfSUqFidOnHCloxvzAjWZnnSzAPQdBcpZ1hD+fDG1qFhccul+Vzq6oefcM5t90M0C0HcUKKNfclAjxL/ooMKkj3e67g5NqOlcFQwdYNmF+ehJBQoYDgpUq2azq1U0vvbYY66MpPnikspPXPOT7lbF/G3dswJDQYHqgoqHjvxu2iOPfHVRnCbTL7qnAoaEAtWZ2exDfqSzrttvv8OPml5zjw4MEQVqE2zE86AvVjrA8smnnnKlJ+0Td93lC9I8e/bsfZ97KGDIKFCZmOoAy8lkdr8VoGcsr+pwAbt8N3vlMGIUqBy9MVICRo0ClSMKFDBHgcoRBQqYo0DliAIFzFGgckSBAuYoUDmiQAFzFKgcUaCAOQpUjvpWoL70pS/dc+zYsVeOHz/+/NGjR69yk4F1UaBy1JcCZQVpa0kedzcDVkWBytCRoEB9P8o/RflelO8G+cco/xDlO1H+Psq3o7we5qGHHvp+oijtiN3u1SCno/xdlFei+LOZ+vxtlL8J8q0ofx3lr6K8FOUvo7wY5S+i/HmUP4vyp1H+JMoLUZ6P8sdRnoui01P7fDPKH0XRGVbDnIrydJSnojwZ5Q+j/EGUb0R5IsrvR9EbWZivB/HzDNSjj3KpohTG3RQANsMK0eNxYTp27Nh+dzUAZIHtBQCy1UiBOnz48AWW37VsudzprgKAla1VoKwQvaaC5C5u07RDhw5p4yoArGzlAuVGSjvua5fvdNM5ayiAta1UoKwAfdoVokof5VSwfNHSfXRfG2E9OL8SAAo0XqBsmorRDe6iLr+k27qLc7pe0ywH3CQA2GWlAiVWXPzHuTC3uqu3+evcxW1u+qfdRQDYZeUCVVVJgdoeaQFA56wI6RAEFaN73SRfnNiQDgAAAAC1HbH4bU11c7UFAAAAqZGSzy9aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCU/5IyAGSF4gQAAAAAvXSNhY90ALJEcQKQnfMtKkzbv4kHADm4w6LidOn8EgBkYtlHOhUsf73Py5abLQDQKl90iqgQhddfYSm7DwCsTUXm0cW/SbouLkS+QGl7FQA0zh9GcGB+KU3XFxWnc+eXAGyURgkPW7RSaruLVtC+8x/Z/LKkCo6mxXvynrVoOupR2z5gUdspy94UgEpUjNSZNNIQf7nvH2sOWvyKklpZ/GEGfk+eiphfdkZN9fiC7tvYf1ymQGFl6kBKyH+sGcJeK60kKjipQusPMwjDylSfL+gxTdNoHKjNf4yLV1x9zElNHxotY7hS+eVGdf6jsx91eyrymk6xx0rilVN8Z1u2h2sotJz6OBLStHhFQ7FUH/KFSSMqoLbwC7Fxlm0M1+hiCBvLRcsaf3TVtLhgIU3b5cJ+EyYeMaUOeFU4ch+7FH2kKxJuXB5CcfJ7leI9dX77CaOncn6UXeWjm24Xj6Q0TQF2qNMxdDt1QP/uN5SRE9bj3+BW7Q91+iBGZNnISdOLdqWv0xkxLMtGThollfUT3VcBdlBR8p3DFyj/0W3ZMF3XU5zg+T7ktx2p7+hy/HE55kfhQJLfdR6mbAOlbkNxgueLUZiy7XV+Qzobw9EodarGi9Phw4e3xhzXDGNAYUJrKE4txDXDGFCY0BqKUwtxzTB0Ws74Ix/HlKER/sDNxo8BSq2wY4prhiFLbd/0AVaW6lA+jUitsGOKa4Yhi/tNGCBfqRU2l+zbt2/rvPPOS17XVFwz9NERyyuW5y1XaQLQhvss8bvaOZbWpVbYXPKRj3xkuz0uv/zy5G3WzbwR+mW/ZbtdgqhQAY163JLqbErrBSq1wuYWjZ5sVue58cYbk7dZNfNG6JfttkjkCxagEfssqU4WplWpFTbX2OxuJ3X9KlEb9Ig+yu1oh0QwAHqhlU3SO12qg4VpVWqFLcuVV16Zms/Oc+211ybnr07scfpE25d2tUMUDEDqhR1dUitsjrnlllu2zjrrrPk8668up25XN3F7jDzIRPiCTKJMo8yinBFkb5Qzo7wpyllBnrCEnSOVH4jyg1HeHOXsKG+Jou1Y20mtsLnloosu2m4PbSRP3WbV2GO+LYi+iB3m7UHeEeWdUS6IcmGUi6K8K8rFUd4d5T2WT1u226Igl7joaPAw2pAe5rIgut97LciEfzE3SQXCz0dRWpVaYXOJPrbZLM7D3rpt222SyKobxHVfZMS/oJu2bDvCqPfWaS8dxzntUrQTZZ1DCXR/ZMS/qDlIHeekTti61Ao7prhm6CPfZ1SU1j0Is8/tMEi+CIxaaoUdU1wzjB3tkBmKk0mtsGOKa4axox0yQ3EyqRV2THHNMHa0Q2YoTia1wo4prhnGjnbIDMXJpFbYMcU1w9jRDpmhOJnUCjumuGYYO9ohMxQnYIH1IDMUJ2CB9SAzFCdggfUgMxQnYIH1IDMUJ2CB9SAzoypOk+lsy8dNAjz6RGYoTsACfSIzFCdggT6RGYoTsECfyAzFCVigT2SG4gQs0CcyM8ziNJkcCQtR1eyZTn/ePQLGh+KUGYpTkN4XJ4ryOihOmRlmcSqwY4UcIorTOihOmaE4AQv0icz44vT1+aWBozhhCfpEhm6y+CL13zVhqChOWII+kbH/a/FFSj81PTgUJyxBn8jcD1t8gXpSE4aE4oQl6BM98d8svkgd0QRg4ChOPfMViy9S79YEYKAoTj10jsUXqGc1ARggilOP/VeLL1LA0NCve0qjp1csegH/jyYAA0Nx6qF7LH7EdJ0moNS5Ft9mcae/w+KnP6wJyEL8OiFjV1n8SnRSE1CJL0znu79hp7/Z8uji313XYbN4LXog/Ainv7qM1cQF6FL3VzT9gcW/yADFKXP3WfwKxUe49fm2TNF0jbKQh6LXCRsWfoT7giagEb5NY1dY4ukaRfnb++gj4AEL2he/HtgwPsK1yxeYmKanRk2aHq4kKky6zPFl7QvbHRumQuRXhv2agEb50ZE2goc0Qira1uRfj5D26MXT0DzaODN+ZRjF+Zw6pqKktlWR8u61vLz4N0m316EGIYpTN2jjDI3mfE4di4tTWZHRnjxdr0MQQpq2rKChGcteG2zY4M/n1LGDFt+eSmrbU0ijKt3O89ubKEzdCNseGRr0+Zw2QO2oEVOVQwZ8u4fhUIPuqL1HyQ/Zi6J3zZxwPqfuqa3DvXK+/dGNUbd1UWfTcF/T4706OeB8Tt1RG4fHNPltVujGqNvar+Qpy67btPCQA463aYffvhTTNA7C7Eau61/r/JdBizZu6rrcG4fzObXHt2t42IH46fEePDRvtP3aD9FTH93C7VG5Co8k53xOGKLRFieNmLTwqb0v/rrwG+s54XxOGIPRFie/csf8xvDc9tYJ53PCmKTWz1HwK3kcjZpyO5aFLwNjjNTfR8d/AdSfklXFaNnHvE3ifE4Yq1EWJ/+1hGvml97gi8Ay+gqEL2T6CNjWsVCczwljV7YuDpJf6WNF0z1dF26L8t/VahIf4YCFptetXtBCpxbcT08dw+J/oSOWmrYqFSI/D5zPCWPX5LrVG74AxPzHvdRHta7O4ePnjfM5Yey6WN+y4j+K+Y3hoWUHX/qfFdL2prZxPicgvR4OVvi7ZUpqz5y/LnXaVn9UuRJ/raENnM8JY6Z+jxpU0LosUJzPCWNFcVqRLxhd4XxOGBuK04q6Lk4e53PCWFCcKkg1kqa1dQBmmfCQA87nhKGiOJXwe/dUBLSNSUeVa49d/HNBm8D5nDBk9OueCo8k53xOGCKKUw9xPieMAcWpRzifE8aE4tQDfBkYfePfRHPIj1jQAs7nhD4Ki8OmU7c4aS+8Py2Som+L5HrK7o3gfE5At/yZR7Rn3p+ZRIXJr4ejx0c4oHvLfjuA4mRUiHxDcD4noBvhsYwpOoPJpg64zsroKzTQMT8gQAkaCeiO386UOr8bIhQnoDt+1JTbry5lieIEdMcXJ1RAQwHdOGDR+tbFqbcHgeIEdMP/aAl74iqiOAHd0LqmdHG67UGgOAHdoDjVRHECuuE/1mnbU4qOFucQgwDFCUPgRyU5pOiLv8t+i9Jfx6gqoAYB+s4Xhhyy7KwE/jt1/ncqdbyT/+VvBQEaBFjoal3Q6MgXKcV/l47TpEQoTsAC60JmeEGABdaFzPCCAAusC5nhBQEWWBcywwsCLLAuZIYXBFhgXcgMLwiwwLqQGV4QYIF1ITO8IMAC60JmeEGABdaFzPCCAAusC5nhBQEWWBc26NzJZPb5yXS2tSSv75lOf8HdHhgTilPnZrOrwwJ0yaX7t+66++6tEydObJ0+fXrr6adPbd1///1bN930sbBIWaZfdo8AjAHFqUthsXnxxRe3YpqecuutH9++n422PukeDhgyilM39u73xeVrjz3mSs5uRcXJ+6mf/hlXpKbfcA8MDBXFqXWz2YdUUM7Ye6YrMcXKipN89rOfcwVqxouHIaN/t+xsFZELLrzIlZblqhQnOXXqlCtQjKAwWBQno9NxqiGqpBY/wlnG3yaVZbZHUGyDwjDVXt+GSucRLipA11hqF6fJZPpgWYGJ1b293wblnhIYEvq144vTs/NLu+m6Oxb/VqOicfDg9a6MVFO3OInuw2EGGCCKk6PCo8Y4OL+0m67Tb1lVYqOm46sWmrr8YQbuqYGhoE87aojGGkPF4sqr3u/KR3WzM/a6/+qZFyeOJMewUJycJovTVMXiyaeecqWjfXo+y+vu+YEhoDg5qeKkXwFN/VTxctPpTSoWXfJfdXFzAAwB/dmEe+PiFG2DKjSZzO7vujh97nOLwwrcLABDQH82+vlhNYSKlOePfarNisQzXRenb37zmxQnDA392agRUg2xanF6tevipLMZUJwwMPRnU1ScVjKZTE92XZx0uhWKEwZm9P35XEvDxWl2d9fFSeeDojhhYEbfn2+2qBGKjv7W3rpaR4bvmc0+2HVx0gnrKE4YmNH3ZzWAkjr6228U1+iqFhWKT9x1lysd7dPz6ZS/7umBIaA4ucQOWIquKzUvFh2NnnRGTTdqql1EgYyttO4NhS8+ZalvOv2wCsYLL7zgSkh7fCF0zwwMBX26Lb5olPG3S6WMTvmr2+lHE9zTAkNBcWrP3vepcNx++x2ulDTPFzH3hMCQ0K/bNJlMv6ji8cgjX3XlpDk6JzmFCQNG326bFZDXmi5QOif5ojDt3e+eBhgailMXfIFq4iOeHmdemGazD7mHB4aI4tQV/xFPWWUvnk75u12Y9uw5e/GowGBRnLq12EjuU3agpk5YpzNqbt9nMn3QPRAwdBSnjXDHQVXOZHrc3RMYC4rTxum7ePqy8OJsBjrdyjM6YZ3OqGnXThc3AkaH4pQbjZTcv8CYsR7khuIEzLEe5IbiBMyxHuSG4gTMsR7khuIEzLEe5IbiBMyxHuSG4gTMsR7khuIEzLEe5IbiBMyxHuSG4gTMsR7khuIEzLEe5IbiBMyxHuSG4gTMsR7khuIEzLEe5IbiBMyxHuSmT8Xp6NGjVx0/fvzxY8eOvWJ/73OTgSZQnHLTl+LkCtJWHBUsdxNgHRSn3PShOFlhOpkqTD7uZsA66Ee56UNxShWkKHzEw7ooTpmZ/6CB/f1+lH+K8r0o343yj1H+Icp3ovx9lG9HeT1Mohjtit3uVZfTUf4uyitRXo7yt1H+Jsq3ovx1lL+K8lKUv4zyYpS/iPLnQf4syp9G+ZMoL0R5PsofR3kuyrNRvhnlj6I8E+VUlKejPBXlySh/GOQPonwjyhNRfj/K41G+HkXz+0sWZEIrdfZJFaMwn/nMZ5L3I6RmPmUBqksVpDAPP/zwde6mANCdo0eP7ksVJUV78dzNAKB7VoT2JwrTSXc1AGRB2wcAIDsUJwBZojgByFIjxenw4cN3Wl6ybB06dEjHxgDAWtYqTlaMDqggucJ0wW233fZj7jIjMgBrWbmIWAGaF6Z4pERxAtCEdYpTsghRnAA0YaUiYsXnXleE7nST5uzyfLuT5YCbBAArWbU4zUdHcewjnr7kuotdd4Guc7f7XTcZAAqtVZzcxaWCjeTzUZb9fa3qfQGMV+vFyd1WpzjZpmk2kjrmLgLALo0WJ5s234PnLs65297qLs65aSs9N4BxWLU4+Q3f8+1H+uimQwrigmOXb3C327GB3E2jOAEotHKB8AUmyGvuqm02bV6c3MVt/j7uIgDs0mqB8MXJcoGbNEdxAlCm7eLkv95yg5s0R3ECxuGIRSt613mzpZSKULxnzk1LHhMFAJ2wQrTjuCb734+mdnzUA4DOuWIUZsfXXgAAADamzW1QAAAAAIDOpT6eVQ0AtCZVdKoGAAAAAJCVssMMAGAjKE4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2nSpJfyNtEctAAAAKPCAJRw8XWMBAAAAAAAAAAAA0JpzLeEuujAPWwAAAFBAg6Vw8MSxTgAAAEuEA6dnNQEAAABpByzh4EmXAQAAUEDncvIDp5c1AQAAAGlXWMKtTjdb6tBB5/HxUmWp+xwAAADZiE+KuYp7Lf7+y76lFz4Xx1UBAIDeOd/iBzPKHZZVhI+hLVlF4q1cy24LAACQHe0+WzaYOWgpO3g8fIyy38HT4/nbsuUJAACjLRnhLpxl4biXzYsHTxrcSDjI0Q8FL6MDzP1tiwZaOi4qPCidHxtGm9Tf1LfDvlkUTgYLYGPir7oX7f6J36z5Svxm6U0m9QajaVVeG51IM75vUbSlidcbbdJAP+zPGhipj8fi3cf6wAcAndGWprBY6YDgZeI3W95M+y38ll38BhRuvVIfUV8B2hJu2dRAPTVo8nSdv63C4AlAZ+JPb2UHG+tTYXh7Npf3W/z6pwZH8WB52RsasIp462nZLmHdXoMrf3vdl34JoBPxJ7ewYGmQpDdWbXnQJ7qwsClFm9LRL+FpB5Z9cg+3Tq36bT6gSLjFSfG1RYN51SFt3Va/CwdMii6XHc+nx9L91b/j+6tfq8ZRywBUpmIUFpIwKjIqLHpz1TFO2vqwSoHRfeJjpFQMsXnxVsRlr0u8hYrXEE1ZdsydPrSpDimqIxoEVd11HD+O7hsOyuK6pJoHAKXCrQlKU1QM4094YXjj3Sy9gaReF5+iQbI+uce3ZSsU1tXWhyv/eHr8IhpEhc+97LYAMBdvKq9Kn+B039TmchUfvaHGb8Dh8zB4AuDFW8Cr1gfVH31I04e1dYTP7U/zAQCF4k98yz51aTAUFrmy4wxi4fMweALgqR6E9UFbxJfRAMcfg7nuYCfcmspWVACVxQOoZfHHDawifBwGTwBC8QCqLOsOdPRh0A/AtBW9aFc1ACyl4hV/G0X/64DxVQdMIf+YSi8GT4cPH94i44zrAuiejkHSwCg8pMAfNN7Et+J0f//Yety6W9ABoFO+ECoMnkjWcV0Aw+K/IMOgCUBvMHgivYnrAhgGf6wmgyYAvcPgifQmrgug38LjmspOQeCP/Sw7WB0AWqdPeTpeKj7nk4450NeLq57sbiNSb6pkHHFdAP2l2hPWnKph8AQA60i9qZLy3HLLLVs33nhj8rq+xHUBAADWcpXliOVxyysuz1vusei6wUm9qZLyWNPtyP79+3s3mLL5RjfOsdxn2dVvoug2ui0AZG+/RQOkVDFLRQMq3WcQUm+qpFq09UmDJmvGHTnrrLO2rr322uR9corNK9qlgZA+iO3qIyVRjWEQBSBb2qKUKl5V8gVL76XeVMlq+cAHPjAfOFmz7sjll1+evP2mY/OG9uyzaBC0qz/UiB4DALKi3XOpglUnGnz1WupNtY1ceeWVqfYbXc4777ytn/u5n0u2Udex+UF79OFq1+tfM9oiDiATqZX0+yX5p5J8ryTfXZJ/LMk/lOQ7Jfn7gmi5Um1RJ3qM15bk/5Xk1ZKcLsnflcQft1WUl1Nvqm2EwdMimQ2e/rggz5VE3ywtyjdL8kcleaYkp0rydEmeKsmTJfnDJfmDILte+xXzRJDfL4l2ES7L10vymMsvWQBEUisoGWlSb6pktXzkIx/ZOuecc3a18b59+7I8mDyeT0JcPmUBEAlXkjFb53gnH3bbjTg6YFzHM8XHOemyjn/S9an75RK9/miNDvje0S9WSFff8A2fE0ABVpQ3VPn6cFE4YHzEiQdM2rp08ODB5G1zjV5/tEoDqDrf5PXRLvUuv20XPjeAAqwoO9X9VoxuO5hzPqXeVEm1aLCU+9alZXFdAO3TQKjKB7WTlk18wy6cBwAFWFGKXWdRkQs/LWqwpK1MnCSTDCquCwC+1tEngCVYUbAt9aZKxhHXBQDeE4AKWFGwLfWmSsYR1wUA3hOAClhRsC31pkrGEdcFAN4TgApYUbAt9aZKxhHXBQDeE4AKWFGwLfWmSsYR1wUA3hOAClhRsC31pkrGEdcFAN4TgApYUQAAHu8JQAWsKAAAj/cEoAJWFACAx3sCUAErCgDA4z0BqIAVZcgmkyO7AgDFeE8AKmBFGbDJdLYVx10FACm8JwAVsKIMGIMnADXxngBUwIoyYAyeANTEewJQASvKgDF4AlAT7wlABawoA8bgCUBNvCcAFbCi9MlkciQ1IGore6bTn3fPDGAceE8AKmBF6RMGT+PC643u8Z4AVMCK0ie8mY4Lrze6x3sCUAEryoAl3yDRHwye0D3eE4AKwhXlZk3AcCTfIAGgWPieAKDAj1t+zxKuMMqvW95mQY8xeAJQU/g+AKCCt1p+zRKuPMoTlmst6BkGTwBqCms/gBXcaHnVEq5Mym0W9ACDJwA1hbUewJreb/kdS7hiKb9huciCHOkA4DgAUCys7wAadK7lXku4kimnLD9rAQD0U1jTAbToesu3LOFKp/yKZWIBAPRDWMMBdORHLScs4Qqo/KblUgsAIF9h3QbQsXMsv2r5jsWviBdbAAD5YvAEdOwqy+OWcOVTTlr2WYCmXGF5wPKyRX3sYUvZlk1/H98vq9wHGBu/figAWqCtS79secUSrnC6rOm6HmiKvqjwqCXsa3FSUl9uCAPgDawbQAs0ILrHEq5girY4XWcB2qCfDlI/00AopK1Hvg9qK1RIgy1Ne9b97+n/ovsAY+fXDQXAGtgdhxyFgyDlDksV2n3n73NAEwBsC9cpADX4rUvsjkPODlrC/qlBURXaEqXbVx1sAWMSrlMASmgL0n2WcMVRtHVJW56A3IS77JQq/H20G7DMNZbw8cui47E4AB19F/ZpAAlFu+M0iGJ3HHIX9ll9i24Z7eLzW5w0KKrifEv4HEVbtjRgCm/HrkD0WdiXASR81OJXku9aDlmAPgiPW1K0C6+I/7ZdfOB4GX+QuqItVsuEW8HKbgvkzPdjBUCBH7f8niVcYZRft7zNAuQoHNgoqa1C4SkKqm5tCoWPX3Z/f74phS1P6LOw3wOo4K2WX7OEK4/yhOVaC5CLePCkAYt2s2m6H8jo7yqDJgkPRtcWqyJ6Xn87ZdXnA3IR9mcAK7jR8qolXJmU2yzAJsXHI/lowKQBVJ3dcyllJ+MMoy1cmh9gCMK+jZGIv7pcJfpUqWMUVHApgMXeb/kdS9x+v2G5yAIMRXw8VVgX9H84sOJ0BxiasO9jZOJN+krqk6iKpAZc4fEKiorjup9ch0xtk/rJi1OWn7UAfRYe/B2f0dxjAIWh8v1awcjEg6eiAhjSsQrhfTSgQjXXW75lCdtP+RXLxAL0RXzagaKt0fHWKT5sYSjCfo2RiY9XqHriuvh+qW/wYLkftZywhO2o/KaFEwgidzpflO+znJ4AY+T7tIIRiT8R1ilq4f0UBk+r00+4/KrlOxbfnhdbgBxp11u47ocp2i2nrVKp27MVCn0W9mWMSPjJUak6AIqLZ5VdfdiJHxAGgH4LazdGIv4kqN1wVcS763TMFMpp65J+KJgfEAaAYQhrOUYi3nqUOtOvjrvR9PjbYjpAnDMDl9OA6B5L2HaKtjhdZwEA9FdY1zES4YteJTpNAccnlGN3HACMQ1jjMQLxCTKLdr3FP6