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Abstract—This work investigates the suitability and appli-
cability of the derivative-free version of the augmented La-
grangian based alternating direction inexact Newton (ALADIN)
optimization algorithm for distributed weekly scheduling in
aggregated energy systems. A hierarchical setup is considered,
in which an aggregator acts as a system-level coordinator with
a peak-shaving objective, while prosumers seek to minimize
their time-of-use electricity costs. The prosumers are modeled
with both flexible and inflexible electrical and thermal com-
ponents, including photovoltaic systems, batteries, heat pumps,
and thermal energy storage. In this scenario, the proposed
ALADIN algorithm is applied to a focused test case featuring
prosumer portfolios of varying sizes. Moreover, the impact of
three key algorithmic parameters on ALADIN’s performance
is systematically analyzed. The results show that the algorithm
may converge quickly, producing weekly schedules and objective
values identical to those of a centralized reference benchmark
optimization. However, the coupling quadratic problem of the
ALADIN algorithm emerges as a critical step, with computing
times being up to 33.6 times longer than those required for
solving individual prosumer subproblems. This limitation reveals
challenges in scalability for large-scale system setups.

Index Terms—Aggregated energy system, Augmented La-
grangian based alternating direction inexact Newton (ALADIN)
algorithm, Distributed optimization, Prosumer, Scheduling

I. INTRODUCTION

Aggregated energy systems, such as those in energy com-
munities, have gained significant research interest over the past
decade due to their ability to aggregate, coordinate, and opti-
mize a large number of heterogeneous prosumers with multi-
energy demands (e.g., electricity, gas, heating, and cooling)
[1]. These systems typically integrate both flexible devices
(e.g., heat pumps) and non-flexible devices (e.g., photovoltaic
(PV) units), along with storage technologies (e.g., battery and
thermal energy storage).

To ensure efficient and grid-friendly operation of aggre-
gated energy systems, optimization strategies are required.
These strategies should determine the best possible operation
schedule for flexible devices, optimizing toward a predefined
objective function while satisfying the energy demands of each
local prosumer and adhering to all technical constraints of
the system. The most straightforward approach is centralized

optimization, which assumes that a central entity, such as an
aggregator, has complete knowledge of the system, including
energy demands, installed devices, and operational parameters
of every prosumer [2], [3]. Although centralized formulations
can be solved to global optimality even for the most general
class of mixed integer nonlinear problems (MINLP) [4], they
have two critical drawbacks: i) they require full knowledge
of prosumer data, raising data privacy concerns, and ii) as
the number of prosumers/devices increases, the problem may
become computationally intractable, limiting scalability.

To address these limitations, distributed optimization ap-
proaches have been proposed. In this context, this work aims
to explore and analyze the potential of the recently developed
ALADIN optimization algorithm for optimal scheduling prob-
lems in aggregated energy system setups.

A. Distributed Optimization – State of the Art

State-of-the-art distributed optimization approaches include
dual decomposition (DD) [5], alternating direction method
of multipliers (ADMM) [6], and Dantzig-Wolfe decompo-
sition [7]. These algorithms are well-suited for scheduling
problems in aggregated energy systems, as they can exploit
the separable structure of the underlying optimization prob-
lem. Specifically, they decompose the holistic problem into
smaller subproblems: one for each prosumer with its flexible
devices at the local level, and one for the aggregator, which
pools the flexibility and energy demand/supply at the system
level. These subproblems are then solved iteratively subject
to penalty terms until predefined convergence criteria are
satisfied, yielding the (near-)global optimum.

Work [5], for instance, studies distributed optimization for
an aggregated energy system using the DD algorithm. The
DD algorithm uses shadow price signals to drive the con-
sumption/production of a common good towards equilibrium
[6]. The study focuses on aggregating residential consumers
equipped with storage and two adjustable loads — one char-
acterized by specified consumption patterns, and one by a dis-
satisfaction function. The authors show that the DD algorithm
can converge to global optimality even when using outdated
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Lagrange multipliers due to lost communication messages
between iterations. However, DD requires strict convexity of
the objective function, limiting its applicability.

