From e6afc2d0aadef3205ea5c147431cf418bb7d2d25 Mon Sep 17 00:00:00 2001 From: rch <rostislav.chudoba@rwth-aachen.de> Date: Thu, 12 May 2022 10:25:47 +0200 Subject: [PATCH] updated video links in 6 tour --- Dockerfile | 16 - index.ipynb | 164 +- .../2_1_2_PO_ELF_RLM_CAS.ipynb | 2070 +++++++++++++++++ tour2_constant_bond/fragmentation.ipynb | 14 +- .../3_2_anchorage_length.ipynb | 51 +- ...t_Damage_Evolution_Damage_initiation.ipynb | 250 +- tour6_energy/6_1_energy_dissipation.ipynb | 129 +- ...llout_constant_bond_and_rigid_matrix.ipynb | 79 +- .../6_3_localized_energy_dissipation.ipynb | 68 +- 9 files changed, 2705 insertions(+), 136 deletions(-) create mode 100644 tour2_constant_bond/2_1_2_PO_ELF_RLM_CAS.ipynb diff --git a/Dockerfile b/Dockerfile index 0125c20..3ebe673 100644 --- a/Dockerfile +++ b/Dockerfile @@ -5,19 +5,3 @@ ADD environment.yml /tmp/environment.yml # All packages specified in environment.yml are installed in the base environment RUN conda env update -f /tmp/environment.yml && \ conda clean -a -f -y -# -#RUN jupyter labextension install @jupyter-widgets/jupyterlab-manager@3.0.0 -# -#RUN jupyter labextension install jupyter-matplotlib@0.9.0 -# -#RUN jupyter labextension install jupyterlab-datawidgets@7.0.0 -# -#RUN jupyter labextension install ipytree@0.2.1 -# -#RUN jupyter labextension install k3d@2.9.3 -# -# RUN jupyter labextension install ipyregulartable -# -#RUN jupyter labextension install @jupyter-widgets/jupyterlab-manager -# -# RUN jupyter labextension install k3d diff --git a/index.ipynb b/index.ipynb index b556169..f4ed7e1 100644 --- a/index.ipynb +++ b/index.ipynb @@ -2,7 +2,11 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "# **Brittle-Matrix Composite Structures**\n", "\n", @@ -11,7 +15,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "## BMCS landscape" ] @@ -56,7 +64,11 @@ } }, "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "| | | | | \n", "|-|-|-------|------| \n", @@ -67,14 +79,22 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "## Guided tours provided through BMCS landscape" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "| No. | Title |\n", "|- | - |\n", @@ -90,14 +110,22 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "## Knowledge and skills developed during the BMCS expedition" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "* Understand nonlinear material behavior, stress-redistribution, objectivity of material laws\n", "* Develop a basic understanding of damage, plasticity, fracture\n", @@ -108,7 +136,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour1\"></a>\n", "## **Tour 1**: Introduction\n", @@ -133,7 +165,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour2\"></a>\n", "## **Tour 2:** Constant bond - pull-out, crack bridge, fragmentation" @@ -141,7 +177,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 2.1 - Pull-out from rigid matrix - test setup and theory\n", "\n", @@ -151,7 +191,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 2.2 - Classification of pullout configurations with constant bond stress\n", "\n", @@ -161,7 +205,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 2.3 - Multiple cracking - fragmentation\n", "\n", @@ -172,7 +220,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour3\"></a>\n", "## **Tour 3:** Non-linear bond-slip law\n", @@ -185,15 +237,11 @@ }, { "cell_type": "markdown", - "metadata": {}, - "source": [ - "<div style=\"background-color:lightgreen;text-align:left\"> <img src=\"icons/rest.png\" alt=\"Step by step\" width=\"40\" height=\"40\">\n", - " <b>Our current location</b> </div>" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 3.2 - Effect of bond length: anchorage versus pull-out failure \n", "\n", @@ -208,7 +256,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour4\"></a>\n", "## **Tour 4:** Irreversibility due to yielding\n", @@ -231,7 +283,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 4.3 - Cyclic pullout test and plastic material behavior\n", "\n", @@ -241,7 +297,23 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "<div style=\"background-color:lightgreen;text-align:left\"> <img src=\"icons/rest.png\" alt=\"Step by step\" width=\"40\" height=\"40\">\n", + " <b>Our current location</b> </div>" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour5\"></a>\n", "## **Tour 5:** Irreversibility due to damage\n", @@ -259,7 +331,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour6\"></a>\n", "## **Tour 6:** Energy and fracture \n", @@ -277,7 +353,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 6.3 Localization and fracture energy\n", "\n", @@ -287,7 +367,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour7\"></a>\n", "## **Tour 7:** Bending and crack propagation\n", @@ -304,7 +388,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "### 7.2 Experimental identification of fracture energy and size effect\n", "\n", @@ -314,7 +402,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour8\"></a>\n", "## **Tour 8:** Reinforced bended cross section\n", @@ -340,7 +432,11 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "<a id=\"tour9\"></a>\n", "## **Tour 9:** Retrospective, summary of questions\n" @@ -349,7 +445,11 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [] } diff --git a/tour2_constant_bond/2_1_2_PO_ELF_RLM_CAS.ipynb b/tour2_constant_bond/2_1_2_PO_ELF_RLM_CAS.ipynb new file mode 100644 index 0000000..843be82 --- /dev/null +++ b/tour2_constant_bond/2_1_2_PO_ELF_RLM_CAS.ipynb @@ -0,0 +1,2070 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# 2.1: PO_ELF_RLM\n", + "Pull-out (PO) of a elastic long fiber (ELF) from rigid long matrix (RLG)\n", + "\n", + "[Video - pullout with constant bond](https://moodle.rwth-aachen.de/mod/page/view.php?id=551807)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApYAAAFOCAYAAAA8d13VAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7sXQeYE2UTHjpHl9577yC9CShSBKmiFAX5RURUREBFEZSigEgHKwooogiIIh3pvfcO0nvvHNzdP+8XNuTu0pPdbJIZnn2O7H71/ZK7yZR3EsSwkIggIAgIAoKAICAICAKCgCDgIwIJfewv3QUBQUAQEAQEAUFAEBAEBAGFgCiW8kYQBAQBQUAQEAQEAUFAEPALAqJY+gVGGUQQEAQEAUFAEBAEBAFBQBRLeQ8IAoKAICAICAKCgCAgCPgFAVEs3YDxhx9+oA0bNqiWtv93o2tQNjl8+DANHTo0KNcuixYEBAFBQBAQBASBwCEgiqUb2IejYjls2DA3kJEmgoAgIAgIAoKAICAIPEYgsYDhGQLr16/3rEMQtm7QoAFdvnw5CFcuSxYEBAFBQBAQBASBQCIgiqUN+suXLydckIYNG1LlypXjnQ2sl6VKlaKIiAjauHGj+v/8+fMpffr09M4778Rrr90YM2YMNWrUiObNm0dXrlyh2rVrqwvjnTp1isqVK0dNmza19v/000/V/wsXLkxt27aNNe6vv/5KBw8eVPe0cbQGjvaA+dG2dOnSqinGyJ49u7oH1zf6FSxYUP0sVKiQWtMHH3xAO3fupN27d1OBAgXUPu3N+ddff9G2bdvUWjGm1kZbk/wUBAQBQUAQEAQEgfBAQFzhj84ZilbLli2tp16lShVatGhRvHeB5hbftWsXQfnr2rWrajN+/HiljDqSsWPHKiXu2LFjdOPGDapTpw5Vr16dNm3apF43a9aMFi5cSGfOnKGcOXMSxocMHz6c2rdvbx22c+fO9Nlnn6nX2jgdOnRQr53tAfNrY6LttGnTrEo0FEvsBdfZs2dpwYIFpLnC0ef999+37vPkyZNq7Ro2ffr0oU6dOqn5f/75Z7VWTTlXN0UEAUFAEBAEBAFBIGwQEIvlo6PevHkz5cmTRylGsNzB+nb37l2nbwQ8X7ZsGaVNm5Zef/111W/Lli305JNP2u3XqlUrGjFihHr277//UsmSJenbb79Vr3fs2EHr1q2jlStXUtGiRWnmzJnqPpS9DBkyWMfNkSMHzZ07V82l9ZsyZQpNnjyZvNmDGoQFVlRYHrEXKJawrNo+27Nnj3oGgXK8du1aZdEdPXq0UjJr1KihnpUtW9baT/4jCAgCgoAgIAgIAuGFgFgsH533m2++SWnSpFFu4BQpUihXc8WKFZ2+G6BEacoWXMBQ+vbv3++wT4kSJazP4Eq3fY05IXA9Q+lMkCCB9YLSp40LxfeXX35RCif6LF261DqmN3vQOsOVr+0l7gawL9tn2lph6YRyrSmV6Fe3bt243eW1ICAIuInA888/H+uzj98Dhw4dcrO3NBMEBAFBIPAIiGL56AzgvgXFzrVr15TrF69tXeP2jurSpUuxbkPJgsLoSDSFzNFz3E+ZMiX16NGDUMJdu4YMGaJiOeEmh5UQ7moIfjZu3Ng6nCd7uHPnTqxlOFu3o/VirZDr169bm2CNIoKAIOAdAhcuXFAxz7aff3zZFREEBAFBIFgQEMXy0UkhQUWLl4Q1UEtycXaQsC7CfQz56quvlPXu6aefdtbF5bMXX3xRubU13kyMi5jKjBkzKkUS1stu3bopiyUSZmDd1MTZHtBfi33ET7jdfRW47MuUKUO9evVSQ2HNf//9t6/DSn9BQBAQBAQBQUAQCFIEJMby0cFBeUMSSrp06dSdp556yhr/6OhsEef4zTffqMQbxGQiLtGRO9nRGHHvN2/eXFH9IEEGiirc0BgXrnZcb7/9tlLmIC1atFCxnYhzXL16tVJAHe1h1KhRygIL1xr29swzz8Sd2qvXM2bMoNatW6txkdkOHEQEAUFAEBAEBAFBIDwRSMAul5jw3Lpvu546daqyGoZ7/BMwgHKr0QxVrVpVKbfIXhcRBAQBzxAAG4XmrdB6ItQE8d8igoAgIAgEAwJisQyGUzLxGmEphWsdVEqgJkLS03PPPWfiFcvSBAFzI4AYS/DGiggCgoAgEIwISIyll6eGZBq4pcNdlixZolzyEGACN75mvQx3bGT/goAgIAgIAoJAuCEgrvBwO3HZryAgCJgWAbjCEWYjFkvTHpEsTBAQBFwgIBZLFwDJY0FAEBAEjEIgSZIkKhFORBAQBASBYEXArxZL2xrWGiCuamijHSh7smbNarc2N54jeH3kyJGK39HXrOtgPShZd3gi4M1nCp8XsBWg1rsz0aiybGvUO2svzwQBQUAQEAQEAVcI+NViifrTcXkMUUMbNbGdCQjAEyd2nEcEnkRQ6aA2tlGC0oz+sBzAtTVmzBi/LRvcmSjxiLWh/KM/RNurbU1yf4wrY/iOgDefqfXr19OaNWucTo4EkTZt2sT7vDrtJA8FAUFAEBAEBAEXCDjW5lx0dPQYXIagoNGkSZMmVKFCBac1tJFJ7Ki+9smTJ+mHH35wNF3Y3Z81a5YqOwnlwV8CJQSW5fnz5/trSBnHjwh4+pkC+b0rntIvvvhC8aSKCAKCgCAgCAgC/kTArxZLewvTFMbjx4/be0zff/+9U1LtAQMGUM+ePe32DYabUADfeecdvy0VirZtjXF/DAyrGMIMoGgsXLjQH0PKGDoi4OoztXXrVipSpIjDFcBaCWs3qjyJCAKCgCAgCAgC/kTA7xbLuIvDHzEISgrGFcSCffjhh6o2tz1ZtGiR+gMIShuUNtRbUOf6u+++U9PUqlUr3nSaJRbVZdq2baueg8MR7mlb5RGxayi3CNcynoOGBzW+IahHDgXOdgxtHK3koi3huO0itHFxD1bc1157TT22tRDb9gX2GBMVgvCzYcOG8eJY0QbK78yZM2n//v2E0IX69evbTiv/NxkCrj5TsEDHDUmx3UKHDh1UaIltOVCTbVGWIwgIAoKAIBCkCPjdYgmFCoqOdkGhatCggV1FDQoNal/bc9tByUMFlz/++MMQaPHHGgqg9ke7S5cu1nmxlpw5cyoCcMjw4cOV0giBgti9e3dCG00QE7px40al0EEBRCUNbQxNeYQyrSmjsMqi3CIEcaToB2XVlWhjgp4EgrXb9sVr7RxQZ1zbm+24P/30EyFcAdyTL7/8Ms2ZMyfWXlytQZ7rj4CnnylnMc14ryFRTvtipP/qZQZBQBAQBASBcEJAd4vljz/+SI6yTuF2rVSpkt34SpCPQ9EpXbo0wf2rt0yYMEHVuv7ll1/UVIhj1JRHWPGKFi2qrHoQKGtIoEHSC9ySUMzQZvDgwcqVDGUZ9b1tBc9z5cpljWOEMl2zZk3q3bs3IXkJ1tkaNWqoLnnz5qW+ffvGszoBR80SBWvlxx9/rNYFi64m7777bqy+WAssnY6y6ZE9rCUXwVIJxVTbS6wNyAvTIODqM4X3oz3BlxXUlde+INlrI/dCAwF8QUW1Xkef+9DYpexCEBAEzIiA3xXLuIkGzjYN69hvv/1mtwmSVCBQujTJnTu3UvzatWtnt48vN1HzW1PsMI6tKxx/kOE2jJslDtcxFMtXX31VufOhWGLdUIjjCsawdTFjLvzih3IK1ziUTFuBgudKMKbtmtG+YsWKNHfuXGtXJOU4+uPy559/qna2eMJNCmon7AWi0d2gug6UfBHjEfD0MwWLuT3BexNfNHLkyBHrMcJNwr3mvT28gvkevnzgSye8RSKCgCAgCBiJgN9d4e4uHkoZxFE2OJQu7Tpx4oRqi596KJUYO2XKlLHojG7fvq3m1J4hucV2TVB44TqHNG/eXCmH06dPp59//tmuYonx4Y62FVg+tXvXrl2zjo8QAXfKRcZdM8a+c+cOpUiRwjpNRERErDltX8AN3qpVq1jPEX6AvcC9DsUTbn9Io0aNFJ+oiHkR0D5Tjkpq4v1m+x7GWeMSpdK8Z+rtyuBd2bt3r7fdpZ8gIAgIAl4jEDDFEq7f1q1be71wf3dEhuzkyZOtsY0fffSRdQrtGWIlIUgkQvKDbUISLH3vvfcelSlTxq6yjDFmzJhhHR9jjB07Vlkq0adbt25qbMRNvvLKK3T06FGXW3z++efVmjVXNvpCEXzhhRdc9kVbWIyR7GMrUErgph83bhz9/vvvKmsfCgn2J8keLmENaAOzfaYCCkYQTA62C8Rn25PFixdbE/205/gSis+iI4YNrd2RI0do9erVtGzZMntDyz1BQBAQBHRFwK+ucBAuw4rmjkApq127tjtNKU2aNNS/f3/1Uy+B1RHKHJQ8SL9+/ZTFDoJnly9fpjp16ihrHlyJiKG0tQxBMfz888/VL357oo2hjY+kH4wBNzUUTlgoNVc7rLKjRo2yN0yse0jAgIUSFVa0P1BQiBGf6Uqg1ELAMepITp8+bVWSEfd56tQpR03lvk4I6PWZwnLxxUQkcAhERUU5nBxfXJHdD2VS+12A/+P+U089RXny5HHYd8WKFeqZvwooOJxIHggCgoAgYAcBv5Z0tDO+3ApiBJ5++mkVMwrlF1ZRuNU7d+4cxDuSpQsC5kEAiXYITUBCFZTGb7/9lrp27UpZsmRRsdNIEESy3qZNm9QXQPCTInRo6dKl6kuuI0GMt5aEiHCXjh07Omoq9wUBQUAQ8DsCAXOF+30nMqDfEYB1Vat6BLd4+fLl/T6HDCgICAJEoDeD9wFKpSZI2oInQuPWdRcnW0ulloTnbl9pJwgIAoKArwgEVLFcsGCBoszBTxHzIYDsYvxRg4u+ePHidmNHzbfq8F0RKGYGDRok1ZOC6C0AZfJ///ufSgQcNmxYvJWDdxSWygMHDsR7Zu8G4my1ZEc8B3ctmB1EBAFBQBAwCgG/xlh6sugLFy6oSjCanD9/njJnzuzJENLWRwTAoWlP0qVLp27fu3dPJVglT55cxZZGRkZS0qRJ7XWReyZAAF/SkHQFkc+TCQ7EjSWgnCoYKC5dumS3NeLKEZ9dr149FZbiSgYOHBivCeLThRA/HixyQxAQBHRCIGCKZdyMRbyW2sU6nbKDYfEHx12B0iKKpbtoBabdunXrrBPL5ykwZ+DprOCHBU0ZYinBh2tPUBgBCXnbt2+399h6DxZrZIPHFVgtz507pyouiQgCgoAgoDcCAVMs49YyxmtRLPU+7tjjp0qVyu0JxVLpNlQBaQge1H379lnnls9TQI7B40mfeOIJ2rNnj+LnRXGDkiVLxhujRIkSqkIXqmQ5EyiW2pdFLXtcY96Ax0FEEBAEBAEjEAhIjCVcrBolhrZJvMZ9EUFAEPAcAXCsIl5PPk+eYxfoHgUKFFBFFZD5DVqzuIIYZ8Rf3rp1K+6jWK9z5syp6M40yjMoldrrfPnyOe0rD+0jAGsvkhZxBpUrV6bNmzfbbyh3BQFBwIpAQCyWa9euJXAk2gpe437dunXleAQBQcBDBEBBI58nD0ELcPPnnnuONC5LuMGvXr2qkm1AM/TWW2/F4snFUsE9C25LlGoU0R+B6OhoatKkCVWvXl39xN8ocL8ePHiQPPH2+GuleH+gBDLip1Fet1mzZpQwYUBsQ/7akowToggERLH866+/7MKJ+6JY2oVGbgoCThGwVxVJPk9OIQv4QyTkaIIyrLaFDV566aV460N72z7xGsgNvyKA7PqTJ0+qEITEiQPyp9K6HyizUCbv379vvQcl06jwMXzhQSLntm3bVIGQ2bNnOy2u4deDkMGCDgHDv+48fPhQVZyxJ7iP5yKCgCDgPgIg17ZXFxqfJ9s/RO6PKC0FAUEA1cZQ5ahs2bIqFOHYsWMEKyYEFFBQtiBxvQV6IIfYWXyWd+zYoUj18ROxtxC46VHGUy/RLLcICcA6UDIYlltXoRl6rUfGNT8ChiuWW7ZssX4g48KDDyqeiwgCgoD7CCAb3F5yBj5PnpJruz+rtBQEQh+BOXPm0Pjx42nChAmEONVGjRop5dJWsYzLcKIHKlWrVlXDTp48Wf2E9dJeopcec9tabhGzO3LkSDpz5kxAwgH02J+M6X8EDFcs8UF1Jq6eO+srzwSBcERg7ty5Drc9ZMgQunLlisPn8kAQEAQcI4AYRlgt4QLOlSuXKj6AEptGy5tvvqm4SEeMGKH4nm2pxfReCyy3KVOmVMwF8I6ICAKuEDBUsYQJf9KkSU7XNHXqVGXqFxEEBAHXCOCz4ii0BL1hWXAU0+x6dGkhCIQvAqh2BF5QWCgjIiIUUT3EnndAb5QQ44m/jXCBQ8lEvCOqbBklIPJHHDAsp2AbmDJlivo7jZK/PXr0UMuA5fbHH380akkyj4kRMFSxBA6urCfIeBMRBAQB9xG4fv2608aociUiCAgCniGAhJmaNWtSokSJlGI5ZswYZbUE7RAootavX68G1NzTno3uXWu4wOGOBrH+J5984t0gXvRCUu1PP/2k4kxr1apFHTp0oI0bN3oxknQJBwQMTXVDkPGSJUto5syZirMScSuafPjhh4p6AxQKaCciCAgCrhHQPlMo94fMcK06i/Z5wh9ARxVdXI8uLQSB8EUAdFDwBoAjNkmSJErJBIk9lMw6deqohBkoea68cL4iiKSd9OnTK8qjQoUKqb+T//zzjyLNN0Jgub148SJVq1ZN0RshiQcSCMutEfuVOfyAAJuzAyJsmYS/23rhtYh5EejVq1fMzZs3zbtAWVlM165d5fMk7wOFAH63cgavoBEiCHBcZ0zLli1jkiVLpi5OKLLuDGfNiXq67ZSreMX6W4352HIbwwUZYjgjXj3T3nMTJ07UbR0ycPAgYLgr3A+6sAwhCAgCgoAgIAiEDQKoyjRjxgzl6cOFOEtNWN1Qrnm9pGHDhvT2229bh2/cuLHyjGiW23fffVd5GY2gXdJrjzKufxEw1BXu36XLaIKAICAIhBYC3bt3J9QPhxQpUoTatGlDX3/9taq2goxcxPd16tQptDYtuzE1AkgcQnwpLnsC+iFcEIQIiAgColjKe0AQEAQEARMhgLg9W0EpP9xD4iPKPYL+Rk8LlYmgkKUIAoJAECIgimUQHposWRAQBEITgQYNGiglEgKXJ3hItSQJJHAgKxmE1e4olsuXL7eOFVdZDU30ZFeCgCBgBgREsTTDKcgaBAFBQBBgBBDPhgvSsWPHeJigdnXu3Lnj3bd3Y8WKFYQLIoqlPYT8c2/9lQNUMFU2ypg0jX8GDJZRWrUieuYZojfeCJYVyzoNQkCSdwwCWqYRBAQBQcAVAkePHrU2SZo0qfo/Z9+qn7t27aIqVapYYzBdjYW6zkjswCWiDwJLL+2iumv6UZ3VxnFKajs5eOsMjTzyN0VGP9Rnc85GvXGDaMEC4uoLzlrJszBFQCyWYXrwsm1BQBAwHwKjR4+2JknMnz9fLbBevXoq61Zzg5tv1eG5olsP71HTDZ/T3ehI6pKvvuEgfH1sAY06Moeqpi9KVZ4obOz8adg6e+4cccFwY+eV2YICAVEsg+KYZJGCgCAQDghAscRlK4i7FKuj+U5/ycUdBOUyY9LU9EZe4xXLngWa0pXIm1Q2bb7AgCNKZWBwD4JZRbEMgkOSJQoCgoAgIAiYC4GxR+eqBXXL14gSJ0hk+OJyRmSgyeW7Gz6vTCgIuEJAYixdISTPBQFBQBAQBAQBGwRmnFlLiK+EQvlW/kahic1Djt187TWiX34Jzf3JrnRDwK8Wy8jISMLlrXjSH4HtWnC7t/NJP0HAzAh48nlIZcctdevWLbe3Z6+/252loSAQRghcvH+dumz/mpXKhDT1yR6hmQ0+eTJR375Ep04RHTpE1L59GJ2wOba6d+9e4nKaqjY8kvbAXwuy+mAQv66yVKlSdPDgQbf2PWrUqHjtPOmPqhT79++PN4bcEARCBQFPPg/Tpk2LtW28Rqk1dwXtX3rpJXebSztBIGwRiIqJphsP71LDLE9S6xzVQwuHS5eIOncmmj3bsq+nn7Zkf4fWLk2/GxRDqFq1Kt1A9v0j+eyzz6hfv36mXzsW6FfF8qOPPqLdu3dbNw6LC8pA1axZk+rXr68IfyEIRG/dujXNnTuX1qxZQ9WrV6fMmTOTo/7PMFdW7dq1reOiPzIkRfRFADhfvHhRETSD8gTEzBkzZlST4rxE9EXA0efB3ucJ32azZs1Kk9nSgM8TPl+nYG2wEWefR/QXEQQEAdcIZE3+BJ189ntKnTjCdWM/tlh7ZT9dYGtps2yV/TiqzVDDhxOx8kLwdPDvEurRw8JRGSRWMn1ACcyo33//PZUvX54ZnRZQokSJaO3atdYEPjBEXL58mVAwwbTCyoNucvPmTRCoxQwaNMirOXzt79WkYd6JlccYVmhiuEZxTJYsWdT52bu48kdM165dYyZMmBBz6dKlMEfNmO37+nnwtb8xu5RZ/IEAPrPMY+mPoWQMEyAw//zWGJrdLCb93Pb6rGbTJrCdWq6MGWNi9uzRZx4Z1S0E5s2bF8MKZQxTjsWwKzxWH3y2WbF0a5xANfKrxdKR9nzt2jVHj9y672t/tyaRRrRq1SqqVauWFQlWLIkVTEqWLJni0eM3KUVERND58+dpzpw59PXXX6u2PXv2pIULFyrLtIj+CPj6efC1v/47lBkEAUFAQwAE6F13fKNe5k+ZRR9gYKEEIf+zzxKxtUxZLEUChgCqb8GLpFXimjhxImXLli1g6/F0YkMUy3Tp0nm6rljtfe3v0+Rh0PkhZ/+9wWW5fvzxR6U4gkevadOmlClTJqVQ2pPbt2/T6dOnib9ZqRAGfAi6detGI0eODJoAY3v7CoZ7vn4efO0fDBjJGgWBUEHgm2ML6didC2o74K7URXLmJDp7lti/qsvwMqjnCOBv64YNGzgp/xcV+tehQwf69ttvPR8oAD2EbigAoJtpSiiVjRs3JnwjYvc2LVmyhGO3O6sYSkdKJbKNYZ3ctGmTShBB5hr6jhs3jp577jkzbU/WIggIAoJA0CLwMCaKhh6apdb/TKYy9FJOHb1ColSa6n0CTyE8iN99953KDIfhxzaZx1SLjbMYQyyWZgYg3NfWqlUr5cZGctU///zjlrUR7bZt26YsmuoXHidX7du3TymoGAsJJPh2JSIICAKCQLAjcC8qkr7imtwvcgZ4wZTGuSMxb+vNw+nMvStUP3M5+pWpjXwSpq+hRYuI+Hc+wUIpYloESpcuTU8++STlyZOHLlywWKubN29OaVBKMwhELJZBcEh6LXH69On0119/eaRUYi34BlWwYMFYmfrg10ImG1zpnNSjLJ8igoAgIAgEOwKbrx2hvvum0sTjxv5OW8QlI+ec20SZk6Wlf6p8TOm5dKTXwr+zqUQJS6Z3nJKhXo8pHXVDAH+XQd0IiqFF/GUA+Q+zZs1yy/Cj26I8GFgslh6AFWpN8aaFuR0KobvEq6CIWrduHfXu3TseQT3iQGCxRLxl9+7dac+ePaEGmexHEBAEwgyBGhmK0d+VP6I6GUsZuvPsTGtULX1R6pL3We9KRjIXIk2ZQhwIT7R0KVFCtiO1a0fUp4+h+5DJPEcgX758iorRniCJ1uwiiqXZT0in9cFaCWZ/WBfd5QS9evWqStCBtHdQiQGxl0gEQsY45gCfooggIAgIAsGMQJOsFQ1ffoV0BWlNzS+8m/fwYeKUYiL8hGTPTjRzJnEJF+/Gk16CgAcIiCvcA7BCqalmrezj5rdXKJV//PEHHT9+XFUEKFy4sEM4MCYsoZ9++qnDNvJAEBAEBAFBQCcE6tV7rFSiqMWff4pSqRPUMmx8BESxjI9JyN9Zvny5slZ27NjRpbVyKbtQoEiC5b9Lly4KGwQROxNYQJEdjoQeLfDYWXt5JggIAoKAIOBHBJh/WNX35tAkOnmSqFIlPw4uQwUcAST0oOymTcnHgK/JZgGiWJrpNAxaC+IgIc2aNXM6I2Ikkem9fv165s1l4txH8s4771jLczoaAOTqkHPnzjlqIvcFAUFAEBAE9EDg88+Jfv7ZQniePLkeM8iYgUJg/36iylzWEwYe5rg0oxiiWPpa6cPX/mYEPpBr0pS9YsWKOV0GXNqoE456pVBGwaGl9RkwYIDTvrByQn7//Xen7eSh5wj4+nnwtb/nK5YegkBwIbD7xnG6FHnD0EVHx0QTLrcECRyIn0SCjkh4IHDqFNGbbxKV4iSyEyeInn6aqG5dU+5dkndMeSzuLwoVcDyNZdy+fbuaANRAjgQxlSjbWL58eUVHBEmdOjVNmzaNypYtS66UE60PqgdERkY6mibefewlZcqU8e7LDUFAEBAEjEDg3P1r9OSKXlQ+bX5aV2uoEVMqhRJz5onIRLMru5G13b8/0cCBlixvk1qtDAEuHCa5d89CE/WNpayn2vJXXxG9955pd2+IYpncR1O8r/1Ni74fFgZFbPjw4Q5H0sr33eM3p4bjnTt3VHtYIx2Jptyd4G9Gtn21+uBJkiRx1DXW2FBiNUXWtgPWhXE1AYXC/fv3FYXR4MGDnY4d7g99/Tz42j/c8Zf9hzYCffb+TKjPnZXpfoySO0yGvv36f2pep4LfmW+/TfTDD5ZmXAVNJMQRGDSISFMqoUsx4wonSJh606JYmvp43F9cv379FLekOwKKIdQfdSZQ8D788EMaMmSIqqyDSgCwPKL0I+SVV15x1l0l7kB69uzplkUVltesWbNSihQpnI4rD8n6BcFbLESx9BY56RfqCIw6MocmnVhK6ZKkpJElOxm23VSJk9OGWsMohv/ZlWvXiEujEQ0bRrRrF1GGDJbkHCiZIqGNAEIe+G8j1alD9MEHRGXKmH6/hiiWpkchBBYIRTBVqlRu7QQubcj169edtofl8MiRI4pmyJasFWUgUW7KmaxYsUI9hlLq7rqcjSfPBAFBQBDQE4Fz965Sj90/qilaZq9KeVNk1nO6eGNXeqJQvHvqBkKXELOueXhQjvHff4k53+y3l7uhhcBvvwXdfgxJ3gk6VIJwwbZuZVfLR2UcyLfffuu0aUKu1PA0AoRZQFF0/vx5unnzplI0XQnKUUEQo+mJeLIPT8aVtoKAICAIOEPgh0clGxNSAno9z2MWDGd9DHkMz07MAAAgAElEQVS2bJlFqQQfJcKe+Mu+KJWGIC+TeImAKJZeAme2bp64N1988UUqXry4cmtfunTJ6VZmcrWGIkWKUI0aNShz5sxuWR8xJko/IoMcfTwRT/bhybjSVhAQBAQBZwhMPLFEPX4ldx1yaD10NoBez+Duhvv77FnEFhEHous1k4wbKASW8Htv8+ZAze73eUWx9DukwTEgYiSRLIMC947kwYMHtHv3bpUFnihRIkfN4t3HmBi7Q4cO8Z7JDUFAEBAEzIbApfs36MzdK1QvUxlDYyvdwiExR6yVLEmEnyKhhcCqVcRk0Zbym/AkmpTw3FPQRbH0FLEQaV8ZBKssK1eudLgjVOc5y9+S63rIlaWNqc3hcAJ5IAgIAoKACRDImCwNbaszghZV+1Ql7ugtm68dpnyLu9CE/+ZbpgJTB3+JFwkTBBAvi3LKtWsTu/eImCVFxc2mSRMSABiiWPoaN+dr/5A4KRebcMUrGbd7bX5Dwx0+adIkrvjFJb/syDLE9rB4oliu4m9g3333nRobc3gqnu7D0/FDob2vnwdf+4cChrIHQSAuAsVT54p7S5fXD2Oi6OUto+jYnQu08vJeoodMMcQJkYr4euNGXeaUQU2EALK8UZyEGVcomgnxQSHE/NBUpYqJFunbUkSx9A0/0/TW+Co9WVB/JtmFyxqK4xLEeMQRxGL+/fffVLBgwbiP7L6GCxyJQYiT/P777+22cXXTm324GjPUnvuqGPraP9TwlP0IAkYi8MOxxbT/1mlKGB1DbeZzeb58+Yjms+US2d6PGDuMXI/MZSACW7daFMhjx4i59Sz0QTDsMHtKKIkhimUoARZKe2ndujWh7jcohZ5//vl48ZbZsmWjJk2auLVlKJVa7fHZs2dTtWrV3OonjQQBQUAQCCcEhh7+k4qeukk7+m6ipv1+IEKpvoYNif77z2LJCicwwm2vUCY5d4HeeIPo+HGL1RLZ/iEmolh6eKCom50B5LQmE29dyKNHjyZwTsKKBcVw8uTJHu0MFXPQB30xBsZ69lnvqTq83YdHi5bGgoAgIAgYjMADrqrTdvMIajNlNe3qvpRK7j1D7A4C7xvRjBmSnGPweQRkuqJFialYLNVzQlCh1DAVxdLDdxfcwu+//76HvfRv7gtNT82aNZVCCOnIpaJKlCihKvNcuHCBUBEnrtziMmI7d+6kXr16Eaya6IPykBgDY/kivuzDl3mlryAgCAgCeiIw9/wWmnZ6FTXbcJYSR3GFHcTUrVtH9PrrFreonpPL2OZBwEU5ZPMs1PuVCH+Bh9hBsfwAZZVMJr4qZFAIDxw4QF988QX9+OOP9PLLL6sdoiY43OFpOFsN8Zhbtmyho0ePcrw5B5yzZMmSRZVt7N69O+XK5Xvwu6/7MNmxyHIEAUHApAg0WDeAzt67Qpue+pKSJkyi+yoXX9yh5lg9qg9VysqFJ5jGjbgIhUiIIIBEnD//tFigr1wJKV5KT0/IkHe1rwkZzvqfOXNGZR8nSJBAXQ05VkUrVVioUCFV7xr1p/EMr1FBRpMffvjB2g8k4Bs2bLA+O8yZWxhLG7cPqAFYbF3hU6dO5S+dVahly5bWdn/99Rd17tzZ+hqVZ7BGiKP5MA4q3NjOh3E8EX+4kKEYTpgwgQ4dOkQfffQRvfnmm5Q7d26aNWuWyh6fxplrJ06cUOUcUW/8Ny41BTqi4VwNwh9KJfbrj314glswtnX2eXBnP772d2cOaSMImB2BgimzUa0MJQxRKoHF2/kaKY7Mdxq+h5JkolSa/Q3iyfr2cxIWangju3/xYtRL9qR3yLU1RLHUEzUoNYmZOBaxfrhgTRs2bJh1SiSVQPk5ffo0FeX4hkaNGinF80/+ZgHL444dO1Q/9NGeoTPqYSOWEs+gaIFCB4phXIEyWq9ePdVu4MCBKtYQ8+A1lCS4k2dw/Iyr+ZYuXUpt27ZV/bCnNm3axJ3K6Wt/WvqgJKJO+Pjx4wkK9p49e9TccHnfYb619evXKwUUWeNQvP0p/tyHP9clYwkCgkBoITCudGcay5dRUjR1Tnq3QBNKnMD9YhNGrU3m8QEBGKuQfKXxkGbNSvTTTz4MGPxdg94VDr7EkSNHUvv27ZkGrJRy59pK3759KW3atOqaM2cOMzrkZB7Sf2n69OmUJ08eZY3DpQmeYUwonPPmzVO34f6Ge9iepE+fnhO8OMOLpUKFChQREaFcwxDMWa5cObrCZvG1a9c6nA9tc+TIYXU/wwKLmEVPRE+FLOOjIGPszd+KZNw96rmPuHPJa0FAEBAE/I4AGxQURyF+DhhAXNfW71PIgCZAgMPClIUS1EEIaUDMLHsr2UJk4aY0wRIDtYSgt1i+9tprBCJv1KSG2xuKz1dffWXFU1OKtBtQjqC0ISkFcYO28jbXZIUSqSWsZM+e3fq4adOmhCuuQLG0FYxvT5zNh/aO+tkby969UHEhh8o+7J2R3BMEBIEQR4CrlSleyqFDLbF27EETCVEEzp+3KJUotQneZiRideoU9kolTjvoFUvEJi7mmIYRI0YoNzLoc7755hvrO9m2ZCESTzSXeOnSpZUL/dNPP1XX65yZB3c43OZQLqHoLVy40DpOly5dFNejt+JsPm/HlH6CgCAgCAgCJkAAyRrjxhHHRVksldWrWxSNEKqmYgKUzbUEDqtTXJSXL1sUSnOtLqCrMcQV7mulD2f9ESdZv359ZYWEBRJxkFpGM5CFmxwZzFAYESfZrl07lXwCmhzwLyJhBjWtkZiCqjEYCwLrJ2IeYcVE359//lnFFmqJOJ6eWrdu3RzOh+QdXyVUEjJCZR++nqez/s4+D876ac987e/OHNJGEAgbBLZvJ+ZZI2IaNiUvvUT8y56uJXhAXAFaJJgRQInNpEktGfz29sHJrSLxETDEYunrHzJn/UHGjXhIza0N/kVQ5mgyZswYZX2EIrl582bFzwiBm/sUVzzQ6ln37t2bq2pxWa1H0q9fP5o5c6Z6hb5IYoHV0ZbHEjGdUDw1scdxiSQczOFsvrjjYD6UW/REnGHkyThaW3BVapcWGvCAKwbY3sf//S3+3oe/12eG8XzFyNf+ZsBA1iAIeIrA6sv76NRdti75W5hBw6pUNm+u6j7vv3+Bsi14lfIt7kL3oiL9PaOMpzcCXOyDXZnE1iaiihWJs3D1njGkxjfEYqk3YlD4cDkSZ7yTzp5BIdQUT21sWx7LuPPa47iE1dNW7M0XdxwooXDPeyL+VBaQwd6iRYt408MaHDczHolPzfHL1E/iz334aUkyjCAgCAQ5An+f20jNNwyhptkq06xKfuYhTsRZ3jVqEPPOWZI3HmEFOqN0SVLS/egHlDwRW71EzI1AJH8BYHYW5iRUXw6YWw/JD8T0J0QpU5p77SZbXUgolibDNCDL8acLGRnsENQR1yzBN27cYI+A5ZcjMrcj+UOImFS09adi6c99BOQgZFJBQBAwHQIT/ltA0RRD5dPm9//amG0kroBaaFfd0XFvy2uzIoCCH4iPXbny8QpBYA8FE2UYRTxCIKQVS/BPiniPALgsU6VKZXcAuMFt+ULtNpKbgoAgIAgEGIEF57fS0os7KX2SVNQhd50Ar0amNyUCn3xiUSrz5rW4v1F5jhODRbxDwBDF0lduQm/76xED6B3Mzns5Ut6c94r9NFRoekJlH56cnadtvf08aPP42t/T9Up7QSBQCJy7f42abxxCD2KiaHSp1yhXRMZALUXmNTMCyMtAPGWDBmZeZdCsLaQVy2rVqnGyXk1V0tFfYs9Vi7hAe3+sHd23XQvaoGKPr2JvXb6OGYj+obIPPbGz917zZD5f+3syl7T1HIH//vtPVQVDEh/o077++ms6z5x5YKcAg0UncOWJuETgTtR9arJ+MN3jGMfq6YtR+1ysOHgjnLjJNCHEWaJEY8eK8uENhsHQR5RKv52SIYql31br4UCzZ89WySaDBg1iYnxDEuA9XKE0FwQEAUEgNgL58+dXLBRgtIBcvXpVJfOhghfKzIIWrUCBAgKbCwSWXtxFm6+xUsjyRl4LjZyLLvEfI5lDc4km5j+XKNcnEnwIoApSnz5ExYoheSD41h9kKw5pbQu/oBs3bkyjRo0KsmPxfLmhkk0dKvvw/ASlhyBAtHXrVi7i8X0sxVEr76pV+TqBbFURlwikSJRMtUmVODk9m5kTMTyVc+ceZ3mjStuqVQ75DL85tpAKLXmT1l7Z7+ks0l5vBKBUgrkEhVOYj1pEfwRCWrEEfHCHZ8qUiX777Tf90QzgDKHi3gyVfQTwrSBTBzECc+fOJZSpdSS5cuWitGnTOnoc6/5nn32mStziCkepk7Ek7as7lo7X+44yJ3MPMytOEyYQFSlChJKMtWoRLVliqQVtB0hYRrvu+IYO3z5Lu2+I0m8HosDcQuU8VMvjz4yiEEJijlgrDTmLkFcsgSIq8Zw8eVJV3omKijIEWKMnCRVLX6jsw+jzl/lCAwEUZtCUQbjCly1bpgo8QOAKx+8xdxVLFFlAmVtc4SjAEbQ/6ZOm9mz7M2YQcaU0Yoo1evVVohUrLCTZDkYZdvhP9SR5wiTUOgeXchQJLAIo3MGFSVQiDqig8LprVyKOXWZlILBrC5PZDVEsfc309bU/zvK9995TcZZfffVVSB5tqChkobIPPd9kvn4efO2v597CfWxNEcRP8MjWqVNH8ccixvITpkRBdTCJr9T5XZIzJ3FtX0uiDiyXTmTKyeX078UdlJGV1/lV+ylCdJEAI8AGJHZRWuJhQSO0Zg3R+PEBXlR4TR/SyTu2R5mIqyPAxTR9+nSaMmUKvfLKK+F10rJbQUAQCCoEkBEO6dWrV1CtO+gXW6UK0YIFLrdx9PY56rDVckbTKvSk2ux6FzEBAq1aEVMoENdbJpJa3gE5EEMslgHZmYNJW7durVxKq1evdtAivG7/9ddfKgPVVlBlBwIF3B1Bf09LULozrrQRBAQBQcCsCIw6+o9aWqvs1eiZTGXMuszwWxeUyS+/FKUygCcfdoolsIaLCS6lI0eOBBD6wE8NpbJZs2axFEuECiAWFQL+vM6dOztdKEo6QqlEogB+btiwwWl7eSgICAKCgB4IXIm8qTKzxx2dp8fw8cbccs3y96NnAU4QETEeAWR7i5gSgbBULBFr+e6779KQIUNMeShGLGrq1KlKqYwr3zAlQ758+dRthA2AB9SZQLHEWBAol1XYjaTx7znrJ88EAUFAEPAnAntvnlKZ2Ssv73E9LGpDt2xJNG6c67YOWvQs0JRGluxEVdJz9riIcQjg7ODuRrZ3HG+bcYuQmZwhEJaKJQABBRGoiGbOnOkMH5+eRUZG0qJFi3waQ6/OUP4Qw1WwYEHrFNevX6fTp09TvXr11D1Qm+D5li1b4i0D1kwI4r9g/YUg4WD48OFcpOJD2rlzZ7w+Zrhh5jMxAz6yBkEgWBGo9EQhGl/6dXq/EHMWOpLbt4ktChYqoVmz3IqldDRUi+xV6N0CTRw9lvv+RoCr1NGIEUR58hD/4SbOavP3DDKenxAwRLH0tUyfr/0dYfUqU0kgPtCe4uSojyf3ocQsXrzYky6GtYXLGiEBtoKScSBhTgMy4EeSm+NVjh8/Hm9djqy9PXv2VPROffv2jdfHDDfMfCbu4uPr58HX/u6uU9oJAkYikDRhYnozX0OqkO7xl+V484NGCBVYwE+JL9D/WOIk47WTG+ZCAJ4zWCj57wudOWM5OzaCsOXDXOuU1SgEDFEszYw1FCGQp4MfLtzlNn+b1zjzNCxQZ12r/KHdA1ZIgHIkJUqUoH379jl6LPcFAUFAEDAWAfw+qluXaPJkonTpiLp3J5o2zdg1yGzeIfDcc5YKSJcuET35pKV6zt9/M3Focu/Gk166IxD2imXixImVde3zzz8nuILDWTJnzqxc4bZy8eJFVZ/YVuAi18rL2cNrz549XJKVa7KKCAKCgCBgBgQ6diRmm7dUX4GSiTK/cX6vmWGZsgY7CKxcaVEi4QVbv56ofXtRKu3AZKZbYa9Y4jBQyaIPu0cGDRpEDxEYHKaiKYxaZjdohxArWbVq1XiIII7SniDZB1nlwFJEEBAEBAFTIHDqlGUZY8daiLNNsShZhFsI/PEH0a5dRAMHErEhSMT8CIhi+eiMEEv40ksv6VqZB65mJL3Amvfmm2+a8t3Ro0cPWrVqlVpbfa4+0a5dO7sl5LqiRBYLknUaNmyo/o8Sar/88gt/qVxPpUuXVvcCKcC4TJky9Ouvv1J0dHQglyJzCwKCgA4IHGGS8ugYNz7bSNRhTwo1buzVKv4+t5Ei5rSmOmu4kouIsQigNKPEUhqLuY+zGaJY+lpCztf+7mL0JMdvoFzapEmT3O3iVju4hpEoky1bNqVQ7t+/361+RjR6m6sT2GaGI+b09ddfV1NDefz++++dLiNuVvjy5cupcuXKTvsY+RAWVyjHefPmZe/XKIJyH+zi6+fB1/7Bjp+sPzQQWH15HxVm3sqP91nozpzuCr+Tihd32sTZw7wRmalgqmxUP3M5Z83kmbcIHDzobU/pZ0IExK4c51BaMT8WaHhWclxHrVq1fD4yWChHMEVCXIvZunXrqHfv3g7HdzdzF9ZByJIlS5TSmiRJElVb2BP59ttvYzXfunWren3gwAGHa0R2NQSKJAQKZtz9JOfgalyuBPXBbcdDTWQI+npaO9x2PttsfyQcwRr78ccfm9Za7AoneS4ICAIWBK5G3qKXt46iGP5XKGV23WEpnTYv7apjKd+o+2ThMgG8SOBARrwr/uaghGkcppJwgSLU9imKpZ0ThRWvX79+lD179ljWPDtNXd4CVyYSXf7880+r8oROFSpUoP79+7vs76rBhQsXVHlKzIPxoFji8kWg5G3evJk++ugjSpkypd2hYPkDF6Y2r91GHtzEeMOGDVPjffDBBx70dNz02LFjtHHjRmsDcJeiXvyDBw8cd5IngoAgYHoEfj+zho7duUBl0+ajTnmetqwXNDQc9kJvvSXJHWY/QTaE8Dd9ot27LSstXJioUyezr1rW5yYColjaAQqVeaBUwQKHajIZM2a008q9W4jx+5Lrlp47d065lWHBBF8klL9UqVK5N4iTVpp1ErRAyOr2h2hjQql0tUa0ddXGkzX5czxNwS7Mv7RgUe3QoYNS7nGmIoKAIBCcCCCm8ofjFn7gznmYixKWLxSi4Gpq7GaxZH6jMouI+RCAZXLAACIuJ6ykUCFiFxIx+THxHxLzrVdW5BUColg6gA2KGlyyAzkTDZa0ZMmSOWjp3u2sWbOq8eCK/YOz3PypjLm3gvBr9Rzzn6GKUPPmjytxaC738ENDdiwIhAYCU04uJ9TpTpckJXXKWpMIPIcLFlg2V6MGEZI9RMyHACrnINZVY14BBRSy9EWhNN9Z+bgiQxRLd+LsnO3D1/7Oxnb2DMpgly5daOjQoUopRNazrwJr6IsvvujrMNLfDQSgWIai+Pp58LV/KGIqewoOBB7GRNEn+9ndzdI9f2NK/hXH52lKJZgoUOnMjbju4NhtiK0S58IhYATqJw4NU/8XCUkEDMkK9/UPma/9fTm54pxJiCxnrTa2L2NJX0HAHwj4+nnwtb8/9iBjCALeIAB6oVN3L1PFh+noky/Z/a1xG7ZsaXGv+kmpHHboTyrybzfacFWylb05J4d91qwhOnJElEqHAIXGA0MUy2CHCnyOsDTOmzcv2Lci6xcEBAFBIGgRKJIqB82p/DFN35eFEv34EzEFBjHxLtGMGZbYSj/s7NqD2zTwwHQ6eOsM3Y+WRD8/QPp4CP47qs5MJKQREMXSzeN94403CPQ1u7UsNjf7STNBQBAQBAQB/yHQOGsFytuckz2YvYPmzyeqUsVvg1+4f52eWz+IbkXdo1dzP03V00tpWrfBRQzlhAlEFSsSU5S43U0ahh4Colh6cKagwUHJQmR1uyNI0EFGuIh5EJAzMc9ZyEoEAa8RKFGCmO+MCMk6fpSWm4bS2iv7KXdERvqx3FuUKIH8iXQL3u3bifLlI+rWjZirjujqVbe6SaPQREA+NR6cK6hwkMQzgOkSQqGCiwdbl6aCgCAgCIQ0An+cXkOo5gPpUeD5kN6rXzaHIhmzZxOTAxM99RQxpx5xDV1iXj2iQYP8MoUMEpwIiGLp4bllyJBB8VsOHjw4XjUdD4eS5oKAICAICAImQWDcf5YY+oxJ09AbeeubZFUmXsbw4cRcbkQTJxLduUPUt6/FWglFM00aEy9clqY3AoYolr7WJva1v79BzJ8/P1OnPadKP4oIAkYj4Ovnwdf+Ru9X5gtjBH75hbgMmiEAnLl3Rc0zsFhbSp5IEkxcgo5KR5pw4Q9rhr7LjtIg1BEwhMcyFEGsXr06HT16lH7//XfhpQzFA5Y9CQKCQGARgAWMPUMnMqekIS1z0IQyXXRdz3dl3+Qs8If0bCZ254q4RuD994meeYaofHmi3Lldt5cWYYOAIRbLUEXzZS5DdeLEiVj1qEN1r7IvQUAQEAQMQQCVWTp3VkolZGSb0pQ/ZRbdp66TsRQ1yFyOEkrCjntYQ5ls1kyUSvfQCqtWhlgs06VL5xOo3vS/deuW13N6Um7xvffeU3XFs2TJQnny5Ik3py/riDeYnRtaiUL89NdcnpQ99Ne8WjKUv8azA5X1FpKwtHroztq58wzr9QQv2zG9XYc3nwfbeX3t7w4u0kYQ8AqBbduI2rcn2ruX+Jcq0ahRNBKVyvxQ9cyr9YRzp2vXiKZMsZRgfOcdosSGqAvhjHjI7D1k3ymfffaZw0MaP348Pf3000x/Zp//DPW83ZVEiRJxzHJfep/dAl988QXZ/tH+k8tWtWjRwt2hfGo3hqk3cLmSJNygNl9c+MylPHjgmBxYe+buvC4ne9TA3+PZm7cClxJbwxUg/KFcLl++nKvI2UfT1fusIvO9Pfvss/aWKPcEgfBDADyIsICxF0jJpElS9ztQ74JFXNWoaVMinAmkVSuxTAbqLIJw3pBVLB3xR65bt46++uorFR/5999/+6X+d+rUqQnK6EAuL4a64okffbNbu3YtJUuWTNUb90SJgXJ6jz/QKL2HRAu8xk/bUnza/6OjoxWvZsqUKd16+2XkMWstW0Y1uZqQJqgqZCsLuPbuduYlS5IEaqh90Z7VYB45Rwq6bU93rGRXmfvMm3rsnuCFve3cuVNZGT05E/sokFIM7SmHerzPHK1B7gsCIYHArFkWpRK/mxC/V7duSGwraDZx8ybRH38Q/fMPcZk5ovv3iapWJerVS5TKoDlEcyw0ZBVLR/COHDmSYmJi2NOyl3766Sfq1KmTo6Ye3c+ZMych5hIKbZ8+fax9IyIiFDWRJ+51jya2aQzy9lOnTlH69OnpHbgu7AlCBFhprcp8nI4ESqy7FYYaNGiglOpgEU/25sue9Hqf+bIm6SsImBqBtm2JChc2rI70pBNLKV2SlNQsW2VTw2LI4hDXikScjRst06VIQYRM79dfJ65nbMgSZJLQQSCs3jFwWcI9rQlc2Hfv3vXbaZYtW5aKFSumqvMYLYOYkDYF/zL49NNPqWjRohymxHFKIgFB4MiRI7q+zwKyKZlUEDACAQ5TMUq+ODSTXtj0Jd2JYstcuAuIzjWlEh63adOIuIyxKJXh/sbwbv9ho1jCXdyyZUt6iG9mjwT3RowY4R1yDno14xghKKvDhg3zOqnDwdBOb6dhQtp57L7YsGGDcs3+Av43kYAgAH5Tvd9nAdmYTCoI6IzAlcib1HffVHXd1Vnh65avIQ0t/gqlSJRM510FwfAojdmjB9HUqUTnzxM9L5WHguDUTLvEsFEsp0+fTjcRQxJH9CA578b1Ug8ePEgLFy6MO51ur+H6Rjwn4h0Rp3jy5End5pKBnSPw888/x2ugx/ss3iRyQxAIcgSmnFxOgw/OUNfJu5d13c07+RvTewVFgVIgZ81KbGUhQjgCh1KJCAK+IBA2MZYFCxakrl27KqyQWIHMYGfJKb6AimSYcePGUePGjfnLH3/7M0gmcmktXEggat26tdon4jsRA4lsa4dxlwatL1ymadOmjdrqli1bqHTp0rq9z8IFT9lniCFw4wbRjBlEHJfO7hXr5qJjomnyyWXqdctsValgSlZ2RPyHACct0qVLkhTlP0RlJAcIhI1iiRKMuCCo9d2/f39dE2qQtV2uXDlaunSp4pfUO3kHMZWgPIIi8wbHxkCpEbGPADLu9ZQJEyao4aHUd+/eXfez13MvMrYg4HcEUFFn7FjLsBcvEmXMqP4Pa+X26/9R1mTp6JcKPYSo3J/ADxlCnFVqGZGTV0UEAT0RMMQV7mttYl/76wmgq7Hhnka8ZVRUlKumPj1HTCU4FZG8g4xkuP4hd+7cUT89xdBd5cvddj5tTjrHQsDTs4wLn6/9444nrwUBtxE4d46YjsPSHBbLR25XWCvh/oZ8UKgFJU/omOrM7bmkIX7xW2InNeYOKb0o7woDEDDEYukOh6Gzvfra39nYej+D5fJ5DoQGdyYsinqKPVf3i1y1Aspm7dq1PZraljPTWUd32zkbw+hnwbhmW4x8/Tz42t/o85L5QgQBVNVp1Ijo9m2i//2PCFa0R1Q2s86up8O3z1KxVDnprfzcRgdB9nfYJOqcOcO1MEcSwXsC4wKq37VrR/TWWzogK0MKArERMESxDGfQYdFDPOdFdvlMnjyZOnToYCgccI3nz59fzQmXfAL+pZ4EZQhtSl7ac9O7a4l0t52hm3YxmVFrNmoeF9uVx4KAORAAfQ0slk2aEHOyxVrTpBOW2MpXctehxAkS+X29pzgRqNjSt+jtfM/R58VDnIqNi39QgQKPMYRleP58opIl/Y6rDCgI2ENAFEt7qOhw74UXXuCyt6No1apVVLNmTR1mcDykbXlLVdKRa2VvYkocTfFBxSARQUAQEAR0QQDJOsg2Bk8ic+wqS1ocKZY6J92LjqSXcz4V95FfXg8/PC0OMfYAACAASURBVJtuPbxHNx/6j7fYLwvTYxBwMwNnXG+/TVSrltT51gNnGdMhAqJYOoTGPw9s3a5wVX/CFW+yZ8/OXyhtvlH6ZyqHo9grbxnOFaqNcoWLxdLhW1IehBMC69cTzZ1L/IuPaNMm4my2eLv/soR+npx70Q8eZ5tn5xKFoS4lShDt2xfqu5T9mRgBQ5J3fP0D62v/QOJvu3bQEIH6B/GWly/ry9EWyD2bfW6j3k96KbC+rt/X/mY/X1mfyRCAhwblAVH1zI5SqedqH8ZEUfvNI+nag9tUP3M5qpG+mJ7TydiCgCDACIhiafDbAGUX+/XrRwMGDKD796WUmMHwh8R0viqGvvYPCRBlE8YhEBFhKQ9YqZJxcz6aadSROTTz7DpKlSg5za7chxIn9H/8puGbwoQnThATMxNt3x6Q6WVSQcAZAoYols4WEOrP7P0Rz8pVDrp06aKIzGOEU8zwt4C9MzF8ETKhICAI6IrAvahIK4VR9QzFQofCCImXHLNP33xD9OuvumIogwsC3iAgiqU3qHnQx5E7tHjx4lSJv8F/g18OIoYi4OhM/L0Io+bx97plvMAhsI0peUAPhgv/h5w9e9Z6L3ArC76ZV17eq1zgkNfzhEBUeXQ00fjxRHnyPE6EelT0I/hOR1YcygiIYhnA023QoIGq6z0fVBAiIYeAWEZD7kh139BRporRFEtUB4P04YopuAc+3Bo1aui+BiMmOHf/Gk06wVXJOFNbL6mWvii9lKMG9S38ArXIXkWvaYwZ99gxourVLTyUV64QMT+xStB5Sp8semM2JbOEKgKSFa7zybqyWqH8Iuh+cnNFhBLI5hPRHQFXZ2JvAahqhAuCP/IigoAeCLRs2VINe4WVh5KPeAc1HtpixYrRmjVraOvWrVS+fHk9pvd9zBEjiH7+mei774gqVnQ4XtP1n9PGa4cohv+9mvtph+18eZAqcXKaVqGnL0OYoy/c3a++SsT8w1SwIHEGKNFLL5ljbbIKvyOA8Lhdu3YxkcJcVbGvXr16VLlyZb/Po+eAoljqiS6P7Y7V6oMPPlBVefAzW7ZsOq9IhnfnTGxR+vDDDzmh9U9q06YNHT58mHIy4TCUzIL4Je9EvFFgnQwnj8IAgQULFlDDhg3VTmG9hDx48ED9jOAkmOpstbp+/bp6bToBrVDv3kRw2d686XR5U7kW+OrL+6hV9mpO28lDRgBVdKBUli1LtHAhUebMAksII7CQz1j7HYBtDuEKVShuEkwirnATnFZSJiwHvyUsl7dR7kzENAisXr2aUId9I5M7w1KJ/8PK/N5777lco6cKrMsBpUHII4DwGFgscGn8s0mSWOpm32Xia1gs4d1wR1AYAaE2uHQVJCCOG0dUvz5RIs66/uILly7agimzUcfcdQlWRREXCLz7LtHp00RbtohS6QKqUHg8e/Zs/g5Rlitx3lFfKmfNmhV02xLF0iRHliFDBurZsyd9/vnn/IWfv/GLmAIBfKhbt25NadOmta6nU6dOtGTJElOsTxYRWgjYJvMlS5ZMbU6zXK5YsYLeZSXD3eIKiNHUlFRdUYIVDRVetAo7bOFXCqaIfxBIzI5FkMs/qqvun0FlFLMikClTJmaR2k7//vsvJeazf/bZ4Es8E8XSRO8u/MGACXzMmDEmWlX4LuVXjm1CnMs+DpKHtVK7vuP4MViPYLXcuXOnQ4DEFe4QGnngAAG81zQrY6lSpVSrlzieDvdef/11roYYvxyig6GMu414Sk14jSKCgCDgPQL4nMOQ0aRJE2rVqhWdO3fOOhgMTxDEWffo0cP7SXTuKYqlzgB7OjyyPtOnT0/Tp0/3tKu0NxkC4go32YEEwXJGjx5ttTLCMg7R3OMnQIptNoFS+fffFhfttGlE1QIXMxkZ/ZDe2fUDDTgQhL87580jTvu3xFCa7YxlPYYikCtXLrp06ZIyakAXqFKlCh06dMjQNfg6mSTv+IqgDv1feeUVGjZsGJfV3cSJlY4zK3WYWoa0QaBt27a0efNmdQfWSk3OcDA9zmcEMmBFBIFwRgDUNylTEgd/WjKWA4hFdEw0TTu1ivKnyEL9irQO4Eo8nHrUKOI4KEvSE6oTIVZVJKwRgAu8UaNG6oJiiTCYQoUKBQ0molia9KgQbwn+uixZsrgdrG/SrQT1slq0aKFckYhX0+Isx44dS88884zLfYkr3CVE0iDYEUA8JSezUbp0Tndy7M4F6r5rIr3IvJJtc3LtcB0keaKktKsOK2nBIsj2RhLg778TPfEE0TvvWGJVg2X9sk5dEIBhCX9rkHdx+fJlOsYcpjVrWj4zNx+xLSAG08wiiqVJTycRB7/37dtXURB9wVmW6Vz84jbpNoJ+WQhNaN++vaqSpNEN2XJaOtuguMKdoSPPQgYBN343vbptLC2/tJvyp8yim2IJPLMmZwUtGARZ9IiRe/jQslqEPrnxZTUYtiZr9A0BxFh27NiRjhw5Qjly5KB//vmHihQpogaF1RLx1h06dODvIuZ9r4ti6dt7QNfeadKkYS7cj2nQoEGKywrmcRHjEQD2iHPTuCtBOSQiCAgC7iFw5t4VpVQmpATULZ+Fo9O9niHaCoUWkEUPSZGCaOZMUSpD9Ki92RaMGeBLtieIu9Zir+09N8u9sNRUwGQP7kgjxFerFci427VrR8OHDycQdYv4joA3Z1K7dm3C5YmIK9wTtKRtqCLw66mVamuNsjxJ4K8Me7l40ZLsVLgw2K8tpRrDHhQBwF0Ebj2Mod03omjvrWjaf5OvW1F0/l4MHbsTTVXTJ6LZlTnmOcASloqlkbxQ/lAuypUrp+IsUP2lefPmAX7LBP/0/jgTd1DwRoF1Z1xpIwgEDAFUAEmVyqPpkVADaaNTbKVHizFD4xdeIMIlIgi4icD261G0/moU/X46kq3/UQ57lU1rDv7YsFQsHZ6KiR+IQmniw5GlCQKhjgCojpo2JSZuJULt6hdfdGvHs89uoO3X/6PsydMri6W/ZcH5rYSkndoZS/p7aBlPEDAcgXtRMbSTrZE7b0TTLv65hy2Su1ipvBDJ1a0eSXImiSyWOiEVTZWIij76mTMiARVKmZAyJTMHg2TYKJaIWUBsHMqcQZ566in64YcfXNZ79vWdZZR1zNd1hlN/o87EqHnC6exkrwFCANRaWiYqM1W4K0jaiaYYGl/6dUqXxL8uukuRN6j5xiF0L/oBxTT9090lSTtBwFQInLsfQ1NORNK00w/4S5h9a2RBVhprZEhMbXIkoWczm19tM/8K/fAWuH79uoqPq8/8YKe55mp2Lo/11VdfqXt79uyJVa7PD9PFGkLcof5G1Pfx3D0TVN4pWbIklS5dmsBd+b///Y8WLFigFvDRRx/R4MGDnS7G3XmcDiIPBYFAI7B0KdHEicTZg0QDB7qsA2673N4Fm9GF+9fp+az+5eO9G3Wfmm74QimVXfM2CDRC8eefMYP4j4zlPv7P2b0i4Y1ANBsdj3Ic5JZrUbSJL8RE7mBF8vDtxyWck8IamSohwaVdInUiKsU/S6dJyBZ/c1gi3T3BsFAska6PJJiJ+OX4SMATibq869atUxm/ekmwKhfuWtvcbacXvt6M6+6ZTONKIuCwhGL5ySef0NWrV1VVFAgoH4oXL64SqxxJMGLjaC9yP0wRQDk5EHaDFufLL4l69fIIiI8Kt/KovbuN557fQmuv7KecyTPQhDJd3O2mf7toVhKYyUMl5UCgjD+q+a7/5DKDGRE4cy+appx8QBOPR8ZSIrW1pkqcgNrlTEIdcyelCukSEb8MegkuNdhLuLds2cKVxuKXGqtbty7t2LHDy1Hd6xas/JPuKl/utnMPLWNaeXMmK1euVKEUmqxatYp+/PFHpwsORmycbkgehh8C4FeEUpk3r8dKpZ5gLbiwTQ3/dKbSek7j+dhjxjxWKtmYQcuWEWXM6Pk40iOoEbjDsZK/sDL58tY7VGTJTeqz914spRIGyAbs0p5WIQVdbZSGvikTQVWeCA2lEgcX8hZLuDNRczN//vyxyvJh8wcOHFBlEyMiIrjoAVc9ELEi4K61zd12oQBtwYIFrdsoVaoUuardHE7YhML5yh7sIDBypOXmo9h0Oy0Mv7X52mGafnoNW3YSmoMXE16Mf/8lmjSJCIp4QtYaQH4+YICFp9JwhGRCoxE4yu7sjeze3nj1oXJ1b2MX981H3PdJ2QIJ1/aTbI2ERbIiX2X4tRGWSdQYB00hvLZRUVH03HPP0V9//aU7PCGvWOqOoIsJgtVq5e663W3nAiZDH3uy5lmzZqmyWpUrV6ZFixaRRlUF1zgs3iKCQEgjcO8ecekpIi4zZwaJjH5IDdcN5D/ad6lv4Reo4hMmqJ/M3gtibmQlXNSCLRlETHItEtoIgEvy22ORtODCw3gubiiNtTMmpvpsleyYKwlXhAqMc3gcV3has2YNnT17lrn4U6iQLk0+//xzlSugh4S8Ytm2bVvavHmzwu7TTz+NhWGXLl2UJVOslfHfWu5a29xtF38G899BCceDBw/SihUrCArmQ3YJQrF8j+v77mTaFVjDRQSBkEZg3z6XdcCN3H8kJ+vkTZGJrT8FqH9R9yiPdF8fXN3MMqJc3n36ED3pf1ol3fcgEzhF4ArT/WxmSyTIyDcwn+T6K1H0HyffaCRAWZIlsFojK7JLG5bJzCah/kmdOjVdunSJCjMh/5eIkzZAQl6xBIYtWrRQSRg92D2RK1cuBSuyfGdwth6sUHpKKCteeuKm59jungm+lNiTEaBeEREEwgEBN+qA28IACqBxR+fRW/kbUcakbL3zs6RKHEGbnhru51F9HI6T+Ljeq4+DSHczIrD2ykMaeSSS/j73gCIfJ2+rpWZPnoA6ccLN05kSUy2mAkpowqSbXpxsN3nyZFVrvGXLlgQLZtasWXWHOiwUS9TebM/unNy5cxMKvGfLlk1xWHbu3Jm/XOr77dITt6vupy0TKATkTOSNIAjog8CMM+voswO/U66IjPS/PM/oM4mMKgjogMCNB5pVMppWX35Ia9gqeeKuRZuMYE92NS6XWID5JKs+kViVTizO5ORJzahN2mADQxqslTCgzZ49m6pUqUKLFy+mQoX0DSEJC8USOA9h+gdcmjscGb6e1n725r3srnXMm7Glj3cIGHUmosB6dz7SK3gReCVXba4IkoP/CBcN3k04Wvnu3fhWSlShgqMWcj8IEQCP5FeH79Ovpx7QDa7DbSsgJu+WLym9kisppUcWThBKYqa8atSokbqgWCK0SxRLPx9k3DhLPw8vwwkCVgREsZQ3Q7ghkCJRstAsr4hsb62M5ZEjxMH54Xa0IbdfEJQPPgiFMpLuxCl4U5KtkT0LJqPWXOkmRSLzKpRQiidz1Z4lFx8qa+ovT6aIdU7vv/++KuwBVzhYcPZxzHQOA8j6w8ZiGXKfCtmQ6RCIjIwkXJrg/7dv37a+Tpo0KeESEQRMicDatURTphA1a8Yke/oVjTDl3h0tiulaFDG8xmFbvrxQCDnCyuT3T7AiuYJd3MsuPaR9XIMblED32dONHJtKnGxTPUMiVTaxOFe+KcRXIi6CYSY5x0TrisqI64hv459bef3Ykxb6edGmnri27rRp01LVqlVVcQ8k8XTt2lVVINRbRLHUGeFr167pPIPr4Xv37m1tlIT/V5uvTRyUr1nUBqJM2yPBNxrEY9y6dcv1wNwCJQ47deqk4laDRfQ6k+UcwI/4FU3W8h9qJPpAmYT7vWLFila6omDBStYZRgj07Wsh9IZFziSKJUo29tg1kb4s0ZFSJU5u7GGATaRhQ+IgNYsy+ccfRK30qSRk7MbCa7b9t6Kpz567NPvcI2LJR9tPw5xAXdnN3SN/UsqdIjB0QK5OAlbVb5jSCLRG1zgGNK6kS5KAmmVLQk+xUoyfceVjrgKFy57oRTWEucJGsQQp6LZtlmoNGshI6LElvbYHfjDdQ0LSqVOnKH369LEolPr372/dRgK2oCVh/qpq3bvH2hqUrUGDBqkyl7ZWNlf7X716NZUrV47Gjh3Lv3NbqVKH4SqgItJ4LoEBFHrwhqVKlSpcIZF9BwsC/AWRwMeIjFGDKEncgWbn9WP044l/qV7mstQiWxV3uvinDfj++Pck/0KzKJf48q1zoqd/Fi6jwIq3hK2S/7J7eClf5+5bFLJUiSzcknU4i7s41+GuyrRAaVkxM4OgjjiUSNQSB60Rrq18gdJIE1BhglgdVEYgXLfUE09IESZ01Ye8Ynn48GHFNg++SpBc2wqSdxryN9Lvv//eDO8tn9YApVCrLgSLI5RmrQRhPMUGLlkbZQcuWyjYIAKH9fH+/fs0depUt9bTtGlTOnnyJLVu3ZoLT0yiDh06uNVPGgkCgoBJEED4BnO2qtKNX3/NZULKmmRh7KJkAvSLDSZTmiSxY8d0X+BvvxGh7vcXXxCXLtF9OpnAdwSgiPU/cI/msWXSlhkItbj7F0lG7xZIZki1G092gkz06Wce0NijkbSTCdfjCiySHZhgHXXEoUgGi4S8YglCUFAM9ezZM96ZIJGnevXqtHDhQkPiDuItwI830nDFh3nz5lGBAgWU1czWcuZqGiiWUCqB0fDhw5WlzV1BdtnEiROZGzijUjBFBAFBIMgQ2LqVCCE77Omgxo09XvySizvoYUw01z4u53FfdzoYrlRiUW+/TRwwTVwNwZ0lSpsAIQBL31K2Tk4+GcllPmNzTRblOMmPCyenVpyAE6DCNw5RgUXyH+bGhItbs6hqjVG1B7GeXfMmVclDwSghr1iCCL1du3YOzwZWTPA8BbugehDc/fPnz6c6deqo2L433niD4KoGj6c78sQTT7jTLF6bZMmSqXvh7AaPB4rcEASCBQHNOwGrJVOTeCIX7l+n1pu+5BKL9+h0/YlcbSStJ93N25Z/n4qYEwFY+RaxixuZ0LiOcGY0JAUb9KpzGcV67Oqux6UUy6RJSElMwDP5kLVfxHmuZV7M1Uy4vupylHJ7QxDZmZ/jO6swL2Zlds0XZn/9k2kTUiaTVO3x9h3g2W8Rb2cJYD+U5Xv33XfZw/N1PFc4YhLBSg92+mAX7OW1114juKZhiYXC7KliGewYyPoFAUHACwS00qSoCe6h9N8/ja4+uM2JA5VDR6n0EANpbgwClzjr+dP992j8f4+ZNzBzTmYvb5U9CX1QMGnAanLHRQB0mCBZX87W1J+YDujE3diJNxmZE7NBlsScOJSMynPMZKhJyCuWWlk+pNnHTd6BJXPZsmWUPXv2oD9XxEiikhA4qm7cuKFbcfmgB0o2IAgIArERAIUOKnF4SPx98u4llVgTkTApZ20HWWw1JzlyxqElOYfj0z211MpbSH8EznDVm5Vs5Vty4QFTBFmsfLDzwcoHaqBnMiVh6yQsfYEtp3iLtcjdHB+5nWmAdvHPnUwDtJfpjK7YZHHn5PKPsEhWYxf3U3yV43hJExhTdTvEkFcsgRyUS0d1n3VD1uCBkYhkRCUhg7cl0wkCgoDeCNhQZHky1Zxzm7h+8kP+416GCqb0D93Y0ou7+A9uAv1I1pGQA5YMrsKmkpWYBkwl53hYE90TnKStZwhsvhpFgw/dVzGIcQrh0NtMDdSvSHKuQx/YbG7ERU5iSyTIyeHmtid52cVdm13zXfIkVa7ucJKwUCzD6UDj7vVDDzIafa0U42v/uGuX14KAIGBeBOacY55HluezVvLLItdfPUDNN36hlNXzDSdRmsR+zgRHScYPPiDOcrSsl0vc0eDBolT65fS8GyQqJob2sKXPQlwexcTlUXSQFTWoaqAHqsjWyKfZKvk0K2igCEoTAHqgU2w5XceW03VXHyqX9g62SKLijSawoKJueIk0FgogVO0pzf83KzemdyflWa+QVyx/5fihgwcPOkWlRYsWVLp0aadtgvmhLdm54rFEhRg3CdCDed+ydkFAENAHgWscV7nk4nY1OOIrfZVbnPzTcN1ArtV8l6lhXvS/UjljBtELL1iWiQQl0AiFQGy9r7gHqj/iJRecf0hDD92j3ew2tpX0rDy+ycTlqNGdNUDp3JGccDOP1zfyyH1ayck2cQXLepEztkEDBF5JUBqJPEYg5BXLSpUqEepllipVKl7yTri8ET777DPrVlXlHeax3DR6tLXyzgf4Fi8iCAgCgoCbCEARBMVQhXQFOXkig5u9HDdbcGErVxa5zS7O1PRh4ZaOG3r7RKNQY1o0Lo9lKq5Ob7cUjP3gQh5y0JKAE9fNXZBrXb/EylogFUpYJ/9hhXI0K5RxXdxQHmtnTETtciZVyUKiSzp+B4a8YomkFvA7NmK3x3fffUe5cuVyjEaIPgGXZ1x51uaGu+Ub444hrwUBQSA8EYAyuaz6QKVY+ioPY6Jo2KHZapieBZsx56AO3H1cIIOLJhOXwiIqVszXJUt/NxGAZXIFZ0avYZqdFZyAg/rWmmTnhJaanMiCOESUJCzGrm6jBfW3Qf+z6hEN0Hab9WVNloCqcmwkOCVRpQdueVEm3TuhkFcsAQPc3KDg+fPPP2OVOnQPImklCAgCgkCIIXDlioUQ3Ydt1c5Y0ofej7t+su9X2nTtEFsr09A7+Z/zy5jxBvn333i35IY+CMAS+cPxSPrq8P1YsYiYDYpZFyb+/rBQMkUTFAjRqIC+5PXB3W0rWB8U3d4Fk9GzzIUp4h0CYYMcOB5FBAFBQB8ExowZowYGUb+eghKtM2fO5BwMCd/wCmdOlqAuXYj++IPo0CHiklleDeOvTgdunmZr5Z+ULklKWlztUya5thRb8Nf4Mo7+CICwHBZJJLjA8reRs7rvPDJMKtLy9ImV1a8GW/+q8ZXc4NrWZ9gquZ7Xtp7XtZ4TcDbxT76lBOurwtZIWE5xwUKZwuD16X9Cxs8QNoqlLbSopQ1qnqQcaygiCOiFAEplPnjwQK/hTTXuWHACshihWA4bNkwUS29P/8ABou+/55TbVKbIhs6W/AnKnzIrdchdh2sh5/N2V5Z+Fy5YrLAeVg/ybdLw7f3rqUj68nAk2bqPNTSez2qx+kGhDISAW3IM198ee/R+vJKJWA/iObszddEb+cxXPzwQePl7zsCcur934eF4izl4u1q1aqJYeoibNPcMASiV4aJYeoaM960bNGig6tqLeInAnDmWjg0bmoIUHHXADz0zwcvNPOq2cSPRb79ZFGbwUR47RpTI+Hg93zZh7t4oQQhLJBJa1rFVEuUJbzzKvoH7uCJb/WqwZbI6W/xg+UtvMM/kCV4fLJJrH61tG8dKaslBoC2qxPGRsEbCOlmF1xloHkxzn7bvqwtLxdJ32GSEcEUAsboQIaS3/w7YuXMnzZo1i9KnTx/PeqlhV7hw4XgFC2xpwWyxRalSvP7ll18oIiKCWrZsGcsVDhd8q1at6Oeff6a7d+/GO5e//vpLVdzCnFqFLYwXtjJ/vmXrjRuHBgSckKlc+5CEHLMHy7kolX45WyhmIAEfzZY/VJaJK3BrIxbxGa7NHSi6nVGcvT344H1CklBcacMZ5u/x+kAHJGIsAoGJnjV2jzKbIOAzAojty5kzJ509e1aN1Z7rKntCPu/zAoJggCucEPLKK6+olU6aNIkawirGcubMGYXdrl271Ovhw4cr/DRBKVKNEgvlSOvUqaMS7SCaYon/r1q1inAOcIVrAhc8KMXOnz+vSpmiL0JdIH369KFOnTqp/0PxxJzLly/Xuobnzz17LPsuW9bj/a+/epBSz21DQw7N8rivLh3++YeoR4/HQ/N5U8eOukwVToPCOvnh3nv0xLwb1Hn73XhKZWOucb2qRkq+UjGHaZKAKJWzzjygfItvUo/d92IpleCXhIv75LOp6dcKKUSpDNAbVyyWAQLejNMmR3kzH8TX/j5MrXvXL5hQuX79+vTtt9+quf73v/9R7ty5qVu3bmFJYWUPcCiWUOqefPJJatKkCZeerkBbtmyhNWvWKGsjkm4gsFwm4LJ9wBT0X1Ae57MlDW5uyNq1a2nHjh3UvHlz9Rq4a9bOBQsWqHu2gucjRoxQt9AX17PPPqvoxWDRbNeunXqWIYPvfIuxJg62F1OmECEOETXBS5TwePUX7l2j7MnT080Hdz3u6/cOSMacOJE4nomoTRt80yN+A/l9mlAfELyNW65FcVZ+FG3mC/+3tf6hLCFqXMOFXImvwuxXDoQbGZVudrLVdMH5B7TwQhRXwLFk3+SKSKAspkV5XbCgYo1JQ7kId5C8IUWxDJKDMmKZ165d82kaX/v7NLnOnWfPnm21hGEqKERVqlShlStXWhUXnZdg+uFhOYRSCcHPHDly0PHjx5Wilzp1aqtyiOdwlW/atEnhGINM5UcydOhQunr1qvU1/lOmTJlYr+O+wDlokilTJvXf/fv3ExTdxjYu33r16sXtGl6vf/rJsl9UnfHCXfx8tkqEK+By6pRFqcRCxo8nEsYPj44EyuSSiw9p/H+RSpmMK7D6tcuVlN5ly19JLk0YSIFC2WPXXUVabiuFOfnms2LJhag8kIfjZG5RLJ2AE26PfLU4+trfrHhDSUH8nqY0aeuEpQwWOc0iZtb1G7UuxDHaCqyUwO02lxFNkyZNrGdvv/02oXgBBJnkWlZ5D1vX5qMeriyNKVLErymNOSFp06a1zqvFWFpvhNt/gO0zzxDVrRuwnc86s56+O76Ifn2yByd4pPZuHRxWQVOnEhUtSlS+vHdjhEmvKxx7uP+WxRqJ5BtYJG0ryqTj8onl0yaiJzkOEbGI5fmClTJQROD3omIUYfm/TKoO5RfrhYAWCPW36zO3JPglsVaxTJr3TSyKpXnPxvCV+aoY+trf8A27MSEUR7h0IXDf2pM5nGl7CJyAYS6ocHX9+nWlzCGu8vTp0/y3v6gqULBhwwarxRLPoFRW5UooyJqHUom2muK3dOlSn5HE+FBsV69eTTVq1FDjYdxmzZr5PHbQDvD880S4AihH75yjNZf3UcIEPob3t20b0JALWwAAIABJREFUwF2Yf2oojwMO3KNpp+LTncEiCRLw7gWSUQOTkIAjZnIsW1BXX35ozeYGylBwPy6cjPoWSR4wZdf8p22+FYpiab4zCdiK7t2759Pcvvb3aXKdOsNKuW/fPjaMlKc7d+7EmgVxf0gY0eL7dFpC0AwL9/ZTTz2llLdp06ZRixYtlJU3W7ZsNHnyZJXMU7lyZfUM7WDxhZKJfrBglipVSiXXwMoJXH0RKLdIrmratKkaG4rtwYMHfRnSkL5ITkIGPARrL1eunEoY02J7tVhTQxajwyS9uGRjx1x1FSG6iP8QAN3OSlbKVjMNEEooalZJKGbgbEScJKx8oNopyxbKQFkkseMj7N7ewETlB1n5BUXQBr6uMcm6JqXSJFSK77McO1mXLyEs99/7xKiRRLE0CukgmMdXi6Ov/c0KEaxusH7BemnrDl+4cCG99dZbZl22oeuC8gaXNSyFSMTp37+/lVIIlshTHBeH+Ekojb179+awuNfU+vAMSp+mTCHZBm1wD4J2UDg1wfjvv/++9bWmkGo32nAih2b57Nevn4rPBN3QG2+8QYkTJ1bnaGZB0pKmPOK9NW7cOJXdjiz7rVu3KusrrLDBLBmTxQ6LcLgXcFPiy65kejuEaPrpB/QBZ3Ajk9tWQP/Ts0BS6sV0O4GiArJdDxTH745F0td8xV0r2kHp7ZYvKTXIkoRQo1skuBEQxTK4z8+vq/fV4uhrf79uxs+DffTRRwRanH+Y4gSKy4ABA+jkyZOxkkP8PGVQDWdbcQdWSXviqAwjlMW4ljhtjLilWNHWdpy4lX7a2rhIoejCzY6xwa+JJCKzfxEAT6cmmoKsxa7mzZtXZdgfOXKEChQoYA/i0Lm3fTvxB47o1i2iRo2IMmcOnb35YSeLLkChvB+v6g0ytsEt+Q67ueHyDqSAB3M9E5Z/w8rk76wAa4TltmtqwXRFb3OSUC0mVZdk7kCeln/nFsXSv3gG9Wi+Whx97W9m8Hr27KliB5HpDIErF25b2+QQM68/HNf2448/Kh5LLblq9OjRyv0eDIKM9qgoS+ICLLgQhAwgi/7EiRNuKZZ4f2oKe1zF3V0Mtl47Sq9uG0Ov5n6a3i3QxN1u3re7eJH4m4MlOQf779rVUqbR+xGDvidIE46wRRKlExezQrnkYhT9x6/hPM7G1j24jUuze7tOxkRUMV1gFDSs8Thnm8Otjco8Gx9RF0U+MqRCxy3NLu6KXAEH1slKfMFFn4aTh0RCDwFRLEPvTGVHOiEA61lcC5pOU5lyWNQ+x2UWScochrgcCWIUg7X8I6ytR48ejbc1WMnBn+qOrFixgnbwpdKVevWy1Ad3p6NNmxln1jJ/4HE6eue8hz29bP7yy0QcYqIECuaQIV4OFBrdQLfTnel25sWh24FS1p8TWlrnSBzQ7Ohz92MUt+RYrs6zlRXfuIJ1dsnLNbn5MoNLPu765LU+CIhiqQ+uMqogEHIIvPfee36JUYRl2x/W7YoVKyoi9FASWBmRDIZ43nz58qmtaUljqFwEzs4nnnjCrS335/P6lMtrqtrZ33xjUS7d6vm40eKLO9SLuhkfx7l6MsSss+vZHXqABhVrxwqQkz83XDmJoFQuXkysORNnXIGHypOpQqLtDY5FXM5JOFvZ4rfgwkNlAYSk4ZhJWPxAtwNCcNACGU23A1c24iPX8PrWParLvevG49hOUBdpZOpaTW7cEwk/BJx80sMPDNmxICAI2EcAdECI8esFy5eIbghAqQR9FS4IyONB7A6qK80N7vbkHFOqlEqIm1ZO27GP3bnABNqH1S1vFMsFF7ZRy41DKSEloM+LPy7haTuH9f+oaKUplQcOEH/zsNssVG/eYq1tHNPtfHU4dt1rxEl+wpbJ9wslC1gmN6ySI3hdSLzBOm0F2eU1OD4SZRRR3lFEEAAColjK+8CKgK/JN772l6MwLwLTp0+nF154wesFomwjsrsdJfZ4PXCIdfz777/j7QilLm2rE8Vr4OBGwt27Hz9hLlFP5ZdTK1SXZzKV4Vi4+CT0zsaLjommt3d+r5qUTZuPlSIXFVyiH1m+uncPK6UymvW0RUwE3ns31+S+GTuz+9XcSWlYieQBKaGIc0OFngEH7tP3x+OHv8ASCWXSLFnnzt6L8sx4BESxNB5z087oq2Loa38zAgOexRkzZqjqMJBff/1VxVkioQIcg19//XXIK0s4V3Ap5smTx+sjgmKJjG1XiiXwvXTpkhVvryeUjlQZGdWQ2rWJihTxCJFbD+/S6CNzKBETmX9RzIW10c7Ik08uo8O3z6on7xV0g5SdKaiYAJUzPDxXgO1Mb+pbl9gCuOjiA+XunsOxk+BzhCAesWGWxIq0HNVwshqc1n3kNnNgctWb3VyTe8WlKGvMpEq84fVU51rchVMl5JrclvVJFrep32YBXZwolgGFXyY3OwJQqEBZA8UScW/gUAR1DWhvEA/Xvn17QpJEKJcLREUd25rbep4ZyNPjls7Uc75QHRuO5Dra5gYORNkoj7a6luMiL0XeVNbGCk8U9KgvGo9ipRSC/m1y1HTdPyUTppct67pdELcAl+PQQ/dp3NH7xFUWrQLexrGlI1Td60AIqIsGHrRUvbGdH25ucEui6g1ojEQEAXcREMXSXaSkXdgjAA5B2xrXtdkS1KRJE1q/fr2qMhOqAkLu4cOHO90eiM3Bt4jEEhCkgxonLsekNgCswN999511PI0KB4o6quPcvHlTWYY1TkrtOca35al0uqAwf/gx71/lyzdvzkFwlpKWnkCSKyIj09eUck8ptBkYLvtP9k9TmeSl0+Shvyr18b18oycLN1lbxCT+w1bJv88+oIWcjHOFlUvoaDXY+of63E2yJmGcjaMIus+1uLdx9vZetpIuYxf8SrZQnmCXNyQ9u7erZ0hExVMnotr8sxavS6remOwNFSTLEcUySA5Klhl4BEABs3fv3lgLQQm+YOFG9AZBVK1BbGTChM7ZlmHVBT6gI3qe61GPHz9eKZi4bAV4oXb4y5wBjFKPiCmcPXs2bQchdhyBAlqpUiXlPscaoNzCeqpV6YnbXl4/RsDqvB42zCtYiqXOSUurD/C47/G7F2nwwT+YnDsJLaz2KVdRSefxGKHQASUWURFnBtfAts13gZv7S46bLJnGRcypn0G4xwrlpJMP6IuD962KpDYFXPAfcHJQ25xJRJH0M+7hOpwoluF68rJvtxGAMoSsXFgloSh169aNUrLrDuTbBziDNZQVy1lMV4MSjO4IOCM3b96sSONff/11FS4QtwwmSjvCuqnxgdatW1eRzUNgAYZVEq5wWCY//vhjQjnNmTNnquewXEJ5jTumO2sLtzbteMOfsPLegM/ASMmYNDV1zduASrG10q5S+fAh0eDBRFmyENfZNHJpus914X40zT77kGafe0AruV43hywqARl4U86YbpI1MeNinEK5ky2TSAwCsfq//BPZ3XBo50+RkEowddFTnM0NaylqcyeRgEnd3x/hNIEoluF02rJXjxGAkqNl5EIhguUMSiWUJ/xfU3o8HjgIOiCJBnyTadK4V9u5I9d01ioRIeYUVYr2798fK2YSyiMUdSiJqAe+YMECh0gglvXff/9VSr2txB3T4QBh/ICJhmh9/vzUwGAMUiWOoAllujieFZV0OJGLsmYNGcVy780oJjG/xxVxWGl+JEnZwP8WxyeCHNxo6+RyVmp777nHVFGxCcvBLTmUraUonygiCOiJQNi8w27fvk24ICAcvsilwzTi4cxSh1bP91jIjB03ZtBRmbwLFy6oPSNzHMqZJsH2Pvv999+pVatWbp8fFD5bwf4jIiJi3evTpw/BCtqmTRs2