fAOVp281uX2B0HAOMS1nyMgM4UHr7oRednkXiXnQZedWkQ5k+uqefWIEwDNiX8CrNP7rQF6T5LPN/auqQtTwCA4QvrPwYuPsGlvnG3THw6gzonxAwPSl/2g6HiB3S5HoBetDtOgyh2xwHA+ITvBRi4eEtPldMTxN+wq/pr6OFz9f1beR+1+GX5ruWQBQAwXv49QcGAxT+nUHUrUnyMVNXTGsS7/Pp+1uwft/yeJVwm5dctb7MAAMYjfB/AgMXHOlUdBIk/ZsmnbHefpy1O4f0UHfPU92/uvdXya5Z42Z6wXGsBAAxbWPsxMEU/ixBn2UHjEn/zLkzZfUW7B+PBmzKU80XdaHnVEi/fbRYAwPCEtR5oXTwQq7MFrA/eb/kdS7iMym9YLrIAAPovrO9AJ+ItYkP9YWHtnoyP/VJOWX7WAgDop7CmA2vxPzZcNhjSoMJ3urLTGAzJ9ZZvWfyy+/yKZWIBAPRDWMOBlYXf5tOAqOigcN3OH4Cu0xmM1Y9aTlh8m/n8pqXv30wEgKEL6zawMu2K0zmg/JnD4/NDKZqub9tVOch8LPQTLr9q+Y7Ft9PFFgBAvsL3NgAd4AeEAaDfwtoNoAXauqQfCuYHhAFgGMJaDqAhGhDdYwlXMEVbnK6zAAD6K6zrANbA7jgAaNcRS1xjySI/YgGy57cusTsOADBEOvVQ+EP/VVP1Z9wwEtqCdJ8l7ijauqQtTwAA9JlONRR/Y14nfF72u7T+PI8+Qz35NWrQYOkvLWHHUDSd3XEAgKGIfxVDl6viHI7YIexI7I4DAAyNtir5wY8PW4+wlrAzAQAwJPHvzSr80gXWFnYoAACGJN7idMACrC3sVAAADEV8jBPfkkNjwo4FAMAQhD/o78Nvz6IxYccCAGAI9EP94fsb35JDo8LOBQDAEMTncrrZAjQm7FwAAAxB+N6mcGoCNCrsXAAADMGzlvD9jcETGhV2LgAAhuCgJXx/0zFQVWmg5e/H7j4khZ0LALA5RyxhTSZv5EcsdcUHjZf9HIu+oRdvsQKS6CQAgNCQ3hf00yzxD/tWTZ2tVRiZsKMAAMD7AlCClQQAEOJ9ASjBSgIACPG+AJRgJQEAhHhfAEqwkgAAQrwvACVYSQAAId4XgBKsJACAEO8LQAlWEgBAiPcFoAQrCQAgxPsCUIKVBAAQ4n0BKMFKAgAI8b4AlGAlAQCEeF8AnOme2eyDe6bTmyaT2d2W+yeT6cnJdLYV5Jn5tPl1s7t12/l9dF8AwFgweMIITacftkHQ8Whg1FzssfUc7tkAAMPC4AljsPd9NqB5MDXQufKq92994q67tp586qmtVem+egw9Vuo59NyaBzczAIB+Y/CEwTrbBi1fjAcyBw9ev/XCCy+4YU85f7+69Bx6rvC557F50rwtZhEA0EMMnjAws9mHbJDyWjhguf32O9yQpj7/GOvSPITzZHlN8+rmGgDQHwyeMBR792tA4gcnF1x40dYjj3zVDV1W5x+vKZonzZt/XMtrmne3EACA/DF4Qv+Fu+fO2HvmSoOmYDBTK5dd9l73CPVoHjWv24+12J0HAMgfgyfscr7lXkvYOdbJFZaW7H1fOJBZZ/dcEf/YbYl353FgOQBkL3yPA7ZpwBN2DuVcSxXhwOtRTWjFbHZ1OOj42mOPueFIs/zjt0nzHi6Lls0tJQAgP+F7I7DtgCXsHA9YqgoHXnqc5uk8TcFgo8635+ryz9E2LUO4TJwnCgCyFb4/Atu0xSjsHC3ueqvt3HCQ8eKLL7rhRzv883RByxIum5Z1scgAgIyE74/AXLzLrr1dbyuYTGaf94MLnZhyaLRM2wMoW1a32ACAfITvkcCcdtGFHWPZrjdtGXnZottdqgmtms0+6AcWl1y63w03hkfL5pdTy+yWHgCQh/A9Eph/0y7sFBoYpWigFA6y6hwTtTL9GK8fVNx1991uqDE8d3/yk9uDp/kPEAMAchK+TwJ77rCEnaJq2t/qZCaT6Uk/qDhx4oQbagzPV77ylWDwND3pFh8AkIfw/Q/Y0SGUZQcsP2zRbTrZ6iQ2mHjVDypOnz7thhrD8/q3v/3G4MmW2S0+ACAP4fskRu6gJewQOl9TVmwg8YwfVDz99Ck31BgeLZtfTi2zW3wAQB7C90qM3LOWsEN0siuujslkdr8fVNx///1uqDE8WrbtwZMts1t8AEAewvdKjFh8egLtkqvjZovu1+5pDabTm/yg4qabPuaGGsOjZfPLqWV2Sw8AyEP4fokR88cv+VxjqcoPnOrebxVTG1C87gcWTz71lBtuDIeWyS+fllXLvFh0AEAmwvdLjJQGPGFH0O67KnQweXgm8m5Opjmd/oIfXFx51fvdkGM4tEx++bSsbqkBAPkI3zMxMjqmKdxqtG7a3uq0bTKZHvcDjFtv/bgbdvSflsUvl5bRLS4AIC/hex/QH5Pp9Mt+oHHw4PVu+LG67UFLzfzENT/pHmE9WoY3Hnf6ZbeYAID8MHhCf00m0wf9gOOnfvpn3DCkfzTv2wMnWya3eACAPDF4Qr9NJrNPbg88LJ/97OfckCR/mtdw3rUsbrEAAPli8IRBOHsynX7DD0IuuPCirVOn8j2JpuZN8/jGwGn6DS3DYlEAAJlj8IQBmc0+9MaAZLZ1xt4zs9oSpXnRPIXzqHl2cw8A6AcGTxiivfvDLVGKjiv62mOPuWFMd/ScO45pmkdbmvbudzMLAOgXBk8YtviYKB+dFuDFF190Q5zm6DF3nHIgDMc0AcAQMHjCiMxmV+s0AMmBjeWSS/fPfxrlrrvvnv++3IkTJ+Y/0nv69Ol59L+m6TrdRrfVfVKPtcj0y3pO9+wAgGFg8IRRO3d+xvLJ7PM22Nn+2ZcV8roew50RXGdeBwAMF4MnoJLJ5Mh2AABjxuAJqCLc0uQmAQDGicETUAWDJwCAw+AJqILBEwDAYfAEVMHgCQDgMHgCqmDwBABwGDwBVTB4AgA4DJ6AKhg8AQAcBk9AFQyeAAAOgyegCgZPAACHwRNQBYMnAIDD4AmogsETAMBh8ARUweAJAOAweAKqYPAEAHAYPAFVMHgCADgMnoAqGDwBABwGT0AVDJ6ad+zYsf3Hjx//gmWrJI8fPXp0n7sbAGwagyegCgZPzdFAyAZOryQGSUuj+2jA5R4GADaFwRNQBYOnZjz88MPXpQZGdaLHcA8HAJvA4AmogsFTM2zw83w8GKobbYFyDwcAm8DgCShxxLI1mUy3o8tktTz00EPJAVHdpB6bEEI2kE9ZAFQwKcm0JLOSnLEke0tyZkneVJKzSvLPSvLPl+W3fuu3/mdqMFQnv/3bv/2/7bHenMjZJXlLSc4pyQ+V5F+U5NyS/Msl+Vcl+dcl+eGSnFeSf1OSt5bk35bk3y3Jvy/JfyjJfyyJvoywLG8ryfklefuSvKMk7yzJBSW5sCQXleRdJbm4JO9ekveU5D+V5JKSXFoSHT+5LJeV5L0uANA+GwA9Hg+IqubYsWMn3cMAAACMx9GjR69KDY6KouOcOFAcAADAuG/g3WfZPpjcHRv1BRs0ffTkyZPaZQYAAICE8EBMAAAAlGDwBAAAUAODJwAAgBqyGDwdPnz4AsunLa9Ztpbl0KFDT7i7AQAAdG6jgycbDB2wbA+YNDCyvzpfzg427QZ/G3e7Y+4qAACATm1s8GQDoOeCAdFLll2DJk/XBbdl8AQAADam88GTGwiFW5uec1cludtrcOUHT7pv4UALAACgTZ0PnqItTsp8IHTbbbf9mP2v3XN32m0etL/hgEnR5QPzBwEAANiQTgdPNvi5NRgMxXnNBk1PKPa/Dh6/UwMqd9dK7D46hioedO2IPT67/AAAwMq6HjxpUBQOZm5wV63NDbr8497qJm/TtOD6Rp8bAACMR6eDJ7c7rvYAxm7ntyjtGhSJtia5x9OWpQfd5F3s+nDw9pqbDAAAUFmngycbsMSnHFh6zia7zb0Wf3D5vW7yDjZ9xzfxLIUDssRtk4MxAACAIp0OnsQGLDsGUGVZtiVJ7DY7Hs9NLhTe1vJpNxkAAKCSzgdPng4G18DIEn77bn7QuP3VFqdKpyOw2zF4AgAAndnY4KkpNgCKt2QtPY4qum1yVyAAAOiHI5ZwMDP0vNnSiKoDIrtOB56Ht+VkmwAA9BiDpxXZIEi7+fyAqPBbdHbd7wa3Y6sTAAAYLw2GgoHRfHBkmW9Zsr86x9P2T8Lo8vxOAAAAY2cDoxsOLc77FJ5p/CUdnF73jOUAAKDf+rhb72ILAADARjB4AgAAAAAAAAAAALK2qV16V1sAAAAAAAAAAAAAAAAAoEnrHA/1ixYAwGjt2fP/AeZA/ucdvGoFAAAAAElFTkSuQmCC" width="500" align="left" alt="Sample Circuit" /></p> +<p><img src="" width="500" align="left"></p> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<p>$E$: $10 V$, $R_S$: $1 \Omega$, $C$: $10 uF$<br> +<p>$E$=$10 V$, $R_S$=$1 \Omega$, $C$=$10 uF$<br> $i_R = g(v_R)= \frac{v_R^2}{R_{NL}} $<br> -$R_{NL}$: $1 \Omega$</p> +$R_{NL}$=$1 \Omega$</p> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Simulation-Setup">Simulation Setup<a class="anchor-link" href="#Simulation-Setup">¶</a></h2> +<h2 id="Simulation-Setup">Simulation Setup<a class="anchor-link" href="#Simulation-Setup">¶</a></h2> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [1]:</div> +<div class="prompt input_prompt">In [1]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> @@ -11864,16 +13201,15 @@ $R_{NL}$: $1 \Omega$</p> <span class="n">num_iter</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">npoint</span><span class="p">)</span> </pre></div> -</div> + </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Set-Initial-Conditions">Set Initial Conditions<a class="anchor-link" href="#Set-Initial-Conditions">¶</a></h2><ul> +<h2 id="Set-Initial-Conditions">Set Initial Conditions<a class="anchor-link" href="#Set-Initial-Conditions">¶</a></h2><ul> <li>Precondition: $ u_C(0)=0 $ </li> <li>Analytic solution: $ \frac{e_1(0)^2}{R_{NL}} = \frac{E - e_1(0)}{R_s} $ $\Rightarrow R_s e_1(0)^2 + R_{NL} \cdot e_1(0) - R_{NL} E = 0 $</li> </ul> @@ -11883,20 +13219,20 @@ $R_{NL}$: $1 \Omega$</p> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [2]:</div> +<div class="prompt input_prompt">In [2]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">v1_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="o">-</span><span class="n">R_NL</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">R_NL</span><span class="o">^</span><span class="mi">2</span><span class="o">+</span><span class="mi">4</span><span class="o">*</span><span class="n">Rs</span><span class="o">*</span><span class="n">E</span><span class="o">*</span><span class="n">R_NL</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">Rs</span><span class="p">)</span> <span class="n">i_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">square</span><span class="p">(</span><span class="n">v1_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="o">/</span><span