{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.1: Pull-out multilinear bond-slip law unloading\n",
    "\n",
    "This notebook uses the `bmcs` package to show the unphysical \n",
    "nature of a model without physical representation of irreversible\n",
    "processes in the material structure. It unloads along the original\n",
    "pull-out curve.\n",
    "\n",
    "Further, the notebook shows how to define non-monotonic loading scenario\n",
    "using a time-function and how to use the function of the `PullOutModel`\n",
    "to plot the results into a prepared plotting area."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/rch/miniconda3/lib/python3.9/site-packages/traits/observation/_has_traits_helpers.py:70: RuntimeWarning: Trait '_wrappers' (trait type: List) on class ActionItem is defined with comparison_mode=<ComparisonMode.equality: 2>. Mutations and extended traits cannot be observed if a new container compared equally to the old one is set. Redefine the trait with List(..., comparison_mode=<ComparisonMode.identity: 1>) to avoid this.\n",
      "  warnings.warn(\n",
      "/home/rch/miniconda3/lib/python3.9/site-packages/traits/observation/_has_traits_helpers.py:70: RuntimeWarning: Trait '_wrappers' (trait type: List) on class ActionItem is defined with comparison_mode=<ComparisonMode.equality: 2>. Mutations and extended traits cannot be observed if a new container compared equally to the old one is set. Redefine the trait with List(..., comparison_mode=<ComparisonMode.identity: 1>) to avoid this.\n",
      "  warnings.warn(\n",
      "/home/rch/miniconda3/lib/python3.9/site-packages/traits/observation/_has_traits_helpers.py:70: RuntimeWarning: Trait '_wrappers' (trait type: List) on class ActionItem is defined with comparison_mode=<ComparisonMode.equality: 2>. Mutations and extended traits cannot be observed if a new container compared equally to the old one is set. Redefine the trait with List(..., comparison_mode=<ComparisonMode.identity: 1>) to avoid this.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "%matplotlib widget\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from bmcs_cross_section.api import PullOutModel"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model parameters\n",
    "Let us consider the case of the CFRP sheet debonding from concrete"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "A_f = 16.67 # [mm^2]\n",
    "A_m = 1540.0 # [mm^2]\n",
    "p = 1.0 #\n",
    "E_f = 170000 # [MPa]\n",
    "E_m = 28000 # [MPa]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Construct the finite element pullout model\n",
    "The model uses a multilinear bond-slip law specified by the attributes \n",
    "s_arr and tau_arr specifying the pairs of slip and bond stress values."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "REGENERATE DOMAIN\n",
      "REGENERATE DOMAIN\n",
      "REGENERATE DOMAIN\n"
     ]
    }
   ],
   "source": [
    "pm = PullOutModel()\n",
    "pm.mat_mod_.s_data = \"0, 0.1, 0.4, 4\"\n",
    "pm.mat_mod_.tau_data = \"0, 800, 0, 0\"\n",
    "pm.sim.tline.step = 0.01\n",
    "pm.cross_section.trait_set(A_f=A_f, P_b=p, A_m=A_m)\n",
    "pm.geometry.L_x = 100\n",
    "pm.w_max = 2\n",
    "pm.n_e_x = 100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8ff5aa5a95fc4543b9b09e65793c2014",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HBox(children=(VBox(children=(Tree(layout=Layout(align_items='stretch', border='solid 1px black…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "pm.interact()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e63e64be77934e39a3bb239662a1d0d8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/latex": [
       "\n",
       "        \\begin{array}{lrrl}\\hline\n",
       "        \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 1 & \\textrm{[-]} & \\textrm{for cyclic loading}  \\\\\n",
       "                \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level}  \\\\\n",
       "                \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch}  \\\\\n",
       "                \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.5 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level}  \\\\\n",
       "                \\textrm{amplitude_type} & option = increasing & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]}  \\\\\n",
       "                \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]}  \\\\\n",
       "                \\hline\n",
       "        \\hline\n",
       "        \\end{array}\n",
       "        "
      ],
      "text/plain": [
       "<ibvpy.tfunction.loading_scenario.CyclicLoadingScenario at 0x7fdbc3ba7f40>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "pm.loading_scenario_.plot(ax)\n",
    "pm.loading_scenario_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/latex": [
       "\n",
       "        \\begin{array}{lrrl}\\hline\n",
       "        \\textrm{loading_type} & option = cyclic & \\textrm{[-]} & \\textrm{possible values: [monotonic, cyclic]}  \\\\\n",
       "                \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 2 & \\textrm{[-]} & \\textrm{for cyclic loading}  \\\\\n",
       "                \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level}  \\\\\n",
       "                \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.0 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level}  \\\\\n",
       "                \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch}  \\\\\n",