WL1BgwYNogoVKtidAwp8jx49FGG4JkOHDlUKvUgQIoBwByiVkP79g3ADsZcM9zK4JwezexmJOZqgZOHoUslV9rSR8v/2zgRe6nn940/rqaOTkDatIkqUkEoUhSLX0r2XiAjX3y5cW7KTJZIrl1C59lx79vXaaZFCKG2khULrOW3n/31/j+/4nTm/3+wzZ2bO87xe0zTf9fl+fr85v2eelejy4bOLjda0vPmd4KDbO9a1pm4lRSATCGT2zs/EiQL2wAeMh5qje+65x/63sLAwJHAGTNVmRSAuBEjL41IvTZw4MSfvs40bN8r8+fNNlprY09Tg+4ggSinF22+/3QrWffr0KYfdlya3YseOHa3GEurfv3+5foTJVatW2bZjjz3Wmsx5x8+SNa+99lrrn6mUYwhgAncuFScYQ32OmsHJO4lm8hkjvE02Ju/FxWXBOJiUuxqN4DFNec/MYxXB9i2jnSQo6HOjnZxiXsYaL/WMtX0/o5U8zKYuqmXTGKmlO8e+LznObma+AVkA0kknnSQ33XSTjTj10hVXXJEF3CkL+YTA6aefblMU5fJ99uabb9qKL/EQQuK9pnTgUSYfIb6SBNo407hb50bjX3fYYYdZ8zaR4+BEuiYiz3ua6GUCf04wgsfHH39sX/htHnjggVZIxbTOmvmc2ikevHNqLEKluaekpnnkRMkwkI3nQoi711SeGWNqYlPW0BHm5fs61zUR8JnznSw224+aU2w1pfzfUaFh4YK2BXLpTrUzngMzG6+Z8lR5CFQZwZKHEf5wPNQ28evZEFGp1D9WUgRSicD5pnoIidNz+T5DsMTsHC+FR4G7+aRkckQAj5e8KYT4v/czGksX6BMvLzo+PgTeX/G1/OXTm6SlSTX0yQG3SN0aBTEtULJ5oxTUiGBmpZrQnXeafDbbirz0Upl/ZUwrV/6gj1ZuspHdz5qgHCdQogEcaHJOZko7SVDQBytJXL7FJC7faP+/4Q+Bck+TuPwQE2ne2bz3aVhDti+InL2h8hFVDqoCAlVGsORiooE52uR1e+qpp+y1xb8r3AesKlx0PWN6EWjbtm1O32f4SnKGmmiXlKoMAq3qbm8SYdc3ptx2MQuVVNfp9M4wecukJupm5vnS66+XNVOusVs33yHZ1jjTVJ859fP15QJgdjVVZ843GsHTWtXOSN1uKuDcYmp0T1q8MSRIOpyOMhHmI3erK/CkpAhkGwJV7slBMAAl+tq3by+nnHKK7/Xgwfqf//zHRsOSv49XjRo17PsaUyYNP7CCggL7GV80goC23357+xkTH4FB9M+ePduujz8ZAixrbDE1cd1c+jZv3mz7mMd8+skFWFRUFNr7t99+s7wwzu2JSR8trOMLLVBjk8KDcbTxQjAI/79r4x0+eDl/QN5///13u3+sxFjnE4e5krNzJnDinReau0jv9LEGQS+cCQwItFq6dKnFFV5pgz/WBRs+O+zxkyVy27XBU61atexn2pnnsH3vvffs0fhx8euvv1q8GOvmY3plPbfnypUrbWS0+wyvrMsLnnGxICVOOMVyn4XPyZbPfD/OJHo3DiJxPKmAlHIXgZaF28ucvmW+57GeYsOWTbJbUQvZtKV8BHK5+RdcINKli5hi87EuWynj5phyOE/9RNJw8zK+i+QNb1anmk1i/nejoTxo+/Q9LvHd/M7s/65JWE5U91dGqJxtgnGMBV7qGtnxAJOwvP0fict7G3/OTJd7rJQLopvmLALp+6ZUMiSRcu8hKOxoUnHgc+lHCHLRKo34zQtqI+ggF+juu+8WXvEQKXh4QSTF5pULRA7KVNAbb7whpNDxo2j32T777COHHHKI39RKa3M/LOIVEsMj5ivtALpxRhHoYITKz3rdFnlPcmlmOJ9mZIbK967cUGpKGpaVWnTJzCnTfWU7469oEofXo7Zhmoj9CALCXzI8PRCVcM4yKYsoq6iCZJougC6bFgTyVrC8OkI6i0h9oEzkKUTlD7RXTkNF+wMmXcb7779v/TMJLiAK9rLLLhMCNhhH4AHRtJMmTZKGDRta4ZXKIgQpkFib4ATGop1DY0pJQOpNowlDC3nGGWdIjx49bPJt2u40vkkLFy60Znu0j2js2K+bMSn9zWgA0OyhEUUrOGLECKlXr57lgxyB7Mt6aAGnTJkikydPtuui2SQ/4GeffWYjbRmPIE6i6r59+9p1zjrrLLtWENHHGKLrGX+9qUdMkAWBG1RTYX38VxGuXnzxRSEaGN9DSv6B63333WfHcg60tZzjuuuukwMOOMCakcHiqquusprGm2++2WopEXo4e79+/WykMD8A0Ay6gA/wYR58cQ7wpo3ygfCE0ItmjWt26aWX2nXxu4VXUgHBBzygzaR8I22cj4AT5u+3334hzTJaanDlWgXdT0HtDtPatW3RvawitJUDBw7MKp6UGUUgXQiQPHzI9HWmBOWfUTD4UE7Ys670TGO+RwRKNJNXf1MsHxmfSS+x/3E71FKBMl0XXddNPwLGBJg2Mg95knuVXnzxxQntkez8hDY1k+AXvtnfkTGnlhotZ6nRMIXajPBSaky1pcZcattMZKudZ4RA+9k75/7777d9RmCxfeGfaTMCmB3DO7RgwYJSY3YvPeecc+xnKHyM+2xyAZYaATE0Dj7ht6SkxLaFf/ae0YtzPJi7NYzJutx1DscvEi6OYXjnDO4cfDZ5Dsvh4TfGO8etFX5WMAdXMPf2edvd3PA2ri3XmGvtpXhwKjcxiQ/J7hltvvkhU2p+DCTBoU7NFgS4380Pm2xhJ2v44E/k579tKh07r6S053vm+fTcb/a165urSq/8en3pV6s2lW7+889oSvk2pvbSf31fXNr/ozWlhS+W7cve9Sf/XnrkJ2tKx5i+mb9vSumeupgiUBkI5K3GMhUiOSXlnFYJf7958+ZZEzraPbRnRM7utttuIZO6i4hFw8gY75yRI0daDSAasmeffdYmifZ+hl/Wg1iHFCxUHkGTh3bTmfbDx7jPaCwvueQSOx8fQ3wJ27RpY8vihX9mzLvvvmvHppO8+GFaHT16tNUyQvh2wiNaTIcxZ6BmtBGkrabYCMV2LBpR8IDCx4R/ZgwaWK7Vqaeeagp8NLGfwZprwPVzfWgkXTulGd3c8DbGgTNlCl36nHj8UO3COUBo4vfff/8c4FRZVATiR4Ak5kM/X2cjvB1h8h7bqa4MbZk+6wGVeagb/vLSTeLJDiTNjfPkCGNu/4epzqOkCOQVAumUZqNpSKLtnez8aOsH9TuNm7nQVtOVzy8wTpfGMp9xc2dLVBsfdO9Fak/2+xBtvvkhUGp+MEViQftyBAHuz1g1lq8v+7x04drlqTnZE0+Ulp5ySmnp4sWpWS/JVZas31z67E8bSv/22drSOi+UaQnrGW3hwR+uKX1wQUnp6o2pV0+WGJXn5CUbSs/+Yl1pD6MVrf182b4NXirTTI4z+y5cuznJk+l0RSB7EVCNZYSfCQQkOG0a/o5UUSGSGN9INHDmsparY4z27KGHHrJj8PsjSbSX8DOkNjLVTPCt9BK+iM8//7yto8ye+Anim0i5u+bNm9uh+E0SLEIbfoYQvn/4TKJpIkqZCGeSVMMD2kB8E5csWWL9KamIwj4QfJCUOp3kxY99SG69xx572PMQfT1hwgTrc3myqTGNLyT02muvSadOnaymEQIDtImcl4ot3jGclTWYi89lhw4dbD+ELyraXvJJggF7EFWPphF8weexxx6zY/F5hRw2LoodrSproGmFT0oQkhEAYh38MfOFOA/R87HWBc+Xc1f1c/y4foX0+9j4NjfcTd7Z7/qY4Lji60fkvLYDpElBg/LjyU9q8o6aL58Yx3ETUt0spvXSNeim74pNicMyq4fb49SWteTuToWCpjIdNM4kUT9/1vpyicvrm+CfC00Azj93KpBta6cvECgd59E1FYFEEFDBMgJqBG14A1hIrk7ACcEnRE9jrg2nww8/3I4h+AOBZcCAAaEhPLgRgBAOCZTx9jGIABiCfhhD2p4vvvjCBq84Qlg66KCDZM6cOfL3v//d1kxmTjgxBh5Im4TJ3Y9PTNLpFizD8bv11lutIE7gyzHHHGOFNM5LoI2j224rizBlDKbrRYsWWSGdutVO8GOMdw2ClLxrsJbrRzgM34MfBJi1cWdgXbD0o0h8ci3ySbDknnQ/Vvyw0Lb8ROCBhW8Y82ypNKhV9oMp2ikZP3LO0yYVzwYZ3dGTWYGiE6QTQqjkR2HXrtGWSls/puch08vnoGxpzM7U7z6qaYRE7glyRCDOIz9skPuMUPnJr38G4hBMzn7X71pHdi1KkySbIM86TRFIJwJ6t8eBLsILqXXQquEHiO9eOLkxaOTIcfj555+HhiAYoWFDYxne5wYh5FDTnOhzNGVeQshlX7SnaB8RPv0oFj795qW7DaESzIjMBkOwDBcI4cGNIRIerMDMCZXe/qA1ou1xxx13WHzBOUiojLZGurHK9Ppvv/22jepXqjoIfLP6Rxn9/QtSu1pNI/wMinrw15fPkGGzxtvxRzfZ98/xxv/cpEwQobqSSaxvTCumYHVwRomoGyUwgJKLj/64QQZ8slb2fneNTd3T3OSgPHfH2vL43oUy68B6KRUqyTv5lqkZfs7M9bLLm6vlFJNMHaGySUE1OdUkUH96n0L5/fD68pR5V6EygQuqU3IaARUs47x8pOshmARhJyidDGMITEFTiMmbYB5H1EdGw+bX58aQ1gjBkfVd0Irro14yJu5ly5ZZrRtJwv0oFj795qW7jTONHz9errzySpv6yI/cmH333ddiBWZeirZGpH6ClkhjBL4urVQkHiLx6TcvF9u++uor2XnnnUPuCLl4BuU5fgSGfTleVm1abyrt7Cwd67eKuMCaTcUycMotsmZzsRzcqLM1nYeIfMDG1caS+TEoLVtGXCuVnatMQM6wL4tl+1dXy+Bp6+WlZZusU/zVu5gCFX2K5K7d69rUPfVNTshUEXknW72xWvp+tFbGzt8g80zt8NaF1eW23erI9wcXyQOmdvgxJqF6YY3U7Zkq3nUdRSATCKgpPAGUyRu5ePFim1uSyGs/AQmfR/wD+/TpY83S5Ep0AlKrVq0C+2AH30GTGkcQrI477jijCPhEmAORGxNfQ8ywJnDECp9Bid5j4TOB4yc8BYESzMArSKjzjiHXZXhZwWhrROpHwB80aJD1SQVfcPajSGv4jc/1NjIVoEVWqjoIfL36B3l1eZk15Ygm+0Q9+IML3xSES+j/Wh/653jjymLU/2Icl8WYADJWXecDUx3nkR83ygtLNsqSEkRJY33fpoYMMkLkMcb83NIIeqmkj03N8MdNacUPTWUccl9iq2pj9jiqaU050lTm6WWq4SjFjgC5nolHIM8yOaEduXY+k995pyiJ9flbjXXpNHx7YyTiC3imOgrnIcZlIg6bNWuWzcjSxVSciuUcVK275ZZb7JrEIASdhxiMRx55xOZhJmaAWIExY8aEeGlpftT5ySMRmU1Dp34bEgAVv0cSnuNrSYBKixYtbB3ycNpzzz3l4YcftonMCR7B18+ZdCP1sQ6lDAnmIWE45loEU0zhCKf4R5J8HB9K/BBNtK999/qDskasfIbznY7PpOsBq0MPPdRi5/UddfuFjwkXKsP7w9eI1I9PJNcBP9fXTe1i8PWjSGv4jc/1Nu4l/jATnKRUdRCYvHRq6LADmuwd9eD3LnjVjum5XXspN978QBPzUDS/lMU4jUddJ9kBc9dukdNnrLfJxR0NMHWzLzI1vCl1mGqaZ/Y7NWw/zN3Xt68jJ5sURWksypPqo2TNegh2/fv3t/zgP+8ES9yTiEvAjSzcSpVK5nGhgsJdzVK5BwVJKN4Rq3sRQqUTKFEIMdePPyxLEM9SBEv+fqOkIW4gmyjubyI5GD/66KOYzuBy/WF+jFRiMWixZOcHrRut3eV49OZh9JvDF4KoYYJtvJHN4WP5FYH2kooyLrLZjYnUxxhqmlPhh2AXoqURjPg1xC8XNG7cXAQSETlNP+Qin90efnxmMo+li6gHK6rVeF0IHK+RxnCOZPsJhOLL3r17d1sH3o+i7eGdUxn3ZrJ7+s1391Gk7yfVhbh3lfIHgRm/z7eHObJJV2lfryzrRNDpHvvxPflmzWKhfOOjXYaVH2aC3+S778SU0AqannT7kuIt8qTRFuLD+JIxQ5uS2tKybjU52mgmT2xRW/ZqUJZRIumN/lgA/8kXzT5oKN1++GseafbrsW0N6d+olmxTydHdP5hC5g//sFE2wGwGCKE9XsHdFJcIlfudPn26rbbGs4hnGMIjQqUjNG8IleQYTlSoJBsKmTscPf744/a56CU0fUFE9hR4hIhfIDA2EV44N8+Y1q1bW1c2p11kXTSsBKQ6Ii8yQiRzECgh4i/aGl9lLJE83x0hkKP48ItLCA3Kkv/EJVii9UHACaIGDRrYmyacpk6dKrwSpWTnJ7ovNwfn8QaOsJb3jJyZXw2ktfESc7zj+MwvpSCBLlIf65K8GsEIIpqZ1EOsSdQzanQivOlnT79rwFi+vI5PUu6Qtoh3J3CUO0ASHxBEIFdD3C0FD3zZIf7vkqWHb4X/aiRKph8hnVc0irYH/KNRRWuMcOYo/JrT7q6Ju4/87ikvP+H3TjivfB9IXRU0x813+3nHwXPQ94l72fHr5nJvjRo1ymrFwzXi4Xzp59xB4Lr2g4wfYDf5a7Oy72okzlvW3V4a1d5aXup2pTExh2n68X9Ok1BJtPXd80rk+m9LZKXxpYRIE3SB0U5ev2vqa3i7/W7/foP8aAS3dO8XCfNofQjaw2dXfNZGm5dMfzyCJYISKfkICkR4QquGWRjhCdewcMIETsncE0880WZUgRLRXPbs2dMKbrxwewoiSiXzgpy2D5M46fsgFD48G/20hkFrunaE0d69e9vML2gsEQh5vn///feh9cPXoJiKI/d3mL+9XsGSrB3g6kcExkLZEoQZl2DpDoQallQysRDBJUG+bLHM1zEVEeBLGhQ4hFaQHJCxXCO+OF7BEk0oN3O8FP6r0NX6jrYOGmGET75ULj9ktDnefoJOZs+ebWt/K8WGgPf7yI8chNxIaYbcNYptdR2psULwAAAgAElEQVSVKwjstFVT4RULYf5e1n9iLENTNsYoKWXw1LXytKdKTgMTgPP4XnWlX2N/3+hkNv9lQ6kJ/lknry3/08Sezv2S4ZW5aE7rGTv8GqThLCRTjtgKighWCJMIb1j1IhECJT/S0dahxePZ4LR4kea5Pvwm8dtES/jOO+8EmqERFp3AiCCKFhG/RIRJiLlXXHGFnHnmmQkJln68ovRJR3o/YjycYIxWeK+99kpIIPfjOZm2hARLhBHVXiQDe3JzSQgeDf94rhFr8UMBISIo/U4kjvFdxMTh/GYYG40/xsAjhFAZy/hwHvhFyxcrkbnha1XFz/wB5rq76+CHQaQ+v/HapggkigApg54wmriJizbIFJMuaJ0xedczVu4TjLn75Ba1pIsxedeunrpI67VGKHvDpAx6zAQBPWuCgJDRtjXC6/7b1bCR5OSgrJOlkd09tq0pq006o2wl5/aEhs2ZkyMVX3A+3u4dzSVCYjzUzWjOEUqx6CFkobAIV3p4zdKszR7OsobljnkInU6bGc/+kca6fNNBpnBXEIQ1nCXPq62MtLbrQyOMMI9Qn4gJP5Y9Yh2TkGAZ6+I6Lj0IOLV3KlfnFxr+j2g64yUEXRJsUzc9k4RPTKzO0ZnkKxf2wixD0JkKjrlwtfKfx1eXbZRBJl0Q9bwdndC8ljywZ+qr5CBAPmcEyctN/W6CgRwNa1tb7uj4p09b/qOevhPyLHjqqafsC79JNJCdO3cO3BAFAURBDyKieQ6R6i0eQmOJj+WMGTOsgOn3bEDQJdDWaQ+HDBkS2gdBFI0fGkA0pWQOSTUFRWzzTHdaVlzw2BvBEo0qc4LmIahicue8CMVofREwK5tUsKzsK5DA/vjJhZeTTGCZClMwVXCDEokeHmRUYbBpYAz+M/iPZFqohB8ES+8vPT8etc0fAf7gRzNN+c/U1iqLgElzYhLLiqlpK2IqjCVLXg3lhys3W41h562ryxCjocSfr1P9GqZSV7K7lM1fYHJNvmm0k6+YPJevLt9otaEsvUf96lY7Oah5bZuLUik1CKAxo0IavuBoBakS54SjV155xcYIEISCT+Py5cutOw4WKGf+RqiM5KLjuCS7ijMFX3LJJVYgJLraT6hkDnzBhzOxe/fB99P5gVKYI5KPZjSU8LF0KQJJmeRKFgfNgx/SBmFF8u4Nr5wRQnAEL9zgwAmhGCuhCzhiTLZEh6tgGXSls7gdLVNJSUmFoKJUsEz+zVhvTm5sXpVF4c7NlcVHru1LEB515VUoz7UrV4n8fv21mMiKMgZ23TUpwZJI5pu+K5Ex8zaENJSYoG/vWEdOMkJlqqzdCKpPGDP3kz9tkJeXbrK5Jx0hRP67k/HXbKSPwHTdVeRZ9iOEIa/blBuD0OcEPr95fm1O6KKvQ4cOMc0P0v4FtfvtG60NwdJRtFycjMMFwO/sXp4Qev20kX7zovGX7n79VqUb4TSsj68KUbp+Ub9p2C5rlyQ9UDrcArL2wClijGpGmj4oRWDm0DLjF74lC9cvl2ujlG8s3rxBbvjuKeNjuK/s3WCnshP+EUFrHJpFjj8+oVOTIudRI+j9x/hQzl5TJuahoTzF5IP8m6lU05SQ7yRpqYn6ed1oJtFOUnLxp+Iy03p986Tbb7uacuj2NeVwk9B8p62S3ytJVnW6IpC3COi3KwcvLb9ugtIOpOI45DREq+Vo5syZQgRxODEmUv7D8PGp/IxWNTyBeirXz9e1wA2TCqmmlKoWAqPnvSD3LihLDh3p5EtLfpMbv/uv3Lfg9bJhJp2aqfRQ9n+T28+ohiJN9+0jKKfzO2usXyNCJYLdhD3ryrReRXLejgVJC5VER59s6nU3fW21DJm+3uZ4RKhEM3lluwKZf3B9ebnbVnK+SVWkQqXvJdJGRSBlCKjGMmVQZm4h8lzhj5IqIoKP/JY4PodHWD/22GNCyT/2I4dpUHDPZ6ZWMEllD0+B71Us59K8irGgVHEMDu6UClVNb0Vs8r3lqX0ukS9XLYx6zNaFjeTynQfKeW3/qKRDajnyE1Ne75xzos4PH3Clybd4ozF9OzqlZS0Z17kwJVVrfjIaSvJcUt7Rm3qnoUlgfq3JdXlWm4JwdvSzIqAIpBkB1VimGeB0LI8vSio1lgiWaB7xBZk4cWKIZQTJcePGhT7jWIxAQqlJR5s2bTIlgi+30WsvvfRSOo7ruyaBO0SxK8WHANfviCOOiG+Sjs4LBHatt0NMCdE57E0dBkuTApMw30TYmtwr5A8TMVXXjJkgJiwohXjBrPXS/q3VVqisbZ40pxqBclqvevJgkkIlxWaIIj9+6jrZ7e01Rgu7wQqVnbauISN2KZD3e24ly/rVV6EypiulgxSB1CMQ21+J1O+rKyaBABUNqFSQDHlN2OvWrbNLLVu2zAR8nmIT2iN8oIX88ccf5dFHH5U5c+ZY52LSIOCUfeSRR9o51P3G1xGios2IESPs//H/JBCICPN00A8//BCqMZuO9fN1TXK9KSkCMSNAJRLz41EGDiQNREzTqOP9tynrhKTjUFeTf/J5Y4amxnayRHT30Z+tkxm/l/3NoVY3NbvPaF1bum2T2tKOyfKq8xWBqoqACpY5eOXRWAaVQ4z1ON7KPZiw77nnHuuzSP1WIobRYsZCCI4IpqSPwG/PW4s1nTkSf/rpJ2vSVVIEFIE0ImAqp5hEhGJMGlE3QUuJ2Zsa2ybI29Qhr2mTjB9r0vnUTSLR+GbjF/zOL5vlZaOlfMT4Tv5sBFZqhZMi6CSTOL1DkQqUUS+ODlAEMoiACpYZBDtVWxEVnqxg6fWlxDw6cuRIm7eL3FtoM9E2knuMtAloSPGxHGi0FiSwJYGrIxLKkq/s5ZdftmmKwn00U3Xm8HUwhVPtR0kRUATSiID5O2D+GETd4AZj7r72m2KbixKa2KVQjjcJzlNBBOMQTe5osBEmx+5eV+ojvSopAopA1iGggmXWXZLoDGFmpuZzqoiSipdddlmF5Uhk64J36CTDP4E8fnTYYYf5NaetjYj0oqKitK2vCysCikBsCIw36YNGGE0lRD7Kp7sW2gTnyRIa0IHGpO7M3qxHQM5Vu9RJdmmdrwgoAmlEIPlvfxqZ06X9EUDDmErB0n+XstbjTc46KuwQLORN+hppTib6qOuqkc2ZQFr3yFUEVmxYLefMvN/Uu64l1+xyrNSr6V+ucJaJFL/oywlyaqu+xmzdM+bj/mpM0ld/WywPmOAZ6ABTY5uSiHsZn8pEaVnJFlO3e5N8snKTPG+SmlPisU1hNRlq/CgHmPyTnU2AjpIioAhkNwIqWGb39QnkLtbqOIELROjAtO2lPfbYw3c0Zu/wsb4DU9yoOSxTDKgul5cIPLPkE/lpvvGPNDS4eS8jlLXxPeeDC9+UN37+QvbYunVcguWZM9fLk8afkojvp/YpNBHniZu+MaHfPc+Y003qIFcvnJQlp7WqLaNNRZ56ROkoKQKKQE4goIJlTlymikxWr151M0VpKceK94O2KALhCPzUvKy6TceiltK+XvPwbvt5zaZieeanj+3/j24SWzAcFXTO/GK9CabZJOSLnGgSnVPNJhGaaaK7HzPC6X/N63sT8W2WkwONGb3HtjVs0M/upl64kiKgCOQWAipY5tb1CnFLSiDS/EQrbp+jx4vINmmRNHAnIkTaWdURqF9bZM9GFoXRuw+VAmMO96NRc5+TH4pXmFQ97UzJw/ZlQ26+WaRly8DSjX83fo+f/LpZmtepJlN6FyWURmiu8Z+81pjRHzNR3q6GNxVxHt6rUNMG+V0obVMEcgiBqqv2yqGL5MdqQUGBoLlLlMLLMf7+++82TyUvSjgmQ+FrJ7OW39xFixapYOkHjLblPAIEzI0aNcr6D7siCFTF4nt5xhlnyPjx42M74+nGfaVGdTmh+QHSd/tOvnM+WvmN3GYEy7rVa5vyiueWjSGIzxQ8kLvuqjDn1eWbpPt7a6xQ2aGoujzTNb7clJtMZvPXzRrkuNzlzdU2ddA2RkU5xER5v9a9UOb0LVKhsgLq2qAI5B4CCWksCZzw1pLOvWPnPsdEcvul3ImUf5K+++67T84994+HiAeGrl272nKMpDIiifbcuXMDK9vsvPPONmF6LMR9cu+998qZZ54p8OxHkXj2G09y+Pbt2+s96AdOitv4ritlDoH+/fsLL28Bg19//dUKlgiapP4iO0Pbtm0jM7V/c1Mysbrcvcc/fMdtKd1iamrfJes2l8gRTfaRXYuMqdzkhpVbbikbH1bYAKGy/8dluW0RKr84sCjukoxDTS3vhz1pg/o1qmnrhTepo/oN34ukjYpAjiKQkGB5l/k1y0upchG44IIL4mIAAe6iiy6yFXUeeOCB0Nxp06bJNttsI3fccYdto6rNO++8IyeccEK59anGM3nyZNuGRuWRRx6pMMY7odjUFyYf5gxTFu6kk04KFCybNGlSbh/9oAgoAn8i4CwTFEaA0NhHFSzNOIJ1GtTy/zE3d+1Smbt2iV2vx7a7lm32wQdl77axR+j/BNZc/Uc6IRpHmHQ/8cTSUM97oKmWg6YTal1Y3QqUqUhJFGJS/6MIKAJZg0BcgiWVVKiuMnXq1Kw5QCoYadDA1MT1EAIRuSIh7/+9n2l3xP9Zg6Tlbh7vfKbdO5Y53j7vHL/13PxwfliTSjnU6nZ9bj6VcHr88WDwapadZnDSpEmyevVq6dChg51CkvNPPvnETRcq8ey66x8Pmz9aqRvOHCr2UMYRred5551nE6K78o6hBcx/pkyZYhOso/mE2NvLC/Mcj955uf5/roX3egTdP+6crt/dI+49/H7y4kJUfElJiWy99db2PZxYgz7cGxy59fzuJ++e4fxu2bJF2rVrJ+msohTOv34ORqBFixb22kaltRtl6oPPSbXet9uh4VkktjEC5+GN97Z9g4253BLlG6HWrUX69rX/nf7bZjlx+jr5evUWa/5GqDw2xuhvyi9OMkE5Y+eXyKL1ZWmDzmpTICcb03fDAtVSloGt/yoC+YdA3ILlhx9+KH7mMQQHNE8IGzfeeGMgUsOHD7fazqVLlwZqsJic6nGBDOVoB9cBzA855BDfE7gKONdee22o39UE5yHz9ttvhwRL7wJcv9bmwYKw6QiNpqsbThu1wzHNocE87rjjAgVLrw8o17xhw4YhQZ3re/TRR1thNV7iTN6SlPHOz9bx8X6Hvv3228DvkFuLs0b6rsWyJ0KlCpaVd9fUrVuWfxJTONaEmATLE16y35FrXrjGl/HtC7aWyd2G/9lHPfAXXyz7TLox88NvjVFVUpd7kYkCp973hwfUi1lT+YQRKAdNXRdaH7P3oyYwZ1vCvpUUAUUgrxGIS7AEiWgPGfojlfVzDyj87TI5Lt+uYvPmzeWLL76IiCFn9uaZXL58uUyYMMEK//g83n333eVgQSuJD9f9999frt1pOuPB8KyzzpLBgwfbGuQPPfSQiQe4XBo1KotS9a4T6R4I2o9I+ETmBa2Xbe2p+g65c0X7rjEu2p7ZhlG+8kPwzqeffmqPd4vxd+TFteGHHJYE+mMxg8eNz3XXiaxaJcbRWsT8HXhuyUY5fcZ6WWGSoPdvXFPu2aNuTELll6s2y02mvOMzZj7U0Wg5h7crkONMXW8lRSDVCDz33HNy1FFHpXrZpNcj/oF4Buj888+3rmZVidQekaNXG38rnPrjIQQ7tJY3m3QiCJBeQgjs3LlzBaGSMQcYR35XN9wFEfCOtvSqq64KZKFTp072y4V51U+oDJwYoQPTLKmWlBSBfESAwB2+W1gVECqhiy++2LaNHTtW+vXrl55jE4xntJTG+VqeWLLZRm7/YoRK6n2/3G0r6xcZjSabSjn7vb9WHjfayoLq1eTFfbeSWQcVqVAZDbgq1j99+nTro48fv5fw+6edlzcGIBI8CJaJUM+ePe13ykvdu3cP7e8yMiSyNnN47p144ol2j1iESocJZz/55JMDt2U9eHf06quvhniOB7fADVLUEf2vRYo20mVSiwDmMPwzU0GYujFvYzpzX2w+ewlNyT/+UT7ClD8MfHkySauMVkVrhGcScd2rSiBgrApff/i5HPR9kTVhU00HTSOaymiEdnPPd9fIEZ+ulfWbS+VvxgfzvZ5bmRKMcRvEom2l/TmIAH72ZPKAEKC87lnuOPjtz5o1y/6g4nXaaafFdVIErFgULR999JEgQO60007l1v/LX/4il156qd2b56FfYCypvmIVONFYxmNZIHPKihUr7P6tWrWymVTCCYET/MIJXhPFLXytVH1WwTJVSGZ4HQJE/AI3YmUD89rBBx9sh+NP6W5M9x4eEc446obzi8n6bpn3oFKP3rVj5SfWcT+ZlCjNmjWLdbiOUwQUgRgQWFpaS/ovbSzv/GJ8LQ2N2b2u3NC+jtSvFewTucHkpcRcjh/mDFNBB7q3c12ZZMo7dtKa3jGgnr9DECSdkuKggw6SNm3Kyol26dJFnn/++QoHx198zJgxFdpjbXjttdfKKVqGDRtWTpMHLxABox9//LEMGTIktDTC4ovGvxjLHASPzqLn1SQi+LrMDJH4Qts6btw4u79Xu8g+DhP3jkALEbfi1iYYlowr4TRx4kT73M0FUsEyF66SD4+UdCQiPFFC+AsK/Im2Jj6akSiZtSOtSx/BCypYRkNJ+xWB2BHA5L3/+2tskA5Efe6hLaP7RF4xu0QeWFiW57SBEUBJIRTLvNg505GBCJCZpWlT8r5VfJEv+M47A6fKE08Ez91++8hzg1ct14NWEk0liooddtihnIDltwTuTV6hy29MtDZ8GVkDYXD06NEVlCVB873ZM8LHIMhxhgcffNBAeqcgsEYjtK0Irsz7wKTwYg3mgUm4AucFk4nh+++/j7ZkxH74cthFHJjBzpoZ3Eu3SjEC+BtWNUJjSW5MJUVAEYgfgQu/nCD3L3hdpvS6zSZFJ50QWkdKLO5Rv7qMNabvnttFfiy8t2KTjDB5Ld9fsdmazIe1LZArdi6IqN2Mn1OdERGB774T+eUX/yFUZEMrGJTnmFzEQXONVi3iXP8dK7RSaANTMFWkRowYYYtvoLEL0vgtXLjQCl0QGUtampKi5GuNhzAJo9XDjEygqjeFHusEafvC0/V593Q5lhcvXmxN5Fj3EFrjJVzGKOoRzsMuu+wihx56aLzLhcbjc+1ww8wPbmh/XSaJhBdOcmLkvyBJLq7T04sAWst0EPkm+XXljSj324fqIJjFMxmhje+KJlT3uxrapghER6BjUUsjOLaX5nW3l2FfFsud35flQW1SUE1e6b6VNItSBefu+Rtk2Kz1QtJ0aoW/07OeUONbKcMIGLck45uU2KaYWX1MrYkt5j+LzB344COQDR061H+Qp9VrfSPXLpapeAlzO4IrFjMErlgD3Zqi+TWE5tIJvk6LyFqYthGMI2k2o/GKeR0KFyzdPO8zlIIi++yzT7QlK/STexrcSPOngmUFeLQhVgRIkI7WMl0CZqx8ZHIcUe1BpSEzyYfupQjkIgJDW/WRo5oeZLWU/120XhoUr5UB7baTsZ0KI2oc//vTRrn862Kr2dyqhsjpLWrLJUZLGUu0eC7ipDwnhwD+9/hW4jaFxpLgT4Q2fC9JPwfxTo7dQYMG2RfBKa1NDmWUB2gH4yX8En8xmtgDDzwwcCrmecYtWLDAvhD0CNqBP5QkO+64ozWlX3jhhXYNPp9++um2j/ZE+ApkxtPRuHHjkNDJ+UeOHBkq4cqeCKYED5GKDE0ufPMiUwRpyCCXjixIKxwLH6kaoxrLVCFZCesUFBTYVD6FhYVx746zsF+iexaKJ29lpLH82uOVSuKXrXPETuW6upYiUBUQoBrOPv9bIyuLN8v/rhwgPWd/IqVPPy3V9j7G9/gmPkeu+7ZYrv+2RJzjzaR9tpLDTG5LJUUgCAFM2whx4ZHRaBWdUOSd64TLoPWC2jF9Q7Gap4kGZ/9wCtJwek304XMifXZ8McZvv/C5CN9+5Mzc9KH5Ddf+nn322X7TKr1N/zpU+iVInAFMBqjnExEs3333XXnjjTdCm3v9TBBYe/XqFZUxxuBD48i7Bv/HF9JF2kVdLIYBfMnQ0iopAopAfAjgvvbaz5vkAmPGJljn6B8/t0IlVM24vvjRIiOEYi4n2fk2JjjnAuNLeZIpx6haSj+0tM2LQCzCVC4glkykei6cL1086lM6XchmYF0Sr+IQ7XxE4tmSiPBEo8LdPgMGDBBemSK0o4kI0ZniT/dRBLIVgQmLNsipxvwNdaxfQ8av+/xPVj0Jl13jRys3Sa8P1lpfSui/JoXQQdvr4+JP0PR/ioAiEIRAyv9SYF4l+COInPk1kgmVufGOC9ovn9vRWJJUtaoQ/jiJCNG5hk8qvkPe71ek71qkvlzDTfn1RwC/yEuNfyTUrl51+Xh/U0738W/LBpu/IcaxrdzE3zaWyqmflwXoFBp/yqe7bqVCpT+02qoIKAI+CKRcsLzrrruEVzSKNbI31nHR9svHfpK44uhbVQin5aqQw1K/Q1Xljk7vOZcUl8rQz9fJk6bE4vrNJdJj2zXySJfWUq+myX1oUpNYuugiMdF/9r8rjYn8BlPn+yGj3VxphMuuDWrIHR3ryH5R0g+l9xS6uiKgCOQaAikTLAmXf+aZZ8zfqz/+YHmQQAPDw3LvvfeW3r17B2KEBs4RQRoEppBglBc1qf0CQYiK7tixY0ZT3gQeIMMdCJazZ8/O8K6Vtx05LF3ahsrjIn07R/oOsSt+sVNNYmQiLf2+C97vD+OxHLjEw9ddd51NUuyXgoNI+yuuuCJ9B9OVKwWBcXU7iyzaaPeuX/NZ+Wjlq7Ks5GZp83OByFdfiRg/aG+uw8HT1skry8uKLhy7Qy15Yu/4gwIr5aC6qSKgCGQVAikTLDnV0UcfbV/hxAMOwRKhMlpuxPC55EpEsOQ9k/kSw/nIxs/OxzIbeUsHTwiWmfTpTMcZoq0Z9B1iHt8BBMsbb7wxru8C3z8Ey27dusnw4cOjsaD9eYJArW2byG6mtOIpLWvJ4z8ulE9+FVlnNJcyrizdi5x7rpgbSaaZJOmnGf9LyjISmHOKqbpzYdvUZnPIE0j1GIqAIhADAikVLGPYT4ekEIGioqKI/qyRtnr99dcjRoV37tw5qhA32VRw+N///hfaJt1R4atXrxYqOigpAopAdASuWPGaXNO7ux14y5xl9r1loSnZZ/IJ2pfRUpN+qN/Ha22keBcjhH7aq55gKVdSBBQBRSBRBFSwTBS5LJiHmTMoF2U09tAe9+jRw3cYAR2kEYqmHUSovPjiiwMTlvuZa303jLFx48aNVSoZfIyw6DBFICoCv2xYZcc0q2MESvOdlb/+VaZKkRzx3horVEL/2qOOCpVRkdQBioAiEA0BFSyjIZTF/SQK37x5c0Icpip5OVVwMuWiUJUqDCV0UXWSIuCDwAcrZsuGLZukQ1ELKaxh/CsNPVCtmZz9/hrTLrLvNib90J51Tb8JAVdSBBQBRSBJBFSwTBLAyp7uzcxf2bykc38Cubym9nTupWsrAvmEwLsrvrTHOajh7vb9kR82yhnGp5JKOtQIn9xtK2lYW+3f+XTN9SyKQGUiUJZnojI50L2TQqBGjaqhZVi2bJlo6qmkbhWdXEUReOvnmfbk+2/XQW6dUyInTl8nRcaRcmSHOjKnb5EKlVX0vtBjKwLpQkA1lulCNkPr4mdZFbR5P/zwQ5VIjp6h20a3qUIINCloIA1qbSWbZS+5/I9E6TfvVkf+r7VGfleh20CPqghkDAHVWGYM6vRsVLduXfn555/Ts3gWrbp48WJp0aJFFnGkrCgCuYHAo3sNk0t3GiWDp5ZIHWPg+HenunJ6q1q5wbxyqQgoAjmHQEY1liR4JhdfPMQcpWAEtjVpQ+bPn5/3Qhc5LPv06RMMRBXqIRdlPBH3iWYOqEKQ5vVRN5RWlzHzCo1PZamMmPaM/N+AU/L6vHo4RUARqFwEMiJY8hCk6g7JnXn5EYEZfsEZVNZhbjwPUr/187WNaivfffedHHDAAfl6RHuu3377TUgIX5XJpYcKKpka9B0CM74/QemlqjKmVeHsI2YXy9KSUqmzoVhOu8P8sL9aBcuqcN31jIpAZSGQMcHyww8/TDjnYqpS41QWyOncF43llClT0rlFVqxdUlIiVSVQKQhwqvKQJD5RylRaqET503mpR+C6b4tl1NwS2W7Tenl5+ABpuJ0WGEg9yrqiIqAIeBHIiGDJhiocpufGoxINZmKlqoGACodV4zqn4pTfrdkij39jSjgaOm3ma9J1zjSRgQNTsbSuoQgoAopAIAIZEywDOdCOpBBAsCQVD/ksSZiej8TZiH5XUgQUgdgReHFtPTuYEo0nLStLOSSmVKuSIpAvCBCD0apVK2nTpk1WHenXX3+VMWPGWJ7OOOOMKpfRRKPCs+p2jJ8ZTOFLly4Vyh3mK2H+VU1dvl5dPVe6EFjT6WC79AENl0qHuV+UbaOCZbrg1nVjROCaa66xShBe48ePD8164IEHQu3Dhg2LaTUEywULFsQ01g1655134t4nrg3M4GeffVZ69eolnLVp06ZRpxOA6zD5y1/+4jvey/f06dPLjQG7k08+2XdeZTSqYFkZqKdwz6KiIitUrlmzJoWrZtdSS5YsienLmV1cKzeKQCUicMSZIk13NAwskM9WjpTVc74uY0YFy0q8KFV361dffVXQ4kEEmmKF4vX+++/btq+//lquu+46WbFihW1/+umnJVx4ioZeUGBw+Lz//e9/do9169YF7pNsNppvv/1WWrZsGb514Ge0m/PmzbN8HXzwwXLOOeeUG7ty5UpxfIPRvffea/t5NrLPjz/+GLh2ZXSoYFkZqKdwz4KCAmncuLGNms5XWrRokTRr1ixfj6fnUgRSj8CpI+2az3ZtJEv63StFK03QV7duIs2bp34vXVER8EHAq2G74YYbQlk9DjrooNxlFqcAABMwSURBVNDorbbayv6fqmoUwfjiiy9s+jz+37p1a59Vg5vCBcvu3buHtIBOG8hstIgQlj7vPgi/btwdd9wRvFGUHs596623yk477VTBPc2t797hEdq0aVPInD9gwAAZO3ZsuV2wTDq++b/LkoM2lOej64vCWsa6VbDMGNTp2YgblF8sv/zyS3o2yIJV+VWmydGz4EIoCzmFwK71qstR5sFTr2YdkQkTRB5/PKf4V2ZzFwGEQwTIuXPnyiuvvCJkhfGavd3JEIoghKW3337bztlxxx3tPNriIbR6PA+dKfnjjz8OaUadhpT1nMAbvg/8uXEvvviiYF5OhA488EA577zz7BlYD6EP0/75559fgR94hBwOsewH/9meIUWDd2K5klk+pm3btsKXKl+JqPdY/FTy9fx6LkUgbgQ2bZB+1bFiFJVN/etf415CJ2QvAj+s/0Ue/uFd2bBlUwUmqxvh6oDtdpPeDTtW6KNh6m9z5d1fvpS/NushrQsb+Y55bsmnMuP3+aE+1gpaz28BtIc33nij8Gx64oknrIn72muvDQ3FzH322WfL7bffbtsQwv7973/L1VdfLbvssosMGTJE/vWvf8mee+7pt7xv2++//24Ft5tuusk+D5955pkKJmKEPAQ/xq1fv16OPfZYK4gec8wxVqPKPHwV33zzTcvLaaed5rtXvI0nnniidOnSpYJmsbmxILDH1ltvHdOSn3/+ucXm008/jWl8ZQ1SwbKykE/hvnwRnf9KCpfNmqXwH8WXVEkRUARiROCvjWRr82CUA6+JcYIOyyUEnlz8gQyf/Wggy2ipVx/ur6E+cdqd8s2axVYovaKd/w+O02eMlV82lM+ZG49gyd9rSg2jXdtrr73KPZ8QKmlDmETwhN577z055JBDQoLc2rVr5fnnn49LsHSR4ZjVeR5GEwoph4wmEd9FtKPkSr7++uttW6yCXuAFCOtAqISCTNYNGzYMzcA/c7/99vNd+txzz41Lu+m7SAYac1KwnDlzpuyxxx5JwYM/xQknnGB/ScVD3Yyf0vHHH29V3bFQKniNts/OO++c10nS8T/BxJEJAku+vLFe31TxFM99lYl7KlXn0nUUAUUg9Qgcu0NPKxj6aSxNvLV033aXwE0n7HmuvP3LLGGNIBqz+2ny3Zo/8yPHI1Sy5r777ms1lZi2L7nkEmsGR5MIDRo0yP59ffjhh+1nNHAE9KApdEEoaAwnTpxo+2Ml/CUR3HCdGjp0qO80BE7S/3To0MH2v/baayE+EEgfe+wxK1SyhuPPd6EUN7Zr186aytGaur3Rnm633XYybdo0206UORpcJ5zy7k1rNGPGDNuXDemNck6wPOKII+yvnWQFyxTfF77LZYpXfCxff/11Xx5yvRGTRbb7k2QS40zdU5k8k+6lCCgC8SHQom7DQG1jtJW6GaGTVyQ6vnlyJYIRhB566KFyWkm3Hxo5P/rggw9CzUGavfB53nGY3qMRfE2aNMl3H3Ilx+PrGGkvl8OSMbGc5cwzTRYHH+L558iPN87j1o9lH58t0tKUc4JlWlDI8UWdGj/Hj+HLPn4wmCyUFAFFQBFQBHIHAa9QlAtcYwZXSg0CWRkVTrBG7969Q6H//fv3FxxzkcgnT55snYDR3EDepKr4GnqdWvHh8K7DnFicXjGHXnbZZVJYWGh5GBhQBo212NOlDmAvV16Rtnh4TeZy1qxZM28TpJMSIpnAHUzMXEuuB2aFRx99VLi+jjAzhJvZua6MDb/24ffTBRdcEFoH1wr2cvfbXXfdVe6Ssi/93Mvufon3vor3/k/mntK5OY7APk1kXIc5MvWtJ0W++SbHD6PsKwKKQC4hkJWC5ahRowRhyYX+kziUvFA8WMnxRLQW6QDIbn/ppZfa3FeMZcxhhx1mhVDoryYSEiGCPvI8YkL39ke6UJiW8XVYvHixfPnllzJ8+PAKwxEM8NN06yN4OL8M2uLhtcLicTZs2bIlzhm5MRy/mWQES07JteR6cL/EQkQ0zpo1y94zXHsnQIbfT/i0kJ/NEQIpjt/cM9xn4UQ//rnwksh9Fe/9H76/fq5CCPRvI0sK1smCqy4Uad+eRHlV6PB6VEVAEahMBLLSFI5j7ejRo2Xw4MGy++67S5BPxpNPPmnrhJJWgJejt956yzrnInDiPMwD2Uv0o42MRFdeeaV14uV18cUXy913323TJ3jJm+2eTPgke8V060eReCXVQbIUrnVLZj3KJ952221Rl4hlTNRFogxAA9yxo3/ajChTQ92u1BUO4mgOoxHX2yVkd9f+G6P1Cb+f0Go+9dRTwr0C4ZJw5JFHBi6PXzBpJyDWT/a+Svc9FXgQ7ch+BHYtywHY4xuThowKIBkKfst+YJRDRUARSDcCWSlYkiaArPUvvPCCNWPyQot50UUXlcODlAT169cv10ZEL3Ppg4L6nck6CGBv+D9CKOWfwonINnJtQdFqm0biNXzdRD7jeIwmLJUCZiJ8pHoODsuU/XIVGtz6derUEV5eQsPoJ+wiAMZD3vHu2vvdT/zoIVLPUbSEvt57ijnJ3lfpvqfiwUzHZhkChbWk4aoSabayWOQk88O1Ro0sY1DZUQQUgXxFICsFyz59+lh/NMoq8cJfDQEuXLBEA4R50WkkERYRKimTxHyCPvr27Ss9e5alVcCfbv/997f90Yi8Wmi4oClTphhrkjEneYi14AmTptNuUTkgiCLxGh7hjun2jTfe8F2qQYMGtr24uLicYEVlA8zh+RZBjcC+YcMGXywSbfRqldFEhhPX1mmR3bXnvgq/nzCRk64i1tREmM5x03A50pK9r+K5p8LPqJ/zH4EWv/xhPTHpXJQUAUVAEcgUAlkpWOI3eeihh1qzMhpHAnScCRGfSTSZ5H0icz8pDQiIIG/W46ZkGRok5kJoOkm6Sh4t/CXHjRsn/fr1s/0EW0QiTPHkT3Q5pT755JNyw/H7Q0OFhhTNFUXr4XfVqlWhcfHw6l2cAJAePXpEYq9CHzmw0ilUgiPCK1ji45opoiaqq4uaij2pukB+MNwsEBb9ynZxT7kSmfjMcu0RBv3up/D7IhqPmMq5voneV4neU9H40v78Q6Dlz0aw7Ny57JV/x9MTKQKKQJYikJXBOwgx+LM5M/YjjzwiI0eOtBDil0YJJh78aArxc+RBDf3zn/+0dUkdXXXVVTbzP4QgSJ/rR6hASAoitKRoqJhHUI7TKmKmR4hlb7SlCJUQ4//zn/9I69atQ0vGw6uXDwQp/BzjfQWdJdn25cuXWw0q7gBoh/mcK8T1ctcInrluJBjn+kNfffVVOUGZHwovv/yyrVcbfu3D76c5c+bYewFiPeZGIn6I3HLLLXZI+Nqx3leJ3lOR+NK+/ESg0e8lYv445ufh9FSKgCKQtQhUM355f2bgzFo2M8sYWiEEKCK+lcQKko0bNw5BsWzZMmnUyL/GrOLljwBBQ9xTCKNKikC6ESic9BcZe98XcsqNJt2QcQtSUgQUAUUgUwhkpcYyU4fXfRQBRUARyHYE5s+fH8p9+v3338fE7tnHvijHbm6jQmVMaOkgRSC/ELjzzjtD5TEr42QqWPqgjlZJtZU+wGhTwghwP6m2MmH4qvTE+++/X1asWGF9g3G5QNCMRqPMgFvVDB4Npqzrx6qRb5k9sg7kNDHEdeP6ZQMR9NqiRQubu/vCCy+0eb+98R/p5lEFy3QjrOsrAoqAIpAEAvha459LXeD99ttPyMOrpAgoAopANASmT59uc4ITl0IA6j/+8Y+MaDJVsIx2ZbRfEVAEFIEsQYDgMwTMaETmBkrfuvKh+l4tJ7DgmkF6vXLjenmvE9ctW75zQX8fsH6gySSgddKkSUHDkm7PynRDSZ9KF1AEFAFFIA8RoNLTmWeeGfVkmOSyxSwXlVkdoAgoAilFIMidgow7I0aMCOX2TummnsVUsEwXsrquIqAIKAIpQIAsDATtkFwfUzi5WJUUAUVAEYgVgaOOOsoWmHHFYmKdl+g4FSwTRU7nKQKKgCKQAQRIzH/ffffZnT744IMM7KhbKAKKQC4jQNVAqgWS45tXkyZNMnoczWOZUbhzczPNY5mb1025VgQUAUVAEVAEMo2ABu9kGnHdTxFQBBQBRUARUAQUgTxFQAXLPL2weixFQBFQBBQBRUARUAQyjYAKlplGXPdTBBQBRUARUAQUAUUgTxFQwTJPL2yqjkW2/rVr15Zbjs+ZzOKfqrPoOoqAIqAIKAKKgCKQXgRUsEwvvjm9usvWv+OOO5Y7B5/J4k+/kiKgCCgCioAioAgoAg4BjQrXe8EXgS1btkhhYaGUlJT49tNYvXp12bhxo31XUgQUgexAYOTIkfZ7+/PPP8upp54qXbp0yQ7GlAuLwF133WXrvkMFBQVy+eWXh5BZsmSJnH/++dKhQwd7/Y444gjZZZddpFevXjJ06FA7bsiQIdKmTZvQHP1P5hEYP368fPrpp9K0aVOhbOJDDz1UriLWE088IY899pi0bdvWllSsaqR5LKvaFY/xvAiL/fr1k+effz5wBn/0VKgMhEc7FIFKQWDp0qUyZswY+8A777zzNPdlpVyF4E0RGK+//no74OSTTy438JVXXrGVlUiCP3/+fME6NG/ePGnZsqVWUgqGNKM9/CjgB1tpaandd9iwYVbI5Hnp6LjjjpM1a9bIV199lVHesmUzVTVly5XIQj5OOumkiFxF6484WTsVAUUg5QhQocfVEkeb8uGHH6Z8D10wOQS8/umNGze2VZUcLVq0yAqRkEtqjQDTt29fK1jyN5cfDEqVh4CrgOU4oJrNTz/9VCkMFRcX25rf3Bv33nuvrF+/3pcPNKrwPXbsWLn55pvlvffes1YN5t5www0V7qkJEyYI2vM777xTbrvtNpk5c6aNtZg4caLceOON5e5Zvw1VsPRDRdssAvwxw5fSj2jv06ePX5e2KQKKQBYgwEOHEpBK2YsA1whzqR85IQGtJYIDrwsuuMBqoZWyB4Fff/1VmjVrVikMIShSlYvqXPvvv7/ceuutvnzccsst0qpVKzn66KMtr7hWHHrooVYjjuVxr732ki+//DI0l/ts3333lRNPPNEG6nbq1En+9re/2Xm077TTTrJ48WLfvWhUwTIQGu2oX79+oPCIUBkkdCpyioAiUDkIIKTwoIPce+VworsGIcDfVUdokbyEthKtJRTeF7SetmcWAZ57XktAZZq7v/32WytU1qlTR3bbbTe5+uqrfcHALP/ZZ59ZoRKtN367u+++u+y9995WaERz7hUsN2/eLDNmzJDttttO/vnPf9o1u3fvbn17u3XrZj/PnTvXdy8a1ccyEBrtAIETTjhBnnnmmQpg0K6kCCgC2YdA3bp1rXYLU9bDDz+cfQxWcY4QArg+kAuswtcSM2P//v2tZghrEb6Y06ZNk6lTp8rkyZPteL2mlX/zbLvtttY8fMYZZ1iBjh8AaPLwtUQLiK/lAw88IC+88IK9ho8//rgMGjQoLYz36NHD8oGwOHDgQCssBlG7du1CXQ0bNrRCoyM0kF5zPmfkBbkfQjvssIP9XK9ePfuOL3cQaVR4EDLabhFADc6vaO+vZ36xLVy4UDWWeo8oAoqAIqAIKAKViAA/NohSJyAMP8vwgDBY82rC+YxfqPPb9fscPr5atWry4IMPhjIThH8OP76awsMR0c/lEPAzh6sZXG8SRUARUAQUAUWg8hEgSG/48OHW1/K0006rfIYMBypYZsVlyG4mULF7KfxzdnOv3CkCioAioAgoAvmHACb53377zR4Ml4kLL7wwKw5Zw/h6XJMVnCgTWYtAo0aNZNSoUSH+7rnnnpCfRdYyrYwpAoqAIqAIKAJ5jABBN48++qi88cYb0rlzZ5s1ADN1ONWoUcNGczviM/69RIpDfO7atau0aNEi9Nk7vmbNmtaP1KXA4jOWS2QDP1IfSz9UtK0CAq+++qr9RYT/BknRx40bV2EMDYMHD7apCJQUAUVAEVAEFAFFoOohoIJl1bvmSZ+YSEXSFBAF502dwcIqWCYNry6gCCgCioAioAjkLAKabihnL13lM45g6VTnlc+NcqAIKAKKgCKgCCgClY2ABu9U9hXQ/RUBRUARUAQUAUVAEcgTBFRjmScXsjKOMXr06HKm8N69ewsvJUVAEVAEFAFFQBGomgioxrJqXnc9tSKgCCgCioAioAgoAilHQDWWKYe06iyoPpZV51rrSRUBRUARUAQUgVgQUI1lLCjpGEVAEVAEFAFFQBFQBBSBqAioYBkVIh2gCCgCioAioAgoAoqAIhALAipYxoKSjlEEFAFFQBFQBBQBRUARiIqAJkiPCpEOUAQUAUVAEVAEFAFFQBGIBQHVWMaCko5RBBQBRUARUAQUAUVAEYiKgAqWUSHSAYqAIqAIKAKKgCKgCCgCsSCggmUsKOkYRUARUAQUAUVAEVAEFIGoCKhgGRUiHaAIKAKKgCKgCCgCioAiEAsCKljGgpKOUQQUAUVAEVAEFAFFQBGIioAKllEh0gGKgCKgCCgCioAioAgoArEgoIJlLCjpGEVAEVAEFAFFQBFQBBSBqAj8P30jBqg26UHOAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "hide_input": true, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Observation\n", + "Let us try to utilize the depicted idealization for the derivation of a model that can help us simulate the test results of the RILEM pull-out test\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A look inside the specimen using the model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c32fb7fc3ac14ebc95759d142db08537", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(HBox(children=(VBox(children=(Tree(layout=Layout(align_items='stretch', border='solid 1px black…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwUklEQVR4nO3deZzcdX3H8debHBAiV0i0QAgbTZAjKMcaoFhBuQJFAlo1SOW0EQhUFFuIKFgRxSIoyCERKWKDgSJIigIGBClHDAmkCacEwrGEkhBAAgkJ2Xz6x/e3ZLLsMbs7x29m3s/HYx4z87vmO7vzm8/8vtdHEYGZmVnerFftApiZmXXEAcrMzHLJAcrMzHLJAcrMzHLJAcrMzHKpf7ULUA1Dhw6NpqamahfDymDOnDmvRMSwapcj73wO1Ld6OQ8aMkA1NTUxe/bsahfDykDSc9UuQzVI2gC4B1ifdF7fEBFnd7a9z4H6Vi/nQUMGKLM6tBL4VES8KWkAcK+kWyNiZrULZtZbboOqA4041nrpUnjxxWqXIj8ieTN7OiC7NeAnw+qJA1QNW7UKvv99+MxnGiNIrVkDd9wBEybAllvCv/1btUuUL5L6SZoLLAZmRMSfq1wksz5xgKph660H112X7lesqHZpyuf//g9+8AMYPRr23x/+8Af4ylfglFOqXbJ8iYjWiNgZGA6MlTSmcL2kiZJmS5q9ZMmSqpTRrCccoGrMiy/CP/0TvP469O8P//M/8JvfwIYbVrtkpbVmDdx+O3z2s7D11vDNb8KIETB1KixaBBdfDDvtVO1S5lNEvA7cDYxrt3xKRDRHRPOwYTXfwcsagANUjWhthZ/+FLbfHv7zP2Fm1vS98cbVLVepLV4M550Ho0bBuHFwzz1w6qnw5JNw113wxS/CBhtUu5T5I2mYpE2zx4OA/YAnqloosz5yL74aMH8+fPnLMGsWHHAAXHYZfOhD1S5V6UTAvffC5ZfDDTfAO+/A3nvDueem9rX11692CWvCFsAvJfUj/fC8PiJuqXKZzPrEAaoGnHkmLFyYqreOOAKkapeoNJYtS1eDl10GjzwCm2wCJ52U2pe2377apastETEP2KXa5TArJQeonJo9G4YNg222gSuugAEDYOjQapeqNJ58Ei69FK6+OgWpXXaBK69MvfMGD6526cwsL9wGlTOrVsG3vw177JGunAC22KL2g9OaNXDLLamKcrvtUtA99FB44AGYMweOP97ByczW5SuoHHn0UfjHf4S5c+Hoo+EnP6l2ifrujTfgP/4jdfB4+uk0fumcc2DiRHj/+6tdOjPLMweonPjDH9IVxcYbw29/C+PHV7tEffP00ykoXXVVqsbbc8+1nR4GDKh26cysFjhA5cTuu6erpnPOqd0ri7beeD/+cQqy/frBF74AX/0qfOxj1S6dmdUat0FV0R13wEEHwdtvpx5sV1xRm8Fp9eo0o8Xuu8MnPgF/+hNMngzPPZd66Tk4mVlvOEBVQWsrnH126jDw3HPw8svVLlHvvPlmmtFh9OjUA+/111OX8RdeSNV5W25Z7RKaWS1zFV+FLVmSxjLdeScccwxccknt9V5bvDiV+5JL4LXXYK+9UoeOT386zQtoZlYKDlAVdtRRqZ3mF7+A446rdml65tln4Uc/SmVfuTJ15PjXf00dIMzMSs0BqkJaW1OngYsvTr3adt212iUq3mOPpfnxrr02XSF96UspMH34w9UumZnVMweoMmtthdNPT7OQX3ttaq+pFQ8/nNqS2mZLP+UUOO00GD682iUzs0bgFoMyevNNOPxwuOAC2HzzNJtCLZg1Cw45JF3l3XEHfOtbqTPHj3/s4GRmleMrqDJ56aX0JT93bupMMGlStUvUvZkzU5ba226DIUPge9+Dk09OXeDNzCrNAaoM1qyBgw+Gp56C//7v9DjPZs1K3d5vuy1d6Z13XppVfKONql0yM2tkDlBlsN56cNFFqd2mubnapenc3Llw1lkpiLYFpkmT4H3vq3bJzMwcoErqnnvSl/4//3OaUSGvnngiBab/+i/YdNPUEeKUU3zFZGb5krtOEpKukrRY0iMFy4ZImiHpqex+s4J1kyUtkPSkpAOrU2r44x9TivKf/QxWrKhWKbr2/PMprcWOO8Ktt6a0HgsXwje/6eBkZvmTuwAFXA2Ma7fsDODOiBgN3Jk9R9IOwARgx2yfy7KU1xV1553w93+f0rDffTcMGlTpEnTt1VfhG9+AbbdNc+N99avwzDPw3e+mKygzszzKXYCKiHuAV9stHg/8Mnv8S+CwguXTImJlRCwEFgBjK1HONv/zP2mKn9Gj01VUniZ7XbEC/v3f4YMfhAsvTFMsPfVUejxsWLVLZ2bWtdwFqE58ICJeAsju28LAVsALBdu1ZMsq5tFHoakpjRfKy5f+mjVpUPB226VBwnvtBf/7vylx4IgR1S6dmVlxaiVAdUYdLIsON5QmSpotafaSJUv6/MJtg25POAEeeig/V07335/mxjvyyNQz749/hN/9Dnbaqdols3KStLWkuyQ9LulRSV+tdpnM+qpWAtTLkrYAyO4XZ8tbgK0LthsOLOroABExJSKaI6J5WB8vdRYvht12S21PABts0KfDlcTzz6cqvL32gpYWuPpqmD0bPvnJapfMupJ1AOrutmkRh1oNnBYR2wN7AJOyNlqzmlUr3cynA0cD52X3Nxcsv1bShcCWwGhgVjkLsnJlmr7oiSfykSbj7bfh/PPhBz9IGW3POitN5JqHsllRFmW3jmoD2vQDuqyczaq+26rBl0l6nFTd/ViJymlWcSULUJKGFLHZmoh4vZvj/BrYBxgqqQU4mxSYrpd0PPA88DmAiHhU0vWkk3A1MCkiWnv9JroRkar07r8frr8e9tijXK9UnP/+79Qjb+FC+NznUqDaZpvqlsl67PGI2KWrDSQ93JMDSmoCdgH+3G75RGAiwAg3RloNKOUVVKl+CR7Ryap9O9n+XODcYgrYV5dfnqrOzjorBYRqWbgwDQa+5RbYYYdU1fipT1WvPNYnxWTTKjrjlqT3Ab8BTo2INwrXRcQUYApAc3Nzh221ZnlSygBV8l+CeTNnTppX7+yzq/P6q1almdG/+92UW+r889MV1IAB1SmP9V1EvA0gqRk4E9iGdF4qrY6PtG3THUkDSMFpakTcWKYim1VMKQNUSX8J5tGVV6Y2qGqkNb//fpg4MXVrP/zwNNff1lt3v5/VjKnAvwDzgR4nZpEk4BekH4oXlrhsZlVRsq/aYn7lFftLMG++//0UGKTK99hbtiylvPj4x+GNN2D6dLjxRgenOrQkIqZHxMKIeK7t1oP99wK+BHxK0tzslvN59M26VspOEmd1sToi4pxSvVYl/e53cOaZaVaGcyr8Dm6/PV01vfBCClLnnus58+rY2ZKuJE3ltbJtYbFVdRFxL123/5rVnFJW8b3VwbINgS8DmwM1F6CWLUu99nbcMWWVrZQ33oCvfx1+8Ys0G8S998Lf/m3lXt+q4lhgO2AAa6v4AnBbkjWskgWoiLig7bGkjYCvAscB04ALOtsvz77zHXjxxZSWYv31K/Oaf/wjHHNMet3TT09lyMNAYCu7j0aE5/swK1DS5v5s1Pv3gHmk4LdrRJweEYu72TV3nnwSLr44paeoxHint9+Gr30N9t03zYZ+//0pgaCDU8OY6ZkfzNZVyjao84HPkMZZ7BQRb5bq2NWw1VZpvNNXvlL+13rkkTRN0SOPpLamH/4wZeO1hvJx4GhJC0ltUO92M69uscyqp5RtUKeRTqxvAWemXq/A2hNt4xK+Vtm9730poV85RaTBv1//esrLdOutKemhNST/583aKWUb1HqQBhxGxOzCdZIOLdXrVMLXvgb77APjx5fvNV5/PVUf3ngjHHRQmqEiLzOiW+X1sEu5WUMox5DTKyS929graQJphHxNeOQR+MlPYP788r3GnDmw665pTNP556cpixycGpukZkk3SXpI0jxJ8yXNq3a5zKqpHLOZfw64QdKRpHr1o4ADyvA6ZXHRRamTwkknlef4V14JkyalgHTPPSl3kxl9nEnCrB6VPEBFxDPZVdNvSdluD4iIFaV+nXJ4442UifaLX4QhxczN3gMrV8Ipp8DPfw77759eZ+jQ0r6G1bQlETG92oUwy5NS9uKbz7rZbIeQZi//syRqoTfSDTfA8uXw5S+X9rgvvwyf/Szcdx+ccQZ873tpslezAn2aScKsHpXyCuqQEh6rKoYMgS98AXbfvXTHnDcPPv1pWLIEpk1Lxy+ld955h5aWFt5+uyanOey1DTbYgOHDhzOgfqZy90wSZu2UshdfzfdCOuywdCuVW2+Fz38eNt44TVe0666lO3ablpYWNtpoI5qamijo2l/XIoKlS5fS0tLCyJEjq12cUvFMEmbtlKwXn6SHSrFNtSxalLp+l8qVV6Yrp1GjYNas8gQngLfffpvNN9+8YYITgCQ233zzertq9EwSZu2Usopv+266xQrYpISvV1Lnnps6LrzySt/ahyJSG9NZZ6VBt9dfX/4ZyBspOLWpw/fsmSTM2illgNquiG1aS/h6JfXAA9Dc3LfgtGZNmhXioovgqKPSVVT9NJFYmXkmCbN23AZF6gI+fz78y7/0/hitrSl301VXpZkofvSj6mTetdpUy+ePWbn4KxRYsABWr4YxY3q3f2srHHtsCk5nnQUXXODgZMWp9bZbs3Kqqa9RSc9mU8DMlTQ7WzZE0gxJT2X3m/X0uE8/ne5Hjep5mVpb4bjj4Fe/Sm1P//ZvKTW8rWvFihXsvffetLamWt7bbruND3/4w4waNYrzzjsPgFWrVvGJT3yC1atXV7OolbZ9NrVRZ7f5gId0W0Mq5UDdo0mJCdcDbgEmRcSyUh2/wCcj4pWC52cAd0bEeZLOyJ6f3pMD7rxzyl774Q/3rCARcOKJcM018N3vptTw1rGrrrqKz3zmM/Tr14/W1lYmTZrEjBkzGD58OB/72Mc49NBD2WGHHdh333257rrrOPLII6td5Eqp6bZbs3IqZSeJbwP7Ay8CpwDfz+7LbTywT/b4l8Dd9DBAjRiRroJ6avLkNHXR5MnlT81RjFNPhblzS3vMnXdOk+d2ZeHChRxzzDH86U9/4qGHHmK33XbjlVdeYdNNN+WjH/0os2bNYurUqVx77bUAzJo1i1GjRvHBD34QgAkTJnDzzTezww47cNhhhzF58uSGCVClanuSdBVpsPziiOhlZbVZvpSyiu+NiHg4IhZHxLeBsSU8dpsA/iBpjqSJ2bIPRMRLANl9h/OCS5ooabak2UuWLFln3dNPp2mIeuKii1JiwRNOSF3UG9mmm27KsmXpYvmnP/0pe+yxB6+99hq/+93v2H///enfvz/PPPMMTU1NALz44otsvfXW7+4/fPhwXnzxRQDGjBnDgw8+WPH3UAeuxj0Brc6U8gpqiyxoPA48QZqypdT2iohFkt4PzJD0RLE7RsQUUrZfmpubC+cM5NJL05XQsiIrJH/729RT7/DD4ZJL8tPm1N2VTrlssskmLF++nKVLl/LSSy+x11578dprrzFlyhQuvPDCd6+m2kTEe47RNq6pX79+DBw4kGXLlrFRuQeQ1ZGIuEdSU7XLYVZKpQxQZwMfAY4EdgLeJ+n3wP8C8yLi1319gYhYlN0vlnQT6SrtZUlbRMRLkrYAFvfm2MUGmYcfhiOPhLFjYepUT/oKsF7WZfHnP/85xx9/PI899hjz5s2jtbWVbbfdltdee22dWR+GDx/OCy+88O7zlpYWttxyy3efr1y5kg022KBybyAHJD0IzCOl25gHzI+IJV3v1ePXmAhMBBgxYkQpD21WFiWr4ouIKRFxckTsHRFDgA8ClwCvAwf39fiSBkvaqO0xKcfUI8B04Ohss6OBm/v6Wp155ZU0V9+QIekqatCgcr1S7VlvvfWYPn06hx9+OBtvvDE/+tGPOOGEEwDYbLPNaG1tfTdIfexjH+Opp55i4cKFrFq1imnTpnHooSnp8tKlSxk2bFg9TQJbrPHAfwEDgROAZyWVdGxUdo42R0TzsGHDSnlos7IoR8JCACKiBWgBfl+iQ34AuCmrCuoPXBsRt2W/PK+XdDzwPClhYsm1tsIRR6TUGffeC3/zN+V4ldo1cOBADjroIPr378/GG2/MW2+9xSGHrJ3g/oADDuDee+9lv/32o3///lxyySUceOCBtLa2ctxxx7HjjjsCcNddd3HwwX3+PVNzstqBRcBtAJK2B/6hqoUyq7KyBahSi4hngI92sHwpsG+5X//734c77khtVc3N5X612jO3oPvg8ccfz/HHH7/O+pNPPpkLL7yQ/fbbD4CDDz64w0B07bXX8oMf/KCsZc0jSSMi4vm25xHxuKQdq1kms2qrmQBVTsceC5/6VOfr778fvvOd1PbU7nvXirTLLrvwyU9+ktbWVvp10nC3atUqDjvsMD7c0wFp9eE6SVsDC0ntUG9T3BgpACT9mjTcYqikFuDsiPhFOQpqVikOUMBOO6VbR956C770pTRW6rLL8tNjrxYd181gs4EDB3LUUUdVqDT5EhF7AkgaRepkNAS4sAf7H1GmoplVjQMU8Nhj0NICBxzw3nVnngnPPAN3350SD5qVU0QsABZUuxxmeVBTc/GVy5VXwj900Bw9ezZcfDGcdBLsvXfly2Vm1sgcoDqxZk0KTB/4QOogYWZmleUqvk5cey08+GCaCHaT3OYBNjOrX76C6sDbb6e2p113TT33zMys8nwF1YH/+A94/vnUNuXEg2Zm1eGvX9KM5NOnp8fvvJNmKd9zT8jGlFoJtE9YeMUVVzBp0qQu92nQBIZmlnGAArbdFvbZJz2+4QZ47jn45jc95qmUChMWAsybN4+dOht8lhk4cOC7CQzNrPE4QJFmKP/Nb9Ljn/0MPvhBaMDp4Hpt4cKF7J31w3/ooYeQxNKlS2ltbWXMmDEsX76cqVOnMn78+Hf3mT9/frcBCuCwww5j6tSpZSu7meWX26CAX/0qtTdtvz3cc0+q4qvVtqe2K8FCn/986jK/fHnHgfeYY9LtlVfeOx7s7ru7f83OEhbed999HSYsBHjkkUcYM6b7xK9OYGjWuGr0a7g8pk1LgemYY6pdktrSVcLCE0888T0JC1944QU22mgjNinov3/11Vdzyy23vOfYhQkMzayx+AqqwG9/C3/3d/D+DpPG14aurng23LDr9UOHFnfF1F5PExZ21v7061//mrvuuov3v//9nH766e8ub8QEhmbmK6h3RcD8+SkhofVcTxIWdtb+dMABB3DBBRfw4IMPsmbNGqChExiaNTwHqExbT+Yssav1ULEJCyEFqClTptDU1ERTUxN77rknAFkySiS9+7hRExiamav4ADj11DSb+e23w8iR1S5NbepJwsKOeuVdffXV3HbbbcydO5fm5uZ3A1SjJjA0MwcoIOV6Wr48BSePfSqP7hIWHnPMMRzTrndKgycwNGt4ruIDZs5MY6F89VRexx13XKfZdDvSyAkMzcwBCoDrroNFixygzMzyxAEKWLEi3TtAmZnlR10EKEnjJD0paYGkM3qy70knwRVXpMennpqe15qIqHYRKq4R33NX+nIOmOVVzQcoSf2AS4GDgB2AIyTtUMy+J50El1++9vmaNel5LQWpDTbYgKVLlzbUF3ZEsHTpUg/ezfTlHDDLs3roxTcWWBARzwBImgaMBx7rbscpUzpfftllJSxhGQ0fPpyWlhaWLFlS7aJU1AYbbMDw4cOrXYy86PU5UOiLe+3Fo08/XYbiWbns+KEPce1991W7GGVTDwFqK+CFguctwO7tN5I0EZgIMGLECACy1ETv0dnyPBowYAAj3XjW6Hp9DrS3+p13ylA8K5dlr79e7SKUVT0EqI5GLr2nvisipgBTAJqbmwOgX7+Og1EPekKb5UGvz4FC9fxL3GpTzbdBkX4tbl3wfDiwqJgdJ07s2XKznOr1OWCWZ/UQoB4ERksaKWkgMAGYXsyOl10GJ5649oqpX7/0vFban8wyvT4HzPJM9dD7S9LBwE+AfsBVEXFuN9svAZ5rt3go8EpZClg/auFvtE1EDKt2ISqtROdAHtXCZ66aOvv71MV5UBcBqhQkzY6I5mqXI8/8N7JK82eua/X+96mHKj4zM6tDDlBmZpZLDlBrdTJs1wr4b2SV5s9c1+r67+M2KDMzyyVfQZmZWS45QJmZWS45QOFUBV2RtLWkuyQ9LulRSV+tdpms/kg6X9ITkuZJuknSpgXrJmfn5pOSDixYvpuk+dm6iyV1NOVT3WqE762GD1BOVdCt1cBpEbE9sAcwyX8fK4MZwJiI+AjwF2AyQPZZmwDsCIwDLsvOWYDLSZPfjs5u4ypd6GpplO+thg9QFKQqiIhVQFuqAgMi4qWIeCh7vAx4nDR7tlnJRMQfImJ19nQmaT5BSOfitIhYGRELgQXAWElbABtHxAORenpdAxxW6XJXUUN8bzlAdZyqwF/AHZDUBOwC/LnKRbH6dhxwa/a4s/Nzq+xx++WNoiG+t+oh3UZfFZWqoNFJeh/wG+DUiHij2uWx2iPpDuBvOlh1ZkTcnG1zJqlaeWrbbh1sH10sbxQN8f4doJyqoFuSBpCC09SIuLHa5bHaFBH7dbVe0tHAIcC+sXaAZmfnZwtrqwELlzeKhvjechWfUxV0KesZ9Qvg8Yi4sNrlsfokaRxwOnBoRCwvWDUdmCBpfUkjSZ0hZkXES8AySXtkn9GjgJsrXvDqaYjvrYa/goqI1ZJOBm5nbaqCR6tcrDzZC/gSMF/S3GzZNyPi99UrktWhS4D1gRlZb/GZEXFCRDwq6XrgMVLV36SIaMuDfSJwNTCI1GZ163uOWqca5XvLUx2ZmVkuuYrPzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQGqDkhqkrSiYCBtKY89SNJcSaskDS318c36yp//+uUAVT+ejoidS33QiFiRHbfu5vmyuuLPfx1ygMqpbI6tP2WPd5UUkjaX1E/SI5I27GLfpiw76ZXZtlMl7SfpPklPSRrbk+3MqinL6Lx/9vh7ki7uZnt//uuEA1R+vQ5slD0+hZTEbTPg74EZ7SbU7Mgo4CLgI8B2wBeBjwPfAL7Zi+3MquVs4ExJR5LykX2tiH38+a8DDT9ZbI79FdhQ0ubAFsB9pAA1Efh6EfsvjIj5AJIeBe6MiJA0H2jqxXZmVRER92Qzln8d2Kdgstiu+PNfB3wFlVMRsSZ7+E+kdBfLSL/y+kXEX4o4xMqCx2sKnq9h3R8mxW5nVhWSdiL9SFsZEcuK3M2f/zrgAJVva4BDgZuAN0jVDj+raonMKkjSFqTsuuOBtyQdWOUiWQU5QOXbKuDWiFhNClCDgVuqWySzysg6At0InBYRjwPnAN+paqGsopwPqg5IagJuiYgxZXyNZ4HmiHilXK9h1hv+/NcvX0HVh1Zgk3IOVAQGkKoczfLGn/865SsoMzPLJV9BmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjVkQq6hQ4dGU1NTtYthZTBnzpxXImJYtcuRd+utt14MGjSo2sWwMlm+fHlERM1fgDRkgGpqamL27NnVLoaVgaTnql2GWjBo0CDeeuutahfDykTSimqXoRRqPsKamVl9coAyM7NccoAyM7NccoAyM7NccoAyM2swkq6StFjSIwXLviPpRUlzs9vBBesmS1og6UlJB1aqnA5QZmaN52pgXAfLfxwRO2e33wNI2gGYAOyY7XOZpH6VKKQDlJlZg4mIe4BXi9x8PDAtIlZGxEJgATC2bIUr4ABlZmZtTpY0L6sC3CxbthXwQsE2LdmysnOAMjOrP/0lzS64TSxin8uBDwE7Ay8BF2TL1cG2UZpidq2iAUrSuKyRbYGkMzpYL0kXZ+vnSdq1mH0lnZKte1TSv1fivZiZ5djqiGguuE3pboeIeDkiWiNiDfBz1lbjtQBbF2w6HFhU+iK/V8UCVNaodilwELADcETW+FboIGB0dptIiuhd7ivpk6Q60o9ExI7Aj8r/bszM6oukLQqeHg609fCbDkyQtL6kkaTv51mVKFMl5+IbCyyIiGcAJE0jBZbHCrYZD1wTEQHMlLRp9kdr6mLfE4HzImIlQEQsrtD7MTOrSZJ+DewDDJXUApwN7CNpZ1L13bPAVwAi4lFJ15O+b1cDkyKitRLlrGSA6qihbfcittmqm323Bf5O0rnA28A3IuLB9i+e1cFOBBgxYkTv34WZWY2LiCM6WPyLLrY/Fzi3fCXqWCXboIppaOtsm6727Q9sBuwB/AtwvaT3bB8RU9rqY4cNczYGM7O8q+QVVDENbZ1tM7CLfVuAG7NqwVmS1gBDgSWlK7qZmVVaJa+gHgRGSxopaSBpZPL0dttMB47KevPtAfw1Il7qZt/fAp8CkLQtKZi9UvZ3Y2ZmZVWxK6iIWC3pZOB2oB9wVdb4dkK2/mfA74GDSSOVlwPHdrVvduirgKuyOaVWAUdnV1NmZlbD1Ijf5c3NzeGMuvVJ0pyIaK52OfJu8ODB4Yy69UvS8ogYXO1y9JVnkjAzs1xygDIzs1xygDIzs1xygDIzs1xygDIzs1yq5EBdMzOrc5KGFLHZmoh4vbuNfAVlVgJZgrfF2Xi8tmVDJM2Q9FR2v1nBuslZ6pgnJR1YsHw3SfOzdRe3TduVzSR9Xbb8z5KaCvY5OnuNpyQdXaG3bNaZRcBsYE4Xt3nFHMgByqw0rgbGtVt2BnBnRIwG7syek6WKmQDsmO1zWZZSBlKKmYmsTTvTdszjgdciYhTwY+CH2bGGkGai3p2UMeDswkBoVgWPR8QHI2JkZzdgaTEHcoAyK4GIuAd4td3i8cAvs8e/BA4rWD4tIlZGxELSzCljs9QyG0fEA9lsKNe026ftWDcA+2ZXVwcCMyLi1Yh4DZjBewOlWSXtWaJtHKDMyugD2VySZPfvz5Z3lVampYPl6+wTEauBvwKbd3Gs95A0sS0F+OrVq/vwtsw6FxFvl2IbcCcJs2roTVqZ3uyz7sKU9nsKpKmOui+mWe9JagbOBLYhxRoBEREfKfYY3QaoUvbIMGswL0vaIiJeyqrv2rI9d5ZWpiV73H554T4tkvoDm5CqFFtImVEL97m7tG/DrFemknL0zQfW9OYAxVxBLcpuHf1Sa9MPcJpas3VNB44Gzsvuby5Yfq2kC4EtSZ0hZkVEq6RlWaqZPwNHAT9td6wHgH8A/hgRIel24PsFHSMOACaX/62ZdWtJRLRPqdQjxQSoxyNil642kPRwXwphVusk/Zp0JTNUUgupZ915pAzPxwPPA58DyNLMXA88BqwGJkVEa3aoE0k9AgcBt2Y3SOm4fyVpAenKaUJ2rFclnUPKmQbw3Yho31nDbB2SrgIOARZHxJhs2RDgOqAJeBb4fNbxBkmTST1JW4F/jojbi3iZsyVdSerBurJtYUTcWHQ5u0u3IWmD7hq0itkmT5xuo3453UZxnG6jvnWXbkPSJ4A3gWsKAtS/A69GxHmSzgA2i4jTs2ERvyYNY9gSuAPYtuBHVWev8Z/AdsCjrK3ii4g4rtj30e0VVFvg6arBq5aCk1kht7FaI4qIewoHe2fGs7Y985ektszTKRgWASzMruLHkqqbu/LRiNipL+XsSS++Pjd4SRoHXERqs7oyIs5rt17Z+oNJGXWPiYiHitz3G8D5wLCIcMp3K5bbWK0e9ZdUWE00JevF2ZV1hkVIKhwWMbNgu06HMrQzU9IOEfFY0aVupycBqk8NXtlI+UuB/Ulv8EFJ09sV/iDWjqDfnTSqfvfu9pW0dbbu+d6WzxqW21itHq0uYVV30UMZ2vk4cIykZ0htUKXvZl6grw1eY4EFEfEMgKRppEvHwgA1nlQnGqTou2nWPbepm31/DPwra3tJmRWrZKPezWpcT4dFdKejGU16NP6uJwHqWFKD1wAKGryAYgNURyPedy9im606Wb47gKRDgRcj4n+zeTU7JGkiaY4zRoxwbY0lpRz1blbjejQsoojjDWPdfgttynIF1dcGr2IuE3s0Wl7ShqQ/wAHdvXjhKPrm5maPojcAJJ3VxeqIiHMqVhizCinhsIiuVGSgbpu+NngVc5nY2TYDO1n+IWAk0Hb1NBx4SNLYiPi/XpbTGktHfa03BL5MmuvOAcrqTkQc0cmqfTvZ/lzg3B6+TEUG6rb5OHC0pIX0rsHrQWC0pJHAi6SBhl9st8104OSsjWl34K9ZfeiSjvaNiEdZOwEnkp4Fmt2Lz4oVERe0PZa0EfBV4DhgGnBBZ/uZWbf6PFC3JwGqT1P4R8RqSScDt5O67V6VXTqekK3/GfB7UhfzBaRu5sd2tW9fymPWJhsL9XXgSNL4j13bRtCbWa/1td9C9zNJ1CPPJFG/ejqThKTzgc+Q2icvjYg3y1a4HPFMEvWtu5kkKlSG+X0dqFt0PihJzZJukvSQpHlZWuqi0vaa5dhppJ5J3wIWSXojuy2T9EaVy2ZWy2Zm0yT1WkVnkjDLm4hw0k6z8uhrv4XKzSRhZmYNpU/9FqCyM0mY5Y6khyJi175uY2aJpD2BmRHxXF+PVcmZJMzyaPtu2lJFyl5rZsU5GrhU0l+A24DbejsutZIzSZjl0XZFbFPMqHkzAyLiBABJ25EmAL9a0ibAXaSAdV+RM1FUdCYJs9wpRTWEmb1XRDwBPAH8WNIg4JOk6ZMuBIoaClLJmSTMzKzOdTO/5ZKejFOs2EwSZnkkaUREOI+YWel0NAJ8MHA8aX7L7xZ7oKIDlKtCrE7dlmUOfZw0xm9edj8/IjxQ16yHOpnf8lh6Mb9ltwHK3XCtnkXEDpIGAjsCO5Fy1RwGfETSyogYWc3ymdWiUs1vWcwVlLvhWl2LiFXAw5IWACuAoaSkbPNLcfxslv1lpN6AqyOiOTuBryNli34W+HzbCSxpMqk6pBX454i4PVu+G3A1MIg0sfJXIyIkrQ9cA+wGLAW+EBHPlqLsZj3Vbn7Lnfoyv2UxAcrdcK1uSfow8PfAIaQMoDNI03pNzAJXqXyyXRqYM4A7I+I8SWdkz0/P5i6bQLqi2xK4Q9K2Wbfcy0lZoWeSAtQ44FZSMHstIkZJmgD8EPhCCctu1hOnkTrSfQs4syDTeVvHuo2LPVC3AcptT1bnHgceJmUTnR4RK7vZvlTGkzKaQqoCuRs4PVs+LSvHwuyqbmx2FbZxRDwAIOkaUlXkrdk+38mOdQNwiSRFI6YqsKor5fyWnijTGt2JwAPAycALkh6XdL2kb0s6rESvEcAfJM2RNDFb9oGIeAkgu29LvLkV8ELBvi3Zsq2yx+2Xr7NPRKwG/krqLbUOSRMlzZY0e/Xq1SV5Y1abJD2bZaSYK2l2tmyIpBmSnsruN6t2OXvSzdys7kTEFYXPJQ0ndZTYCfgs8NsSvMxeEbEo6y04Q9ITXWyrDpZFF8u72mfdBRFTSO0CDB482FdXVlS1c08PWsqOdT3JB/VAu+cbSdql2P2zfcZJelLSguwP0H69JF2crZ8nadfu9pV0vqQnsu1vkrRpT8pkVigiWiLi9xHxw4j4UomOuSi7XwzcBIwFXpa0BUB2vzjbvAXYumD34cCibPnwDpavs4+k/qROS6+WouzWUMaTqpvJ7g/r5XG2z76PO7vNJ3VE6lZPqvjWB5B0IUBELAMuK3ZnSf2AS0lzM+0AHNFBMquDSL2nRpMagy8vYt8ZwJhsRou/AJN78J7MykrS4GwsCJIGAwcAjwDTSZNqkt3fnD2eDkyQtL6kkaRzYVZWDbhM0h5Krc5Htdun7Vj/APzR7U8Nr39bdW52m9hufU+qnXtqO+DTXdwOAf62qDfRgxdVVkXxj5JOy06AQT3YfyywICKeyQ42jRSxC+f2Gw9ckx17pqRNs1+XTZ3tGxF/KNh/JukENcuLDwA3ZT2Z+gPXRsRtkh4Erpd0PPA8aY4yIuJRSdeTzovVwKSCiTVPZG0381uzG8AvgF9lHSpeJfUCtMa2upsphXpS7dwjpexY15MANRm4F7iWNPnfX+jZFVhHjb+7F7HNVp0sb78vwHGksSXvkf1KmAgwYsSIHhTbrPeyH1Uf7WD5UmDfTvY5Fzi3g+WzgTEdLH+bLMCZFaOw2lnSOtXOEfFSu2rnqik6wETEbRGxbUScSgoCo0jjL4pVTENubxqI047SmaRfnFM7evGImBIRzRHRPGzYsCKKa2ZWf3pR7dzT4/+oFOWEXvbiy8ZiPNDthuvqrPG3mG0GdrWvpKNJ9Zr7uu7dzKxLPap27oVPlaaYle1m/iAwOmv4fZFUT/7FdttMB07O2ph2B/6aXW4u6WxfSeNIXSH3jojllXkrZma1qTfVztVSsQAVEaslnQzcDvQDrsoahE/I1v+MNH3LwcACYDlpBtxO980OfQmph+GM7BfBzLaMjmZmVnEfVcobOJ9Uddh2/0REvNOTA6kRa8Sam5tj9uzZ1S6GlYGkOT1JiNaoBg8eHG+91VHaHqsHkpZHxOAqvfbDpPktx5AGvLfdjwZeiIj3dPTpjGeSMDOzksp6CS4C3h0GlI3fG9WT4zhAmZlZKV3a0cKsA9tTPTmQJ4s1M7OSiYgrS3UsBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8uligYoSeMkPSlpgaQzOlgvSRdn6+dJ2rW7fSUNkTRD0lPZ/WaVej9medHduWVWqFY+LxULUJL6kfKEHATsABwhaYd2mx1Eyro4GpgIXF7EvmcAd0bEaODO7LlZwyjy3DIDauvzUsmEhWOBBRHxDICkacB44LGCbcYD12SJrWZK2lTSFkBTF/uOB/bJ9v8lcDdwek8KtssVu7DwtYW9e1dWNSM3G8nDX3m42sXIg2LOrW5NHXYq27w2t/Sls7J5brOdOXLJT3q6W0k+L5VQyQC1FfBCwfMWYPcittmqm30/EBEvAUTES5Le39GLS5pIuipjxIgR71nfGq3Fvg/LieXvLK92EfKimHNrnXNg4MCBHR5oQKwqQ/GsXAaserOzVf0lzS54PiUipmSPi/q85EElA5Q6WBZFblPMvl3K/jlTAJqbm9fZ17/CrcYVdX4UngODBw9+z/pe/BK3KusiqqyOiOZO1vX5+7RSKtlJogXYuuD5cGBRkdt0te/LWTUg2f3iEpbZrBYUc26ZtamZz0slA9SDwGhJIyUNBCYA09ttMx04KuvNtwfw16z6rqt9pwNHZ4+PBm4u9xsxy5lizi2zNjXzealYFV9ErJZ0MnA70A+4KiIelXRCtv5nwO+Bg4EFwHLg2K72zQ59HnC9pOOB54HPdVeWOXPmvCLpuZK+wdIbCrxS7ULkXEd/o22qUZBq6ub86NDy5ctD0oqKFLBv+gOrq12IHOvs7zOosx1683mpFqUOc5Y3kmZ3UYds+G/UCPw/7lq9/308k4SZmeWSA5SZmeWSA1R+Tel+k4bnv1H98/+4a3X993EblJmZ5ZKvoMzMLJccoMzMLJccoHJA0vmSnshSjNwkadOCdZOzKfGflHRgwfLdJM3P1l0sqaPpS+pSraQKsOL5HOi5RjgPHKDyYQYwJiI+AvwFmAyQTYE/AdgRGAdclk2VDykVyUTWpicZV+lCV0MtpQqwHvE50AONch44QOVARPwhItpGg88kzY0FaQr8aRGxMiIWkmbYGJvNObhxRDyQpSa5Bjis0uWukndTBUTEKqAtVYDVMJ8DPdYQ54EDVP4cB9yaPe4q/UhLB8sbQWd/E6sfPge61xDnQSXTbTQ0SXcAf9PBqjMj4uZsmzNJ82pNbdutg+1Lkn6khjXye69pPgdKqiHevwNUhUTEfl2tl3Q0cAiwb6wdnNZV+pHhHSxvBDWTKsDW5XOgpBriPHAVXw5IGkdKU39oRBSmiZ0OTJC0vqSRpIbgWVkKkmWS9sh6Lh1F46QZqZlUAVY8nwM91hDnga+g8uESYH1gRtZTdmZEnJClI7keeIxU7TEp4t3c9CcCV5Om1b+VtXX2da2WUgVYj/gc6IFGOQ881ZGZmeWSq/jMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKBqnKQmSSskzS3DsQdJmitplaShpT6+WSn4HKhfDlD14emI2LnUB42IFdlx626OL6s7PgfqkANUzkm6S9L+2ePvSbq4m+2bssykV0p6RNJUSftJuk/SU5LG9mQ7s2rzOdC4HKDy72zgTElHArsAXytin1HARcBHgO2ALwIfB74BfLMX25lVk8+BBuXJYnMuIu7JZmv+OrBPwUSZXVkYEfMBJD0K3BkRIWk+0NSL7cyqxudA4/IVVM5J2gnYAlgZEcuK3G1lweM1Bc/XsO6PkmK3M6sanwONywEqxyRtQcosOh54S9KBVS6SWUX5HGhsDlA5JWlD4EbgtIh4HDgH+E5VC2VWQT4HzPmgapykJuCWiBhTxtd4FmiOiFfK9RpmveVzoH75Cqr2tQKblHOQIjCAVCdvlkc+B+qUr6DMzCyXfAVlZma55ABlZma55ABlZma55ABlZma55ABlZma55ABlZma55ABlZma59P/dA+IdxX5UhgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 5 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from pull_out import PullOutAModel, PO_ELF_RLM_Symb\n", + "po = PullOutAModel(symb_class=PO_ELF_RLM_Symb)\n", + "po.interact()" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAABnCAYAAADmM/4PAAAABHNCSVQICAgIfAhkiAAAH+JJREFUeF7tnQm0VdMfx7cpKtMKUSHzSqUkylT9F1ZFk1qtZkMStaRoVBSeUCpllSkJTUSqpcJKxiYKGSpSCqEkQxkS0v99trWv8847595z7z3n3HPv+f3WOuu9e4Y9fPc5+7d/495nbzEpIUFAEBAEBIFYIrBvLHstnRYEBAFBQBDQCAgTkBdBEBAEBIEYIyBMIMaDL10XBAQBQUCYgLwDgoAgIAjEGIH9Y9x36boPCOzcuVPNnj1bl3TMMceoH3/8Uf3555+qcuXKqnHjxj7UIEVEEYE33nhDffHFF+rwww9XZcqUUdu2bZMxj+JAeWiTSAIeQJJb3BEoV66c+t///qcWLFigLr30Uj0h8PvMM890f0iu5D0CNWvWVFu3blWtW7dWEyZMUPXq1ZMxz9NRFUkgTwcuKs3ef//91ZFHHqnmz5+vTjjhBNW2bduoNE3aESACjPnPP/+sa2jXrp2qXr16gLVJ0UEiIJJAkOjGpOzVq1erP/74Q9WuXTsmPZZugsAHH3yggRCpL7/fB2EC+T1+kWi9TAaRGIbQG/Hhhx9qm0C1atVCr1sq9A8BYQL+YRnbkjASQtgChOKBwKeffqptAn369FEHHXRQPDpdoL0UJlCgAxtmt1gRQqIWCBP13NZlpL+rr746tw2R2rNGQJhA1hDGu4Bff/1VbdiwQUsBqAbcaMaMGapBgwZul+V8niEAE8ARgCMZbd++XfXu3Vv16tVLj//ff/+d7Ha5lgMEhAnkAPRCqnLJkiX6w7799tsdu2VURZ06dVIwDKHCQGDhwoWqUaNGjp35+uuv1bfffquvdezYUcePFBUVqVGjRim8yYSihYAwgWiNR961hkme1aCTPYAAIqQEO7E6JMhMKD8RYExRATqNOT169tln9cQPcS+xJBUqVFDnnntufna4wFstbLnABzjo7qEWcHMNnThxourQoUOiCUgM6JArVaqkMCw2adJE9ejRI+gmSvk+IzBt2jT1zz//ONqAiB347LPP1L777qvGjRunYwlefvllrSoU+4HPA+FXcewnICQIZIpA8Ypvb7EqqNTjixcv3lscRbp3z549iWvcu2nTJv2b88XRpnvHjh1b6lk5EV0EGLdTTjllb7FH0N5du3aVaChjXhxJvHfq1KmJ88VSooxxdIdTt0wkAb+4aYzKYXU3adIknTsG90D+3nHHHRoBcgetX79erwa7d++uV4SGuNcYEjl/2WWX6Xu6dOmio46Foo3ACy+8oLAFINERGzBixIhEg9euXavee+89rfq5/PLLo90RaV0JBIQJyAuRNgKI9v3799fPkTcmUzJGQjEWZopguM+1bNlScWQz5uG2WGrzgoAYhr2gJPf4ggDZRU2+GQp87bXX1KBBg5K6lvpSsRQiCAgCrgiIJOAKjVzwGwGiS+fOnatVSKiN2rRpI6oDv0GOUHmoj6pWraqdAFAXSZK5CA2OpSn7YBiIZtOi3yomNNF/Rn+cCq2FeOZYbS3o6PHAad68eaF1Nef9Ibbl4IMPTrQD+xd4FxvHc942vxog6iCPSD755JMl7sQ/PlmErMdi5TZBIG0E8MMnIMsQRvqzzz477XLkgdQIjB49usRNzAOFxADonDCB1O+BvoMVgCGzq5JbsIzHIuU2QSAjBEjbzWqU45FHHtEeVyY4K6MC5SFPCMAACjHWQWwCnob/v5t4EfjoCvFlSBMKuT2HCMAA8NIhGE8YQLADwQLQMADj4hxsjeGWLkwgDbyTpUhIoxi5VRDIGoHJkyfrxGzCALKGMmUBMAATB5Py5jy8QQzDLoNm8qWby7wI2ADEEOwCmJwODYE5c+boRGwtWrQIrc64VsTkj9RvlQDwbiukPEhiE3B5u63+7EgA5MgRBuAClpwOBQFUQBiBMQqfc845odQZ10qMCghJy64CIt6FsSgU8qwOIlzcpIdN1vnifDGh+gMzGEzObHTuJxlOjwRgDMBiCPYTYSkrHQSMDQBvFdxBeT/tk1M65cm97gjAAAwTQBIo9O/esyRQsWJFxYq4a9eu2kjCC2gO8r48//zz+hq6yjBp+PDhasGCBYHkqhcbQJgjKXUlQwAJQIzAyRDy75oxAvtXYrRL8iwJsHWg2VD6uuuuK8UdSQbWt29fBbMIi9599101ffp0XR0RqNagjmzbYNxAxQsoWyTl+WwQMCogFlxiBM4GSW/Pxo0BgIpnSYCbmRihiy66SP+1EhGMqGWOP/54+6VAfhM1iYrqrrvu0uV7UVV5bYjppzAAr4jJfUEhwKTEd9W0adOgqpByixHABmhUP3FTs3mWBHhT2E3IviJBP2le0K1bt4a2Wlm2bJnC/mBSEFsNudm+1YWuA8wWH3k+PASuvfba8CqLcU14/hWyG2iyofUsCTDBc3Tu3DlRHlvHPfPMM4nfrFjCcp1atGiRlkhQUSGFoA4SEgQEAUFAEEgPAc+SgFGRoHdHRDUh61YmgP9sGPTiiy9qmwSTP3VWrlzZV3VQGH2QOgQBQUAQiAICaTGBRo0aqVtuuUXvL4oL1YoVK0JPpkRWvyVLlqh77rkngV+VKlUUm5oLCQKCgCAgCKSHgGcmgD2gfv36unRW4CeddFKJeAAkg9WrVztuPp1ek5LfzXaEZL+26u927NghTCA5bHJVEBAEBAFHBDwxATPB9+zZs0QhbApiaMqUKeq0005zrMSvk3gD1ahRQ1144YUlikQy8NMw7Fd7pRxBQBAQBKKOgCcmwAofNUzjxo1L9Me4g/7+++8KI/E111wTWH8J1cYuYVUDmcqwEbz11luB1S0FCwKCgCAQJgKo27NxVSX3GXElXvY88cQEyJtDgW7BKhMnTtTumpkSUb81a9ZMmpuHrersTMjUV65cOfXDDz9kWr3n57CJCAkCuUYA+5dsIpPrUQiufvaLGDdunD4yJRjIbbfdpuyb4jiVl5QJ4BKKmmXWrFmaAcCdrPTRRx+p2bNnq9dff12tWbNGu5CyyQV7iR566KH698aNGxURxkT3IjHwTFFRkSpTpowuClUTAV+s9D///HNta7ASz2OApkOonKyEdLJ9+3b12WefaZsAEsuxxx6ruR9h9iNHjlS33nqrjiSmDALKevXqpf+yyTnnYUD0ES+jVBHHJjCtRCPkhyAQMgIzZ87U3xYLJ6FoIsC8xH4P77//vtq5c6dWYZP5FcKmylxIKnA8G+1000036ewL2RDzGQsFdqFr165d0qKSMoG3335bT5Bt27bVhRg3UWuJuGoSWcsEytGwYUOFZDBjxgzdWbyJRowYoQExZaC+MRk5AWbVqlWKc4gwdibA5A1nhAlYt9SjLCZzgsaQEDhgNDAGYhUIsrn77rv1PUOGDNGiFZkXqZf+AP55552nunTpovtIX3kWot2outhGrlatWpqhQTAYIUEg1wgcdthhuW6C1J8CAYJYhw0bpo4++mh1ySWX6MWmlaZNm6YdbRYvXpxQ++B1yYKZeccP+yq5ppjrWJQnWzAkZQKZpE5mAqUT/IXgSNY9OVHd2I24NLJfv356QrYTHXEjgEoFlsl3ZLiwaYuJaUASgUtbjc0MxldffaXtHEgUcHIY4E8//aQZAS6p1FuhQgW3psl5QUAQiDkCaD2QCAYNGlQKCVbpLGrHjBmjxo8fr6+jcSER5/r160vdn+kJFugsdr/88kvX+SopE8i0YjPhmuftv+3lIgE0adLE1eZgvz+d34YZpfsMkgMHXBzCJfXKK6/UEsM777yjhg4dqg488EDVqVMnLf2IlJAOwnKvIFD4CGBLRTVN8k07GdX6EUcckbiE3ZNJ26TCsT+TyW8Wt2g4UH8bjY69HN+ZAKtoDkP23/YG8BsmgK7eT6JeOm9UPKz4IfMbFRNk/nqtG1UTR58+fdT333+vPv74Y/XKK69oacEQ6qPTTz89YRvxWnZc79u1a5cqW7as5+6ne7/nguVGQcBHBGACuLQ7EZPyGWecofr375+4vHTpUjV16tRStzNnYXslNQ6LTpOpmbkLm8P555+vnyGPG0zHmrqH36jscaMPhQmgPmGlTOPWrl2rG83kC9cDEIzBHIhB3GtUM5monUohZTtBaotRo0bp+qkP28ETTzyRqBf7Ab8xJmea7+ioo45yzKgKQ6D/iHZW5oBxvWrVqurkk09WPBt32rRpk/aAQBWYTvZZxvSpp55SV111VdwhlP5HGAFUyHaPRlTh2EtRFRH3ZJxRUBsx2dtjoOgeqXmQELBpMm8a++rcuXO1CskwAeY85l7OW6lbt27qoYceckXKV0mASR0jrJXsnbrvvvtcG+PnBXvMApZ4K/kteVjLRhIwEoP1PAZw4hkwEu3evVs1b95cG4cyZUJ+4pWLsnBfQ82WLkM85JBDtGEfJj9gwIBcNF3qFASSIsBCBY/J3377Ta1cuVLfi8YDGyWqb1btVoIJOHknwhiwX1IeC+lWrVolHuO31VWYOQ3vTDuhqt6yZYv9dOK3r0zAtRa5oBGoU6eOPlAlISXh2vrNN9+oBx54IIEQL0Lt2rUL3g8cry+M6+kyAAPUxRdfrCU5ROgLLrhA3jBBIFIIoGFg4mbXw1TOKzSc+cApsAsmQLZkvCchNu8yhCrI6krKwuiss84qhQNMwO6MY71JmEApyMI5gWeRkwTwyy+/qM2bN4fTiBzWghrIiLWZNAOD/2OPPaZtScIEMkFQngkSAVRBGHi9MADaQZyUE5kAXWKk0KqYoFwm9eXLl5dQH7GotKufKBPHHBOX5VTHv36cTlfkXE4QQNWBy2wh07x587QhOFsX2/Llyyu8K1CzCQkCUUIAJoBrplfC2GucVpyeISAX25kh4gzwXrSqkNwCCLHJJvM4EibghHjMz2HMRgTFE8G+Wc/8+fOzRufpp59OBMg4FTZw4EC9ujf5oLChYD9xmuyxQ6EbFRIEooQAWZfTWczhGIFdwI2QFKyuptgbrO6lPOdkU+A8tohKlSq5FZ3eHsOupciFgkIA74XnnntOB8fhfWAIz6/Bgwdn1VcMZXhm4SVlJxgO9hGivfFwgBlQX7NmzfSqCmO/cfU1z1IOHhNCgkBUEMAdk2BTr6og2s0ETiAttgQnqlu3buJb5B5ilEizgzcQizZcTd3yt2GXsAbs2ssXm4AdkZj/5uXlheHFQsdonXRxQXMyPKUDGYbwPXv2OKqCXn31VW00h4jz2G+//XTkOcZ00n/gVWEPPMSYZk8nkk575F5BwC8EyF9mDLiPP/64Lha1EH76XqhFixbac9C6W6N5jjgBFmd8g9gJsKkRvMpvvBHxsnOSBGgT0juMwI2ECbghE9PzJriElw4yek1cWgmK69ixY1bIGPUSKxk7MckbYtJHx3niiSfqU0gDTsSLH0YGWae65ZwgYEUAvT7+/JkSKk8YARO8PWMzZZNYzkosyFItymBKuJg6GYxNWWITyHTECvQ5VhWstklshThrIh6RCiCiHLMhjLluZBL1cZ1gO8ieUND+LJJKOtHG9ufltyAQFQRIUcNCiPQRfhGRyXzLdgnaWr4wAb/QLrByyI9EBljjWoYeH8Jga9Qv2AjQ3X/33Xc6Nwlpa1EnMTEjBiO+klrDSmaFQ+qHZIReFXWQYToEu9iN1DyPR4V91ZSsXLkmCEQVAVbsqG6IofFDxQkzQbpItfdEzpkAHUa3hd7MfrRs2dLTeE2ePFmnmgZAIvHQk+FChWjmB5ieGlFAN+GJwORq9b9/6aWXdHQzgSfo7iF09Uz8ZCjEm4h0tWCOVw+h7ORPshuSCQ5j0raPCwbjO++8U0/01E8d5EE3wWSItVZJwcCN2kiYQAG9fDHvCit24meMbSFTODAeY1dLtZcA5efcJnD99ddrYyA+r0ziMAJj4HCKoLODgnWczmLMRF+NV4vRy5FSgAmC/QyEvCPA6h+vG5LjMdETlUsQGysKJusDDjhAF4Zen80xjF6SSZrfMASICRy9vp14Me0Bcbh5Tp8+Xd188806/xTucNQJIU0QDekk0rLp0KmnnmqvQn4LAnmLABIB+wpkQyzIku0hYC07p5IA4gougUzaTP54giC+GInAKQWrHRgmeFadMAOYQNOmTRO3EJFL4jih9BFgL2cCVDAQ//XXX3p1QsAJgV6MkSHc2qyTc7KgFPMMTADpwUowEnaBQw2FEfree+/VNgl20UIVZTUaW5/DVkFiLSFBQBDIDIGcSgJWdQ96ZLuKwEuXSBvAxENiOmteDZ5ldenkj27KJZKOAymEQ+g/BEyeIysmxn0zW5wIXMHgi58zGVUhjLv2rKA33HBD0qqQVJBGjAdR0pvloiAgCDgikFMmYG0RK81MdLtm5fnmm2/q7dwMESXHBN+6dWvHjnPSqJswYnKvExHJx8F19NXZpjpwqiNfz4E5OUxQ4yEdYAsgBoAU2iR4M3pNfuP6Zs1fgtqHjIes/jMhVEQEkzllTcykPHlGEIgrApFhAqiFnLZh8zIwTETonq3uhOiVoWSGEeMTn6wOvFQ4YALt27fXemrqQVWFugljqZPPe7IyC+Vao0aNFIch0kxwGEKv6abbJOQd/FH/gGG6RAZREsjJjm7pIif3CwIlEYgEE2CDBSZZN59wdMJ4+xAV52QsRu1jfxavFZiKWyi11xfB7D+MzQEvJgyjpFOA6aC+Yg9ieyoDymaDadQeGEfN4bXOuNyHLYg8QuCUzqYyBIcRxCYMIC5vSn73E29F5ih29rLvrxKFnkWCCeDWiXHRLfqN6xgI8U5x2owedQ7+5IRbo1LCZ53oumRRcpmCT7ATBxNQMv9bfOdxXyRNAi+A3V+e+lEtde7cWRvE40jgSJ6gdAkpokGDBuk+JvcLAjlBgAUumg4OPH9wve7QoYNiR0UvjhRBNzoSTACDLp4gboAQA8BBOLUTMcn26NFDc1mkhqKiIqfbQj2HJMAhJAgIAoKAQQCNAjEwHNjFWNSiscilY0okmIAXn1YiUd2AMmlbiS/AvTQoSrZPZ1B1SrmCgB0BdpRC0sRWJRQsAkGmKScgE8cGgl1xpMB+yfzlNs8F1dNIMAEvncPzxMnIS9oCDMPp6JS91Od0D2onIUEg1whgE0G9yOJHKFgE9u7dm7QCL4tON89DUzAR8kTkc0AwAdTExh7plB00aaPSvJgXTIDNFjDw2rdII9gMTo3/OnlqrJ4paeIgtwsCgoAgkDYC9qBHpwJ27NjhdNr1HEyDBScOJzCAoI3JecEEsBU42QsINvOaX8gVcY8XjjvuOI93ym2CgCAQFwQ2bdqUsqt4NZIXKxXhHIMHEYtap/3HUz2f6fW8YAKZds7P50iGxu4+QRABVuh5yYFECoS4egsFgW0hlrlu3TqdS4n9qIWCRcDLJJ9NC5j48RZC1d2mTZuMAmazqZ9nhQl4RJD8RBx+EnEGqLSIRGZ7uGrVqvlZfGTLIsaCnD8NGzb03Ebuh1HyscSdSeJ3ngsDoufBKqAbWcX7TTDwVq1a6XcZVY9TYkS/60xWnjCBZOgEeI04BqJliXr1mu0vwOaEVjSMD2mHvD/pEC7EDz/8sE4UaLLEpvO83CsI5BoBVDy4gxIfECUSJhDiaJDjmzw7TGQEi7jFPYTYpNCruv/++7UXhJONJ1VjRo0apXr37q0zxWaSZypV+XJdEAgCAd5Xdg0L2sCbaduFCWSKXBrPLVq0SPt0s+JHAiBqMI4EBkRae0kR7oQPYnPfvn01hk6bcTs9I+cEgVwjEKaRN5O+ChPIBDUPz5DFdNasWdrNi1VAELpFD82I1C2k+0afnQ2xeRBBNtgIUBEJ5RcC5Aljjwr04dWrV8+vxhdoa4UJBDCwRAGS74jValxX/XZYmbgJcPIjFTc5mxYuXChMwA5yHvzGCQJ3SQ4kQjYPsm4ElQddKLgm+soEiNzlSEVMBE77xaZ6zut1Jl907mESyeLIdMr2ikxSRDIXCtEXJBvUMXgxGcLGQToP+2Y+Tv0mp5PbNpDYSJAQkJr4n/TT1InLLOVbN7ynbCYPmECcCPyNCowASQ6njLpRx8QaXEUfbrzxRjVy5EjtHhlFwm+/0Gmf4rDo5HHRaSBAlBtiOomRcIGyZvFkJYhnCKmDu3fvrhPCBUGswtmRirz/bH0YJDHhM/HDAHD7IhlU0HUG2R+nstmXgX4yOTdr1kxvC2lSdOClg3rGOpZM5ExYRHdb1TXkXaIcKxMx9Q0fPlzr+YmOJEW02WgeRtCtWze9A5k1nwrvGAkDyRYbR8pnF1HSv6Aa5VthL+qw8+TE8X1J1WdfJQF8lzGCsHk8ufedxDws5KlyaaRqtNt1Jh8YECtIxM4gJ+QNGzaoK664Qo0fP9514xS3dubTeRg7K3EOqGLFionmk7vGvlJiMmcj+k8++USv7o0Xz7Zt2xw9ehgzPIVMfhSYTZUqVfQqF2mOScI+USBFsqeDUP4hQGxIXJl3VEfLVyZAJ03WPTcPEFaHfOhBECqCsWPHqp49e2q1lN+bjrDKxdjLxIVKa8GCBb7ouIPAwq8yzf4NfLiEsxsbB/jCCK1ub/zmwB7Cpj7WXE87d+4sNZnTRiZ/k/MJxs37g8QBUZdTgi6xs5QeXaQj3n8YJJIUUlqug5BKt1LORBEB35kAK0d2+bL6caMPNhuwMBnYdwHzAxiiSdmUxtSLisavICwkF/z7mfhY+YZtb/ADn0zLgJEysaOSQZQ3RIxDjRo1SuilsREY/O0ZX4nyZXKyk5VRwzwgvKmSEcw4rlt6OuGCxw0qNZIoMvGzSIGxmt9Oz8g5QcAg4DsTQIds3fWJD58J1DCBZLtxZTosqH+WLVumevXqpYtADUTm0WwIaYWUDmvXrtUrWCb+TAKcsmlDVJ5dsWKFjvI1K3AmYXZJ6tq1q2aMYISaCGkBhoEaCEnQKg0y2bPSdyIWBqxg2ZgeNZDVr5pxtafroM64joUTfthksJGYlT/pR8ARaQCblZAgkAwB3/c1RE+MARjjDweifdDiOytU6+qRCQkddKaEFwYJ41i90gc+pjhPOjByq2THit/s4YD6BqaLgRhDH3/By64OhJE62YLA2aiDli5dqp8z7wtlO40j5fit6sv0XYnCcytXriwlXeOoMH36dE/eelHog7Qhdwj4KgmwCsSlD90xHzOrcSYM+4RguksEKQwD1Q2RoJkS4q9Vd8yEzerSTujzWeFT38CBA+2XtS4bSQY1EobNoJlXqQZE9AR6/wkTJuhVPl5e6J6Z7GEETNRGAkvWfAKDRo8eXeIWJAPGv0mTJtqG0L59ey1hoNoz74XTHsTov932o07WhkK8xrtPQj4mfSsZF2ywhDlHlZAieYd4F3jPWFDwG+keCTCMzaKiik1Y7fKVCaAnZvXMh2u8PWAEVuMhAwxTYDLBk4fVH7rLTIgXhVwyTPqoIAzt3r1bfxhWQrUzYMAArdueMmVKqepY/bNaZeUvVBIBJnxUekw4jCsMlIOx5CP1YoDEIQA1Eu+Dkaowrm/ZskWXy8oeOwJeSOi4mbjcdlRC8otj3iWn9xLsIHvcjcm06iRJOZWTi3OkU2HyRxLk3ahdu7b+RlEH1qlTRw0dOlQNGTIkF02LVZ2+MgHETyYM68eLd4n5zUAzmcAEMBaXL19ee5CgPsiE0EFjY7A/j3+5Xf+8ceNGPcnzcdjvp+44GXszwRp1kD1pm5uE51Z+8+bNFR++FWveDaudCF12shTTLB7YX9feFrc6C/18quDMoDzxssWVcSReaP369booFhJ8szAA3gHcy2WnwGxR9va8bzYBViS8kHBzK1kZAuoYdgJDp8sqkvvxJsr0RUWUdJrQsQlYPw5UC6gyTH2pPhxv0MldVgQYUyQ6mDvSlBPGSIgwgWyId6hfv37ZFCHPRgAB7ExTp05NSJG8N7wzLCJh8HPmzHF0KY5A0wuuCb4xASZzyClADLUNHz8r9Fq1amlOz0Cjc2d1blcnoNoh8jcZ4fVgjUi23ou6gdWiIURlVA+mPtH1J0M2s2uMI3p9bEAwAaeUBow5LrYwg0wYPyo7bE5IFEL/IgDuECtrK/HNQU7jUOLGHP3ge7SqiUkfgQrIPhfkqHmxqjZrdRCTO6tsY/TjIzX6eV5MdPO4/q1atUrnkTcvppUJWBFnhYAuEF0mOWnshiHqwzD54IMPqkcffbTEblzUjYoIgzPGw0mTJumVBUZjKxOI1QhHrLMsElAjwSzScRdG0kCqHDZsWMR6lNvmoD5hUYO0a92Zzkhi6arsctEbtAg4ZGAPMMQijwWDLNiCH5GsmQAGPbg3E64T4Wlj3DetHjxO93IOG8HmzZv1S0GuGTsxEcAcOOyGQ55lZVRUVJR4LKorIXu/4vTbyb6Qqv+Mq1n1pro3TteZJOvXr68XYlYmYOJboooZWoHBgwerxYsXaxUiVK9ePf0X54ExY8bo/EJCwSOQNRPgxQtib1wYgFPEb7INGjKZXIKHWGoQBIJFABdd7DFGTYZUsGbNGjVv3rxgK86idLPDHtoCpDzmEBNRjicfNgGhcBDYr1h/e0c4Vf1XC6t8XgLcNdFd1q1bt1QTli9f7ni+1I0eTiBu8pGwwuBFI/pVSBDIVwRwqmCFb6RcYjDKli2rZs6cqfCCwz5HDi1UoVEl1FR896h9cQ0mtmjdunU6Sy3uwfa4h6j2oxDa5Wsqab8AwSjMij8f9Jl+9VnKEQS8IoDNDdVqVFU9Xvsh90UDgazVQUF0wxpbEET5UqYgIAgIAoLAvwj45iLqJ6B2g6+fZUtZgoAgIAgIAv8hEEkmIAMkCAgCgoAgEA4CwgTCwVlqEQQEAUEgkggIE4jksEijBAFBQBAIBwFhAuHgLLUIAoKAIBBJBIQJRHJYpFGCgCAgCISDgDCBcHCWWgQBQUAQiCQCwgQiOSzSKEFAEBAEwkFAmEA4OEstgoAgIAhEEoH/A+y5WMhnsPX1AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "# Idealization of the pull-out problem\n", + "This notebook explains the derivation of the pullout model and provides also its executable form.\n", + "The one-dimensional idealization of the pull-out is introduced in the figure\n", + "\n", + "\n", + "\n", + "**Remark**: The origin of the coordinate system is placed at the transition between the bond zone and free zone of the fiber. The domain in the bond zone is defined as $x \\in (-L_\\mathrm{b},0)$. As a result, in the bond domain $x < 0$." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The meaning of the variables defining the idealization is summarized in the table" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADaCAYAAACl44R8AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7s3QeYbUWVPvwNJtJIGJAgSYIEyUmQOAQlCBJEcpKMEgQBEYFLUMk5m8gSBdEBJUsUJAiIaXAGBXVmdFAUFdP451ffV2fq7rv3PrG7T3fXep773D471K56a1XVu1atqpruH69LkSUjkBHICGQEMgIZgYxARiAjMMkRmH6Slz8XPyOQEcgIZAQyAhmBjEBGICMQEHhjxGG66abLkGQEMgIZgYxARiAjkBHICGQEJiUCgiiyx3hSVn0udEYgI5ARyAhkBDICGYGMQBmBlsf4d7/7Xfle/p0RyAhkBDICGYGMQEYgI5ARmDQIZI/xpKnqXNCMQEYgI5ARyAhkBDICGYEmBDIxbkIn38sIZAQyAhmBjEBGICOQEZg0CGRiPGmqOhc0I5ARyAhkBDICGYGMQEagCYFWjHHTQ3X3Xn311aKT2OS3ve1txRvf2Nen6rIwIa//5Cc/Kf7yl7+Esv3zP/9zAb86+eMf/1j89Kc/bd1edNFFC9d++ctfVr4iLWlOZqG3//mf/1m85S1vCTDAesYZZyzmm2++FiyuwdUzVqm++c1vLuadd96hg00+H3zwwWKdddYZV23slVdeKX7wgx8UL7/8crHqqqsWc801V8fY/s///E/x4x//OLy79tprF29961s7fnc0HvzXf/3XQh6XXXbZYsUVVxyNT+ZvZAQyAhmBjMCAEOjLY/y9732vuPTSS4sll1yy2G677Yobb7yxuOWWW4qbb765uOqqq4pPfvKTxdJLL11885vfHFB2J0cyTz/9dPG5z32uWH/99Yv11luv+N///d/agl988cXFu9/97uKwww4r7rvvvuJPf/pT8etf/zpgvuOOO4Z7X//614vvfOc7xQMPPFCcdNJJgUxcdtlltWlO9Bu//e1vAyYf+tCHine9613FwQcfHEhaKq+99lrx6U9/ulhuueWKz3zmMwVdH0a54YYbii233LL4/Oc/P4zZq80TUvvVr3612H777Ysf/ehHtc9V3fjv//7v4stf/nKxww47BANnmORjH/tY8bOf/SwYn+9///uLP//5z8OUvZyXjEBGICOQEWiDwHTx5Lvf//73bR6tvv3973+/WH311YsvfelLxTbbbDPNQx//+MfDALbyyitPcy9fqEfgr3/9ayBsV199dYH8vPe9753mYYPuRRddVBx77LHF5ZdfXmy11VZTPcMwufDCCwtEMJV/+7d/C4TZffUzWeWll14qVllllaCbvHxlue2224r/+I//KD7ykY+Ubw3Nb55J+sF4OuCAA4YmX51mZJ555gkG9VprrdXpK+E5BuDcc89dPP7448U73/nOrt4dqYcRdoYWsq7N3XvvvcUHP/jBkfrc0KR7+umnT+p+ZGgqImckI5AR6BuBf/qnf+p/H2NeSMILWSVLLLFEscACC1TdytcaEJh++ukDbv/yL/9SXHHFFZVP3nXXXcVGG20U7nm+LK5VHdyy+OKLFyuttFJx5plnFn//+9/Lr02a3/PPP39x1FFHBU/6ddddN1W5GSbI8rCTTZ7J/fbbr5h55pnHZb296U1v6infQluGTRicQpXe8IY3BI/xZCDFv/jFL4bOaz9sepHzkxHICIwvBKZlU13mH6ngsUnjYL/97W+3UhE72E38YJefn/CP77rrrgXP5a9+9atpymo6evbZZ5/meicXZphhhkK4gH+TWXiDhfvwnqee9QsuuCAQzirDYqzxQtpTEUKz2mqrjXW2Jv33xaIPo76MZMWcffbZI5l8TjsjkBHICIw6An2tiDMQWPiTTuFbjHf33XeH8Aoi/jFL7wiIU7S4SEzlQQcd1EpIHONCCy3UU8LIsDhmdRM9jbzSQjN4u5588sniox/9aIgdn+hiUajBXajK8ccfX5x11llh0Z3QIounUmGcIMwLLrhg8LT/13/9Vwh3MfVi+vzII48s/v3f/73Yd999i5133jn8fcQRR4R7YsC1E38feOCBBU/blClTAuZiwi24fPvb3x7IeJS//e1vxfnnnx++9Yc//KEQdoB4xRjWQw45JCy0NIUvFj3KlVdeGWYQ/LPIjef7a1/7Wm1V3n///cUpp5wSjC9GWHz2ueeeKzbbbLNAunnUpffEE08UO+20U6t9SxRRP+ecc4pZZ501PCN/DDoLQVORTzHxvKmzzTZbsfDCC091X18inRdffDGEBpltuv3224vzzjsvLGYTMgL7Kun0XSEYl1xySZiNgSljiKfXN5qkXRmvueaakFf5/MQnPlHwhJ944olNSRZf+cpXCk4EMxfqUTz7pptu2nrn+uuvD3qi/dMb9bDhhhuG+3V19t3vfrfYeuuti3XXXbeVDj0S7kCPpMWgtiZE+z711FPDeoSllloq6Cwc1bs1DtqGdkA33vGOdwRd0r8zIuX36KOPLm666aZikUUWCWUm2kA01p9//vmA9TLLLBPagud22223Vr7yHxmBjEBGYBgR6IsYx1XlBhYdotX+OtZPfepTw1jWcZknU8YGMUQhJcY89RbX1e0+EQvLeEFICEL8wx/+sDj33HOLTTbZJBBCIhbSYjyLJpEbA/D73ve+QJ4RmIkujLhddtml+OIXvxjIAWJpkWIqCA+SiKxEQgcfoSw8tkirOPvFFlustVMLIsCg8X+M4fcckikW9c477wzxywwchM2uGAgNkkJOOOGEQJrFiZONN944GDNINnJDZpppprCIMAqi9eyzzwbCE+Ub3/hG6++qP+xogZTbQcHiWRiYUWDg7rHHHsVxxx0XrtFFpHafffYJuoGk069tt9222GuvvcJiM/Kb3/wmYAXPaFwhRkIL4Acjcuutt7Zw8VucsfTFv8ddWeipWGLEH8Grk07fZWjI0+abbx6SQo733nvvumTD9U7KqC0i7drlySef3JiemwwEsdXqBgFVb9HgmGOOOQKRZaggpUQMOVLJGPNcU50pj7UfcScg79HBSNQtmGa8fetb3wqGm+eQejH3cLFuwbfN9MHfM1tssUXIhwWpwo/OOOOMYCSqJ31GucwvvPBCePeee+5phdL57dnsLAlQZskIZASGFIG+QilifLEBUAduIF9hhRWKNddcc0iLOz6zxfvG+IghKgbJuvjhcgk9awcGJEx9IRcGZYMjUkV4kQyOMd6Yh0f6jJzJInSXp4sRwis3yyyzTFV03l0evdTLufzyywfsGBoEZrx/qfAclrfb8xwSzAsZvf62i+PF5K2LwqPoG1EsFHSNsYLoVAlD6ZFHHgnbmUVpR/w8F/ONlCHFhMcWAZfXGNMrbArpQSgJLy5jK5Ji1+CIBB1++OHhGWK3BuQ2kmLXIjmNz/i/aj1CGdP0+W7fhQ8PegxNMmOCaDZJp2VsSiO9B1OzE2ZlInmlb4wibdKMxWc/+9lggEShM3vuuWcgpdHIqqsz3mWGHEFMzQCYXYiijjfYYIPWb0YRTzNvtTo3e2FrQrNI6jqSYi8wzlxvtzZB+SxqTeuTsW2syJIRyAhkBIYZgb48xoiWjjQO/NHbE/eDNU1sKyaEIkvvCPAu8uYZkHg3eXrSqdJ2KSN7TYuzDGB33HFH8cwzz4Rt9gzWvGSR/LRLfyLcp7u8nIyIlOTFsvEK21qsLMIFeNx51Ug3i8nK5Na7pqij8ECm25HxKteFEsR3EBeGDxKNdFu8GfNWznvV7zRPkQyn12L55AWZg0s5JEK63hGWwqNIl/QV5V1reJzLMbnd4FfOfyfvClVRv0IfGB3IoHCYJumkjN0sBkRCta10Nw3GaCSNDz30UDCahC+kAlOhH95PFztX1VnUI7gjwvQ7StWiQCQ7GsrxuYcffjgYOXbGiSLdOeecMxhMTWtHvKtM6btmP5q8/k11kO9lBDICGYHRQqBnYhzji8WzpZKu4jeNHGPiRqtAE/U7vMZi+njmf/7znwfCMyiRnqlyaZqmR6Lj9P2gvjEe0qkiajHf4iurhCevvB1e1XNV18RzN4m64CHkWRWmxHBp53HjeTY9jxDx+AtXQKJsa5aSo7rvVuWp6pr2T+rK7h0kSL6JvzshrnX5GtR1ZBSxNIMCH3jCSmx1nXRSRuSzU4mY1OFRp2uxHsr5aaof36r7TprfMil2j2OD57jsUa+bgYhhW0JfvGv2sPxupxjl5zICGYGMwFgh0HMoRYwvrtumTZwhbzFPBK+BDtLgjCzzaJnONN3rb2TPARRZ6hHg5REWIQSCx2aQgnypJ/shR89yPJgAGet1j+tB5nGs0+KxZ0CURVymre+iIMpl0RZ6Ee1FnK9pceSHN7sq1CBNm8ff4jcxqBZJCauQP17tkRBp1+HCk4ww+iffVfHwkWAPAr9OsHdYCxL4gQ98oDjttNNCv6OfErtbJ52Use7dqusxPEbIQiqMB17VeFpeGVeLEgnC2al4VtkiGY/v0any7iblNM0kiQ0v11H6bowz9641DNHA8K7Fd2UZtgNZyvnLvzMCGYGMwLSjeIeYGLBJ1cb8OuLdd9+9FUOIFLum03TYx4c//OGw+MMCHlObFmOkC8s6zMKEfsxqdP+ixEUrVnmn8YFxkVL8PwWl6V76HCMnndZFrAya4ggt5Go6eW8iVYIy15GFY445JpDU1FsnFpThkB6SIl4z3VpPzDAjoxyWom7KdebbKQlBZizQEj5h0V7ZU1iFvTQtHoyCuJjSLsc5l9+t0pV4LcUk/h3zyXvo2mOPPdZKUnkt4hOXHcWCXPHRaWyqmHm6lWLDu2mKPsXQThgkDTOpylsn74rVF4oURby2xXh2FqmTTssoT52ECghxsSDOgtdUxDIjl8KlxGj7nYpFm+KMo3HUVGexfiyMVL7yt/yO8c1Vuui7FlSKNy+fXGqRaXxXGEc0Kiz4s/UhYWQzxlKDQ/hNuUxTFTD/yAhkBDICQ4DAG14fvKbIR3mQrsubzs4KZIOvdwxWFng4bMJgyKNpEBR/qHOMYoC3iMPhErxfVjQjG3Hhl1XY6QKRuu9Phuu8WhaDPfroo2Ha14Il05P+IcgxvhjOX/jCFwKJ4PVCYnlqLIayetyAZqBGLHh+6rz7yFwcOHl0eHoslJE2QjbIsI1hrD8xnWYt6LDB+6mnngoD+qqrrtrKrrh5g77dKug9IugYZoekiAGPIi4UbogoEsa7pj7EqWor6pKH3jS+U/WQXfjz7vIQ8yJ6zs4MvPh2yxAO4Vs8nNodHaiL22ds0gNeaoTTd/0vnTpRfrrE+y2vPKq8lXSQl5fhpJ0qj0VhsHFEttAMO2ggca7b/YSxYLcT8djpbhm2vkOCGXbIFt2Wtth2+X3LW97SWmgoXQTKzIjn4CMmWL24p2zwkt+Yt2jYtXsX5ryy2gzsbTfGuI9e2iqM5LddGc2K2fJNmRhLCG55u780bce92xZRn0mEdihv1Dmx4gwJHm1bpAn5UC/qBCltV2dIqjpDisVR236NbsHOzIPdVLRt/TCiyxhW9/rmiKW4ae/SO/VKlx3jLRY/GlpmBaShv6e/ZrakIW2edn08/dOnCPHhFImLO6uwztcyAhmBjMBYImAs6vtI6E4LgBQfeuihYWU6QRAMegYyMXWmF62AzjJ2CEQPdVw8aUBrWrQ3djkd2y8jZBpP3eIj3jpEw8Il5IRRgtQIKeh0kZZ3zKIgRJGE8LYivuLBEbq4rVuKBkKGeCDXyAxSKQ+jIUgXslleNJZ+GzlGTnnBeXgZdHCBVfRCep4XWv4RLyESSDni6LmqkIn0G03vMmrgg+T5J/1O68Q3OiljN1jzrguRgFlVrLD6pEvudxIr3PRtdYNkt1vAWZWGcgupqnoX3ki3hahVedRexL53EuNe9e18LSOQEcgIjBYCZg9HjRhbQIQYR++jTpTXTWepwxYLl4nxaFV9/s6wI8DrzPtYtSf4/vvvH3ZW4LnLkhHICGQEMgIZgYzAYBBAjHuOMe4mC6aCLbSzMIhX0rQez4XtnHghbBbPO2khXpaMQEbg/9vj14yKf6kIjxHKMNHDW7IOZAQyAhmBjEBGYCwQGDWP8VgULn8zIzCeETDN7nAGMbGmqE2rm/oX/52GHYznMua8ZwQyAhmBjEBGYFgQGNVQimEpdM5HRiAjkBHICGQEMgIZgYxARqCMwKiFUpQ/nH9nBDICGYGMQEYgI5ARyAhkBIYNgVGJMR62Quf8ZAQyAhmBjEBGICOQEcgIZATKCGRiXEYk/84IZAQyAhmBjEBGICOQEZiUCLyxn1I7mcvuEu3EPqx5sVA7lP7vvj1B44ErtrNrOrUs7lcb37YNnmtVx+96RlqTfT9ReusgE3sRE1jbZzXu3xyv2UfXM/YlttftvPPO+3+VNCR/ybvDQhwBPZ7amL3L47HyDrWo2xO6Cmb7D9vl5uWXXw6H1ozWPs1Veam65rh7eXTAR9PBIVXvjta18ZDH0cIifycjkBHICKQI9OUxdvqVk+6crrTddtuF42ud5HTzzTeHrdmcTuW0sPKRorkKmhFwiIMt7ZyO5UCUpiOZbXHnlLTDDjssnHLm5Da7GMB8xx13DPecdOUErQceeCCc3IZMlI+Ibc7RxLpr32yYOJnNqXUHH3xwIGmp2AHC6YFOmHMSIV0fRnFCnCPVnYw3ngSpdYqaE/Ic8tGNOGHvy1/+cjhenoEzTPKxj30sHMjB+LTXtJ1FBi0Of6GzdcZvu++NRh7b5SHfzwhkBDICw4pA39u1OXp09dVXD8eKbrPNNtOU8+Mf/3gYwBxVnKVzBJwmZfBz1Czy8973vnealw26F110UTh6+/LLLy+22mqrqZ5hmFx44YXhAJVUnCKGMLuvfiarOJFrlVVWCbrJg1aW2267LZzS9pGPfKR8a2h+80zSD8bTAQccMDT56jQjjg5mUDuWuRthADoi3THE8Qjjbt4fiWcRdoYWsq7N3XvvveGI5EGLUw/32GOPcGT0hhtu2FXyo5XHrjI1BA87YfIDH/jApJ9NG4KqyFnICIwpAgPZlYIXkvBCVskSSyxRLLDAAlW38rUGBBx7CzcHOVxxxRWVT951113FRhttFO5VHZPr2nTTTTfNu4svvnix0korFWeeeWbhmOHJKvPPP39x1FFHBU/6ddddNxUMDBNkedjJJs/kfvvtN26P7q46QrgTfezmGOdO0hvEMwxOoUqOdlYvI0GK5ZMDQphPt6TYu6OVx0HgOZppPPXUU6P5ufytjEBGYIgR6CuUQrmQCh6bNA7229/+dqvIYge7iR8cYqzGJGu77rprwXP5q1/9aprvm46effbZp7neyYUZZpghHBjh32QW3mDhPrznqWf9ggsuCISzyrAYa7yQ9lSE0Ky22mpjna1J/32x6KOlL722+9HM43hRiBdeeCGE/2XJCGQEMgIQ6GvxnU7Wwp90Ct9ivLvvvjuEVxDxj1EM6AheusgpV0MzAuIULS4SU3nQQQe1HhbHuNBCCzW/XHMXGRbHrG5mnnnm8BSvtNAM3q4nn3yy+OhHPxpixye6WLB29tlnh1CV448/PhxTzhvnqHKLp1KhuwjzggsuGDztjmYW7mLqxfT5kUceWYj/3HfffYudd945/H3EEUeEe2LAtRN/H3jggeFo9ClTpgTMxYRbcPn2t789kPEof/vb34rzzz8/fMuR6cIOEK8Yw3rIIYeEhZamx8WiR7nyyivDDIJ/FrnxfDtBr07uv//+4pRTTgltkxEWn33uueeKzTbbLJBuHnXpPfHEE8VOO+3Uat/S1K7POeecYtZZZw3PyB+DzkLQVORTTDxv6myzzRZO8UtFXyKdF198MYQGmW26/fbbi/POOy8sZhMyAvsq6fRdIRiXXHJJmI2BKWOIF9U3mqRdGa+55pqQV/n8xCc+EU4qPPHEEyuTVB/qVV95/fXXB1L20EMPhZj2RRZZJCz2dF94DP2kG/RI/X/3u98tjjvuuKB7+oR3vOMdRV39eXbrrbcu1l133ZCPpjzymKp3sygwUo/RMHz++efD98U0w4kO6CPo88YbbxzSfvbZZwOunCT01mLW/fffP9xrKk9d3jvVPe2U7sKBrsOUkWtGga4JO5ljjjlCG7eugCirtqr/FOd++umnh/dOOOGEkG+hVdtuu214NktGICMw+RDoixjHVeUGFh2N1f4GqE996lPTICkW2SImgz8P8mSObZ0GnIYLOngLGxGFlBjz1Ftc124BjkEJISEI8Q9/+MPi3HPPLTbZZJMwWBCxkBbjGaCRG0TIscPIMwIz0YURt8suuxTiDBFaxNIixVQQHiQRkYmEDj5CWXhskRZx9osttlhrpxYkB3nxvwGceA7JFIt65513hvhlAzQywmBEYpZaaqnwrIEaaRYnTpAQxgySbbaAzDTTTGERYRSzNUjKqaee2rr2jW98o/V31R92tNAu7aBg8SwMzCgwcMWyImKu0UWkdp999gm6gaTTLyRir732CovNyG9+85uAFTyjccVIEFoAPxiRW2+9tYWL3+KMpS/+Pe7KQk/FEiP+CFeddPouwilPm2++eUgKOd57773rkg3XOymjtoi0a5cnn3xyY3qw0Qf6XziUcB1Y6SPpyuGHHx6wPe2000I6yKN6f+SRR4oVVlghkGb6E2cOmupP2aSLYNflUZ6RcnWv3om1C3ST7qmva6+9Nui9uGZ9vfqXLzqJKNOBhx9+OOg33XQdHsrYVJ6mvLfTPfpAP5D2LbbYIuRbOYRHnXHGGYHYI7r6O4ZHrGcG6THHHBOcAeKKGcBwtVZjsu/YE0DMkhGY5Aj0FUoR44t16qx2A7kOZs0115wGVp4gK9CtiE69yNM8mC9MgwDvG+MjhqjwJNXFD5df9ixPCRKmvgwmPCl2E0GqCI+0gTPGGy+zzDIhfUbOZBG6a3qaESJ2c5ZZZpmq6AZTO1SkXs7ll18+YGfgJTDjcUuF57C83Z7nkGDEJnr9DeC8mDxlUZAQ34hioaBrjBUEqkoYSgiU7cyitCN+nov55l2L5IjHFsmR1xjTyyNo6hmhJLy4jK1Iil2DI8KCEEXR7pHbSIpdj+S09dDrf1StRyhjmj7f7bvw4bGNoUlmTHjAm6TTMjalUb6nTGYL6BN94IGFoR067EjDUIti/YZZjEcffTRcqppxq6s/MxSMuiYx62GBdKx3z+pzlJsuEfVPj+HFeEaYOToIDznvMVJMpKMPoaOdlKcu7+10D7Gli5EU+zZC7nrsyxh8+k4EPAq9TttZ60b+IyOQEcgIvI5AXx5jREsnEwf+6O2JHbeOX8eIUBiIkIDYeWb0O0eAd4g3T4fPu/mtb32rNT3aSSrIXgyZqHre1OEdd9xRPPPMM2GbPSSZlyySn6p3Jto1usu7xYhISV4sJ68ww64swgV43HmtSDeLycrk1rtCI6LwuKXbkfEq14USxHcQA4YPEq29WbwZ81bOe9XvNE+RDKfXYvnkhfEAl9RYiGl6R1gKzy9d0leUd63hFS3H5HaDXzn/nbzLi6h+hRUwOjbddNMQDtMknZSx18WA5R01GL/w4oXl+Y/CoIizBE15raq/VKfK7wpbESohFCEV/QVPPd1eY401Wrcs3E2FHtgKMl1oyODmLCFmujotT1Xem3SPh5oRZueeKMo655xzBqzi2hZ6mhqn6qoJk6kKmH9kBDICkw6Bnomxzo5HUQxbKukqftPIvG/ivHg8/OZdyvFb3esZD87RRx8dPPM///nPA+EZlEjPVLk0TdMbFOP0/aC+MR7SqSJqMd/iF6uEt6+8HV7Vc1XXxHM3ibowLcyzKkyJ4RIJR917PM9CJxBR7VO4Ao+jbc06mSauylPVNe2f1JXdO2Yn5Jv4uxPiWleuQV1HRMXemkGBDzxhJba6TjopI097LxJnbeK7cd9j7T3FvZ1XO77fVFdV+avTa89Kq1z2soGNGJuVqjMMuilPVd6rrkXdk7ZDd8rYlGdImtKowsSswjAe5lOV13wtI5ARGDwCPYdSxPjium3axBnyFpsm4ynivTLllUlxb5XII2MAEgLBIzJIQb7Ukxi7OPDFAQ0Zi/Gxg/zmeEuLx54BURZ7Idv6LgqiXBZtoRdBZsX5mgo3uPNmV4UapGnz+Fv8ZurYIiRT4fLH8zcSIu06XHiSEUb/5LsqHj6SnEHg1wn2pv+RUbGlYnh5O/VTFrPVSSdlrHu32+tRl3hxUxEaULUzTbfpl58348eYosepCPOBSbuT+9StWQwLBMtitmMky2OmS+x6WYe0l/LOLeW8pb/LsxbClbJkBDICkxeBaUfxDrEwYJOqjfl1qLvvvntlDGGHyU/6x+xa4F8UcX1is6383mCDDVrX4yKl+H8KXNO99DlGTjqli1gZWAzGpnObTt6bSBWlzHUDqsU6dD71oJkFYTikC0nFNKYERiwjI6MclqJuynXm2+kgz9vq8AvEQwhS2XtXhb00LR6MYtAX71mOcy6/W6Ur8VqKSfw75pN3zrXHHnuslaTyWsglLjuKBbkIR7pvtrABupViw6tsCjzFUFgBSae/q/LWybviTYUiRRGvbTGenUXqpNMyylPTAsE0/ar8uy8EhgMhrUPXhX7EtOO7KZZN9ZfqVDmPMFM39Cx9zg4VwivSEAnvxu+kZWFQW1QZZwfcg7OY6G7Kk6ZdhU9Z9yz4FM9cPlnVIth4PLp0yu3KtbSsnAI83tE4KhPltKz574xARmDiI/CG1wevKYpZ1eFVFZ/nyaprHbd3DFb33HNPWF1tMOTR1NGK69JhRrES36K8ThfSVH17slzj1bIYzMBi2ld8oXg//xDkuP0SnL/whS8EEsHrhcTyoghXsTrbgGEwRSx4Vuq8+8icXSkILw9vlV0ppI2QDTJsYxjr0Ip1ISp02NSw7ZwMkquuumoru+Lm7Xdstwp6jwg6htkhKWLAoyATcENEkQPeK/UhTlVbUZc89KbxnaqH7MKfd5eHmOfNc3Zm0FYswhIO4Vs8nNodHRC3XyV2C6AHvNQIp+/6P13MVX5P+ekSr6G88qgzJGcNAAAgAElEQVTyAtNBXl6Gk0WGyvPZz342YOOIbKEZdtCw0M51u58wFux2Ih473S3Dyn8kmGGHzNBtaYttl9+3vOUtrYWG0rXwy8yI5+CDGKoX95QNXvIb8xYNu3bvwtxOH9oM7IV5Me6bPKPy266M4lxtZaZMjCU7wJS3+4u4K7Ot3LQ17RuecXtLz9g60NZv+lW6JjSGLvC+MibSsvPKM2Sb6s+uFOqPzlbl0S409BShRLYtTqQTFgHSNTrpm/oRizrVvT4hhijQf+nTAd5nefScXTCQzKby9KN7DBox4toFvVMG269ZK6D9iW+2uwZ8444fjDPtk9NBPxfXyCg3XdBf0jvXs2QEMgKTDwFjUd9HQncKm1XLFgGlCzk6fTc/NzoIRA91XDyJUJVjCkcnJ8P9FYRM46k7uIY3ClmxMAhhYJQgm6ad62IxyyX2ju35xMBGb6/BG/EVD24Qj9u6pe8iZIgcco0sIJXyMBqCsCKb5YVc6beRY+SUF5y3kkEHF1hFL5/nefnkH/ETIoGUIyyeqwqZSL/R9C6iCR8kyj/pd1onvtFJGQeFtbqka/CsipMd1HdiOuqG3jGGy7uydPKtWLf6DwS5LCNZHvUi5Kvd4tRyntLfDBVtN8cXN6GU72UEJjYCZg9HhRiLjbR1E4+xgyNs6ZYlI5ARqEeAV4v3sWpPcAcn2FmBZyxLRiAjkBHICGQEMgKDQQAx7nlXim6yYBCv2gKrmzTysxmByYSAnSj23HPPEEogrCKK8BhTwxM9vGUy1XUua0YgI5ARyAgMDwKj4jEenuLmnGQExg8CFrFZBCUmVtiBqWhT/+K/07CD8VOinNOMQEYgI5ARyAgMLwKjFkoxvBDknGUEMgIZgYxARiAjkBHICGQEirBDUc/btWUAMwIZgYxARiAjkBHICGQEMgITCYFMjCdSbeayZAQyAhmBjEBGICOQEcgI9IzAqCy+6zl3+cVRRcAeno7t/t3vfhe2y7L3bSfHCI9qJvPHMgIZgYxARiAjkBHICIwQAgP3GNtr9ROf+MQIZTcnO5IIOFjEwq6PfOQj4bAFxwr3epzxSOZzJNJ2OIWDDRyMcu6554a9dokdIBwikWV4ELC/8f333x8OvpgsYus+h7w4oCI9AXCylD+XMyOQEcgIjBYCAyfGTku68MILa4/WHa2C5e90hwCDxt65NskntgNzEMJEJx/K7dS7eEqbfbZtleYErSuuuCIYCU7NyvJ/CDgE4uCDDw77LI+FOBTk9NNPD3uiTwZxuMl2221XbL311sUZZ5xRXHzxxZOh2LmMGYGMQEZgTBAYKDF2zCpyRXjgsowfBJysZcB1UloUJNkJbxNVnNS15ZZbhqOGHQftwAxH4Dpp7JBDDgmn/jm+d7KK46EdzlMWeDk++LnnnivfGpXfjhieLKQYoBdccEEw1pwQeNxxxwWdnejixEcnE2bJCGQEMgKjjcBAiTFPMUJBHK+ZZXwhsMkmmwQvMRFWMPfcc0/o09Uuuuii4vHHHw+hE1X7Am+zzTbF2muvPb4qcYC5feaZZwoe9bLARTjDhhtuWL41ar+7OcZ51DI1Qh/iMY7HFDMKFllkkRH60vAky/jKkhHICGQExgKBgRHjxx57rHjXu95VLL744qEcmRiPRXUO5ps8hYycW265ZcJ6jH/7298WJ5xwQoFovO1tb6sFbrKe2OhwETpQJ7PPPnvdrXx9wAj84x//KKabbroBpzq8yb3wwgvFzTffPLwZzDnLCGQEJjQCA9mVwpQ0EmXx1s9+9rMAWA6lGJ9684tf/KK45JJLiuuvvz6EEliEJrRgosm9995b/OlPfypWWWWVxqJtscUWxR/+8IfwjF06eEr32GOP4q1vfWvxne98p5hrrrmKww47LNwXSmTae8EFFwyeVgv3xOLaMJxYMPbjH/+4mG222UIstzwceuihxQorrNB4L7xcIU3pedzx0Q8//HCxwAILhDjp7bffvlhttdVaKT377LOhrt/5zncWdiSZccYZi/33379w/fjjjy+++93vFldddVXxyCOPFIjwkUceGa6Zzlc2O5ikukFn6A9sGMa+Fb3K8iqWG0a33XZbONGPSE/s7LrrrtvK13333Vd873vfC/onXGP99dcvNt100woEOrskVhzRFy705JNPhjCMJZdcsvVyu3p9/vnnA07LLLNMIb6ax3a33XZrvd8u/aZc8ozCYv755w/6OP300xf77bdfIMKwElPsm9ddd12oFzhYFFsnwg9OOumkoIPK+8orr4RZvKiDTTqqzg488MBQh1OmTAmYOXXxJz/5SQixkq9U6vQHXkcccUSIQT/vvPOKJ554IuC+1VZbFRtvvHFIok43xfaLH7czDsOVTq688srFtttuG95jJJx//vmFMccsj7z51jzzzDNV3vKPjEBGICPQKwIDIcZXXnllsfPOO4c8mH4n2WPca5WM3XuMGYsnP/WpT4VB0SzAq6++OiGJMYJLENsmSWOu6bnB/Z577ik+/vGPh90BxNQjxgiJGGXk0LHN5Omnny422mijAtEzoNvxAiGIgoDYFg8hqrtXl7d27zBUkSrkG4GQvzXWWCP8ViZkBdlAnJGKl19+OZAWhEo5brzxxkAetesPfOADrWwg8YiJ2SF5j4LMIF3IL0FckEcEeqeddgpkzndXXHHFYERLV9jO3XffXey9996BuMsng+Gggw4qYG1nFOX0TbHfa665Zh0ctdeV97LLLgseSGkg63ZeUTcMFNJUr7yXQozUOQOD+C0tsb6dpF+XuQceeCDUOzxiCJPwHgs+eevp5sknn1wIaTFzsc8++9QlFa7DjoGh3pWRMOI4LD772c+21VF6gICr2zvvvDPkY6GFFgp1MN9884W0l1pqqZBuO/259tprQzuwiwaDCt6MIzrWpJt0bdlllw11fuyxx06zXeThhx8ejIbTTjst5EOa6oHxNpm86qHwWTICGYERQaDvUAoDLkK19NJLhwxarMW7lIlx7/VlQFpvvfXCoCgG1kIncbC2wTNIPfjgg8Xll19enHnmmcXRRx89FUHp9V3EzaBkUOUFNKj5vcQSS/RekCF+M8YUV8XQNmUbuUMAkTaeRqSX8LAtt9xyLVLsmmd4T9UdrzPy53mkkSDZc845Z+O98GCFNKWnLnnReIhjOe1HLX/XXHNNSI0u+X70tCFmPKKdxK8iSakwMhCvlLjxfO65557FUUcd1drphFeUWEQWiSD90lfEhVbekz6DjPAYvvvd7y5uvfXWqb7Z6Q/4wyDWszL6hjaUSl298pzzWEZS7B2k0+Iw0mn6Vfk1m7DDDju0sPDMrrvuWtxwww2B6HUr+oOZZpqpRYq9j9iuuuqqIal2OuqZiD+jx7tEHSh/utiynf6IAReixOvPiED0EfROdDN8tELsRsJw1+6iWANA/x599NGKN/KljEBGICPQPQJ9e4yRN56zdO9inR9PUZbeEDAdv9dee4VpZl4yXh9iWjoSnjiVywvIw7PjjjuGZ3p9l7ell8G4txKO/VvCB0g7PeU5NyXMUIgS4+jTUiC8iGhZFl100eBVVG8GdKEZDMe11lorTFtHg7LuHh1ACFLhdUOo694xvYxsvvTSS8XVV1/dehUZRagZV8JAPvjBD7buIVSR7JXL0O73Qw89FIyzcsgNki2WWxnSRYwp+Y6L6OLevIiULQJffPHF4I1HkGN4Rrt8VN1Hau0swusqLARJ1j/F8Jj0nap65VFHplMchRcIPSHdpJ9+S/mEHJQxU36zbnRG2+5GkP2o1/E9ZDhKJzoany0bSG9605ta+yd3oz9lTIWFNOlmU3m//e1vh7rjrRbGEWWxxRYLMx5ZMgIZgYzAIBDoixiLGzPlZao0FQciZI9xf9XDg2VniJRQ8K4ZEMTtRTEQlrfN6ufd/nI9ft42tW+qGqkT51sn7vN4pcQYeSmLWM4q4YFDDgmPmRACpAdZMyUvplJe6u4ht7fffvtUSTOW5KnunRgewrNp5iFKbKdIBK91Nzs7KIPZIN7DstSVXYwrieWP78XraToID/nLX/4SQim8IzyDl9li0F7l5z//ecDcvtxCXtRd3aLCqnplGFX1cTE/3aSflqEOM8/Ap4xZJ+UXSpF6tsvv1H0z1dH4TlUdxXuIcaf6U8ZU/ZI63Szn2W+GqV051AXhVU/zVx5/qtLI1zICGYGMQKcI9BxKYSATjxY9lekHTaGlnjiWPg+oRSZiMHlfxCnq/A1S4uos5MkyNQK8janw2pQ9OchN1UlY/bw7GeqB99TUM5LKc1cnFkfxGLYTsbNIUlkQ25VWWiksEtJeeIiFuyDExxxzTHHTTTc13tO+xMCm/5DFpvQYS7PMMktluRisQhnEEkujLKlBaxYhElbx5spSJcpOyuXnFSWIZaciRIhn0/8x9CISIl5e3uduRCiHdMSrRpIW0+NFjgfa1KXJI1ylHxGnXtNn5DIyypjyvOs7I6Z1+aq67p2mOm2no1VpVl3rVH+q3m2nm94pxwqLUybaESnXhzAZ4U1ZMgIZgYzAIBDomRgbECwsKndiMsVjpXOPsZSrr756GJwcaWqjehY+b+ipp55a7LvvvmElvIErb+g+dZXy5JSlypMTyUv6bD/vlr85UX+Lod59992D0VbloeMtZoikh5wgLtHrleKC5FpIlqYj9hH5slDP4F0OVRDzy4hsuleHfdM7dMTOERZAxSl/6ZhZMMtDtDdGaozldc1+uWmsprJHA1dZotc8lj/G7WrfvN9iY1NhCIgzjl7M+F6KX/w76rDZJqQ9Yu4bvq0vEcIQybf30sV/U304+SG9NLzArjnek67Zl9hH1dUrnBhPqaHPYxrL2mn65fwxci1ytcgxbb+cB8Ir0jCXuryV06Rnwm5iHbvvXfVA2uloTA+2ZR2XTprPTvSnKp1OdNNYweCPmMcxxg4yQpEYiamIm0/1fKqb+UdGICOQEegSgTe8HoM2xTvljrAuHYTW9j/+N2CJdxSfSJAChNl2TK+99lpYicxzJQZMTKMtg+J2PU4ae8973hMWBBGDuBjadrsE1OVrol3nNWMopAOk2EsDlMEhioHUIBJxdb2fdycaju3KY0rX7gQMNCRRDCqCiEzQ3XRHBnovBMIWdhbS8cqL9SUWjPEG2ypLW+JhZQjySosB/81vfhPaDA8lzydSpg1YZY9o1d2Li9TK5WhKzzs8ndK18A+hkR+etjjDI08Wjlk0x3NpVsdWcu5HIoK0i1kXE61tI8Ce++QnPxk8nUghsoz40j+ePe3cVluMAP2CLbdgyshABL0nNMI9JNd9U+XwlB/7SttBQlwx0moXD9uEKYeZEe0BKZUv70sL8a3rN4QV2ZWC8PLCQJ2LX7bwUIhFU716hqcSqVRv3tcOP/zhD4dFc52kX667+NsOGdq4xbWIOh2AkwVmQmXcs6ODnRd4ghk2yGE5PCGmx5Mrdh1plZ76hB/jTx2301FEVP8tVpmOq3PlU98WAcuDOrAYskl/xBF7RyywPNh6D87RqG+nm56Tf7MpCK82FhcB0w+hRXYJ0c7UBSIdvcl1WOfrGYGMQEagEwQ4ZaZ7fdAMwX3tphQ7SbDpGdvrIMsGGGJBmW12IvEQN4lIxO2AmtKaDPcMLAYVHqUopuCRN9PMUSzCQ+zOOeec1rV+3p0M2FaVUTMw8BvEkQEGW6/HYSN/3i2TNVP4SCJyhWymB4s03avKr2udvINcIirKVBUf7D4ShDRV3Udy7TrDuO1EtHFeWV5PXtFeBSkzPe67iDqSj4hWzVB18g1Em8QdNZDcOoJZl556hZEdPsrST/qxjpBwxtgghNEAr6q8Sr9OR7v9djv9aUqvnW4yZLTLeOpfmhY9UwZ6VjWL1vTdfC8jkBHICNQhwIE7asRY2ITOjDeD8GIgxv4R3mPEOK7Sr8v0ZLjOs2avTySY4WCRFYOCR4knxZ6mdgOxEwiPMbLFi8z46OfdyYBtLmNGICOQEcgIZAQyAhmBKgRGjRiLeTMlyENg6pY3CKlzgIAN7k3P+o0ki+zIx81WVVe+lhHICGQEMgIZgYxARiAjMFIIjBoxHqkC5HQzAhmBjEBGICOQEcgIZAQyAoNAADGedtuDQaSc08gIZAQyAhmBjEBGICOQEcgIjDMEMjEeZxWWs5sRyAhkBDICGYGMQEYgIzAyCGRiPDK45lQzAhmBjEBGICOQEcgIZATGGQKZGI+zCsvZzQhkBDICGYGMQEYgI5ARGBkE3jgyyeZUxyMCNtN3NLe9ax0ksssuu9Tugzoey5fznBHICGQEMgIZgYxARqAJgYF7jO2za+u1LOMPAfslOxXMQSLLL798sc4664QT2yaDOMTCPtG2D3TKmkMviNPAnPCWZXgQcOKm0+CcejZZxOmA9nl3uqDT57JkBDICGYGMwMggMHBi7DjTCy+8MHgcs4wfBBg0jsmNJyA6wtXJWROdfCj3KaecUnzoQx8KlfXRj3602HzzzYuvfvWrxRVXXBGMBMcVZ/k/BJykd/DBB4ejnMdCfvSjHxWnn356qKvJII4o32677Yqtt966OOOMM4qLL754MhQ7lzEjkBHICIwJAgMlxo5wRa4ID1yW8YOAY1UNuI4OjoIk93os8ngouQNnHCrz1FNPFXfddVex2WabFbPOOms4ZvaQQw4JRwbfcccd46EoI5LHH/7wh8XXv/71adKG15e+9KXiueeem+beaFx473vfO2lIMTwvuOCCYKzNMcccxXHHHdc6LXQ0sB6rb3zxi18s/ud//mesPp+/mxHICExiBAZKjHmKEQrinPss4wuBTTbZJHiJibCCueeeO5DFiSoXXXRR8fjjj4fQCcdql2WbbbYp1l577fLlSfP7mWeeCUeQlwUuwhk23HDD8q1R+/3mN7951L411h/iMZ533nlDNhgFiyyyyFhnacS/z/jKkhHICGQExgKBgRHjxx57rHjXu95VLL744qEcmRiPRXUO5ps8hYycW265ZcJ6jB1LfsIJJwSi8ba3va0WuPe///219ybyjT//+c9BB+okH9teh8zgr//jH/8opptuusEnPKQpvvDCC8XNN988pLnL2coIZAQmOgLTusl6KLEpaSTK4q2f/exnIYUcStEDkEPwyi9+8YvikksuKa6//voQSmARmtCCiSb33ntv8ac//alYZZVVGou2xRZbFH/4wx/CM3bp4CndY489ire+9a3Fd77znWKuueYqDjvssHBfKJFp7wUXXDB4Wi3cE4vriEliwdiPf/zjYrbZZgux3PJw6KGHFiussELjvfByhTSl5/FvfvObxcMPP1wssMACIU56++23L1ZbbbVWSs8++2yo63e+852FHUlmnHHGYv/99y9cP/7444vvfve7xVVXXVU88sgjBSJ85JFHhmum85XNDiapbtAZ+gMbhrFvRa+yvIrlhtFtt91WfO1rXwv5kJ7Y2XXXXbeVr/vuu6/43ve+F/RPuMb6669fbLrpphUIdHZJrDiiL1zoySefDGEYSy65ZOvldvX6/PPPB5yWWWaZQnw1j+1uu+3Wer9d+k255BmFxfzzzx/0cfrppy/222+/QIRhJabYN6+77rpQL3CwKLZOhB+cdNJJQQeV95VXXgmzeFEHm3RUnR144IGhDqdMmRIw+/Wvf1385Cc/CSFW8pVKnf7A64gjjggx6Oedd17xxBNPBNy32mqrYuONNw5J1Omm2H7x43bGYbjSyZVXXrnYdtttw3uMhPPPP78w5pjlkTffmmeeeabKW/6REcgIZAR6RWAgxPjKK68sdt5555AH0++kymOsU/v5z39ezDfffGEAyDJcCDBmLJ781Kc+FQZFswCvvvrqhCTGCC5BbJskjbmm5wb3e+65p/j4xz8edgcQU48YIyTCTpDDhRdeOCT59NNPFxtttFGB6NF9O14gBFEQEItUEaK6e3V5a/cOQxWpQr4RCPlbY401wm9lQlaQDcQZqXj55ZcDaUGolOPGG28M5FG7/sAHPtDKBhKPmJgdShfYIjNIF/JLEBfkEYHeaaedApnz3RVXXDEY0dIVtnP33XcXe++9dyDu8slgOOiggwpY2xlFOX1T7Peaa65ZB0ftdeW97LLLggdSGsi6nVfUDQOFNNUr76UQI3XOwCB+S0t8eifp12XugQceCPUOjxjCJLzHgk/eerp58sknF0JazFzss88+dUmF67BjYKh3ZSSMOA6Lz372s211lB4g4Or2zjvvDPlYaKGFQh3os6W91FJLhXTb6c+1114b2oFdNBhU8GYc0bEm3aRryy67bKjzY489dprtIg8//PBgNJx22mkhH9JUD4y3yeRVD4XPkhHICIwIAn2zUwMuQrX00kuHDFqsxbtUJsa8bgbIW2+9NZCLLPUIGJDWW2+9MCiKgbXQSRysbfAMUg8++GBx+eWXF2eeeWZx9NFHT0VQen0XcTMoGVR5AQ1qfi+xxBL1GR3Hd2JMcVUMbVOxkDsEEGnjaUR6CQ/bcsst1yLFrnmG91Td0X/kz/NII9EO5pxzzsZ74cEKaUpPXfKi8RDHcv7zP/9zyN8111wTUqNLvh89bYgZj2gn8atIUiqMDMQrJW4M3z333LM46qijWjud8IoSi8giEaRf+oq40Mp70meQER7Dd7/73aHf6EXgD4NYz8roG9pQKnX1ynPOYxlJsXeQTovDSKfpV+XdbMIOO+zQwsIzu+66a3HDDTcEotet6A9mmmmmFin2PmK76qqrhqTa6ahnIv6MHu8SdaD86WLLdvojBlyIEq8/IwLRR9A70c3w0QqxGwnDXbuLYg0A/Xv00Ucr3siXMgIZgYxA9wj07TFG3njO0r2LdX48RanwHOhcDZaxo+4+u5PjDdPxe+21V5hm5iXj9SGmpSPhiVO5vIA8PDvuuGN4ptd3eVt6GYzHa40IHyBlPS2Xh+fclDBDIUqMo0+fRXgR0bIsuuiiwauo3gzoQjMYjmuttVaYto4GZd09OoAQpMLrhlDXvWN6Gdl86aWXiquvvrr1KjKKUDOuhIF88IMfbN1DqCLZK5eh3e+HHnooGGflkBskWyy3MqSLGFPyHRfRxb15ESlbBL744ovBG48gx/CMdvmouo/U2lmE11VYCJKsf4rhMek7VfXKo45MpzgKLxB6QrpJP/2W8gk5KGOm/Gbd6Iy23Y0g+1Gv43vIcJROdDQ+WzaQ3vSmN7X2T+5Gf8qYCgtp0s2m8n77298OdcdbLYwjymKLLRZmPLJkBDICGYFBINAXMRY3ZsqLJzgVByKUPcYGEx4IHuVMjNtXHQ+WnSFSQsG7ZkAQtxfFQFjeNqufd9vnbGI8YWrfVDVSJ863Ttzn8UqJMfJSFrGcVcIDhxwSHjMhBEgPsmZKXkylvNTdQ25vv/32qZJmLMlT3TsxPIRn08xDlNhOkQhe6252dlAGbZf3sCx1ZRfjSmL543vxepoOwkP+8pe/hFAK7wjP4GW2GLRXEboFc/tyC3lRd3WLCqvqlWFU1cfF/HSTflqGOsw8A58yZp2UXyhF6tkuv1P3zVRH4ztVdRTvIcad6k8ZU/VL6nSznGe/GaZ25VAXhFc9zV95/KlKI1/LCGQEMgKdItBzKIWBTDxa9FSmHzSFlnriWPq8keLB8uEfnVZNUfA2psJrU/bkIDdVJ2H1827nORy/T/KemnpGUnnu6sTiKB7DdiJ2FkkqC2K70korhUVC2gsPsXAXhPiYY44pbrrppsZ72pcY2PQfstiUHmNplllmqSwXg1Uog1hiaZQlNWjNIkTCKt5cWapE2Um5/LyiBLHsVIQI8Wz6P4ZeRELEy8v73I0I5ZCOeNVI0mJ6vMjxQJu6NHmEq/Qj4tRr+oxcRkYZU553fWfEtC5fVde901Sn7XS0Ks2qa53qT9W77XTTO+VYYbONRDsi5foQJiO8KUtGICOQERgEAj0TYwOChUXlTkymeKx07jGWcvXVVw/TggaZAw44oEDwsrRHoGqBYpUnJ5KXNMV+3m2fs4nxhBjq3XffPYStVHnoeIsZIukhJ4hL9HqlKCC5FpKl6Yh9RL4s1DN4l0MVxPwyIpvu1SHd9A4dsXOEBVBxyl86ZhbM8hBE0ULBGMvrmv1y01hNZY8GrrJEr3ksf4zb1b55v8XGpsIQEDoVvZjxvRS/+HfUYbNNSHvE3Dd8W19i1imSb+91crqm9NLwArvmeE+6Zl9iH1VXr3BiPKWGPo9pLGun6U8FzOs/9IEWuVrkmLZfO1QIr0jDXOryVk6Tngm7iXXsvnfVA2mnozE92JZ1XDppPjvRn6p0OtFNhgyDP2Iexxg7yAhFYiSmIm4+1fOpbuYfGYGMQEagSwTe8HoM2hTvlDvCunRM79v+x/8GLPGO4hMJUoAw247ptddeCyuRea7EgPEaG4R6WVlel5eJfJ3XzIKkdIAUe2mAMjhEMZAaROI2SK738+5ExrSqbKZ07U6w7777BpIoBhVBRCbobrojA70XAmELOwvpeOXF+hILxniDbZWlLfGwfv7znw9eaTHgv/nNb0Kb4aHk+UTKnLZnlT2iVXcvLlIr570pPe8wQqVr4R9CIz88bXGGR54sHLNojudS+7SVnPuRiCDtYtbFRGvbCLDnPvnJTwZPJ1KILCO+9I9nT+yyrbYYAfoFW27BlJGBCHpPaIR7SK77psrhKT/2lbaDhLhi/YVdPGwTphxmRrQHpFS+vC8txLdudxFhRXalILy8MFDn4pctPBRi0VSvnuGpRCrVm/e1ww9/+MNh0Vwn6ZfrLv62Q4Y2bnEtok4H4GSBmVAZ9+zoYKaNJ5hhgxyWwxNiejy5YteRVumpT/gx/tRxOx1FRPXfYpXpuDpXPvVtEbA8qAOLIZv0Rxyxd8QCy4Ot9+Acjfp2uuk5+TebgvBqY3ERMP0QWmSXEO1MXSDS0Ztch3W+nhHICGQEOkGAU2a61wfNENzXbkqxkwSbnpQaYmkAACAASURBVDnrrLNCJ4cIZGmPgIHFoMKjFMUUPPJmmjmKRXiI3TnnnNO61s+77XM2MZ/QDAz8BnFkgDe31+OwkT/vlsmaKXwkEblCNtODRZru1SHeyTvIJaKiTFXxwe4jQUhT1X0k164zjNtOhEHMK8vr2c/MEFJmetx3EXUkHxGtmqHqJF+INok7aiC5dQSzLj31CiM7fJSln/RjHSHhjLFBCKMBXlV5lX6djnb77Xb605ReO91kyGiX8dS/NC16pgz0rGoWrem7+V5GICOQEahDwJ7vo0aMec4QY6vzszQjwLNmr08kmMfSIiseKx4lnhR7mtoNxE4gPMbIFi+yvT37ebc5V/luRiAjkBHICGQEMgIZgYmLwKgRYwtmkDikzt6dk/WY3YmrSrlkGYGMQEYgI5ARyAhkBMY3AqNGjMc3TDn3GYGMQEYgI5ARyAhkBDICEx0BxLjnXSkmOji5fBmBjEBGICOQEcgIZAQyApMLgUyMJ1d959JmBDICGYGMQEYgI5ARyAjUIJCJcQ0w+XJGICOQEcgIZAQyAhmBjMDkQiAT48lV37m0GYGMQEYgI5ARyAhkBDICNQi8seb6UFy2f6r9XrvZD9X+nfZszZIRaELAIR5Vp2XZE9WJb7bAGy1xkIM9q19++eVi7bXXDgddZBkMArY4hO+yyy7b9THLab2su+66A9tjeDAlm1ipOPDGvtX2cXbwyXiQkdYPfVQ86MYBKWMlxlR7nTtUaPPNNx+rbOTvZgRGDYGh9RgjCk4O64YUQw2Zvvjii0cNwPyh8YmAY3MvvPDCcIrXgQceWDzyyCPh1DanNjpIxQlrTlUri9O2HL3rBLhBCZ398pe/XOywww7hdLYsg0HgYx/7WDhsxCEXtoh0IEo3oi6uvvrqUC/qaLLISOh4O+y0p0MPPbS46KKL2j06NPdHWj8cNuRkSHvTj6U4IOj8888vdtppp7HMRv52RmDUEBhKYuxUquOPP74wsHUrK664YjH99NMHgpMlI1CHwHbbbRcOTiGOmXXE76677hqOB77kkkvCkbYOV+FxTIVXy3HHjqIdlCy11FLFKaecMqjkxl06p59++sDzjMheddVVxT777BOOsnYyZNNJhuqUBzAVxx47Mnu8S7f4joSOt8Nw7733HmpvJCP561//+qjqx1ZbbRWO8x5rMYuVT6wd61rI3x9NBEZvvriLUp199tnFzjvvXHlEbSfJ7LnnnsVmm21WrLfeesVMM83UyStD9QyP5XPPPVdsvPHGxYYbbliYZnRkt2m14447rnjiiSfC8cUGcv+mTJnS8qz38+5QgTAKmWFAkapjhldaaaXioIMOKg444ICCdzkerStMB/ZCfAYpb37zmweZ3LhKC76DFtPQjtwWGqPuzAA0yVNPPRUMobKM93rRZ3Q7CzFSOl7Gtvx7mLF+5plnKg2rkc7zSKdfroO638OSj7r85esZgUEiMHQeY9OdvL3ve9/7ei6nwRAxvvnmm3tOYyxfvOCCC4rFFluscGLgn/70p2KPPfYIJO3xxx8PR2ojcrvttluYerznnnuKG264oZXdft4dyzIP47d33HHHgH/ZmztoUjyMZR+tPDnSnKExaPnHP/5RafBUfeeFF14Yt31FVXnSa5wMvchk0XHrDOhKkxiThF1lyQhkBCYHAkPnMb7vvvuKddZZJ4RD9CMbbbRR8KSO17goXhvT+KaxoiyxxBLBe3zeeee1rr3zne8M3uVU+nm3H8wn2rvIAQPl/vvvD0UT4rPXXnsVL730UjBUtt1223D9yiuvDPrq3yuvvBLqDeHzP0Pl17/+dXHppZeG32Lmf/nLX4awDWE/TWLBC+NOPrxj9kM8NMMvioHdVLnj1i3as4BPmMiSSy4ZHjHTgNi/4x3vCHn73e9+F8JEeIDE4t90003FHHPMUSBQpooZXU8//XSIo5bmvffeW/zv//5vMNLEOs4777ytbz///PMh7GSZZZYpxCFatMhgI1UzF77PgylucoYZZgj5+tKXvlS89tpr4ch4AtOVV1659Y2qP/7617+G0IhZZ501YC6OGJ6LLrpoePyaa64pbr/99jCbIl2Yn3jiiVVJFV/96lcDfnCRrxlnnDF8P9ZtfEke5RU+vMtbb711YUFelCacKz/8+sV+8b/iiitC3DR94HX/6Ec/2qr33/72t8XRRx8d6le9RHyPPPLIgAsDm07pS8xAed/Uvf6mrOMPPPBAiLWmB7BXb7PNNlux7777tmaqTj755KBHdaJfFzM788wzh/5q/fXXLzbddNO6x1vXhXVoQwsuuGDQx//6r/8qDj744MLpVKQTPYuJ0e9HH3005B1uCyywQPj/rrvuKq699trKvOhvhfXRf6E51iJoj3BMpZ1+IN/idGFoYS9jUB3MM888ld8tX9QOtTHx3zAxkzXnnHNO9Ri91O/MP//8waDXNvbbb7+gs/ow9eZdjifPEeUq67Lr0tI2pCWdueeeu5ylyt9ixbVNYUjK5l36pd+IsdLt2m9Vu4h5gvtCCy3U+nZTH1SZwXwxI9ABAj0RYx3Miy++GJLff//9W5/RCZu2XO/1EIZeRdp17999992hc/jpT38aBi4dvIYhL4jKXHPN1fosEqmzf/XVV8ftavI40MdCGeANcqkgOH/84x+ngbufd6dJbBJfMPg8+OCDgRAY1JGu5ZdfPhBOYiAweJ566qktlGL8sVmL+eabLxCoG2+8sTjppJPCM3RYXLOFRgy4OjHoI3zbb799eIQHG4lLB2VElE5E4oeAIyzf+ta3wq4bm2yySRiAt9hii5DGpz/96eKoo44qzjjjjDBoIoLnnntu8dBDDxXiPAmDUnvyXWFJRBq+ET1nvKzSNmOBYBC/kdUtt9wykBkEy8C75pprhlkPIjSIIeFbymHA9Cxi1YkgGNq+tC2oI1bLw1qcMIMATogUQtcuXeETdqxYYYUVimOPPbYVMlPOi/qDAUKvvPL//e9/P5CcdjiX04q/+8EfUbrsssuC4QRzOzmYZWPUIH7+wRWRcj/FAbFDBBdeeOHiK1/5SqgH7yFPwrfKOo4sr7LKKiEchXEmRIXQHUYRLJoWSWsr9Em9aztIG7zli27Uif5dvV5//fUhr0Q+tRlEW110omfeu/POO4tjjjkmzLoxJLQD7RTZXXXVVeuyEHRD3dMr4X1V4TZebtIP98XoIqinnXZa+BastRNEuyqUK82QMU58fGyLwjrsUoHQR8JK15XplltuCbgQ/Ys+RJvlbOIwYYx7Rlk8Z0xNddl7CDFc6ZY+j+gzOpEf/ehHweDZZZddwuOPPfZY0K9IxDtpv03tQh0yCEm7PqiT/OZnMgJVCHTtltUx6Wx1kgaSdMsrA79Bqh9hqUZvV5oOcqJz0Ig1PCvFeTx0kgZ25CQVnQ1SYvAar1LlNU+9hbFcVVOB/bw7XvEaiXzz8JCIMb1KvTx00OBmF5UokWD6HQcui8CiILIW1fB8xfRbN5M/PMcDHMVgaNCKgpQacCwYjMJrt8EGG4SfBhCDRyTFriE+rvO+EYOleFwDZxRGJeKVbs1kZoLHLwovGs9qJMWuI2bIaRRpG9TLsx5pOq2HO/xD2JCFUJEUew3RQ8pHcoEQAhgJB3zE7cbFep3gXFe8XvE3O4CUx3qUP21eP9mJMKgRXMQHQUWe4mLUso5LDwlGmOm5HVSMA8g4z2UTKfaufOmLOSliWnaDufXWWxuzykBbbrnlWqTYw4i1suvzo3SiZwwAXszYf9JdMzjGMmn2K036gSx+7nOfa5FF39ImOHh4sNsJ/X7Pe97TegwmDAskMYq+xJgYddR1RrX2on8ivL9EH1Gny4wYaXF4RVLsnbS9hURqxKzQhz70oXDXrAWD2GyFBbCk0/Zb1y7S2dFO+qCabObLGYFGBLr2GGtkBn4Kbpo57veKIJgeWmONNRo/2O6mqZ6q+LYf/OAHLY+WqWn/WNzIsmnTqu/qAKSXJSPQKwL0GhGqW3yCaJr641EzxYe88iy2EwMFL7M2s/jii1c+burV4GJQR3ANsOnsAC8RHY8LAyWSLjJ7+OGHQ1syDR7F+7zgCHecYbF3bPQCek5ZEXrXo5RnJqSNDKRpa5PlvaGrZi6qZjhaH2rzB09h9B6mjzIizjrrrEB06uqqTdKNt9OZmph+LEenONd9oBf8Ebs77rij4D3k9dQPM96E+3QjdbpXlQYCzevLYEK66sJTyu8iWLyzZva+8IUvBIIspKbdft3qOs6WpGnSKYZb2s7a6ZkZBIZkFKEPdLxpp5JyOZp+N+mHWSV1I6QgdeAYP1PDty79qj3VebLNDhG4MkCFS6UCd2WEVTo+NuWVY0qeEO9UqhwyVfk1WxMx5a1WL+nuUt2036p2kfYdnfZBVfnM1zICTQh0TYxNcxBhE+m0Ek+FhtlpzFRdpnicU0s1Ppd64XQ0Gnp8LrWm03RjzGXdt4b5uql7/1Lx28Cfit/lnTf6eXeYMRntvIk7Fb+aenvLeeBJM+gjqdoALxhvkCnblLCW34t1FkMyyvf95sUz5W36VRwgEpp6mBCMJm+d+EmhCuU4+7Qt+U7VoFd1LZ2ZkLbBs5x2uRxVMxdVMxzxPYZIGsdcTo+hUCXyi5TDpCnWterd8rWqPDTh0SnO5e/E31VpV11LcXPogulwhthhhx0W+sJ2C8S8bxu7NF60qq+ty6frSy+9dOh7eVsR0xjr2/SOPkoohboTCsRzWbVHeDkN3scqoVNlPWinZzzbYsSFB5iRRPAZnr2IbyN/2n6UpvqiH4QxkT7Xru005U27ZwSp0zqcvO97Zaya8hqfbepXmvIV456RduM0R5q6QdwZAuW8pPiV229TPr3XaR/UlN98LyNQhUDXoRQSMZiLTeKxjYIYpItRqj7WyTVeCTFoTYIcpNOzdc+yLsXajTexSAHBQq5Ma+kA7UAhpkwsqKlzHg//I2OIWZxG7ufd8YbTSOfX9Cf9afIA89Yhz0IRLGozENjqjZcmlTIZNANiOtP0bpW4bwrS4jbTziQ1iugBYmoxUpyijumY4mcc8SqKZy5/O96v+m6n16RtsCtLt1uDeT/NH+94k8AWKSyLBZE8yb2Q4nKMZ7s8lL89kjiXvxV/i/lEMIWzRXIbCRgvcjS4lC3iq8/od393i/Us1ESOeQQ7kcsvvzzEBPs/TufHvOrbxKFXiXjYurqmB92IvlRMNqOLrmjbTfH95bRTHMXNSqNTiXkttxdhMJ3MaJbbr+9amEvv5MuMFpJezpM+QP/QbpFvWg5hGoRHP5WqPEz1QPKD/hmHHNAVZ6JiCNgg2+8g+6C6suTrkxOBnoixOB/TiRpkFAO1zhIZNWXEu8Ui1iGJSTPdzMsgRs3fVsg6aawspnfrrErP6tx1pOmCiTIJiWlKJ12QV/7WsP4Wqy0O0/S5Fb4GvjPPPDNMpetcDUxIlf9NxbseF3X08+6w4jFS+YpEsyrO12Ia8bIGc8ZaKgacGDIgDd6nKAYqIQZpaIJ76eDvfYTX4BGnHWNe4iwBj5q00ilidR1jSg0+FqHxfhnwU/Hb9KsFavTkm9/85lT3ec7i9Kzv+mY68LmWknAvl38jZNqdgTcKgzbdOrBu5iL9lvLFU+WUrWraOM08b7d0kZMoSJYFRWJSo8hvOawjTSf9G1nTn8WypEQ5ljstf/w7lqMTnOu+3Sv+DCdx31EYZ3CBoen6qNOmzWO5rLfg8U0xKtdrvJfqeLxGZ4VemBXk+ZWeRVrtRF6FMkRdl0fxtfIo/CaSX3lJ8yOGlgMmHQ+8R/ftmpLmNbab9FqqZ3TBOKQtM6Doaqf6Ic0UR3mQBulEP4RZifNP+wnvitnuJA+MzbSdMXqMpfa0J7y7+hJ9Vlpm6w/M4sbwqk7yqlwWzkkrFeM7aRcGxUi3foLRFI+x9o4xinTTfqv6pbR8nfRBUxUi/8gIdIjAG14fTKZ4tq6DrEpHx2BQND1FxCVZ5a6hmj4xWFttbFWsdG0jxBJlofNyWUmPsFo9b1BJhTdYXGS6AE+j5I12OpkB0M4VvmUaj0fM1Gc6SMT0bL/Es5JOeVWVJ1+bfAhYwc3oQCgMzEhnXMxmQDEQiYdMjT/eHV5csyM8NjHWFBERAsT7xTPm/7gq2yBmypbeW+RmkKOX4jQNHkiYNsPbzOODRAgBsnsDcmw1PcNIukKX6L7n1lprrTA4W4jK+yX/8uC+doa8yJ/7jCZtlqeY58ZKf8Qd6ddGlRXJMfjzliq3NsWIVX5ecQvMxDIqNy+39sn7g7woL4PNzIU2iowbqH2LcecdHnXYIenaLNwtErTIxqwHbBjcrjWFoEjbQjsn0iHUysVAFIsaF/0wynk2lQGJYkyLyawTU7bImvAwRMV0sHLrd5QD3upC+AtdUX/Shpm6gkcTznXf7Qd/34wGEZ2Cv8WP6k7dR1JCR5BX8ZqcFEiSOqFvHBjqmBHueThU6bh6N2NFB+Cib/dNRM/6DvWmztJttNIyI2dCGHghkWE6ICTPAjqkSZ7UJ32hG/7RAws7EXnGvnGEMcQLyUkQZ1o61TM40FXkWDmkIfSEDvlWedagXGfaCxyNTYi6NQKd6gdjwi40sNLHKIu2wiBr5/mGrb7AuAhzdUXflUUfEMVCSO2b0UuXEWf50zcwBrrJq6309Dv6pVhfCK92ypmln4ie/zJO8qV/lIb6Us44u2EBXyftt6ld0CG6Tg/pQFMfVM5b/p0R6AQBBvx0r1tgYXfzpljHcmIatphHMVM6lNjQDcgaZwy2ZyXrAON+lbxDtpHSqHQuyIJOOhWkROMz+ETRSHWciLSFASxJHSovBMs/bmOTpiNdYQjpKv5yOfLvjEC/CCBdOnv6iKQheumiIh05EmlAc52HzMBSFRNZlRfeUOkiHRqsQQ95Ky8a0p7ERGsTVYI0a+N196ve6fQa4sj4bCK07dIy2CEf7RZkpekok3KXFx21+1bdfcRDd9gU41z3brw+kjhXfTtOedv1gTBSynHD+kuGk/6319jRqm93e01dId5iTY0b+m5tpx0p9R06Rud7mQFE7hgNnDcxVCCmafcFIYFVY0i5fNoXIi3/vYr+QlnobFUMbVO60bOuj6kTZWVYMI7SxbN1zzddVz8MQP0VvfK3Ni68rJM6a0rbvUG230H0Qe3ym+9PDgQ4XHsixhEe3gYxfTHgnmch3b4JMeZpiPsS61BYvhqXBQO2ySkTYwSDhczCTRsfi1VDiunH6bW6GGKeMINA2SM9Oao2l3JYEEiJ8UiQ0mEpZ85HRmBYETBOORinHFIkv2YXGK0cL1kyAhmBjABi3FOMcYRO+EJ6+k5Kij3D+5LGBNX9nVaF6UpTdfG0sXiP9ZumHzexr6pG3xFy4QSwLBmBsUKAhynG5tlayO8sGYGMwOgiYJziURdCka4nQJivu+66EBObJSOQEcgIRAR6ijHuBD67KthqimfXQjl/WxFtWs9vizes4Dd1anFCKu6LIRZT2e10k3TE3knDqtUsGYGxQsCCO9OaYmJNRZrBqIvNG6s85u9mBCYDAsYSoURC9awJEK4ntl78a1NowmTAJpcxI5AR+D8Eeo4xHg0QLQwx9WWRSDdiWkxc8dFHH93Na/nZjEBGICOQEcgIZAQyAhmBSYxA3zHGI40db1vcSqnTb5keq9qhotP383MZgYxARiAjkBHICGQEMgKTD4GhJ8aTr0pyiTMCGYGMQEYgI5ARyAhkBMYCgb4X341FpvM3MwIZgYxARiAjkBHICGQEMgIjgcAbRyLRbtO0P2O3CyB6eafbfOXnJy4CDpSoOnXKYk/7drY7gW2QyNj7WwiQPboddd7NXr6DzMdETMtBB/B1wEc3R+PCIq0XBwz1uy/ssOFrT10nFdJ55eu2Dx628gxjfiz0s3cz3XEIx3iQkdZ7fW887CUeRDMWuOAQDh+yDawDl7JkBCICfW3XNggY7V6RHu/aaZpO3itv6dbpu/m5jMCTTz4ZTr5697vfHfY4tUOKlep2TnEindO4nHZWFofZOI7WqVCDEocGOJFrhx12CKdbZRkMAg4acsKefdOduuWwlG5EXdjnVr3EY6u7eX+kn3USm1PCehGk2G4pji93OqDTSbMMHgH9hL387as/XmSk9d4CeQd4ObVwLMUaJqeS7rTTTmOZjfztIURgTImx4y6dhLfVVlt1Dc3OO+8cvB1OvMmSEegWAXtcf+YznwmvOa7VUcZOcjzkkEOKSy65JOyGYosnHsdUeH+++MUvhqNOByVLLbVUccoppwwquXGXjq0bBy2IrKOs99lnn3B8r+O/y6cFpt9UpzxlqThydpgPfpBnxzL3IvRaLB0vOr0/7LDDeklmwr0zaF3ce++9h9obORZ6b7wfhr2jzc4dfvjhE06Hc4H6R2BMQylsqfaFL3yh51I48lkavXpNev7wCL/IY8lo2HjjjcMpgKbj7MFp+sn+zrayc8Srgdy/KVOmtI567efdES7W0CUfj2WuOt50pZVWKg466KDigAMOKHiX43HHppthP/vssw+0PG9+85sHmt54Sgy+gxbTtY6YFiag7swANMlTTz0VDKGyDHO9PPDAAz3t866M8InHSC+99NLlYk/a3yOhi8OsQ2Ol98OCybDkY9I2uCEt+Jh5jB0NPe+887YIRy/4OGLa9OhPf/rTXl4f2ndMkSqbAyKcV7/HHnsEkvb4448XRxxxRDgqe7fddgtTdPfcc0/wnEfp592hBWSMMrbjjjsG/Mve3EGT4jEq3lB81oELDI1Bi9Mvqwyequ84lv7mm2+uujXU15wS2uQFb8p8N/g0pTOR7o2ULo4FRtZPpCfNVuVhvOp9VVnytYzAIBEYM4/x17/+9RD3169ssMEG4TSjiRYjxzNputN0T5QlllgieI/PO++81jV7NvMup9LPu/3Wx0R6HwFmoMRYdqfX7bXXXiF8h6Gy7bbbhuKazuZ99u+VV14J9UYn/c9Q+fWvf11ceuml4bfT7375y1+G6et2i8EsDEHY5MM7iJB46PQ0SAOg6d+///3vYdGeBXzCRJZccsmQNzMNiP073vGOkDfHUgsT4Sm5+OKLi5tuuqmYY445irPPPrvQJpHJp59+OsRRS1Msv2N0GWliAhmzUZ5//vkQdiJOVbyeRYsMNlI1c+H7Zj3EF84wwwwhX1/60pcK8a6f+MQnwnswbXdipdMzhUbMOuusAXNxxPBcdNFFQxrXXHNNcfvtt4fZFOnC/MQTTwz3yuIwIPjBRb5mnHHG8P1Yt/F5eZRX+PCybb311mHBWpQmnMvfjL9PPfXUcIiRUBqhYQ8++GBoy5/73OfC4s+mNI855phw3LgY+Rju0Qnmvn3SSSeFenUqKXzoiqntdri2y28/uliV905nyZSpThfFy2oz9M7MGkeK9sgY00/ut99+oTp61cX77ruvEDM788