Chapter 7

MULTIMACHINE
SIMULATION

In this chapter, we consider simulation techniques for a multimachine power
system using a two-axis machine model with no saturation and neglect-
ing both the stator and the network transients. The resulting differential-
algebraic model is systematically derived. Both the partitioned-explicit (PE)
and the simultaneous-implicit (SI) methods for integration are discussed.
The SI method is preferred in both research grade programs and industry
programs, since it can handle “stiff” equations very well. After explaining
the SI method consistent with our analytical development so far, we then
explain the equivalent but notationally different method, the well-known
EPRI-ETMSP (Extended Transient Midterm Stability Program) [70]. A
numerical example to illustrate the systematic computation of initial condi-
tions i1s presented.

7.1 Differential- Algebraic Model

We first rewrite the two-axis model of Section 6.4 in a form suitable for
simulation after neglecting the subtransient reactances and saturation. We
also neglect the turbine governor dynamics resulting in Ts; being a con-
stant. The limit constraints on Vg; are also deleted, since we wish to con-
centrate on modeling and simulation. We assume a linear damping term
Trwi = Di(wi — w,). The resulting differential-algebraic equations follow
from (6.196)-(6.209) for the m machine, n bus system with the IEEE-Type
I exciter as
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1. Differential Equations .

dE'.
Téoi dtqt = _Eéi — (Xai — Xé{)fdi + Efgi i=1,...,m (7.1)
A |
Té“? = —‘Etlit +(qu—Xét)qu 1= 1,.--,m (7.2)
(Z—?:wg—w, i=1,...,m (7.3)
2H; dw;
o, @ = Mi Egla — Eyly — (Xgi — XM ail
~Di(w; — w,) i=1,...,m (7.4)
dEs4; .
Tr: d;‘d = —(Kpi+ Sgi(Efai))Egai + VRi  1=1,...,m (7.5)
dRy; Kp; }
il L 3 Bps i=1,... :
Tr 7 Rg; + T fd 7 m (7.6)
dVg: KA KFs
TA;d—f = —Vri + KaiRygi — ATF.F Efai + K 4i(Vief; — Vi)

i=1,...,m (7.7)

Equation (7.4) has dimensions of torque in per-unit. When the stator
transients were neglected, the electrical torque became equal to the
per-unit power associated with the internal voltage source.

2. Algebraic Equations

The algebraic equations consist of the stator algebraic equations and
the network equations. The stator algebraic equations directly follow
from the dynamic equivalent circuit of Figure 6.5, which is reproduced
in Figure 7.1. Application of Kirchhoff’s Voltage Law (KVL) to Figure
7.1 yields the stator algebraic equations:

(a) Stator algebraic equations
0 = Vie'® + (Roi+ jX5)(Tas + jIg)e? % %)
—[B% + (Xgi — Xag)Igi + J'Eéi]ej(a"_%)
1=1,...,m (7.8)
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(b) Network equations

The dynamic circuit, together with the static network and the loads, is
shown in Figure 7.2. The network equations written at the n buses are
in complex form. From (6.208) and (6.209), these network equations
are

JXy Ry (s + jlgi) IOD = In; + jly;

[e,+(x,-x5)1,
+ jEg] SO

(s + V) 67
=ViePi=vp +jVpy

Figure 7.1: Synchronous machine two-azis model dynamic circuit (i =
1,...,m)
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Figure 7.2: Interconnection of synchronous machine dynamic circuit and the
rest of the network



164 CHAPTER 7. MULTIMACHINE SIMULATION

Generator Buses

Vie? (T — jlIq)e 7 2) 4 Pri(Vi) + jQui(Vi) = D, ViViYae? (i =0k —oxin)
k=1

i=1,...,m (7.9)
Load Buses

Pri(Vi) + 5Qui(Vi) = Y ViViYigel i) i =m 4 1,...,n(7.10)
k=1

In (7.9), Vie?¥% (14 — qu,')e‘j(5‘_"/2) = Pg; + 7Qq; is the complex power
“injected” into bus 7 due to the generator. Thus, (7.9) and (7.10) are only
the real and reactive power balance equation at all the n buses. Equation
(7.9), which constitutes the power balance equations at the generator buses,
shows the interaction of the algebraic variables and the state variables §;,

'y and E.. We thus have

i
1. Seven differential equations (d.e.’s) for each machine, i.e., 7m d.e.’s

((7.1)~(7.7)).