To overcome this limitation, the ADMM algorithm was
proposed. ADMM combines the decomposability of DD with
the superior convergence properties of the method of mul-
tipliers [6]. Work [4] makes use of ADMM for the day-
ahead scheduling of aggregated energy systems comprising
residential prosumers. The authors benchmark it against a
centralized formulation in terms of computational times and
scalability for a varying number of prosumers. The results
indicate that ADMM outperforms the centralized formulation
when the number of prosumers exceeds 40.

Dantzig-Wolfe decomposition is an algorithm that can solve
optimization problems in a distributed way using column
generation. However, it is limited to the class of (integer)
linear problems. The authors in [7] use the Dantzig-Wolfe
decomposition to minimize the electricity purchase cost of an
aggregated energy system consisting of residential consumers
characterized by uncontrollable loads, curtailable loads, unin-
teruptible loads, deferrable loads, thermal loads, and batteries.
Their results show that the proposed formulation is able to
converge to global optimality and scales better with increasing
problem sizes compared to a centralized formulation.

More recently, the ALADIN algorithm has been introduced,
capable of solving both convex and non-convex problems [8].
This distributed optimization algorithm exploits second-order
derivative information to achieve quadratic or even superlinear
convergence rates. Leveraging an inexact Newton method, the
derivative-free version of the algorithm thereby reduces the
computational burden by calculating Hessian matrices and
gradients only approximately.

B. Research Motivation for Investigating ALADIN

Well-explored distributed optimization algorithms are tai-
lored to specific problem classes: DD for strictly convex
problems, ADMM for convex problems, and Dantzig-Wolfe
decomposition for linear problems. In contrast, ALADIN is
designed to tackle the most general class of MINLP prob-
lems. This capability is particularly valuable for optimizing
aggregated energy systems, as it enables the inclusion of, for
example, higher-order objective functions or integer variables
in optimization problem formulations.

The authors in [9] use ALADIN to solve non-convex AC
optimal power flow problems in a distributed fashion. The
work demonstrates that ALADIN’s locally quadratic conver-
gence significantly reduces the number of iterations compared
to ADMM for test cases involving 5-300 buses. Moreover,
work [10] extends ALADIN to handle MINLP problems and
applies it to battery scheduling. The results reveal that the
MINLP reformulation outperforms the real-valued non-convex
formulation of ALADIN in terms of convergence time and iter-
ation count, although a general convergence proof has not been
provided. Furthermore, work [11] introduces ALADIN-α, an
open-source MATLAB implementation of ALADIN, incorpo-

rating meaningful extensions to reduce communication and
coordination overhead of the algorithm.

Despite these valuable contributions, a comprehensive liter-
ature review reveals that contributions on ALADIN are rare
and that no work has yet investigated the suitability of the
ALADIN algorithm for complex, large-scale scheduling prob-
lems in aggregated energy systems. In this paper, we address
this gap by deploying and testing ALADIN, placing particular
emphasis on its convergence and scalability behavior.

C. Contributions

We adapt a derivative-free formulation of ALADIN, as
described in [12], for weekly scheduling of the aggregated
energy system across three scenarios involving 10, 50, and 100
prosumers. A prototype implementation of this derivative-free
version of the ALADIN algorithm is made available as part
of our open-source pycity_scheduling (v1.4.0)1

Python project [13]. We evaluate the algorithm’s performance
with respect to the number of prosumers and examine the
impact of three key algorithmic parameters on the number of
iterations required to reach convergence.

II. PROBLEM FORMULATION

The general formulation of the scheduling problem for an
aggregated energy system comprising of one aggregator and
N prosumers is provided in (1). This problem is also known
as portfolio balancing optimization [4].

min
x,q

f(x, q) =

N∑
i=0

fi(xi, qi) (1a)

s.t.

N∑
i=0

Aixi = 0 (1b)

gi(xi, qi) = 0 ∀i = 0, 1, ..., N (1c)

hi(xi, qi) ≤ 0 ∀i = 0, 1, ..., N (1d)

Here, it is assumed that the objective function of the overall
system can be decomposed into N + 1 independent objective
functions, where f0(x0, q0) refers to the objective function
of the aggregator, while fi(xi, qi) with i = 1, ..., N are
the objective functions of the prosumers. In this context, xi

are the variables of the subproblem i that are present in
constraint (1b), coupling the subproblem of the aggregator
with the subproblems of all prosumers. Equations (1c) and (1d)
represent the local equality and inequality constraints of the
subproblem i, respectively, which both depend on the coupling
variables (xi) and local variables (qi) of the subproblem. Since
this work investigates the scheduling problem of an aggregated
energy system of prosumers, variables xi for i = 1, ..., N
represent the electrical power contributions by the prosumers
at each time step t within the optimization horizon T . Vice
versa, variable x0 is the power contribution by the aggregator
to balance the aggregated energy system at the system level.

