diff --git a/tour2_constant_bond/ack.pdf b/tour2_constant_bond/ack.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..9d2e439d99199f43256cca2a179496872f5046a2
Binary files /dev/null and b/tour2_constant_bond/ack.pdf differ
diff --git a/tour2_constant_bond/pmcm_comparison_fragmentation.ipynb b/tour2_constant_bond/pmcm_comparison_fragmentation.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..7ae0daa9c68afa190d8602612bcb5a8edb3cb41b
--- /dev/null
+++ b/tour2_constant_bond/pmcm_comparison_fragmentation.ipynb
@@ -0,0 +1,358 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "suitable-comfort",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# **2.3 Tensile behavior of brittle-matrix composite**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "swedish-intermediate",
+   "metadata": {},
+   "source": [
+    "# **Model 1:** Deterministic matrix strength (ACK model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "accepted-thought",
+   "metadata": {},
+   "source": [
+    "The typical shape of the stress-strain curve of the composite involves three stages:\n",
+    "- elastic stage which is governed by the mixture rule\n",
+    "- stage of matrix fragmentation\n",
+    "- saturated crack pattern with a linear branch"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "foster-character",
+   "metadata": {},
+   "source": [
+    "How to interpret and characterize these three distinguished phases of composite material behavior?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "infinite-dutch",
+   "metadata": {},
+   "source": [
+    "The ACK model developed by Aveston, Cooper and Kelly is an analytical model that represents the composite tensile response by a trilinear law as shown in the following figure. This model is based on the following assumptions:\n",
+    "- The bond behavior is governed by a constant frictional bond in the debonded interface\n",
+    "- The constitutive law for both reinforcement and matrix is assumed to be linear-elastic with brittle failure upon reaching their strengths\n",
+    "- Multiple cracking occurs at a constant level of applied stress, inducing a horizontal branch in the stress-strain behavior"
+   ]
+  },
+  {
+   "attachments": {
+    "e49027f3-9a05-42fd-bb36-8b4c8c4af4d2.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAHlCAYAAABSwqoiAAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AAAAqdEVYdENyZWF0aW9uIFRpbWUATWkgMjggQXByIDIwMjEgMDg6NDk6NTMgQ0VTVJ7N0V8AACAASURBVHic7N1nVJRHGwbgmyog4sIuoIiAItgL1i8W7NEYe++9x8SY2HuNmth7j73FXrEXQFTsBVEUEFAEpKjUbfP9QDZuFlCjsEru6xxOZGbemWdnQcPDFAMhhAARERERERERERH95xnqOwAiIiIiIiIiIiL6MjBZSERERERERERERACYLCQiIiIiIiIiIqK3mCwkIiIiIiIiIiIiAEwWEhERERERERER0VtMFhIREREREREREREAJguJiIiIiIiIiIjoLSYLiYiIiIiIiIiICACThURERERERERERPQWk4VEREREREREREQEgMnCXCGEwJGjR/UdBhERERERERERUbaYLMwFW7ZuQ78BA/Ho0SN9h0JERERERERERJQlAyGE0HcQeVlcXByqf/MNYmPjUPObb3Dk0EEYGBjoOywiIiIiIiIiIiIdXFmYw8ZPnITY2DgAwCU/P+zavVvPEREREREREREREWWOKwtzkO+lS2jRqjXenWIbGxtc8bsEmVSqx8iIiIiIiIiIiIh0cWVhDkmTyzHi15H4Zy42Li4O06ZP11NUREREREREREREWWOyMIcsXLQIQUFBmdZt274DF729czkiIiIiIiIiIiKi7HEbcg54EhyMWnU8kZaWlmWbEq6u8PG+iHymprkYGRERERERERERUda4sjAH/DpyVLaJQgB4/OQJli1bnksRERERERERERERvR9XFn5mO3ftwpAfhn1Q23ympvC+eAFuJUrkcFRERERERERERETvx2ThZxQfH48a39REzMuXH/xM7Vq1cOjAfhgYGORgZERERERERERERO/Hbcif0eSpUz8qUQgAPr6+2LtvXw5FRERERERERERE9OG4svAzUavV8PbxQWbTee/efYwZOw5HjxzK9FmJRIJKFSvmdIhERERERERERETZMtZ3AHmFoaEh6np6ZlpnbGQMtUqNenXr5nJUREREREREREREH47bkImIiIiIiIiIiAgAk4VERERERERElIXo6Gj8tWcPLl++ou9QiCiXMFlIREREREREehMYGIiBg4dg85at+g6F3nHm7Dk0bPwtSpcrj4GDh+CvvXv1HRIR5RImC4mIiIiIiEhvJk+dhr/27MHPv/yCyMhIfYdDb5VwdcWkiRPQulVLfYdCRLmMyUIiIiIiIiLSmyqVKwMAirm4wNrGRs/RUAZnZyfUq1sXTkWd9B0KEeWyPH8b8sOHD3Hk6DE8fPQIsbGxUKvVWba1t7fHqhXLczE6IiIiIiKir1NqWhpu3LiBmt9880n9jBk9Cu3bt4ND4cIwy5fvM0X36e7fD4CtrQx2dnb6DiVHJScn4+7de6hRo7q+QyGiL0SeXVkYFxeHfgMGoHnLVgCATh06oG2bNrCyKoDzFy7Ax9cXfpcv4/yFC5qP169f6zlqIiIiIiKir8O2bdvQp1//z9KXa/HiMDc3/yx9fQ4pKSlo1bYNLly8qO9QctyGjRsxaOgQfYdBRF+QPLmy8Pnz52jeshWMjIzgc/EC7O3tNXXdunbB2PHjsXrNWiyYNw91PT3x+MljPH78BC4uznqMmoiIiIiIsqNSqfDmzZts25iYmCB//vy5FJF+qFQqJCUlwcrKCgCgVqsRHh4BM7N8Wj/7ZIiOiYFapUKhQoU+qP/Y2Di8ev0KheztYWFhkWkbtVqNFStXvbcvhUKBtLQ0WFpaAgBiXr5EUlISnJ2cYGBgoGmXmpYGCAEzM7MPivFTpaam4nlkJCzMzSGTyWBsrP2j8dZt2xAbG/feft68eQMLCwsYGRlBLpcj4tkz2MpkKFCggE5bhUKBFy9eQKFUwqloUZ0x35WcnAwjY2PkMzUFkJ68jIqOhkPhwjB9W5ad+Ph4xMbFwcrKCna2tlm2UygUWL1mLYyMPm4dkUKh0LzWjPeWiPKOPJcsVCqV6NGrN8LCw+F19Eim/1iOHzsWf27chMlTp+LB/XtwciqKBvXr6yFaIiIiIiLKzuMnT7By1WqcPXsWcfHx790N1KdXLyyYPy+Xoss9KpUKx728cNzLCydOnkRBq4I4d+Y0Vq1eg/V//ono6GgAgGedOtiwbh0kkoL4a88eLF2+HAEBDwAAJUuWxLrVq1GuXFmd/q/fuIGVq1bj2PHjMDIyQkpKClQqFcqVLYuVy5drPXPw0GEsX7kSwSEhMDc3x4hfftXUuRRzwaABA3Dk6FEcO34cp06fQZXKlXFg316cPHUKvfv2Q0pKCvr364cJ48biwKFDOHbsOC5evIj+/fth5vTpAIDhI0bg0OEjWjGWcHXFqRNeWLtuHX6bM1erzufCeRQpUuS987hpyxYsXrwE4RERMDU1RXJyMiQSCSaMG4v+/fohIiICCxcvwa7duwEAW7dtx6VLfprnhw//CW/evMGBgwdx7LgXAgMDcf7sGRQvVgzde/bCRW9vGBsbIzjokSZhGB0Tgzlz5mLv/v1ISkqCSqWClZUV+vfri3FjxmiShs+fP8e+Awdw7NhxXPX3x+xZM1G9enUsXLQIXl4nkCaXw9jYGB07tMeC+fM1icR3nTx1CnPm/o7Ahw/h5OSEkJAQFCpkj7at26CgpKCmXZdOneB76RKWr1iJiIgIWFpaar2PJUqUwA+ZrDYMffoUS5YsxZ59+zSJ+zq1a2Pd2jXZJiWJ6OuS57Yhb92+HTdu3kTrVq1QtWrVTNtYWVnB2dkZCQkJ8Pf3z+UIiYiIiIjoQyxeuhS163hCIimI0ydP4mnwEwQ9DMTkiRNgZGQEGxsbtGrZAmXLlkG+t2fdVaxUUc9R54zExETs3bcPoaFPERsbh8gXL1Ctxv9w4+ZNdOnUCV06d4aJiQkuenujS/fu+KZWbWzcvBl1PT0xcEB/2Nna4uHDh+g7YACUSqVW3+fOn0eT75rB28cHVy75Ijw0BM/CwzBo4ADcu38fffr1gxBC0/5B4INsE0PPnj/H0WPHEBr6FImJiQCAHTt3YuiwYajs4QFLS0so5HIEBj7EhQsXEBwcjDS5XKuPubNn46+dO2Bubo6EhARUr1YNhw7sBwD07dMHf65fh4SEBHTr2gV+Pt4flCjcum07fh7xC6pVq4awkGA8C3sKnwsXYGpqioePggAAERHPoFapsl2devTYMQQHByM4OBgAEBMdg+YtW+H169dwd3eHUqnUnJUfHBKCBo0a4+Tp09iwdi0iI8IReP8eGjaojwULF2H4iBGafi/5+eH69esIDgmBSqXCwsVL0LN3b1hZWWHI4MFo1KghlEoltu/YiSVLlurEtXPXLnTu2g1GRka4d/sWLvv64OY1f5iZmWPRkiXY/dce3L59G7dv30ZySgruBwR81HmMR44cQZPvmiE5JQUD+vdDu7ZtYWJiAm8fH4weM+aD+yGir4DIY2p5egqJVCYOHDyUbbu69RsIiVQm9h84mOMxeXv7CDNzyxwfh4iIiIgor5g+c6aQSGVi1eo1mdb/MnKUkEhlYtPmLUIIIVQqlQgNfSpevXqVm2HmunPnzwuJVCZKlikromNitOo2bd4iJFKZkEhl4sqVq1p1wSEhwrZQYSGRysT1Gze06vr27y8kUpmoVLmKVnliYqKQ2tkLiVQmIiMjter8r10TEqlMuJcuk2Wsm7dsFRKpTBR1KSYaNWkqXr6MFUIIERr6VNy8dUvTbsy4cUIilYkJkybp9HH23DlhLbMVNrZ2ws/vshAi/b1u2bqNaN6ylVAqlVmO/08NGjUWEqlM3L5zR6u8ectWYuToMVplTb//XkikMrH7r7+y7K+4m7uQSGXC1d1d7N23TxPbcS8vIZfLhUqlEnXrNxC2hQqLu3fvaT2bnJwsSriXFBKpTNy7d1+rrlOXrkIilYnJU6YKlUqlVTdx0mQhkcpEw8bfapXL5XJNPJcvX9GqO3L0qJBIZaJ+w0Y6r8HH11dIpDJRsXLlLF/n1GnThUQqE9169BSpaWladdu27xASqUw4FHUSarU6yz6I6OuSp1YWxrx8qVliX9ezTpbt1Go1Ip5FAADs7T/8Nyn37wfo/FaNiIiIiIg+r3Pnz2PhosWoXasWBg7I/AKNvr17AwAWLV4MADA0NISzs5PmHL+8Lr+FBWxlMq2yJt821vzZ2dlJq66Yiwvc3d0AAKGhoVp1gwcOxJTJk/DTTz9qj5E/P6wlEgBAxLNn/zpWO1tb7N/zF6RSG01slSp+2ArQ+vXqoW+fPlCr1fjp55+RmpaGZStWIDAwEGtXr4KRkdEHx5GQkAAACAoK0iqf89tvGNi/3wf380+zZsxA2zZtAKR/HTZt0gQmJibwOnECt+/cQYP69XW2fpubm6OSRyUAwMlTJzPt19GxCAwNtX9kb9q0CQDg6dOnWuWBDx8iLi4OBgYGqFixglZdlcqVAQA3b93SrPT8N+zt7XW2Pjf59lsA6WcsvoyN/dd9E9GXJU+dWRgREQEhBMzNzSF5+49aZq5fv47Y2PTDXjP+4nyfuLg49OjVCyGhodiw7nNFTERERERE/zRj5iwIITBk8CCtSzDe5epaHAAQEhqKuLg42NjY5GaIXySJtXW29TbW6XOUkpKqVV6tWjVUq1ZNq0yhUODGjZtQqlQAAJVS9a/jcnR0/KRLMKZPnYILFy4g6PFj/DBsGI57ncCuHds/+MKWDNWrV0dwSAhG/DoScrkcnTp2hKGhIcqWLfOvYwOAUqVKZVp+3MsLQHoibdGSJTr1MdExAIDwiA9PxNq8fY9T09K0yt+9GEal0n6vFAqF5s/yf2z3/lQ2Nn9/zaWlpmbTkoi+JnlqZWEGhUKhcw7Huw4ePgwA6NWjxwfdJKVQKNCrT99sE5BERERERPTpgh4/xs1bt2BhYZHtJYSp7yQmsvt/f/pwr169wvoNG9C+UyeUr+SBlatX6SSe9MHCwgIrly+DsbEx9u0/gL59eqNO7dof3c+M6dNQpXJlvHnzBkOH/YhannXx1549ObZzLOjxYwDpqw2fhj7V+fCoVAm9e/ZE9WqZn7X/MYq5uKBIkSIQQsD30iWtOm8fXwBA+XLlmFQnog+Sp1YWupUoARMTEygUCgQGPsz0lq/w8HD8uXETChcujBE/D/+gfsdNmAhra2t06dwZP/z44/sfICIiIiKif+XatWsAgJLu7lqrpf7pfkAAAEAqtYHsH9tx6eO8evUK06bPwI5du1CubFn8OGwYmjT5FvlMTVG2QkXNrbf6VKpUKdjb2+PZs2fw8jqBCePGwdzc/KP6kEmlOH70CDZv2YKFi5cgMDAQAwcPwZ8bN2Hr5k2fPZGW+nYFZ4f27dGta5fP2vc/GRsb44+5c9C7bz+MGTsOMpkMFStUgN/ly5g2YwYsLCywYN4fORoDEeUdeWploaWlJdq1bQsA+H3ePJ3fEMXHx6Nn7z4wMjLClk0bYf2eZfoAsH3HTly+chmrVixHFjsgiIiIiIjoM8k490wqk2bb7sjRowCA75s10znXjT6cEAKdunbFn5s2YdCAATjpdRwtWzTXOZtO30b8OhIODg6oUrkyngQHY/LUaf+qHxMTE/Tr2xc3/K9iwbw/YGVlBb/LlzF2/ITPHDEge/s1HBIa8tn7zsx3TZvi6KGDKFWqFBo2/haFijiiZ+8+qOvpifNnz6Bq1U9fwUhE/w157l/V2bNmokL58jh85Ai69+yFk6dOwd/fH2vWrkPtuvWgUCrgdfToB51VePWqP6ZNn47NGzfCwsLik+JSKpWoWq2G5uPo0WNa9VOmTmM961nPetaz/ouvP3bsuFb95ClTWc/6LOsB4NWrVKxfeQUKhf63MtLXIeOCkheRL7Jsk5qaiv0HDsLY2BjDhg7NrdDypDt37+LKlaswNDTEmNGjsjwjMisqVc5vAd+8ZSuOHT+OlcuXYcmiRTAxMcH6DRtw+vSZD+4jNTUVBw4eQkpKCgDA1NQUfXr3xuqVKwAA3j4+mT73KduwM5JzXidO/Os+/s2YJd3dUdfTE2EhwQgOeoQ1q1bCrUSJbJ9TfsKZlESU9+SpbcgAIJFIcOL4MWzavAXHvbwwbvwE5DMzQ+lSpfDbzJlo0fz7D/rNY0REBHr07o1lS5egeLFinxyXEALXr9/QfB77j5uiQkOfsp71rGc961nPetbnmXqVSo0js7fhwOHHCJLLYJHfBF16ftjFcvTfVvN//4OBgQGCgoLw7NkzFClSRKfNnLm/IyoqChPGjYObm1um/QghcPPWLXidOIGqVaqgRIkS2LlrF0JCQtGmdSs0++47hIWFY9fu3XgSHIxvGzdG2zatAaRfAuHt44tjx4+jaZNv0bhRIwDpibVDhw/DwtwCv4z4OecmIRclJyf/q+cykoqvX79BmlyeYysRAwMDMXb8eMydPRuuxdMvtRk8cCCWLl+OH3/+GZe8L37QjrG4uDj06dcPZ0+fgkelSpryyh4eANJvl85MzMuX/zr2Lp06Y/6Chbh/PwBbt21H925dddoIIRAcEqJ5bZ/q+fPnWLp8Odq1bQuFQvHerdoZ72N8fDyUSiWMjfNcioCI/gUDkVOnuX7FFAoFGjdpihIlSmDYD3//pvLEiZOY8/vvOHv6FAwMDFChfPkPSjz6+PiiUeMmCLh/V1NmZ2erdSNYdHQ0EhOTWM961rOe9axnPeu/+nqfv3xwc/IsOLy8jRgTO2yz6wO3MvZYt7UTDA15rgu9X/+Bg7B33z40++47/Ll+neZSQrVajUWLl2Dmb7+hX9+++H3O7CxXwgU9fozly1dg05YtcHd3R9kypVG8eHGcPXsOt27fRts2baBQyOHm5oYrV67Cx9cXe3bvRsMG9REYGIjtO3Zi6fLlmD1rFgYPGgilUolZv83Gzt27Ua5cWfy1c2duTonGmbPn0L5jRzg7O+HW9etadSkpKXAo6gQAuH/nNhwcHLTqmzVvAb/Ll7Fk0SL06N4NAJCQkIAy5SsgJSUFQwYPwrQpU6BSq+Hn54flK1bgwkVvKJVKHD18CDW/+UbT15PgYFStXgMAMGXSRPw4bBiMjIzw5s0bFChQAACwcfNmjPjlV9SuVQuHDx7I8jWNGjMW69avx6CBAzDnt9805cnJyajfqDGKubhg5/ZtWuXf1K6NsLBwdGjfHmtWrXzvvD1//hxlK1TE6pUr0LFDB0356jVrMXb8eIwdPRpjRo/SlHfp1h1eJ06gVKlSOLB3D+zt7ZGalgZDAwOYmppCCIHibu5ISEjAmVMnNUnHf5o3fwFmzZ4NY2NjjBk1Cn379IaNjQ1S09Jw/vx5/P7HPJQtWwZLFy/WPNOhc2ecPn0Gc377DYMGDtDq7969+6hTrx4sLCwQ8TRU5+v/7LlzaNeho+ZzOzs7lC9XFpUrV0abVq1QunRprfYBAQ9Qy9MTAPDbzJkYNHAADA0Ntd7HSZOnYNmKFejVowcWLVyg9bxSqYRtocIAgFvXr8PZ2Sn7N4KIvg6CdCQkJAgX1xI6Hw5FnYREKtN8npyc/EH9eXv7CDNzyxyOmoiIiEi/gu+EilWePcRuW0exR1ZY7JEVFn/JHMSmMetFWppS3+HRVyQxMVH07ttXSKQyUbFyZfHLyFFi5Ogxomr1GqKCh4fYu2/fB/WjUqmERCoTc3//Q1MW8/KlsJbZijHjxmnKUtPShItrCTF2/HhNWVpampBIZWLlqtVafTZq0lS079TpE1/hx3v9+rXo3bevKFuhopBIZUIilYnmLVuJo8eOCSGEWLZ8hahbv4Gmrvo3NTWv+8LFi6Jt+w7CWmYrJFKZcC9VWvTo1Vu8ePFCCCHExs2bhW2hwkIilQm7wg7CtlBh0aZde3Hn7l3RsnUbIZHKRPlKHqJv//6an4FUKpVo9G0TzXj2hR1EoSKOoku37iI09Kno0au3cHV3FxKpTNjY2ol2HTqI4T+P0HpNV69eFV279xCFHYsKiVSmef6Sn58YNWasKF/JQ0ikMlGyTFnRsXMXoVKphBBCjJswQTgVK64Z27NefbFq9Zps5+/Zs2dCIpUJqZ29aN+pkxg7frxo17GjsJbZiqHDhgm5XK7Vfs/evcLG1k4zhlOx4qKwY1Fx9+498ce8+aJRk6aaOo8qVUXP3r2Fj69vpmMvXLxYFCriqGnv4lpCSO3shX1hBzF46A8iPDxcCCHE/gMHRftOnTTjurq7i959+4rUtDQhhBCTJk8RVavX0PTTqElTsWDhQs04cXFxYuHixaKEe0kx5Idh4vsWLYVzcVdNe2uZrfhx+HChVqs1zyiVSuFZr77W+2jvUET06ddPXL58RXTp1l3z/tgXdtC8v0IIsWHjRq1nq9X4n/hl5Khs3wci+jpwZeFH2LFzJ4YO+xFxMdEfdZaHj48vGn/bFCnJ+r9FjIiIiOhzexWbiP2/zofx8S0wV/+9pTHFzhW1Fs9GsUa19Rgdfc3u3bsPbx8fREdHw9rGGpU9PPC/GjU+eKukWq2G1M4e48eOxaiRv2rKXVxLoGuXzvht5kxNWS1PT5QvVx6rViwHkL4V2d6hiGZlYYbGTb+DRFIw11cWpqalwctL9+y7MqVLwd3dHVeuXEXkC+1zHqVSG9SpXRshoaG4ffuOzrMNG9TXrB57EhwMX99LUKmUqFG9BsqUSV+BdvvOHYSEhGqe+b7ZdzAxMQGQviPL28cHL1++hEQiQelSpVC0aFHEx8fjwkVvnfFMTIzxfbNmms8jIiJw7Z2jDDJ4VKqE4JBgvHr1Wqu8VcsWMDAwwIWLFxEfn6BV5+RUNMvVfUD6dt8HDwJxxf8qoqOiISDg7OSEqlWrZnmeX1BQEO7euw9DQ0M4FnFAhQoVYGpqCh9fX7x8GavTvlKlinBxds60r5iXL3HixEmEhYfB2MgYbm5u8KxTB1Lp3zcwBwQ8wKOgIJ1nm3/fDMbGxjhz9pzOzdS2tjLUqlkTYWHhaNaiBSSSgji4b79Wv0+Cg3Hs+HHMmvUb0uRynDtzGpUqVtTUp8nl8PHxRWzsS1hbW6NM6dIoUqQIwsPDcf3GTZ146nrWgbW1NW7cvImwsHCtOjOzfGjapEmmc0BEXw8eSEBERERE/4pKpcbhWRsRt2YhCqb9/YNzsrkUbqNH43/DeugvOMoTypUri3Llyn72fjP7xb+hwZd996NZvnxo3apllvU1alTPsq6YiwuKubhk279r8eKZnptXsUIFVKxQIdNnTExM0KB+fZ1ya2vrbGPN4OjoCEdHx0zrstvOWvftttmPYWBggDJlSmuSoB/Czc0t0zMxa9eq9dHj28pkmZ5Z+K73xdewge5cZ5i3YD6ePXuGWTNmaCUKgfT39scffkBISCj+3LgRYWHhWsnCfKammfZdtGhRFC1aNMsxK3t4ZJugJaKvF5OFRERERPTRrl0Nx9J53rC5cQa13yYKFYamsGjRBV2WTYWxWT49R0hE9N/x4EHge9skJibC1NQUNapXy4WIiOhrxmQhEREREX2wiLAErF7mh3OnHgMAQi2ro1zKHViUKY8WmxbC0sFezxESfR6GhoYwNDREamqKvkMhei9nZ2dcu34di5csQeNGDWHxj9udz1+4gEOHDmHSxAmwt+ff00SUPSYLP0K7tm3xXdOmH3VeIREREVFekPgmDVv+vI7d225BIVcBAAwMAM/G7mj2w1kUdrbVc4REn5exsTEcHYvg8JGj6NunD6ysrBAYGIiXMTGQSArqOzwiLWPHjIa3tzdu3rqFKtVroGuXznB3c0NsbBz8Ll+G76VLmPfHH+/dCk1EBABGU6dOnarvIL4WRkZGMDMz++jnwsLCsWXLVkycMD4HoiIiIiLKOWq1wIlD9zFmxDFc9QuDWpV+N16ZcvaY8UczdO7ugQKS/HqOkkhX0OPHGPbjT3jy5Amehj1FPlNTuLq6YuDgwbhz9y7CwsOhFmrUqF4dAwcPwSU/P0RERCAqKgoNGzQAAEhtbLBp8xYsXrIUGzdthsRagpCQUNy9ew+xsbGadkT6ZmNjg969ekImk0EIgfv37+PWndtISUlBvXp1sXTRIlStWkXfYRLRV4K3IecC3oZMREREX6Orhy7j6rjpiE0SOGWdfoOpnb0lBg77Bk2+LwVutqAvmVKpRGJiouZzU1NTmJmZ4fXrv2/YNTExQf78+ZGQ8PfNuoaGhrCystJ8Hh8fj5iYGLi6usLIyAiJiYlQKpU67YiIiPIKbkMmIiIiIi1hQS9waOhU2N0+hsJCiUIwwEPrKmg0qAW69amCfPn4v5D05TM2NoZEItEp/9CyDNbW1rC2ttZ8bmlp+XkCJCIi+kLx//SIiIiICACQkiTH3l8XQn1wPQor/16RlWJXHDMXt0FxT25hIyIiIsrrmCwkIiIi+o9TqwW8VhxG6B+/wT45TFOems8KzkN/RK2xQ2BgaKjHCImIiIgotzBZSERERPQfdu3sfVwYOR3OEb6wF2oAgDA0hkmDFuiweg5MrQroOUIiIiIiyk1MFhIRERH9B0VFJGDvsN9g7fcXXNRpmvI0typoumEhbEqV0GN0RERERKQvTBYSERER/YekpiiwY+0lqOb8AHtF3N/lEgdUmTMTpdo11WN0RERERKRvTBYSERER/QcIAZw4GogVi3wRF5uMpiYOsFbEQWFshkK9BsBz+kgYmproO0wiIiIi0jMmC4mIiIjyuIC7L7D4D2/cv/vi77Li36OsrStarZgJc5lUj9ERERER0ZeEyUIiIiKiPCo6KhGrl/rh5LFACJFeli+fMdp3rYhe/arCIr+pfgMkIiIioi8Ok4VEREREeUxS7CscHDwZ20Ic8Uplpimv6emCEaPronARKz1GR0RERERfMiYLiYiIiPIIoRY48ds6xKxaCIu0BFTPXxGnrJuhZGk7/DSyDipWdtB3iET0H/bw4UPs+msPnj4NRVHHohj+04+wtrbWd1hEuUapVOLK1au4fuMGWrZoARdnZ32HRJQpJguJiIiI8oBrf53GnQlTUDA+BBZvy4opQjF61P/QRzWPxQAAIABJREFUvHNVGBoa6DU+IvryLVm2DL6+lzB2zGh4VKr0WftesXIV5i1YAM86tXHo8BEIIZCUnIw/5s75rOMQfammTJ2GzVu3IiEhAQBQplRpJgvpi8VkIREREdFXLOJ+MLyGTITkwQUURPrBhCoDQ6R4fIvWm+ehoL2NniMkoq9BVFQUpkydBgCQy+XYv3fPZ+v75KlTmDBpErZu3oTvmzXD+QsXMGr0GNT85pvPNgbRl657t65o06Y1evfti6dPw/QdDlG2mCwkIiIi+golv0nB4Z/nQBzdAmtVqqY8oUgFNFg9D8VqlNNjdET0tbGxsUH5cuVw99491KtX97P2PW3GDNjKZGj23XcAgHp168L/yuXPOgbRl87NzQ0AYGZmrudIiN6PyUIiIiKir4gQwOlFuxCxcDasUqI15Un57VBi/AS0G9hBj9ER0dfKxMQEZ0+fQsKrV5BJpZ+t36CgIAQEPEDtWrVgYMDjEL5EFy5eRJkyZWArk+XYGEIIHD5yFM2+awpj47ydhnj06BHS5HKUL8df2tHXy1DfARARERHRh7l9wh9ryzbC699GaBKFciMziHZD0O2RP2oyUUhEn8DY2PizJgoB4OatWwAAKyvewv4lioyMRMfOXRAQEJCj45w4eRK9+vRBamrq+xt/5YYN/xnbtm/XdxhEnyRvp/SJiIiI8oCY6ET8ucYf13eeQoeYBwAAAQMkl62NFpsXwtqJtxzTf0N8fDxevX6dbRsLc3PY2dnlUkT6kZKSgri4OBQpUgQA8Pz5c7yIikKpkiVhYWGh0z46OhoRz54hv4UF3NzcYGiY+ZoRIQQiIiJgb28PU1PTTOvs7O2R721dWFg4Xr1+heLFiiF//vyZ9hkdEwMAWY75rjdv3iD06VMIIeDi7PzeBGNsbBwAQCpNP5s1ICD978eSJd1hZGSk0z4kNBRxcXGQSCRwKloUJiYmWfb9MjYW4eHhyGeaD+7ublmuhlOr1YiIeIZChdLnTAiBx0+eICkpCSXd3WFurr3l9MWLF4iKjkYJV9cs5+xd0TExiIiIgIW5Odzc3DJ9XRlxhIdHoEgRB02sT4KDkZqSClfX4jAzM8v0uRUrV0Eul783juykpqUhIiICr169gkQigYuzs06cS5Yue38/qal4+fIlHB0dAaTP1bPnz1GqZMlM5yqn5yaDUqlEUFAQUlJTUbhQIRQuXDjLtn6XL8Pf3x+VPT7ugqDnz58j5uVLFHNxYWKdvghMFhIRERF9odLSlNiz/TY2rb+G5CQ5YFIYDy3KoIilArWWzoVbgxr6DpEox928dQvLlq+A76VLMDU1RWRkJJRKZZbt+/Xti3m/z83FCHOHQqHAzl27cdzLC+fOn4dD4cK47n8VFy5eRPeevZCYmIiGDepjz+7dmmfOnDmLGbNm4fadO5BIJEhISIC9vT2mTZmMTh07atpdveqPv/buxXEvLzx79gyXvC+idOnSAIArV65i95498DpxAs+fP4fX0aMIfRqKJcuWaZJzxsbGGDp4MKZNnaLpMzUtDZs3b8H+/QcAANdv3ECffv009RMnTIBr8eIA0rcqT5k2HadOn4a1RAIDAwPExcejcaNGmDZlsuasNyD9IpYdO3fi6LHjuHHzJvr07o15v8/FH/Pm47c56Tcrz5w+HT8MHQIAUKlUWLV6DVasWoWkpCS4Fi+OJ8HByGdqinHjxqJ3z55a83zJzw/TZsyAv/81SCQSxMfHQyq1wbgxY9Cvb19NO28fH+zbtx/HvLwQHR2Ni+fP4erVq1iybBnCwsIBANbW1lizciUaNWqIM2fO4o8F83HlylUAgKmpKaZOnowhgwdl+n5fuHgRM2bOwvUbN2BtbY34+HjYymSYNHEienTvpml39tw5HDh4EF5eJxDz8iWu+l2Cj68vlq9YiSfBwQCAfKamGDt2DH7+6SfNc3fv3cPsOXNx8tQpAMAf8+Zj46ZNmvrf585977bk+Ph4jBozFocOH4ZMJoNCLsfL2FhIpTbYvXMnKnt4wOvECcxfuAjXrl0DAAz5YRiMjdOTepaWlli0YAF27f4Lx44fx9lz52BtbY37d27jkp8funbvgVevXqFWzZo4cuigZtzzFy5g+oyZuHnrlmZu7GxtMXnSJHTr2uWT5yZDamoqZs+Ziz83bYKtTAaJRII7d+/Czc0NDevX1yQeCxQogAH9+2HW7NnYuSv9++/06TPoE/X313vXLl3QuFEjrf7VQo2Dhw5jydKluHHzJgDAwMAA3bp2waIFC7JMfhLlBm5DJiIiIvoC+V4IQfe227ByyaX0RCEAl2I2aLhxOXrfP89EIeV5arUa06bPwHfNvoeHRyXcvOaPOzdvICLsKRbM+wMmJiawsbFBzx7dUatmTdjZ2gIAPCp93Iqer0Vqaipu3LgBlUql2cq5b/8BDBw8BPXq1oWjoyOE+Lv9+g0b0KFzZ5QoUQJBDwMR8jgI/lcuw8bGBoOH/oB9+/dr2l6/cQNKhQIxb1cBvuvGzZtQq1SIj48HAHTt0QM7du7C982aYdKECahfrx6USiWWLFuGw0eOaJ5TyOWIjIzUrNoqWLAgXJxdNB8ZqxOvXLmKht82gd/ly9ixdSseBT7AwwcB2LF1K/wuX0bDb5vg8uUrmn7DwsLw9GkYUlNToVaroVapMGrMWOzavRvfN2sGCwsLiLc3wyuVSnTv2QsTJ09Gm9at8PBBAM6cOoljhw8jOiYGv/w6Evfu3df0vWfvXrRq0xbWkvSEVXDQI9y5eQMuzi4YOXoM1m/YoGmbkfyKi0tf3di6bTsc9/JCp44dMW7MGBQvVgzx8fHoN3Agvv2uGabPnIka1apjyqSJqOvpCblcjgmTJmm2ab9r67btaNu+AxwcHPAw4D6Cgx7h5vVrcHBwwE8//4xt23e8E8d1GBka4WVsLADgu+bN4XXiJDp26IDxY8eiRo3qSJPLMW36DE2iEkhP9JV0d4elpSUAwN7eXuv9Mf6ARFXf/gOwb/9+bNm0EQF37yDoYSA2b/wTsbFxiI9P0IxTtUplzTNOTkU1YzgVdYJCoYC/vz/UajVSUlIAAEePHUOfvv1Qp3ZtODkVhXjnC3vTli1o16EjnJyK4uGDAAQHPcKNa/6ws7PDsJ9+ws5duzRt/f2vwcjQCDEvX2Y6N9WrV8t0boD0lbTde/bEkmXLMGzoUFz3v/r2a+cQgoODsWzFCjwJDkZCQgJev36NlNRUmJuZaxLgBQoU0JpPqwK6qwUHDRmK1WvWoF69upgyaSK+a9oUQghs3bYdW7Zte+/8E+UoQTnO29tHmJlb6jsMIiIi+goE3osUQ/rsEbUqLdF8NKu7RuzedkuoVGp9h0eUa34dNVpIpDKxbfuOTOsnTposJFKZWLlqtabs1atXIjk5ObdC1Itz588LiVQm7As7CM969UVUdLQQQojXr1+L23fuCCGEuH3njpDZFxKNmjQVSqVS6/mL3t5CIpWJCh4eQq3W/jvFqVhxIZHKREBAgM647qXLCIlUJk6eOqVT16FTZyGRysSIX0fq1M2bv0BIpDIxcPAQnbrExERRqmw5IZHKxMFDh3XqDx0+LCRSmShZpqx48+aNVt2UqdOERCoThYo4imE//SQUCoUQQojQ0KciLCxMCCHEH/PmC4lUJrp276H17MOHD4VEKhMSqUwcO35cCCHEk+BgUaiIo6hRs5ZITUvTan/7zh0hkcqEq7u7Tp1DUSchkcqE76VLWuVR0dGisGNRIZHKxIKFC7Xq1Gq1+Pa774REKhPTZ87Uqnvw4IGwL+wg6tStp3lNGa5evaqZj3/W2djaCYlUJq7fuKEzVv2GjYREKhOz584V/+RRpaqQSGXi/IULOnXZefbsmZBIZaJ8JQ+t8sTERCGRysTpM2c1ZXFxcZr5/uf7mOHy5StCIpUJu8IOomadOiIyMlLT342bN4UQQty/HyDsCjuI+g0b6bx+P7/LQiKVidLlyut8zWeMndnc1GvQMNO5OX36jJBIZaJM+Qo6Y4345VchkcrEjFmzdF5Hxt9LY8aNy/R1CiFEjZq1hEQqE7t279apGzBosJBIZaJ3375ZPk+UG7iykIiIiOgLEB3+Emub/4izjb/DvRvpW9iMjQ3RoUtF7DrSCx26VoShIW8Spf+GY8ePY/2GDWjUqCG6dumcaZuM7YbLV67UrDyysrLSOSMur7IsYIkD+/ZqVlQWKFAAFcqXBwAsXrIESqUSA/r11dnKWK1qVRgYGCAsLBxBQUEfPa61tbVOWf169QAAYeFhH9XX9h078OLFCzg7O6FF8+916ls0b47ixYohKioKm7dszbSPOrVrY8miRZotoc7OTihatChS09KwbMUKAMDwH3/UeqZo0aKYNGECZs2YgW8bNwYALFu+AqmpqejTq5dm1WOG8uXKwczMDLGxcbh963amcUhtbLQ+t7O1RdkyZQAA1v+oMzAwQL26dQEAT59qz9mSZcuRJpejX7++Ouckenh4wNjYGFFRUQh48CCLOLQvqDEwMEDdLMb6FElJSQCA6KgoREZGasrz58+P82fPoHq1qv+qXzMzMxzcvx+FChXS9JexWnjx0qWQy+Xo11d3bqpUqQwjIyNERkYiMPBhpn1nNjdZvQ/+19NXjpYpU1pnrAoVKwCAzmrEj2VjbaNTVr9eejwZW9mJ9IVnFhIRERHpUVqaEvsnrkXa9qWwkadv26qYdANGDdvi59GecCmu+8MEUV4mhMCs2bMBAIP6D8iynUuxYgCAiIgIxMbFvfcW34SEBASHhKCEq2ueuECgoFXBTBN3KpUKp8+cBQBc9PbGgweBOm2MjY2hUCjwPDIS7u7unx5LwYIAAHnax12UkRGnR6VKMDDI/JchVapUQXBICE6dPo2hQwbr1Ds5OWX6rL+/P169egUzMzNUruyhVWdubo5fRvysVZZxdp//tWt48eKFTn8ZCaNnz59/wCtLV1BSMOs6q7dz9s7lIkIInHobh5/fZYSGhGYah1KpxPPnzzXJ4ffGUdBKZ6xP5eLigiJFiuDZs2do1rwFFsyfp0kaV6xQ4V/3a2lpmen3shACp8+cAQD4+Pri8ePHOm2MjY2hUqnwPPI5ypYt80HjZTU3GduzU1N0b2/OKFOr1R80xsfQfC99xveK6N9gspCIiIhIT85tOI5HM6dD9uYpMu7kTDW1Qtv+9VB/TGu9xkakL4GBgQgIeABLS0vU8ayTZbvktyubAGidaZaZRUuW4MyZs/D394ejoyOuXb2SbfuvWWxsLF6/vTH6nyupMvwwJP3yj4zblPUl9OlTAIBjEccs2xQtml4XEhryUX1nrBSztbXN8ibjDGlyOZ49ewbg75uV/6n/28tNXF2Lf1QcH+P169easwezimPwwIEAAGcnpxyL40OYmJhg88Y/0bN3H4Q+fYq27TugRo3qGDdmDOp6en728eLj4zXnQ2b1i4Ehg9IviynqmPXX04eq51kXhoaGuHX7NuLj47US82fOpSe5Gzdq+MnjEH2pmCwkIiIiymUPLj/GiZ8mwTHUGzKRvjJBbWAEgzrN0W79HJhlsxqFKK+7cTP9woeS7u4620HfdefuXQCAnZ1dtqsKj3t54a89e+B9/jyePHkCn0uXPm/AX5i0tDTNn0f++gsKFCigx2iyp3p7q7WxiUmWbfKZ5gMAKBRZ34CdGYVSkT6GSvXetvJ35uyHIUPh5FT0o8b6XNLeWU02/KefNFvMv1SVPTxwyfsiVq5ajVVr1uDKlato3bYdevXogYUL5me5WvTfeHel3c/Dh2eZTP1cypUri+E//YSFixahb/8B+H3ObEisrbFu/XqcPn0G1atXw+BBmd9kTZQX8MxCIiIiolwSE5mANe3H4marxigacgEGbxOFyU5lUevYMbTfu5KJQvrPi4tPXz1kbaO7xfZdR44eAwC0bNEi26TE+g0bUK9u+iohNzc39OnV6/MF+wWSyWQwNEz/Me/xkyd6jiZ7hQsXBpC+lTwr4RHpZ7c5ODh8VN+F7O0BANHR0UhMTMy2raWlpebW5sdPdLe35hZriQQmbxOnT77w9y6DlZUVxowehbu3buLXX0bA0NAQm7Zswa7duz/rONY2NpoVork1N5MnTsDWzZsQHx+P6t/UhEeVqjh9+gxmTp+OwwcOaL5miPIiJguJiIiIcphCocKeKZtwoFpdSC9sRj51+iqWZEs7uC5YgR7XT8Gh6oedPUWU10kKSgAAz7M5Gy4xMREHDx5Evnz58MPQIdn29/BRkOZ8uP8Cc3NzlC9XDgBw5OhRPUeTPc866dvMAx4EZNkm48xFzzq1P6rvatWqwcjICEqlEkePHcu2rYGBAWpUrw7g7yS0PpiYmMDDo9LbOHL3vVMq378C812BgYE4dPiI5nNLS0tMHD8e/fulb9fO6vIPpfLjVohmyGdqikoVKwLI3bmpX68eklNSsGD+PEQ8DcWZUyfxw9AhMM1m1TPw8Sthib40TBYSERER5SDfCyFYXLENDFaMg01aDABAbmwGSb+f0e2RPyr14NmERO+qXbsWDA0NERT0GCGhoZm2mTJtOl7GxmLalClwcXbOtI1CocCVK1cRGRmJh48e4sDBQzh67BiePXuGFStXoVOXrpqLLJKSkrBn71707d8fx728cuql5ZrevdNXT65eszbLG4+jY2I05/TpS6+ePWBubo6AgAeZJpdu37mDGzdvIl++fOjXp89H9S2TStG6VSsAwLQZM7Vu7H1X6tstyL3frjjdtn07bt66lWnb+Ph4zTmLOSVj5euGPzfi/v3Mk6ixsXEID/88t+VmrMqNior6qOd8fH0xavRonfLSpUsD+PuijnfH+DfjvCvjPVq3YQMeZHEb9MvY2M82NwCwddt2BAUFQaVUas5M/BCf8jqJvgRMFhIRERHlgEeBMRjWfx/G/HwEj5V2AAABA4jqDdHqph8azhkNw2zO6SL6ryrm4oLu3bpCoVDg15GjkPTORSZyuRyTp0zFnxs3YuSvv2DQwKxvS371+jX8LvtBpVIhMTEJoU9DERYWjgcPAnHn7l2cPHUKKanpt5o+j4zEo6Ag7D9wUO8JtPfJOLtNrlBkebFLj27d4FmnDpKSkvB9i5bYtn0HEhISoFarEfT4MWbNno3KVatp3ZSsUqk05/ul/eMm1vS69JVSCoVCNyaFXOu/mdbJ03Tq7OzssHD+PBgaGmLw0KFayeGIiAgMGJR++/Hvc+bobENOe9tfZv1m+G3WTDg4OCAyMhL1GzXG2nXrEBgYiKCgIBw5ehQdO3fBli1bAACtWrbA982aQS6Xo0279li/YQNexsZCCIGQ0FAsWLgIHlWrwd/fX9O/QqHQ3Igrz2ReFHLF2/9mNy/adR07dECjRg2RmpqKlm3aYOPmzYiLi4NarcaT4GDM/f0PeFStilu3b//d1zt9ZPYeZMSR2Q27NjbpZ/+tWbsWT5+GQa1W48WLFx90G290TIzWzdFpcjl27/4LxsbG6Nihg6a8QIECmi3Ef8xfgLi4OMjfuVQm/dn091H5zpz+U5fOndCgfn2kpKSgRevW2LxlK+Lj46FWq/H4yRPM+f13eFSpirv37mnFlN3cyLOZGwB4Epy+5XnUmLFwdS8JV/eSaN+xI+b+/kem2+dt3h6fcPbcOZy/cAFKpRLx8fFISEgAkH4Zk0Ke9fdL2tsbxf/5PUiU6wTlOG9vH2FmbqnvMIiIiCgXJCSkiEVzL4g6lZeKWpWWiFqVloi6VZaKDfW7izCfa/oOj+irkJqWJn4e8YuwsbUTJdxLir79B4j+AweJkmXKilqenuL06TMf1I9KpRISqUwsW75Cq/zwkSNCIpWJ4JAQTdnLl7FCIpWJtevWfc6X8tkkJCSI1m3bCVd3dyGRyoREKhO1PD1Fu44dRVJSkk775ORkMXTYMGFja6dpn/FRtXoNsWnzFqFUKoUQQkyfOVPUqFlLU+9euoxo16GDUKvVmdYN/3mEECL9fWrdtp1wLu6qqW/0bROxbfsOcffuPfF9i5aiUBFHIZHKhNTOXjRp1kwsXb5cJ9YjR4+KMuUrCHuHIqJdx46ifadOolARR1GyTFmx/8BBrbYXvb3Fd983F3aFHYREKhO2hQqLJs2aifETJ2Y6bxEREaJDp846c+Do7CLGTZggnj9/rmmblpYmRo4eI6R29jrtK3h4iNVr1gq5XC6EEGLs+PGiWo3/aerLlK8gxk2YIIQQ4tz586Jx0++0xmrVpq1ISkoS8fHxomXrNsKhqJOQSGXCWmYrmjRrJg4cPKSJIyU1VQz/eUSm751Hlapiw59/CoVCIYQQ4peRo0TlqtU09eUqVhJTpk4TQggRHRMjWrRqrRnLxtZONGnWTBw9dkwz1qbNW3Reb+ly5UVUVFS2X4/rN2wQEqlM2DsUEe07dRIDBg0W5SpWEq7u7uLQ4cM67X8ZOUrntTRq0lQkJyeLtu07iBLuJTXl/6tVW7Tr2FEkJCTo9JOSkiJ+HD4807mpXLWa2LBxo2ZuRvw6Msu5iYqOfu/c+Pv7i/adOonvW7QU4yZMEC1btxHFSrhp+rMtVFhs3LxZK74nwcGiuJu7VlxFnJzF3n37xfwFC0Vtz7qa8uJu7qJv/wGaZ3v27i1cXEto6j3r1Rer16zN9n0gyikGQmTx6yj6bHx8fNH426ZISX6j71CIiIgohyiVauzffRfrV15GYuLfKwKq1iiKn0bWQfESWd/WSkSZCwsLh+8lX0RFR8PG2gaVPTxQrlzZD35erVZDamePmdOna51teOToUfTo1Rs3rvmjmIsLgPStnSVKlsQfc+egf79+n/ulfDK5XI5Lfn6Z1tWuVUuzcuufwsPD4eP79xx6eFRCubJltbaG3r5zB/Hx8TrP1vX0xJ27d3Xq8ltYoFq1alCpVPD28dF5zsnJCdYSCW7fuaNTV8jeHqVKlcr09fn4+uLRo/Rt024lSqB2ndo6N2JHRUXhQWCgzvNWVlao7OGR6RwA6fNw6/ZtvHmTCAeHwqhWtSry58+fadsXL17gwsWLeBEVhYIFC6JC+fKoVLGi5uIYALh+4wbevNH++S4jhhcvXiDw4UOdfmvXqgWVWg2/TN7H4sWK69zC/OzZM3j7+OBFVBSsra1RqWJFlC9XTiuOa9euIfGd1bcAIJFIUKliRaSmpuLylSs6Y5VwdYWjo6Pm87CwcDx69Aj5zPLB0dFR8z2RHSEE7t8PwL379xAbGwfLApZwcXZGjRo1YJYvX6bPBAQ8QMSzCBQoUACuxYvDzs4OSqUSPr6+mbav+c03WZ4NGBERAR9fX7yIioKNtQ0qVUqfm3e/rj9lbrZu247hI0Zg+E8/YfLECVptHj95gjVr12HtunWws7XFw3+cufnq1Svcu38fycnJKFSoEEqXKgVjY2Pcvx+AmJcxWm1NTU1R85tvAAC+ly7prNx1KFwY7u7umc4BUU5isjAXMFlIRESUt3nvuYSNa/3xMPrvH+CKOkvw4y91UNPTRX+BEf3H5aVkIRHlDiEEXN1LIikpCWGhIToJ6wzlKlZCZGQkIiPC33vhCdHXJvNfP+WgI0ePYvdfezB50kSUcHXVlKempmLw0KHYsG6d1m9K6L9BCIHwiAiILM6nyGn5LS0hk3LFB/23CCEQHBwMlZ6+74yNjFC8eHG9jE30uQQHRODQ0OlwCPBCqXwueCjrgAJW+dC9dxV07F4JJiZG+g6RiIiIPsLL2FjEx8fD2NgYCrk802ShXC7Hq1evUKd2bSYKKU/K1WThmzdvMGjIUCQnJ6NL505ayUIzMzNYWVnh9Jkz+LZx49wMi/QsODgYv44aDb/Ll6FU6ueKeTMzMxw5eBCVKlXUy/hEuS0kJATde/bC07CnSE3N+mDwnGRVwArBjx/pZWyiTxX/8g32/TgHZmd3oqg6BQBQPPUxOtbMh54ze0Biba7nCIkoOyZvLxdKTkrWcyRE9KWxlkggk0rxMjYWU6fPwO9zZmstaFIoFBg9ZixMTEzw+5zZeoyUKOfkarIw6PFj9OrZA7/NnJlpvbOTM65dv85k4X9EWloaFi9ZikVLlqBKlcpo27YNxowcmStjp6amYtPmLdi4eTNcXYtDJpOhfaeO2LNrNxOGlKcpFAqsXLUas+fOhaGBARYumI9v3p6TktPS0tKwfcdOrFu/HlZWBbK86Y7oS6ZUqnFgxhYkbFgE69QoTXmauQQlfhqOtr/0hwF3SBB98YoXKwYAWLd+PWb/NgsKhQLHvbz0HBURfQmMjY2xYP48DBg4COs3bIDvpUto2qQJ7O3sEPEsAkeOHoVDYQec9DqutQCKKC/J1WShkZERUpJTsqwPeBAAOzu7XIyI9OXAgQMYNXY80tJS0axpU5QvXx4GBgY4eOhwjo8dFxeLnbv/gqGhIeb/8Qc6d+oIlUqFIUN/QLuOHbF10yZ8883/cjwOotx2/uJFDBoyBClJyWjYoAHcSpTAixdR2L//QI6PnZCQgB07d0ItBGbNnAGlQoElS5fl+LhEn9Ol3edxa+J02McHwvptmcrIFJatu6H1okkwMjPTa3xEpO32nTsYOXoMAGDJsmV4/PgxFi6YDwBwc3PDwAH9sWbtOmzeuhVVq1bB8B9/BAAsXLwExiYm6N2zp95iJyL9atG8Oe7cuoktW7ch8OFD3Lp1CxYWFihTpjTWrlqFatWq6TtEohyVqxecyOVyVKxcBSuWLUX9evW06o4eO4aevftgzaqVaNe2bW6FlCt4wYmu0WPHYvvOnXB1dYWxUfp5Ti9eRKFQIfscHzs5KRmhoU+xds0qNP/+e025UqnEyFGjsXvPHixZtBDt27XL8ViIcouf32V06toVSqUSrsWLwTSLW+pyytOnT1HMpRj27N6FggULYuOmTVi8ZCluXr+Wq3EQ/RtBVx/i9PApsH3iAwORviJWwADqKvXRbP08WBYppOcIieh8k/iXAAAgAElEQVTfevXqFQwMDGBlZaXvUIiIiL4Yubqy0NTUFBPGjUPb9h1QvXo1lC1TFkZGRrh77y6uXLmKqlWqoFXLlrkZEulRPc+62Lp5k+ZzmX0h3L9zO8fHFUJg4qTJGDh4CNavXYPvmjYFkL7cfNHCBXB2ccbQYT8i4MEDjBszRnOmDdHX6tIlP3Tu1g0FCxbE4IED8MPQobkeQ9/+/VHQqiAKFiyY62MT/VvxL+JxcOBkmF0+BDuh0JQnOVVEgxVz4Vijgh6jI6LPgf8uERER6cr1Q3W6d+uKzRv/REpyCv7cuBHr1q/Ho0dBGDRwAPbt+QvGxrl+QTN9IUbn0nmFBgYGmDVzBn74P3v3HRblsQVw+LcgCNKLgBUUsSR2ioqxxq6x95rYjTWJvbcYC3Zj7xpb7L1X7L0XLGADBOl9Yff+YdyEKwjoyqKe93nuc935Zr45u4aVPTtzplcvfurSlWXLVyS7/kv//ixbspjVa9ZQp359fHweZkpcQnwKW7Zuo0Xr1jRr2pTzZ07rJFEoxOcmMVHFzi23+KnVOvTO78fgn0RhjLkDzl7z6Hh5nyQKhRBCCCHEF0snmbkfGjTghwYNiImJIS4uDisrKxQKhS5CEVnI4EGZkyx8a8TwYeTJk5uhw0fg89CHiePHa5LVPzRoQDkPD/r98gtVqlWjdevWDBsymJw5c2ZqjEJ8KLVazR+TpzBj1iy++64iM7ymyfusEOlw6fwzZk87yZNHIQCcM69IpajTWLbtQtOpg1D8UzpDCCGEEEKIL5VOl/HlyJGDHDly6DIE8ZX7sVMnHB0d6dKtO1evXmP+vLk4/3OilZ2dHevXrmXL1q38MXkK27Zvp/NPP9K2dWtNHyGymoSEBLZu28b8hYvweehD08aNWbRwgSQKhUjDU99Q5s3w5swpX02bcQ4D3Lt1p3GbORhbST0zIYQQQgjxddDaNuQlS5cyafJkLl2SYvXiw0yd5qWTeatVrcqJY0fJbpSdajVqsmjJEhKUb7acKRQKmjdrxtkzpxkxbBj79u2nnGdF6v/QkIWLF3Pr1i1UKpVO4hbiLX9/fzZv2ULf/v0pVLQoffr248XzFxw+cIDFixZKolCI94gMj2PBnDN0arlekyjU01NQu35RNu7syE8/e0qiUAghhBBCfFW0trLw6rXrrN+wgYT4BNzc3LR1W/EVmerllelbkd/Klzcv27dsYeGiRUyeMpXFS5YyfOgQGjdqhL6+PoYGBnTt0pmuXTpz6fJl1m/YyIIFCxk5ajRWlpZ4eHhQuLALBQsWpFBBZwoUcMLKyors/3fibFhYOJaWGSukHRYWjpmZKfoZ2PqmUqkIDQ3FxsYm3WPUajWhYWFYW1llKL6Q0FCsLC0znJBSqVSEhIRga2uboXEAr0NCsLG2ztCY0LAwTExMMMzggTUf+rq8evUKOzu7DI1533xJSUmEhobi7+/Pw0eP8PF5iI+PD9dv3uTx48cYGRmRLVs2EuLj6dGzB2NGjsTQ0DDD8wvxtUhKUrF7/HKCl81ll3VzlPqWAJRxy0P/QZUpVDjj701CCCGEEEJ8CbS+DVm2Z4oPlVkHnKRGT0+Pn3v1onXr1sz780/6DfiFMePG0/CHBrRv145vihUDwM3VFTdXVwD8/Pw4feYsFy9e5PKVK2z6ezOBgYGaexobG2NlZYmlhSWhYWG8evUKF5dC7yQRUxMRGcnzZ8/JaZeTnOlMqsXGxPL8xQsUCgWFCqXv5zEhPp7nL16SmJSIS6FC6U78hYSE4P/Sn1y5c2Ntnf5k2n9jrFy5Ei9fvkzXOKVSyYsXL4mLj6dokcLpni8kJISX/gHY2+XMUN3JhIQEnj9/QaJSiUthl3S9LklJKgICAwgOCqZwkcIYGxmlf774eJ49f4FKpcLFpRAAkZFRvH79mvDwcE0/U1NTChVyJm+evDgXKEh8fDz+/v7UrlWT0SNH4ujomO45hfgand18imsjRmEX8gBLoErYUc5/25HuvStQp0FRXYcnhBBCCCGETmk9WehS6M0H3KioKIJfv8bG2hozMzNtTyO+QLpaVfj/rK2sGD1yJD26dWPjpr9Zv3EDi5csxdnZGc8KFfCsUB43V1fy5s2Lo6Mjjo6OtG3TWjM+KioKv6dPCQsLIzQ0lFu3b7P2r3UEBAQAEB0VQ4tmzd+beAoNC2Pfvn08efwEgKBXQTRv2gxLi9RXJUZFRXH8xAl8Hj5ErVYD4FygIMWLF091TFJSEufPX+DYieMkJSUBkMshF+U8PN77GoWEvGbPvv08e/YcgNfBwbRq0SLNGqQpxWhmakqjHxq+d5xKpeLi5UscPXocpTIBACtLKypXqvTecS/9/dm3bx8v/klGBr8OoVWLlmm+J6X0ujg4OFDeo1yqY9RqNTdv3uTg4cPExMQAkBCfQOsWLd8719v5vE+fxvv0ac18+fLmo2yZMhgbG2NtbYW5uTlJiUn4BwZw9+5dzpw5y569e8mXNy9tW7emdauWkiQUIg1PrvtyqM8IrO+fwE79poSESqFPvrJFGbChPdmNMrbyWAghhBBCiC+R1pOF8QnxNG7ajFPe3qhUKvT09ChVsiQ/dupEm9atMMjgFkDx9Zg6TXfbkFNib29Pv7596Ne3D1evXePkyVOcPXeWQUOGEhUVRbZs2ciTJw8FnJzIkyc3piammJmZYWpqirn5m2RUUFAwM2fN1iSATE1NqVatKlZWlqnOGxkZyaLFi0lIeJMUy6avT/WqVcmbJ7fmtOb/Fx8fz/QZM4j+J0kFUKZ0KYoXL/7ebc9Ll6/gzp07mseFXVxwLVvmvWOCg4NZuGgxif88JwMDA6pXr469vd17t0qnFmPRIkXT3Jq9bv0GLl2+rHlcwMkJD3e39467c+cOy1as1CQlDQ0NqfF9dXLnzpXmlu6Vq1Zz4+ZNzWOXQoVwLfP+12Xjxk2cv3hR89jW1paa1auna9v5osVLuP/ggeZxwQJOWJib8+jxI/z9A3ji68vz589RKpXkyJEDD3d3GjduRKXvvsPdzQ09Pa2VnxXiixQREs3WX70w2LcaG1Wspj06TzGqLZxBvvKldBidEEIIIYQQWYtC/faT9Ef6uU9fNm7ahKmpKREREW9urlDw39uXLFGC5cuW4lywoDam/Gx4e5+mZq06xMZE6jqULGPw0KG8fOnP2tWrNG229g4EBwboMKr0SUpKwtfXlye+fvj6+uLr64t/gD+RkVFERUURGRlJTOybD6NBr14RF5+ASpWEsbExNjY2aSaqgoKCiY+PJykpEaPsRljZWKdZZy84OJj4uHgSkxIxMMiGtbU1RkbG7x0TGRlJdFQ08Qnx6CkUWFlZYZqOVcCBga9QKuNJSlJhZGSEjbU12dLxJcB/Y8xmkA2bdMQIEB0dTUREBAkJCejp6WFhaYG52fsPG0hUKnkdGkJ8XBxq9Zvt4NY2NmRLR93H6KgoIiIj/5lPgZVl2q9LVFQUUZGRxCckoFAosDC3wNzCPF3bloODg1EqlSQkJKCvr4+9nR158uTBzMwMMzNT7O3tcXJ0ooCTE05OThQo4JRq0jgr69y1KxbmFsycMR2AlatWMXvOXK5elkOxxKejUqnZN30DAXOmYhn3b4mImBy2uAwaRPk+HXQYnRBCCCGEEFmTVj9xqlQqCjk7M3rUSMqWKYOpqSn+/v4cPnKUXXt2c+TIUer/0JB9e3ZTwMlJm1OLL4Cuaxaml76+Ps7Ozumqz5nX0QmVKgk3Vzf2792drvsXK16CmJhoihYpyqkTx9KVcHJ198Dv6VMKODlx9rR3upJJo0aPYcGiRQCcPXsG5wIF0hVf7rz5SEpS4e7myr49e9I1BsDVoxx+fn44OTpy7szpdCe8vGbMYPKUqQDs3bUzXQco3b5zhyrVqgNqOv/4E1OnTE53nOMmTGDuvD8BOHXiBEUKp10bcaqXl+Y07727duLu7p7u+dzLV+DJkyc4OTlx5OABLN6z1VwIkX7n917m3JBx5A24xNu13Il6hhj/0Ia2f45DP7scACSEEEIIIURKtJosLFKkCHt278LoP4c35M6dm44d2tOxQ3suXbpE1x496NqtO4cO7Jetc5nkwoWL7D94kIcPHxIZ+f7VjSVLlGDc2DGZFFlyWWkLsrblyuWQ4TEODvYZPmHYzs7ug1adva8WYmry5MmT4THw4TECWGfwBGRQ4OiY/4Pmgg97XTJygMp/2drYSKLwEwsNDWX7zp1cvHiJoOAgEpWJ7+0/dcpkTR1e8fl4/jSMvwfMII/3SvKq3/wdq1GgLFOVBsu9MMubS8cRCiGEEEIIkbVpNVnYpFGjZInC/+fm5saenTupXqMmO3ftpnGj9x9qID6Or58fffr248WLF/Tq2ZMqlSvx9Okztu/YwdFjxzQn8sbHx2vGFC1aRFfhZrmahUKIL4NKpeLPBQvwmj6Dhj80oOEPDVCr1Vy5epXFS5YSERGBhYVFshOn9fX1yZ1Lkkqfk6jIeNasuMymv65hHq1He96UQYm1caTc7Cm41K6s4wiFEEIIIYT4PGgtWWhiYkKBAk5p9suTJw+DBv7G5i1bJFn4Cd24eZPGTZtRtEgRvE+ewMTERHOtfbu2dPqpM/v272fd2jUUdinMw0ePePjwIa5ly+gs5qlekiwUQmhXUlISP/fpy5atW/lrzWpq16qluVa3Th1q16xJ7Xr1KVO6NCuXL+PR48c8evSIoKDgZO+bIutSqdQc3Huf+bNOE/L6zQFKrw1seOxSm+8al6PiwK6QwVXaQgghhBBCfM20lix0cnTk8ZMn6epbpXJlZs6eo62pxf8JDw+nTbv2KJVKFi2Y/84HXoVCwagRw9m1ezcjRo7iwrmzODrm5/vq1T567rCwcObMm0utmjUpX65chsZ+LjULhRC6sXTZcgwNDWjbpk26t7LPnjOXTX//Td/evZMlCt9yc3OjXt267N6zh5OnTvFDgwaULaO7L01Exly5+Jw5Xqd4+CBY02Znb0r3PhWoXb+v5AiFEEIIIYT4AForGlirZg1WrV6TbBtXahITE9PVT3yYmbNm8/LlS3p070a+fPlS7FOoUCGMjY3xefgQXz+/j54zQalk9Zo1lPP0ZM7cecTFxWX4HrKqUAjxPoGBgfw6cBAVK1dhx85dqNXqNPtP9fLCxMSEYUOHpNqvZIkSABw+ckSr8YpP5+mjV/zebQn9um/TJAqNjLLR7idX/tranjoNikqiUAghhBBCiA+ktWShi4sLZcuUoUXrNjx79uy9fXft3oPdBx4CIN4vMTGRVWvWAPBDgwap9lMoFBgZGQHw+vXrD55PpVKxY+cuKnhW5NeBgz7qXkIIkR6PHj2iS7du1KpTl1Pe3qn2+2vdeuLj46nxfXWMjY1T7Zfd6E391pCQUK3HKrQrLlbJml/+5Mh31ci7axoG6gQUCqhWsxBrt7anVz9PjHMY6DpMIYQQQgghPmtaPeDEa+oUqlb/Hs9KlenbuzeNGzWkcOHCmusJCQmsWLmK6TNn0q5tW21OLf5x/cYNwsLCsLS01KyWSUlERARhYWEA5HLI+Em9AFevXaNvv/7cu3//nWvNW7Z6p23p4sXvrVMpB5wI8XXasHETffr1y/C4q9eu0aRZc76vXp0/587B1tY22fUTJ08CULlSpffe5+nTN19wOXzge6H49FQqNfuX7OPx5Enkinqsaa9tfIf6CydSopQcRiOEEEIIIYS2aDVZmCtXLnZs20rLNm35Y8oU/pgyhbx585InT26UCUoePnqkOXVywAd8MBRpe/bsOfDmQ6/iPXuwDh46hFqtpmjRouTOnfuD5ipVsiS//jIAr+kzeODjk+xazZo1yOWQ/MNbASen995PDjgR4uvk7FyQjh06pNnv6rVr3Lx5M1nb99WrM2jgb+8kCgGeP3/zfpjrPacaq9VqDh46BED1alUzELXILJeO3ePEb2PI//w0udQqAFQKPQwr12PAoskY2VjrOEIhhBBCCCG+LFpNFgIULVoU7xPHmerlxarVa3j+/LnmAxtAIWdnFi6YT/78KdfSEx/nbYIwOjr6vf2279gJQLcunT94Lj09PZo2aULjRo04dPgwf0yZyq1btwDo0a0bVatUydD95IATIb5O7m5uuLu5pdnv90l/aJKF5Tw8GDFsGJ6eFVLt//b9MCYmJtU+l69c4dmzZzg65qdmjRoZjFx8SoEvI9g4YAbWJ9bipPr37zChQAmqL/LCvkzqq+eFEEIIIYQQH07ryUIAc3NzJo4fz8gRIzh//jx+fk9JTFRStGhRPNzd032Kpci4b74pBsDLly8JCQnB2vrdFReXLl9m3/79lCpZkvbt2qV5z4iICC5eukx8fBzFihV7Z4Wgnp4etWvVomaNGpqk4YeQVYVCiLSkJ0n41jfffMOjx4+5des2zZo2fee6Wq1m4u+TAJg8aVKa/zap1Wpu3b7Nkye+2NhY4+HujoGB1MfTtrhYJRvHriZuzRzyKIM07fFmdpQcM5zinVrqMDqRXpGRkXh7n6Zu3Tq6DkUIIYQQQmSQ1g44SYlR9uxUqVyZjh3a0/mnn/CsUEEShZ+YS6FCfFexIklJSUybPv2d635+T+nctRu5cuVi1YoVGBoavvd+S5ctw9Xdg1OnTvHo8WMqeFZk3vz5KfZ9mzQ8euhgulYJ/b+p07wyPEYI8fXo368ve3btTFeiEODHTh0BWL5yJa9evUp2Ta1WM37CRE6cPMmwIUOoU7v2e+/17Nkzatauw/ARI/H392fSH5Px/K4S4eHhH/ZkxDvUati3+hRzSjfCdPkobP9JFCbpGWLdvjut7p6XROFnICkpiSVLllG4yDc0bdaCoKCgtAcJIYQQQogs5ZMmC4VuzJ83lwJOTixctJif+/TlyJGjnDl7lmle06lSvTrOBQtycN9eHB3zv/c++/bvZ9CQocz/cx5jx4ymb+/eZDcyYv/+A+8dp6enh4mJSYbjnuolyUIhROpMTU0z1L96tWoMGvgbERER1Kpbl1Vr1nDhwkW2bttOoyZNWb5yJfPmzElzVXNiYiKt2rbDxMSE7Vu30KN7N6pXq8bDR4/wefjwY56S+MedmwH06vQ3z4f2xjnkGgBqFOiVr0GDq+eoNnMs+tmz6zhKkZZ79+5Tuowr3Xv0pGDBAhw/doScOXPqOiwhhBBCCJFBsszvC5QvXz5OHDvKshUrOHz4CEOGDcPCwoISxYuzeuWKNE8GfWv23LkULVo0WR2vXTu2Y2Vp+UnilpqFQghtGz50KFUqV2bV6jUsXrKExMQk8uXLS+1atVi9cgWW6Xg/O3zkCHfv3mXs+nXo6+sD0LVLZypUKI9r2bKf+il80V4FRrFo7lkO7r2HWg2x5lVo+HoLibmc+W7eFPJU9tR1iCID8uTJjZmZGZs2rqd582bvPWhNCCGEEEJkXZIs/EKZmZkxoF+/jzp1+tq169Stk3xrXskSn66gvNQsFEJ8ChU9Pano+eFJp6vX3qx0K1K4iKbNwsICzwrp2w4t3hUXl8i6lZf5a+UV4uMTNe32tWvxTYWaFG3ZAIWebH7I6hITE5OVlzEzM+PM6VM6jEgIIYQQQmiDJAtFitRqNUlJSSQlqXQdihBC6JRS+SaZlZiUmEZPkRa1Go4ffsi8Gd4EBkRq2gsXy0n/gZUpVTa3DqMT6RUbG8ucOfNYsnQply9dwMLCQtchCSGEEEIILZKv7UWKFAoFzs7O3Lh5g6SkpEyZUw44EUJkRYVdCgFw/fp1HUfyebtzxY9plboxv/9STaLQxtaEwSOrsXRtK0kUfgbUajVr1/5FkaLfMnTYcIoXL050dLSuwxJCCCGEEFomyUKRqo7t2+Pn95TZc+Yma3/9OkRHEQkhROarX68e1tbWTJ4yNdmpyklJSYSGhuowss/Dq4AIZrf9nfP16+B8fw9VIo5gaKBHizalWLe9PQ2bFUdPT2rbfQ6ePXtGt+49yZnTlmNHD7N92xZy55YkrxBCCCHEl0a2IYtU9ejejavXrjHh99/Zd+AApUuVIiAggNi4WDZv3Kj1+aRmoRAiKzIzM2PFsqV0/PEnPCtVolrVapiZmnLl6lUmThjPdxUr6jrELCkuLpHto5YQtX4heeODNO22hLNsXnUKeBTTYXTiQ+TPn5/T3icpXboUelJTUgghhBDiiyXJQpEqfX19lixaSI9uXTlz7hxG2Y1o0awZHh7uug5NCCEyVeVKlbhy8QJ79+0nODiI/PnzM2b0KKnVlgK1Go4s3o3P1MnYRTzG6p/2JH1DbJu3ptKk4RiYm+s0RpG2kJAQFi1awuDBAzWngAOULVtGh1EJIYQQQojMIF8LizS5ubnRr08funfr+kkThV9KzUJ/f3+OnzhBZOS/xft379mjeX5Tp3lha++Arb3DO23/fQ2OnziR7PH/90lpzPkLFzI8BmDuvD8zPGb7jp2p9klpTHhYOAAvXrx8p8/b/6UWw1tLli5L1ic9Y44dP5Hu5zZ1mley1yK9Y/5/zvS8Hm/bwkLDAHj50v+dMbnz5ad7z15EREQAcP36Da5fv0GCUonIfNbW1rRv15YB/fvTtEkTSRSm4ObRa/xZtjFhI3tgF/EYADUK1B7f0+DKOarPmyyJwiwuISGBmTNnU8ilKKNGj+HMmbO6DkkIIYQQQmQyhVqtVus6iC+dt/dpataqQ2xMZNqdvxKDhw7l5Ut/1q5epWmztXcgODBAh1FlXEBAACtXrSY0LJQpf/wBwPiJE7ly5Sq/T5xA7br1iIuLo3q1amzasD5d9yxWvARBQUFUrVKFzZvSt93b1d0Dv6dPKefhwZ5dO9M1ZtToMSxYtAiA+3fvYGNtna5xufPmI0GppHGjhixdvDhdYwBcPcrh5+eHh7s7e3fvSvc4rxkzmDxlKgAXzp6hYMGCaY65fecOVapVB2DcmNH0/vnndM83bsIETcLw9o3r2Nvbpzlmqte/CcNL58/h5OSU7vncy1fgyZMnuLm6sn/vnmTXIiIiuHrtGlUqVwZg2vTp7Nu/n4Xz51PYxQXv06fZuWsX5cuVo2mTJumeUxc6d+2KhbkFM2dMB2DlqlXMnjOXq5cv6TgyoQ0vHzxj34CJmF3ciz7/HooV51ic7xdNx8G1hA6jE+kVHh6Ou0d5fHweUrNmDbymTaVkSfm7E0IIIYT42sg2ZJFlDB6Y9WsWJiiV7N69m6dPnzGgfz+MjIxRKBSUKPHmw1RERARdO3chqlUUsTGxqFQqAJTKRK5fv5GuOZT/rBqLjIxM95iEhAQAoqOj0z0mKOjfGmK3b9/BIp2rfd5+vxAWFp7uuf4bY0xMTIbGBQQEav589+49IiOj0hzz6PFjzZ9fvvTP0Hz/PcDizp27yeZPb4zh4RHpnu+/r8v9Bw8wNTHF1NQECwsLzM3NNYlCgEG//cag337TPLa1taVI4SKa/2b8/f2ZOXs2Xbt0obCLS7pjEOJDxccnsm3oPFg3G0tVvKY9yrYgHlPGUazh9zqMTmSUhYUFjRs3omqVKtSrV1fX4QghhBBCCB2RlYWZQFYWviullYWfgzt37tL/l18pUaI4hoYG+Pr68sTXj1evXiXbdixSV7iwCw8e+Og6jM+CmZkZOXPmxMnREScnR5ycnCj+7be4u7lhbGz8Tv+wsHAWL1lC4KtXTJ82VQcRp05WFn55Tp94wqypJ4n3e0KHV0vRU6uINLbFse8Aqg38CRRywnFWFxQURM6cOXUdhhBCCCGEyGJkZaHIMqZO88pyJyKrVCqmz5jJgYMHMTI24sqVqyQmJhIeEU7BAk44OTlRtWpVcjnkwtzcDFNTU0xMTDDJkUPXoWddCsWbExBEimJiY4mKiiI6Oprw8AgCAwN54vuEJ76+nDx1iidPfNHT06NM6dJU9PSkWbOmFC1SBABLS4tkP0M+Pg8ZO348Y0aPkpWGQmvu333F7GmnuHH1Tf1RDGy4bevJt1VK0n7WYLJlN9RtgCJN0dHRTJs2nanTvNi5Yxs1asgKUCGEEEII8a9MSxa+fh1CYGAgzoWcyW4oHyTEu6Z6ZZ1koVKpZOeuXcxfuJDr12+QN08e6terx889e1K+fHmsrazSvokQn0B4eDjnL1zgzNmz7D9wgJmzZ1O2TBnatmlN2zZtMPzP+6ujY36qVa3K1GnTMlRfUoiUBAdFs3zRBXZvu41K9Sbhny2bHk1alKDLzz0wNZV/27O6pKQkli5dzpix43j16hWtW7eicGH5IkEIIYQQQiSntdOQDx8+QhlXN8q4ujF0+HBNe3xCAt169KRQkSJUrFyZot98y4aN6Tu0QXxdskrNwu07dlCwkAt9+g3g22++YfeO7Vy9fInfJ06gXt26kigUOmVhYUGtmjUZO3o0p04c5/CBA5QpU5rxE3/Ho3wF1m/YSFLSmwMmDA0N6dqlsyZR+MDHJ1mtSiHSQ6lM4u+pW2nbZC07t9zSJArdyuVj5cY29B9cWRKFnwmFQsGSpUtxcnLk1MnjrPtrDfnz59d1WEIIIYQQIovRWrJw/8GDREVF0aB+fapXq6ZpnzlrFpu3bEGhUFDI2Rl9fT169+3H+fMXtDW1+ELoelXhy5f+NGrSlK7dexAfH8+alcuZM2sW5cuXRyG1t0QWVbp0Kab88QeXLpynceNGDBoyhJp16nD/wYN3+l66dJnqNWtx7/59HUQqPkcn/jrGomLfo5jWF7NQPwAcnazwmteQWQsb41Qwfaeoi6xBT0+PfXt3c+7saSpW9NR1OEIIIYQQIovSWrLwxYsXdOzYgQnjx1GrZk0AAgMDmTV7DgCLFy7g4vlz3L55k1o1a7J46RJtTS3ER9u2fTuVqlbhytWr2NracuzYUWrUqKHrsIRIN2srK8aOHs35M2ewsbaheo2aLFqyhP+eYdW2TWu8pk7B1sZGh5GKz8HdM/eY59acoF86kCv8AQrUVI05Sf9BlQaFaFsAACAASURBVFm9uS3lKzrqOkSRhoCAAHr07MXDh4+StcuBJkIIIYQQIi1aSxaqVCqKFC6crG3en/OJj4+nXt26NG/WDIDshob89ssAbt+5q62pxRdi6jSvTJ9TpVIxdvx4ev7cG5VKjZOjIyePHeXbYsUyPRYhtCFPntxs2rCesaNHM37CRH7u05eEhATN9dq1amFra0tAQAAXLl7UYaQiKwr2D2dx86FcbVKXXH5nUKhVAMTk/5amG+bRom0p9PW19quD+ARiYmKYOHESLoWLsWLFKk6fPq3rkIQQQgghxGdGa7/x582bl7v3/t3a5uPjw5JlywD47ddfkvW1sLDgxYsX2ppafCGmemVusjAmJoZOP3Vm6bLlZDc0RE+hYOeO7djZ2WVqHEJom0KhoFvXLuzYtpVjx4/TrGVLQsPCkvUJDHzFj527sH3HTp3EGBMTq6mtKHRPqUxi84gl7HL1xObEarKr4gGINbWjwO/T6XD5EHnKldZxlCI9qlStzqjRY6hZswa3b92gU6eOug5JCCGEEEJ8ZrSWLCxfzoMFCxYwavQYZs+dS6OmzYiPj6dO7dqULVMmWd+Lly5jamqqranFZyw6Olrz54oVPLG1d9CsMJw6zeu9j9PT5+3jlNrKVajISe9TJMTHExsXx749e7CytMyU5y1EZnBzdeXAvr0EBwfTuGkzXoeEaK6VKlWSH+o34Ny5c5q29P48fcjP4P37b2ooxsTEMLxZSyaPHUtxc4tP+wKIdDm2fB9Li1RGsXgM5spQAJQGOTBr/zNt71+kbPc2Oo5QZMTIEcM5cfwoW7f8jYtLIV2HI4QQQgghPkMK9X8LWn2ExMREGjZuwtn/fPDMaWvL8aNHyJ07NwAbN23i7t177Ni5E9ucOTm0f582ps7yvL1PU7NWHWJjInUdSpbx26BB7N69B3d3d+bNmZOpc7969YqmzVvwKugV2bNnp1ePHvTp/TPm5uaZGocQmSUoKIgmzZqjp6dHzx49uHzlCqNGjMjUGHr37UN4eDi+fk9JiI+nT+/edO/WFSMjo0yNQ/zrjvcdjgwYQ66nZzXbjVUKfRQValNvyR/ksJPadlmdj89D7OxyYmEhiXchhBBCCKE9WksWAsTFx7Nu3TquXL2Kg4MDXTt3xsHBQXO9dr16vAp8BUDHDu35ZcAAbU2dpUmy8F1btm6lb78BJCgT0u78Cejp6dG0SRPGjRmNvb29TmIQIjMFBwfTsHETHvj46GR+fX19jI2N6fzTjwzo10+S8zoUHh7HqkUXMJrdD5uEV5r26IJlqbFgKrnLfqPD6ER6vH79mgkTf2f+/IUMHPgrk36fqOuQhBBCCCHEF0SryUKRMkkWpuzWrVskJal0Mre1tTX58uXVydxC6Ep4eDi+vn46mVtPT0GRIkUwNDTUyfwCEhNVbNt0k2ULzhEVlUDh2HvUf72NGHMHSowdTekOjXUdokiHefPmM3rMWCIiIujc+UfGjxub7ItZIYQQQgghPlY2XQcgvl7FixfXdQhCfFUsLCwoVaqkrsMQOnD6xBPmeJ3ixfNwTVts0fJYVnCn6cAOKPT1dRidyIhnz5/h6loWr2lT5edZCCGEEEJ8ElpLFl69do05c+cC4OHuQa+ePQBQq9XMnjuXRYuXEBQURJkyZfhj4gTc3Ny0NbUQQgghUuD7JIS5Xt6cP/PvilIz8+y0/9GVlu1LY2AgScLPze8TJ5Atm3zXK4QQQgghPh2t/ba5bdt29h84iGeFCmTP/u82s7V/rWPc+AkAKBQKLl26RKOmzThx7CiFnJ21Nb0QQggh/hEaFMm2n8ez+74xr/TfHFSir69H/cbf0L13eSytjHUcoUjL8+fPmTDxdzzcPejS5SdNuyQKhRBCCCHEp6anrRs9fvKE9u3aseXvTXT+6c0vtVFRUYwdPx6AX38ZwMtnT7l2+TKFXVyYN+9PbU0thBBCCN7UJdw8ZhVbSn+HxfG/qPZ6PwrUuHrkY/n61gweWU0ShVlcREQEw4aPwKVwMdas+YvQ0FBdhySEEEIIIb4yWvt6Oi4+DteyZZK1LV+5kpCQENzc3Bg5fDgKhQJHx/yMGT2KMWPHaWtqIYQQ4qt3dos3V4eNxj70Hlb/tNmqghk7sBTft6ui09hE+g345VdWrlxN27ZtmPT7BPLnz6/rkIQQQgghxFdGa8nCPLlzExAYqHkc/Po1s+e8qWE46LdfUSgUmmv58uXD7+lTbU0thBBCfLWe3HvJzl7jyHVrL/YkAaBGgcq1Gg1XzMAkl52OIxQZMWrkSHr17Im7u9R2FkIIIYQQuqG1ZGGJ4sWZPHUqDvb25LTNyR9TphASEkLZMmWoWaNGsr53797F0MBAW1MLIYQQX52IsFg29PPC6MBq8qqiNe2xds5UmjcVx2oVdBidSI/r12+gVCpxc3PVtBUo4ESBAk66CUgIIYQQQghAoVar1dq4UXR0NN9VroKv378nLmY3NOTA/n2UKlkSeHNi8qNHj1i0eAnx8fGcPH5MG1Nned7ep6lZqw6xMZG6DkUIIcRnLjFRxZ7Z23g5Zwp2Mc817QnGFhQaOAj3vj/Bf1bzi6zH39+fUaPHsGLFKqpWrcKRwwd1HZIQIgtRKpVcunyZZ8+eERMb+96+hV1c8KwgXw4JIYTQLq2tLDQxMWHfnt1M9ZrO9evXsbe355f+/TSJQoD2HTvx8uVLALp17aqtqYUQQoivwrn9Vzn320jyvrqGHW++60tSZMO0SXsazxqFvrEcXpLVrVixir79+qNUKunfvy8jRwzXdUhCiCwiLi6O6TNnsmrValxdXcnl4MCjx485e+4cSqUyxTFjRo+SZKEQQgit01qyEMDBwYEZXtNSvX7W+xQqlQoA4xw5tDm1EEII8cV66hvKvBne3Dx+kx+DbqH4J1GYWMSdOqtmYeFcQMcRivRycnKkdu1aTJn8B4UKOes6HCFEFhEQEEDTFi1JVCrZs3sXLoUKaa7duXOX+g0bkj17dkaPHElAQAA+Dx/y8OFDPNzddRi1EEKIL5VWk4VpMTc3z8zphBBCiM9aZEQ8a1deZtPaayiVSaBvxmXz8pTWe4THtIkUalRH1yGKNMTHx5M9e3bN42rVqlKtWlXdBSSEyHJiY2Np3Kw5vr6+nDpxPFmiEOCbb4ox8NdfGTl6ND4+PowZPUpHkQohhPhaaD1ZePfuXdat38Cdu3cJDQ1l/949GBoaaq737d8fOzs7Ro0Yoe2phRBCiC9CUpKKPdvvsPjPc4SF/luvqoxbHrr2n4lLMXsU+vo6jFCk5cEDH0aOGo1KpWLz3xt1HY4QIgubOs2L+/fvM2TwoHcShW9V/+dLhvUbN0qyUAghxCen1WTh4iVLGT5yJElJSZo21f+dn9Loh4a0bteOtm3a4FywoDanF0IIIT57Z7d4s3DdEx49DtO02TmY0r13Beo0KKrDyER6BAcHM37CRBYuXIyRkRFDhwxGrVajkENnhBApiIqKYuny5QC0bNEi1X729vYABAYGEhMTQw4p6SSEEOIT0tPWja5cvcrQ4cMxNzfnx44dGTTwtxT71ajxPd8UK8aaNWu1NbUQQgjx2Xty6xkLvu/Cs16tMb9xCAAjYwM69/Bgw46Okij8TOzYsYv58xfy00+d8Hlwl+HDh0qiUAiRKu/Tp4mKisLFxYWCBVKvPxscHAyAvr5+sl1bQgghxKegtZWF6zdsJH/+fBw9dAhra2uio6OZ5jU9xb6VKn3H8RMntDW1EEII8dkKfx3F9v5/YHBoHXaqeAAqRHiTq3Ezeg6tibWNrB75nPz4Y0c8PStQrJgkd4UQabt37x5AmjuuTnl7A+DqWpZs2TK17LwQQoivkNb+pXny5DEd2rXH2to6zb4mJib4+vlpa2ohhBDis6NSqdk3bT0B86ZiGfdK0x5rZEXBAb/Q9teGICvSsrRz585z48ZNunfvqmnT19eXRKEQIt1iYt/UpTU0NHhvvz179wHQumXLTx6TEEIIobVtyMbGOTDMnr4l8bdv30FPT2tTCyGEEJ+Vc1u8WVisBnFeAzWJQqWeIQaNOtHa5womNTxY89dfOo5SpMbX15c2bdvjWbESk/6YTHx8vK5DEkJ8pvLkyQPA48dPUu1z69ZtTpw8iXPBgrRp0yazQhNCCPEV01rGrlTJkuzctTvZ4SYpuXnrFgcPHaJIkcLamloIIYT4LPje8GVRlY4869Ua+5C7AKhRkFC6Kg2unqfh0j8IjYyg448/MnDwEPbu26fjiMX/27//AMW+KcGOHTsZPnwoN29cJXv27LoOSwjxmapdsybZDQ25fecOl69ceed6ZGQkvXr3xtjYmKVLFmOUyvvN8+fPGTJsGGXd3Jkzbx6Tp06ljKsbtvYO9P/lFyIjI5kxcxYeFTyxz52HLt26o1QqAfDx8aF7z144FnRm3foNAMTFxTFi1ChKlC5Dl27dPt0LIIQQIkvSWrKwdauW3Lp1i5/79CU8PDzFPkeOHKVFq9YkJibSulUrbU0thBBCZGkRIVGsaj+CMzWrYXvnMHpqFQCRuYpRdssO2hxah2lue5RKJZ27dePFy5ckJSXRvWcvLl66pOPoxX95elbgp586cf/ebSZOGI+ZmZmuQxJCfMYcHBwYPnwYarWaHj17cek/7/nnzp2nboMGvA4JYcumTZQuVSrV+2Q3MqJypUo88fVlz969lCxRgvV/raVnj+6sXrOWFq1bU6hQIVavWM6wIYPZum0bW7ZuBcDGxob27doSERGhuV+2bNlo0bw5+vqyG0wIIb5GWqtZmDdvXiZNnMCvAwexe88ezT9mv/8+iYjICM6eO4+Pjw8AlStVon3bttqaWgghhMiSVCo1B/fe59KgERQLPqtpjzaxo/Dw4ZTvnrz21OChwzh79pzmcVxcHO07dGTfnt0UTKP4vfg0Xrx4odkmCGBubs78P+fpMCIhxJemX58+5HJwYMrUadSsUxcrKyuSkpIwMzOjTetW9O7VC0tLy/feI6etLRU9PQFo0qgx9erWBWDYkCH8OX8BVSpXpuEPDQAoUqQIs+fO4/btOwBYW1tT/Ntvk90vW7ZslC5VCiMjY20/XSHEVyY8PBy1Wp2uvvr6+vJFbBah1aO0fvrxR8zNzRk+YiRnzr75UDRv/nzNdX19fdq1bcOkiRPR19fX5tRCCCFElnLl4nPmeJ3i4YNgzAxcKaS4BPrZMGnSgcYzh6P/f3V+Q8PCKFO6FGVKlyIqKor7Dx7gWrYsAM9fvJBkYSa7c+cugwYP4dKly/g8uIu5ubmuQxJCfMFaNG9Oi+bNCQgIICg4GFsbG3LlyvXR9zUxMXnnc5dCocDc3Iw4qbcqhMgEZdzcCQ0NTVffqlWqsG3L5k8ckUgPrSYLAZo1bUr9evU4eOgwly5d4lVQEKamprgUKkTt2rVwcnTU9pRCCCFElvH8WTiL5p7h2KGHmjaliRXRrQbSYmgrzPPYpTjOytKSjh06APDw4SOu37ipeSwyT2BgIMNHjGTlytVYWloyetRIjI1lZY0QInM4ODjg4OCg6zCEEEJrHvs84N69e1T4rhIAB/buxc4++e/DL1++pP4PDSlRvLguQhQp0FqyMDAwEP+AAExNTSnk7EzDHxpolroLIYQQX7q4WCXrVl1h7YrLJCS8OexLoYCqNQrR+5fvcMglWyo+BzExsWzatJmuXTszccJ4cubMqeuQhBBCCCE+a/4BAcCbsgceHu7vXLe0sACgZMkSmRqXSJ3WkoUjRo1my9atNPyhAatWrNDWbYUQQogsTaVSs2/qWg5uvsLlpH+3Chf71p5+gypRotTHbyMTmadAASeePX2SZn0wIYT4kuTIkQOFQsGrV4G6DkUI8QW6eesWAKVKlkzxuqGhIY0bNcTNzS0zwxLvobVkYUhICAD9+vbV1i2FEEKILO3CzvNcGDaOXK+uUU7PiNsOPTFzyEmPvhWoXb8oCoWuIxTvc/ToMVauWs3KFcvQ0/v3xE9JFAohPkeRkZHJ/h8gKioKtVqd7KTjuPh44uLik7UZGRlR/NtvWbBoMfb29lhaWnLt+nWCg4OIiMyLWq1GIf+oia9ITEwM12/cIDg4mKQk1Xv7VvruO2xsrDMpsk8rJCSEx48fk83AgIIFCmitZvP16zcAKJXKqe45cuRgxbJlWplLaIfWkoWDBw7k7Llzyf7RSc3Lly85cvQYHdq309b0QgghRKbxfxTAzp4jsbq+n1zqN79AGqriaVdOTetZ7THOYaDjCMX73Lt3n8FDhrJr127y58+Pn99TChRw0nFUQgjx4S5fucLvk/6gapUqnDl7lmXLl1Ovbl369u9P5UqVuHfvPjNnzaL3zz/ToVMnvilWjFevXjFw8BC8pk4BYNGC+YwaO5YFCxfh4eFB/7598Pf359mz5wwaMlTTT4gvmZ/fUyZNnsyxY8dwd3dHpVJx7fp1Av7ZRpuSe7dvZWKEn8ax48f5fdIf+Dx8SGEXFx4+ekRkZCS1atZk7uzZH50MvXnzJsA7NQlv3rrFxk2bmDh+/EfdX2if1pKF5cuXY/nSJYweM5ad27dhZWWVat+Hjx6xbft2SRYKIYT4rMTFJPD3kD9J2rwI28R/vxyLyVmAcjP+oHCdyjqMTqTHo0ePKVmqDMbGxkz6fSIDBvSTA0yEyOJiY2PZsGkTN2/c5FVQEObm5ri7udKyRQtMTEx0HV6W4Fq2LFs3//1O++ZNm95p+3vDhhTvUaxYMTZv3Jisbc6sWdoJUIjPwMFDh+javQe1a9Xi0oXzmlV1iYmJjB0/nj/nL+CHBg3w8HDn0cNHPHz0iIiICOzt7bUax/CRIzl85OhH3aP3z73olM6D8lasWsVvAwdRp3Zttm3ZjJmZGa9fh1De05N9+/ezeOkShg0Z8sGxREdH8+jxYwBKl06+snDb9h08e/bsg+8tPh2tJQuvXL1KfHwC+fPnp3nLVvTt0yfVvgcOHtTWtEIIIcQnp1bDvnk78POahF3Mv7/QxGU3x7Hfr3w3qBuy5/jz4OxckNmzZtKsWRPs7FI+mVoIkXUcOnyYPn37YWllRa+ePTA3M+fP+fNZv2EDCxYt5uTxYxhlz66Vue7fv88TX9+Pukf+fPn55ptiWolHCJF5zp+/QMdOP1KqdCkWLZifrDxJtmzZGDNqFAcOHOTAwYOMHTOaggUKfLJY7OzsPvr+lhbpK6kSGBjI8BEjMTQ0ZP68uZiZvTmQz8bGmtatWvHnggV8+823HxXLzZu3UKlU6OnpsWPHDhT/vLaqJBVr166lW9euH3V/8WloLVm4ctUq1qz9S/P4py5d3tu/WtWq2ppaCCGE+GRuHL/J0V/HkffZWexQA6DS0ydblR9osXQKhuZyynFWpVar8fY+TaVK3yVr79Wrh44iEkJkxJ07d+nQ6Ufs7e04uG8vFv+cllmiRHE8ylfAx8eH4KAg8ubNq5X51v61jnnz53/UPX768UdmeE3TSjxCiMyhVCr5uU8flImJzJs9O1mi8C0DAwOqV6/G4iVL2bhp00ettEvLgH79oN8nu30yhw4fIS4uDs8KFd6p2Txq5Ah6dO/20e+x12+8qVdoa2PDyVPemvbXr18TFBxM8eIfl4wUn4bWkoUVPT1Zs/Yvin/7Ldmyvf+2z57LMlMhhBBZW+CLMLb2GIflhW3kUydo2uOLlqP2Ui9sijjrMDqRlrNnz/HrbwM5d+48Z894U758OV2HJITIoFlz5hAfH0/H9h00iUIAl0KF6NWzB7Y2tlpLFAJ069qV+vXqfdQ97B20ux1RCPHpbd+xg8dPnuDu7o6Li0uq/XLlygXAw4ePMiu0T87U1BSA5y+eExcXR/bs2bl9+w7m5ubkz59PK++xN26+SRa2atmS8ePGatr9/J5S2tX1nTqGImvQWrKwVs2aZMuWje1bt6ZZ/HLf/v0sWSon3QghhMh64uISWbfyMutWXqbps5MY/pMojDN3oOwfEyjWsr6OIxTvEx4eTvcevfj77804ODiwZPEi3N3ddB2WEOID3Ll7BwBHx/zvXJs0caLW58ufPx/58+fT+n1TM3WqFy/9X2bafNrg7uZGu3ZtdR2GEFq1Z+9eAOrVqf3efmGhYQAYGb2/9MHbQ1GeP3+BjY01ZUqXJkeOHNoJVst+aFCfvr17s3DxYkq7uqGnp4e/vz/fVazIrh3bUxzzKiiIW7duERsbS5EiRSjk/P4v0N+uLCxZskSy9oSEeK0lJIX2aS1ZaGVlxdDBg9P8wQH4ptg31KxRQ1tTCyGEEB9NrYbjhx8yb4Y3gQGRABy3rEHTsC3k7vIzlUb3Q5HGynmhe2ZmZrx48YLBgwcyfNhQTXFyIcTnp26dOty+fYf5CxZiZWnFzdu3OHv2HOPGjKZo0aK6Du+j/b15Mzdvfl6nqEa1j5Jkofji3LlzFwDnNJJep8+eBcDd3T3VPlevXaNf/wEUKuSMlaUVx44fJyYmhj/nzqVGje/TFc+5c+d5/uJ5OqNPWYnixSlSpEia/a5eu8aevXvJlzcvHdq349Hjx+zbv59mzZq+01elUjF67FhOnfLG3d2dgIAA9h84QP16dVm0cGGK9WPj4uN58MAHgFIlSya75uLiwvUrVz7wGYpPTWufesLCwrDNaZuuE8me+D6hUcMftDW1EEII8VHu3g5kzrRT3Lzur2mzsTWhfc8O1Kk1CkMzUx1GJzJCT0+PkyeOpVhvSAjxeenZvQfnz1/glLc3bdq3R6lUAtC+XdsUk4WnvL1Z+9c6nvj6Ym5mSqVKlejRvbvWDkDRtosXzuk6BCEEEBUdDYCxkXGqfQIDA7ly5QrGxsY0qJ/yLpOkpCTatGtPOQ93Vix7s5MyNjaWajVq0q1nT65euvhOXcCULFy8iB07d33AM/nX6JEj0kwW+vk9pVmLlhgbG3Pm1Emsrd+/Q3T12rX8OX8Bp44f19QZ3LhpEz1/7k2RIjMZPnToO2Pu3LmDUqkkR44cFCxYMNV7P3/+HBsbG4yNU/87EJlLa8nCgIAAfv1tYLqO5969Zy9OTo70+flnbU0vhBBCZNirgAgWzTvPwb33UL85uwQDA30aNy9O197lMTEx1G2A4r0OHz7C0GHD2bhhPc7O//4CKolCIT5/fn5PadCoESqVisMHD1CmdGl27NxFVFRUinUF582fz8JFi1myaCG5c+XG+/RphgwbxoEDB9m1Yzv6+vppzjl/wULWb9jwUXE3adyYX38Z8FH3EEJkrlwODvj7++Pr55tqn8VLl6JSqejRrRu2NjYp9omNjSUmJgYDg39/fzQ2NqZVi+aMn/g7ly9f4fvvq6cZz/ix4/jt118z/Dz+y8HBIc0+CxcvIiIigvbt2qaYKPT399fUaQQIeR2Cnp4eBgb/ppFatmjBL78N5MiRoykmC69fvw5A8eLfpvo+HPz6NWXc3Dl+5AjffvtNmnGLzKGT/VSWlhZcvHhRF1MLIYQQxMUlsn3CaiJXzuWeeTXURgUA8KzsxIBBlcmd1yKNOwhdunbtOr8NHMTRo8coXNiF4ODgZMlCIcTnr/8vv/D8+XNWLl+Oa9myADRp3CjV/rNmz8bJ0YkK5csDb+oc+j31Y5rXdI4dO56u7X8mpibkzJnzo+J+e1iAEOLzUa9uXa5cvcr6DRvp0rkzCoUi2fULFy4y78/5uLm6MnRo6qcgm5qacufmjXdWx70tiZKgTEhp2Dve1E799PVTnzzxBd6UcPl/N2/dokOnTpw/e5bshm+Sn78M6E/XLp2TlXhRKBSYmZkRnxCf4hw3btwEoGSJkileB9i+fTv6enoULvzv4TJJSUnMX7iQbdu2Y2pqSmhoKJ06dqBrly4Zfp7iw2R6slCtVnP+/AWUicrMnloIIcRXTq2Go+tOcGPcJPKH3sQaqBp+mHMlh9B3SFVKl82j6xBFGhISEqhbrwFKpZLZs2bSq1cPDAwMdB2WEEKLgl+/5uSpUwB4elZ45/qtW7e5c/cOLVu00LT17dOHHP/3Ab1smTIA3H/wIF3Jwk4dOqRrl5R4V1RUFEqlEisrK12HIkSG9ejejU2bN3Pl6lVGjh7NyOHDMTY2RqlUsmXrVgYPHUY5Dw9Wr1yhSZylJqUvDC5cvISZmRkVPT0/1VP4IN9Xr8aBgwfZtXs3vXv1wszMDJVKxdZt2xg7fgIL/pyX7PkqFIp3akH7+vkRFBRExw7t37l/YGCgps6jg709vn5+7/RRKpWsWr2GokWLJvt9rufPvbly5Qrbt24hX758DB0+nEFDhlKzRs0UD70S2vfRycJZc+YQHhbO65DXqNVqxo2fkGrfqOhoLl26xLXr16lcqdLHTi2EEEKk2+3LvuzvM4Z8D4+SnyQA1CiwLluGBUsaYmj+7reqIusxNDRky+ZNFCtWVD6UCvGFMsmRAwMDAxISEnjx4gU5bW01154+fUbnbt34fcL4ZGP69+37zn3Cwt6cXOrk5PhpA/7K3blzl1p16xITE8PoUSMZ0K+frkMSIkNMTU3Zu2sXQ4cPZ/GSpaxYuYq8efMSGBhInjx5mDRxIm3btP6gMifXrl9n2/btzJ45I8sduta1SxdCQkKZv3AhJcuUxcXFBT9fX8qUKcO2zX/j4uKS5j3GjhuHk6PjOz/3FStX1hwcAzBx0iQmTpqU6n3a/+fgJO/Tp9m8ZQvLly4lX743KyyrVK5MdHQ0uXKlvb1aaIdCrX5bpenDjBo9hiXLlhEfn/Ky09QMHzqUQQN/+5ipPxve3qepWasOsTGRug5FCCG+OkGBkWwa/CcmB1dilhihaU9wKMh387zIV6W8DqNL2cOHj5g2fTqLFszXdSg6pVKpWLNmLU2bNklxi4wQ4ss1afJkpnlNp/i33zJi+DBy5MjBKW9v1q3fwMTx49+7JRne7GZq0qw5r4KCOH7kMIZprAYSH279hg383OdNstbIyIjnfr7pqhEpvfQL0gAAIABJREFURFYUFRXFvfv3USWpyJ8/X7pq/6UmLCyMmrXr4OlZgdkzZ2oxSu2KT0jA98kTIiIicHZ2TvOgk7dWrFrF+AkT2bl9GyWKF9daPGPGjmPOvHk8uHc32ZdFInN99MrCCePH0a9fX4aPGMmWrVvTXLpvZGxEieIlaNG82cdOLYQQQqQqPj6RLdO2ELp4Bg6xzzTtCUYWFB34K6X7dkEhB2FkWUeOHOW3gYO4fv0GkZFR9Okjh6IJ8TUZPnQonhUq8PfmzcyZO48cJjnwcHPn2OFD2NnZpTl+1Zo1nDt3jkMHD0ii8BP7oUED4hMSOHPmLH9v3kxoWFiqB0AIkdWZmpri5ur60fcJCwujWYuWVPT0ZMZ0Ly1E9ulkNzRM8+Tk//f35s1MmvQHW/7epNVEIUBQcDAKhQKrdJwcLT4drdQszGlry8Tx49i1axczZ0zXxi2FEEKID+a9+zqnhk7A5dU5HNQqANR6+pjVa0b1ORMwkFVqWVqz5i3ZunUbjo6OrF+3llatWuo6JCGEDlStUoWqVapkeNwpb2/GT5jI6lUrtf4hVrzL1NSUHzt25MWLF1hbW2MtJSLEV+7ly5e0aN2aenXrMnzoUBQKBSqViqCgIOzt7XUd3kdbtHgJi5csYffOHZokY0jI/9i766io0jeA4186xVEGAztQVOzu7m7X7lq7a9deY3Xtzp/d3a2IyapgoGAQIooKqIDk3N8f6OyygKKODurzOYdz5L3vfZ/nwq7OPPNGEJaWlpibm3/x+HZqNYqi4OvnR84cOb54PPF5dHbASfr06Tl7+pSuhhNCCCE+2T2PQNaNWIXTleXk0fxre4xCZam9YhapcsoLju9BoYIFKVWyJAMH9tfJi04hxM/j5KnT9OrTmxXLllG9WlV9p6MTFy9dYuafyZ+Z1KN7N+rVrfsVM0ooKiqKnTt30a1rl8/a102IH8XNW7fo0rUbw4cNpXWrfz7svH3nDmPH/ca+Pbv1mN2XiY2NZexvv+HufpMjhw/FWyI8aMhQunXtQuVKlb44To0a1Zm/cCFr1qxl8qSJXzye+Dw6PQ35Q1NXY2JiCA4JkTXnQgghdO7F8zBWL7vCgd23MYkxJj9xb1Ri0tpTatYUcjSso+cMRVIiIiIwNTWN9+Zy/Pjf9JiREOJ7tWnzFmb/9Re7d+7UzijUaDRMnzmTMaNG6Tm7z5c9WzZ+adOa7Tt3cuLESTJkyECbVglnXJ93ccH1778ZPGjgN8tNURRcXV2ZOHkKDg4ODBsy5JvFFiKlOX3mDG3bdyB79uwcOXqUI0ePaq/5PwnA3MxMj9l9uda//MLZc87UrlWLESNHxrt29tw5unXtopM4FStUoFnTJixasoTomGgaN2qEibExR48fp3bNmpQoUUInccSH6axY+O9PvCqUL8/QIYOBuOrz7xMmsGr1GiIjI8mRPTt/zphB9erVdBVaCCHETyo6OpY922+xYvElwsOiAIg0NMenWCtqVLan5LA+GBjr9HMxoSOKorBjx05GjR7D2DFj6Nq1s75TEkJ8pzQaDRMnTebk6VNs2bQROzs77UnI9+/fZ/v2Hd91sTBjxoy0atkS95s3OXHiJJUrVWL87wk/VFm6bDl/X7v2TZdeP/L2ZvacuXTu1JHmzZphYGDwzWILkdL4+T3G8d0EKm9vnwTXnfLn/9Yp6dSr129wKlAAf3//BNdy5sih08Poli1ZQtGiRdm1azcnTpwke47stGzenEKFCukshvgwnb2D2rd/P39fu0a9unXJmjWLtn3Z8hUsXrIUABsbG/weP+aX9u05efyY7CEihBDis7mcfcTcP88R4P/PCcfZsqeh/7CKlCmfTY+ZiY9xcbnA0GHDuXz5CoULFyJ37lz6TkkI8R3btXs38xcuBKBU2XIJrmfP9mP8m+Dm5g7EbdWQlCxZMpPmG+4ZmDNHDrZs2vjN4gmRknXs0J6OHdrrO42v5viRw98slrGxMf369qVfXzngTl90Viz09fWjU4cO8daUBwcHM23GDACmTp5M3z69efXqFW3bd2DxkqUsWbRQV+GFEEL8JDxvPeV/v2/g7KN/lnLYpDanS89SNGtdECMj2SsppZv91xz8/B6zbOkSunXrgpGRkb5TEkJ8x0qVLMWaVauSvG5lZfkNs/k6FEXh5q1bABQqlHixsEuXzrRv1/ZbpiWEEOIHpbNiYVR0FE5OBeK1LV+xktDQUCpXqkTfPr0BSJ06NWPHjGbEd7wUQAghxLf38kUYm8eswfTgSgpHv8AtfU9CzW2p1zg/vfqVIbXKQt8pimRavGgBqVKlwsrKSt+pCCF+AFmzZom3sulH5OPry6tXrzAwMEgws9DLywsTU1OyZ8uGmampnjIUQgjxI9FZsTBLpsz4+Phqv/f392fh4sUADBsaf6PbdOnS4ef3WFehhRBC/MCio2PZM2cvAYv/IlPYQ217fbPr1Nmyihy50uoxO/Eh0dHRLFu2giJFClOhQnlte4YMGfSYlRBCfH9u3HAD4pb92tjYxLvWt/8AOnfs+MMstxZCCKF/OisWFi1alDHjxmFpZYlt2rTMmTef0NBQKpQvT4Xy5eP1dXd3x9zcXFehhRBC/KCc97hycdxUcgZeJZOiAUDBAMsqdeiyaBrm6aRQmFLt27efESNHce+eJ/369Y1XLBRCCPFpbt66CUCePHm0h7cAePv4cP36df6cMV1fqQkhhPgB6axY2LJlC5avWMFvv4/XtllbWzPnr9na70+ePMU9T0/Wb9yIfcaMugothBDiB3PPzY+9A6aRxeMQuZQobXusQ2GqL/0T20JyQFZK1vfXfixZsoy8efOwd88uGjVqqO+UhBDiu+bmHne4yeEjR8iR2yHeNWNjYxwdHfWRlhBCiB+UzoqF5mZmHNi3l6XLlnPt+nXsM2akb5/e5M71zwmH48aP5+nTpwB06dxZV6GFEEL8IEKCw9k2cDbmx9aTKzZU2x6V1p6S0yaQu1kDPWYnkqtVy5bkz5efXr16YGJiou90hBDiu3fTPW5m4aoVyylWrJi2ff6ChVy6fBlzM7OkbhVCCCE+mc6KhRB3eMnIEcOTvH7xvLMuwwkhhPhBxMRo2DN5PcGr5mIb+UzbHmWemlyDB1NyYDcM5MTcFCk0NJSwsDDSp0+vbatSpTJVqlTWY1ZCCPHjePLkCYHPn2NgYEC1qlVRqVTaa2q1LQWdZLa9EEII3dJpsVAIIYT4VC5nHzF/ljMOt3ZR9F2hMMbQBFWTNlSbNQ6TVKn0nKFIjEajYcOGjYwaPZYKFcqzbetmfackhBA/pJu3bgFxpz7/u1AI0LhhIwwNDfSRlhBCiB+YFAuFEELohfejIBbMOs/lCz4AvLCpQL63tzHJX4y6q/7EJoec6phSnTlzloGDBuPufpMyZUozeNBAfackhBA/rPcnIRcuVCjBtQIF8n/rdIQQQvwEpFgohBDim3r9KoI1y66wc6s7Go0CgJGRIbWbl6Bmuw6ky5FBzxmKj7l3z5Pg4BD+t3Y1HTq0x8BAZrUIIcTX8n5mYUGngkn2OXX6NMtXrGTLpo3fKi0hhBA/MCkWCiGE+CZiYjTs3urOqmVXCH0TqW0vXioLA4ZVJJeDrR6zE5+iW7cudO7cETPZUF8IIb66G27vZhYWTjiz8L2Nm+JvBfHi5UuOHz9OOrt0lClTmr379uPp6UmlShWpVrUqERERHDx0iNt3PChdqiS1a9X6qs8ghBDi+yLFQiGEEF/dpYN/c3HkePzfWhFqUwGAzFlV9OpXlqo1c+s5O5GUiIgI5s6dT2xsLGPHjta2GxsbY2wsLyGEEOJre/kyCH9/f4AkDzIJDQ3l6LFj9OndC4DA58/p++uvnD/vQtZs2chkb4+9fUau33Bj/sKFdOvaFU9PTzJnzsTdu/eYM3cuq1asoFnTJt/suYQQQqRs8kpfCCHEV/PoXgC7+07B/uZBsipR2BsY45OuOE16VqdVuyKYmMoJxymRoihs2bKV0WPG4ePjQ8uWLfSdkhBC/FT8/f2ZPPUP7axCAwMDfmnXPtG+L16+JCwsTLtMOZ2dHTu2baNAocIULVKEZUsWAxAWFkbe/AXw8fFh7+5dAMTGxlK8VCn2H9gvxUIhhBBaUiwUQgihc69D3rJlyHxMD60mW+wbbXuMOgtz5tYhc+mkl1IJ/Zs7dz5Dhg6jSJHCrF61gmrVquo7JSGE+KmYm1tQpkxpypQpnex7ypcrl6DNwtxc+2crKyuyZMmChcU/bUZGRuRxyMPz5y++LGEhhBA/FCkWCiGE0JmYGA0HFu7Hf+4MMoR5a9ujzazI3qcfpUf1w8BIZhOmdF26dCJt2jR06NAeQ0NDfacjhBA/HVvbtHTu2FHn4xoZJfw73Uj+XRZCCPEfOi8Wenp6snnLVm7duU1MdAxbN2/C1NRUe33sb7+RRpWGYUOH6Dq0EEIIPbpy4jZnh00kx5MLZFA0ACiGRljUbEKjxVMxsbHRc4YiMcHBwXh6elG6dCltm0qlolMn3b9JFUIIIYQQQqR8Oi0Wrlq9mlFjxhITE6Nt0yhKvD6VK1WiXYeONGvWlJw5cugyvBBCCD3wffCCbf1nkvHvneTUvNW2x+QqRM0Vf5G2YH49ZieSEh0dzZIly5g0eQrm5uY8euiFiYmJvtMSQgghhBBC6JnO1hbdcHNjxKjRWFpa8kubNgwZPCjRfrVq1sQxb17Wb9ioq9BCCCH04M3rSJZNP8yxStXJcXUD5u8KhVGpM1B42QpaXzoihcIU6uLFSzgVLMzAQYMpUqQwB/bvlUKhEEIIIYQQAtBhsXDT5i3Y29vjeuUyixcuYMigxIuFABUrVuDMmTO6Ci2EEOIbio3VsG/nLX5psp71W+8TZmAJgMbYjHRdetP6ziVyN6uv5yzFh6RPnx4zMzO2bd3MieNHKVKksL5TEkIIoSMhISGMGjOGFy9ecPrsGdauWwfAxEmTefTIm0uXr7Bo8RIA5i1YgKurK7du32bipMn6TFsIIUQKorNlyA8fPqBThw7YqdUf7Wttbc0jb29dhRZCCPGNuF72Y8FsZx54vdS2ueduTPa0XtRZNh0zOzs9ZieSoigKBgYG2u9z5syBu9t1PWYkhBDia7GysqJ3r1707tULAHMzMwA6d+qk3Y/WxDjubWCLZs1o3KiRfhIVQgiRYumsWGhhYYm5hXmy+t654xHvTYsQQoiUzc8nhOWLLnL6+H1tm7mFCW07FqV91xKYmspJiilRWFgYCxcu5sDBg5w9c0pONhZCiJ+AiYkJ2bNlS9CeLVvWBG2ZMmX6FikJIYT4zujsXUOhggXZt/8AsbGxH+x3+/Ydjh0/Tt68eXQVWgghxFcS+iaSFWM20rHVJm2h0NDQgNr1Hdm2vyNde5eWQmEKFBsby4oVq8jt4MjoMWPJlCkToaGh+k5LCCGEEEII8R3QWbGwTetWuLu702/AQF6/fp1on3POzrRs04bo6Ghat2qlq9BCCCF0TKNROLLBhcXFm5JmxQhyvLoFQP6CGViytgW/TalJWltLPWcpknLhwkV69upNzpw5uODizJbNG7GxsdF3WkIIIYQQQojvgM6WIWfJkoWpkycxbMRIDhw8SLGiRQGYNXs2wcEhXLp8iTt3PACoUL48Hdq101VoIYQQOnT1/AOOD/2DXI9OkEuJBqDKm9O0mtGX2o2ckF0kUr6KFStw5vRJKlWqKNt+CCGEEEIIIT6JzoqFAN26diVVqlSMGTeOc87OAMz+a472uqGhIW1at2LGtGkYG+s0tBBCiC/02DeEzSOWoj6zjryxIdp2TcYc1Fr0JxkqOukxO5GUZ8+esWfPPnr16hGvvXLlSnrKSAghhBBCCPE903nFrlXLljSoX58jR4/h+rcrgYHPsbS0wDGvI7Vr1yJXzpy6DimEEOILvA2PZuvs/QSvmEPOtw+07bFmVjgMGkSRwb0xMJJ9CVOat2/fMmfOPKbPmElERAS1a9cke/bs+k5LCCGEEEII8Z3TWbEwKiqKJwEBZM+WDUtLS5o1bUKzpk0S7Rv4/Dk2NjaYm5npKrwQQohPpNEoHN3uyt8TppH35RVSKRoAFEMjVHUbU/GvSZilTavnLEVi7t9/QPUatfD19aVRo4bMnDFdCoVCCCGEEEIIndBZsfDhw4eUr1SZl4HPPtp38pQplC1Tlra/tNFVeCGEEJ/g2hU/dg2fi+PdveTThGvbjfIXo+qSWaTO76jH7MTH5MiRnfLly7F2zSqqVq2i52yEEEIIIYQQPxK9bByYIUMGXC64SLFQCCG+scd+r1i24ALBu7dSNeSYtj0mTQZKz5xC9ib19Jjdzy0iIoJnz+I+cPN/4k9YWBg+Pj5A3Ox9BwcHbV8jIyM2bVyvlzyFEEIIIYQQPza9FAsfP/bH399fH6GFEOKnFPE2mk3/u8aGNX8TFRWLkVVhir+5QiqDt2Tt0ZPiY4dgJFtD6JWhkRGDhgzF+fx5bdvhI4eJioxC0cDtW25ky5ZNjxkKIYQQQgghfgZfXCy8c8eDqOgovL3jZj/ccHNLtF9MTAyvQl5xxfUqO3bupHjxYl8aWgghxEdoNArHDt1j8VwXgl7+s9w4j1MmnEbPo2DlQphnSK/HDMV7piYmrF61krr163Pf6z4RbyMJf/sWFIWuXTtjbm6u7xSFEEIIIYQQP4EvLhb2HziQa9eva7+vWr1Gsu7LmyfPl4YWQgjxAddd/Zk/yxmve8+1bXbprOnSsyQNmhbA0NBAj9mJxKRRqdi6eTO16tTlvud98jnmZeOG9RQpUljfqQkhhBBCCCF+El9cLDx6+BB79+1j5qzZeHp6kv0jS6SMjY3Jly8fI4cP/9LQQgghEhH4NJT1Y9fgf+4yXtalATA3N6b5L4Xp1K0Ellames5QfEi2rFnZuH4dZ86cZdjQIfpORwghhBBCCPGTMVAURdHFQH9fu0atOnWTdRryz+b8eRdq1qrD2/A3+k5FCPEDi3gbzdY5B3m2fCG5wu6gGBiyMUMXnOqUo++g8mS0t9F3iiIRfn5+TJs+g5kzpmNtba3vdIQQQgghhBA/OZ0dcFK8WDF+GztGV8MJIYRIJkWBI1uv8PeEaeQNciWXEvvugobBDayo9Edd/SYoEvXmzRumz5jJnDnzUBSFpk2aULNm8rbyEEIIIYQQQoivRaenIQ8aODBZ/UJCQrjj4UG5smV1GV4IIX46t6/7sXfQDLLfPUg+TaS23SB7XirOn066sqX1l5xIUkREBAWcCvP48WPatGnNtD+myEnHQgghhBBCiBThs4qFEZGRhIWGYWub9rOCurm7M2/+Anbt2P5Z9wshxM8u8Fkom4YtIdWJteSNCda2a1KrKfL7aBw6tAEDOcAkpTI3N2f0qJEUK1aU0qVLffF4sbGx3PHwIDQ0lIJOTokuZ/b09OT5ixfkyZMHO7X6i2PqU0hICDY2NhgaGuo7FSGEEEIIIX44n1wsDA4OpmKVqjx9+pS1q1fRoH59AHbv2Yu7u3uyxrh4+RKWFpafGloIIX56ERExbJ2yhTf/W0CWCD9te6ypJTl696HYiH4YmZnpMUORmLt375Enj0O84lafPr10MvaOnTsZP3ESAQEBKIpCunTpcD57hnR2dgBcuHiRwUOH8fDhQ2JiYjA3N+fg/n0UK1pUJ/G/laPHjnH02HGOnzjB48ePuedxR/uMQgghhBBCCN355GKhp6cX/v7+AJx3cdEWCy9eusSKlSuTPU7VKlU+NbQQQvy0FAXOnLiPa/9B5Hh5HWvizqbSGBqRplFLKs38HdM0Kj1nKf7r6dOnjJ8wkVWr1rB61Qo6duyg0/E3bd7CwMGD2b1zB1FRUQwcPITHjx8THBREOjs7rly5SrMWLfljymRKlypNvwEDuOHmhre3z3dXLNy2fTsxMTE8fvxY36kIIYQQQgjxQ/vkYmHJkiXo2aM7Dx89onevf2ZFVK9WlRUrV9KmdWvMPzKr5dr165+eqRBC/KQ8bj9j/p/O3HQLoEy0FTnfFQoNC5Wh5vLZ2OTKoecMxX9pNBqmT5/J9BkziYiIoG/f3tSvX0+nMYKCghg1ZgyNGjagQvnyAFw878zf166RN29eFEWh/6BB5MiRg65dugBw/OgRTp85Q/Vq1XSay7ewasUKIqOi2Lc/k75TEUIIIYQQ4of2ycVCQ0NDZkyblqC9SpUqWFtbM2XSpI/uZXjm7FnmL1j4qaGFEOKn8jwwlKXzL3Ls0F2UuPog7mnLUSRdOJX/GEmWqhX0m6BIkqGhIZcuX6Z06VLMnfMXBQrk13mMHTt38ebNG8qXK6dts7a2pnKlSgC4XLiAp6cn3bt10143NjamZg05cVkIIYQQQgiRNJ2dhmxmasrypUuwsrb6aF8nJyd69+qpq9BCCPFDiYiIYedmN9auvMrb8Ghte7lK2Rk0vBL2mZN38rzQr+3btmD2FfePdLngAoBanfi+fedd4q7r4zATDw8P6jVsxKP7Xt88dkrw7NkzKlauwkUXl88+DE4IIYQQQgh90VmxEKBunTrJ6qe2taVWzZq6DC2EEN89RYFT2y6xatV1fJ/HaNvzONoxYFhFihSX5ZcpkZfXfUaOGs2QwYOoUKG8tv1rFgoBHj3yBsDU1CTR697ePh+8/jUtWLSYkJCQbx43pVi6bDnPX7xAo2j0nYoQQgghhBCfTGfFwucvXuDicgGAzJnsKVGihPba7dt3WL9xA4GBgRQrVoxuXbpgYWGhq9BCCPHd83DzZ/fAaeTwOEhuSyd8VbVIndqczj1L0bxNIQwNDfSdoviPoKAgJk2ewuLFSzEzM6NJ40bxioWfIiIigk2bN3Pi5CmePHmChaUFxYoWpWP79uTNmzdB/6dPn/IyKAiAW7duY25uDoCVpSUlS5YkJCREexjZw0ePOHP2rPbeypUqYWBgQFBQEKvXrOX6jRs8ffoUE1MTsmbJSuuWLalePeGehseOH2fnrt08fPQIgMKFCtGrZw8ccufW9gkPD2f7zp3s3LULIF5cC3MLSpculeyfiZ+fH+s2bODixUsEPn+OqakJObInvj9nRGQk586d49Chw7hcuMD6/63F0dFRe93Hx5eDhw5x+MgRMmfOzJJFiW+FcvTYMXbu2s0jb28AihQuTK+ePcidK1eyco6MimL//v2sXrsWgAsXLpI6tQ0ARkZGVKwQf+uAs+fOsX3HDjy97hMbE0P27Nlp0rgRDerXx8BA/p8XQgghhBD6YaAo73fC+jLzFy5k/ISJAPzSpg2LFy4AwM3dnbr1G/D27Vtt30IFC3Lk0MGfpmB4/rwLNWvV4W34G32nIoRIYV48D2PriMVYHF5D6ti4mViKgSHPusyk028tsLY21XOGIimVq1TDxeUCXbp0YvKkiWTIkOGzxrl79y5t2rUjIOApvXv2pGKFCjwLDGTBokU8ePCAMaNGMnjQIG3/FStX8sf0Gbx+/RqNRoO1tTXGxnGf/Tk4ODB29Ci6du/BmzdviI6OxsLCIt4sxwee93j69Ck169QlJiaGUSNHkCVTZtxv3mTBokWUKFGc7Vu2aPuHh4fTrUdPjp84QZfOnSlbpjS+vr7MW7Awrsi5YT1Vq1QBoEOnzpxzdub169cAqFT/nNCdLWtWzpw6mayfyZKly5gwaRIZM2age7du5MvrSFh4OFevXmXh4sUA3PO4Qzq7uCXYAwcP5tw5Z3z9/NBoNJw5dZLChQoBcP/BA1q2ak1YWBjPX7ygWtWq7Ny+LV68sLAwunbvwanTp+nSuTNlSpfCx8eHeQsWEhUVxeaNG7R7QX7IkGHD2bV7N69evQIgderU2qKfpaUlt93dgLii4q/9+rNz1y6qVqlCxw4dMDMzZeeu3ezctYuKFSrwvzWrSZMmTbJ+XkIIIYQQQuiUoiNdu3dXmrVoqYSGhmrbNBqNUrV6DUVlq1aq16ylbNu+XZm3YIGSJXsOZfZfc3QVOsVzdj6vmFtY6zsNIUQKEhERrWycsVeZk62SskOdUfu11T6X4jpjvqKJjtZ3iuIjLl++ori73/yiMV68eKnkL1hIUdmqlX3798e79vr1a6VU2XKKylatrF23LsG9RYoVV1S2auXsuXOJjt22fQdFZatWlixdluDa8JGjFJWtWlm/YWO89i7duiktWreO19apS5dE87t8+YqislUrefMXUN5GRGjbvb19FJWtWlHZqj/88ElYvmKForJVK3XrN1DCwsLiXYuIjNSO/SwwMMG9OXI7KCpbtXLDzS3Bta3btikqW7XSrEXLBNfad+ykqGzVysFDh+K1X7x4SVHZqhXHAk5KRGRksvIPDw/X5hj4/HmiffoPHKiobNVKpy5dFI1GE+/a+AkTFZWtWmnYuIkSGxubrJhCCCGEEELokqGuio4hIa9o0KA+Vlb/HHBy9Ngxrt+4Qbp06dixbSstW7RgQL9+TJ08meMnT+gqtBBCfFecD7rzZ6kOGM/qS5awuAMgFEMjrGo3prH7ZYqP6I+BsU63lBVf6MqVq/j6+sZrK1WqJAULOn3RuPMXLODJkydUqliRhg0axLuWKlUqJo7/HYCJkyYTGhr6RbH+zcPDAwALC/N47Q3qN6Bm9X9OSz7v4sLeffupXq1qgvxKlSpJrpw5efbsGWfOnNFJXs+ePeP3CRMxMzVl1YrlWFpa6mTcDzl77hwHDh6kZo0a1KtbN961MmVKkyN7dp4+fcrZfy2p/hLuN2+yYeMmjIyMmDZ1aoLlxqNGjcROrcb5/Hn27tuvk5hCCCGEEEJ8Cp0VC9OmTYuRoZH2e41Gw/QZMwHo3+/XeEuRypYto914XQghfhZ3bz9lUs2ReHdtTr4nZzF6f/iBQ2FqnDpGnQ1LMLO11W+SIh5fX1/ate9ImbLlmfrHNJ2Pv+Pd3n61a9VK9HqN6tUxMzUlODiYY8eP6yxulixZAJg2fYZ2D0KAZk0QRoj+AAAgAElEQVSb0LNHd+33W7fFLdctkL8A3j4+Cb7Svvvv9e7duzrJa/OWLURERFCrVi0yZsyokzE/Zuu27QAUyJ8/0We0fXeatIeOnnHnzl0oikKhggUTfUZzMzOqV6/+LrdtCa4LIYQQQgjxtels6krOnDlYv2EDTRo3wtramslTpuLm7o6dWk3Xzp3j9X354iXh4eG6Ci2EECnai+dhbPr9f5juXU6B6EBte6yNLUXGjyVPxzZ6zE4kZebMWUyYOAmAUaNGMHrUSJ2OH/j8OU+ePAEga9YsifYxNjYmc+bMPHj4kOvXb9CsaVOdxB48aCCHjxzhwcOHlKtQka5dOtOvb1/s7e3j9bt2/ToAq9euZd2GDYmOpVKpiImJ1Ule5y/EHZRWrGgRnYyXHO+fceXq1axdty7RPiqVilgdPaObuzuQ9O8cIFu2rABcv3FDJzGFEEIIIYT4FDorFrZs0YK58+aTO68j5ubmvHkTd5jHmDGj4y0jioiIYNOWzahl9owQ4gcXHR3Lnu232DVnP829l2BA3HlSGmMzMnfvSalxQzD618ETImVJlSoVTZs2YdofU8iaNavOx39/CAZAOrt0SfZLly4dDx4+JDgkWGexHXLn5uypU4waM4YjR4+yZOkyVq9ew8CBAxg6eDCmpnEH6wQFxcXcsO5/yTrg40s9e/oMABsbm68e673gd6dKb964gQrlP+8060/x/veuVtsl2Sd9+vRxfUNCvno+QgghhBBC/JfOliHnzpWL1StXkDZtWt68eYOxsTFDBg+ic8eO2j5VqlUnY+YsrFu/gcKFC+kqtBBCpDguZx/RtukG5v15Dr+Y1Ny3cEQBLMpVo/4VZ8pOHi2FwhQmNjb+zLE+fXqxccO6r1IohLiTct8LfB6YZL/nz58D8U8W1oWsWbOwacN6zp4+RcMGDYiMimLmn7MY9/t4bR/rd/sQBwYmnZ8uGRrGvSz5dyH1a7P6xs/4/vf+4sXzJPs8D3wer68QQgghhBDfks6KhQD169XjtrsbN29cx8/Hm9/Gjo13ffSokaxZtYo1q1YxcvhwXYYWQogUwdPjOf267WTkoAME+L8GwCa1OblGjqLygb3U27sByyyZ9Zyl+DcPj7s0aNiYiZMmf9O46ezstMt+fX39Eu0TGxuL3+PHABQpXPir5FHQyYl1a9fw1+xZAGzctElbOHV0dATgwoWLnzW2oiif1D9btmwAuP597bPivfffwu+HvH9Gl898xg9J7PkLF4r7sNTHxzfBtfd8fOP2dS78lX7nQgghhBBCfIhOi4UARkZGZM6cGfNEZszUrlWLJo0b0aRxI/Lmzavr0EIIoTevQt4yb+Y5urffyo1rcfvQGRsb0qi5E5v3tKflrzWxK11Sz1mKfwsICKBHz14ULFSECxcukiF9hm+eQ8vmzQE4fORIotdPnz5DZGQkqVOnplbNmjqLa5chIydOnIzX1qlDB8zNzQkPDycyMhKAhg3qA3EHsQQEBCQ5XlJFwbCwsE/Kq1q1qgAcP3ECr/v3P+leANW7mXj+/v7Jvkf7jDt38vTp0yT7fWrhExJ//hYtmmNgYMDNW7d4/K4Q/G+RUVGcOHkKgFYtW3xyTCGEEEIIIb6UzouFAFFRURw7fpw/pk9n6PARTJoylV27d3/TZUVCCPEtREfHsn3JKWaV6cTOTdfRaOIKCiVKZ2HNll8YMa4qqVUWes5SJGbO3Hn873/r6devL/e97tK3b+9vnsOA/v3IlCkT511c2LN3X7xrYWFhTJgcd8DKuDGjdb6Pn7ePd7zv/f39iYyMpFjRotq9hps2aUKhggUJDQ3ll3btExS3QkNDmTZjBnPnzdO2WViYa/989ty5T8qpVYsWZMqUiejoaNq2a8+dOx7aa9HR0WzfvuOD9+fMlROAxUuXavdOBnjx8iWXLl9J9J7mzZpRoEB+Xr9+Tdv2HbSHzrwXGhrKH9OnM2/+/GQ9g4mJCUZGRkDiz1/QyYkO7dsRGxvL6LHjEhQhZ82eTWBgIGXLlKFpkybJiimEEEIIIYQuGSif81H5Bxw6fJjhI0cleLENcZvFDx82lH59+2JgYKDLsCna+fMu1KxVh7fhbz7eWQjx3Th/4i7HRvxJPv9TmGoiOa2qRZBTDfoNqUC5itn1nZ74iODgYF68eImDQ2695nH37l1at21LQMBTfu3Th0qVKhIYGMj8hQu5e/cew4YOYfTIf05idr95k6tXrzL2t9+JjIykdatW1K9Xl4oVKqBSqXjk7c3ly5eZOHkKT58+pVLFinTq2JHSpUqSKVMmIG5mYbasWenTuxdOBZzwf/KEP2fPxt/fn727d1G0yD+nEfv5+dG8ZSu87t/H3NycKpUrkylTJp49e8Y5Z2esrKxYvHABVSpXBkCj0VCoaDH8/f2xtLSkbp06WFrGFcznz5370Z+Hq6srzVq24s2bNxgYGJAvnyOWllZ4eXlRpXIl9u7bD8CgAQOoU7s2pUuX0t57+MgR2nXoiKIopE6dmnz5HAkKCsbAwIDixYqyafMW7NRqJowfT5XKlbTLwH18fGnRqhX3HzzA3NycqlWqYG9vr31Ga2trlixaSKWKFZP1O61SrTpu7u6YmppSr24dUtukJjgkmP+tWQNARGQkv/brx67de6hapQpdOnfCwtyCHbt2sXXbNkqVKsnG9evlMDghhBBCCKEXOi0Wbt22jT6/9kNRFAwMDEiXLh0Z0qcnOCSYgICnREdHA9CzR3dmTJumq7ApnhQLhfixeHoEsmXIPLLe2EmqmNfadk2ugjRxPoSJiZEesxOJOXPmLGFhYdSvX0/fqSQqPDycNWv/x9Fjx3jy5AnmFuaUKFacLl06a/e4e2/psuVcvnI5wRgjhw/H0dGR/QcOsGv37gTX27dtR/Xq1QD4a85cLly8wJOAp8RER5M5c2YKFSxIj+7dtAXFf4uIiGDN2v9x+MgR/P39MTUzI38+R2rXqkWjRo0SbD1y9+5dli1fwZOAAFQqFblz5aJqlcqUKFEiWT8PPz8/5s5fwIWLF4mNjcWpQH46dexIubJl6dn7nxmgefPmZdSIEfHu3bf/AOvWr8Pb24dMmTLRuFFDOrRvj+vff7N8xQptvy6dO8cr/r19+zbeM5qZm5M/Xz7q1I57RrN3J0Qnh7ePD4uXLMXHxwcbGxty5MhOpYoVE5y2fOLESTZt2YzH3XvExsaSI3t2mjVtQovmzbWzE4UQQgghhPjWdFYsDAwMpFjJUqhUKsaNGU3jRo2wsPhn6V1sbCxnzpxl8tSpuLm7s3vnDu0shB+dFAuF+DG8ehXBpolbiN22mIyR/yzHjDVPRYHRI8jfqzMG8gY/RfH09GLEyFHs3buPsmXLcMHFWd8pCSGEEEIIIUSKZqyrgTZv3YqNjQ2njh8jXbp0Ca4bGRlRvXo1ylcoT6MmTVm5avVPUywUQnzfYmI07FntjOfMmeR5dQMD4j5jUYyMydCmPaUnjcJEx/vJiS+3evVaevfpi7m5OVOnTGbw4IH6TkkIIYQQQgghUjydFQuvXbtGzx7dEy0U/pu5mRnDhw6h/8BBugothBBfjcspL46OnIWj7zHyaiK17aYlKlB18Uysc2TXW27iw8qXL0fXrp2ZOGE86dOn13c6QgghhBBCCPFd0FmxMDQ0DPuMGZPV1z6jPaGhoboKLYQQOuf9KIj1I1aSzmUjhaOfa9s1anvKzZ1Gpto19Zid+C9FUXj58iVqtVrbljdvHpYuWazHrIQQQgghhBDi+2Ooq4EyZszAhQsXk9XX+fz5RDdQF0IIfXv9KoJ5M8/xa9Nl5D2zAPW7QqHGzBKH0WNp7n5RCoUpjKvr31SpWp1ateui0Wj0nY4QQgghhBBCfNd0ViysVrUaGzZtYvuOHR/sd97FhanTplG7przZFkKkHDExGrZvcqNVw3Vs3+zGKwNrrtqURQHS1GlAo+sXKTTkVwxNTPSdqnjHx8eHtu06UKp0We7d86R3r176TkkIIYQQQgghvns6Ow05JiaGytWqceeOB+XLlaNRw4Zky5aV9OnTExQUhN/jxxw9eowjR4+SOnVqLl+8QDo7O12ETvHkNGQhUjbXy37MnXkO74dB2rbMWVX07F2CovbRpClcSI/ZiaScOnWauvUa0Lt3TyZPmoiNHDIjhBBCCCGEEF9MZ8VCAG8fH5o0a4aPj2+SfVQqFRvXr6Nc2bK6CpviSbFQiJTJxzuYhbPPc/G8t7bNOpUZHboUp1W7IpiYGukvOZEsgYGBHz1YSwghhBBCCCFE8ulsGTJA9mzZOHvqFIMGDkxw8mTq1Knp2KE9zmdO/1SFQiFEyvP6VQRL+y9jWY3u2kKhoaEBtes7snlPB9p1KS6FwhTm0KHDjBk7LkG7FAqFEEIIIYQQQrd0OrPwv/z9/XkZFISNjQ1ZMmfGyOjnfPMtMwuFSBliYjQcWnsWjxkzyRXijgEKe9QtSFOxKgOGVSR3HvXHBxHflJubO8OGj+DEiZM4OOTmb9crpEqVSt9piQ/Yu28/M/78k0YNGzBqxAh9pyOEEEIIIYT4RF+1WCjiSLFQCP27cvoup4ZNIqevM0bEAqAAFg3bUn/1LP0mJxJ1+vQZatSsjUql4rdxY+nbtzempqb6Tkt8ROWq1XC/eRMAf18fLC0t9ZyREEIIIYT4EURGRWEm7we+yc9Bp8uQAYKDg5k7fz71GjTEsYATufPmpUz5CgwYNIirV6/qOpwQQnyQz/3nzKo3jHttGuLge0ZbKIzN7EClfXulUJiCVaxYgUkTJ+Dl6cGgQQOkUPidaNmyBSYmJjRp3EgKhUIIIYQQ4otERkWxYuVKylWsRKfOXfSdToqwafNmHAs4MWrMGJ4+ffpVYuh0ZuHVq1dp36kzgYGBSfZp364ts//886d60yczC4X49l6HvGXHqEUo+9aiiv7nlOMYqzQUGDGUAr07Y2Co889LxGfSaDS4ublTtGgRfafy0woICODEyVN0aN/ui8dSFAUDAwMdZKU727Zvp1SpUmTPlk3fqQghhBBCiGQICAigXYeO3Llzh19/7Uv7du3IkT37R+8LCwvDysrq6yeoJ69eveLAwUP8MX064eHhrFm1kiqVK+s0hs6KhYHPn1O6bDlCQkKwsbGhWZMm5MuXj4wZMxAeHo7r39fYuWsXwcHBdO7YkTl/zdZF2O+CFAuF+HZiY2LZP2EFL9cuQRX5XNuuMTbDvlNXyowfhpGFhR4zFP91+vQZhg4bzt279/Dy9CBTpkz6TumnNGrMGM45n+eC8zl9p6Jzvr5+FC9Vik0b1lOzRg19pyOEEEIIkSIdOnyYFStXJbv/qBEjKF261FfJJTw8nBq16/Dw4UO2b91CxQoVkuwbGxvL1auuHD12jIOHD5POzo4D+/Z+lbw+lbePD4OHDE3QvnjhAjJmzBiv7c4dD8b+9lu8tsaNG9G5Y8dEx37x8iX1GjTE19eXI4cOUqRwYZ3lbayrgdasWUtISAgFnZzYvnVLgtOQW7dqxdjRo+jRuzf/W7+eTp066vRBhBDC9eIj3Dq0RfXKB9W7tlgDY8yqN6TO/AmY2dnpNT8Rn7+/P3369mP//gNkzZqVFcuXYm9vr++0vrnHjx/z9u1bHBwcgLhPUN3c3bGysqJM6dKYmJho+4aFhXH5yhVMTEwoUrjwRw97efDwIQEBAYSEhGBvb0/+fPkwNzdP0O/lyyA2bNxE1qxZPzqekZGRdnbeOWdnIiMjKVmiBCpV3P91iqJw79490qZNqz2tOiwsjOjo6HhjGRsbY21tTUREBBEREfGupU6dOtkzE4ODg7XPmTp1avI4OJAhQ4Z4fRYvXUJMTMwHxwkNDeX+gwfkz5cPU1NTAgICuHLVlVw5c+LkVCBB/4ePHuHl5QVAoYIFE7zY+7cXL1/y4P4DAp8HkiZNGhwdHVHb2ibo9+bNG+4/eMCTJ0+wsLAgj4MDmTNnTs6PQQghhBDiixUuVIhuXbuwdNlyXC5cwNHRkdatWibot3fvPm64uTFzxvSvlsvEyZPx8PDg93FjkywUurm7M3/BQk6eOsWrV6+07elS0Ps+O7Wabl27MH3mTG7fvkOlihXp3aun9rXzv2XKZE+P7t1YuGgxV11d+WvWLMqVK5vk2GpbW1YuX0a1GjXp3qMnly64YGysozKfoiOtf2mrqGzVioeHxwf7hYeHKwWLFFXG/fa7rkKneM7O5xVzC2t9pyHED8vXO1gZN/yQUr7IfGVi1trKDnVGZbvaXtlcubkS7PVA3+mJJAQHByvZsudSxo+fqISHh+s7nW/q9evXytRp05QKlSorKlu1Ur1mLeX6jRtKm7btlDRqO0Vlq1ZUtmqlZJmyir+/v/L06VNl5OjRSoZMmbXXHPI6Ki4XLiQYW6PRKKtWr1ZKli6jOOR1VGrXq6cUK1FSUdmqlVx58ijnXVzi9Z84eYqSPVduRWWrVjJlzaY0adZc+zV12jQlICBAGffb79oxOnftqiiKokydNk2by4SJk5R79+4pg4cMVRwLOCkqW7Uy+6852hg9e/eJ91zq9BmU9h07KYqiKAsXLY73XDkd8iTrv4eIyEil/8CBijp9BqVU2XJK9Zq1lPT2mZQ0ajtlwaJFiqIoytWrV5Uatetox65YuUq853v8+LGybft2pXmrVkr6jPaKylat+Pj4Knfv3lUKFCqsqGzVSlq7dPHiXrlyRalWo6aiTp9BKV2uvJItZy4ljdpO6dGrtxIWFpbg99y5a1fFNl16pXylSkqVatUVuwwZlbR26ZTNW7Zo+8XExCjjfvtdSZ/RXilavIRSs05dxT5LVkVlq1Z+Hz/hoz8LIYQQQghd6tq9R9xrvEmTE70+acoUxT5LViU2NvarxH/8+LGSPqO9kitPHuVtRESS/U6cOKn8MX26smfvPsXr/n1l7vz5ispWrdRv2Oir5PUl5i1YoKhs1Urvvr9+sN/biAglf8FCyuAhQ5M99vvf14aNm740TS2dbdhlaGhIlixZcHR0/GA/CwsL2rRuxa3bt3UVWgjxkwp9E8mS+Rfo2GoTp4/fB+Bq6nK8cihLmSPHaXNmB6rcOfWcpUiKSqXivtddJkz4HYufbGl4dHQ0lpaW5MuXD4Cbt27RrXsP8ufPx9LFixg7ejQ2NjZ4eXnRsHETqlSvQWyshj9nzGDWzBnkyZOH5y9e0H/AwAQz5pYsXcbQ4SMwMTXB4/Ytjhw8yN9XrzB65EhevgxiwMBB8frncchNq5YtAEiVKhWNGzfSfpUuVZqIyEhs1bbkypULgNhYDYOHDOXYseN079ZNu2w8/O1bsmbLip1aneB5ly1ZjNfdu9oZiU2bNGH9/9YC8GvfPqxdvQoDAwPWrFrFA897yfrvYdLkyazfsJGJ48dz+YILJ44d5c5Nd9KkSaP9ZNnc3IJ2bX/RrnYoW7ZMvOeLm9kYSYXy5Yl6N/PxqutVmrdqTbWqVahVs2a8mKdOn6Zh4yZYWlpy292NSy7nuX/vLt26dmX7jh30+fXXeP2HDh/Bnr37WLp4EefPnuX0yRO4X7+GgYEBr1//szXJwsWLWbh4MX169+aa61WOHT7E3du3yJUzJyGvQj76sxBCCCGE0CV3d3cgbvVEUpycCmD4lfaA37J1G5FRUbRo3hxzM7Mk+1WvXo3RI0fSuFFDcufK9dXy0YW8efIAaFemJGXVqtUEBQUxbOiQZI/dru0vAPxv/frPT/C/dFV1XLhosZLHMV+y+q5bv0GpUbtOgvbTZ84oT5480VVKKYbMLBRCt2JjNcrh/R5Kg2orlPJF5mu/enTYptxyD9B3eiIR+/btVypWqqKEhobqO5UUZfeevdoZb//9ZHbDxk3aGXGvXr2Kd83Pz09Rp8+gqGzVyt27d+Nda9q8haKyVStVq9eI1x4UFJTkeMeOH1dUtmqlbIWKSeY6f+FCRWWrVmzTpVcGDR6izffNmzdKUFCQtl+PXr0TzCx87/LlK4ptuvRKGrWdcur0aUVRFOXVq1dKoaJFlTHjxiUZOzH5nAoqKlu18vjx43jtVavXUKb88Ue8ttLlyisqW7Vy7PjxJMdLa5dOUdmqlQKFCsf7mfr6+mrzzJUnj+KQ11F5+fJlvHvfvn2r5MjtoKhs1crt23cURVGU2NhYJX1GeyWN2k6JjIyM179AocLKsuUrtN9XqVZdUdmqlWvXr8fr1/qXtsqAQYM+9qMQQgghhNCZ0NBQ7euiBw8f6iWH6jVrKSpbtXLk6NFPuu/969WUOLPwwcOHispWrWTNkTPJPqGhoYpDXkdl6rRpnzT224gIJX1GeyWtXTrl2bNnX5qqoig6nFnYuVNHDI2MuP/gwUf7evt4k/7dPkb/tnDRIjw/UmUVQvy8Xl79m4PVGzGo/iym/Hac4KC3AKRLb824yTVZ9r+WFCiY4SOjiG/p0qXLlK9QiUaNmxIcHIy//xN9p5QimZqaJvgk9N+bRZv+5xPVzJkzk/ndjD5fP79412b9OZM1q1bx+2/j4rWnSZMGM1NTAJ49e/bZuZYtU4a/Zs/S5mttbU2aNGmSdW+pUiXp17cviqIwaMgQwsLCGDp8BHZqO8b/ZzPnj4l9N6Py7DnneO379+5h6ODBnzTWv61bu4a8efNqv8+SJQsAGzZu4uXLIBo0aEDatGnj3WNubk7evHGfFp9zjssnNjYWjaKgKArOzufj9b943plOnf7ZqDo6Jvrds8Q/XGb1yhVM/+OPz34WIYQQQohPdfPmLTQaDalSpdKuCnnv8uUrePv4fNX4EZGR3HBzA6BE8RJfNda3lC1rVszMzHj9+jWBgYGJ9lmydBkaRUP//6xW+RhzMzMKFiqERqPhytWrukhXdwec+Pn5Ubd2bab+8Qedkjip5b1Lly6TKlUqzpw9q22LiY7B3f2mrtIRQvxAXt+9x7WJM3h54ggAOc2ec82uLebmxrTtVIz2XUtgamqk5yzFfwUEBFC5SjXSpk3L8mVL6dq1M0ZG8ntKLpuPHF7y/nCT/x4ckjNHDnLmyBGvzdPTk3POzmgUBQCNRvPZeanVtsk+fCQxo0eP4sSpk9y+fYcmzVvw8OFDzp46iem7QmZy1a5di/UbNjJoyBB8fH3o/+uvWFtbY2Vl9dm5AahtEy6jBjh15jQArq6udOnWLcF1b++4F87P3r34MzExoVrVqhw9doz2nToxZvQoenTvjrmZWYKDaWrXqsXt23eYNHkKz549Y/jQoaRNmxZLS8svehYhxPfp7t27nDh1Cj8/P6Iioz7Yt0KF8jRv1uwbZSaE+Bm8L9QVLlQowYfZPXr3Zu5fsxMUEXXJy8uL2NhYbGxssLVN+/EbvhNGRkbkzJkTDw8PvO7f1x4E+N6rV69YtGQJo0eO/OghhonJkT07rq6u3LvnSYP69b84X50VCxcvXcr6DRsB2LN3X7LuOXrsmK7CCyF+QGHe3rhPncGTvftBiStuKBgQaWhG9SqZ6TuyBukzfPpfpOLbyJgxIzt3bKNKlcpYW1vrO52fjqurK+s3buT4iZNksrenXt06GH5BkU9XzExNWbpoMTVq1cLV1ZXJkyZ+1om/UydPJjg4hAMHDzLzz1msWLmK3j17MqB/v0RPfP5Svj6+ABQpUpicORPuhVq4cGEAihcrpm1bMH8e3Xv05JyzM7+Pn8DCRYsZ2L8/Pbp3i3fK9Yjhw3n27BkbN21m6bLlrN+wka6dOzN82NDPerEohPg++fj4MnT4MO55etGhXTsKOhXkwYMHbN+5E39//0TvyZ8/3zfOUgjxo3O/GTeJK3PmzPFmEbq5uePn54dTgQJfNb63tzcAWbJ8+uvDlC6PQ248PDzw9PKifLly8a7Nnb+A1Klt4q0++RTvX08/8n70xXmCDouF5cqWZf2GjTgVKPBZRzXHxsZy89YtXaUjhPiOvX0SwL0Fi3iwZh3E/nN4wxPTTDwu2owOf3TBqZAsN05JYmJi2LZtO7/80iberLMGDb78Uy3xaTw8POjbrz+3bt+mc6dOHDqwX/vp76y/5kDUh2epfAsWlhYYm5gQGRXFsuUr6Ni+PTY2Np80RqpUqVj/v7WcOn2ambNmcfnyFabNmMG27ds5sG8vGTLo9u+I9wfJ1KxRg4YNGiTrHju1mj27dnLw0CFm/jmLm7duMfa339i6bRv79uwmderUQFwBdeH8+XRo156Zs2Zx6vRpFixaxPadO9m3excODg46fRYhRMrj6upKi9ZtKFG8GJcvuMSbWTxwQH+q1ahJ+Nu3rF21ircRb3nw4AFe9+9ToXx5PWYthPgRubnHzSzcsnUrW7ZujXfNTq1OMCNO194fAvcjTjbI8+6Qk/v378drf/HyJStXrWLenDnabYM+VSrruNU1b968+UjP5NFZsbB2rVoYGxuzZ9euz54qWqtuPV2lI4T4DkUGBeG1aAleS1eiiYrUtr8wscMjaw3qjOtBv/qOpIDJUeJfDhw4yPARI7l79x5p0qShbt06+k7ppxUWFkaT5i0IDAxk7erVNG7UUN8pJRAZFUW37j1o2bw5Dx894pyzM6PGjGXxwgWfNV61qlWpVrUqp06fpt+AgTx4+JDfxk9gxbKlOs07Q4YMPPL2xtPz0/ZWNjAwoEH9+tSvV4/9Bw4yaMgQ3G/eZOasWUydPDle39KlS7Fz+zauXLnKr/37c//BA4aNGMne3bt0+ShCiBTm6dOntG7bDjNTU5YvXZpgCwKVSsXoUSPp2bsPa9etY+niRVStUkU/yQohfmgRkZHa1zonjx+Lt7XNsBEjCQ4O/uo5hIWFAWBhbvHVY0HcftPTZsz4ojHMTM3Ys2vnR/s55M4NgJdX/GLhrNmzccidm6ZNGid6X0xMDMEhIdimTZvkic8WFnH/doSGhn1K6knS2QEnadKkYeTw4ZibJ32s9ce0adUS+4wZdZWSEOI7ERMWxq3JUzlcpBT35i/SFv8uGswAACAASURBVAqDTGw5nqE5yqglTDs1nToNpFCYkoSFhVG9Ri0aNmqCRqNh964dUijUM+fz5wkMDCRNmjSfVSiM/gazDseMHcerV6+YPGkis2f9iZmZGZu3bGHvvv3JHuPFy5fMnT+fyH/lW61qVebN+QsAt3d77fzXf/d3/BTlypUFYPfePSjv9n78EF9fPxYsWqT93sDAgEYNGzBl0iQAbtyIyzE8PJy58+fHe/FdqlRJVq5YHtcviWcRQvw4xk+cRFBQEKNGjkhwgNJ7xYsXB+DQ4cPJ+jtICCE+x61bt4iJicHKyooihQujUqm0X1ZWlhR0cvrqObz/O+5L9sj+1HgxMbFf+BXz8UCgXS3i9a+DfQMCAvjfuvWM//23RJ953foN1KxdhzyO+WjRqnWSY7+/V1f/RuhsZiHAsKFDktUvJCSEOx4elCtbNl571y5ddJmOEOI7ERVjgMf6nRi+DQfgtXFqrtqUQ92wKROGViZDRtmzKyWysrLC3t6eeXPn0KdPr3h7sAn9eH+ATHhYGBEREfH27ouIjEzyYBNDg7jPDp8FBhIdHf3Vfpd79+1n3fr1HNq/D2tra3JbWzNwQH9m/jmLocOHUbZsGdLZ2X10nGdPnzFx0mTq1amjXc4BaE+I/u/ymPcvnh4/TnzPr+To1KEDCxcu4vbtOyxasoR+ffsm6BMcHIynpxelS5fiwcMH/D5+Au1++SXem/9Mmezf5Rj3nKFhYUycNJmSJUrE27smc6a4fWfSf+WlPkII/Qp8/pxdu3djZGREgw9scfB+q4Y3b94QHh7+xYc5CSFEYt5vDefkVCDBDLY+vXp9k72U3y8/Dn/33vBrq1ypEpUrVfomsfI4OGBgYICvnx8RkZGYm5kxfeZMKlQon2gOx44fZ/nKFZw5eZJTp0/j5uae5Nhv3/28dLV8W2czCz+Fm7s7s2b/pY/QQogURKNROHLgLm2ab+YYJXhjZMMZVQ0uV/udPlunMGlWAykUpiBRicw6W79uLQMG9JNC4Wd6v6dIaFhYgkLem9BQ7Z9fv34d71psbKx2iUbov/oVLVoUa2trIqOiGDh4CA8ePsT95k3mzptHjVq1UN7F+O9eJmo7tbZ98pSpePv48Mjbm3v37iXI9d95feiZ/hvjkbc3AwYNomeP7pQsWVLbPmTwYLJmzcLLl0EMGTrsg2P/l8uFC9o/R0dHs3DxYgC6/+e0Yjt13PMtXbaMS5cu8/TpU264ufF/9u46qqqsDeDwjxRF5UoooghKGWB3F9bYraPjhN1jzjeOrWOOid3d3QoGoQgmWAgCiokCBh33fH8gd2S4F1Auoe5nLdfSc/bZex9EvOc9e79vdHS0Yq4pb2EjVdyfubk5s2clbxueMnUaI0eP5tr164SGhuLj68u8+QuoUr0GZ86dUznH2NhYVq9Zi6amZpoXpB4elxVzkMvlLFu+XOm9CILwbXF1dSUxMREHe3vFzyplUgqc6OnpkT9/zmzNEwTh++PzMRhVqWLFNOfKli1LiY8vZrNTSkBS1Weyr1mBAgUwMzNDLpcTFBjIo8BAdu/Zy+RJk5S2d1qxklYtW6KtrU0LR0fGjxursu+Uz+iFCqknWKjWlYVyuZxzzs7cu3dPkZRSGY8rVygo3oYJwnft1vVnLF3ghr/fawAi9O2JsKzBT4Pq0LZTBTQ1xX7jvEIul3PgwEHGT/iD7du2UL++SKaeVY8fP6F7r148/ljtzc/PD4fKVZg9cyYdO7Rn2IgRnDx1WtG+dt16dO/Wlbl//82OnbuYOXs2r169AmDU72NYtGQpJ44exdjIiJVOyxkxajR79+1j77596OvrM3jQQE4dP063nj25etWLTl27UaqUOR6urgBUdHDAsXlzzjk7s3zFCpavWIFMJmPggP40bdyEEaNGERiUXFnNxeU8FatUpaydHXt371LM8eChQ4pAI8AyJyeOnzjBsqVLmDJtOjdu3EAul7N+w0YuXrqkGLtT5y6EhDwF4MTJk5iZl2LCuLGMHjVK5ddPV1cHHR0dxowbz7LlTlhaWvLQ35+YmBgW/bOQjh3ap2o/dMhgrt+4QVBwMK3btkVTUxP7ChXYvXMHg4cOw+Pyv4G61m3bYmpqyvy5c9K84f3t11+RyWT8NWUq27bvYNv2HYpz1lZWTPrfH/zcrx+Q/ECvpaXFTz//go2NDWbFi3P//n3Q0GDdmjU0qF8fAC1NLfLly8ecefPYun071lZWBD8OJiwsnCl/TWLggP4Zfj8JgvD1evyx0npGVeFdXM4DUL9+PZX5qgRBELIqpRKyg72DyjZ79+3Dzd2d5UuXZsscLCxKAfDs2fNs6T+32dna8uzZM/wDHnH02DG6dO5MRQflX++79+7RpnXrTPWbsoPG0sJSLfNUW7AwOjqaDp06c+369Uy1F0l5BeH7kBQTQ9D2nRRtUJ/CZe0IfRnJGqcrnD35gJR0CvnyadO1dyX6/VadAvpfVv1JyB4uLucZN34Ct27dplatmmmSrgtfxsysOHt27Uxz3OjjdtXJkyYxflzqVXYFPq4kaftDG+rVq5vmWpksubJuu7ZtadK4Mffv30eSoGKliujlS84nvG3LFsWKxE9paGiwd/cunj59ypuwMIyNjDAzM0NTU5OYmBj27tmd5hrtj1ueUzRv1oyqVaumaVesaFE2rV9HYlKS4ljKtmeAdWtWk/CfPC+FM9jiYmNjQ1CAP7du3+b16zdoaGhgaWmBnZ2d4l4/1aplS/zu3eXJkxC0tDQxMzNTvLWe+/ds4pXkMlS1HbpL58507NCBGzduEPz4MQUKFMDW1laRsDpFndq1CfR/yG0fH16/fo2uri6WFpbY2dmmWolrZGRI8KMAbt26zes3r0lISMTS0oKydnbi35sgfAcSEpN//mSU7+roseS8rr98fCEhCIKgbgkJCdy9dw+ASpXSrixMsWnLFsrZlVX8OTAoiDNnzmJra4uDgz379x/gUWAgP7RpTdMmTQgLC+fgoYMEPHpE40aNaN0q/Rzndra2aGpq8vbtWyIiIihSpIh6bjCPsLGx5vyFCxw5eoRTp89w9bKH0nYBjx4RHh7O8+fPuXX7Nro6upQvX05lv0EfFyHY2dmpZZ5qCxY6rVjJtevX0dLSommTJpQpU1pl9Ro3d3d1DSsIQh6VGBVF8I5d+C1bQeyrVxRv25YHtX5j+6brxMf/GzSo29CS3yc2orhZ4VycraCMXC5n5KjRREVFs3PHNnr27JFjiYa/dTo6OlhaWKg8b2pqqvKcgYEBBgYG6fZfsGDBVFt9U5gYG6e7za1kyZJpVrfkz58/3bmmKFy4sCKnlrJ+VfnS7Sz6+vqpcvxlpGDBgko/YJmZmX322FpaWtSoUUPp1/hThQsXVqwgTI+enh61a9f67HkIgvD1s/2Y7N7Pzw9JkpT+P3v6zBlu+/jQoH79DB+yw8LC0dHRpnDhwrwJCyMkJAQHe3u0tZMf+96+fcuTkBDs7OzIp5v6Be2DBw+QyWSp/g968eIFERFv031AFQTh2/DAz4+4uDh0dXWx+yQn9KeePAnBy8ubbl26AMmBwpmzZnH02HFsbW0pZW6OhYUFnlc92bxlC31+7M2z588pU7oMN2/eZO269ezbvZvmzZupnIeenh4O9vbc9vHh2vXrODZvnul7iImOAVD6IjivSHnBfPDQYUYOH465uXmaNkHBwSxavASAGzdv8uHDB2QyGVOnTFbaZ2xcHD4+PmhoaFCjejW1zFNtwcKbt24BsG3L5gz/E3N1c2PJ0mXqGloQhDwkLjycgDXrebRhIwnv/s2z9vi0Mztv2BCvmVxwwa5cUUaNb0DFKp//oC7kDE1NTQ4fOoi5eclUhTIEQRAEQVCPFo6OGBkZEhQczNFjx9NUsg949IhRo3/H0sKCtatXqXxpd+fOXUaPGcPNW7fo82Nvnr94weXLV4iOjqZSxYosmDeXJcuW4+rmRmRkJDY2Npw7fQoDAwM8Pa8ybMQIAoOCWLF8Ob179SQyMpKuPXrg7X2Njh3as2Hdupz4cgiCkAvu3LnL33Pnctvn3+IZLVu3Udr2+fPnyOVyRVXkMqVLs2nDBoqZlaCloyPTpk4Bkl9c2JUvD8D+PXsAiIuPp4KDAydPn043WAjQpnVrbvv4cOHixQyDhbPnzMHZ2YV3797x/MULALy9valZpy76BQpQsaIDSxcvzsRXImekVEQ2MDBg1MgRStuUtrRk9swZ7Nq9mx7du9O3z4/p9unp6UlcXBzVqlalePHiapmn2oKFMpkMPT09WrZokWHbGtWrs2D+PHUNLQhCHhAZGETAug083rmbxOh/K1fF6xbgml41bhWsTpymHsYm+vw6qKbIS5jHxMXFsWyZEz16dKNUqVKK4zY21ulcJQiCIAhCVhQsWJCVTk789PMvDB85kpcvX+Lo2JykxETOnnNm4aJF2FeowNrVq9JddW5nZ8uGdeuoXK0akZFRLF+yBFNTU/bs3cvgocNYuGgxixYuoESJElxydaVTl67s3rOXQQMHULt2Lc6dOY2VrV2qeZ0+cYLa9TJeHZ1ZKZU/BUEZ8f2Re0xMjOnerRvdu3XL9DUOSgqgaOv8G14yMjLEyNAQbe1/U6/k09XFopQF4eFhGfbfs0cPFi5axL59+5k2ZQq6uqpTVTVv2owK5SuoPF+4cN4qmFnRwYGpUybjUMEew48piLJq567klEF9Mggqfg61BQvbtG7Fvv37iU9IyPAfef78+bEqU0ZdQwuCkIveXPXi0doNPDtxEumTnGSJ+QtzTbcSN/STg4T58mnzo8hLmOdIksTevfv435+TCAoKRkNDg3HjxuT2tARBEAThu9HC0ZHz586xeOlSlixbxtRp0zA0MqJG9WqsdFpOq5YtM0wDoqOjg4FBciqIGtWrKwKLHTt2ZMiw4VSuXEmR9qFRw4aYGBsTFByUvTf20YmTJ3FauRJ/f38C/PxyZEzh67Nk6VK2bd9B927dGD50KEZG6gmiCBkrVqxYmuJw6qChpBhTZgs0lSplTp/evdm0ZQur165l5PDhKtvWqlXzi+eYG2QyGaNHjlRbf/fu3efQ4cNYWJSid8+eautXjcHC1lhZWeHl5UXDBg3SbXvt2jWWLndi25bN6hpeEIQcJCUlEbR1OwHrN/LhoX+qc3JDU9w1q3BLz4Ekkgsg1G1oye8TGlG8hMhLmNe079CJ48dPULGiA2fPnMLRMfM5QQRBEARBUI/y5cuxbs1qtfebT1dX6cO5Xn49kpLkah/vU7FxcYwcNZp9+/fTrWtXZs+cmanroqKi0NfXz9a5ZZWq/JJZ9f79e06eOoWX9zUCAwNZ6bQ8U7l1Y+PicHZ2xs3dnUeBgYwfMzZTAZSkpCTcPTxwcTlPwKNHdOrYgW5du6rjVj7bgN/6Y2xkxLz5C9i9Zw/bt26hmpLCacL3Y/q0qbh7eDB33nxq1aj51QUFc0JERAT9Bw1CU1OT9WvWpLsC83OpLViopaXFxPHjcVqxErk8/f94jh47rrQaoyAIXwcNLS0CN21NFSjUtrXnYpID12JLIX2sdGpbzoRR4xpSqarIS5hXde3SmQ7t2/PLL/3Q+k91W0EQBEEQhC81+vcx7Nu/n1kzZjBs6JB02z548IDTZ89y+swZvL2vERb6KodmmXnv3r1j4T+LOHz0KM+ePVMU2hozejQ1a6Zf8Coj4eHh/D13Htu3bycxKQn7ChUwNTVFW0cn3etiYmJYttyJFatWERkZia2tLebmJclfQHmh0RRJSUls3baNufMXEBoaSqlS5lhbWassVJYTjIwM6f/bb7RwbEHrtm3p0q07F1ycKW1pmWtzEnJXoUKFOLBvL7379KVT166MHzuGXj17ppuS4XsRExPD6TNnmTFzJmHh4Wzbspnq1aurdQy1BQvlcjnuHh6cc3bmnLNzhu2bNG6srqEFQcgFpX/qg++0GRRs7MiZGHuuBH58u6oBRsb6/DZY5CXMa96+fYuuri4FChRQHOvX76dcnJEgCIIgCHmJJElq6efQ4SPs2buXFo6OKgOFb8LCmDN3HmfOnuXZs2doaGhk24q9rAoJCaFNu/a8Dg3lj4kTaNCgAc+fP2fW33No064d/yxcQL++fb+oby8vb3r37UNsbBx/TJzAz/36IZPJMrwuMCiIbt178CQkhMEDBzJ0yOBMFTYIDw+nV58+eHl506N7d8aMHoWtisq3uaFUKXOcli2lc9duDB46lDMnT+b2lIRcZG5uztnTp9i4aTNbtm7F86oXe3btzO1p5brde/fy999zaNeuHb+PGqm0onJWqS1YuHHTJjZt3gwk5yQsVrSoyrZvwjJOaCkIQt6m7/gD9/wMOeXyhJTPlTo6WnTsak//YbXRF3kJ84zExEQ2btzM5ClTGTJ4ENOmTcntKQmCIAiCkIcUKlQIbW1tAgICstxXUlISc+fPB2DypEkq20VGRlKoYEGm/DWJcuXKER0VTasffsjy+J+6eesWg4YMZdHCBdSvV++L+pDL5fTt9zNPnz5lpdNyen3MCVatalXq1KlDnbr1GDtuPPYVKnz2ttnLV67QtXsPDAwMOHX8uKJKakYCg4Jo1boNUdHRHD54gHp162bqunfv3tG6bTsCAgJYtcKJnj16fNZ8c0qTxo2pX68e7h4eODu7ZFg5V8g9ISEhzJ4zl4SEBA4dOoxFKQu6de3CxP/9j7CwME6fOYOtjQ2DBg7gz7/+4u69ewQFBzFj1mym/KX658On8ufPz7ChQxg2dAgxMTHZfEd5g4+vL/MXLARg7bp1vH33lhHDhinO9+rRg1/69cvWOagtWOjsch6AkcOHM+nP/6W7V/rEyZNs2LhJXUMLgqBGsaGhPN65h5fOLjQ8vB8N7dQ/JmJjEzmw6zab13sTE52gOF63oSWjxzfErKRBTk9ZSMfx4ycYN34Cfn4PadKkMe3bt8vtKQmCIAiCoGZRUVG4e3gAcO/+PV6+fImRkRGeV68il8vx8/Pj6dOnlChRAm/va7x//4HAwED8AwKwsbZGR0eHRo0asmr1aj5ERlKkiIw3r9/w5s1rnjwpiL+/f6YDWVe9vHj48CGVK1XC3l51hVJLCwumTf33BeaNmzez9kVQIiYmBn9/fyIjI7+4j/0HDnDbxwcba+s0wTVjIyOGDR3C9JmzmDFzFkcOHcx0v2Fh4fQfOIiEhAR27die6a9vfHw8/QcM5PWbN2xcvz7TgUKA38eO5eHDh/z5xx95NlCYonevnrh7eLB1+/ZcDxa+fPkSN3d3wsMjKFeuLA3q11esgF21eg1x8XF06dQpW1Z35XUmRYvyx8QJ/DFxAgAFChRAV1eX30eP5vfRowEUBXAHDxzEwAEDANDKZKGT/8qfP/0t9t8KqzJlmDVzBrNmzgCS889+Sk9PL9vnoLZgoa6uLtra2hkGCgGqVK5Mp44d1TW0IAhZJMnlvHbzIGjrdp6fOo08ITkI+OKcC2atWya3keCicwArFrvz8sUHxbW2ZU0YOa4BlauVyJW5C+lzdnFJrni8ZxfduuVOwmpBEARBELLXi5cvCXj0iKlTJgNw9959qlSuxPUbN5gy+S8Abvv4YGpqymXPK4waOQIAT8+r2FhbA7Bh7VpWrVlDaOhrrK2smDBuHFWrViUsPIyrXt6ZDmadPHUKgMbfSNqpXbv3ANC2bVulW6Tbtm3L9JmzcHN35+nTp5QsWTJT/f6zeBEvXrzg119+oXKlSpmez46dO7l56xYN6tenU8cOmb7Ozd2dQ4ePYGFRSvH3n5elpC1zOX+e2NjYHAmO/NeHDx+YNHkye/fuo3nz5pibl2TFqlVUKF+ebVs243vnDn/+9RcFCxZkYP/+ahs3Ni6OxISEjBumQ1dXV63FLlTRy5cPSwuLNMeVHStV6vsLpn4pfX39XC/0pLZgYf169Th77lymEuSbmZnRt8+P6hpaEIQvFPf6NcE79xC0bQdRjx+nOqdbREZ8eDgAD+6FsnSBK763XijOGxjo8fPAmnTpWVHkJczDZs+ayYL589DJIEG2IAiCIORVfn5+OK1cia/vHV6+eoWBgQE1qldj1IgRmQ5gfeusrawYPXJkmuOZPQZgYGDAHxMmpDr2Jc9sV728AahRvdpnX5vXxMfHc/nKFQCVAT2rMmUoVKgQHz584JKrGz/27pVhv+/fv2fb9h0ADOz/W6bnI0kSK1clV80e8BnXAaxYuQqAfn37fnEQ6fWbN6xZu5Zz55wJff0aG2trJk4YT726dUlISKBm7Tq8ffeOndu3Uad27S8aI4WpqSnm5uaEhITg6+tLjRpZKyLzucLDw2nboSPBwcEc2L9PsYJz7Jgx1KpTl1Vr1vD8+XMAOrRvlyoneFYNHjKEI0ePZamPKX9NUqzsE4QvobZgYe9ePZk7fz4PHvhRoUL5dNs+Cgzk0KHDjBs7Rl3DC4KQSapWEaYoUqkipX/qQ6luXYiIlDN/1gWOH7qLXJ6cmFBbW5NO3Rz4bWhtChYUeQnziqioKOYvWEj5cuXo0aO74nhuv5ESBEEQhKxYvGQJs/6eQ9sf2rBs6RJkBjJmzp7Njp27OHrsOHdu31JbBVcXl/NcueqZpT6qV6tGq5Yt1TKfr5EkSTx8+BDgm6hi+/ChP/Hx8QAUNTFR2kZDQwMTY2M+fPjAvfv3MtXvxUuuREZGUqZ0aUxMTPhn0WJOnzmDf0AAujo62Nvb8+svP9P2PzkcHzx4QMCjR+jq6lK3Tl02bNzIocNH8PPzIzEpCVtbG3r36sWPvXqh/UkqoejoaM5fuACAY3NHDhw8yJ69+7jt40NsbCylLS3p2LEDgwYMULnN09nZhf6DBlGmdGn+nj2LMqVLc/jIUTp16crJ48cIDw8n+PFjzMzMqFWzZqa+DhkpbWlJSEgID/we5niwcPDQYdy/f5/ZM2em2uptbGREyxYt2LhxE9HR0QCKPJbq0qVzZ+wr2Gepj3p1vyxHpyCkUFuwUFNTk359+7Jl2zb+/GNium0vXryoeEMjCELOSIyM5NGGzQRt30lUcHCqc7oyA0p170bpn/pQ2M6WuLhEdu+8zZYN14iOile0q9vQklHjG1JC5CXMM+RyOZs3b+WvyVN4+fIlI0cOTxUsFARBEISvlYvLeWbMmk3VKlXYuH69YgfT7FkzOXzkCDExMcTFx2fQS+ZdvHQJp5Urs9THLz///F0HC9+EhfH+/XuATG/HzctehYYqfl+kiOoKxYaGhgQGBREa+jpT/V6+chlI/hxXs04dypSxolKlStSsWYPrN25w4eJFLly8yK+//MI/C+Z/cl3yM3ShQgVp1sIRfX19alSrTpXKlXnw0I/z5y/g5eXNsePH2bFtmyLPmfe1ayQkJKClpcXwkSN59+4dtWrVolePHgQFB3Hm7Dmmz5jJgQMHOXzwIEZGhqnm6+7hwY8//YSVlRXHjhxWvIweMngQFy9dYvqMmRQrVgyAHt27o/mF+ej+q2TJ5DRHQf95dsluLucvcM7ZmVKlzOn/269pzjvY27Nr924geWVp3Tp11Dp+u7ZtaddWrV2m6/DhIyRkcduzkPc4OjbPVGV1VdQWLBw/cSI7dyX/g1m3fn2G7Zt8IzksBOFroaGlhd9yJxLevVccS1lFaN61M9ofl857XApiyXxXXjz/t51laUNGjKtPrbppc08IuatuvQZcvepFrVo12b9vD3XrqvfDiiAIgiDkljXr1gHQs0f3VKmOipqYsNJpOYaGRpgYG6ttvGlTp/BXJqtzqvKlSfu/FR8+JOe11tDQ+CZ2N0RFRSl+n95Dt+xjIDHl/jMS8OgRAIULF2bv7l1pttPvP3CAQUOGsnHTJqpUrkyfH3unui5fPj3WrFxFrVqpV/Bd8fSkW4+euLicZ86cuYoCMo8U1+Vj/LixtGndOlX+xYBHj+jYuQt37t5l5OjR7Ni2VXEuNjaWocNHEB8fz9+zZqb5e23cqBGTJk9WbG3upcaX1oUKFQLIUoGaL7Fla/L9d+rQUemWbQODfxdODB0yWGkuy6/JL7/25+3bt7k9DUHNbt64RuXKeSBYaGdnp66uBEHIBlr582PepTMh+w9SsmN7rH79GYNPUgb43Q9l2UI3bt94rjgm8hLmfVeverFr53Z69Oj+1X9QEQRBEIRPhX5c1aWnl3ZbZLeu6i/apaWllan86+rS96efCQgIyLHx1KFN69ZMnqw6oJoSXNPV1VXb6rKMXPH0ZNqMGUrPffiQHGSaOn0Gi5cuVdpmwthxNGvWVOk5HZ1/H5fj01nFGhsTC5DpXIBvI5IDM40aNlSad7Nrly5cvuLJps2bWbJ0qSJYGPHxOgd7+zSBQoA6tWvz5x9/MGnyZNauX8+E8eMoUKCA4jqz4sX5oU2bNNdZW1mx+J+FdO/Zi5OnTuHn56d4vt+1Zw8hISFUr16dxo0apbm2RIkSSJJEXFycyvv5UvnzJy9myOlgoZu7O4DKKswp3xfGRkb07pVxjsq87sJ5Z5KSknJ7GoKa2dpm7d+i2oKFP7Rpw9Rp07nmdRUjQ8N02+7ctRtnFxd1DS0IAhAXFoZOoUJopvMhpfzEcVScPgWtT6qJvXkdxcY1XiIv4Vfg9evXhIdHYGdnm+p4z549cmlGgiAIgpB9hg8bytDhI/h77lyeP3/O3Xv3uHLlChvWr6NhgwYqr5PL5TkWqMoKHR3tHKlWqk4ZBVMlKfmz5LfyAjNlZRtAxNu3mJsrr+aasiqrUKGCmeo3JjYGALkkV9mmR7dubNq8mUeBgTx//hwzMzNiP16X8nVWplu3rkyaPJmYmBi8r12jUcOG/44nVz1e82bNMDIyJCwsHDd3d0Ww8Nix4wC0dHRUet2nKw1HDBumsv+sSO9+1e3Dhw+Kv09VRW0uuboCMKB//2yp0rxz12587/hmqY+WLVooDe4qU7ly5qtxC98PtQULrcqUydhBjgAAIABJREFUoVrVqsgMZBnui65duxZXPLOWPFgQBEiKjeXF2XM82bOfVxcuUmPlckp2bK+yfb5PAvkJCUkc3neH9Ss9ifokL2H1WuaMntAQyzLpB/2FnBMbG8vSpcv5e85cKlZ0wM31Ym5PSRAEQRCynZWVFVWrVuHBAz+cz5/n1q1byOVydHXSBtjevXvH/IULOX36DB8+fEAuyWndqhXTpkxNk39NlaSkJBKzuLpGS1MzVWGJ9GzckHHqpq9NwYLJwbK4uDgkScqRoGGd2rU5c/Kk0nOXr1zhh3btmT51yhflkrS2slL8Pjw8XGW7sI/nrMpYqWzzKYPCydtY08txWLq0peL3r9+8wczMTLH99fVr1deZGBsrqjO/efMmebyP14Wmc52GhgYWpSwICwvnTViY4riPrw8AjRs1VHpdytbr8uXL0bRpE5X9f4mYmOQCIinfVzkh5X4KFSqkdNzAoCD27N0HoHR1pzqcv3CBo8eyVg3Z1NQ008FCQVBGbcFCAOezZzLVrmqVKmzbslmdQwvCd0MeH89LlwuEHDjEizNnSYqNVZwL3rUn3WBhCo9LQSxZ4MqLZ//mJbSwLMLwsfWpU98yO6YtfKFTp04zZOhwHj9+zA8/tGHB/Hm5PSVBEARByHYely/TpWs3HBwcuHX9GjKZjKDgYKKjoqnwSRqVFL379KVQoUJ4uLuhly8f3t7edO7WnWfPnnNw/75MjTlt+gy1FDhZtHBBlvr4mqUEVyRJIjIyMtXKvK+RqakpRYsWJTQ0lCdPQpS2iYmJUQTvKlWsmKl+7WxtueLpqdhqr0zYJwE7wyJFALC1Sd5d8iqd62Lj4hTbwYsorkvejhgZGUl0dDQFPuYq/6+UgGgRWfJ1CQkJhIdHAGBZurTSa1avXQNA/99+U3twOGX7cU5+HxkaGaGjo0NMTAxJSUlpVtP+789JJCYmAuDv70+jhslB1FevXimKvKSIj4/n+YsXmBYr9lkrENevXQOsydqNCEIWqTVY+KnQ0FCu37jBmzdhGBgYUKFCeazKlMmu4QThm5YUF0fohUs8PXacF2fOpipSAsnFS4o2rE+pLp3S7efh/dcsW+jKrU/yEhY20OOXgTXp3MMBLa28v2Xne6SvX4ATx4/Spk3r3J6KIAiCIOSIMePGExcfz7SpUxS7lkpbWiptm5CQwK3bt+nVsyd6+fIBUKNGDXp0787GTZt4+/ZtpipCNm7cGL38WdtSWK1q1Sxd/7UzMTamYMGCREZG8uzZM8qWLZvbU8qydm3bsmHjRjwuX+anvn3SnPe8epXExEQMDAyo36B+pvps2LAhm7duxcfXV2lACuD+gwdAclXplO3PKYGpFy9e8PLlS0xNTdNc5+/vj1wuR0dHh+rVqgFQu1Yt8uXLR1xcHDdu3qR+vXpprouMjCTk6VMA6tSpDYCmpiYaGhpIkkRhJQG7c87OXL3qBYC2lvpDC0+fPgPA0iLniizq5ctH3Tp1uOTqirf3NWrXrqU4t2XbNs6eO4eNtTX+AQE4rVxJ9erVcXN3Z9++/VxwcUZLS4ukpCT+njuX4ydOUq6sHddv3KR506bMmzvnq0s9IHy/1P4v2j8ggEl/TcbZxSVNboGKDg7MnDE93RwjgiAkS4qLI/SiK0+PHuPF6bMkvH+fpk1hO1tKde+GRY+u6P3nTdan3r2NYfNabw7s8UmVl7BNh/IMGl4bA1naxOFC3tC6dStatmzxxbmXAoOC8PHJfM6TalWrqMzHk9ek5NTJLGsrK+ztK6g8HxsXx+nTaVfIN6hfP80WtsjISJxdzqc6VqqUOVWrVMn0fARBEATlXrx4wcOHDwHlRRRPnT7N3bv3GDd2DAA6OjpccD6HoZFRqnaFPq5yy+xqp2ZNm9BMzdsovzcaGhrY2dpy/cYNgoKDv4lg4cD+v7Fl61aOnzhBWFh4ms8E23fsAJJXleb7TyBo9549eHlfY9CA/qm+l39o0xozMzOeP3/O0WPH6dSxQ5pxV61OXlk2cEB/xTF7+wrUrl0LT8+rbNu+g/Hjxqa5bsvWbQD07tmTwoULA8nbkLt368q27TvYum270mDhmrXrSEpKok7t2lR0cACSc1Ta2try4MEDQp4+TbX4JzIykrHjJyj+fM7Zmb59fiQmJoaFixYxYfx4xdcjKiqK3Xv2cPfefYoVLUqXLp1TbfFWJSg4CICy//k5EBISgu+dO9StUydTLwI+11+T/sTT05NxEyewcd06ypQpw+YtW/jjz0n06N6d30eNpHa9+jx+/IQmzZpTqWJFDuzfpwj6Tpk2DXd3D86fO4u+vj5hYeFUq1kTy9KWjBoxQu3zFYRsIamRt7e3VNLCUpIZGav8ZWhSVNq6bbs6h83z3NzcJb38BXN7GsJXJtTjsrTfuHiaX86Nm0v3Fy+VIoODM+wjPj5R2rvjltSi3mqpXuVlil+jBh2SAgPCcuAuhMyKiIiQJv7xP+nX3/p/1nVoaKd73tnlvNSlWzepVOkykszIWDItUVKqXLVaml/FzEpIMiNj6coVz6zcRo566O8vdevRUyrvUFGSGRlLRkWLKb23lHtfu25duv1FRERIXXv0kMzMS0kyI2OppIWl1LVHD+mhv3+ats+fP5e69egp2ZYtJ8mMjKUGjRpLa9am378gCIKQOQkJCZK5ZWlJZmQsObucT3XO5fx5qULFSpKfn1+6fUREREiVq1aTRo3+PTunKijxv0mTJJmRsTR95qzPus7dw0OSGRlLRYxNpLi4OLXMxePyZUlmZCydOn06S/3MnD1bkhkZSz/2/UmKj49XHD946LBUxNhEqlGrtvTu3btU1/j4+iqeges1bJimz3PnnCWjosUk27LlUn0/JyUlSbPnzJFkRsZSuw4dU40nSZJ0//59qUQpC6mYWQnJ1c0t1bkdO3dJRkWLSdVr1pIiIiJSnXvzJkwq71BRKmJsIu3YuSvVuYuXLkklSllIpa1tpIBHj1Kdc1qxUpIZGUt/TZ6iOBYbFyf16NVbMjEtLi38Z5HiPnv06i3Va9hQmjR5siSXyyVJkqSg4GCpYpUq0szZs6Vr169Ly5ycJDPzUpK3t7fKr7ckSdLLly8lmZGxVLykuRQdHa04HhkZKVmUsZJkRsZSpapVU51Tp8tXrkjNW7aSihibSKYlSkrNW7SU9h84oDg/cPAQybRESen3MWOlDx8+KI6/evVKMjEtLu3bvz9Vf126d5eat2iZLXMVhOygtmBhdHS0VM7eQSpW3Eya+L//SZevXJFevHghJSUlSW/ehEm3bt+WFiz8RypjYysZFzOV7t+/r66h8zwRLBS+hDwpSTpuX1nab1xcOluvkXR33kLpvX9Apq93vxgodWu7JVWQsFfHbZKHa1D2TVr4bPHx8dLSpcslI+NikqaWrvTrb/2lpKSkTF+fUbAwxdjxEySZkbE0fORIpeenTpsuFTE2kd6/f5/psfOKzVu3KgJ2yuzbv/+zAqFLly+XZEbG0s+//pph24GDh0gOlatIsWp6qBEEQRCSHT5yVCpmVkIqY2MrzZw9W1q8ZInUqUtXqU79Buk+Rxw7flwaMGiwVLV6DWntunWf9X+qoB6ubm6SzMhYatKseYZtDx0+IjVt7ihVr1lL8XJPZmQs2ZWvIDVu2kxq/UPbLH02UVewUC6XS9NmzJQMTYpKVavXkIaNGCF17NxFKmJsIjVzbCE9efIkzTX379+XDE2KSjIjY6mZYwul/R45ekwqbW0jFStuJvXu01caPnKkVKN2HcnQpKg0cvRolYGwq1e9JIfKVSSjosWkjp27SCNHj5aaNneUZEbGUveevaTQ16+VXvcoMFBq2LiJJDMylhxbtZZGjf5dateho2RoUlRq0qy50hekCQkJ0o99f5JkRsbSbwMGSsucnKSmzR0lu/IVpIuXLkkJCQlSOXsHxYvbJcuWpbq+Tdt20uChw1Ida9+xk9ShU2elc0yxa/duSWZkLPXu0zfV8bCwMMnEtLjie+XM2bPp9pNVCQkJKn+OJCYmpjl25OgxSWZkLDVv2Urq2LmL4lfdBg0kx1ats3WugqBOatuGvHf/ft69e8eJ48fS5OowMjLEyMiQShUr0rtXT1q3bYvTypU4LVumruEF4auS8O49L89fQEtPD7PWyiuzaWhqUmP5UvRLW6D/GXk6ggPDWf6PG1cvP1EcK1Q4H31+rkb3PpXR0UmbE0XIPdu372TU6N9p2rQJ/yxcQOXKlbJlHN87yVuRVSXe1tHVoUzp0l9lIvI7d+4CqPzaaWvroKGhoTQhvjIVyiW3CwwMSrddwKNHHDx0iBXLl6XZdiQIgiBkTYf27ahbtw7Hjh0jOPgxsdraDBs6lCaNG6WbmqNAgQJUr1YN/QIFmDNvPhERb5kwflwOzlyoW6cO1lZW3Lx1i3v37lO+fDmVbStUKM+I4cPT7S/fxzyUXyJ//vzYWFtnuZquhoYGUyf/xY+9e3Hs2DFCnj6jUsWKDBk8iGZNmyrNOVi2bFm2bdmM97Xr/PpzP6X9tm/XloYN6nPk2DHu3btHUpKcn/r2oXWrVunm+69ZswZeVy5z8tQprl2/TmxsHG1at2bRPwvTLbJSpnRpzjufw+X8eTw8LvP+/Xtq167F+HFjqV+vntIt+9ra2mzbshkXl/O4e3gQHhbOkMGDaNu2rSJH6O6dOzhy9Cjt27VLNX5QcDCXr1yhQoUKHD5yNNXX87aPj8p5AuzavQeAvn1+THXc0NAQD9dL+D18SN9+PyuKoGSX9KqbK/t7f/8xddQ/C+YrtnMLWbd561bevn2bqbYF8hdItX1fmYOHDvEkJHXRoooODjRtkjYVxa7du1MVFdLQ0PgutpOrLVjo5ubOwAEDMkzqa2ZmxuRJk5g5e7a6hhaEr0J0yFNeXbjIizPneHXxIvL4BIxqVFMZLAQo2rhhpvt/9y6WzWu8UuUl1NLS5IeO5Rk4rDayIiIvYV7Up09vzMyK07Jli2wbQy6Xc/fuPQAqOij/ANm6VStq1qiRbXPITj6+yR82VX0gq1y5Eiudlmc6EGrzsWKgf0AAcrlc5UPprNmzsbOzpWuXLl8wa0EQBCEjJsbG/PrLL591TdMmTRQPew0a1Oe3AQOxtraic6f0i8AJ6qOlpcXECeMZMGgws/7+m53bt6lsa2NtjY21dbbNpUrlynh5XlFbf9ZWVvw+enSm27dp3Zo2rdMvUCeTyejXt+9nz0VPT4/OnTp99ve2lpYWLRwdaeHomOlrNDQ0aN68Gc2bN1N6vqKDg9LPYf7+/gAUyJ+ft+/+DfR07NiBLp07qxzvkqsrrm5uVK1ShZYt0n5GtrGx4fHjJ2hoaFCpUva8aP9SZmbFAfDz8xPBQjV69fIVvnfucOLkSSD5e87QMHX+0KjoaLy9valZs0aGwcLXr99w/PgJrt+4AUDHDu2xKKV8gU7o69e4u7vjcv4CVmXK0Lhx46zf0FdAbcHCiIgIWrbI3A+c8uXK8+ZNWMYNBeFrJklE3Pbh+akzvDhzlncfgzWfCr95m4R379ExKPzFwyQmyjm015cNqzyJjIxXHK9ey5yR4xpQxtoonauFnPT06VO8va/RqVNHxTEdHZ1sDRQCBAQEEBUVhZaWlsoCH19rYY5PA6Gq3qRbWlh8VhW9kiVLUKBAAaKjo3nx4gUlSpRI0+bu3XscO36CfXt2f3HxGUEQBCF7NW+WHNhwdXX7qoOFp06fZujwzK9i+XvWTHr17JmNM8pY1y5dOH3mLAcOHmTtuvUZPrgL36aUVXmVK1emY4f2mbrm2bNnDB85isKFC7Nm9Sqlqx0TExNxWrmSTh07pLsCMzfUrVOHoiYmLHdaQbt27RSrLyE56FTUxCQXZ/f1mjhhPNHR0ZhblkYul7N+7RrFC/4UkiRhZl4KB/uMg7SDBg6gR/dulLa2QUNDg5VOTuTPr3xxzagRIyhtWZrzFy6yds3qr/a56XOpLVhYpEgRHvj5Zartvfv3MDYWAQzh2yOPj+fNlau8OHOWZydOEvP8RZo2GtraGFatQskO7SjR9ocsBQo9LgWxbKEbz56+Uxwzt5AxcFgdmjhm31ta4fNERkYyb/4CFi1agp6eHi1btqBAgQI5Nr7vnTsAWFtbpxm3a/fu9O3Tlw7t22V5nLj4eMLDsvYiSFtHBxNj40y3/zQQWqFC6kDolKnTyF8gP/+bOPGz5qCpqYm1lRU+vr489PdXGiycNnMGdevUUbpVQRAEQchZb9++ZeOmzfTu1RNTU1PF8SdPkreYGX3lzx1Nmzbl3JnTODmtYMu2bZQrV46/Z81M027Hzl3sP3AgzQN0bnFathRJkvPHn39y5+4dBg8clO6WZOHb4+DggLa2NucvnM8wWPj+/XuOHjuevANRkti/Z7fSislHjx1nxaqVyAxkLF28OLum/sX09PRYvmwpP/X7GccWLfmxd2/09fXx8vYi4NEjTh0/nttT/Gr5+t5BLpejr6+PlZLvDQ0NDTQ0NDK9olMmk1GsWDFevXrFo0eBKhdVJCUl8ffcuXTq2PG7CRSCGoOFdevUZsq06XRo3z7dv5ynT58yY9ZsGjaor66hBSFPCNq+E5+/ppIYFZXmnK5hEUybN8OsVQuKNWmMdhbzpgQHheP0jzueHo8VxxR5CX+sjI6uyEuYV1y54kmXrt15+fIl3bt3Y+6c2TkaKAS4fVv5Nt2IiAguuboxY9p0tYzj6upK9569stSHVZkyXPO6mun2Pr7JuRj/GwiVJIljx4/zx8QJXzQPGxsbfHx9CQgIoMl/thpcverF+fMXcDl39ov6FgRBENTr2rXrzJw9m7j4OMULoti4OKbPmomBgQG/9FOeL+5rkU9XF2srK8VK9tq1atG4UaM07R488OPQ4cNUKJ+5HL3ZTU9Pj/Vr19K+XXtWrl5Fu44defQwc4tLhG+DibExvXv1ZOeu3dStU4eePXoAyQH+latX8+cffyjarly9mq3bttOze3eGDx+m8uWxv78/k/73Pxo2aJAj9/AlWjg6cvG8C5u2bMHVzQ1z85K0bNGCpRlsSRfSl5J6yMHBXuXOnj27dn7Wz0BbGxtevXrFQ39/lcHCffv3ExgYmG5KhW+R2oKF3bt1Y978BbRq8wO//fIL7du1xcLCgqJFixIREcGTkBDOnj3HqjVr+PDhA8OHDlXX0IKQJ+ibm6cKFOqXKkXxlo4Ub9kC47q10dTRyfIY79/Fsuk/eQk1NTVwbG3H8DH1KWIo8hLmNXZ2tlSqVJED+/dSp07tXJlDSgJpL28vOnXpqjj+9OlTtDQ1sbFRzypUO1s75mQxH61MZvBZ7VMCoW/evE51bxEREQQ/fox9BfsvmkdK/iT/gEdpzs2eM4fOnTpROY/lyBEEQfheNWnSmOFDh7J6zVoCAgIoUsSQCxcuYGBgwNHDhyhZsmRuT1EtUnYKODgo/7+taFETWrVsqXIrXW7Q0NCgQ/t2dGjfjtjY2NyejpAL5s2ZQ3x8AsNGjGTqtOnIihQhLi6WYUOGpGo3euRI/piQ8UvesWN+z66pqlXZsmWZN2dObk/jm5KySOC/qYfkcjnv379HJpPRoP7nLUqzsbHBzd2dgIAApecTEhKYv2Ahv/zcjzKlS3/ZxL9SagsWFixYkI0b1tOtR8/kSscrVwLJ27nkcrminaamJov/+YeyZcuqa2hByFYfAh7x0tmF2NBQHKb8pbKdcd3aFG3ckKL161O8VQsK29mqbQ6KvISrrxL5IU5xvFpNc0aOq4+VTea3bQrZKyYmJtWHdENDQ06dzL3tBpIkKR4uWrVsmWp71v4DByhbtiw6aghkA5QqZc7gQQPV0ldmpXxoqF+vHpUrV1Ycd3d3J5+uLra2X7YVy9Y2+d/vfz84nL9wgateXnhe9vjCGQuCIAjqpqWlxcwZ0xk/biwPHvjxITKSYUOHUNrSMrenpjaJiYncuXsXQOXLqi8pdpGT9PT0cnsKQi7Q09Nj1Qonpk2ZTGBQEGbFzShVyjxNLkLx/SFk5Nat20DaYOEVT08GDBrMPd/0K2wr8+8CAeXBwm3btxP6+jVjx4z57L6/dmoLFgLUq1sXl7NnmDR5ChcuXgRIFSis6ODAzBnT8/SSYUFIio0l7Ko3oa6uPD99lg8Pk6t4aWhrYzd8GLqGRZRep6mjQ4N9u9U+n2tXQ1i6wJWgR+GKYyVLyRg0XOQlzEvCwsKYMXMWR44c495dnxzfaqzK4ydPiIiIQFNTk7/+/JOCn2yBf/r0GfHxcelcnbdJkqQIFg4ZNJhatWoqzslkMt68CVMZCI2Pj2fjps24urlhaWnB9KlTU7W1/aQi8qfmzJ3Hb7/+ovQBNCIighWrVnH37j0a1K/P0CGDs3qLgiAIwmcoXLgwNWvWyO1pZAt/f39iY2PR0dGhXLnUef+OHD1GkSIy8Ywl5GnFihWjWLFiuT0N4SsVFx+P38OHAFR0SB0sPH36DPYVlG8hzkjKwgJlKwtj4+L4Z/ESRo8c+V0WplFrsBCgXLlyHNy/j5cvX3Lj5k3evAmjcOHC2NtXUJqgVBBymySX89bHl1BXd0JdXQm76k2Skm0SmlpavPXxpWjjhjkyr8fBETj9484V92DFsYKF8tH3F5GXMC+JiYlhyZJlzJ03n5iYGAYO7E9iYmJuT0vB92MwrUzp0qkChQDlytpRvHjx3JiWWjx5EsLbt2/R1NSkQoXUuUlKmJkp8uL8lyRJ9PmpH40bNcLevgIrVq5i2JAhqQqZWFlboaWlxbNnz4iKikJfX5/jJ07wwM+PnTu2p+nz3bt3tGnXnr/+/B9Pnz5jxapVIlgoCIIgqM2t28krauxsbVNVVwX4e+5cJo4fnxvTEgRByBH3798nISEBgN59+6Cp8W/OwichIYwaOfKL+k1ZIPDQ3x9JklKteF2/YQNJSUnf7Wd6tQcLExMT0dbWxtTUlDZKEnhGR0cD5JlVN8L36+mRozw9fIzXHh7ER7xV2qaAeUlMmzXFtHkzTBrUQzsHvm9T8hIe3OtLUlLyytyUvITDfq+HoZH4t5OXPHkSwtRp02nUqCGLF/2jMjFubknJV1jxP8v1AX779Ve1jnXv3n1Wrl6VpT6KFi3GlL8mZaptyoOTVZkyaQKhjs2b49hc+XXHT5zg/oMH7N29C4Axo0en2fqily8f5iVLEvz4MYFBQVQoX5558xfw+6hRShNuL3Nywsbamh/atOGHNm1EXiZBEARBrVJSihTQL8DhI0cVx1++fMnDhw+xr5A3ipoIgiBkh5RnGhsbm1TBu+ioaCZNnvzFKwtLlCiBvr4+UVFRvHz5UrGQIioqimXLlvPnn//7bmNXagsWyuVyJv7vT7Zt20aNGjU4duSw0nYHDx1mzrx53Lp+TW15stKTmJjI5StXuHbtOqGvQ4mLTX/L3dgxv38zSZCF9L2+7Mmz4ydSHdPS08Oodk2KNW6EabOmFC5rl2PzSUyUc/LIPdY4efLubYzieNUaJRk5rgHWtiIvYV5kZ2fL3Ts+aisSom4+PskrC1UlQ4fkrbb37z+gfbu2WRor9HUoJ0+dzlIfyYmDMxcs9L2Tcm8OKtuEh4dz7MQJfurTR/Gm8OIl11QJilXlyLGxsSH48WP8/f25f/8+b8LCVOZkdHV1o17duhn2KQiCIAhfIqWg19279/h97FjF8aioKPT09LASO7gEQfiGpfwMbNyoET//9JPieGxcHJMmT073WefgoUNs37GTmNgYZkydSo0a/6ar0NDQwNrKits+Pjz091cEC1esXIVMJqNP795p+ktISGD12rWcPHUKfX19li9Z8lXv1lJFbcHCU6dPs37DBgA8Ll8mNjZW6cNSzx7dmT1nDkeOHqVrly7qGl6po8eOM2XaVMxLmtOqZUuKFy/O9es3OHHyZKpciim0tLSYNXNGts5JyH4JHz4QdtWLQrY26JcqpbJdsYYNCNqyDZl9BYo2akDRhg0xql0Trf9s7cgJ166GsGyhG4EBYYpjJc0NGDSirshLmIcEBDxiw8aN/D17Vqol6nk1UAj/voX7byLgTy1dtoz37z+kCha+f/+epKQkihQpQvDjx+TT1c3wP8HGjRoR6P9QPRPPhJSVhZUqqb63/QcOsnL1Kvr17as49vhxMLr5dDPs39bWhnPOzty7f5+DBw/xv4kTVb5ZDA4OpkmTxp93A4IgCIKQCXK5XLGy8PCB/VSvXl1xbs68ebi4nEdLS6SnEQTh25WSWsnBPnVQUJLL+aWf6krFa9etx83dnUl//o9x4yfge+dOqmAhJC8QuO3jQ0BAAI0aNuTdu3esWrMGp2VL0dZOGzIb9fsYzM1LMmrECP74809CQp6KYGF6Tp0+TaOGDWncuBHGRsYqV1Voa2vjYG/PocNHsjVYOHP2bBYvWco/CxfwS79+qc7t27+fgYOH0K1rVwYO6E9AQAABjx4p8lIJX5fEyEjCr98k1NWVN55eRNy8hTwhAfu//sRu1HCV1xVr3pS2D+6gKzPIwdmm9iQ4AqfF7lx2DVYc08uvQ++fqtDn1+roiryEeUJERAQzZ81mxYpV6Ojo0OfHH9PkyMuLXr58SWhoKJA2EXCKhIQETp46zZBBgwAICQlh+MhRXL5yhRHDh1OurB3DR44if/78BD9SXiUst/h+XDVZMZ2VhQcPH0p170OGDeeK51W0tbVp0ix5n/KmjRuwtLBIc62tTXJF5HXrN2BqakrvXj3TtAl9/ZqRo0YTFh7O1m3bOXfOGR1dXc6eOpmlexMEQRCEFIFBQXz48AEtLS0q/GerXWJiYpqHZ0EQhG9JUlISd+/dA9IuEsifPz+L/lmo9LqoqChmzp7Ngb17qVa1Kuedz6Wpwg1pCxsuWboMaysrpWn1bvv4sP/AAYIC/NHX16dlixZK+/wWqC1Y+PLlS4YNHYJjcxVJoj4hk8m4efOmuoZOY/PWrSxUOV0uAAAgAElEQVRavISf+vZJEygE6Na1K+s3bmTf/v0M+O1XlUnwhTxIkvjgH0DY9RuEe18j/NoN3vv5ISlZKfra43K6wUKtfPlyZRUhwIf3cWzffJ2922+RkJAEiLyEedXTp0+pVLkab9++5eeff2LmjOmYmZnl9rTS9f79e656eXH2nDOQnCP22InjStveunmLiIgIxdL94sWLs2XTRsqWr8CxY8fQy5cPDzdXzpw5m2PzT09CQgKXr1zBx9eX0NevAbh16xbBjx+nafvq5Su8va+lSvq+aoUTAQEBlChhxuaNG9MdK2XF6Pv371m9coXSN4tFTUzYvXMHRYubMWhAf34fPTortycIgiAIaaSkFLGxsSF//vypzg0bMgRNTU1llwmCIHwTHj58SExMDLq6upS1U50mbOWq1dSrV1exo+rOnbtERkZSqpQ5gMqgnk1KsNA/gNDQUNauX8+BvXuVtvf0vIqhoaFikdm3GigENQYL9fTyEx4enqm29+7fU9ewaURERDB5ylTy58/PzOnTVbarVaMmXl7eHDt+Is0yVCHviX31iuujxhJ+/Trxb9+pbJfPxASTOrUxrlMbkwb1cnCGmZOUJOfE4XusXeHJ24h/8xJWqV6CkeMaYGP3/ZVkz+tKlizJ0KGD6dqlS7rbXfMS/4AAVq5aDSRvDQY48kky9P9q3KgRlStVApJXf8tkMtDQoF7dukwYPw4A66FDsnnWmRMZGcmSpcuAf+/tkqubyvYNGzSgQYP6XzSWrY0tlhYWlCtXjtatWn1RH4IgCIKQVT7ppBQxNDTM6ekIgiDkqJTUQ+XKlkVXV3kqoVevXjF56lTOfLK7J/hxMADaGdTK+HRl4cJFi2nSuDG1a9dS2jb4cXCO1N7IC9QWLHSwt2f9xk106dxZ6eqLFC4u57l79x4tW7RQ19CpbN2+ncjISH5o04bChQurbCeTyQB4/uJFtsxDUC8dmYxQVzfkH8ulpyhgbo5RzeoY166FSd06FLK1yaUZZuyaVwjLF7rxyP/fvIRFTQsycFgdWrUtm4szEz4VFBRM6dKWqY7NnKH6xUNeVK1qVQ4d2J/lfgyNjNQwG/UqUqSIWu4tM4yMDLl5/VqOjCUIgiAIqvj4Zpx2Y/uOnSxdtgzvq545NS1BEIQcofgZWFH1z8ADBw+hoaFBhfLJqaJ27NzF/IULAGjm6IimhiY//9yPUSNGpLnWytoKLS0tnj17xvYdO7jo4qx0jOkzZrJn7z4iIyOpUi05d+y8uXNo4eiYpfvLq9QWLOzatQsLFy2id5++/LNgPubm5qnOS5LEiZMnGT5yFACdOnZQ19CpuLicB6BZ0ybptnv2/DmQ/DCYnidPQjhy7ChPnoRgWqwYzZo1VazAEdQj9uUrPvj7Y5LO6h+tfPkoUrkSGpqaGNaojlH1ahhWr4pesWI5ONMv8/TJW9Y4XeHCuX/zvYm8hHnPs2fPmDFzFhs2bML10gXq1q2T21MSBEEQBEHAxzd5ZWF6D8qHDh9WpBRJTEzkkqsbJ0+dwqpMGRo3asTGzZu5f/8+TRo3ZszvowkICGDTli3cvXuP2rVrMW7MGJUrdgRBEHKDq5sbvr53OHT4CACBgUFMnzEzTTtJkti5axdlypRRpGr4sXcvYmNjGDdhIp4eHmlSOHwqn64upczNCQoOpke3btja2iptN3XKZN6EvcHL+xpXL3uo4Q7zNrUFC63KlGHcmDHMnT+fKtVrULNGDcqWLYtB4cK8Cg3Fy8uLR4GBANSvV49uXbuqa+hUUvJWlSxZMt12588nBxUb1FcdoNq0ZQvLlzsxdMhgataozomTJ/l77lymTpnMyOGqc+EJ6YsNDeWN51XCPL0I8/ImwscX7QIFaB9wH410VqU2Pql6G2VeFPkhjm2brrN3xy0S4pPzEmpoQIs2ZUVewjwkNjaWWbP/ZtGiJUiSxNixv38VxUsEQRAEQfj2+fv7ExYWjoaGhspCJkHBwbi5u/O/iROA5JQdvnd82X/gADKZAf7+/tjbV+Dt27fMnjMHVzc3LCxKUaliReLi4lmw8B8MChswLI+kHBEEQQDw8vLm7r271PlkS3DK1uL/qlevLlWrVv3isTp06MDt27eZOGF8xo2/E2oLFgJMGD8OXV0d5s1fwBVPT654pl0G36F9O5YtWZJtiXjj4+MBkCspeJHC984dgh8/xtTUFEcVS0ajo6P535+T+KFNa/r/9huQXBilY+cuzJw1m25dunyT5bGzgzwhgTeXPXl++jQvnS8QFRycpk1iVBRv796jyFeSEy49crnE2ZN+rFjsTkT4v3kJyzuYMmp8Ayo4mObi7IT/0tbW5vDhIzRr1pSlSxZTpkzp3J6SIAiCIAjfOX9/f378qR9PnjwBklfOWFpZp3uNg33yykOZTMbokSNZt34DTRo1ZvGifwD4uV8/Ll66SJEiMpYvXaq47tq1a7h7eIhgoSAIecq4sWNybKypk//KsbG+FmoNFmpoaPD76NH07NGDA4cOcePGDSIi3pI/f37KlStL2x9+oErlyuocMg1rKytevXqF38OHKvMiLliY/B/mlL8mkU/FcntNLS2qVqlC+XKpVxg1a9aUS66u+Pj6flawUC6XM2/eAsWff/ihDfb2FRR/PnHiJHfu3FXL+Z49uxMWqoVcLmV6fuomj44i9qYn0VcuEXPNA3lkpNJ22sVLoudQFT37qvi/0UbzakgOz1S93r+LZfM6bwID/s1LWNysMENH16OJY/of8ITcoa2tjecVDwoWLJjbU8kT4uLjuXHjBklJSQQEBHD//n3s7Oy+iUqLSUlJ3Ll7l9DXocm/v3OXcuXKoqX15akAYmNjuXb9OnK5nAd+Dwl49AhrKys1zloQBEH4HpUsWZK1q1d91jXpVQkF0NLSopiSFD5mZmZ8+PDhs8YSBEH4P3t3HRZl9gVw/EuDASgIdgMK2N26tq7dXeu6P2N17Vq7a411jV27Vtfuwu6WMEElBKUUpGPm9wc6LkuXQ5zP8/jscN/73vcMqzPznrn3XJG9pWuy8ItChQoxcvjwjBg6Sd27deP6jRv8tWkzPw4dir6eXqzjG//8i2PHjzOwf3969eyZ4Dj6enqcPH4sTvuXGYtGhkYpiis6OprJU6aqfi5UqGCsZN++f/azffuOdDluYWHDirkuKYovvXX12U2xcNc47QFaRrjpl8JDrzgeeiUI0soDT4An4bDP7tsHmoH09bXpPaAqfQZVQ08vQ/6piRRydHRi+q8z+H3NqlilCiRR+JWPtzdnz55TvYbv+2c/kyZOQF9fX82RpV1ERASHDx+hc8dOABw4eJDx48aSO3fuVI/51tMTO7sLjBoxAoDjx48zZvTodIlXCCFEzmVgYJAhddI1NDSS1SaEECJny3YZjL59enP23DlOnDxJ127dmT51KlZWlri6ubF5yxb2/L2XCePHMXnixFSNf+bMWSwtLalRo3qKztPU1GT8+K/TaG3/U3OkbZvWFCpUMF2Oh3xS/039C4NyqmShv44pr/TL4mJggZduEZRk7w8kmpoatGxbjmGj6mBaIPVJCJF+3r9/z4yZs9i0aQt58+bF0dEpybqmOVXRokWZOeNXdYeRIQwMDNL9uZUpXTrb/r6EEEIIIYQQOVO2SxZqamqybctmtmzdys5du+nQuTMKhYIiRQrT9Lum3Lh6BQsLi1SNvXPXbu7eu8fpkydSvGxNS0uLRQsXJHi8e/dudO/eLV2Or152VdU+fEw98uRJ353NlO89UIaFoFki/l2CAJTB1VHctUCrUh3M8xXAHMgpe8taWZthVd5M3WGIz6KioqhVux6enp4MH/4TM2f8iomJibrDEkIIIYQQQgiRARwdnbhxM2YPjf0HDtL0uyYULlw4TWNevXaNp0+f4evry/ETJ2jYoAGGhobpEW6mlO2ShRCTmPthyBDVxiTpwd7BgV9nzmTNqpVUS8MuO9/C4weeAOTLb0DvAekTq1KhwOfqdZw3/oXXufOYN25I/bF7Ej+pf05JD4rMTFtbmzWrV2JpaYmVVcIJbiGEEEKI7ESpVKJEGbdNGU+//zYKIUQW9t7bmwYN6tOgQX2iFdF8+PAxzclCLy8v+vbtA4Cvnx8hISGSLMzp7j94QM9evVm2ZDFdOndWdziJCguNxPmFLwAVq6TtHwNAhP8H3uzag8uWbYS4f918xPvyVULfemJQJO3XECI9Xb16jWrVqpIrVy5VW7t236sxIiGEEEKIb8fH15fhI0cSGhrKebsLzFuwgOlTp9J/4CC8vN7h6+vH5KlTWbRgAeMmTOTBgwcolAr6DRjI9q1bpIahECLLa/pdk3Qfs3u3hFd6ZkcaSvkaKVF2Fy7yy7hxrPptBU0aNwYgNDSUq9eu0aJ582SNce3adZq3aEVoSMbvMnb/jgejhx0CYOTY+vTsVyVV44S9f8/zVb/zescuosPCVO0ampqYf9eEMj8MwrxJYzSywQ6pIntwdnZh0uQpHDx4iObNmnHu/Hl1h/TNKBWR6g5BCCGEEEIIIUQ2ITMLE7F1+3bWb9jIgX17Y9U5vHvvHuvWb0h2svBbsn/kqXpcsXKhFJ8f4f+BZ7+t4tXW7bGShLrGRpTo1ZMygweQu2TJ9AhViHQzcdJkVq1ag66uLnNmz2LcuF9izSwUQgghhBBCCCFE8kiyMAFbtm1j7LjxmJmZ0b1nr1jHgoKC4uxGnFk4PPICQE9PG4tyBZJ9njIqildbd/BkyVIiPnxUtecuWRKrUcMp3q0LWgYG6R6vEOkhNDSUHj26s3jRAgoVSnmSXAghhBBCCCGEEDEkWZiAkiVKMObnnxM8XqpUqW8YTfIoFEqeOLwDoLytOTo6yd+x2ePIMR5Nmab6OXfx4pQb/wslunVBQ1v+mojMRalUxqqns3rVSqmvI4QQQgghhBBCpAPJAiWgSePGqhqFWcUrZz+CgiKAlC9BLtqpAy6bNhPg9BSLEf+j3JhRaOrqZkSYQqTa/fsPGDd+Aj8O/YHevb/O+JVEoRBCCCGEEEIIkT4kWZiN2D/8Wq+wQgqThRqamtT4Yw1auXKhb2aW3qEJkSZubm5MnfYru3fvoUCBApk+OahUKrF3cODMmbMEBwcze9ZMdYckhBBCCCGEEEIkiyQLsxH7z/UKNTTApkLBFJ8vG5eIzGrUz2M4e/YckyZNYMrkSRgaGqo7pDjCwsO5desWp8+c4fiJk7x9+xaACra2zEaShUIIIYQQQgghsgZJFmYjXzY3KVk6P4ZG+nGOK6OipP6gyJJWLF+GtrYWJUqUUHcoCTpw4CDLV6zA2tqaXj174OXlxa7de9QdlhBCCCGEEEIIkSKa6g5ApA8f7yDev/sEQMUqheMcjwoJ4Wq3Xrj8tflbhyZEipw+fYYHDx7GaitTpnSmThQC9Ondiwf37rJz+zamTZlCjRo11B2SEEIIIYQQQgiRYpIszCbsH3qpHv93c5PIgECudu6Oz7XrPJ4+k3fn7b51eEIkycHBkZat2tC6zfcsW75C3eEIIYQQQgghhBA5kiQLs4kvS5ABKlT6miyMCgnhWvde+N9/AIBhOSvyVan8zeMTIjHz5i2gStXq3L17j+XLlrJ1yyZ1hySEEEIIIYQQQuRIUsAum7B/FLMTcn6TXBQuagSAMjqauz+NwP/zkk7jCrbU3/83evnzqy1OIeJTtWoVRo4czoxfp5Nf/n4KIYQQQgghhBBqI8nCbCA0JBKXl34AVPpXvcIH4ybieeoMAHktLWhwYB+6+YzVEqMQXygUCkJCQsiTJ4+qrU2b1rRp01qNUQkhhBBCCCGEEAJkGXK24OTwjuhoBQAVPtcrdNm0hTe7YnZi1Tc3p/7fuyRRKNTu1q3b1G/QiOEjRqk7FCGEEEIIIYQQQsRDkoXZgP1DT9XjCpUL8eHhI+xnzAZAy8CAen/vJFexouoKTwhevnSmU+eu1KlbHw+Pt7Ro3kzdIQkhhBBCCCGEECIesgw5G7D/vLmJnp42Jcx1udziRxQREQBUWbIQY1sbdYYnBCdPnuLcufNMmjSB6dOmxlqCLIQQQgghhBBCiMxDkoVZnEKh5KnjewBsKhbk6bx5hLh7AFCqf19K9OyuzvCEAOB//xtGjx7dKFiwoLpDEUIIIYQQQgghRCJkGXIW5/zCl+Dgz7MI8/rwZvffAOQpU5pK8+eoMzSRQx04cJD16zfGatPV1ZVEoRBCCCGEEEIIkQVIsjCLc/i8BBmgoMtVUCrR0NSk2srlaOnrqzEykdPcuXOXBg0b07VbD7Zu24ZSqVR3SEIIIYQQQgghhEghWYacxX1JFrq/P0O9i//ge2Q/oR5vMa1dS82RiZxk27btDBr8A2ZmZqxf9wdDhgxCQ0ND3WEJIYQQQgghhBAihSRZmMXZP47ZCdnt3RkMjQ0wHNBPzRGJnKht2zb8+us0xo8bS968edUdjhBCCCGEEEIIIVJJkoVZ2Pt3n/B+F6TuMEQOExUVxevXb7CwKKtqMzU1ZfasmWqMKnO4eu0a9vYOfAr6xLlz5wFwefWKpcuWkytXLszNzejapYuaoxRCCCGEEEIIIRImycIs7N/1CoX4Fk6ePMWEiZMICgrm+TMn9KUuZizPnj3j3v17ABQvXozixYsB8OTpEwDy5csvyUIhhBBCCCGEEJmaJAuzMHtJFopv5PnzF4z6eTTnzp2nbNky/LZimSQK4zH0hx8Y+sMP6g5DCCGEEEIIIYRINUkWZmH2D2PqFZoWyK3mSER2p1QqefToMYsWLmDMmJ/R09NTd0hCCCGEEEIIIYTIAJIszKKCgyMIfPqUMhEfKVmxJUfOqzsikZ2VK2eFm+srmU0ohBBCCCGEEEJkc5rqDkCkjpP9OyoG3qO9334qHhin7nBENqFQKNi2bTvde/RCqVTGOiaJQiGEEEIIIYQQIvuTZGEW5fDAg7JhzwHQMzFRczQiO7h06TI1atZm4KAhvH79Gj8/P3WHJIQQQgghhBBCiG9MkoVZ1NtzFzGIDgWgdE/ZXVWkzd2792jyXTN8fHzZsX0rd27fxNTUVN1hCSGEEEIIIYQQ4huTZGEWFB2tQMfhqurnYu3bqTEakR3UqFGd7du28PyZE3379kFDQ0PdIQkhhBBCCCGEEEINJFmYBTk/86Z40AsAos1LktfSQs0RiawkPDycEydOxmnv168vBgYGaohICCGEEEIIIYQQmYUkC7Mgh6OX0VeEAZCvURM1RyOyCqVSyT//7MfapgLtO3Ti+fMX6g5JCCGEEEIIIYQQmYwkC7Og95euqB6X69JajZGIrMLT05P6DRrRvUcvcuXKxckTx7CyslR3WEIIIYQQQgghhMhktNUdgEg5zRePAIjW0qVI/ZpqjkZkBQUKFEBLS4uNG9YzePBAtLS01B2SEEIIIYQQQgghMiFJFmYxHi7vMAl2BSCihC2aurpqjkhkRtHR0bESgjo6Oly5fFGNEQkhhBBCCCGEECIrkGXIWYz9/vNoKRUA5KtXT83RiMwmKiqKjRv/oqyFFe7u7uoORwghhBBCCCGEEFmMJAuzmHfXb6sel2/3nRojEZnN8eMnqFipCsN++h8lSpQgLCxc3SEJIYQQQgghhBAii5FlyFlM+HMnABQa2pSsX1XN0YjMIiAggP4DBmFqasKhg/vp2LGDukMSQgghhBBCCCFEFiTJwiwkODiC3AEeAIQVKImmjo6aIxKZhZGREXbnz2Jra4OO/L0QQgghhBBCCCFEKsky5CzE8bEXmwr+j71m/cnVa5i6wxFqEhwczNKlywkNDY3VXqVKZUkUCiGEEEIIIYQQIk0kWZiF2D/yIlpDG0/dIlTo2kLd4YhvTKFQsHXrdqzK2TBx0mROnDip7pCEEEIIIYQQQgiRzcgy5CzE4ZEXAAa5dChjYaLmaMS3FBkZSb36Dbl79x41a9bg7z27qF9fdsMWQgghhBBCCCFE+pJkYRYRHa3gqdN7AGwqFERLSyaF5iQ6Ojq0bdOGMaN/plevnmhoaKg7JCGEEEIIIYQQQmRDkizMIl488yE0JBKAipULqTkakdH8/f3Jly9frKTgzJm/qjEiIYQQQgghhBBC5AQyPS2L+LIEGaBilcJqjERkpMjISFatWkOZslbs2/ePusMRQgghhBBCCCFEDiPJwiziS7JQU1OD8rbmao5GZIS9e/dhVc6aMb+MpU6d2lSsWFHdIQkhhBBCCCGEECKHkWXIWYT31WvoK4woXq44uXPrqjsckQE2b9mKvr4+x48doW3bNuoORwghhBBCCCGEEDmQJAuzADcnN5q7bKUFSj4VaQ/0TPEYfn7+HDtxPNn9y1uVo1atmim+jki9XTu3ky9fPrS0tNQdihBCCCGEEEIIIXIoSRZmAQ5H7NBACYBZBYtUjREaGsLVq9d49OgRr16/RktLiwq2tnH6eXp54e3tzdw5syVZmEECAgKYv2Ah3bp2pUaN6qp2U1NTNUYlhBBCCCGEEEIIIcnCLOHdtTsYf35c/vvGqRqjaNGibPpzI3v37eOn4SOwsLDgot35OP1OnjpFn379qVihQuoDFvGKiopiw4Y/mTV7Dv7+/piamMZKFgohUs7UvKC6QxBCrXzfv1N3CEIIIYQQIpuRZGEWEPXSMea/WvqUrFs5TWPZOzgAULlSpXiPf1kCa2tjk6briLg6d+nGsWPHady4EcuXLaVq1SrqDkmIbEGSJSKnkmS5EEIIIYTICJIszOQ+fQjGKMAdgNCCpdFIYz07e/uYZGF8S5AhJom4c/s28ufPn6briLh+HjWSwYMG0rFjB3WHIoTIQhwcHbG7cAFzMzN69Ux5zVohhBBCCCGESAlJFmZyj45dR0cZAUDeSlXTNJZSqfw6s7By/DMLzc3NadtGduJNK09PT7S0tDA3N1e1NWvWVI0RCSGymkuXLzN85Ci8vLwAaN2qlSQLhRBCCCGEEBlOU90BiMS9PndN9bh0s3ppG+vNGwIDA9HQ0IizzHjar78yeerUNI0vIDg4mFmz5mBpZc3UadPVHY4QIgurXq0aJ48fY+KE8eoORQghhBBCCJGDSLIwkwtyfASAEg3Kt22UprEcHGJqH5YuVQpDQ0NVu1Kp5Ny589hYS53CtNiz528srayZM3cerVu3YuqUKeoOSQiRheXJk4eSJUqQP5+UhRBCCCGEEEJ8O7IMOROLilJg8M4ZgBCjQujnN07ijMQ9trcH4L23N02aNlO1BwcH89LZGVtbSRamhaenF4ULF2LP7p00bNhA3eEIIUS8lEol69ZvYNDAARgYGKg7HCGEENlcREQE9g4OeHt7ExERmWjfGtWrUaRIkW8UWfp7/vw5bu7uBAeHJNqvWLGiVKuathJTQgiRkSRZmIk9vfEUw6iPAOhYxr8hSUrYO8QkC1u2aEH9+l+XNF+5coXXb95Qvnz5NF8jJxs9ehRjx45BQ0ND3aEIIUSCzpw9y7Rff6Vbt66SLBRCCJFhfHx9WbpsOYcOHaJylcro6uji4OiIu7t7gufYnTub5ZKFUVFR/LVpM+s2rMfMzJwihQvx+vUbHJ2cUCgU8Z4zeeJESRYKITI1SRZmYk+PXeLL3seF6tVO83gOn3dC7t+vLw0bfJ35pq+nx7PnL9DX00vzNXICPz8/li5bjkl+EyZMGKdq19aWf05CiLR7+/YtT58+Iyg4GGNjIz5+/Jis8969e8fzFy+IiozCxsaaggULxumjVCpZ8/vaZMeSnDG/jPv8+XNMTE0pYGpKdHQ0Fy5exMjQiCpVKqOjowNAWHg4z58/x8rKCn09PSIiInj8+DGBgZ+oUqUy+fPHXnL95MlT3nu/p5yVFYUKFUp23GkVFRWFp6cX/h/8E+2no62DjY31N4pKCCGyjnv379OnX39srK25fvUKZmZmQMz7xdp16/h1xkzq16tHm9ateensjIuLC29c32BtnbVeUz9+/Eivvn1xdXVj+5bNVK9eXXXs7t27dOneAwMDA8b98gseHh68dHbG2dmZ6tWqqTFqIYRImmQ3MjHfu/f4speubYcmaRrLy8sLbx8fNDQ0qGAbe5Zi8eLFGTpkcJrGzwnCwsJYtWoNCxctJjg4mLFjx6g7JCFENnLz1i1mzZnDnTt3KV68GPnz5eft27f4+Pomet7z58+ZPHUal69coXjxYvj5+RMcHEzHDu1ZuWKFqkbt0WPHmb9wIS9evABg4KDB6OrqAqCvr8+eXTtjjTll2nQuXb4ca8wO7dux6rffVGM6OjqxeetWTp0+zbt371i8cCH9+/VlyNAfOXnqFAB79+wmIiKCff/sx+7CBUJCQrA7dxY7uwus27CBDx8+qGLYsG4dbdu05sDBgyxbvoKXzjGlOLS0tJgwbhyTJk5Ix994XM+ePWPFylVcuXoVczMz3r1/j7e3d4L9q1erxrkzpzM0JiGEyGqcXVzo0q07piYm7NqxPdYsdg0NDUYOH87p02e4fuMG06dO5X8/DVNjtKkXGRlJtx49efT4MefOnKZypUqxjteoUYOxY0Yze+48vH28mTN7lnoCFUKIVJANTjIxX59gwjX1idTNhamNZZrGevT4MQDFixcjX758sY7VrVOHQQMHpmn8nGD2nLlMnjKV+vXrYf/4IYsXLVR3SEKIbGLP33/TvmMnAgICsTt3lscPHnDR7jwvnj1lyqRJCZ738NEjWrRug7+/P3dv3+LR/fu8cXFm5PDhHDp8hEFDflD11dHRpluXLqqf69atQ6NGDWnUqCEN6tePM6avry93bt1UjTlqxAgOHznKwMFDVH3fv3+PkaEhuXPlAiAgIIDOXbsREhJCj+7d0fs8Y93T04sypUsTHh4OQJdu3Xnx8iWTJ05k6eJF2NrYEBYWxvCRI6nboCF7/t5L7969WPnbCjq0b0d0dDSLlizh7t276fMLj8fGP/+i8XdNKVKkCA/u3uHyxQs8f+LEhfPnKFKkCN9V3D0AACAASURBVDo6Ovw49Ae6dO5M5UqVyJ07N5X+c2MohBACRo0eTWBgIMuXLU2w3EWLFs1RKpXs2rM7Q2IIDg7G28cnTX+Smtn/+9q13Lt/n2E/Do2TKPyiZYsWAOzclTHPUwghMoxSZLirV68p9Q3ypOgcd7ePynqVVyvrV16lXDP9YJL90dBO9PjiJUuVxiamyr79ByTYx9fXT/nbqlXKyMjIFMWaU7x//1557tx5dYchhPgXEzNzdYeQZvYODkqzQoWVluXKK997e8c5vn7DRqWxiamyV5++sdrDw8OVlatWUxYpXkLp5uYW61hkZKTSpmIlpbGJqfLGzZuq9tDQUKWxianS2MRU6e3jE+daX8YsXKy48s0b1zhj2laqrDQ2MVVev3Ej1rHeffspjU1MlWaFCis3b92qand3d1cGBASofjYvVFhpbGKqfGxvH+t8X18/ZeFixZXGJqbK9Rs2xomrbbv2SmMTU+Xc+fPjHEsPGzb+qTQ2MVXOnDU73uNnzp5VGpuYKnv27hOrPTQsLEPiSa7s8PdfCJG93Lh5U2lsYqq0rlBRqVAoEuy3/8ABpbGJqbJV27YZEses2XNU73ep/dO8VesExw8LD1eWsbRUGpuYKp2cniTY7+PHj6rxAgMDM+KpCiFEhpBlyJmUwyNPAJRoYNOwQprH+7ITcqWKFRPsc/jIYTb++Rdjfv45Vnt0dDROT54QGBhIqZIls1zR4dR49eo1np6esTaCMTMzo1mzpmqMSgiRHIEBYfh4B6k1hlJlTNDUTN5mR0uWLiMiIoIRI4ZjVqBAsq9x5OhR3ri60qF9O4oVKxbrmLa2NhUrVODt27dcvnKFOrWTV/f2y5jtvv+eEiWKxzumh4cHl69coW6dOnHOHzliOIMGDFD9XLRo0Xiv89+ZJiYm+SlnZcWDhw/jnYVSt24drt+4gaurW7KeR0q8ePGCGTNnUqZ0aSZPjn8WZ4vmzTE0NOT0mTO4u7urft9S61cIIWI7fuIEAK1atkx00z9//5iasPp6+ika38npCUZGhgm+v3zRokVzTExNUjT2fxVOpFbuzZs38fPzp3jxYlhbJ7xJpP/nUhsaGhroJvGe4eHhwZOnT1EoFNhYW8d5bxdCiG9JkoWZlMMjL9Vjm4rxF5RPCVWysFLCycKDhw5TsULsxOSVq1cZNXo01atVp2zZMgwYNJgB/fszY/q0NMeUGX38+JH5CxayZs1aypYtg4P9I9ndWIgs5uI5Z5bOv6jWGE5eGoqhUdI3QGFhYZy3swOg1eelSsl13u4CAK6ubvwydlyc4y9fvgTgnde7FI/p5hb/mF/qHb57F/+Y5mbm8bYnx5c6iPHJkycPAFFRkakePyHLf1tJeEQEvXv1SjT5V6J4cRwcHXF68kRu4IQQIgFPnjwFwKJs2UT7Xb9xA4AaNaon2u/f7t69S7sOHfl1+nRGDP9fon3r1K6d7C/KUsPJ6QmQ9PO8ceMmABUrVEDvc53g/wqPiGD0mF949fo1lStV4tXrV1y8eImBAwawbMliuRcRQqiFJAszKfvPycJChQ0xM8+TqjEiIyM5b2eHk9MT3r59C8DVq9dwevIkTl9/P39u3b7NL2NGq9pevnxJz959mDh+HGNGx7SfPn2G3Xv2ZMtk4bFjxxk0+Ac+fPhA//59mTd3jrw5CyEy1OvXrwkLCwOgeIkSKTrX1c0VgDJlylCiZNxzv7TZpGBnyYwYMzOLiIhQbcTStk3rRPsGBcXMVpX3BSGESNiX10qDXPHXKgQICw/H7sJFNDU16dKpU7LG9fT0ZPDQH1GmS5Rp9+V56usn/DwBTpw8CUDXrl0S7LNs+XL27tvHq5cvVLXlV65axey586hYsQID+vVLp6iFECL5JFmYCX0KDMftTcyU9YpVEp7+npTw8HA2/vkXAI0bNQLAwdExwf4NGzSgYYMGqp/X/rEOLS0tfhr2dYeylb+tIDo6OtUxZWYlSpSgSpXKLFm8iCpVKqs7HCFEKtlWKsiIX+ol3TED6RvoJKvfp0+pXy4dGREzy65Rw4b069sn1ePEN2bDhg1yxM2Ji4sLQUFBaGtrUzaR2SE+vr64ubujoaFBBVvbbxihEEJkLYU+L91988Y1wT579uwhKCiIbl27YmVlleSYYeHh9B84iLFjRjNvQebYYPDL83R1Tfh5vnr9GrsLFyhcuHCsEh3/5efnj7a2NpqaX/ceHdC/P7PnzsPO7kKOeD8WQmQ+kizMhBweeaFQxHxvVqFy4VSPkydPHg4d2J/q8+/ev0epkiXR1/+6lK5K5eyTRIuIiED3X8sBKlaswLmzp9UYkRAiPZSxMKWMham6w0gWY2Mj1WM3V1csLS2Tfa65ecyS3y/LjdNDRoyZmX34vNNlnjx50NLSSrDfqVOniY6OplatmhQunPr3ZSGEyO5at2rJsePHOXjoIJMnTYyz9Nbl1Stmz51H6VKlWLxwQbLGHPXzaCwsLBg0cGCmSRY2a/odurq6OD15wmN7+zh14cMjIhg+ciQawMb168idO3eCYy1dvIi5s2fF6pMnTx40NDSIjEz/8htCCJEcmkl3Ed+a/efNTQAqVEr9zMK0igiPyJbLrd6+fcuwn/5H02YtUCozy2IGIUROVLp0afLmzQugWg6bXHXrxmwwcuz48VTN+I6K5wYkrWNmNSb58wMx9Wo/ffoUbx+lUsmOnTsBmDBu/DeLTQghsqJuXbtSu3Yt3Nzc+Xn0GAICAgBQKBScPnOGtu3aU7xYMY4cOqhacpuYlatX8+bNG1b+tiKjQ0+RwoULM+6XX1Aqlfw0fISqpi/E1Pft1LkLz5+/YMf2bdSrWzfRsbS0tOIkE+/dv49SqaR1q1YZEr8QQiRFkoWZkNfZc1QJuktx7Q+ULGWstjhKlSqFy6tXhISEqC2G9BQUFMSMmbOwtLJm27Yd1K5dS76tE0Kolba2Nl07dwZg5eo1uLx6FadPQl9q9OzRg1y5cvHG1ZXlK36Lt09oaCi3b9/52vCvL4DeenrG6f9lTDc3d5YuX568MdXs9z/+oEXrNuze83eKz7WwsKBIkSLA1x08/+vPvzZx7/59Bg0cSNPvmsTbR6lUYnfhIuMmTGT+woU8f/6ccRMm0rxVayZPnUpYeDjOLi5MmTaNVm3bMnb8BFVyMjIykgMHDzJw8GAWLFqkGvPmrVuMHT+BTl26pvh5CSGEumhra7N/714GDRzIkSNHsCpvTe169bEsX57JU6cyasQIzp09k+RuxgB2Fy6yYeOfbNuyOcHNQdRp4oTxLFuyGH9/f2rXq0/V6jWoUq06zVu1pnz58ty4eoXmzZqleNyoqChmzJpNrVo16dO7VwZELoQQSZNlyJlMZGQ0eR0vUTH4OcrAiyjDxkKe1G1wklY9e/Tg3PnzLFy0mDmzZ6lmGYaGhqKvr5/lZh1eunSZefMW0K1bVxYtXECpUiXVHJEQQsDkSRM5fuIEPr6+tGjVmlEjhlOzZk38/Py4eu06f+/dC0BwcHCs80xNTFi2ZDEjRv3MwsWLcXVzZfCgQZQuVQpfPz/On7dj9e+/06J5M2rVqgmAvp4eefPm5dOnTyxctJjFixZiaGiI93tvbG1tMDUxYfnSJQwfOYrFS5bi5ubOkMFfx7Szu8CqNWto3qypakz4Wug9JCR2jP8WGhqK4nPiM74voYI/t/33ef67LTg49nnv3r1jxsxZKJVK7B8/pmuXzrHKSyRFU1OT2TNn8MOPw5g9dx6VKlbC2ro8ANHR0fyxfj2z58ylV8+eLF28KMFxoqKicHB04PSZM0RFReHr40uVKlXQ09Nl3foN3L17D2vr8tSoXoPcuXOzctVqDAz0mT93LpGRkXwKCuLuvfuxCuV7e/vg7OzMk6dxNyUTQojMLHfu3KxYtpT5c+fw9NkzwsPDKVSoECVTsJHXS2dnhv3vJ7Zt2ZKpyz8MGTyYQQMH8uLFC3x8fTE1McHCwgJt7dTfZi9cvJh3795x6vixREtkCJHdXLt+nXv378dqK2huTs8ePeL0tbtwEQdHh1htfXr3poBp1ihFlBVoKGUdZoa7du06zVu0IjQk/iVO/+bwyJPHrRpgEB1KdHErut+/mKxraGjqoFSk/yy5sePGs2XbNmrXrkW9unX5+DGAW7dvccnOLk1vgupib+9AxYoV1B2GECKdmJoXxPf9O3WHkWbPnj1jyI8/8uTJU1Wbrq4uPwwZTIECBZg9Zy4AZcuUYfGihXzX5OsMt8NHjjJl2jTevYv9eyhYsCBDBg1i+P9+IleuXKr2ZctXsHDxYhQKBRAzC6RO7docPXxI1efI0WNMnjo1zpjm5ub8MHiwaszNW7bwx7r1qhmRerq6lCpdmk4dOjBxwtclu/8bMZILFy7g7eMDgLGxMe2+b8vqlSs5eeoUM2bOijWGhYUFZ0+f4lNQEJ26dOHlS2fVTHALCwsmjh9H1y5dCA