2. One complex stator algebraic equation (7.8) (two real equations) for
each machine, i.e., 2m real equations.

3. One complex network equation (7.9) and (7.10) (two real equations)
at each network bus, i.e., 2n real equations.

We have 7m + 2m + 2n equations with z = [zf ...z},

where z; = [E}; E}; 6; wi Egai Ry, Vg;]® as the state vector for each machine.
y = [I§_, V* 6']" is the set of algebraic variables where

|t as the state vector

Iisg = [IaIp.. Tamlpgm]
V = [Vl . .Vn]t, 6= [91 - .gn]t, V = [V1 . .Vn]t

Functionally, therefore, the differential equations (7.1)-(7.7), together with
the stator algebraic equations (7.8) and the network equations (7.9)—(7.10),
form a set of differential-algebraic equations of the form

t = f(z,y,u) (7.11)
0 = g(z,9) (7.12)

uw = [uf .. ul ]t with u; = [w, Tm; Vief;]* as the input vector for each machine.
We now formally put (7.1)-(7.10) in the form (7.11) and (7.12).
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7.2 Stator Algebraic Equations

There are several different ways of writing the stator algebraic equations (7.8)
as two real equations for computational purposes. The idea is to express Iy;,
Ii in terms of the state and network variables. Both the polar form and the
rectangular form will be explained.

7.2.1 Polar form

In this form, the network voltages appear in polar form. If we multiply (7.8)
by e~7%:=%) and equate the real and imaginary parts, we obtain

Ey —Visin (8 — 60;) — Ryilyi + X0 Iy =0 1=1,...,m (7.13)
E;i—V,' cos (5,'—0,’)—R,,‘Iq,'—Xé,-Id,' =0 2=1,...,m (7.14)
We define

Ri —-X);|a
[X,'ii R: }:Zd_q’i

Then, from (7.13) and (7.14):

Lai — -1 E,Iﬁ — V,'sin(é} — Hi) o
{ Lo J = ol [ E!; — Vicos(6; — 6;) i=1,...,m (7.15)

Equations (7.13) and (7.14) are implicit in Iy;, I, whereas in (7.15) they
are expressed explicitly in terms of the state variables z; and the algebraic
variables V;, 6;. Thus

l: §dl ] = h’p‘i(mi;‘/boi) 1= 17 Ry (716)
gt

7.2.2 Rectangular form
This can be easily derived by recognizing the fact that
Vi=Vpi + jVoi = Vie?® = V;cos 6; + jVisin ; (7.17)

By expanding (7.13) and (7.14) and noting from (7.17) that Vp; = V; cos 6;
and Vg, = V;sin6;, we obtain the implicit form in rectangular coordinates

as
E:ﬁ — Vpisiné; + Vgicosé; — Ryila; + X;,-Iq,‘ =0 (7.18)
E;I- — Vpicosé; — Vgisiné; — Ryilys — Xjlg = 0 (7.19)
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To obtain the explicit form, Iy;, Iy in (7.18) and (7.19) can be expressed

in terms of E};, E.., 6;, Vp;, and Vg;. Alternatively, the right-hand side of

(7.15) is expanded as

Ii | 1| El; B -1 | Vi(siné; cos 8; — cos é; sin 6;)
[ I, } = [Za-qq] [ E; [Zd-qs] Vi(cos é; cos 8; + sin §; sin 6;)

(7.20)

Using the fact from (7.17) that Vp; = V;cos6; and Vo, = Visin 6;, (7.20)

becomes

1y; _ 1-1 E:i,' _ 1-1 sin 5,' — COs 5,' VD,’
[ I } = [Za-qy] [ E, [Za-q.] cosé; siné; Vai (7.21)

qt

= h”'(:z:,', VDi, VQ,;) 1= 1, e, M (722)

Note that (7.21) can be obtained directly from (7.18) and (7.19). Symboli-
cally, (7.16) or (7.22) can be expressed for all machines as

Ii_g = hy(z,V,8)o0r h(z,Vp, Vo)
2 h(z,V) (7.23)