1link to repository: https://git.rwth-aachen.de/acs/public/simulation/pycity
scheduling/-/releases/v1.4.0

preprint



Although problem (1) is a MINLP problem in the general
case, we simplify the formulation in this work by assuming
xi, qi ∈ R, and fi(xi, qi) to be convex. This simplification en-
ables direct and fair comparison of ALADIN with other well-
suited distributed optimization algorithms, such as ADMM.

III. DERIVATIVE-FREE ALADIN ALGORITHM

This section provides the mathematical derivation of the
derivative-free version of the ALADIN algorithm, as described
in [12], tailored to the optimization of aggregated energy
systems formulated in (1). The algorithm is modified adding
a penalty parameter ρ ≥ 0 and the termination condition (3b)
from [8]. The iterative steps of the algorithm are as follows:

1) Decompose the original problem (1) into smaller sub-
problems for the aggregator and every prosumer. The
idea in (2a)-(2d) is to minimize the objective per sub-
problem i in parallel, taking into account the feedback
from the coupling quadratic program (QP) in (4). Each
subproblem includes parameters λ∗ and x∗

i , represent-
ing the numerical values of the dual variable of the
decomposed coupling constraint and coupling variable,
respectively, as computed in the previous iteration of the
algorithm in step 5.

min
xi,qi

fi(xi, qi) + λ∗T

Aixi +
ρ

2
∥xi − x∗

i ∥
2
Σi

(2a)

s.t gi(xi, qi) = 0 (2b)
hi(xi, qi) ≤ 0 (2c)

xi ∈ R, qi ∈ R (2d)

Notice that Σi is a (positive semi-definite) scaling matrix
for the Euclidean norm2, penalizing the deviation of the
new solution of xi versus x∗

i . As suggested in [12], this
matrix is set equal to Hi (cf. step 3).

2) Check if the termination criteria in (3a)-(3b) are satis-
fied to determine whether the algorithm has converged.
Criterion (3a) evaluates whether the difference between
solutions from consecutive iterations is within a speci-
fied tolerance, while criterion (3b) verifies whether the
decomposed coupling constraint is satisfied.

∥x− x∗∥2 ≤ ϵ (3a)∥∥∥∥∥
N∑
i=0

Aixi

∥∥∥∥∥
2

≤ ϵ (3b)

Here, it applies x = [x0, x1, . . . , xN ] as well as
x∗ = [x∗

0, x
∗
1, . . . , x

∗
N ], and ϵ is a user-defined numeri-

cal tolerance.
3) Choose positive-definite matrices Hi and compute vec-

tors gi = Hi(x
∗
i − xi) − AT

i λ
∗. Since the optimization

problem for aggregated energy systems typically does
not include cross-time-step variable multiplications in

2Notation: it applies ||xi − x∗
i ||2Σi

=
(
xi − x∗

i

)T
Σi

(
xi − x∗

i

)
.

Fig. 1. Schematic of the ALADIN algorithm workflow.

the objective function, Hi can be chosen as a multiple
of the identity matrix for computational effectiveness.

4) Solve the coupling QP in (4a)-(4b) by adjusting the
solutions xi of the individual subproblems from step 1,
using variables ∆xi such that the original coupling
constraint is satisfied.

min
∆x

N∑
i=0

{
1

2
∆xT

i Hi∆xi + gTi ∆xi

}
(4a)

s.t.

N∑
i=0

Ai(xi +∆xi) = 0 | λ (4b)

5) Update the values of parameters x∗
i and λ∗

i in (5a)-(5b)
for use in the next iteration, where α is a parameter
determining the update step-size.

x∗
i = xi + α∆xi ∀i = 0, 1, ..., N (5a)

λ∗ = λ∗ + α(λ− λ∗) (5b)

Fig. 1 shows a schematic representation of the ALADIN al-
gorithm workflow, highlighting what information is exchanged
and in which directions.