class="n">R_NL</span> <span class="n">v2_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span> -<span class="nb">print</span><span class="p">(</span><span class="s2">"Calculated initial conditions: </span><span class="se">\n</span><span class="s2">"</span><span class="p">)</span> -<span class="nb">print</span><span class="p">(</span><span class="s2">"e1(0) = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">v1_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> -<span class="nb">print</span><span class="p">(</span><span class="s2">"e2(0) = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">v2_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> -<span class="nb">print</span><span class="p">(</span><span class="s2">"iR(0) = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">i_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Calculated initial conditions: </span><span class="se">\n</span><span class="s2">"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"e1(0) = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">v1_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"e2(0) = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">v2_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"iR(0) = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">i_trap</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> </pre></div> -</div> + </div> </div> </div> @@ -11906,7 +13242,7 @@ $R_{NL}$: $1 \Omega$</p> <div class="output_area"> -<div class="prompt"></div> + <div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> @@ -11924,10 +13260,9 @@ iR(0) = 7.721280737848999 </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Numerical-Integration-and-Newton-Raphson-Loop">Numerical Integration and Newton-Raphson Loop<a class="anchor-link" href="#Numerical-Integration-and-Newton-Raphson-Loop">¶</a></h2><ul> +<h2 id="Numerical-Integration-and-Newton-Raphson-Loop">Numerical Integration and Newton-Raphson Loop<a class="anchor-link" href="#Numerical-Integration-and-Newton-Raphson-Loop">¶</a></h2><ul> <li>Application of Trapezoidal integration method</li> </ul> @@ -11936,7 +13271,7 @@ iR(0) = 7.721280737848999 </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [3]:</div> +<div class="prompt input_prompt">In [3]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># DC equivalent of capacitor</span> @@ -12000,33 +13335,32 @@ iR(0) = 7.721280737848999 <span class="n">i_trap</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">Ac</span> <span class="o">+</span> <span class="n">v2_trap</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">*</span><span class="n">Gc</span> </pre></div> -</div> + </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Simulation-Results">Simulation Results<a class="anchor-link" href="#Simulation-Results">¶</a></h2><h3 id="Capacitor-Voltage">Capacitor Voltage<a class="anchor-link" href="#Capacitor-Voltage">¶</a></h3> +<h2 id="Simulation-Results">Simulation Results<a class="anchor-link" href="#Simulation-Results">¶</a></h2><h3 id="Capacitor-Voltage">Capacitor Voltage<a class="anchor-link" href="#Capacitor-Voltage">¶</a></h3> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [4]:</div> +<div class="prompt input_prompt">In [4]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">T_total</span><span