777 D

Figure 7.3: Graphical representation

7.2.3 Alternate form of stator algebraic equations

In much of the literature, a block diagram representation of stator equa-
tions is done through an “interface” block that reflects the machine-network
transformation. The machine-network transformation is given by
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Fgu | | sind; —cosé; Fp; .
[Fqi}_[Cosﬁi sin 6; J[FQ:'} t=1,...,m (7.24)

and

Fpi | _ siné; cosé; Fy .
{Fq,'J_[—cosﬁ,- sin&;}[Fqi r=1.,m (7.25)

where F may be either I or V. Figure 7.3 is a graphical representation of
(7.24) and (7.25) illustrated for the voltage V; = V;e?%. Using (7.24) in
(7.21), we obtain

lai | _ 1-1 | Bai— Vai .
[ I, } = [Za_q,] { BV | P=heam (7.26)
Thus
Ezlii - Vau _ ] Id,' .
[ E! — Ve J = [Za—q,i] [ I; t=1,...,m (7.27)

The interface block in the block diagram in Figure 7.5 is now consistent with
(7.24), (7.25), and (7.26). Note that, in this formulation, algebraic equation
(7.26) or (7.27) is in machine reference only, whereas (7.24) and (7.25) act
as an “interface” between the machine and the network.

7.3 Network Equations

The network equations can be expressed either in power-balance or current-
balance form. The latter form is more popular with the industry software
packages. We discuss both of them now.

7.3.1 Power-balance form

The network equations for the generator buses ((7.9)) are separated into real
and imaginary partsfor: = 1,...,m
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13;V;sin(6; — 0;) + IgiVicos (8; — 0;) + Pri(V3)

— ) ViViYik cos (6; — Op— oxiz) = 0 (7.28)
k=1

14;V; cos(6; — 0;) — I;Visin (6; ~ 0;) + QLi(V3)

—Z ViVieYik sin (0; — 0, — i) =0 (7.29)
k=1
For the load buses, a similiar procedure using (7.10) gives fori = m+1,...,n
Pri(V;) = ) ViVaYik cos (8; — Op— i) = 0 (7.30)
k=1
QLi(Vi) = )_ ViVaYaksin (6; — p— ocix) = 0 (7.31)
k=1

Note that load can be present at the generator as well as at the load buses.
The network equations (7.28)—(7.31) can be rearranged so that the real power
equations appear first and the reactive power equations appear next, as fol-
lows.

Real Power Equations

14;Visin(6; — 6;) + I;Vicos (6; — 6;) + Pri(V;)
- Z ViViYikcos (0; — 0p— xix) =0 i=1,...,m(7.32)
k=1

Pri(V;) =Y ViVaYircos (6; — O — xix) = 0 i=m+1,...,n(7.33)
k=1

Reactive Power Equations

I13;Vicos (6; — 6;) — 15 V;sin (6; — 0;) + QLi(V%)
— Z V;V. Y, sin (0,’ ) O(,'k) =0 (7.34)
k=1
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QL,;(V,;) — Z V:ViYig sin (0,; — O — OCik) =0 1=m+1,...,n (7.35)
k=1

Thus, the differential-algebraic equation (DAE) model is:
1. The differential equations (7.1)—(7.7)
2. The stator algebraic equations of the form (7.23) in the polar form
3. The network equations (7.32)—(7.35) in the power-balance form

The differential-algebraic equations are now written symbolically as

T = folz,lg—gq,V,u) (7.36)
Ii_qg = h(z,V) (7.37)
0 = go(z,I4—g,V) (7.38)

Substitution of (7.37) into (7.36) and (7.38) gives
= fi(z,V,u) (7.39)
0 = g1(z,V) (7.40)

Note that (7.40) is in the power-balance form. This is the differential-
algebraic equation (DAE) analytical model with the network algebraic vari-
ables in the polar form. We prefer this form, since in load-flow equations the
voltages are generally in polar form. Simplified forms of this model result
from the reduced-order model of the synchronous machine as well as the
exciter, which will be discussed later.

7.3.2 Current-balance form

Instead of the power-balance form of (7.32)—(7.35), one can have the current-
balance form, which is essentially the nodal set of equations

I=YnNV , (7.41)

where Y is the n X n bus admittance matrix of the network with elements
Yir = Yire?™ik = G, +7Bix, I is the net injected current vector and V is the
bus voltage vector. Depending on how I is expressed, it can take different
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forms, as discussed below. Equation (7.41) can also be derived from (7.9)-
(7.10) by dividing both sides of the equation by V;e’® and then taking the
complex conjugate as follows.