A. Implementation Specifics
The matrices Hi grow quadratically with the number of

time steps in the optimization horizon, and their count is
equal to the number of subproblems considered. For large-
scale optimization problems, such as weekly scheduling with
many prosumers, updating Hi and solving the coupling QP
thus becomes computationally expensive. To address this issue,
two strategies are proposed for the efficient implementation of
the derivative-free ALADIN algorithm as follows:

1) Since Hi are chosen as a multiple of the identity matrix,
their diagonals can be stored as vectors, significantly
reducing the number of parameters updated per iteration.

2) By using the same numerical value for Hi across all
iterations, the parameters can be initialized and fixed at
the start of the algorithm, further reducing the compu-
tational effort for constructing the coupling QP.
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IV. CASE STUDY

This section demonstrates the application of the derivative-
free ALADIN algorithm to distributed optimization of aggre-
gated energy systems. Three simulation scenarios are evaluated
to assess the performance of the algorithm under varying
conditions. The influence of key algorithmic parameters, in-
cluding matrices Hi, step-size α, and penalty parameter ρ, is
systematically analyzed to determine their impact on ALADIN
convergence and scalability behavior.

A. Overview

The case study focuses on a hierarchical aggregated energy
system comprising an aggregator and multiple prosumers. The
aggregator acts as a system-level coordinator with a peak-
shaving objective, while the prosumers aim to minimize their
individual time-of-use electricity costs.

Three weekly scheduling scenarios are investigated, each
with a different number of prosumers: S1) 10 prosumers, S2)
50 prosumers, and S3) 100 prosumers.

In all scenarios, the prosumers are modeled as residential
single-family homes (SFH) with inflexible electrical and ther-
mal energy demands. These SFH demands are heterogeneous
to represent the national building typologies of Germany,
reflecting varying building construction years and energy effi-
ciency levels. The data is derived from [14].

In addition, each SFH is equipped with a PV unit, stationary
battery storage, a heat pump unit, and thermal energy storage.
The modeling of these devices is described in detail in Section
IV-C and they are parameterized based on publicly available
data sources, including [14], [15], [16].

The optimization horizon of the weekly scheduling scenar-
ios is divided into 15-minute intervals (∆t = 15min), resulting
in 672 discrete time steps t ∈ T . The simulation is conducted
for a typical German week in early spring, reflecting both
moderate seasonal energy demands and PV generation.

B. Mathematical Modeling - Objective Functions

For the sake of exemplification, the aggregator’s objective
is defined as peak-shaving in this work, which aims to reduce
the net power peaks of the aggregated energy system at the
common point of coupling with the external power grid. Peak-
shaving is modeled as a quadratic objective function, which
can be written as follows:

f0(x0) = f0(Pel,0) =
∑
t∈T

(P t
el,0)

2 (6)

where variable P t
el,0 represents the electrical power contribu-

tion by the aggregator to supply the aggregated energy system
at time step t within the optimization horizon T .

For the prosumers, this work further assumes that all pro-
sumers adopt time-of-use electricity cost minimization as their
individual objective function. This objective is modeled as the
following linear function:

fi(xi) = fi(Pel,i) =
∑
t∈T

ctel,iP
t
el,i (7)

where variable P t
el,i denotes the electrical power imported

or exported by the i-th prosumer at time step t within the
optimization horizon T , and ctel,i represents the electricity
price at the same time step. Time-of-use electricity cost
minimization captures the financial incentives for prosumers
to optimize their electricity consumption patterns based on
dynamic electricity price tariffs, encouraging cost-effective
scheduling decisions for their flexible devices. The tariffs
may originate from, for example, the aggregator based on
contractual agreements with the prosumers.

C. Mathematical Modeling - Prosumer Constraints

Each prosumer i is assumed to have inflexible electrical
demand P

dem,t

el,i and thermal demand P
dem,t

th,i , and is equipped
with a PV unit p ∈ Pi, a battery storage system b ∈ Bi, a
heat pump unit h ∈ Hi, and a thermal energy storage system
s ∈ Si. The mathematical modeling of each of these devices
is presented below. Please note that all parameters (inputs to
the model) in the constraints are indicated by an overline.
The numerical values for those parameters are provided in
Table I. Moreover, all optimization variables are defined over
R, whereas all parameters are defined greater or equal to zero,
unless stated otherwise.