class="o">-</span><span class="n">Ts</span><span class="p">,</span><span class="n">Ts</span><span class="p">),</span><span class="n">v2_trap</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Voltage over capacitor: $ e_</span><span class="si">{2}</span><span class="s1"> $'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Time [s]'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Voltage [V]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Voltage over capacitor: $ e_</span><span class="si">{2}</span><span class="s1"> $'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Time [s]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Voltage [V]'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> </pre></div> -</div> + </div> </div> </div> @@ -12036,15 +13370,13 @@ iR(0) = 7.721280737848999 <div class="output_area"> -<div class="prompt"></div> + <div class="prompt"></div> <div class="output_png output_subarea "> -<img src=" -" -> +<img src="%0A"> </div> </div> @@ -12054,27 +13386,26 @@ iR(0) = 7.721280737848999 </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="Capacitor-Current">Capacitor Current<a class="anchor-link" href="#Capacitor-Current">¶</a></h2> +<h2 id="Capacitor-Current">Capacitor Current<a class="anchor-link" href="#Capacitor-Current">¶</a></h2> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [5]:</div> +<div class="prompt input_prompt">In [5]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">T_total</span><span class="o">-</span><span class="n">Ts</span><span class="p">,</span><span class="n">Ts</span><span class="p">),</span><span class="n">i_trap</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Current through capacitor'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Time [s]'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Current [A]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Current through capacitor'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Time [s]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Current [A]'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> </pre></div> -</div> + </div> </div> </div> @@ -12084,15 +13415,13 @@ iR(0) = 7.721280737848999 <div class="output_area"> -<div class="prompt"></div> + <div class="prompt"></div> <div class="output_png output_subarea "> -<img src=" -" -> +<img src="%0A"> </div> </div> @@ -12102,29 +13431,28 @@ iR(0) = 7.721280737848999 </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h2 id="I-V-Characteristic-of-Nonlinear-Resistor">I-V Characteristic of Nonlinear Resistor<a class="anchor-link" href="#I-V-Characteristic-of-Nonlinear-Resistor">¶</a></h2> +<h2 id="I-V-Characteristic-of-Nonlinear-Resistor">I-V Characteristic of Nonlinear Resistor<a class="anchor-link" href="#I-V-Characteristic-of-Nonlinear-Resistor">¶</a></h2> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [6]:</div> +<div class="prompt input_prompt">In [6]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">v_R_NL</span> <span class="o">=</span> <span class="n">v1_trap</span> <span class="o">-</span> <span class="n">v2_trap</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">v_R_NL</span><span class="p">,</span><span class="n">i_trap</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Voltage [V]'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Current [A]'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">V_exmp_NR</span><span class="p">,</span><span class="n">I_exmp_NR</span><span class="p">,</span> <span class="s1">'x'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="s1">'I-V characteristic of nonlinear resistor'</span><span class="p">,</span><span class="s1">'N-R iterations within one sim time step'</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Voltage [V]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Current [A]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">V_exmp_NR</span><span class="p">,</span><span class="n">I_exmp_NR</span><span class="p">,</span> <span class="s1">'x'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="s1">'I-V characteristic of nonlinear resistor'</span><span class="p">,</span><span class="s1">'N-R iterations within one sim time step'</span><span class="p">])</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> </pre></div> -</div> + </div> </div> </div> @@ -12134,15 +13462,13 @@ iR(0) = 7.721280737848999 <div class="output_area"> -<div class="prompt"></div> + <div class="prompt"></div> <div class="output_png output_subarea "> -<img src=" -" -> +<img src="%0A"> </div> </div> @@ -12152,26 +13478,25 @@ iR(0) = 7.721280737848999 </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> -</div> -<div class="inner_cell"> +</div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> -<h1 id="Number-of-Newton-Raphson-Iterations">Number of Newton-Raphson Iterations<a class="anchor-link" href="#Number-of-Newton-Raphson-Iterations">¶</a></h1> +<h1 id="Number-of-Newton-Raphson-Iterations">Number of Newton-Raphson Iterations<a class="anchor-link" href="#Number-of-Newton-Raphson-Iterations">¶</a></h1> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> -<div class="prompt input_prompt">In [7]:</div> +<div class="prompt input_prompt">In [7]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">Ts</span><span class="p">,</span><span class="n">T_total</span><span class="o">-</span><span class="n">Ts</span><span class="p">,</span><span class="n">Ts</span><span class="p">),</span><span class="n">num_iter</span><span class="p">[</span><span class="mi">1</span><span class="p">:])</span> -<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Time [s]'</span><span class="p">)</span> -<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# Iterations'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Time [s]'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# Iterations'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> </pre></div> -</div> + </div> </div> </div> @@ -12181,15 +13506,13 @@ iR(0) = 7.721280737848999 <div class="output_area"> -<div class="prompt"></div> + <div class="prompt"></div> <div class="output_png output_subarea "> -<img src=" -" -> +<img src="%0A"> </div> </div> @@ -12197,6 +13520,19 @@ iR(0) = 7.721280737848999 </div> </div> +</div> +<div class="cell border-box-sizing code_cell rendered"> +<div class="input"> +<div class="prompt input_prompt">In [ ]:</div> +<div class="inner_cell"> + <div class="input_area"> +<div class=" highlight hl-ipython3"><pre><span></span> +</pre></div> + + </div> +</div> +</div> + </div> </div> </div> @@ -12205,4 +13541,4 @@ iR(0) = 7.721280737848999 -</html> +</html> \ No newline at end of file