(Idi + qui)ej(J.'—r/z) + PLI(K‘)/:_-ZGQIA(K) —_ ZYikejoqukeij
: ! k=1

i=1,....,m (7.42)

Pri(Vi) — 1QLi(Vi) & - _
Vie=db: = kz=:1Yike] "ie i=m+41,...,n  (7.43)

These equations are the same as (6.83) and (6.84). Equations (7.42) and
(7.43) can be symbolically denoted in matrix form as

To(lg—g,z,V) =Y NV (7.44)
The other algebraic equation is
Ii_g = Wz, V) (7.45)
Substitution of (7.45) in (7.36) and (7.44) leads to the DAE model

fl(z) va ’ll.-)
Ii(z,V) = YNV (7.46)

z

Example 7.1

We illustrate the DAE models discussed in the previous section with a nu-
merical example. We consider the popular Western System Coordinating
Council (WSCC) 3-machine, 9-bus system [73] shown in Figure 7.4. This
is also the system appearing in {74] and widely used in the literature. The
base MVA is 100, and system frequency is 60 Hz. The converged load-flow
data obtained using the EPRI-IPFLOW program [75] is given in Table 7.1.

The Y}, for the network (also denoted as Yy ) can be written by in-
spection from Figure 7.4 and is shown in Table 7.2. The machine data and
the exciter data are given in Table 7.3. The exciter is assumed to be identical

for all the machines and is of the IEEE-Type I. Define %1:—1 4 M;. Assume
that £+ = 0.1, ¢ = 0.2, and g = 0.3 (all in pu).
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Gen 2 Gen3

180KV Gen 2 Station C Gen 3 133KV
1.025 pu 230KV 230KV 230KV 1.025 pu
~ | > Z = 0.0085+/0.072 , Z=0.0119+0.1008 I < ~
> Y = 0.4j0.0745 Y = 0.4j0.1045 <
138
163 MW Tap = 12%3 Tap = 230 85Mw
@ z= jpoas@ [y ® =V @ Z= jo.0s8s ©]
Y= 04j00 ©[2 215 ¥= 04j00
& 12 100Mw & (&
Sie 33MVAR =¥
28 3|8
E ~
Station A Station B
230KV ]——— ® ® —A[ 230KV
125 MW - . _ . 90MW
ST |2 = 0.014j0.085 Z=0.017+70.092 3OMVAR
¥ = 0.4j0.088 ¥ = 0.4j0.079
Gen t
2oxv @
Tap= 12%6"
Z=0.4j0.0576 /\/\
Y= 0400 Gen 1
4 165KV @
1.04 pu

@ Slack Bus

Figure 7.4: WSCC 3-machine, 9-bus system, the value of Y is half the line
charging (Copyright 1977. Electric Power Research Institute. EPRI EL-
0484. Power System Dynamic Analysis, Phase I. Reprinted with Permis-
sion. ).

Table 7.1: Load-Flow Results of the WSCC 3-Machine, 9-Bus System

Bus # | Voltage (pu) Pg Qe -P | —Qr
(pu) | (pu) | (pu) | (puw)
(swing) 1.04 0.716 | 0.27 - -
(P-V) | 1.025,9.3° | 1.63 | 0.067 | - -
(P-v) | 1.025¢,4.7° | 0.85 | -0.109 | - -
(P-Q) | 1.026/-2.2°| - - - -
Q) 0.996/-4.0° | - - | 125 o5
) | 1o13z-37°| - - | 09 | 03
) 1.026/3.7° - - - -
) 1.01600.7° | - ~ | 1.00 | 0.35
) 1.032/2.0° | - - - | -