1) Power balances: Power balances, represented by (8),
must be satisfied for each energy type within the system.
The electrical power balance, defined by (8a), ensures that
the power P t

el,i that is imported/exported by prosumer i at
time step t is equal to the sum of its inflexible electrical
demand and the power contributions from all local devices
at that time step. Similarly, the thermal power balance in (8b)
ensures that the sum of thermal power contributions from heat
pumps and thermal energy storages as well as the prosumer’s
thermal demand equals zero.

P t
el,i = P

dem,t

el,i −
∑
p∈Pi

P t
el,p+

∑
b∈Bi

P t
el,b+

∑
h∈Hi

P t
el,h ∀t ∈ T

(8a)
0 = P

dem,t

th,i −
∑
h∈Hi

P t
th,h +

∑
s∈Si

P t
th,s ∀t ∈ T (8b)

2) PV units: A PV unit p ∈ Pi is assumed to be non-
curtailable and thus its assumed power generation equals a
PV production forecast P

t,forc

el,p as follows:

P t
el,p = P

t,forc

el,p ∀t ∈ T (9)

3) Battery storage systems: The behavior of each battery
storage system b ∈ Bi is modeled by the constraints in
(10). Constraint (10a) divides the battery power contribution
in the electrical power balance (8a) into charging (P ch,t

el,b )
and discharging (P disch,t

el,b ) components, upper bounded be-

tween by maximum technical limits (parameters P
ch,max

el,b

and P
disch,max

el,b in constraints (10b) and (10c), respectively).
Moreover, the battery’s energy level Et

el,b is upper bounded
by its maximum capacity E

max

el,b , as described in constraint
(10d). The battery’s energy level is updated according to the
balance equation in (10e), which incorporates the charging and
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discharging efficiencies ηchb and ηdischb , as well as the time step
duration ∆t. Additionally, initial and final energy levels of the
battery are specified in constraints (10f) and (10g).

P t
el,b = P ch,t

el,b − P disch,t
el,b ∀t ∈ T (10a)

0 ≤ P ch,t
el,b ≤ P

ch,max

el,b ∀t ∈ T (10b)

0 ≤ P disch,t
el,b ≤ P

disch,max

el,b ∀t ∈ T (10c)

0 ≤ Et
el,b ≤ E

max

el,b ∀t ∈ T (10d)

Et
el,b = Et−1

el,b +

(
ηchb P ch,t

el,b −
P disch,t
el,b

ηdischb

)
∆t ∀t ∈ T , t ≥ 1

(10e)
Et=0

el,b = E
ini

el,b (10f)

Et=671
el,b = E

final

el,b (10g)

4) Heat pumps: The behavior of each heat pump h ∈ Hi is
modeled by the constraints in (11). A heat pump’s electrical
power consumption P t

el,h is related to its thermal power
production P t

th,h via the coefficient of performance (ηtCOP,h),
which depends on the heat pump’s quality grade ηqualityh and
the temperature difference between the outdoor (T

t

outdoor) and
the sink temperature (T sink), see (11a) and (11c). The heat
pump’s thermal power production is limited by its nominal
thermal power capacity P

nom

th,h , as described in constraint (11b).

P t
el,h =

1

ηtCOP,h

P t
th,h ∀t ∈ T (11a)

0 ≤ P t
th,h ≤ P

nom

th,h ∀t ∈ T (11b)

ηtCOP,h = ηqualityh · T sink

T sink − T
t

outdoor

∀t ∈ T (11c)

5) Thermal energy storage systems: A thermal energy stor-
age system s ∈ Si is modeled by similar constraints to those
of a battery storage system, with some notable differences.
First, there is no need to separate charging and discharging
power contributions in the thermal power balance (P t

th,s), as
thermal storage is assumed to have no charging/discharging
efficiencies. Instead, the evolution of the thermal storage
energy level in (12a) integrates a thermal loss coefficient ηlosss ,
accounting for thermal energy losses over time. Second, it is
assumed that there is no practical limit for a thermal energy
storage system on the maximum power that can be charged or
discharged per time step, thus excluding those constraints.