0NpXLVanj7+FCuXDluXruaqt//rt17mDFrFgEBAVSrVpX8+fLz4OFDjIyMmDxxIp07dUzWOE2bt8DMzIw9u3aq2uo1bEiuXLk5d/rrMvPuPXvh4+PDRbvzqrYGjRpjY2PD+j/WqtomTp7CwUMHcX7+PN7rZZe//0II8V8jf/6Z/QcOUqhgwVjt7h4eGBkZYZg3LyNHDGfI4MFqijBjrFy9ms1btnL08KEUJVeFyA7On7djz96/OXjoMADNmzWjRfNm/DBkSJy+x0+c4MKFi2zfuRNTU1M6dezAmJ9/VtXfFmknycJvICXJwr8XHUBn+SgAjHsOouma+cm6RkYlCyFmKdSFixeJjlZQwdaWNm1aZ8qlAP/25MlTzp07z+jRo9QdihAiA2WnZIlCoeD2nTu4uLzC2NiIunXqkD9/fgIDA/H/8EHVr4CpaZzaRlFRUdy+cwdXVzd0dLSxtLTE1sYmwRkJ3t7euLm7kyd3booVKxZv4fWoqCju3L3LmzeuaGtrYWlpSQVb21hjfvjwgYDAwDjn5s6dO9Y3u15eXoRHRMTqo6+nR8GCBfn06RN+/v5xxiherBgKhQKPt2/jHMufLx+GhoZATB3a6zdu0KxpU/J/rkGYGmFhYdy6fRsPj7cYGOhjXb485cuXT9EY8SULu3bvTkDgp1jJwjG/jI359vzObVWbJAuFEOKrBw8f4ubmHqd91OjRfN+2LS1btMC6fLkUbQyWmSmVSmbPmculy5fZs2unardlH19fjI2M0NHRUXOEQnw71WvWwuXVK44fPZJozc/nz59Tr2Ej1qxaSa+ePb9hhDlD1psals29u3KNYp8fW7SJvzbSt1andm3q1K6t7jCSxdvbm5mzZvPXX5vJmzcv/fr1SdPNoxBCfCuamprxvt4aGhqqEmMJ0dbWpl7dukkWUf/CzMwMMzOzJMesW6cOdevUSbBPvnz5klWg/stNT3zy5s2r2uTlvzQ1NZOcWVGkSBG6d+uWZAxJ0dfXp3GjRmkeJ454SnZktTIeQojsS6lUEhISgp6eXqZaNVS1ShWqVqkSp33chAnY2tjQsUN7NUSVMcLCwxk56meio6M4deI4BgZfS1L07NWbDevXUbZMGTVGKMS3ZWFhgcurVzi7uCT62Xb+wkVYWVmmy+dAEVfmeUcQKJWgfGEf81hTi8INskaCLrO4e/cezZq3JCQkhGHDhjJr5gxJFAohhBBCCJEAl1evqFGrNqt++43+/fqqO5wcJywsjFZt2vLi5UtaNG/G8JEjYx13dHJSU2RCqI+VpSWnz5zB+aVzgn0ePX7M8RMn2Ldnj9T2zCCSLMxE3N/4UyDoDQCRhUqjraaNTbKqSpUq0rNnd34ZM4Zy5azUHY4QQgiRbLq6uqodkoUQQuQMoaGhaGhoYGVpiaurW5zj1uXLo6+np4bIcjZvb28OHDzEvfv38Pf/kGT/FcuXUapkyYwPLIN9+PCBg4cOcev2HXx9fZPsP3PGr1SuVCnd4yhbtiwAL16+TLDPvAULqFunDs2aNU3364sYkizMRB6fuI5BdCgARjVlVmFSvLy8Yi1t09XVZcP6dWqMSAghRE6mVCqJUwpaqYz58y8KpSJOP0tLS44cPcqly5epYFuBFy9f8PDhw/+eKkSOFhERgZ+fH0ZGRrE2bsou/Pz8UaIkn7GxzJRJwMTx46lRo7q6w0g3+fLli7XZlVCv6Oholi1fwdp16+jZowf9+/UjOjqa+/cfsHbdOgICAjA1McH/wwfVRnE6OjqJlltJjadPn6o2hUut0qVKUaxYsaQ7EvP5Zf2GjSxasoT27b6nZ/fuaOto8+jxY/74Yx3ePj6YmOTn48cAoqOjVeetL7g2kVFTz9LCAgBn5/hnFt66dZsLFy5y9tTJDLm+iCHJwkzE88JVvpSDt2ibOeoVZkZubm5M/3Umhw8f4fkzp3R/cRZCCCFSIjwigr79+/PG1RV3d3dGjR7NmlWrGDFqFI8f2xOtUDBg0CC2bdnCzFmzOXP2HOHh4XTu2o1Nf24kX758TBg/jkePH9OpS1dKlCjOjz8MpUaN6ji7uNChU2d2bNuaZO1KIbIjhULB/gMHWPP7Wl69fo2BgT7+/h+wti7PlEmTaNumjbpDTBN3d3eWr/iNo8ePo62lRUBgIPr6+rRt04b5c+ckqy5sTjLsx6HqDkFkU1FRUQwZOpRTp8+wf99eGjZooDr2XZMmNGnSmJat22Btbc3ePbtxcYmpqef/wT/dZ38uXrqUI0ePpWmMGdOn8cuYMUn2UyqV/DJ2HNt37mTr5s20b/e96lijhg1p26YN9Rs0pEjhIjx+8AAPDw9eOjvj7u6RYTsPW1nFbFzk6uZGeEREnM1V5y9cSKeOHahePft8cZAZSbIwE4l8+giIqVdYqml9NUeT+QQEBDB33nzWrFmLjo4O48eNlRsnIYQQaqenq8s/f/8dp33tmjVx2mbPmsnsWTPjtJcuVYqb164SFhaGvr6+qn3BvHnpG6wQWYhCoWDI0KEcPnKU6VOnMvrnUWhra7Ns+QrmL1zIgEGDeeJgn+SGTcm1fcdOjh5P2w16qxYt+GHIkGT1vXfvHl2698DczIyTx45Srlw5vH18+K5Zc/b8/Tf6+vqsWLY0TfEIIZJn8dKlHD12nEkTJ8RKFH5RvVo1WjRvzukzZ7C7cIG2bdpgY2OdIbGMHzuOfn37pWmM5G6K8+dfm9i2YweDBw2KlSj89zjdu3djx85d/HPgAAP798fKKmNLfhkZGVHA1BQfX1/evH4d63p2Fy5y+84dbt24nqExCEkWZhof/YMx/uACQJhZKalXGI/IyEg2b95Khw7tWbpkESWS2CFTCCGEyGr+nSgUIqfbsWsXh48cpVXLlowb+4uqffj/fmLl6tVoa2vH2jk2rQI/BeLp6ZWmMT5+DEhWv8jISIYO+4nAwEAOHdhPuXLlADArUIBBAwYwb8ECChQwTWIUIUR68PDwYNXqNRgZGSU6G69CBdvPycKLGTqr2dbWBltsMmz8LwICApi3YAE6OjpMnzolwX4VbG0BuHDhIgP798/wuCCmPIuPry8vnZ1jJQsXLV7MoIEDKF2q1DeJIyeTZGEm8ejYDVW9wtxVaqg5mszJ1NQUF+fnshxDCCGEECIH2LfvHwDafR97tkuuXLk4feIERkaG5M2bN92uN3L4cEYOH55u4yXmzt27vHF1pXDhwlStUiXWsRHD/0eNGtWpV7fuN4lFiJxux65dREZG0qJ58zhLXv9NTzdmufHHj0lvepIV/LN/P58+faJJ48aJ3mPrfl5m/eFD0s973z//sHnrVgICApkzaybNmzVLVWyWFhZcv3EjVt3CY8eP8/TZM3bt3BHvOVu3b2fX7j2EhoaweOFCeQ1NI011ByBiuJ69qHpculVj9QWSSdy//4DeffoRFhYWq10ShUIIIYQQOUO0IqaQvp+/n6rNw8MDpVKJra1Nsov3Z0ZfNgkIDQ1Vfd4NDg7G398ffX19GjZokG6bnNx/8ICChYvE+6deg4YAjJswIcE+v//xR5LX8PT0RFtHX/5k4J/Nm7emy98HEdeVq1cBaFA/8VJgbu4xO1anpGZ+WFgYQ4b+yI2bN1MfYAa5cvUaAPXr1Uu0n5tb8p73ps2bOXL0GL+vXk3hQoV4/fpNqmP7siPyy8/JQoVCweKlSxk9ahRmBQrE6b/it5XcvHmL31etxNjIWBWzSD2ZWZhJPFKUISR/W0pFe9CuXc7d3MTDw4Op035l167dmJiY8OTJU6pWrZL0iUIIIYQQIluZO2sW/xsxkvnzF3D9+g2cnjzBw8ODLZs20bFD+yTPd3d3R09fP94bS3VrUL8+gwYMYM/evTT6rikFzc25dfs2JUqU4M7NG/GeEx4RwZvXrwkOCaFsmTLJrt1tVqAAAwbEv3QwICCQvfv2Ua9uXdWmAv/1ZQliYvLkycOYMT8nKx6ROra2Gb8sNad6+9YTgMKJJMMUCgVnzp4DoOl33yVrXKVSyajRYzh46FCcGdKJmbdggSqRl1pDBg2kR/fuifZ5+/YtAIUKFUy03+kzZwBo1jTh5x0WHs68BQvZsukvypYpw4F/9qUw4tisLGNej146x5Rq23/gAN7vvfnfT8Pi9A0MDGTp8uWcPH4MKysrjh89kqZrixiSLMwEIiOiefwqHOdAL9zfn2eKUc6cPefv74+1TUUiIyMZP34sU6dMxsjISN1hCSGE+I/o6GgePHjA6bNnuX7jBlMnT463GLgQQqSFs4sLIaGh2NjYULx4cR49foyhoSHW5cslee5LZ2eat2zFuLG/MGrEiGRdz93dHS+vd2mK2czcjJLJqKvt5++Pn78fWlpaVK9WlQ8fPhIZGUntWjXj7b9y9Wq2b9+BlZUV3t7eODo58b9hw5g541c0NDQSvVaxYsVYvHBhvMecXVzYu28fnTt1on+/vkk/wQQYGhqybOmSVJ8vhDppasb8Gwr89CnBPjdv3eL9+/dYWlrSuFGjZI27+vffVbMRUxaPpiqm1ErqdeHLdSBmVnNCXrx4wZMnTzE3N6d9+4S/pHn58iUfP36kaNGiKQ82HhYWFqpxIyMjWbR4CVOmTCZPPHs7ODg6EhYWlm7XFjEkWZgJPHviTURENMULtmTevFn0H5IztwDPnz8/v61YTtOmTShZsqS6wxFCCJGAocOGcfHSZYKCgoiKikp2QX8hhEiu3Xv+ZsSoUXTu1JG/Nm5EQ0OD+XPnEK1QoP+5flZCAgIC6NOvP0FBQSm65sY//0rWktvEDBo4MMkdjMPCwmjfsRMuLi6cPnmCKpUrAxAUFBTvjfCBgweZPWcuj+7fp0SJ4gCsW7+BqdOnU758uSRnDwkhEmdjbYOrqxv29vZ06tghzvHo6Gjmzp+PpqYmSxcvUiXZEmN34SJbtm7l2OHDVKxSNUXxTJ08mamTJ6fonNSwsbbm3v37PLa3T7DPrDlzAVgwb16ir72urq4AaGvHTjE5Ojrh8daDVi1bqto8PT25fOUKXTp3RjeBGpFFixbBwMCAjx8/smr1GrS0tOjbu3cC145JyGqnU+kGEUOShZmA/aOvu65VrJL8+gdZ3fXrN6hbt06sbz2GDBmkxoiEEEIkx+a//gKgafMWPHj4UM3RCCGym+joaObMmwfAmNGjVZ8VdXR00CFmOWBERES8u4crFAp+/Ol/MUnGTZtSdN0+vXtRu3atNMVeonjSswr37N3L06dPadmihSpRCKgShSEhIeTKlUvVHhoahp6uLrlyf20bNGggv86cydVr1yRZKEQaDRk8iJOnTrFpyxaG/TiUggW/LstVKBRMmjKV27fvsGDevGStpHjp7MzwkSPZs2snpqaZd1fzQYMGsnP3bvb9s5+fR43C4nOdwC8WLl7MqdOnGfvLGDp36pjgOIcOH2HhokUA9O3fHx1tHTq0b4ej0xPO29lRrpyVKlm4fsNG1q5bh4eHB9+3bZtgslBTU5OyZcrg4OjI0uXL+WvjBnR0dOL027V7D8uWLwegY+cuaGpq0rtXT4b+8EOqfifiK0kWZgIOj2JqJGhra1LO2lzN0WQ8J6cnjJ8wkdOnz3D40AE6JKPmjBBCCCGEyBnev3/P+/fvATA3M4tzfN36Dfj4+DBr5ow4x2bNnkNUVBQTxo1LcbKwXLlylCuX9BLntHJwcATA3DzucwsMDKRZy1acPH4MUxMTAPr26U2P7t1i3ShHRkSgVCopUCDuGCLn+PDhA5s2b8HE1IR+ffrEmdUlkue7Jk2YPHEii5cupVnLVowaMQIrK0vc3T3Ytn07rq6ubN28mQ7t2yU51qdPn+g3YCC/TptG1SpVCA0N/QbPIHUqVazIogXzmTx1Gm2/b8fIkSOoYGuLt7c3O3ftxt7BgVW//ZZkiYJOHTsQERHOT8NHcPCffzD71+t2vwED8fH1Uf3807AfiY6OZvqMuK/f/2VhYYGDoyMVK1Tg+7Zt4+3Tp3cvQkKCmTh5CmdOn0py5rlIPnk1UTOlEhztY2qjWJY3Q18/7v+SkJAQLly8iJ3dBbp27ZJltwAPDw9n9Jhf2LRpC3ny5GHpksW0atUy6ROFEEIIIUSOUahQIYoWLYqHhwdnzp6jX98+AERERLD2jz/Ys3cfp44fj3Pevn/+4eSpU9idO5tuOwlnhJo1qrNl61auXr1GaGgoBgYGQExtsCFDf2Rg//6qROEX/04UhoWHM3PWbEqVLBlvsX+Rc8xfuIhNmzcDMZtVTJ86Vc0RZV2TJk6gSePG7Ny9i/0HDhAZGUnx4sXp06c3Pbp1izXbNyEKhYIffhxGo4YN6Nsn/iWzmc0PQ4ZQq1Yttm7bzvETJzlw4CBFihTh+7Zt2bl9m1r3EPiuSRP8/f2ZMmlSsmowivQlyUI1c3P9wMcPMd82VKz8dQmyj68vdnZ2nDl7lnPn7VRFR2vWrJFlk4V6enq4ubkzePBA5s6ZHesbByGEEEIIISCmFGUA8gAAIABJREFUMP/O7dsY+uMwxowdy5FjR8mdKxf3Hzykfr16nDt9Ks4NrL2DA9N/ncGRQwcz/QZ5Pbp3x8npCRv/+otadetRs0YN3nq+5f2798yaOZP27eLfNTU4OJgOnTrz0tmZalWrcvjggUy507P4dkxM8qseX7x4SZKFaVSzZg1q1qyR6vMXLFqEvYMDQ4cM4dLly0DMlxwAT54+wdjYiPLlymFunrlWE1awtWV5JtygqE/vXvTp3UvdYeRYkixUM/t77mgqFSg0NGMlC3v07IVCocDGxpopkyaxbsMG1dbmWdnxY0eSVRBWCCFymujoaO7evcezF8/p1bMnerq6XL12jUuXL1O+XDm6dukSq//9Bw9wcnqCl5cXenq6lCpVmhbNm6lmqPxbYGAgFy9dJk/u3DRt+h2RkZHYXbjAo8ePMTUxoX69ekkuvXN2ceHSpUuqItLFixcjICDpjU1cXd24cPECnl5e5M6dm2pVq1K3Tp0EZ/08e/aMO3fv0fS7JhQpUoQ3rq6cP3+e997eVKpYkTatW6veRz5+/MjpM2d44+pKmdKlad++PXoJ1L5JrrDwcO7cucPbt28J//wBPyHlrcpRK4GdS4UQaVOpYkVu3bjOw0ePcHV1JVeuXCxZtCjem2xvb2969+3H4kWLKF++vBqiTRkNDQ3mzpnNqFEjcbB3wM/fj1IlS1K1atVEZ0Tq6emxYN48gkOCOXT4MPUaNmLd2t9p07p1qmMxzJuXbl27Urp0qVSPIdRnyqRJTJk0iX4DBmaLe8Ws7unTZ4SFhTH0p59UbUqlEoC1f6zjz782sXzpEjp36qSuEIVINkkWqpnrkeMM99zIO91ClNT7OmPQ7tzZWFNtd+7erY7wUu327TuMnzCRlb+toFq1r7s/SaJQCCHimjJtGvv3H8DXzw+Aju3bc/z4cYaPHEVERATGxsaqZOGtW7cZM24cHz9+pHGjRuTNm5dbt27h6OSERdmynDl1knz58gHwxtWVsePGc+36dSIjI2nYoAGvXr9i9e9r8fDwUF1fS0uLdWt/p1vXrnFi8/Xz45ex4zhx8iTW1uWpVTOm+P/+gwdxdXNL8DmFhYUxYdIkdu/5G+vy5albtw7Pn79g4aLFlC5dmj9+XxOrsP+WbdtYs+Z3Xr95A8Tsuvfg4UMOHT5MdHS0ql/3bt1YtGA+a9etY8PGP2Ptdrrm97WcOXUy3oRpUoKDg1m6bDm7du+mTp06mJub8/LlS27cvElkZGS85yycP1+ShUJkIE1NTapVrUq1qonvJLp46TI+fvzI9h072L5jh6o9MPAT27Zt58KFi/Tu1TPe1zh1MitQgKZNv0t2f21tbdWspyaNG+Pp5cXwkaN4+expvIX/kxWDmRkb169L1bmZ3ZvPu7Mmh66ODoULF87AaDKOQqHAyckpwZpu4tvZtWN7nLbQ0FAKFyvO2jVr6JhDa/VHR0Un3UlkOpIsVLMg+0cUUkZQLNyV/IW/1ibJqmvynZ1dmDxlqqrWga+vr7pDEkKITK9Du/Y0qF+fPv36A7Bh458cPX6MRQsX4PrGlSNHjwIxM+l69O5NYGAgm/7cqPpmOioqipat2/Dg4UO279zJ6FGjADA2MuLnUSOxtLRgw8Y/uX37NoUKFWLZksWUKlkSr3fvWLRkCbdu3WbqtOl07tQp1qwWPz9/WrRshcfbt6xZtSrOUpCEdkOOjo6mV5++XLp8meH/+4m5s2erviy6d/8+HTt34fv2HTh14jgVK1QAoFaNmpRavoxRo8fg4eHBxj//pH+/vgwdcoxcuXKx759/WLN2Lfv++YcrV6/SsUN7dmzbSqGCBbl77z5Tpk3DwdGRvzZvZtSIESn6/bu7u9O5azd0dHU5d/YMJUt83c3UwdGRtu3aY2hoyIzp0/D09MTZxYUXL52pUaN6iq4jhMgYrVq2oFixonHa79y9S+nSpalbt06ydinOairY2GJndwF3Dw9Kl5KZgf/Vqk1bfH19Y33hlJDmzZqx7+893yCq9Ldh458Eh4QwcmTK3vuE+BYKmJpy7fp1goKCVDu+R0SEqzkqkRySLFSjgI+h5PV9BUCUgSF5SpVUazxppVQq6dCxE66ubsyeNZPx48cmqxCsEELkdLVr1yIwMFD185WrVzl94gR58+YFUO34+f79+1j9vtDW1qZF8+Y8ePiQ589fqNqNjY1p3KgRLi4uADRq1Ij1f6xVHbe0tMTK0hLrChXx9fPD09OTYsWKqY6PnziB12/eMG3KlBTVjNm2fTuXLl/GwsKC2TNnxppVXr1aNSZOGM/MWbMZMXIUVy5dRENDA2vr8lhTXvW+sWzJklgzbmxtbbh46RKOTk706d0rVl0mKysrXFxcWLl6NXfu3IUU3C8FBQXRsXMX3nt7c/3KFUqUKB7reAVbW34Z/TNz5s3H2cWFqZMnJ39wIcQ30bxZM5o3axan/fe1a2nQoH6Kv0DIbNat34CbuxsL58+P1f7o8WPy5MlD4UKFEjgzZ3vm5Mjz58+pXa8+APfu3MYkf/5YfV69fk3T5i2oUMFWHSGmyaPHj5k7bz6+vr4cO3xI6lcKtXn46BFnz50HYNfu3Xz//fdYlC0LQKdOHdm2YwcNGzehRo0ahIWFqvZj2LlrN31698LQ0DDV17579y4XL8XUh9y2bTutWraM81lOpI4kC9Xo8V03CkTG7ISsa5X13qD+S0NDg61bNlOkSOEsO41fCJH1RQUF4XXOLsXnFWreFO3P33j+m8eRoygVyhSNZVqrJgaFU3/ztnXLZlWi8N+srKx48ewpwcHBFDA1jXUsf/6Ypcd+n5cyJ1fBggXJnz8ffn7+eHm9UyULX71+zZGjxzAwMOCnYT+maMxNW7YA0L1rV7S1437U6NOrN7Nmz8HRyYkbN28me+Mua2trHJ2c4j1mY2MNgJeXV4pinb9wIa9ev2bWzBkJfrhs3Lgxc+bNZ+++fZIsFEJ8c5evXOHc+fMMGTyYsmXKoFQqWb9hI5cuX2bZksXo6+urO8RM68tS5MKFC1OmdOk4x7+851WqWOmbxpUechkYMHniBKpXr55lV6WJ7CE6Opp2339Pu+9jNmeKjopSHWtQvz7nzpzm6rVrlChegmZNv+Pd+/c4OsZ8nov6V9/UiIqOpnu3bnTv1g2AyKj4S8eIlJNkoRo9O30NE6UCgEL1aqk5mpQ7ePAQderUptC/vs2UJVlCCHUL9XrHnR//l+LzWty4Ql6LsnHa7/w4HKVCkaKxam/5kyKFU187SCeeBNsXBUxNVYnCqKgoHj1+zNWrVzl0+Eiqr6evH1PjT/Gv52lnZ4dSqaRqlSqqZSPJ8fHjR54+fQZA2bJxf58Qs3tjAVNTvH18uHEj+clCg0RuiPX09IDYzyE5sW7dth0NDQ26J1LLrODnDRXc3T2IioqKNwEqhBAZZd3a35k5ezZt2n5PiZIleffuHeZmZmzfukV1cy7i5+DgCMTMEo+Pgb4+A/v3p0b1at8yrHRhaWmp7hBEMhgYGPDB10fdYWSo6tWqUb1awv+GqlapQtUqVVQ/l82Th7JlyqTLtevUrp0u44i45NOuGvnfucuXKoWlWzRQaywpce/efcaOG8/Vq9eYNm0K8+bOUXdIQgiRozx89IgdO3Zy8PBhbKytad26Fd81aYKDo2O6XePLbIz4dh5NjLe3t2rnvyKJzK4sWrQo3j4+KZ4JmJ4uXb5CWFgYFStUiPXF13992XhGV1dXEoVCZCHDhv6Y5OYoWUG+fPlYvXIlAJ8+fUJHVxf9z1+QiMQ9evwYgMqV4585mCdPHn5bsfxbhiSEEFmCfOJVk8iIaDTdnwOg1NTCpErWmPo+ctTP/PHHev7f3n2HVV32cRx/g8jQgCOguHCPFPfeOVPTLLel+VSOXKnlzsyRDUdm5l6l9bhQc49ymzM3rhT3QBEEVDac3/MHeh4JNDLgiHxe1+UV3L/7d/8+58gl9OUe2bNnZ/q0qXTr1sXakUREEnDKk5uai3/6+45J3JeUGosWgvHPliFnK1vmHz8/OaKio+nRsyerVq/htaZN2bB2LSVLlgBg7rx5KfqsyMj4zaefdBLwkzg4/H/2X3hExBP7hYWHA+DoZL3lc3/+Gf99uFChpx8MsHPXLgCqVU1/qwBEMrJBAwdYO0KKS2qLCnky35O+AJbDtB45ePAPlixbxqSJE6wRS0TkuadioZWcPnmbXJE3ADDyFCKTk5OVEyVP0SJFGTJkEMOGDvlXG5GKiKQWuyxZyNmwQYqNl/OxQzasbeI337Bq9Rrq1K7NzwsXpOoeRZ45cgBw9uzZf3Rfzlw5cXJyIiIigmvXrj+x3/Xr8deS2kMqrUQ8LGba2WV+ar/1GzYA0KF9u1TPJCIiKePu3btcvXoNgHJlE07MWLVmNQ8ePLBGLBGRdEHFQis5uf0oWeLiv0G5VXo+9/mLi4sjLi4Oe3t7S1u/fh9aMZGISMa2c9duABo0qJ/qm5lXrVoFgPN+fhw+ciTZS/kc7O1pUL8+69avZ/+B/XTq+HaiPr4nTxIWFmY5xdla8ubNA8ClS5ee2OfQoUMcOHCQkiVL0LpVq380vtlsTnAS9JPaAKKjowESfM81m81ERkZaTogWEZHke7Q1h52dHXPm/n/2fVxcHIsWL+Gj/v2sFU1E5LmX+KdVSRM3du2zfFyoUS0rJknali1bqVCxMpMmTbZ2FBERecjVNX5G9/nz5xO0x8XFceHixRR9Vu1atSj68ICSPn37EXAn4ebcYWFh3L9/P8l7Bw74mMyZM7N8xUouJlGIm/hN/P5Qnd5+23ISpTU0adwYe3t7jhw9yvETJxJdDw4OplefD3FxcWHurFlkzpz0DMQrV67y8cBBlK1QgWnTZzD687GUKluOHLly8/GAgYSEhPDVuHFUqFSZnHny0u2DHsTFxQFw+vQZ3uvShUJFi7Fu/Xog/r0dNGQo3mXKMmDQ4NR7A0REXmCP/l3PmTMnl69ctvw5eOgPQkNDn3joiYiIqFhoFYYB0Wf/vwm9Z/UqVkyT0MmTp2jStBmNXm1CWFiYZS8sERFJPbGxsZYThAH+/PMcUQ9nmj3ujddbALBk6TI+/+IL1m/YwMRvJlGnXj2OH4//n6IbN28QFHTXck9ERAR+Fy4AcPPmTUJDQxOMee3aNctSrPN+fpYZbra2tkydMgVHR0fOnj1L9Zq1GDx0GN9Onkz/jz6mWs1a3AkMjL/v/PkEecuWKcM3EyYQGxtL23btOXDgIBC/JGzg4CGsWbuOatWq8sXYzxNkuX79OiHBwQD4XbhgyQLxBbSr1+KXk128eNGyhBji93I8f94PgDuBgQQEBDzt7bbImzcvw4YMxjAMunbrzh9//AHEz+jbsXMnjV9rRlR0FKtWrqBEiSd/P3TK4kTtWrW4evUamzZvpnq1qqz0WUbXLu/zw4IFdHynM2XLlGHJov8yaMAAlq9Yweo1awHw8spLzw96EBYWZhnPwcGB3r16kilTpmS9DhERSezEifj9Ctu3a8sP8+ZZ/kydMgWAUioWiog8kYqFVnDl0l3c78efMhnnnI0sD5dBPQ+mTpvGgQMHmThhPKdP+dKixevWjiQi8sKrU68+HTp2xGQyYTKZ6NCxIy+X9Ob3PXsS9Ov49lt8MnQoWbNmZdK3k+n9YV+uXb/GssWLmTh+PCaTiRs3blKpalW+Hj8+fvls6TIsWboMk8nE9Rs3KFexEhs2bgTgi6++ok69+CXNJpOJz0aNonhJb0uRrkqVyqxdvYqKFSpw9+5d5sydy7jxEwi9F8qqlSsoU7o0JpOJqdOn4/2XzePf6dSRdatXkzt3bpq1aEGuvF4ULlacjZs2MWL4cFatXJlgeW3vDz+kdt16RMfEYDKZ+Hr8eGrVeQWA3/fsoVTZchw9dgyTycT2HTspWboMZ86cAcC7dGm+nzYNk8nEgwcPqFqjJp+NHJWs975/v37MmjEdgFebvkb+QoXJm78AHw8YSLs2bdiza1eiva7+Kkf27NSoXg2AVq1a8mqjRhQrVoxBAwYC0KB+fV5r2pRixYoxcMDHODk5cfLUKSD+sIK8f/k5wM7OjgL585NZJy+LiDyzEw9nFpYpnfDQsbjYWMqXK0eO7NmtEUtEJF3QT6FWcOKPK7jHxi/nyuJdzsppEvpi7Od8MfZz3N3drR1FRCTD2Lt7V7L62djYMGjgAAYNHEBwcDAmk8myd2GePHm45Hc+0T1JtT0yfNgwhg8b9tRnVqpYkS2/bibgzh1CgoPx8vLC6eGhXKt/WfnUe6tVq8ra1au4f/8+/v7+ODs7kzNnziT3W5z2/fdPHKdWzZpPfR1+D081flbt2ralXdu23L59m5CQENzc3cnu4fGvxgRwcUl8aqmNjQ3Ozs5ER0f96/FFRCRpYWFhlu05/voLn+LFi7Nty2/WiCUikm6oWGgFvqeC2JqrP7ljbjK2f5sk+0RFR7N4yRLu379PcHAIlx5+s1vms5yAO3dwdXWlauXKT10W9TSGYfDf/y4iW7ZsNGv2mqVdRUIRkfQhW7Zsafq8HNmzP/MsDGdnZ5ydExfOnjeenp54enpaO4aIiPxLvr4nMZvNmEwmvLzyPrHfqVOnyZfPK118jxIRSUsqFlqB77GbRNs6EFesPAUa1EiyT1RkJKtXr7F8Xr16dcvHO3bsBMAtm9szFQt37drNgIGDOHToMK1bt0pQLBQREREREUnPjh0/DkCZ0qWTnM0OcOPGDWrXrcvB/ftULBQR+QsVC9PY3aBwrl+L31y+TLlcT+zn4uLCLyuWp/jzx479khGfjSRv3rws+HE+nTp1TPFniIiISPJlzZoVgFu3bls5iYjIi+GEb/zhJmX+sp/u41auWoWTkxOFChYEYNXqNSzz8eHkqVMcPniAvv0/Yu26dcyZNZOmTZqkSW4RkeeFioVpzPeYv+Xj0uVyp/nzmzdvBsDHH/dPsLG8iIiIPLtHp0w/ftp06L17idrCwsKIjo4mNDQUwzCwsbHB1dWVokWLMmXqVFxdXXF2dub4ieMEh4Rw7949zGYztrY6k05E5O9ERUdz48YN9u7bC0DWl7JaZhk+LjYmhoULf8Lb29vy76uXV14cHOy5c+cOPXv3oWqVynjmyIGjo2OavgYRkeeBjWEYhrVDvOh+/30PjV5tQkT4faZO+p0lPx0FYNEvnchXIPX2nIqOjiYwMJDcudO+KCkikhY8PHMSePuWtWNIBnfk6FG+nzrV8nnTJk2oWaMGI0aO5NGPWbVr1eKtDh3o07cfZnMcAIULF+bTTz4B4vfNGv355wQFBVG1ahX69unDpMnfcedOAEWKFEnyIBp9/YuIJFSxchUuXrqU7P5du3RhwrivLZ+PHDWaGbNmsWv7Nl5++eXUiCgiki6oWJgGHi8Wdu/sw2nfW7ianFi3rStP2ELjX1u7dh0fDxhI7ty52bljW+o8RETEylQskYxMX/8iIilr5KjRzPvhB65fuWztKCIiVqU1LWkoKiqW82fvAFC6bM5UKRQeOXKU2nXq0uKNltjb2zN0yOCUf4iIiIiIiIiIiLyQVCxMQ2dO+JP7vh/25qhU26/wypUrnDlzlsnfTuL4sSM0barNeEVEREREREREJHl0wEkaOvnrAVoFLsGwsSXHJVugQoo/o2XLN2nUqCEvvfRSio8tIvI88vDMae0IIiIiIiIiLwwVC9PQ7d/3UwCwMcwUrFb6X40VGxvLvHk/cPHSRcZ9/VWCayoUikhGof3aREREJKWEhYcTFxdHZFQUjg4O1o4jImI1WoacZmyI9TsNgAF4Vqv8zCNt3LiJcuUr0qNnL/bvP0BMTEwKZRQREREREcl4Ro0ew4ULF6hWtSqdOndmzdp11o4kImI1mlmYRpwccuDx4AoAcR55sc9meqZxlixZyltvd6Jw4UIs91lK69atUjKmiIiIiIhIhjNq5GfWjiAi8txQsTCN5HLKiynmHADOpcs+8zgtW77J9GlT6dLlPezt7VMqnoiIiIiIiIiIiJYhp5Xidv/fRzB/g5rJuic8PJw9e/YmaHNwcKBnzw9UKBQRERERERERkRSnYmEaKWxrtnzsVbfGU/uazWYWLvyJ4i9781qz1wkNDX3m53bt1p3efT585vvln6lbrwGTJ0+xdgwREZHnzltvd2LwkKHWjpEs2g9aREREMjIVC9PAg/ux5I0NAiDOIQvORYs8se/p02eoUrU6/3n3fXLm9GTtmlW4uro+87PDwsIJDw9/5vvln7l37x4RERHWjiEiIvLcefDgQbr5Hjlj1ix69OrN3bt3rR1FREREJM2pWJgGLp0LwTP6FgCZi5bCxvbJb7uHhzsRERHMmjmDA/v3UqdO7bSKKSIiIiLEr/JYumwZ1WvVZsnSpRiGYe1IIiIiImlGxcI0EHj4HJmN+OUsuWtVSXDtrz985siRg5O+x+nevSu2TykqioiIiEjqCggIoGfvPjRv8QZnzpyxdhwRERGRNKFqVBqIOXvO8nGBBvEzBWNiYpg9ey5Vq9UgKioqQX8bG5s0zSciIiIiT7Z33z5eqd+AoZ98woMHD6wdR0RERCRVqViYBsq6BcZ/YGNDtvJl8PFZzsslvPmgR0/c3NwIDg62bkAREREReaqYmBhmzZ5D5WrVWbJ0qbXjiIiIiKQaFQvTgKNjJmIMA9eXX+ai/y06vNWRLFmysGnjejZtXE/OnDmtHVFEREREkuHWrVv07N2HN1q24vz589aOIyIiIpLi7KwdICOIe/8/vL9xIws7tifY15cRnw6nRImXuXfvHj4+y1P34QbExsSl/nMEiD+g5vbt23q/RURE/sLBwZ7wsIh08T3S1/fk3/bZtXs3tevWo3+/vvTv1w9HB4c0SCYiIiKS+mwMHe+W6mbOnE2fD/vi4uJi7SgiIiIi8jcMm+T/eJwlSxamTP6W1q1apWIiERERkbSjYqGIiIiIyGMmT5nC6DGf/22/xq++yvivvyZfPq80SCUiIiKSNrQMWURERETkHyiQPz/jvv6KVxs1snYUERERkRSnYqGIiIiISDJkzpyZ9997l88+/ZQsWbJYO46IiIhIqlCxUERERETkb9SuVYuJ48dRrFgxa0cRERERSVUqFoqIiIiIPIGnpyejPhtBh/btrR1FREREJE2oWCgiIiIi8hd2dnZ0ef89hg8bhrOzs7XjiIiIiKQZnYYsIiIiIqkmKOgud4Pv4u7mhpubm7XjJMvWrdvImTMn3t4lrR1FREREJM2pWPiCCAwKYu68eRw5cpTbt2+TNWtWKlQoT9cuXSiQP7+1471wTp8+w/fTpnH8xAn8/f3JZjJRvnx5+vfrS+lSpawdT0RExKrCw8OZMXMWs+fMwcbWFltbW/z9/SlRogRfjv2cuq+8Yu2IIiIiIvIEttYOIP/eL6tWU65CRbZu3Ua3rl34dtI35MqVi2nTZ1Cnbj0CAgKsHfGFMunbydSuW5eIiHDmz5nNvt93U7t2LVb+8guvNmlKYFCQtSOKiIhYzf3792nyWjPGT5zINxMncPbUSU6dOE7XLl04c+YMnd99D/2uWkREROT5pZmF6dzp02eo17Ahnp6e7N29i5deegmA0NBQipf0Jioqir27d1GiRAkrJ30xbN22nTbt2lGubFl+27wJO7v4bT9DQkJ4uaQ3sXFx+B47Sq5cuaycVERExDqGDR/OzFmz6d+vHyNHfGppv3r1GuUrVaJ48eLs3b3LiglFRERE5Gl0wEk6N2vObKKjo2nbprWlUAjg6urKuK+/wmw2q1CYgubNnw9Au7ZtLYVCAJPJxNw5s8maNasKhSIikqGtXPkLAE0bN07Qni+fF7u2b8fLK681YomIiIhIMqlYmM5dvnwFALdsiTcM/88776R1nBfencBAAOzsMiW61rxZs7SOIyIi8tzJ9PCXaTf9/QGIio7m8qVLFC9eXAeGiIiIiKQD2rMwnXunU0cyZcrEtBkzmDd/PkOGDaNG7Tps3bbd2tFeSP0+7IOjoyPjJkxgzNgv6PB2R7wKFGTLlq1PvS8yMjKNEoqIiFjX95MnUyB/fnr16cPrb7xJ4aLFqFazFseOH0/W/efPnyc0NDSVU4qIiIjIk6hYmM7VqF6dhg0aEBgYyPQZM5kzdx5nzpwhNDQkyf7LV6yg2estKFm6DOUrVqJHr95cu3YtjVOnX3ny5KF8uXIYBhw8eJDtO3YQHh6OUxanRH1DQ0MZMmwY5StWokLlKuTNX4Au3bpz69YtKyQXERFJfXFxcezZt4/bAQE0qF+fihUq4OToSNEiRShUsODf3r9t+3aq16rNnr170yCtiIiIiCRFB5ykYxcvXaJJ09dwdHJi1coVFCpYkJMnT+F/y59GDRsm6j/xm0nMmTeP3zZtIm/ePBw5epR33++CjY0Nv+/cgaurqxVeRfqxf/8B3mzdmlLe3qzwWYarqys3btzgwYMHFC9ePFH/5i3eIEuWLPy0cAEO9vac8PXljZatKF68GJvWr7fCKxAREUldn3z6KTNmzuKToUMZNHAAEF9AzJQp8fYdf3Xez4/mr7cg4M4d/vvTQl5r2jS144qIiIhIEjSzMB0bNHgIdwIDGTH8E8tv60uV8k6yUAjw30WLeClrVvLl88LW1pZKFSsyeOBArl+/zuo1a9Myero0YPAgoqKiGPHpcEthNU+ePEkWCuPi4vA9eZJcuXLiYG8PQJnSpen49lscOHCQ27dvp2l2ERGR1BYQEMCcufPInDkzPT7obml/VCgMCwsjNjY2yXsfPHhA53ffY+jQIWmSVURERESeTMXCdCoyMpIdO3cCUK5s2UTXT/j6Mm78hARtX34xliGDByVoK/FyfKHr8pUrqZT0xXAnMJDTp88AUKxo0UTXN23ezNgvv7R8nilTJnZs28qozz5L0M/JyQkbGxvL5u8iIiIvivN+fsTGxmJvb4+zs3Oi64NsSrrrAAAYaUlEQVSGDOXnRYsStZvNZrp2/4Amr75KyzfeSIuoIiIiIvIUKhamUw4ODnh4eADw57lzCa6dO3eOd997nypVKidob9qkCe3atk3QdtM/fv8875IlUjFt+ufu5oa7e/yJ00eOHk1wbcuWrQwYNJi2rVsnaC9YoADZsmWzfB4cHMyKFSvp3KkTHu7uqR9aREQkDZUpXRpnZ2fCwsLYunWbpT0wKIievfsQEHCbjm+9lei+MZ+PJTIykk+Hf5KWcUVERETkCbRnYTq2avUaun3wAW7ZstGvb19MJhMHDh5gy9ZtTJk8mQb16z31fsMwaNm6DUFBQWz57VfLcllJ2m9btvB+127Y2trSuVMnsmTNwr59+wkJCWHu7FkUK1YsyftWrV7DqtWrOHrsGL179qJb1/h9IkVERF40e/fto1//j7h85Qo1a9QgLi4OvwsXeLdzZwZ8/BF2f5lZv3rNWj4bNZJtv23B3d2NkJAQChYpqj0LRURERKxIxcJ07tq1a/gsX8GFixewz2xP+fLladO6FVmyZPnbe+fNn8+IkaPYsnkzJTWzMFlCQ0PZsHEjl69cwdHBgYoVK1K7Vq2nFv/27tvH2bNn+fPcOZb5LKdzp06MGvmZCoYiIvJCMpvNnD37J1evXcXdzY1SpUrh5OSUqN8JX19atm7DCp9lli1VVCwUERERsT4VCzOo37ZsoUev3vwwby51ate2dpwMY8PGjXR8pzNTp0yh49uJl2KJpHeRUVGsXbuWUt7elCihX0Ikx9mzZ/E9eZLXmzfH0dHR2nFE0swbLVtx9s8/KfnYvxUxMTHs2buXUt7eeHh48PFH/aldq5YVU4qIiIhkPDplIQNas3Ydg4YMYdFPP1G1ahVrx8lQ6teLXxr++549KhbKC2nEZyOZO28eTk5OHD96hOwP91aVpIWEhNCwcRPCwsLo/M4evvv2W2tHEkkzPT7ozu2AgARtEeER7Nm7l6pVq1KqlDd58+a1UjoRERGRjEvFwgxm2vQZ/HfxYjauX0ehggUt7T169Wbm9GlWTPZiCQ0NZcasWbzVvgP58+eztF++fBkAzxw5rJRMJHVFRUUCEBsbS2xMjJXTPP/i4syW9yk8PMLKaUTSVtMmTRK1hYSE8Mmnn1K/Xl0tQxYRERGxEhULM4jo6GgGDh7M1m3b+eqLL7h69SpXr14FIDg4hM2//mrlhC+WE76+jBs/gciISEaN/AyAyMhIRowahYuLC++/956VE4qkjrFjxlDKuxRlSpcmV65c1o7z3HN3d2Pt6lUcOXqM9u3a/v0NIiIiIiIiqUx7FmYQv/72G+3fevuJ100mE5f8zqdhohebYRh8PX48s2bPoUb16mTP7sHOXbvI7pGdSd9MpHSpUtaOKJLm4uLiqFy1Gl9+MZYmjRtbO04CAwYNxhwXx7eTvrF2FJEMTQeciIiIiFifZhZmENWqVmX71i1PvJ4pU6Y0TPPis7GxYdiQIfTt04fzfn7cv3+fQQMGaO8lydBWr1nDpYdL8Z8nd+/eZcnSpbRr08baUUQyPEdHR/r37UvhQoWsHUVEREQkw9LMQhHJ8Pbt38+ixYs5duw4kZGR5MiRg0aNGtKtSxeyZs2aoO/NmzeZM28+e/bu5U5AAG5ubtSsUYNuXbvg5eWVoG9sbCx79+1j/YYNnDt3nrmzZxMVFcnsOXPZsXMnEZGR1K5Vi5EjPsXZ2ZmIiAgW/vQza9et405gIGVKl2bE8OHky5dw3LNnz7Jh4yb27t9Hn169KFmiBN99/z27du0mOiaG0qVK0btXT8qXK5fk6w0LC+OHBQv49dff8Pf3x8HRgQrly9P5nXeoVLFikvccOHCQhT//hN+FCwTcjn/dpUp507tnT4oVKwbArVu32LhpE1u2bqNO7dp80L0bED+jcOOmTYwaPYYLFy/Sv29fypYtaxm7fr26uLi4WD4/dvw4P/64gMNHjhAeHk7BggVo364dbVq3xsbGJll/pxC/d+jMWbP54/Ahrl27jq2tLXny5OaN11vwTqeOQPyWAV99PY5NmzdT95VX+E/nzpb7vUuWoGjRopw/f571GzeyZ+9e3unYiRavN2fb9u0MHjKUl156ie8mf0vZMmWA+FlRPsuXs33HTm7evEl4eDi5c+emYcMG9OjeHTu7//+Ozmw288cfh9iwcSMnfH2ZOuU78uTJY7l26NBh1m/YwAlfXyaMH4eHuzs/LljAxs2bCQkJpcTLxfmwTx8qVqiQ7Pckuc6ePcv6DRu5cPEihmGQL58XzZs106xoEREREZEMQMVCEcmwYmNjGTR4CD8uXEjzZs3o1bMHHu7uTJz0Lct8fGjYsAE+S5ZY+q9dt44PevbC2dmZoUMG412iJOfOn+fr8eMJDAzk++8m0/ax2Wmvv/EmJ0+dIiQkBIDWrVqxYeNGcuXMiWEYlll2tWvVoknjxnw3ZQqZ7OxwdXXlwoULxMTE4OnpyeGDByxFy8nffcd3308lLCyMmJgY6terh6+vL15eXmTNmpUjR48SFhZGpkyZmPb9FNq3a5fgNZ86dZr2b79NYGAg/fp+SP269Qi4E8CU76dy+MgR+vTqxehRIxMU5Zb5+NCjV2/q169H7549sbW1ZdPmzcycNZtvJ33Du507s3PXLt7v2o2wsDCioqJ4/733+GbCeAAWLV7ChIkTuenvT3R0NDly5CCLk5NlfJ9lSylSuDAA48ZPYPzEiTRp3Ji2bdpgNpuZN38+e/ft493OnZO9TDgkJIQGjV4l6O5dxowaRfFixTh3/jyTvv0WRycn9v2+mxs3btC8xRsEh4QQGhqKs7Mz7m5uljH6ftiHyMgoxk+caHm/x44Zg6dnDnp/2Jfo6GgAy3LJP/74g/Zvd8TZ+SWGDxtGgfwFuH7jBl98+SUXL12ib58+jB410jL+e126sGPnLkJDQzEMg4P79lK0aFEAunTrzrbt2y3XWr75Btu27yCbyYSDoyOXLl0iOjoaR0dHft+1M8VmYUVGRTFw0CCWLvOhfbu21Kldm7N/nuO7KVOwsbFJ8mtKREREREReMIaISAY1ctRow+TuYbzftZthNpst7dNnzDRM7h5GNo/sRlhYmGEYhnHo8GEjR67cRt78BQy/CxcSjHP9+nWjUNFihnsOT2P3778nuBYTE2OY3D0Mk7uHMW78BCMwMMhybfGSJZZr73ftapw7f95y7dz580b+QoUNk7uH8cOCBYmyt2nf3jC5exg9e/cxgoL+P2ZoaKjRqfN/DJO7h+GZO0+CrIGBQUaJUqUNk7uHsXbdugTjRURGGvUbNjJM7h7Gd99/b2k3m81G8ZLehlv2HEZoaGiCds/ceRJlGzXmc8Pk7mF8PHBQosw169QxTO4exsZNmxJdMwzDWLDwpyTvjY6ONipUqmyY3D2MLVu3JXnvX307ebJhcvcwxk+YmKB95KjRRrWatRK0jf3yS8Pk7mH0/+jjJ473zn/eNUzuHkbd+g2Mhq82Ns6ePWuEhoYaX48bb/j6njQMwzAav/aaYXL3MNp1eCvBvVu2bjNM7h5GsRIlkxzbM3cew+TuYZw7dy7RtaLFXzZM7h7GsOHDDX9/f0v7tWvXjFJlyxkmdw9jzNixT38z/oE+ffsaJncP49vJkxO0v9eli2Fy9zB69OqdYs8SEREREZHnk621i5UiItZw9eo1ps+ciZ2dHV+O/TzBTLpChQqSK1cuWrdqRZYsWQAYOWo00dHRdO3SJdEsrjx58vBh717ExcXxyfBPMZ4wYfudTh1xd///zLUO7dtbTgxu9tprFC1SxHKtaJEitHi9OQDnzp174ut4pU5t3B6bDefi4sKcWTPJl8+LqKgoZs2eY7k2ddo0/P39qVmjBs2bNUswjqODg2XW2/gJEwkKugvA/fv3uX37dqLlvzY2NgwZNDDFlqVGREQwZuznODo6Muax2XcAmTNnpkWLFgAsX7EiWeOdO+9nyfm4xo1f5Z2OHZ85p72DPSuX+1C8eHFcXFwYMngQpUp5A1CtSlXKlS1LoUIFE9xT+uH1O3fuEBER8UzPbdumDTlz5rR8njdvXjq+/RYAFy9efKYx/+rKlassWrwEJycnunfrluBarx49aNiwAX169UqRZ4mIiIiIyPNLB5yISIa0eu0aYmJiqFq1Cp6engmuNX71VU77nrB8fvv2bfbu2wdAo4YNkhyvSePGjP58LL4nT/Lnn3/y8ssvJytH7ly58Pf3T/pa7twAhISEJmusRxwdHenQvj3jJ0xkx44dlvYVv/wCQKNGDZO8r2aNGri4uHDv3j02bNzIO5064uLigru7G0FBd+nV50NmTJuKs7MzAB/17/+Pcj3Ntu3bCQq6S8mSJTjv55foumE2A08vnD6uYIECAEybMYPq1atRs0YNAKpXq0b1atWeOWeL5q9bXv9fjRr5WZLt9vb2QPwp6RERETg9tgT733hUaP6nXx9PcvLUScxmM7ly5rQUyR+pVKlSgiX5IiIiIiLy4lKxUEQyJF/fkwCWvfL+ru+j2YJeTzjROn/+/NjY2GAYBsdPnEh2sdD2KSeR29o8++TvYg/3vrt69SoQv4fftWvXAPDK65XkPTY2Nnh55eXUqdOc8PW1tH85diy9+nzI+g0bqFCpMn369Ob9d999YtHsWRw7fhyA69dv8N77XZLsUyB/flxdXZM1XvduXVnm44PfhQu8/sabvN68GR9/9JHlIJLUdurUaX7b8hu7f9+D34XExc+U8G++PpJSqWJFTCYTly5fZt78+eTPl59ft2zBzS0bQwcPTtFniYiIiIjI80vLkEUkQ7p37x4A9vYOf9/3/j3Lx9mzZ0+yj5OTk+UQktDQe0n2SUuPZksaxM9ou3fvvuVa9uweT7wvR/YcAJZDWQDatW3LutWrqVC+PIFBQYwaPYaKlauw8uFMxZTwaHZcu7ZtOXr40BP/rFzuk6zxXF1d2bblN7p364p95sysWbuOeg0a0qvPhwleW0oym8389PN/qd+wEa+9/jpBQXf5ZNhQft+5M1Wel9I8PT35ZsIEnJycGDh4CG07dGDO3LmsXrPW2tFERERERCQNqVgoIhmSi4sLEL+P3N9xdTVZPr59OyDJPuHh4Tx48ACAbNlMSfZJS4/2HMyZ0xMbG5sEmQICkn4NALcDbgOQLVu2BO3VqlVl62+/4rNkCRXKl+dOYCBdu3/Aps2bUyTvSy+9FP/827dTZDwAZ2dnxn31FUcPH6LHB92xs7Nj8ZIlvNela4o94xGz2Uynzv+hb//+FClShJPHj/H5mNFUrFABW9v08a128nff0bV7d9q2bs2Fc39y6OABhg4ezNxZs6wdTURERERE0lD6+D8YEZEUVqZMaQD2799PdHT0U/uWK1vWUvC5fOVykn0uX75i+bh8+fIpE/JfOHDwAAA1a9QE4gtnj5ZcP571cWazmatX45cqVyhfLsk+DRs24NdNG2n55hsYhsHSZcv+cbakDoAp5V0SiP/7iImJ+cdjPk2uXLn46osvWLnch0yZMrFj584ki5Jmw/zMz9i+YycbN23Czc2NqVO+S9El2mnh0KFDfP7FlxQpXJhvJk7Azc2NwoUKMWTwILwf/t2IiIiIiEjGoGKhiGRILZq/jp2dHYFBQcydN/+pfd3d3WjYIP5gk7Xr1ifZZ936+PZKlSolax/E1BQYFMSSpfFFvPffe9fS3r5dOyA+a1IFu+07dvLgwQNcXFxo2qQJABs3bSJn7jyYzf8vpGXKlImOb70NxJ+W/E8ldU+D+vXJmjUrdwID+XnRoifeGxcXl6xnVKhUmXnzE/691qpZ03LwyaNl6I97NDP0WVy6FH8isYeHh+VAk/Rk+cqVmM1matWsSaYk9tGcOn16ku/P3bt3Wb9hA0uWLuX4iROJrouIiIiISPqjYqGIZEj58nnR84MPABg5ejTTZ8xMMMPw/v37jJ8wkZs3bwIwZtRIsmTJwk8//8yRo0cTjHXez49pM2aQOXNmvvpibNq9iCQEBd2l83/eJTg4mB4fdKdSxYqWaz17fEDRIkU4dvw4Py5cmOC+Bw8e8NmokQCMHPFpgoNEoqKjE53YfOrMaQBeeeWVZGdzcoo/Yfe3LVsTXTOZTAz4KP505U+Gf8rKX1YluB4bG8vCn36mTbv2yX7eX2dQBgcH43/rFnnz5qXwYwXdLA9PJ967bz9hYWHJHv9xBQsWAuDixYucPn3G0h4YFMTESd8+05hp6dFMSP9btxJdmzV7DqtWrSbzX4qgPyxYQOVq1Tl67BiRUVG0eLMlw0eMSJO8IiIiIiKSejKNGjVqlLVDiIhYQ+3atQi8E8jRY8fYum0bs+fMZdPmzUybPoMxn4/l3r17vP3WWzg5OeHh4UHVKlXYuGkjP/38X6JjogkNDWXDhg182K8/cXFxzJszm1fq1LGMv2nzZhYvWcr+A/FLgqOio3FwsKdA/vz4XbjAMp/l/LJqFdHR0dy7dw/DMFPK25uwsDCW+Sxn0eLFBNy5Q0hICE5OTphMJrKZ4vce9Fm+nIsXL3H8hC8H/zjICd+TLF3mw6AhQ7h67Roff9SfkSNGYGNjY8ljb29P41cbs3PXLhYvXsIt/1vExsayZ+9ePuzXHz8/Pz4ZOpTevXpZ7vHz82PFyl84fuIEhgEBtwNYtnw5E7+ZRNUqVRj39VfY2dnh7+/PL6tWs3TZMgIDAwkODsbBwR5XV1fL/odnzpzh0OHDnD5zhq1bt7Fr927mzptPtWrVyGYyUbVKFe7eDebgH3+wZu1aVq78hYN/HGLJ0qV8MvxTNm3eTOfO71ClcuW//budNXsOh48cJiw8nIiICA4fOcLAQYMJDArih3lzKfBwhiFATEwMS5Yu5cGDB/isWMEfh/5g0eIlxMTEkDmzHb+sWoWPz3LCwsO5d/8+ZrOZ2NhYcufObRkjf758bNu+nes3brB02TKOHT/OnLnzmDlrFk2bNGH3778THR1NVFQU4eERFC9ejO07drBsmQ+7du8GIDwift9Lb29vdu7ahY/PcrZu24bZbCYyMgo7OzuKFClCbGwsS5ctY+kyH65evUrovXs4OTmRJYvTEw/g+TsF8hdg5S+/4HvyJI6Ojjg6OnLo8GFGjBzFyVOn+GnhAlweW1q9Y+dOunTtxoxp0+jetSvlypblxwULuHXrdoLZrCIiIiIikv7YGEmtRRMRyUAOHznCipUruXDhImbDTJHChXm9eXNqVK+eqG9ISAg/LljAzl27CQwMJFu2bNSsUYP33nuXHH8p1Hw1bhwBfzkQpVixYvTs8QE7du5k9eo1icaf9M1E7ty5w1dfj0t0rU2b1tSsUQOAth06sGXLVlq1bEnuXLm4HRCAk5MjJUuUpHmz18iTJ88TX29MTAxLl/mwafNmrly5QtaXslK+XDk6d+pEiRIlEvT19/dn/o8/cvTYMe4E3MHB0ZGCBQpQr+4rtG3TxrJk1ffkSebP/yHRs1q1akntWrUAiIiIYN4PP3Dy5CkyZbIln1c+qlWrSo3q1cmcObPlnn3797No8WLOnv2T6OhoChTIT53atWndqhUmU/IOj1nm48PmX3/jxs0bhIeFkydPHkqWLMG7nTvj5eWVqP+atevYvn07YeHheObIQfny5an7Sh0OHDzIr7/+lqh/hQoVeKdTxwRtERERTJ8xk8NHjmBvn5k6tWvzVocOODk5Mfm777hy5SoQf1LzqJGf8f20aVy8cDHBGDa2tkyaOIFp02fg5+eX4FrOnDkZMngQkVFRDBv2SaJMjRo15LWmTZP1/iQlICCAWXPmcPToMe7evUuBAvlp+WZLmjd7LdHS5LYdOnD27J+cOHrEUpC+fOUKWbNmJbvHk0/bFhERERGR55+KhSIi6dCjYuHM6dMsexGKpJXiJb3xLlmSlct9rB1FRERERERSmPYsFBERkX/EHBdHVFSUtWOIiIiIiEgqULFQRERE/pHixYtz5uxZIiIirB1FRERERERSmIqFIiLpjGEYPHjwAMDyX5G09O5/OhMcHMzI0WOIi4uztN9K4jRlERERERFJX7RnoYhIOjJ9xky+nzbNUpSxs7PDK29ePhk2lDatW1s5nWQkIz4bybQZMyhatCgVK1QgKCiIiIgI1qz6xdrRRERERETkX1CxUEQkHbl79y737t9P1O6WLRsuLi5WSCQZ2blz5/h9zx5sM2WiTOnSVChf3tqRRERERETkX1KxUERERERERERERADtWSgiIiIiIiIiIiIPqVgoIiIiIiIiIiIigIqFIiIiIiIiIiIi8pCKhSIiIiIiIiIiIgKoWCgiIiIiIiIiIiIPqVgoIiIiIiIiIiIigIqFIiIiIiIiIiIi8tD/ACOt2dpPKrsTAAAAAElFTkSuQmCC"
+    }
+   },
+   "cell_type": "markdown",
+   "id": "special-overhead",
+   "metadata": {},
+   "source": [
+    "![image.png](attachment:e49027f3-9a05-42fd-bb36-8b4c8c4af4d2.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "english-board",
+   "metadata": {},
+   "source": [
+    "## Stress-strain curve\n",
+    "\n",
+    "The trilinear curve of ACK model represents the composite tensile response by identifying the following characteristic points:\n",
+    "- [$\\sigma_{1}, \\varepsilon_{1}$]: The inital values of stress and strain are set to zero. \n",
+    "- [$\\sigma_{2}, \\varepsilon_{2}$]: In the first stage, the matrix is uncracked and perfect bond between matrix and fabric is assumed up to the first cracking stress $\\sigma_{2}$ , which is defined as \n",
+    "\\begin{align}\n",
+    "\\sigma_{2} = E_\\mathrm{c} \\varepsilon_{2}\n",
+    "\\end{align}\n",
+    "where $\\varepsilon_{2}$ is the composite strain value at which the matrix cracks and $E_\\mathrm{c}$ is the composite stiffness. \n",
+    "The strain $\\varepsilon_{2}$ is given as\n",
+    "\\begin{align}\n",
+    "\\varepsilon_{2} = \\dfrac{\\sigma_\\mathrm{mu}}{E_\\mathrm{m}}\n",
+    "\\end{align}\n",
+    "where $\\sigma_\\mathrm{mu}$ and $E_\\mathrm{m}$ are the matrix tensile strength and stiffness, respectively.\n",
+    "The composite stiffness has been obtained using the\n",
+    "[**mixture rule**](../bmcs_course/1_1_elastic_stiffness_of_the_composite.ipynb) \n",
+    "and can be expressed here as:\n",
+    "\\begin{align}\n",
+    "E_\\mathrm{c} = E_\\mathrm{f} \\; V_\\mathrm{f} + E_\\mathrm{m} \\; (1 - V_\\mathrm{f})\n",
+    "\\end{align} \n",
+    "where $E_\\mathrm{f}$ is the fiber stiffness, and $V_\\mathrm{f}$ is denoting the fiber volume fraction (reinforcement ratio).\n",
+    "\n",
+    "- [$\\sigma_{3}, \\varepsilon_{3}$]: The second stage is characterized by the crack propagation. In this phase, the load is\n",
+    "assumed to be constant up to the strain value $\\varepsilon_{3}$ calculated as follows:\n",
+    "\\begin{align}\n",
+    "\\varepsilon_{3} = \\dfrac{\\sigma_\\mathrm{mu}}{E_\\mathrm{m}} \\; (1 + 0.666  \\alpha_\\mathrm{e})\n",
+    "\\end{align}\n",
+    "where where $\\alpha_\\mathrm{e}$ is an homogenization coefficient given as\n",
+    "\\begin{align}\n",
+    "\\alpha_\\mathrm{e} = \\dfrac{E_\\mathrm{m} \\; (1 - V_\\mathrm{f}) }{E_\\mathrm{f} \\; V_\\mathrm{f}}\n",
+    "\\end{align}\n",
+    "\n",
+    "- [$\\sigma_{4}, \\varepsilon_{4}$]: Finally, in the third stage, when the crack pattern is stabilized the load increases linearly up to the ultimate tensile stress $\\sigma_4$  with a slope equal to $E_\\mathrm{r}$\n",
+    "The ultimate tensile stress is given as\n",
+    "\\begin{align}\n",
+    "\\sigma_4 = \\sigma_\\mathrm{fu} \\; V_\\mathrm{f}\n",
+    "\\end{align}\n",
+    "where $\\sigma_\\mathrm{fu}$ is the tensile strength of the fiber.\n",
+    "The slope $E_\\mathrm{r}$ represents the effective stiffness of the reinforcement with respect to the whole cross section and is given as\n",
+    "\\begin{align}\n",
+    "E_\\mathrm{r} = E_\\mathrm{f} \\; V_\\mathrm{f} \n",
+    "\\end{align}\n",
+    "The composilte strain at failure $\\varepsilon_{4}$ is given as\n",
+    "\\begin{align}\n",
+    "\\varepsilon_{4} = \\varepsilon_{3} + \\dfrac{\\sigma_\\mathrm{4} - \\sigma_\\mathrm{2}}{E_\\mathrm{r}}\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "southeast-stadium",
+   "metadata": {},
+   "source": [
+    "## Crack spacing"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "medium-hygiene",
+   "metadata": {},
+   "source": [
+    "### Matrix cracking is like car parking ?!\n",
+    "\n",
+    "![SegmentLocal](../fig/Cars.gif \"segment\")\n",
+    "\n",
+    "Consider a process where particles (cars) are randomly introduced in a system (along the street). \n",
+    "They must not overlap any previously parked car. What is the average distance between two neighbouring cars?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "pretty-jacksonville",
+   "metadata": {},
+   "source": [
+    "Probabilistic analysis of the car parking problem delivers the result that the average spacing is 1.337 larger than the car length ([Wikipedia: Random sequential adsorption](https://en.wikipedia.org/wiki/Random_sequential_adsorption))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "reverse-discretion",
+   "metadata": {},
+   "source": [
+    "### How long is the car in a concrete tensile specimen?\n",
+    "\n",
+    "The final average crack spacing $l_\\mathrm{cs}$ is given as\n",
+    "<!-- 1.337 \\; \\dfrac{(1 -  V_\\mathrm{f}) \\; \\sigma_\\mathrm{mu}}{  V_\\mathrm{f} \\; T} \\\\ -->\n",
+    "\\begin{align}\n",
+    "l_\\mathrm{cs} &= 1.337 \\; l_\\mathrm{shielded} =  1.337 \\; \\dfrac{A_\\mathrm{m} \\sigma_\\mathrm{mu}}{\\bar{\\tau}p} \n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "secondary-artwork",
+   "metadata": {},
+   "source": [
+    "## Examples"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "solved-damage",
+   "metadata": {},
+   "source": [
+    "### **Task 1:** Evaluate the tensile stress-strain curve\n",
+    "Consider a steel reinforced cross section of $100 \\times 100$ mm \n",
+    "reinforced with a rebar ($d = 16$ mm) diameter. \n",
+    "Plot the stress-strain curve using the ACK model:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "regulation-bronze",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "E_m = 25000 # 28000 # concrete stiffness [MPa]\n",
+    "E_f = 182000 # 210000 # reinforcement stiffnes [MPa]\n",
+    "sig_mu = 3 # 3 # concrete tensile strength [MPa]\n",
+    "sig_fu = 1380 # 500 # reinforcement strength [MPa]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "configured-picnic",
+   "metadata": {},
+   "source": [
+    "Plot the composite stress-strain curve"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "nuclear-firmware",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "80092a823976439b848593802897b0a7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[0, 0.00012, 0.0012078032967032966, 0.007038352747252748] [0, 3.1884, 3.1884, 13.8]\n",
+      "[0, 0.00012, 0.0008415395604395604, 0.007221539560439561] [0, 3.2826, 3.2826, 20.7]\n"
+     ]
+    }
+   ],
+   "source": [
+    "%matplotlib widget\n",
+    "import matplotlib.pylab as plt\n",
+    "fig, ax = plt.subplots(1,1,figsize=(7,3))\n",
+    "fig.canvas.toolbar_position = 'top'\n",
+    "fig.canvas.header_visible = False\n",
+    "for V_f in [0.01, 0.015]:\n",
+    "    E_c = E_m * (1 - V_f) + E_f * V_f # composite stiffness\n",
+    "    alpha_e = E_m * (1 - V_f) / (E_f * V_f) # homogenization coefficient\n",
+    "    eps_1, sig_1 = 0, 0\n",
+    "    eps_2 = sig_mu / E_m\n",
+    "    sig_2 = eps_2 * E_c\n",
+    "    eps_3, sig_3 = sig_mu / E_m * (1 + 0.6666 * alpha_e), sig_2\n",
+    "    sig_4 = sig_fu * V_f\n",
+    "    E_r = E_f * V_f # effective reinforcement stiffness related to the composite cross section \n",
+    "    eps_4 = eps_3 + (sig_4 - sig_3) / E_r\n",
+    "    ax.plot([eps_1, eps_2, eps_3, eps_4], [sig_1, sig_2, sig_3, sig_4], label=r'$V_\\mathrm{f}$ = %g' % V_f);\n",
+    "    print([eps_1, eps_2, eps_3, eps_4], [sig_1, sig_2, sig_3, sig_4])\n",
+    "    ax.set_xlabel(r'$\\varepsilon_\\mathrm{c}$ [-]'); ax.set_ylabel(r'$\\sigma_\\mathrm{c}$ [MPa]')\n",
+    "    ax.plot([0,eps_4],[0,E_r*eps_4], color='black', linewidth=1, linestyle='dashed');\n",
+    "    ax.legend()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "6668d655-5fc3-48aa-ab42-978c7025fe54",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fig.savefig('ack.pdf')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "guided-anxiety",
+   "metadata": {},
+   "source": [
+    "**Note** that the curve does not depend on the bond $\\tau p$."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "broke-ballot",
+   "metadata": {},
+   "source": [
+    "### **Task 2:** Evaluate the crack spacing\n",
+    "\n",
+    "What does ACK model predict for a specimen with the dimensions $100 \\times 100$ mm reinforced with 1% ratio."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "id": "2a4cffa3-a117-45ac-96a0-6a5fac9c4523",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "T = 395"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "id": "0e9dfb24-4eaf-4202-bf5c-aef6d904dc70",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "20.308860759493673"
+      ]
+     },
+     "execution_count": 40,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tau = 3.8*2\n",
+    "1.337 * A_c * sig_mu / T"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "id": "4f9efdbd-c157-4a00-84ab-1588da841acc",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "13.539240506329113"
+      ]
+     },
+     "execution_count": 41,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "1.337 * A_c * sig_mu / (T*1.5)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.8"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/tour2_constant_bond/slides/S0202-Classification_of_pullout_tests.pdf b/tour2_constant_bond/slides/S0202-Classification_of_pullout_tests.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..b56ba0e04f11bdd75c3334829f6a1ea4e4169a21
Binary files /dev/null and b/tour2_constant_bond/slides/S0202-Classification_of_pullout_tests.pdf differ