W oo -3 O OV W=
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Table 7.2: Y n for the Network in Figure 7.4
1 2 3 4 b ] 7 8
—717.361 0 o] j17.381 0 o] 0 0
o —ji6 0 [ [ 0 j18 0
0 0  —j17.08B 0 0 0 0 0
J17.361 0 o] 3.307 —1.3856 —1.942 o] o]
—739.309 +;11.604 +j10.611
0 0 0 —1.366 2.663 0 —1.188 0
+711.604 —;17.338 +355.976
o] 0 0 —1.942 o] 3.224 0 o]
+310.611 —715.841
0 J18 o] o] —1.188 0 2.805 —1.617
+35.976 —j35.4460 +j13.698
0 0 0 0 o] o] —1.617 2.772
+713.698 —323.303
0 0 717.066 0 0 —1.282 o] —1.166
+35.588 +59.784
Table 7.3: Machine and Exciter Data
Machine Data
Parameters M/C1 M/C 2 M/C 3
H(secs) 23.64 6.4 3.01
X4(pu) 0.146 0.8958  1.3125
X{i(pu) 0.0608 0.1198 0.1813
X, (pu) 0.0969  0.8645  1.2578
X;(pu) 0.0969 0.1969 0.25
o (sec) 8.96 6.0 5.89
T, (sec) 0.31 0.535 0.6
Exciter Data
Parameters Exciter 1 Exciter 2 Exciter 3
Ky 20 20 20
T'4{sec) 0.2 0.2 0.2
Kg 1.0 1.0 1.0
Tg(sec) 0.314 0.314 0.314
Kp 0.063 0.063 0.063
Tr(sec) 0.35 0.35 0.35
Sgi(Er4) = 0.0039e1-5558rs {=1,23

9
0
0
j17.066
0

0
—1.282
+36.588
0

—1.165
+359.784

2.437 }
—332.1540
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The differential equations corresponding to (7.1)—(7.7) are

_ Eéi - ( B, -
Ej Ey
5,' 51'
w; | =1[4]| wi |+ RiE}, E), Esai, lai, 15i, Vi) + Ciwy
E_fd:’ Efai
R_f,' ‘ R_fi
. Vr: | i Vri J
i=1,2,3
(7.47)
where
-1 ; 0 -
(o, 00 Y 0
0 7 0 0 0 0 0
0 0 0 1 0 0 0
A = 0 0 0 X 0 0 0
Kg; 1
0o 0 o o0 -Em o L
Kp; -1
0 0 0 o0 Tf';{ L0
—KaKp, Ka -1
L 0 0 0 0 TaiTr: _ﬁil TAiJ
i=1,2,3 (7.48)
r —(Xai—Xgi)lai 7
Tdai
(Xqi_X;i)Iqi
Tq’oi
0
Ri = | 3pl(Blla + Eply) + (X — Xj) ailai]
_ Sgi(Efai)
Tg:
0
- TV J
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[0 0o 0
0 0 0
-1 0 0 w,
Ci = | % m O w=| Tai | i=1,2,3 (7.49)
0 0 0 Viefi
0 0 O
| 0 0 A
Substituting the numerical values, we obtain
[-0112 0 0o o0 0112 0 0 ]
0 —-3226 0 0 0 0 0
0 0 0 1 0 0 0
A = 0 0 0 -01 O 0 0
0 0 0 ©0 -318 0 3.185
0 0 0 0 0514 -28 0
| 0 0 0 0 ~-18 100 -5 |
(—0.167 0 0 0 0.167 0 0 ]
0 -187 0 O 0 0 0
0 0 0 1 0 0 0
Ay = 0 0 0 —02 O 0 0
0 0 0 0 -318 0 3.185
0 0 0 0 0514 -28 0
0 0 0 0 ~-18 100 -5 |
~0.17 0 0 0 017 0 o
0 -167 0 0 0 0
0 0 0 1 0 0
Az = 0 0 0 —0.3 0 0 (7.50)
0 0 0 0 -318 0 3.185
0 0 0 0 0514 -286 0
L 0 0 ~18 100 -5 |
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(

R,

R

Cy

Cs

—0.009514
0
0

—8(EjIn + Eplg1)

—0.29141,

0.0124¢!-555E a

0
—100V;

~0.19143
1.7143
0

—62.6( Ejzlaz + El3143)

—4.314313
0.0124e!:555E a3
0
—100V3

o O O o oo

0
0
0
62.6
0
0
0

0

100 j

1R2

)02:

o O o O O L

0

—0.1314
1.251
0
—29.5(Elylar + Ellg2)
—2.27151,
0.0124¢1-555E ra2
0
—100V;
0 0 0 |
0 0 0
-1 0 0
0.2 295 0 |,
0 0 0
0 0 0
0 0 100
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(7.51)