Et
th,s = ηlosss Et−1

th,s + P t
th,s∆t ∀t ∈ T , t ≥ 1 (12a)

0 ≤ Et
th,s ≤ E

max

th,s ∀t ∈ T (12b)

Et=0
th,s = E

ini

th,s (12c)

Et=671
th,s = E

final

th,s (12d)

TABLE I
MODEL PARAMETER VALUES

model parameter value model parameter value

b ∈ Bi P
ch,max
el,b 4.6 kW h ∈ Hi ηqualityh 36 %

b ∈ Bi P
disch,max
el,b 4.6 kW h ∈ Hi T sink 328.15 K

b ∈ Bi E
max
el,b 13.5 kWh h ∈ Hi P

nom
th,h 8 - 16 kW

b ∈ Bi ηchb 95 % s ∈ Si E
max
th,s 2 - 4 kWh

b ∈ Bi ηdischb 95 % s ∈ Si ηlosss 99 %

b ∈ Bi E
ini
el,b 50 % s ∈ Si E

ini
th,s 50 %

b ∈ Bi E
final
el,b 50 % s ∈ Si E

final
th,s 50 %

D. Simulation Setup and Derivative-Free ALADIN Parameters

All simulations are conducted on an AMD EPYC 7301
compute cluster featuring 128 cores and 512 GB of memory.
The commercial solver Gurobi 12.0 [17] is used to solve the
individual subproblems as well as the coupling QP problem.
In the first iteration of the derivative-free ALADIN algorithm,
all x∗

i and λ∗ are initialized to zero, while the numerical
tolerance ϵ (stopping criterion) is set to 0.01. To evaluate
the influence of key algorithmic parameters on the perfor-
mance of the derivative-free ALADIN algorithm, the following
parameters are systematically varied: i) matrices Hi (being
multiples of the identity matrix, i.e., 0.1I, 1I, 10I), ii) step-
size α (0.25, 0.5, 0.75, 1.0), and iii) penalty parameter ρ
(0.05, 0.5, 5, 50). The weekly scheduling problem is solved
for all three scenarios S1, S2, and S3. For each scenario,
all possible combinations of the above parameter values are
explored. The primary performance metric is the number of
iterations required for the derivative-free ALADIN algorithm
to converge, i.e., satisfying the stopping criterion. In this
context, the very maximum iteration limit is defined as 2 000.

V. RESULTS

A. Convergence Results

The convergence behavior of the derivative-free ALADIN
algorithm across the three scenarios is illustrated in Fig. 2.
Each polar axis represents a fixed combination of the pa-
rameters Hi and α, with the number of iterations required
for convergence plotted for varying values of ρ (indicated
by the colored triangles). Cases failing to converge within
the 2 000 iteration limit are omitted and discussed further in
Section V-B. The parameter combination achieving the fewest
iterations to converge for each scenario is reported in Table II.

From Fig. 2, it can be observed that while Hi = 1I yields
the optimal result for scenario S1, Hi = 10I demonstrates
greater consistency in achieving a low number of iterations
across all scenarios, particularly for S3, where Hi = 1I
requires significantly more iterations and fails to converge for
some parameter settings. Regarding step-size α, both 0.75 and
1.0 emerge as favorable choices, with α = 1.0 often requiring
fewer iterations for convergence under the same Hi and ρ.
However, α = 0.75 appears slightly more reliable, producing
the fewest iterations in two of the three scenarios (S1 and S2,
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S1 S2 S3

Fig. 2. Number of iterations required by the ALADIN algorithm to converge for all the three considered scenarios S1, S2, and S3, as well as for every
combination of varied parameters Hi, α, and ρ.

as shown in Table II). Lastly, ρ = 0.05 proves to be the least
effective, failing to yield convergence in any scenario, while
ρ = 0.5 is consistently the best-performing penalty parameter.

B. Non-convergence Results

To complement the convergence analysis, the non-
converging cases are classified into two categories: (i) those
approaching convergence but failing within the 2 000 iteration
limit and (ii) those completely diverging. Fig. 3 provides an
overview on these cases, presenting the percentage of non-
converging ALADIN runs for each fixed parameter while
varying the other two. For simplicity, ρ = 0.05 is excluded
from Fig. 3, as it results in divergence across all combinations.

Following the conclusions from Section V-A, it becomes
evident that setting ρ = 0.5 for fixed α, and setting α = 1.0
for fixed ρ, minimizes the number of iterations required for
convergence. However, as shown in Fig. 3, an unexpected
result is that the actual combination (α, ρ) = (1.0, 0.5), which
would intuitively be the best, leads to divergence for all values
of Hi. Consequently, the optimal pair of parameters appears
to be (α, ρ) = (0.75, 0.5), as α = 0.75 results in fewer cases
of non-convergence across all values of ρ.