       "                \\textrm{amplitude_type} & option = constant & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]}  \\\\\n",
       "                \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]}  \\\\\n",
       "                \\hline\n",
       "        \\hline\n",
       "        \\end{array}\n",
       "        "
      ],
      "text/plain": [
       "<ibvpy.tfunction.loading_scenario.LoadingScenario at 0x7f4d73abd0e0>"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm.loading_scenario.loading_type='cyclic'\n",
    "pm.loading_scenario.trait_set(number_of_cycles=2,\n",
    "                              unloading_ratio=0.0,\n",
    "                              amplitude_type='constant',\n",
    "                              loading_range='non-symmetric')\n",
    "pm.loading_scenario"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "<ipython-input-7-a80ba1790c48>:1: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance.  In a future version, a new instance will always be created and returned.  Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.\n",
      "  pm.loading_scenario.plot(plt.axes())\n"
     ]
    }
   ],
   "source": [
    "pm.loading_scenario.plot(plt.axes())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/latex": [
       "\n",
       "        \\begin{array}{lrrl}\\hline\n",
       "        \\textrm{A_m} & A_\\mathrm{m} = 1540.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area}  \\\\\n",
       "                \\textrm{A_f} & A_\\mathrm{f} = 16.67 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area}  \\\\\n",
       "                \\textrm{P_b} & p_\\mathrm{b} = 1.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface}  \\\\\n",
       "                \\hline\n",
       "        \\hline\n",
       "        \\end{array}\n",
       "        "
      ],
      "text/plain": [
       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f8eacdf6530>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm.cross_section.trait_set(A_f=A_f, P_b=p, A_m=A_m)\n",
    "pm.cross_section # display the cross section parameters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/latex": [
       "\n",
       "        \\begin{array}{lrrl}\\hline\n",
       "        \\textrm{L_x} & L = 45 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{embedded length}  \\\\\n",
       "                \\hline\n",
       "        \\hline\n",
       "        \\end{array}\n",
       "        "
      ],
      "text/plain": [
       "<bmcs.pullout.pullout_sim.Geometry at 0x7f8eacdf6470>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm.geometry # geometry of the boundary value problem"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Plot the current bond-slip law"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/latex": [
       "\n",
       "        \\begin{array}{lrrl}\\hline\n",
       "        \\textrm{E_m} & E_\\mathrm{m} = 28000.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the matrix}  \\\\\n",
       "                \\textrm{E_f} & E_\\mathrm{f} = 170000.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the reinforcement}  \\\\\n",
       "                \\textrm{s_data} & s = 0, 0.1, 0.4, 4 & \\textrm{[mm]} & \\textrm{slip values}  \\\\\n",
       "                \\textrm{tau_data} & \\tau = 0, 800, 0, 0 & \\textrm{[MPa]} & \\textrm{shear stress values}  \\\\\n",
       "                \\hline\n",
       "        \\hline\n",
       "        \\end{array}\n",
       "        "
      ],
      "text/plain": [
       "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f1f25718810>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pm.mat_mod_ # configuration of the material model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f184fee970b4427b91685ce451f3669a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "pm.mat_mod_.plot(ax, color='green')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "c='red'\n",
    "pm.geometry.L_x = 200\n",
    "pm.sim.run()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3399b8c10dc540369e2282ed2a5dad7c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "pm.hist.plot_Pw(ax,0.68)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0aaabc9a67844b0b801d026243f8fb32",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "for t in np.linspace(0.,0.62,4):\n",
    "    pm.hist.t_slider = t\n",
    "    pm.hist.plot_sf(ax)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f8316fff884f47d4b59a27f8879206fc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "for t in np.linspace(0.,0.62,4):\n",
    "    pm.hist.t_slider = t\n",
    "    pm.hist.plot_s(ax)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cafa3ab8f561421e899e6f2b0ba7eff9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "for t in np.linspace(0.,.99,5):\n",
    "    pm.hist.t_slider = t\n",
    "    pm.hist.plot_eps_p(ax)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8b62d46e22af412cb0926afbb213a01e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "_, ax = plt.subplots(1,1,figsize=(7,4))\n",
    "for t in np.linspace(0.,.99,5):\n",
    "    pm.hist.t_slider = t\n",
    "    pm.hist.plot_sig_p(ax)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Questions and Tasks"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1 Define a symmetric loading scenario with increasing amplitude and 3 cycles"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "base"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": true,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}