(7.52)

The stator algebraic equations corresponding to (7.13) and (7.14) (assuming

R, = 0) are

E!) — Vysin(é; — 6;) + 0.0969, = 0
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Etlzl — Vi cos(61 — 61) — 0.060814
E), — Vasin(éy — 63) + 0.19691,
Egy — Vacos(§2 — 02) — 0.11981 4,
E}; — V3sin(63 — 63) + 0.25001,3
Eyy — Vacos(é3 — 03) — 0.1813143

I
o o o o o

(7.53)

The network equations are (with the notation 8;; = 6; — ;) as follows. The
constant power loads are treated as injected into the buses.

Real Power Equations

Ilel sin(&l - 01) + IqlVl COS(61 - 01)

Iszg SiIl((Sz - 02)

Idgvvg, sin(63 — 03)

—1736V4V1 sin 041

-1.25 + 136V5V4 COS 054

-0.9 + 1941/61/4 COos 064

— 16V7V2 sin 072

—1+4 1.62VgV7 cos fg7

— 17065V9V3 sin 093

_+_

_+_

17.36V1Vysin 614 = 0

1,2V cos(6y — 63)

16.00 Vo Vo sinfy7 = 0

1,3V3 cos(63 — 63)

17.06V3Vgsinf39 = 0

3.31V2 4 1.36V4Vs cos 45 — 11.6V, Vs sin 045
1.942V, Vs cos 046 — 10.51V4 Vg sin 4 = 0
11.6V5Vysin 054 + 1.19V5V7 cos 057
5.97VsV7sin 057 — 2.55V2 = 0

10.51VgVy sin fgq — 3.22V2

1.28VgVg cos g — 5.59VgVysin fgg = 0
1.19V7V5 cos 075 — 5.98V, V5 sin 075

2.8V2 + 1.62VVg cos O3

13.7V7Vgsinf75 = 0

13.7VgV7 sin fg7 — 2.77V;E

1.16VgVg cos fgg — 9.8VgVgsin g = 0
1.28V4Vg cos Ogg — 5.59V3 Vg sin fgg
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Reactive Power Equations

InVicos(6y —61) —
+
I35V, cos(62 — 02) —
+
Ii3V3cos(b3 — 63) —

17.36V4V1 COSs 041 -

—~0.5+ 1.37V5V,4 sin fs4
—0.3 + 1.94VgV, sin fgq
16V, V, cos 79

—0.35 4+ 1.62VgV7sin g7 +
+

17.065VoV3 cos g3 +
_+_

+ 115V9V8 COSs 098 - 978V9V8 sin 098
- 24V =0 (7.54)

I1Visin(é; — 6;)

17.36V1Vycos 14 — 17.36V2 = 0

I2Vasin(6; — 62)

16V,Vir cos 8y7 — 16V,2 = 0

I;3V3sin(é3 — 63)

17.07VaVg cos fag — 17.07TVZ =0

39.3VZ 4 1.36V, Vs sin 45

11.6V4Vs5 cos 045 + 1.94V, Ve sin G46
10.52V4Vgcos 46 = 0

11.6V5Vy cos Os4 — 17.34V2

1.19VsVy sin 857 + 5.98VsVy cos 57 = 0
10.51VsVy cos 84 — 15.84V2

1.28ViVg sin 8o + 5.59Ve Vs cos gy = 0
1.19V7 Vs sin 075 + 5.98V7 V5 cos 75

35.45V:2 + 1.62V, Vg sin 075 + 13.67V+Vg cos 07 = 0
13.67VaV7 cos fg7 — 23.3VE + 1.15V Ve sin gg
9.78VgVg cos gg = 0

1.28V5Ve sin fgg + 5.59Vo Ve cos fgg

1.16VyVg sin fgg + 9.78VyV3 cos fgg — 32.15V¢ = 0
(7.55)

It is easy to solve (7.53) for Iy, Iy (i = 1,2,3), substitute them in (7.47) and
(7.54)—(7.55), and obtain the equations z = fi(z,V,u) and 0 = g;(z,V).
This is left as an exercise for the reader.
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