This finding is important for the particular test case under
investigation, because it suggests that the full-step variant (α =
1.0), commonly recommended in the literature [8], [9], [11],
may not be the best choice. Regarding the choice of Hi, Fig. 3
supports the conclusions from Section V-A, showing that Hi =
10I results in a lower percentage of non-converging cases for
scenarios S2 and S3 compared to Hi = 1I . On the other hand,
Hi = 0.1I performs very poorly, as none of the cases converge
for S2 and S3.

TABLE II
OPTIMAL PARAMETER CONFIGURATION

scenario number of iterations Hi α ρ

S1 108 1 0.75 0.5

S2 200 10 0.75 0.5

S3 231 10 0.5 0.5

C. Solution Quality

It is important to evaluate the quality of the solution
provided by the ALADIN algorithm. Accordingly, Fig. 4
illustrates the evolution of the objective function value over
the iterations of the ALADIN algorithm for the optimal case
(Hi = 10I , α = 0.5, and ρ = 0.5) in scenario S3,
compared to the objective function achieved by a centralized
reference benchmark optimization. It can be observed that
the ALADIN algorithm reaches the objective value of the
centralized benchmark after a few tens of iterations. Beyond
the objective function value, it is equally important to assess
the solution quality from a physical perspective. To this
end, Fig. 5 compares the system-level aggregator schedule
obtained by the ALADIN algorithm with that of the centralized
benchmark for scenario S3. The results demonstrate that
the ALADIN algorithm successfully achieves the same, i.e.,
optimal, schedule as the centralized benchmark.

D. Computational Requirements and Scalability

The computational efficiency of the ALADIN algorithm
is analyzed based on wall clock time measurements for the
different steps of the algorithm. Solving individual subprob-
lems exhibits consistent runtimes across scenarios due to their
independence from the number of prosumers, with average
solving times of 0.24 sec for S1, 0.28 sec for S2, and 0.28 sec
for S3. However, the coupling QP emerges as the bottleneck,
with its runtime increasing proportionally to the number of
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Fig. 5. Comparison of the system-level aggregator schedule obtained via
ALADIN and the centralized benchmark optimization for scenario S3.

prosumers. For the optimal configuration according to Table II,
the average runtime for the coupling QP is 0.93 sec for S1
(approx. 4.0 times the individual subproblem time), 4.68 sec
for S2 (approx. 16.7 times), and 9.56 sec for S3 (approx.
33.6 times). Please note that these computational times are
already achieved using the speed-up strategies described in
Section III-A and that the regular version of ALADIN using
full matrices for Hi inside the model and updating them at
each iteration would result in even worse computational times
for the coupling QP. This result highlights a critical challenge
of ALADIN compared to other distributed optimization meth-
ods, as the increasing computational burden for the coupling
QP with a growing number of subproblems puts the scalability
behavior of the algorithm at risk.

VI. CONCLUSIONS

This work has studied the application of the derivative-free
version of the ALADIN algorithm for weekly scheduling of
aggregated energy systems considering portfolios of 10, 50,
and 100 prosumers. The impact of key algorithmic parameters,
including the matrices Hi, step-size α, and penalty parameter
ρ on ALADIN convergence speed was thoroughly investigated.

The results demonstrated that the ALADIN algorithm is ca-
pable of providing solutions identical to those of a centralized
benchmark algorithm, both in terms of the objective function
value and system-level schedules, within a relatively small
number of algorithm iterations. However, it was also observed
that the algorithm is highly sensitive to parameter selection,
where inappropriate parameter choices could significantly slow
down convergence or even lead to divergence.

Future work should aim to further explore the potential of
the ALADIN algorithm by explicitly benchmarking it against

state-of-the-art distributed optimization algorithms, such as
ADMM. In this light, even if ALADIN may feature faster con-
vergence in terms of number of iterations, the computational
burden of solving the coupling QP problem could ultimately
hinder its applicability. For instance, in the case of 100
prosumers, solving the coupling QP required computational
effort that is more than one order of magnitude greater than
that required for solving the individual subproblems, posing a
scalability challenge for large system setups.
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