wzh7pbf/31i0033TRWce3/QrL0DQsuuGBoZ07hMwMqvIVU4VFuPzFx7ZajabbZZgvlW2CBBcL/d911VzhxtkoGpffItzhdfQSdhSvnzTzzzFP12Wmu0UN9h7UbMDFDN+ecc071nPamP3WmAUeFNq/etEV9s7rzrvUhniP6q3IbdV1ayi4t6cw999zT5KnqglhxfY7wKmXzrplb/WGMlW7Xfqr625inI488slhooYVan67T56q85WuDR6AnYqwhvvjiiyE3+++/fytXBlnTluutt17bnEqjjsw6015D0cjEAHmW0iEkQglSWWONNYLntC6tthkZ4gfiQB+zaIBHPlJBcP74xz9OU4p+3p0msUl8QSeNsNA/gx/StfzyywfSQnSYjBWkIUqMP95ss83CdDUCdeONNwZCQgwE4potyNloo41a75X/MDgifNtvv324xYONxOlEoyCidCISPwR83333DbH7iIoFVgaqLbbYIrzy6U9/OhyDe8YZZ4TBBRE899xzA8kSD0kQCMTfd/fcc89wTRq+YcEi4W2SthkLAzHxG1ndcsstw6DPiDBArbnmmmHWgwgNYkj4lnIYWDx78sknh/vtxECMtEo7GtZWlcNavCSSByeEQ6hBu3SFT9ixYoUVViiOPfbY2hks9QcDhF555f/73/9+IAPtcK4rk/S8j8Tr26yMpxMG+bnmmqux7tQFEpEu1uwEc3kxkDOu5D/i0wmuTflVj/3oYlPefZcuRqNLn4+gqGfSThevu+668Pydd94ZCCcCgmDFtskw6UUX9QHaCX3WJ0iTHmkDdL5OGGz09frrry8WXnjh8BhjVF+AaNOxJjxi+/GeMjGSzCaqU+1b/yO+ftVVV63LQggb6lfvJW58RlBPO+208C1EVfu3mLndjA3yZ8Yj9jEWgdqlAqGPhFUbVqZbbrkl4EK0EfWoL1pnnXWCgcPJ4BkGpufuvvvuqdqo9xBiuHI26MuJvrAT+dGPfhQMnl122SU8bsMAOhOJeCftp6m/VYd4D2mnz53kNz/THwJdh1JowEirmD0DSbrllYHfIJUKQsFaT4V3hmeryloTL6yDMPCxgP3NK6IB8ZRGQhLTQwpGIi6sP1gH83aMgU1TS72F8XrVlFk/7w4m9xMjFZ4QEjHW2afeEJ5cg4Dt1qJEgul31HGLwKLQWR46HqKYfutm8ofntJMoBg2dexSkVMdswWAU3l+zKERHq5ONpNg1ceuu81IRg4p4UwNMFDMTPDnpFkZmJnjGohx//PHBsxpJsevve9/7AjmNIm2DX3nWI02n9XCHfwgbsltIOtvEo46Uj+RCGl7xODDDByGNi/U6wbmueDBiPBh0pcsZgGR2kmbqve8X805xrcvvoHSxSl8YninRLM+StdNFfSESbCyKXjkGId0tz7bV1VPV9Zjuq6++Gm5L01hlp6UmYXgut9xyLVLsWcTajA8jNUon7ecrX/lKIP1xXNAmzUwZo6XZrzTpPbJodiOSRd/S1oU28mC3E+32Pe95FBqipAAAIABJREFUT+sxmDAskMQo+ki7wsS25zpnAX3V7xLeX6Lvq2ujeIO0OPIiKfZOp7PWvPUf+tCHwnfMtDD0zbZY2Eu6aT9V/W2qh+30OXwwy4gi0LXHmDIa+CmCaea43yuCoFNnzUfhkbDyXwPnATE9S3hEquI0KS8CHDt8U17eM2D4X8OJU03xG6aXkRWKy1LPkhEYJAL0mv7VLdJANE2RrbLKKmHQRV55uNqJDpWXWZtZfPHFKx83RakTNvghuAaidHaAN8VgEBcGSiRdZPbwww+HdmbLsSje5wVHuLUpYo9VC9WiKCtCn+7bW56ZkLZBM01bey3vDV01c1E1w9H6eJs/eNSily19lBFx1llnBUJQV1dtkm68nc7UxPRjOTrFue4DBnb9WCr9pNkL5t3gWpXfQeliVd7bzZJ1qovldMzA9aOLCBbvrNlTi8gRZE6gdvuQwzrOAqV1ruwM0rT/qMIjzbOZEUZJFCE/2m6vsedlHW3Se7NlHAZCChgvUfCC1KAvpxl/V+0Vz4tt1ovAlaEkDCwVuCsjrFK+0ZRXIRTyhHinUuVomuqB//+H2YmIKW+1erEdZJRu2k9Vf5vWaaf6XJXPfG0wCHRNjGNMlrCJdBW36WYKnHrTxOToAJCGaFXLNq9yarXFoiC9aYeh4cVvIAD+VYmOSJoTiRjzbviXit8G/lT8Lg+q/bxbhe9kvWZmQ/xq6u0tY8FLZHBEDLQB3iJeE1ObKWEtvxfrrDwDkj5nqlCMoGlK8XJIaOqJ0aYM7nUizpCRWd6nM/Voe7dqcKi6ls5MSNsgU067nJeqmYuqGY74HkOkyhMa7zMUqkR+kXKY1PUTVe9VXavKQxMeneJc9S3Xyu3XtX7S7BZz3+sG16r8DkoXq/LehH3EqhNdrEqnrk5cr9KD9Hl9r1AK2AlxYjBU7X1e/gYnTpUoe7keqvBI249wGrHvwgOEEQmzYFD3IlXlrcIsfp+OEh7c9Ll2fUJT3vRn1nL4Rh1O3ve9MlZNeY3PNvWXTfmKcc9IO17CQahuEHeGQDkvMa2qfqkpn97rtG9tym++1x8CXYdS+JzBXAyPWKIoiEG6GMV1nmFeNGSZ8kRBYMVjNYnGwQpda621mh4L91hbE4kUiwFEsJAr0z+wEEct9kosqKlzngH/I2OIWZxG7ufdtkBPsgdMEwrnafIAi+VDnoUiWNSmw7TVG29GKmUy+IMf/CBM+5kGrRL3TdVZ3GZ6lqRGET1ABizaSY1Oz5niZxyZVhXPXP52vF/13U6vSdugUJZeDihJ88c73iSwdWJVWcTo8iT3QorLsZDt8lD+9kjgPBJplvOd/u4X18moi8L+eAr9H6fzI1nUZwuRqRLxsHU6rB66EWPEZZddFoxJbUCf1bRuIU27X72PeS33A8K0jP3tpNwved6CY7ovb2bqOB7KZxXo2/R77RYvp98320zKYZ1VeajLtxho4+vnP//51gxbDG3rt/2k3xxk31pXlny9GYGeiLF4GNOJFDeKgdq0BpJqaoVHWayRE73S7cQ8bwq3HItczqY0NI6o/Bpb1Ul3vEQIQ1VoRjnN8fJbrLY4TNPnvO6862eeeWaYStcJ2UEAqfK/qXjX4+KHft4dL/gMKp+RaFbF+VpsJV7WoFc2unTMMWRAGukhC3RWiEEamiC/6SDpfYRXJxun52Je4iwBz5O00qlUdR1jg3XSFqHxEhkYU/HbNKU4fXpi54NUeJjiNKbv+mY6QLiWknDvln9bX4D8G6CiMHbTtl43c5F+S/niqXLKVjW9muadt1u66WmZyIiFN2I3o8hvOawjTSf9G6nRn8WypIQhljstf/w7lqMTnOu+XYW1ZztJs6qMnWAufe9GXfO7G1zLuuD9QehiXd7L3/M71aFOdLEK57Led6uLjFehDLEN019jnv5EWFEkv+Vvi6HlWEq9jN7TpmO4IUzr8EjLTseNsfoohqE2OFp6bybY+oXyITMWKHeSB0Z02n9wuImPjgvseXf1kfritMzWVZidjmFjUT9SPYl/x/dgIxZaWqngLaRdSA3ng3UhwijiMdbeMfaSbtpPWe960eepCpF/DByBN7w+mEyRarnzafqSRmxQNI1DxO9Y5U6hTTMYrHm5DMhOFLMoJxWDtSkJYRPptByiJw0KjOhpKBSRGPiqYowppunluOp9qg/lHxmBGgSsdGZ08PYawJDOuIBIx6vDFjeYGn+8ILy4Zkd4NmKsqZkNhh4vEQ+S/+OCFDpsapNHzaILg4FtwSxso9tImDbD28wzYrAVGmT3BuTYqnOGkXSFFdmhxXNmUnT2Fm3xEsm/PLjPY2SWRv7c15a0WZ5iHg4r4hF3pN8Kb2W1HkCMHm+pcptWtaBQ+XnFLQYT86fcvNzaOC+JQV55GWxmLrR37duA5luMO+/wqMNOn8CLDXeLBK0/MOsBGwa3a00hKNK20M4WZQi1cuk39CVxcYyQEwt1lQHZMLsidrFOTG0iNYx5A7ppU+U2aCoHvNWFvoquqD9pw0xdwaMJ57rvWiHPSIGF9OXDwjLSru6QwYiv+oNbp5jLv6l39aL/hLcZvXa4NuVX3vvRxaa8q2M6Y7cjxNHMWdQhu7vQ9TpdNB1v5wE6przIKJ3T3nhbtRsEx3jF69qNLiJncOSFRIbptlBDC+ikibjRU/Ukv/6pJ4v+HKrCiWHcZeTxQnJ+xBmkJjzS9qMP0AaRY21UGkKwtA3fKnuFU13sV++tjYC/XVX0ncqiD2BotvN8a+v6OGO3PpEjSDtWlnSWeLXVVgv9lnaijSLO2qU+jzHQaRuVV1vp6U/1t7G+EF51/p3vfCf0f9HzX26z8qXfl4b6Uk565XkL+Drpl5r6WzqkD9Xv0IE6fY6LC8v5y78HhwBDd7rXLap/SLIp1rH8SQ1AzKPYIg0vNggDMiWOQemeMQ0dV26m6bju+XTaR4etQes0NHjeJ52tNHVCZYItPdaqgSG1tMv5zb8zAiOFANKlszIQGsANuuniGx0eEqnjd50nSQdcFTtYlUfeUOkKSdJgDQ7IW3lxjQFfTDQPVpUgzdp43f2qdzq9hjia8mwitO3SMigg6+0WLqXpKJNylxfntPtW3X0DtO6wKca57t14fSRwHok0m8rRL66TTReVl9HMuDAe8trqE5pIacRf29GW40LYpnop30PujImcUjFUwDPStPuCUMe4FVr53fT3IPReP+i72mJVDG3T96NnXd9ZJ8rKIGAEpYuC655vuq5+GLb6YUa9v/VdwuY6qbOmtN3rt/2k6Q+ib22X33x/agSsdeuJGMdkeJTE9MXAdB6ldPumJmLM+rKPY3pYhXQRY9OpMVYwKm3dSnOrRXmZU89eruiMwLAgkBLjkSClw1LOnI+MQEZgdBEw/jq8pBwqJRdmTRjj8fCX0c1Z/lpGYPwigBj3FGMci2zaLz2lJiXFnuF9SWODUqjsS2n6kJcrFV6jdAEN700dKUbEedAyKR6/SjiRc063YwybLXjKuj6Ry57LlhHICIwsAsZf+zMLoUjXSSDMDjURE5slI5AR6B6BvjzGTZ8T62inBATYqXTl/QO9K9ZH7HC706nqvsNa9i/G5dU9l69nBMYCAfFz4u/NgFhwIW4s7jAxFvnJ38wIZAQmFgIcT2JkLe4VzsRR5H/rEcqLhidWyXNpMgIjg0DfoRSDyJagel5iC4K6EVNF4hHT07m6eT8/mxHICGQEMgIZgYxARiAjkBGICAwFMZYZK6O7DYcwXZQ9xVmZMwIZgYxARiAjkBHICGQEBoHA0BDjQRQmp5ERyAhkBDICGYGMQEYgI5AR6BWBvhff9frh/F5GICOQEcgIZAQyAhmBjEBGYNgQ6GtXim4KY/FRPOGq0/dsdVW3q0WnaeTnMgIZgYxARiAjkBHICGQEMgKdIPDGTh7q9xmHHzg5xkk/3YiTppwAdPzxx7c9KrabdIf9WacxxZMIbTxePl44zX88WCJec6ypa/Z/rhJp9XMQQ1Wa4/na008/HU5xhPfaa68djjW3xZrdVIiT0xzKYaGnI1CzjD4CDjjxj15vvPHGo5+BHr7oYBa68/LLL4e1EIM6hCRmxaFGDkVxmIBDHhyfOxbiZDmnNSrnqquu2tNBFWOR7/zNjEBGICNQh8CoeIwdBbvPPvuEbWS6ESfRbLvttl0T6m6+MYzPImuOvHT8pGNQ0z0qy/m9+OKLwxZghx12WDg22Kk+iJxN3x1+4p6t8xx56VAVxgkCeNlll5WTmnS/HUF66623hnPuDz300DC4O+YzHnUOkEceeaQ45JBDiksuuWTS4TMsBbY49/TTTw/bPo4XQeIdk7vDDjuEdjdosYe7o7u1cd8aK9FmHHnsSG71lCUjkBHICIx3BEacGN9///2FYOZud52IwNr/2JGVzz777HjHuuP8OzHwlFNOKbbaaqvCcZl33XVX5bu8UvFoYeTOMaD2rnQ0KTK3ySabhPv2k3Z8N+PkrLPOKr74xS8GIohsTFbh5brpppvCTMbMM88cZiRsGcj75pjQKPvuu2/x/ve/f9zCpK4dqT6e5b3vfe/Qk+JyW5p99tmLI488snjXu941ItCbvTj22GNHJO1uEuUJd7qa2b0sGYGMQEZgIiAw4sSYV26vvfbqC6v99tuvuPDCC/tKY7y9jNA6SfBf/uVfwslGVYIwb7TRRuFWJMjpc65Vnf2++OKLh8MmzjzzzLAh/GQUBpsZibLw0C+//PJTXR6raepy3nr57YCRiSB1p18OQ9mshWC8V8lI5nsk064qS9O18dxGmsqV72UEMgKTD4ERJca//e1vC//6ja/jNX7ssceKv/3tb5Ouhnh6b7vttuJXv/rVNGU3jckz1YvMMMMMxWuvvRb+TUYxkDsxike+LE6NmgjywgsvFDfffPNEKMqYlaGTPofxnyUjkBHICGQEJgYCPS2+Q8hMHf7Hf/zHNCgst9xyIU6T3HHHHYXfVeKADh5P09YLLbRQODL67rvvDnGeG2ywQbH66qtP9ZpQDESGR28yiWl8C7++/OUvFwcddFCr6D/72c8Cbr0IMiyOecsttwxhBIRXWmjGG97whuLJJ58MU9dLLrlkL8mPi3eETdDTDTfcMMQYR0+x8jNGqsQR5uIoLXjiJTzhhBMKBkYUcd0PP/xw8PR///vfD3GXq622Wrgt9ls8OC+1mFCk1ffnmGOOcN9CqiOOOCIsmjzvvPOKJ554ItSDcJqmBWdXXnllmC3wz0Kof/3Xfy2+9rWvhbhPbfR3v/tdyKf4/pVXXjnE7Hvm/PPPD/euv/76QJ4tOPz0pz9dLLLIImEnGPfFtgsxsRhU3uaZZ56Q17pvtrsXXq4Q/Yg8MPKU37S8o97VRZPY6eacc84J4UPKr02oOwtQCbyFy8AYeRVrT3jRhTmk7ee5554L5ZpvvvmC91e/pZ6uvfbakLfYTtL8MPqPPvro8A24WUtBpF02WKXx+9//vvi3f/u34u1vf3thFiyVJt2Z6sGKH3TSkcAweOmllwqhWOV+l2F9wQUXFAsuuGCYJbJ47+CDDw5hbuQjH/lIAQO6pk0IXaNPVXpudyHYWsRLnxdeeOGKXE17SXrKLQ+cJTze6l69ff7zn28tIKSTvqvfUxfakDwRMz3CzJSHw4CuE+VX7nXXXbf1YXh71rd8m75/8pOfDN/NkhHICGQE6hDomhi/+uqrIZZVB2SgNXAgAFFSMmUAqiJXYh4tFLPICRkTE7vnnnsWU6ZMCTF5vDRlYmywQxQmGzHWiW+33XbF5ZdfPhUxtqDHwpu63SdifSA5cZs8hPiHP/xhce6554b44+jpsiuDxXgGbyTDQCTWFnmuCjeoU6bxdH3uuecOxoAYYnpHDMS77bZbiN18y1veMlVx/v3f/z0QJfeJgRqRQqrJLbfcUpxxxhlhhwtkko7b4cJvROi0004L1xA5ctFFFwUSF8maNqAtIRlf+cpXArmCPyJQR4wRdQTm1FNPDWmSb3zjG+F/Xu9ll102GJzKk+5EwiiYa665Qkw141Q7FIuMzCN4YtKF4MgzkQdGlIWIjz76aO03m/ITEqoRpAwWsR+h10g9DOqEXiP5wrRiDDiDRZmURb+DhDEI6DviH+tKfYstjyFKyJf3vvWtbwWyrLzetWBVyFEVKZYvbQPZtKOJdnPyySdXZvfOO+8sTjzxxFC3DCTkW/+51FJLhefb6U5loslFuEejGVnXti2y5WAg9E75EM5IYumWMCz9MONOOWCJYNqRZY899gjvlvVcO/jgBz8Y0qKzxAJWJLSdWBQMMzjRL/XlW9Y+xFAM9Y70IrSEcabNIfI77bRTsc4664T2tOKKKwbcdt5555B/ThX1S4e1P2MIHBh0W2yxRUiL4ccY1U6zZAQyAhmBOgS6DqXgibJC32C6zTbbhI7O//FfuthEB1f2nMgIj1UkGIg2a94ODARBs8NCWXh9ut0HuZzGeP2NNPA0GQCJwaIufrhcRs8iXwZnZNqAwdtz6aWXthbMIIQGkxhvvMwyy4T0eegnsiD/iOVVV10VCDKyzFtroC5LqqPumcH43ve+Fx5D0gzAiB0cCSLKa3fNNdeE37xkdD2K2HEEDJGJwgiynR4ihmiJq//MZz7Tul/+g1GErJp9iRLJX/nZ8u/5558/GKWIkrpmdCKYvI92RNlll11ar9jFxHZpSHHTN5vulb+f/kbGzRRFgY1+pkluuOGGYOSlCyP1NcgQYh8FidJ2EKoo6o53NApSRaIHmcHP84oYMyz6lTnnnLNFSBF1Mwrx+53oTrvvpxjoj5FaRDnuAc8QoIuRFEtPHL12z2iIAiszF+o7Sqrnrn3sYx8LzolIil3bfPPNW883/aENMWbiugcOFunzXBM6ZiFf2v7oJqcJQhvJN90lxoQ4YyMdBk5caMroMSsTSbHnGZiuT9Z1FQG0LBmBjEBbBLr2GLPao9ins2lPXB6BWWaZZZpMpFPVBluDBe8asRdmlejEDYSTURgbPCQ6dZ50nq10yrAdJjzOdV4v7yICwl7UJ5KI3BlU090Z2n1jvN43lWzwjAOoPbN5lEy5pjupxOn5WE4errhNFi+aQRmZuvrqq1tQGLQjhrvvvnvw8PPQIaFxn2pplL3yFkd2IgZ6Ro4dCpA6hBJB70bssZsK40vdC+VId4JBhJDXpm823WvKk7ANBgJPOTKDnLfbggyOKdGL6SPZdl6Bb5wy1wele4G7nqYPO32VGZUYey+9SMCa8t7JPXlKpVvdafeNaIzF58wU2M4NyaVLsEpn9eJzdNqMRqozTXrOkGJcc4KkguhWLfIt51t7QnSJGRM6JvQovsurLzymvCYFfvSDNzsl7Smusa5jvUqXoZS2R/cYKfTYjEmWjEBGICNQhUDXxDhNRIxXeQV/ep/Xq90Ahxgje+1WNSMY0puswpgQz2iK0YIxJGhQIj1TktLkrUeiJ/ouIEIaxLHGgTpi6UAZgylvcEqMy895PnrkIsnlgU5DfVIjknfYFnm8mbbSQ6LrvMFNRkxa5wxKoRPICu++KW3E4fHHH680WHl055133qnUprzNFvJD6Fsa45uWpembTfem+nDyg64JIxG6IU4U/vqFJkk97elz/6+9O4/er5r+AH5/PyyURZPQkqFWVpNKSKMphESDhKJSUaEyVDSIVaFSSWmgeVIpQyglSlGhgX8ytBaKWGIZWiXDaj2/+zo/53E/93uf+9zneT6fz/cz7L3Wd30/z733nLvP+5x7zj5777M3nllFaOez/3aTr3LuO2U333zz1G++Ld8BtwKuFlWtaBsv1XvqZdlifcjU9P58r8vY6fru/FwWlLOGlaa2iYzpOo5t49wcDNthc3XTu1zL45qAe8QRRxS0/gRU49LcPojPjF+d1yZcc78ax8Z6ddzioatFZVAb4nogEAgsfARGdqWoQkIwbjM1mvTqk1kdUgtgVUtMG9qU0MKk2ZYBrl7vQvvNrw8uXCBoPaaTmClpx/ii5sUrC0i0yF38B6eTn9moy4aNP2KdLLaEmroAWX+u+pvWlVaShq5ONMn6jXmbiZj2nvCR8fU8Tdk4RLvv4BI3ARpubhV8YmkBUV2LRyM7jJRH9bYwP3ONantn271B7xVP2qE17lmS0aAsLPp7EDb4bIooYsNBk5yF4kHvrV4n8BGMJeNglWLar7pjDKsDzlkgo3U2L3alYWOnSz1VId/ztO4039mtjbVpEFa5v7u8B6bcQJrONdR5GFSfuYT1hKtHtnpxraMpxieq80r7jdrWmvr7WMFYcup8cbXwrqBAIBAIBAYhMLZg7NQwk2fdFFt9kYm57v5AUHadX5+Jizkt10FY4C/ZpLVwfaaC5Q8CZ2leh69/mWhUHIAiQORDNe5lIaIqTOQybfeqbSOcVPuRsGXxIAwxpzdtVJYmNtP1bhr4+iJpUYabhTWTZ+rP+Z0XXcI0DRitZzW8Fz9SbhMWY0JlFWPfBc0bjG0+qn3W1JdNbfacA4CZCGj8w/MG0maHidnBJVQVlPM76u3ilsGtpFqvsnylta3tnW33mvh3DQ74qprwRcHIfqAZG3VXeaX581sYx0zmDwey+NRmyuWqApJr1d/GN2GWgMz1wPwzzNJVbQ+TfsbYZmvttdee8v56f44ydqrvGfQ3DWyV9BXLRz5ASvttvq0qKfjzwvaDH/xgv+iwce5B9dpgVf10ud/AsIvrFWuJjWeOXKROrh7mN5ZDPuI0yVW69NJLk58xoRxlPKu45r9zvzpIaHMg2keVzjnnnP45gCk34kcgEAgEAv9B4FHlIvJRf9cn72EICZPDZDgotJXyFmZmyeozNL8mOtoBB8JoZhy0sTheffXV6VBePSKAupxkFnaq7k83jM/5eJ+JXVtp0y16TLoWE/8sIFnTYpGSFpbQZZNCiCXQETacwLYoEGZsPmxCqv55VVwcunHoEdFw0hZyC1C3EF3T6bYxV/qD6wHfUsKscWxBhbXDP0zq2b8UxsYnLZzQUrSzNJywhalNhI0Kq4eIAw4zqYvABkd+xbTwBAkn+WmWRQQgvBrLokKITsClgdZXX9kEcuWAe5O5OGOoHn3OP5ZQQsDwfz44p6z3CidmHLA0cA/hTy5Kgr7WZkJdNQqMTHO+RSmNzQvcI+BBu9j2zrZ7g/rdoUTj1VwAJ20QUcOBUdpfbg404OYRmxbP2mDghxClv/QfQU+UFb60b3rTm9LrRHLhy6p9OeIGoc64tunUP/AQJYI7in7XR9xs+Jk7fCdyw7BU9jTU+NO33FhYd0RgIPwZZ8YNodR3po89Q/gnfNOS+2YHjZ1BuLlO+6pe84J+pMnFuzpF+sgbIe0jrItUoT+NTeHRJPjJyoau45zrHCHYBp3gmQ9kGlPGorl7kHudPjXuHNbTj4R1UShszHMadn7q+gj2wquJMOLbyHM/CwJejQ11uGdcuK/9+tl5FO167Wtfm9xzjA2bU9+x6ByL2fLYNp7iXiAQCBRpDvufchHv5Ul2FFBM6jQMw/x+nZi2OOXdvndYpE1WDlnQzqiHcGcCbyJCggnOQhc0cwhkDXXuB0JWV3/XmeNqZmq2mBJUEOGW9sxBPAJu3e92FA4IDQRmddcFKp8agYiAmg/c+Y7GfV8+LKYO35N3EgrqRAD27lHcQ9ShfgKI7zQL6G3vbLtX56n+m7ZXG2xWTEwEevNE0ya5XtbGgIBYP7RVf27QbwJsDhmZnyGU2Yz7JvKmcVB5181h+pbme1wf3Lax0/Zu97SfME573WRxy+X1J0wnPXyGVwK/jY322phztXDgbTqUF8aS71KfjotnbrPxYROB16BAIBAIBNoQIAeMLRi3VVy950AQocMuf1zij0YLNihixbj1RrlAIBAIBGiNzVF1IZxgRuO/0MMWxggIBAKBQCAQ+H8ECMZj+xh3BZG/Ik1KU5a8LnXQFvOTDKG4C1rxTCAQCIyKAL9XG/dqnGkhvZjnRRIJCgQCgUAgEFg8CMy4xhiUFhkHQPgAjmIWs1Axc3KjyIHcF0/XREsDgUBgthDg183POcfD5cbBR3XctOuzxXe8JxAIBAKBQGD6EJgVV4rMLiGXH9woQfNpmflN5sVq+poeNQUCgUAgEAgEAoFAIBAIBAL/RWBWBeMAPhAIBAKBQCAQCAQCgUAgEJirCMyKj/FcbXzwFQgEAoFAIBAIBAKBQCAQCFQRmCgltBBr4hJzdRAzU8giYXzGSaUa3RIIzCYCYtgKQcbn3Zg1dv0Wk3YuknBmIifw1xfHd9zQZF3bduedd6bkJMIsims8Cs00r+IS6z9huMTbHuXcwijtGPasuU8MXn3icPCkIdCGvS/uBwKBQCAQCMw8AhNFpRBtQtB22bZEn7j88ssLC2pQIDDXEZCY4Nhjj02JD7bbbruUVEAElLlKYhVLuCFtsWQUM0m+4xNPPLEQg9z7qtnlurx3pnmVIliSDqHURslQ14X3UZ4hEEsaIamIOL5BgUAgEAgEAvMfgYmjUkh7u8kmmxSf//zni5122mn+IxItWDQI5IQIBx100ERxtmcCMBnBqul68ztkL5QOuS3j5KT8yMQmk9tGG22UslQSkPldDaKlwatMhOutt15BSB6WZGgQ39N1XXZImwlZ+oICgUAgEAgE5i8C1rqJXCk0PWuvcpri+QvH3OFcOlcbDulRX/GKV6RUqzI3ycJ1xBFHpLTBtPXSnPonq3c2J09Sdu4gMDuc5JS5bWmXZ4eTqW/Rz7LVNdFsRGi5++67U5Y8GdRojNtoafE6Gzi0tbt6b2m5cnTlL54LBAKBQCAQ6I7ARK4UXkMwXmONNQpak6DpQYC2jp/2j3/84+Lhhx8udt9990L2v9tuu62g3STQ7brrrin5APP6F7/4xf6LJyk7PdxHLeMgIG5uJvG+lzblTcMwPuYCr8N4jPuBQCAQCAQCgUBXBCbSGPd6veL73/9+se2223Z9XzzXEQFb6UDBAAAgAElEQVTxm7/xjW8UTOeZpK6lPT755JP71xzEol2u0iRlO7K36B6jsT/mmGPSoTeHrh544IHikEMOSQdPm7T0nqFNlT2tmpxGX11wwQXFKquskrTC3AH4yV5yySXFueeeWxx99NHFFVdcUay22mrFhz70oYTzwQcfXCy//PJTMP/yl7+crAi0u/p777337tQnzgB87WtfS/HEbbpohZUlCN96663FV77ylVTPJz7xieSi8J73vKcx9riY5Iceeui08HrNNdcUN998czrod9dddyWfXW4cXYhvrw2kdvz2t78ttt9++4RplRwStmF8xjOeUTzyyCOFw3v7779/3z1klP67//77i9NPP71YccUVi+WWW26kw5pcY2C+5pprFssuu2yK6/6jH/0oWYFcQ5dddlkaN0984hPT+IADqxG68cYb0xjUnquuuir1I9J+7a5a7drGayoUFAgEAoFAINCIwESCsUXMAZSq8Nb4lrg4FgKrr776lHJMtgSmKhHMmg4gTVJ2LGYXcCHa3Ne85jVJW++QKSLAysp4/PHHJ6Frzz33TALKZpttljT8iEBDCOYTjAg6W2+9dfHd7343ZVQj6BBKCUcbbrhhEpbV9a9//SsJpZ/85CdTuTrJ0HbkkUcmoYygpRyhaK211qo/OuU36w6+Cb9ZWD/ttNOSYH/qqacWG2+8cfrnbxaKtvoIhdPBK15geP311xePfvSjk2uQMwt+E/iHEWEer4igqZ+OOuqoYsstt0zX1AdzAmeOOPKTn/ykeOUrX1nccMMNCYeu/ffLX/6yeOMb35jqypF3rrzyyrRB6UIiaVx44YXFE57whPS4MxkEdRtexFeb0Ev4RaKlsAwR5HfeeefixS9+ccLkec97XurDXXbZJfH/7W9/O40x8zEMh43XVHlQIBAIBAKBQCMCE7lSZP/itkMnTo9zs7CoBI2GAC1YnZr8YWnu6zRJ2Xpdi/33+eefXzjslYViePD/dp1ggwgsBJ+6hr8a6YIAg3KaYYfcaDkJxhtssEG614VWWmmlvpD3+Mc/Pmla61aDpnpoSfkMVzXYDvFxxbnllluaikx8rY1X49Zmg4aYQIdoYml8L7744k7vdjAwE2E9ux3lb4L/vfqyUOzZ9ddfP2lkP/OZz/TLdum/973vfcVLX/rSKeEot9lmm058esg8mYXiU045JUXwOeOMM5K2/p577kla+ne+8539+nzDe+yxR9qAZeE7Zw5dYYUV+v1IsLbpsglAXcZrZ6bjwUAgEAgEFhkCE2mMCcZM+U95ylOWgI0gTOtlYhexIigQmG8I0Fq+7GUvS2Z+rgwXXXRRvwm09IQ+FpMcv7ZJS1/V5hOIxd79xz/+kYQa/6NR0qR7vm41YEloshpU8Ra9geBej3/MpO/71Vaa2ummNl7NEQQ6m4MqtrB56KGHOrGSBer88HOf+9wUqUJbnX2gFSZ410lfaTPBPFNb/4nNbL7bYYcdplRFqO3qj73bbrulsuJDc7ERItBGAHFJE0u73j/wowlnjahuuqq45oOIeQx0Ha9TGhI/AoFAIBAIBBICYwvG2b9YDNgmYm7kG4matJxNZeLafxGwSPpXJb+Z2avk9zLLLLPEc+OWjT74LwIOOxKMCUWiNDBnVym7SORrTVr6qjafxpDGkamcGZwJ//DDD29NiKM8v9bq5nOc74nP8yBSH+FrUhqV1zyWJemAS6Y6zqPwlQXlrGEd1G59VW9zW/8R1LkoTBKBwkaKbzqtNu2z8eA7/f3vf5/81pso93Wd16YxkMda1/Ha9L64FggEAoHAYkdgSVt9R0SyfzG/tzr97Gc/S1qUqiZFiDF+cXwaRVIIGozAYYcdVvBdJJgxf1uURaC47rrrkmbpgAMOSNpG/3/ve98rvvnNbxYHHnhgqnCSsoM5Wnx3aILvvffe1HAuD7SbdZcVpuv6BqQNKf1IAOTO4BvRt7nfquV8N/ld+tlBq0mJuZ3bBe1slfDPh5Xf6jg0Ca+sTVwLaHfrNChcXf25ep9weaFxXmedddKj2nXffffViyUc+HV3Ja4LXFYIsXWq81C/X/3NH5pPeFYaGFcO1Gb867zSfqNRXG2ma7y2tSPuBQKBQCCwUBEYWzDOwm3dv9gkT+NT1yQ/+OCDKXrFPvvskw6vOHkf1IyAw0N8Uy3yJ510UjrBfsIJJ6TsWoQIIbIs/v4Xz9j14447LlU2Sdlmbhbu1SzUOuRUJZpMAkx2kXCwDt6iJ1TpnHPO6fvGDtLwV4Um7yHkEpCZ+Wkom1wgmMkJq8gGVHa+THirWw28e5hwRtNp0yQRRfVZkQ2Y7x0qQxmT+jv6DNT+mIRXWk8RGUTkqIar4y/N3aALcTGoEt9k7XzsYx+bLtPI8+2ualz580qvXU2g0qX/1Mv9IfuVq9/hP/3axfXDeOHacfbZZ6e+Rza1K6+8cjr06OBgNfSi+xKscEcjlKPcL9X+yX/nfu0yXlNlQYFAIBAIBAJLIPCo8nDKR13tuhA6Ue+QiNP2yljYCcnCRzlV7SQ9Xz2mwkwWAodKsjmYkKEOE35QILA0EDDshb2jOaSls8EgQDksKgwZwYywSKvIh/O1r31t2nwQqmiKpQIW7YBQQ2Dy20bmV7/6VYoeINQaQZpGkOZZlAQaW36qXClsDm16RGRw+E6UBPeRg2LcLGhTWQ3wIUufQ1gsBN5B0HNgTMg4z+Dft/iiF71oIJxCf+GdgEa4Ew6QBcIZAOcBpMnGNy2lDS7eqy4OTRVPyivtpsgaDsIR7KSftvmT7rmNuErAwJxCOKbJhaf2i7KRrVW0szYWNozmK/WfeeaZaaOZtcpd+8+hPUKwA3PmMHh577XXXpvwIox7pok8xz9Z1BJKAuPgvPPOKxzCYzWAvwOdBG/jgcuFeZObFH9kLiL6Cq/GLIuDe8au++q3iXKoULvaxmsTf3EtEAgEAoFAoEjz+MQpobsAaTEQ+9PBGETLQijucpK+S/3xTCAwWwg4PEcoExN3VCLYCvNV3RASgGwmxa4VxzgTDSZh1yZzEr/WJh4Jd4Re0WJylISm57pemw5eM0+E/bxB6Pp+AnJO793kJ5zrIVCa9LIloGv99efwanNiDOgbFhuuFg5o1g8D1st2+c19xmaKJn/Svp9kvHbhNZ4JBAKBQGAhISAl9KwJxrRtm266acLvxBNPTKbiQXFaFxLI0ZZAICPAz5cJP5v583VCEA0pbXBQIBAIBAKBQCAQCCwdBAjGY0elGIVlfog//elPk+mTZozZ72Mf+9goVcSzgcC8R8BhSaZwfrVZU+uQH1O4w5VBgUAgEAgEAoFAILB0EZgVjXFuogMqTIM57ubSbXq8PRCYfQR+8YtfFDLX5W/AoTP+oDnpx+xzFG8MBAKBQCAQCAQCAQjMmitFwB0IBAKBQCAQCAQCgUAgEAjMZQQIxmOHa5vLDQveAoFAIBAIBAKBQCAQCAQCgVERCMF4VMTi+UAgEAgEAoFAIBAIBAKBBYlACMYLslujUYFAIBAIBAKBQCAQCAQCoyIwUVSKP/7xj8Xf/va3dJBIQH3xTMX4FKs1KBCYywhIOVzPeFfnV2a2nJSmfm8mf0sW4dsSuUJSjrlCkoM4PCiSxkte8pJpiYHc1jYJSLxT/PNRU1bPJq8Su1x//fVpDhQj2WHKnGDk7rvvTpF4jLWXvexlbc2Ne4FAIBAIBAJzAIGJBGMJCCTr+MhHPpISEbzlLW9JQelDMJ4DPRsstCIgFbK4wTI2Erx22mmnlJxBlAiCjMgR999/f8oCN9vkm5L5jjA4lwRjm4mLLrqoOP/881O2uelIDjIIW5kzn/Oc56QkGq973etSQpJ6/OdBZV2fLV7FZJepT0x2hzaOPPLIgjAsNB+S2l12O0k7ZK4LCgQCgUAgEJjbCEwcrk32uk022SSllSVcBE2OgJS2cJUi9hWveEVKNyvbGoFNDNzbb789ZUWjFfNPeuOcIWuSspNzPr9qIPjaxEmDLLVylaQPpvm7/PLLi+WWW27WG3b44Yen1L/SNy8Nko74DW94Q7HiiitOeb1xKDsdwVh88pkg/SKtMeFW7HPaWGmxB5H0yIRTAnSVZppXwrr03zTGOeOdb1ZaaGm/M11wwQUp82cIxoN6MK4HAoFAIDA3EJiWqBQ33XRTag3TatD0IEBbSGAjfDz88MPF7rvvXuy3337FbbfdVhx00EHJTLvrrrumpBDf+c53ii9+8Yv9F09Sdnq4nz+1cJVA2exd5Zx70Lve9a7innvuWSoNWtqxvu+8887Gds8GXzSuK6+8cqF/COZtQjEmZRN85JFHluB3pnm1QV1zzTWnpIG+6qqrpgjFmJppPpZoeFwIBAKBQCAQGBuBiQ/fEYzXWGON4qlPferYTETBJRGglaMF22KLLfo3pRSmPd5ss83615ibaZerNEnZJTlZXFdsRPjRog033DC5UywG4kLS6/VSU2lAuZgsLcJH02aliZ9//vOfxamnntp0a8av8Rv+3/+dOoXWf884E/GCQCAQCAQCgWlFYCIfYwsY8+C22247lCkH8xwoWmWVVYY+Gw/8PwL8tqvEXaJuvqaN+vvf/74EZJOUXaKyRXSBhpgm0IYDhldccUXyH11rrbWKXXbZJfkl24hwHWI+Z65nNudb7yDqAw88kNwyspbQ5uaMM84o1l133eQnq/9o+8ehQXVxOXjve9+bXG241RAW//SnPyV3G5ukvffee8rrvv71rxc/+MEPkouIZ1ddddX0/3XXXZfOCXzqU59K7ZCq+vGPf3zx/Oc/v9hxxx2n1MFnlpsHAZZ2efvtt+9kNTIPnHTSScWTnvSkJFTee++9xdvf/vaENbr44ouLq6++OrkIcXEx5vntNpFNotTyLCsXXnhhccsttxTLL798cfDBB4/Eq3mMHzBBV5/CjWWmbbN/2mmnFddee23qU3yqA2bGBkXBWWedtQTLXEI8z03HXLjvvvsWK620Uv+5Nj4cRMSjd1x22WVp42LuPfroo5eYE5Z4cVwIBAKBQCAQ6IzARILxXXfdlU6oV7WaTW/23Mc//vG0SDu1/cEPfrDpsbhWQ6BJ+5TN/9VHs6avem2SsoutI4xPAvCDDz6YBDOCWiYCEmGJsMbnd5tttikIRQQbY/k1r3lNEqJe//rXpyIElQ9/+MPF8ccfnzSv7nN3IXwivwmFXTaTfSbKP4bVdemllya/XIcG+ZlLMU37bSPKzYlgj9znv8wtx1jC7ze/+c0kWL7whS9M/rEOI26wwQbpUG3dxzjzxPdaux/3uMeltu21114FHLOvbZX3/LdxSsDec889+/7Af/nLX4qtt9664NPMLeGtb31rOnDHEmVD0kb4xIdyNi18optoGK8HHnhgEvCPO+64VPzGG29M/UPQHqS53meffYoVVlghWRSqfBLUbTrqZFPj8OAee+yRbnH/EKXCZiRHPmnjA0bGm/+VIVTDDOb1zXL93fE7EAgEAoFAoDsCE7lSZP/izTffvPWNNERvfvObCyfNRxUIWiuOm4HANCBAUCWMEfCawrPlw2YO43FnoVF82tOelqIzEFizUIwVh69c5/NKSKJtzUKx+1tttVUSaEalYXXZCBGCaWQJxYi217urrjZf+tKXkgCdN1j4o42kxSQUdyUacEIxggmtNS1vG/GFd1CuekiOhtdmgVA4U9TG689//vOk/X/b297Wf72NPstBk4A7jEfCaxNp56abbtq/td5666XNh00K6sLH05/+9KTZf9aznpW07XfccccSBw6b3h3XAoFAIBAIBLojMJHGmGDM5NwkTDAZEjhonGjXLNZtpsnuLC+OJwk4/lXJbwJMlfxeZplllnhu3LKLA92prST40pYi41S4tDoRSuo433zzzcl0L4RZJm4tzOMsKe4Tyqr3uTjw5x2VutZV1x5yRai62tgA0GBn4hLh+x0lFJqy1fdkt5Eml55qO2+44YYk1NVJXcKeGcszcVCtjVd9TZPNfYZrRiaHX/XhdFGTJp3G+3Of+1x6xSh8mHODAoFAIBAIBGYGgbEF4+xfvN122zVyxg+Orx8TNe3LF77whaQtqvsqNhZe5BcPO+yw4sorr0ym/f333z+5odAsMaHSRIqRynzLt5HPq0WXxo0peJKyixz21Hwa1roA7HrTNdo7muOdd955CnTcCpD7tIL1+1Me7vija11NrjbVVzDB8w3mo8oFQSgxvqtt9Pvf/z61s0pN72ly6amWEXqtidRls2C8c0+YhLyDkE9bnqmNV7gi7jPV56ajz4a1w6bloYceSoL5KHw0jcVh74r7gUAgEAgEAt0QGFswzv7F4njWiQDMN8+/HXbYIWnMmJs33njj+qPxuwGBo446qvCvSieccELhX5U+/elPF/5VaZKyDawsuks0lnUhcBAI3BAIlQSbqi8ql4InPvGJyY2Cb2mduB2Maj2Zrrr4Fp977rnJFM9nmhtBXRit+9Vyv+C3PCmJ8nHeeectUQ0+aJLrfCzx4IAL+M1C+Q9/+MN0ENIBuC6EJ6SfuIRksgGlMR7kGtGl7uozTZuGX/3qV2mM4H+2+BiV73g+EAgEAoHFhsDYPsbZHFv3L2aOpG0ZpElebABHe+cuAtndJGvrBnHKxF93YfGsQ2T8bK+55popRWlkafEdXhOJ4A9/+EP/vgNx1bjTXd/Zpa4mPrWxKpTRzLLecHMijOKn7trBbcQGIfNdFZQzDlU88t9Nwl+1fTTp+CG8ZoL9V77ylRRNI5P66jwNwsl1rhKZV9Yp7UJdeH3BC16QNu0051VyCHMYD014u1Z3Y1KvzVB1HIhmwrdbwh7UhY/cnqb6pzAfPwKBQCAQCATGRuBR5YL0UaWrC11bbd/97neLT3ziE2khUYZfISGZaVaYJyZ+oZcctMvkxLzYuxbcoEBgLiAgFJlsZKIKOEBnQ0eD96IXvWgKexKmEHSFFWMJYW7PPp6ERwfyuLAQyGiKv/rVr6bIARJU0ArTBHKDYTKnlRQB4h3veEf/4FoTFoRg9fDT92/LLbdMEV0G1SVMnEgY3Gq0gTuB54WNoyF2WNB3qm18jPFDOHZIkBVCHGA4eA8hWBtpTLlBEQ75TNOmCg/GVYeGFxZM+vfdd18K68bdghWJpnyQttYmwkE784f3wYzFw8HcN73pTQkK1qWTTz451SdyAx9ovrhtBGv9xN9b21mmRuH1Va96VYo6Yh4zp+kjc1XW4ja9O48LYwfmDi4aT5dcckn6nccSjBx+lMHSYT4CsjTR2q0fqoqFNj6EhhO2Tnnh6QjZYYFr6pm4FggEAoHA+AhwxZs4JXSX19MeC+0kdXRQILAQERB2jBaQ4NlEhEl+r4PCnzWVGXRt3LrE6RUVQyg5UREyqU/4MRFjcjgx9whhtMBdXUsG8dt0HV6EWG4P00Hi++YU3+PWRwiHBZ6a/JLHrbdazkYC2bgMotngY9C743ogEAgEAosZASmhx/Yx7gqcZAK0SwLeEwwcRgoKBBYaArSV/g2i6bSWjFsXjTXf4qpQjF/10drSZFZpVD/oQW1vuj4Mr6Yybddoqv2bhGi0RaOYSWoTiPN7Z4OPmWxj1B0IBAKBwHxGYFY0xvMZoOA9EFhICOy+++4psYSEGDkJjBTYku5wCakeQFtI7Y62BAKBQCAQCAQCwxCgMQ7BeBhKcT8QWEAIcI3gi8xPlQWHL7H/ZY1zIC8oEAgEAoFAIBBYrAiEYLxYez7aHQgEAoFAIBAIBAKBQCAwBQGC8djh2gLLQCAQCAQCgUAgEAgEAoFAYCEhEILxQurNaEsgEAgEAoFAIBAIBAKBwNgIzHhUirE5i4KBwAwicPfddzcmcBCb+JnPfGZK0BE0vQgIQya5iVBoL3nJS1pDlk3vm+dHbcbk7373u0JYPQckgwKBpYGAcwd33nlnIaSiiDVrrbXW0mCj8zvxescddxSrrrpqIRZ4UCAwKQKhMZ4UwSg/LxEwkUpsIenFe9/73uKWW25JGdkIbpJNvO1tb0tJGqaDJOnYf//9U9KKxUqEYsk91l133ZS44z3vec9ihWJgu4XLkyxFEpWgQGBpISCpj0ReEhHJSjmTJKGOiDi33nrrWK+5/PLLixNPPLF43eteV7zlLW+ZklVzrAqjUCBQIhCCcQyDRYnATjvtVHz84x9PbadlsAjsuuuuxYc+9KHiS1/6UrHsssumrHaSRkxKNBqy58mANlskC+VcIumPHWp43vOeV7z97W8vPvCBD8wJ9s4+++yUsXCmaJR+kAhpt912mzZWZrpt08boIqlovvSHzF++z3oW0Jnopj/+8Y8FXGSbHIdk0dx3332LJz/5ycUpp5wy57Xb47RxnDKjzDvj1L/Qy4xlL5ZKVrIAgsNjHvOYQhzUn/70p+lDkg43aDIE3v3udych6tWvfnVKJStdsaxqzKxHHHFEcfvtt6c0vxZ0/2T11g9okrKTcT3/Suc4vtIg12nHHXcsLr744vTvgAMOqN8e6fcOO+xQvPzlL29NADJShR0ephGfS8RNYJVVVkksrb322nOGNZsWoepmikbtB64800Uz3bbp4nOx1DPf+iOvKTPZPxLeWMvakiO1vd+8IjOnuZzGOKhIcoKspUHjIzCyxviGG25I5lCJAPbcc8+kUTMgP/KRj6Sd269//evxuYmSCYHPfvazKQOXWLMPP/xwISnDfvvtV9x2220ptTZBjnbz/e9/f/Gd73wnmf8zTVI24P8vAmL7or/97W/TAsu4E/84L//a176WFpu5ROInN21AliaP5qovf/nLM8bC0uyHmW7bjIG2QCuO/hjcsZPOjXNtXhnc0tm58+lPf3p2XrSA3zKyxpjfJUHNpM8pn98gcljJACc4T6c5cAFj39o0O2nm5y222KL/nM0I7fHJJ5/cv/ac5zxnCRP9JGVbmVpEN/m80d5tv/32/VZfc801xc0335wOedx1110pjfJGG22U+okZ74EHHiguu+yyJGx9//vfL44++uh0jZb/D3/4Q/GFL3yhePazn13ceOONxTHHHFMwI1511VXpW0KsBCwu6rz00kuTFoR1YOeddy423njjPh+sB8qri+DuHYccckji13VuG3x6uYUg2u/nP//56e+2svyq77nnnvR9S6/8ox/9KJkoh7k9aIcN2TOe8YyUMERb+VRznUBHHXVUcf311xd//etfE09rrrlm6xzBx5EpUF34+POf/1xwfVEO/fvf/y5OOumklJAERvfee29yz1h99dXT/dNPP7244oorihVWWKGwSEhLj2jsDj744HS48qtf/Wp6B+z49doIwQhWyDynH81pfMOXWWaZ5Ivu4GCmNj6H9UO/kgF/wItvOh9M+FI6rLTSSv2nbTSMOQf1zL02QjbN0ngPapu55Mgjj0yHTpXnPmT80S75zULFusFC8ve//z29ix++zfmg8eaZtjHVZMEyZmm14C799TBiFTOGjC/4K4/HPL70q2/IQTG8GhN777132ohpm37zPpa1f/7zn8Wf/vSnhJd50nNVMr+eccYZhXkVTsbFPvvs0/qNr7baagm/Ufsjj7W2sm3YWGv5pXP7MnewSrHiZuryHeRnjbPTTjsttcM3r93+7kLD5o1B8+ZDDz2UlGu//e1vk+IHHl37y/yc/Z+5U5gLnFswBobNR8P4HTbeBrVnEO/m1Kc85SlprFFiGaOs7GussUZScGVqGweD1gzKM2uUw8zm10MPPTTNfcZknv/NeZNuPrqMgwX1TNkZicoFYqR/pdtEr1xY+mXKwdgrJ6Te5z73uZHqGfW9i+X5973vfb1y0zEFy3Ih673xjW+ccq0UGHp77LHHlGuTlF0s+GpnKfCY+XvlItsrXYN6pVmud9NNN/VKgbZXaux75STWx7V0H+qtv/76vVJIS9dKwalXCiG90oUo/b7uuut6pW9er9y09MoJKpUv3TDSvXLRSu8pNf79+srFPF074YQTeqXVJV0vBbFeKcz1SqGvVy7e6dpFF13Ue9azntUrhYH02/vXW2+93oUXXtivq5z4envttVf/d7lA98pNa/937tMuZbfccste6VqQcCiF3d6GG264RD25voxDKbD2ygN1/eeULd0l+u3y3Ic//OFUb7XsoL+32WabXilY9581z5S+yek3HEoBoI+ta+XC0yutWL3y8GS/jH4oF55e6b/Yv1ZaWHrbbrtt/3e5qKQ+0Jd1XjbffPMpc1l5uKdXLjpTnmvjU32D+qH+rurvz3/+871SKOmVPpf9d5WZCnulMJ/GZ372ne98Z+9d73pX/3cp/CfM8zgZ1LZy8e6VAmavFJBT2TLyQK/cVPTKzVe/Lnioq9xwDB1vXcZUeZi1VwpsvXID2X9HufnrHX/88UvgXsfmvvvuS/xWv8VSeO+VAncqq85NN910ylgrhfhemfK8X7fvsRSCe6Vg0isF33S93Lz1SiG794Mf/KD/XLkZ6ZWbj14ptKRrpZa3Z2yXG9r0u+0bH7c/1DusbB0Tv+FiXvCt5faULgW9q6++egqmXb4Dc80LXvCC3gUXXNAvW27IExa+26b3168NmjeGzZvGq3aUG9j+e7r2Fx58v9U+NHa7zEeD+B023oa1ZxDvZCPzx89//vPUTnOWa9V5c9g4GLRmWIfyuqRuMoG66n0Uv7vJuOThkV0p7ApoE2iyqtpMu3baC4drgqYHgewDW62tqrHK18t+XOKFk5RdorIFfoHW5Vvf+lZRLnzFz372s+QrTyOx1VZbpZbDlzaOhjiHcVtxxRWLUkBNPsiIpoI2qpzkk8aKb6mT0ij71qYf/yHPI1rNrDVjEaAd9Xz2NaW5YoalXUH8+/1+/etfn6tKmj7XaVjbqEtZWjQal3ITkCJz0Eq1ES0cHLQ7k7I0vZ/5zGfaijbe4xpE+1f164ZRuZCl52lc9FHG1jXaEJarAw88sF+ndvA/fPGLX9y/Bt+uByBpXPRFJvotQRcAAAqESURBVOHTaGIzDeOz/+AYf2hPKez1S8J3gw02KA4//PB0rVxci1KATv2TyVxMM1UKCa1vpPnm+kbrhcwnLH/GvvkbPfjgg8lNa7nllhs63rqOKWdS6tYv390wKjeOSVufv0XP0/i/8IUvTEVZJrSnqnlmPTBORJpBvkffFEuDsohGlOWnOh5o2ByApHVH6uQ2aCygQd/4JP0xbtncJn2FtMe8deWVV6bfmbp8B77TUmia4mtPmzlKmLameaPLvEmrn/HOPHftrykN/c+PrvNRE7+qaBtvXdoziHfWDn3FHxr5xs1rzmahLuNg0JpBUz2TB4gTg4uMRnalgA+hgemi+uH4IC0eFp+gQGA+IeAwGHeFQcSkbfJh8is1uP3HLJxZYM0XCbKjUF50lcnCcPVaPgDD/PaEJzwhuXKYVKt82KgysxPkmEEHUdeyFsWuRHC2YagTtwbuADYUo1CpAUsLho1HptJK0v/b+6pCeL4BM2GbmIQzjvBaeeWV+2Vdzy4Cw3hiFmeaFKHERsTCVS07jM9h9bfdb4qh/dznPrcorXGpmPnXIk05wfSfybmEqjA/6B3CER577LFFqR1L7gQ2dMYUc+1LX/rS5DaQTbzDxsyw+3k8ZjeXzJNx3aUvSm15cmuoEuEH/eY3v0mHwLkUVYlrAdO18bfJJpv0b1W/KxerPPi+uA5VxxqBXMSEOtX5maQ/xi2rjSI5wOCss85KQhd3ERvSOg37DmyKSstQvdgUt6ElbjZcqM8bo8ybDdX1NyT5XpcxM8p8VOfXe9rGG/ebrutA01irXzMfGXdolHHQtGZ0+ZaaMI5rzQiMJRibQLN/l2r5y/DHq2pUml8XV7siQLvhX5X8tvBXyW8TeP25cct25W8xPZcxp7UiOGRqEqbrfTEMpyYLQNO1bBUgxNA61N9dulIMfBUfWWW6lrXodqVBhxNpTgiWo5IFvu00/KA6YcYnVHmCNWrDsYmvjJN7fGsvueSS4rjjjks+fDYiVW3sMD6H1d90v+0aTGzCjAP9iGhGq22sj4lqfdW2EQhooGlV+aRSZvDh5h9vfFus8xgYNmaG3c88NFmwmixddQz4L9PsNtGgsedZuNTHStN4yPVqM415l6gg9W98kv4YpyyezUn8crWRrzxtIktKEzW1u4q9Ouobl6Z6hl2rzxujzJtNdTfx3fRc9dqgMdE0H9X5VU/beBulPU28N12rzuve3+Wbbqunjo/6BUiwUQzqjsBYrhR2VZy9LR4CbHN+JxTXd9Ld2YgnqwgI8E8DLwoFU6EFkWnTzt6hLmZmh6v8ry9oDrIZeZKy0QvNCBjXtC60U3WiQZhNckCMJqYuVDClVTdD1fu0nqhr2VHaw3WK5rFOtOtNWqj6c/XfBDaH97KJON/P7VPnoPfRJGehuF5v0+/6afaME/Mms7pDWDmWa3VD6hscxmd+X1M/NPFSvVbvW/ccBtR/eM641scjVxpuMGhQ2/J7HHRywJML0Stf+cp08IkLC+GfK0ymYWNm2P1+RWP+YXw1RVjx3RHouRAYa1XyHRhDo7j1GTfM3YPe1cb+JP3RpWzTu88777zk5uT/bGLPQrb1wqGsrmQs0zbXqWkc1p9p+7005s1J56O28TaT7Rl3HDTh79vPfUdOcMA2aDQERhaMLVhMeDRUTpRuttlm6RR8CMWjAd/2tBPY/O+YcJ2+t7Pl+8ScazF00p4Z3/8mctdpttAkZdt4Woj3srBT18LX22qHLrIEDSKtZCb+iTlOba6jrqn3bL5X9QFuendTHbm+PNH55vR99hHNvPgGswme9icnJvHOfL1L2SarRB2P6m9+r9/+9renaOf4uspuJ6NVJm1rwqZeNwFN9Ilzzz13yi2/tcO8ox5ZCjMRCJxQzyZ21/P7qou7a9XfBAoaQkIUysIkzZu/q1o031nuP20bxqf6BvVD5nvQ/4S+zJNnaLG4NxiDqDwolXzMy8NSU6rg757H56C25QJcBkRWEaEBBoRCrnEf+9jHpqSjHjZmht33Pv1V73u/uwhexpD5rRoPWllCPS06RQDlTLUuAj73iqpbhL7P31fGoM6DkKO05tVNGT/1bClo+j4n7Y8ufTmlk//zw+ZNn0nGgYxN3x2ttz7Nm8cu34GoM9xIqmNOOmjjo6uJvmne6DJv4l3Z6rzqWpf+ymOq2q9d56Mmfr23bbx1bc8g3uvjz+88bruMg1y+Wk/+uzr+uVrkvtSHcyluPIznAz2qXEw+itF6pw1inhtFefI1aYktVFWXikFl4nogMNcQkPWOxSP7jJlAHAJpOiiHd5ox5lYHVUxCBDOblLe+9a3Ftddem8JgqYumxqSUw6vxHRNKjVbLYkarKbyYBd01QhjTrIVM+Comb8/xFbQo+87UZ6PE75bQyPxtI2QhpEllrRHmLfvTcptgSVCe8O7gmrIEoLayLBDaQjsJD4JdNURYUx/Cy8RrQ2YOgcuZZ56ZNnLrrLNOKmKK4WqlXkIOXrKWq16nxQePDpcRRi3Qwq3RauofmwIH7eBC+IeBDSI/Z76ziBZN6Cm4aYeFgjaYLybNmH6jbYQXgUJ4IwuztrpO4NAvtKk2pTRzkoDgQ5+VEStSP7bxiY9B/VBvc/W3/pLUhzBmPOl37bPge28m2RrNww4Bwp3VCKZZ8wTHprbl8iwgxuZuZaa93BfqMaerO9OwMTPsvnFufNrk63+HIWnjbexYPnwLxmeTqwUeaHK1m9CqPdz2lMU3bbHQhr4BG0P3bSBo9I0f52CMgTKyQvoevJ/bAL9q3ySLnDFG+GMZMF59d8aWuuHjfb5xY2HQN47PSfpjWNl+Z1T+IPj7poxnwjBMhAMzP2mPTQEhv8t3QKml/b5T/WDeMK7gar03Do3JQdQ2b7TNm6wbxgJ/fX1jLPnGu/QXXpTlY83P3ljiBtRlPmrjd9h4a2vPsLGmjTZd/Pm1Ed/mIkI6wbhtHBjTbWuGec7Y5SZlbhI+0zdujBsLTe4Xg/pzsV+32fyfcpFPIQ1oJYaRD8WE4sPhn1Y9IDOsbNwPBBYCAhYhk7DF1eK5NInQ6LslyDWRSZfw13QgZ1jZpvqGXSM0mlTaDgAOq6N6nxDjtPyg9mmDZ+qHr0Z5h2ct/KbBfGI8l6eJJniLZKBdBC8CdNbS5eeG8dnWD228Zq2fsTaImErhDoOmxW9Q29RnPq/O4QRjbR6k7Bg2ZobdH9SGrtfhYWPUtO7k75JgRSCYhNRFiCFkjfqNT9Ifw8o2tcnYI2A6eMnKYfMOo7orTVPZpmsETRsKc4bNDGEV3vUx31S27drSmDcnnY+6jLeZWAfGGQd17AnbNn2UG21nNurl4neR5r+RBGM7VB+hRYRmoYyfGzgGAoFAIBAIBAKBQCAQCAQC8x6BkQXjed/iaEAgEAgEAoFAIBAIBAKBQCDQgADBeOTDdw31xKVAIBAIBAKBQCAQCAQCgUBg3iMQgvG878JoQCAQCAQCgUAgEAgEAoHAdCAQgvF0oBh1BAKBQCAQCAQCgUAgEAjMewRCMJ73XRgNCAQCgUAgEAgEAoFAIBCYDgRCMJ4OFKOOQCAQCAQCgUAgEAgEAoF5j8D/AU8Z6fvAPVM6AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "The pull-out test is controlled by the displacement at the end of the fiber $w$. \n", + "\n", + "The force $P$ is measured to obtain the pull-out curve $P(w)$\n", + "\n", + "**Simple and trivial question:** What is the purpose of measuring the pull-out curve?" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAB9CAYAAAD+3VeSAAAABHNCSVQICAgIfAhkiAAAG9xJREFUeF7tnQvYFdP+x3/RTRddVZTiJBHquEZEOjkq93sJHY9DOkdED7kU53E5yJHLIYTINSSXlLs4JEQuXSiUW0iUVJJb/z7rnNn//e535n1n7z2z373n/f6e533YM2vWrPnMNN9Zv/Vbv1Vj3XozmQiIgAiIgAgUOYENirx9ap4IiIAIiIAIOAISLD0IIiACIiACJUFAglUSt0mNFAEREAERkGDpGRABERABESgJAhKskrhNaqQIiIAIiIAES8+ACIiACIhASRCQYJXEbVIjRUAEREAEJFh6BkRABERABEqCgASrJG6TGikCIiACIiDB0jMgAiIgAiJQEgQkWCVxm9RIERABERCBmnEjmD9/vl111VVWp06duE+l+kVABKqYQOPGje2yyy6r4lbo9EklUCPu5Ldjx461QYMG2ZAhQ5LKUNclAiLwPwL//ve/Tfm09TjERSD2HhYN7927tw0cODCua1C9IiACRUIAwZKJQFwENIYVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVmxOBt956K6fjdJAIiEDyCdRM/iXqCisicPXVV9vSpUsrKpLat//++9u+++4bqmwuhd58800bPHiwTZ8+3WrXrp1LFTpGBEQgwQQkWAm+uWEubdiwYfbpp5/aEUccYV27drXrrrvOatb8/8fixx9/tHnz5tmFF15o2223XZgqcyrz66+/2qhRo2zdunVOQFu3bp1TPTpIBEQguQTkEkzuvQ19ZQsWLHBlu3fvXkas2FavXj3bZZddrF+/frbZZpuFrjPbgg888IA1aNDAHfbdd99le7jKi4AIVAMCEqxqcJMru0Rv3AhhCrJmzZrZpptuGrQ7r+3ffPONLVmyxHr06OHq+fbbb/OqTweLgAgkk4AEK5n3NaurmjVrljVu3Njat2+fOm716tU2Y8aM1O9atWpZmzZtsqo3bOHx48fbiSeeaIgiFnZMLWz9KicCIpAMAhrDSsZ9zPkqli1bZosWLbJevXpZjRo1UvW88MILZVyAf/7zn3M+R0UH0rv7wx/+YE2aNLFNNtnEFS1ll+Dvv/9ukydPtmeeecZ+++0369ixox1yyCHuGjPtpZdesqeeesptbtSokfXv39/atWuXWUy/RUAE/kdAglXNHwUEg0AHelDPPfece8l+9tln9tBDD7kXb5zGuZ544gkbOXKkO03z5s3df+N2Cf7888/2zjvvZH1pnTp1So2zBR18xRVXuN7qGWecYbg6x40bZxMmTLC///3vdsIJJ7jDOD9BLLhYL7jgAlcnwS233XabEYmJyMlEQATKE5BglWdSrbZ441deBOCGG25ov/zyi22++eZWp06dWFkQaEF04gYb/NczXSiX4KpVq2zmzJlGbyis0fvEJeoFhvgdN2fOHNtqq63s6KOPdru33npr23333Z04XX/99e58AwcOtPPOO8/1aPv06ZOqhuCWIUOG2JgxYyRYfnC1TQTWE5BgVfPHAMHCHXXUUUelhGPXXXd1va50ozeEmEVluP0++OAD22effWzx4sWpagmpj9sl2LRpU9fjidreeOMN+8tf/lKmWq4HwWLqAGL00Ucf2RZbbFFGrLwDEEVEDh4K64/67qi+JBCQYCXhLuZ4DQgD41eIhtfLoSrcU3/6059StdJz+PLLLy3Kcazbb7/djVlNmjSpTOs33njj2F2COeKq9DDEKZ2jd0DdunXtqquusuOPP96efvppmzhxYmBdBL588sknEqxAQtpRnQlIsKrx3Q8KZ2dsJT2EfcqUKXbWWWc5Uri1fvrpJzc/i8m+a9eutfr166corly50ho2bFgh1bffftv1MjzXWXphJinjrsMtybiaZ5yHHggZMNasWeN6e142DNpB+Y022qjC83o7aT8RkPQawxpCRNg/ghpkfmLllWUO25577mlTp051LkHGthCyTPvhhx/K8Mzcr98iUJ0JSLCq8d0nFRK28847B1JAPIjgQzw+/PBDu/jii93YFpFvvPi///57mz17tp166qmGACJWjz/+uBO47bffvly9iMSjjz5qF110Ubl9bOBcGL2/Vq1auf8nAOSWW26xY445xrWDMkTYeT1DxGzFihVGeH5mpg5XQYYheEyWJvghrNF72nbbbSsVLHqniHmm/ec//zHGzkg9ddNNNzmOl112WZnITI7BrThgwIDMw/VbBERgPQEJVjV+DBAsegwECvjZwoUL3Yv1jjvucLs7dOhgZ555pouAI5KN8RYMV+G0adNS40JE+eHq8xMsxnHIRxjUG2F8CUsXLMbXGO96/fXXbezYse5Y3Ilnn322a5vXDnqC7733nu20006ujiBD8AYNGhS0O+ftffv2de4+LxrQqwgRuvPOO+2aa65xvHGvPvbYY07czznnnNTYIOWw9B5rzo3RgSKQQAISrATe1IouiXlXvNgZ2Cd8nWjAu+++u8whTBr2BIKxLC/cnEKIBT0sTyTYhsikixO9kczeCy9oekX0NHr27Glt27YtMzeJYIRXXnnFXnzxRdcWXvBE2BFFiNGzIqzcEzp6MbgA09uBi5AeTlUZ4ezMt7r22mutW7duzl3K9fBftnnuxBEjRtiWW27pxBeRIsiF+4JdeumlVdV8nVcEip6ABKvob1G0DfRyAzIeg1svyOgF4b5CWDLNb+ylsghCemcIzmmnnebGoLwQdq9uXua77bab7bHHHk6IEM3MSMXMDO5+7chsa6F/77XXXu46GSNDqI477jgnTunGWBzbDz74YDdeh1jBp0uXLuVchIVuv84nAsVMQIJVzHcnhrbxkmcsptDGS7wia9GihfGXBKPHecABB1R6KYh0ejRmpQeogAhUcwLKJVjNH4BsLp+xKdx6y5cvt2effdYdym8yOjC+9PXXX7t5RnPnznUBGkQDRmGE1RM9SL24KmkHa2altwNXIz2VV1991bVDJgIikDwCNda7XcrOEI34GvHTP/LII/LNR8y1KqojIpCAAcaTGKMiO8b777+f+t2yZUsXOUhoOy5C/vxy6GXbdibd4l7jUcVd6AUu4CJkO+1A0GgXIe701DJdjtmeU+VzI4CrOeZXSm4N01GJICCXYCJuY2EugqAC/tKtEO5Fv4Swme2ozOVYGEI6iwiIQJwEJFhx0lXdIiACoQm8/PLLzqUbxpiacMopp4QpmlUZVilgysQOO+yQ1XHVrTBBRUxt8aahZHP9ZHthKkz66hBhj5dghSWlciIgArESwLVLFOtJJ51k7777rhtKYNqFZ2RZYSrG1Vdf7ebpRS1YuLxZWZtMJEkVLFzojAkHGVNYiAyuSEwQdT4uiOjNxbjHJBZgXmK2JsHKlpjKi4AIxEKAr3V6Tl999ZX7ej/00EPLnYc5a0x/YMHPqI0kxSweyjhtUo1AJZYRYn4ga7GxYgAZYzDGfxkvfvLJJ13mmnPPPbdcwmtyj44ePdpls8nVunfv7rLiMDdx6NChWVUjwcoKlwqLgAjESYDgGaJODzvssMDT0OvKnNsWWDjkDtZHI48jluQoU9KdDR8+3KUJQ7BIZcYcwHRjbiAfBeTn/Mc//lFmH0vgkFYtKFNNSNx2+umnuwnzfJSQVzSsKaw9LCmVEwERiJ2Al+mEievp9tprr6V+4tZibbKojKhGeg1k1Mfo4SXd4AzDTLHiuon0JAL3rrvuKoMBVyCuWIQmX0PwWOLHW7w1bH0SrLCkVE4ERCB2ArxIGT9JFyxcVSz26RmpwRhnisp4MZNYmWAL8jgm2SUIM9KXkRKsR48evgg//vhjN22FFGvpRgLqKHNwwpyUbYwdhjUJVlhSKicCIhArAXo6CBYuIlxWTEInapBFMVknLN0y03Tl2jBelgQQeJlJWAYmyS5BODHpHkHyxq4y2ZFrFGMcyzN6tZMnTzZSj/kZ6dbogfmxy8wr6h3PxwHTUYgaDGsSrLCkVE4ERCBWAkSvkcWEMSqWlHnwwQddz4oB/r333jvw3IzFMIDvvWgDC/rsuPzyy11wgWesA0dgAhPgk2qsrID59bDoXbHsDR8JrMzgGUESTNrP/HBgP4kCWNWB6D+WKkrvobKcEMc8/PDDvjiJNCTpdVhT0EVYUionAiIQKwFv/Aq307HHHps6Fy9Ev6VqKICbihD4/v37uwF8xljCGkvR8JWfvryOt3ApL93MLC3MPZowYYJ7IXOuUl23DMEiWwwrW/OH0TNClBgrJBADnulG9CDC4xfuzscCLlr2LVmyxIXN01PFCGb54osvXE/Kz1q3bu3Su4U1CVZYUionAiIQK4GgL3/WN0uPSrv++utdlBl23333uag1QqV5qYY13I/Dhg1zWfPpzXmWHimYLliMox1++OEunyXzw3CBlaIh/qyDx9I99CQ9Y/wOpkFzo4jcbNSoUblLZm4c7kIEcPz48S4MPj0og3tKqrSgjDhMZUDkwpoEKywplRMBEYiNAC8+Ehizvpn3de6djCVpPCPk2ltXjG28dL3xrAYNGoRu37333usCOzJXh/aiDzMjBXGVkauSFywTm0vVcL954svCqGENV206d+84PiS8Ndxw4fbu3Tu1ajhl6DUHjZWxn3l32fSKJVhh75jKiYAIxEZg9uzZ7sVFLybIEDWyXLDKtLcoJhN9ER8CCZiESgRhZUYvigCBcePGlSvKC/jWW28tMw7DuXhh0ytDIBGubMSx3EmqcIPndqVHmo3xUVBRr5LgFSYk33PPPalqGb8ioGXUqFGBp2Ldu8xoxMDC63co6KIiOtonAiJQEAJB7sD0kzOJlUTIDP4jTEyAxZXFWBL/H0asqI+ggqCw+PQxLO/cTGaeOHGii1xk9QmCPErVEKyGDRvajjvumNUlkLJpxYoVgcewlBACtd9++6XKMCbGxwE9LPaxskOmIXTcw7CmHlZYUionAiIQOQFcfIsXL7bbb7/d1Y27ii91z5gzRDogoszoRS1cuDCvNhCa/fnnn/tOmKVib1ma9PBsXu70AiZNmuSEsVQN8UBEevXqVS7lUmXXxARj8jgGGcEbjFWlr6Lw/PPPu48LjkUoEa3MsSzufXrQS1D93nb1sCojpP0iIAKxEeBFx4A+KX+I+COcHFHy/hAOXnoERxDe7rfUTJjGPfHEE3bggQc6lyO58rxxF+9Y3F2MlXnRcZxr4MCBRiRhUoxrQjQIuMjWSNXEuB73ys9IXIx7z5tzxZjfo48+6ubUEYgxdepU37EsPli6devmV6XvNvWwfLFoowiIQCEIZDPwn0976FUw74ixJ1x7mYYoXnLJJanxKfLoUQ73WambN6eN64D3ggULnBv1n//8Z+gPAAIuEBYyZCD8mYagwY/JxuR5JKKQCcEkKT7//PPdPLpMly3iOWvWLN+xxMz6vd8SrCAy2i4CIlDUBAiHRlT4mif0PTPiL73xdevWTf0MCpggYs0zAivSfxc1iEoah0hF8WFAdCQh/X6CRRO8qQbpzaF8kNHrJW8hy5mENbkEw5JSOREQgaIiwBws5lIRwUc0WlzG2A3BFggkmTH80g/Fde5iqpe1wpjDRWRmFMYEZTJkZGPqYWVDS2VFQASKhkB66qA4G0WEHFGFvFwZp0kPLIjzvMVWNy49MtqzbthNN92UV/MIyGBidrbjaeph5YVdB4uACCSdAK5GJjPjImRicbp7MenXnnl9LG1PIEU+CzjSQ6PHSsaSbE2ClS0xlRcBERCBakyA0H7yKS5btiwnCsxpIyK0ojHHoIrlEgwio+0iIAIiIAK+BNKXHvEtUMHGwYMHV7C34l3qYVXMR3tFQAREQASKhIAEq0huhJohAiIgAiJQMQEJVsV8tFcEREAERKBICEiwiuRGqBkiIAIiIAIVE4g96IIUJ4uXrrTpM+dU3BLtFQERKHkCdRq2sBmz5pX8dWR7AbVr1bYO7dvaxvVqZ3toIsuTxDibZUPCQqixfo2XdWEL51Ju0PBRNmt5a1u70j9pYi516hgREAERKCYCdeo3s9p1atv0G/sVU7OqrC1kIbnyyitdSij+OnbsGElbYu9htWzVxpbNXL8swLQxkTRYlYiACIhAsRHo3LWnbdXnrGJrVpW2h0z3/I0cOdI6d+4ciXhpDKtKb6lOLgIiIALJJ+AJ1zbbbGNdunRxy7vMnz8/6wuPvYeVdYt0gAiIgAgkmMA777zjEvYm2ebMCY5ZyKfnJcFK8lOjaxMBESg6AiNGjLApU6YUXbuqokF+4nXyySdby5YtfZsjl6AvFm0UAREQAREoFIH27dtb37593V+QWNEW9bAKdUd0HhEQAREQgRQBRMqLImQBzjAmwQpDSWVEQAREICICrLSbdCOsfcCAAeUuMxeRSq9EglUOqTaIgAiIgAhERSBfkSqoYDVoUN+atu5gTbr3jer6VY8IiIAIFBWBlu062YrVPxdVm6qyMS1atLBzzz3XufzCuvvCtDf2TBdzF31ng0c/Z1u02jhMe1RGBERABEqOwKo1v9hmzRvYDUN7llzbS6nBsQtWKcFQW0VABERABIqXgMLai/feqGUiIAIiIAJpBCRYehxEQAREQARKgoAEqyRukxopAiIgAiIgwdIzIAIiIAIiUBIE8pqH9dZbb9mECRNsww03LHOxtWrVsksuuaQkAKiRIiACIhBE4Mcff7TLL7/cfv/9d9too41c0lrCtVu1ahV0iLbHSCCvKEFWE166dKmdeeaZ9uCDD9oNN9xghxxyiDVq1MgaNmwYY7NVtQgEE7jwwgvtgw8+8C2w11572emnn+67TxtFIJ0Aq+buvffeNmjQIBs4cKDbRbJW5hbNmDHDmjZtKmAFJpCXYHlt3WWXXezDDz+0ZcuWlettFfh6dDoRsJUrVxovGz+rXbu21a9f32+XtolAGQJ8gP/rX/+yRYsWWY0aNVL7TjjhBKtTp47deuutIlZgAnmPYa1YscJY36V79+4SqwLfPJ3OnwC9+yZNmvj+Saz8mWlreQLjx4+3bt26lRErSvGBfv/99xvuQllhCeQ1hkVTX3nlFfvtt9+sR48ehW25ziYCAQRwB7722mv288/lU+Uwvtq/f3+rW7duwNHaXBUEfvjhB5s2bZr7yMANh82aNcs++eQT924ptPtt7dq17kP8j3/8Yzkcm266qa1evdreffdd22OPPcrt14b4COQtWC+++KJr3b777htfK1WzCIQkcOedd9qwYcNsyy23dEd89tln1rZt29TRjRs3toMPPliCFZJnIYrNnTvXjYH369fPJk6caGQz79ixo7Vp08aWL19uu+22my1YsMA22CBvh1DoyyG4ArcyHziZVq9ePbdpyZIlmbv0O2YCkQgWLwG/L5GY267qRaAMgddff931rL744gsX0fXNN98YARg333yzSBUpgZ9++snuuusuu/LKK10LjzzySNthhx3c2NH+++/vFvQjuGvdunWBV/D+++/b0UcfnZWLjudj0qRJtvXWW/vWyzgoRgBZkNErlBWWQF6CxQ17++233UOVGdpe2MvQ2UTAXMTqjTfemHoWp06dGmmmaDGOnsDkyZONIAbPCN5iiOGggw5ym+69917Xy6no/bLtttva7NmzI20cbajM/FzOlR2j/fkRyKuP/fLLL2v8Kj/+OjpCAgceeGCZF9tjjz0mwYqQbxxVESK+3XbbpaqeOXOmcwWyhhLGmFaDBg3iOHWFdeI1qsw0dacyQtHvz0uwXnrpJdeioPGrVatW2bhx46JvtWoUgUoIrFmzxng+cS/JSocA96wYArgQSkLZmaqTaZ4rsNCBIJntqI6/83IJ8nBxY7t06eLLju78nnvu6btPG0UgTgIvvPCCC7xgvoysNAjwkfHGG2/Ycccdl2ow0XiffvqpderUKfAiCNo44ogj3FhXWKtZs6bhjgwawyKwgsAPv8CKr776yonZ9ttvH/Z0KhcRgZwFi68MUjPhhvGL3iG6hweCWeJhjTldpECpzOiK88Bhn3/+uQ0fPtw++ugj5w7661//6male/uJYiR9FA8g+9mnB60ywqW/X+7A0riHo0ePtk022cSOP/54498q4eTMc/KMgIxevXpVeDG4FIMym1R4YCU7jznmGLvnnnvKlSKcnflZhLfLCksgZ8GaPn26G7/ycwfyVTRgwADbb7/9Uldz7bXXusitIAGjrhEjRvjOnclEcsopp9jOO+9sfJFdeumldt1117mHniixY4891gklYbL8YyA0lRnrCBiRRuQ4bNmypSsvSyYB7vOUKVNchKCseAnwgcoUBN4J/Lt99tln3b9LL2wcEeLfb4cOHarkIs444wxj8jCepH322ce14euvv7annnrKPV+ywhPIOjUTubR4kAgVZqLfFVdc4cQDI4x4zpw57ibz//R+vCSRb775pss5SKBGVPbQQw+5ORrt2rVLVUlPi68f5t4cdthhdsEFF5Q5HWG0d9xxhw0ePDiqZqieIiPAS45nbeTIkdaiRYsia52ak06AcHY+VnGx4QpkSsLdd99tm2++uTVr1sz4OK1KIy3T+eefb127dnX5UZkjNmTIEOvZs2dVNqvanjtrwUJw+MqozBjbSu/KM4GTXleUgoVo8kBnuiSffvpp6927txOlMWPGlGsq2/72t7+V264NIiACIuBHgHlZuCubN2/ut1vbCkQga5cgOQNztS+//NJuueUWF6hBTwhBo4eE8ZV1+OGHh5r8d9FFFxlZt5ms/Oqrr7r/94y5EUQm4gY855xznPuP8p4x7qalAXK9gzpOBKonAXpXCmOv+nuftWDl02QyZXtjWLjmOnfu7PKFMc+CgAgGyrOx3Xff3a1Vg9jtuOOOLghk7NixNnToUJfjiygf3Azz5883BlAXL17s8oMhmjIREAEREIHSIpDXPKxsLzU9LxfJR/kjuWU+dt555xnzva655hqjB3fbbbelElLSg1u4cKH16dPHZeQgqgc3YvpSAfmcW8eKgAiIgAgUjkDWY1i5No0xLHpE8+bNM2aRE7hBb4v5MhWlXcn1fDpOBERABEQgWQQKJljff/+9C7hgDRl6OPwmlLUq0q4k6xbqakRABESgehAomGBVD5y6ShEQAREQgbgIFHQMK66LUL0iIAIiIALJJyDBSv491hWKgAiIQCIISLAScRt1ESIgAiKQfAISrOTfY12hCIiACCSCgAQrEbdRFyECIiACyScgwUr+PdYVioAIiEAiCPwfCOuiNyPHXvsAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Simplifications\n", + "\n", + "Before referring to advanced possibilities how to solve this problem, let us show that we can derive a rather simple, yet useful model by putting together the conditions of \n", + " * local equilibrium, kinematics and the constitutive laws, and \n", + " * boundary and compatibility conditions\n", + "to analytically solve the pull-out problem. \n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "**Simplification 1: Matrix ridigity**\n", + "\n", + "The dimensions of the concrete block are 100 $\\times$ 100 mm so that $A_\\mathrm{m} = $10000 mm. Let us consider the diameter of the steel rebar 16 mm so that we get $A_\\mathrm{f}$ = 201 mm. Considering Young's modulus of concrete $E_\\mathrm{m}=$ 28 GPa and of steel $E_\\mathrm{f} = $ 210 GPa we see that the effective tensile stiffness of these components in the test reads\n", + "\\begin{align}\n", + "E_\\mathrm{m} A_\\mathrm{m} &= 280000 \\; \\mathrm{kN/mm} \\\\\n", + "E_\\mathrm{f} A_\\mathrm{f} &= 42210 \\; \\mathrm{kN/mm} \\\\\n", + "\\end{align}\n", + "The stiffness of concrete cross section is thus almost seven times larger than that of concrete. To simplify the construction of the model, let us assume that its stiffness infinite, i.e. $E_\\mathrm{m} A_\\mathrm{m} = \\infty$. This means that the matrix displacement is zero everywhere, i.e. $u_\\mathrm{m}(x) = 0, \\forall x \\in (-L_\\mathrm{b}, 0)$." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "**Simplification 2: Constant bond stress** \n", + "\n", + "Further, we assume that the interface between steel and concrete transfers a constant shear stress independently on the amount of slip, i.e.\n", + "\\begin{align}\n", + " \\tau(s) = \\bar{\\tau}\n", + "\\end{align}\n", + "were $\\tau$ is a constant material parameter." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "**Simplification 3: Infinite bond length** \n", + "\n", + "We consider $L_\\mathrm{b} = \\infty$. Thus, the pull-out process can continue infinitely." + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAB9CAYAAAD+3VeSAAAABHNCSVQICAgIfAhkiAAAG9xJREFUeF7tnQvYFdP+x3/RTRddVZTiJBHquEZEOjkq93sJHY9DOkdED7kU53E5yJHLIYTINSSXlLs4JEQuXSiUW0iUVJJb/z7rnNn//e535n1n7z2z373n/f6e533YM2vWrPnMNN9Zv/Vbv1Vj3XozmQiIgAiIgAgUOYENirx9ap4IiIAIiIAIOAISLD0IIiACIiACJUFAglUSt0mNFAEREAERkGDpGRABERABESgJAhKskrhNaqQIiIAIiIAES8+ACIiACIhASRCQYJXEbVIjRUAEREAEJFh6BkRABERABEqCgASrJG6TGikCIiACIiDB0jMgAiIgAiJQEgQkWCVxm9RIERABERCBmnEjmD9/vl111VVWp06duE+l+kVABKqYQOPGje2yyy6r4lbo9EklUCPu5Ldjx461QYMG2ZAhQ5LKUNclAiLwPwL//ve/Tfm09TjERSD2HhYN7927tw0cODCua1C9IiACRUIAwZKJQFwENIYVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVKwIiIAIiECkBCVakOFWZCIiACIhAXAQkWHGRVb0iIAIiIAKREpBgRYpTlYmACIiACMRFQIIVF1nVmxOBt956K6fjdJAIiEDyCdRM/iXqCisicPXVV9vSpUsrKpLat//++9u+++4bqmwuhd58800bPHiwTZ8+3WrXrp1LFTpGBEQgwQQkWAm+uWEubdiwYfbpp5/aEUccYV27drXrrrvOatb8/8fixx9/tHnz5tmFF15o2223XZgqcyrz66+/2qhRo2zdunVOQFu3bp1TPTpIBEQguQTkEkzuvQ19ZQsWLHBlu3fvXkas2FavXj3bZZddrF+/frbZZpuFrjPbgg888IA1aNDAHfbdd99le7jKi4AIVAMCEqxqcJMru0Rv3AhhCrJmzZrZpptuGrQ7r+3ffPONLVmyxHr06OHq+fbbb/OqTweLgAgkk4AEK5n3NaurmjVrljVu3Njat2+fOm716tU2Y8aM1O9atWpZmzZtsqo3bOHx48fbiSeeaIgiFnZMLWz9KicCIpAMAhrDSsZ9zPkqli1bZosWLbJevXpZjRo1UvW88MILZVyAf/7zn3M+R0UH0rv7wx/+YE2aNLFNNtnEFS1ll+Dvv/9ukydPtmeeecZ+++0369ixox1yyCHuGjPtpZdesqeeesptbtSokfXv39/atWuXWUy/RUAE/kdAglXNHwUEg0AHelDPPfece8l+9tln9tBDD7kXb5zGuZ544gkbOXKkO03z5s3df+N2Cf7888/2zjvvZH1pnTp1So2zBR18xRVXuN7qGWecYbg6x40bZxMmTLC///3vdsIJJ7jDOD9BLLhYL7jgAlcnwS233XabEYmJyMlEQATKE5BglWdSrbZ441deBOCGG25ov/zyi22++eZWp06dWFkQaEF04gYb/NczXSiX4KpVq2zmzJlGbyis0fvEJeoFhvgdN2fOHNtqq63s6KOPdru33npr23333Z04XX/99e58AwcOtPPOO8/1aPv06ZOqhuCWIUOG2JgxYyRYfnC1TQTWE5BgVfPHAMHCHXXUUUelhGPXXXd1va50ozeEmEVluP0++OAD22effWzx4sWpagmpj9sl2LRpU9fjidreeOMN+8tf/lKmWq4HwWLqAGL00Ucf2RZbbFFGrLwDEEVEDh4K64/67qi+JBCQYCXhLuZ4DQgD41eIhtfLoSrcU3/6059StdJz+PLLLy3Kcazbb7/djVlNmjSpTOs33njj2F2COeKq9DDEKZ2jd0DdunXtqquusuOPP96efvppmzhxYmBdBL588sknEqxAQtpRnQlIsKrx3Q8KZ2dsJT2EfcqUKXbWWWc5Uri1fvrpJzc/i8m+a9eutfr166corly50ho2bFgh1bffftv1MjzXWXphJinjrsMtybiaZ5yHHggZMNasWeN6e142DNpB+Y022qjC83o7aT8RkPQawxpCRNg/ghpkfmLllWUO25577mlTp051LkHGthCyTPvhhx/K8Mzcr98iUJ0JSLCq8d0nFRK28847B1JAPIjgQzw+/PBDu/jii93YFpFvvPi///57mz17tp166qmGACJWjz/+uBO47bffvly9iMSjjz5qF110Ubl9bOBcGL2/Vq1auf8nAOSWW26xY445xrWDMkTYeT1DxGzFihVGeH5mpg5XQYYheEyWJvghrNF72nbbbSsVLHqniHmm/ec//zHGzkg9ddNNNzmOl112WZnITI7BrThgwIDMw/VbBERgPQEJVjV+DBAsegwECvjZwoUL3Yv1jjvucLs7dOhgZ555pouAI5KN8RYMV+G0adNS40JE+eHq8xMsxnHIRxjUG2F8CUsXLMbXGO96/fXXbezYse5Y3Ilnn322a5vXDnqC7733nu20006ujiBD8AYNGhS0O+ftffv2de4+LxrQqwgRuvPOO+2aa65xvHGvPvbYY07czznnnNTYIOWw9B5rzo3RgSKQQAISrATe1IouiXlXvNgZ2Cd8nWjAu+++u8whTBr2BIKxLC/cnEKIBT0sTyTYhsikixO9kczeCy9oekX0NHr27Glt27YtMzeJYIRXXnnFXnzxRdcWXvBE2BFFiNGzIqzcEzp6MbgA09uBi5AeTlUZ4ezMt7r22mutW7duzl3K9fBftnnuxBEjRtiWW27pxBeRIsiF+4JdeumlVdV8nVcEip6ABKvob1G0DfRyAzIeg1svyOgF4b5CWDLNb+ylsghCemcIzmmnnebGoLwQdq9uXua77bab7bHHHk6IEM3MSMXMDO5+7chsa6F/77XXXu46GSNDqI477jgnTunGWBzbDz74YDdeh1jBp0uXLuVchIVuv84nAsVMQIJVzHcnhrbxkmcsptDGS7wia9GihfGXBKPHecABB1R6KYh0ejRmpQeogAhUcwLKJVjNH4BsLp+xKdx6y5cvt2effdYdym8yOjC+9PXXX7t5RnPnznUBGkQDRmGE1RM9SL24KmkHa2altwNXIz2VV1991bVDJgIikDwCNda7XcrOEI34GvHTP/LII/LNR8y1KqojIpCAAcaTGKMiO8b777+f+t2yZUsXOUhoOy5C/vxy6GXbdibd4l7jUcVd6AUu4CJkO+1A0GgXIe701DJdjtmeU+VzI4CrOeZXSm4N01GJICCXYCJuY2EugqAC/tKtEO5Fv4Swme2ozOVYGEI6iwiIQJwEJFhx0lXdIiACoQm8/PLLzqUbxpiacMopp4QpmlUZVilgysQOO+yQ1XHVrTBBRUxt8aahZHP9ZHthKkz66hBhj5dghSWlciIgArESwLVLFOtJJ51k7777rhtKYNqFZ2RZYSrG1Vdf7ebpRS1YuLxZWZtMJEkVLFzojAkHGVNYiAyuSEwQdT4uiOjNxbjHJBZgXmK2JsHKlpjKi4AIxEKAr3V6Tl999ZX7ej/00EPLnYc5a0x/YMHPqI0kxSweyjhtUo1AJZYRYn4ga7GxYgAZYzDGfxkvfvLJJ13mmnPPPbdcwmtyj44ePdpls8nVunfv7rLiMDdx6NChWVUjwcoKlwqLgAjESYDgGaJODzvssMDT0OvKnNsWWDjkDtZHI48jluQoU9KdDR8+3KUJQ7BIZcYcwHRjbiAfBeTn/Mc//lFmH0vgkFYtKFNNSNx2+umnuwnzfJSQVzSsKaw9LCmVEwERiJ2Al+mEievp9tprr6V+4tZibbKojKhGeg1k1Mfo4SXd4AzDTLHiuon0JAL3rrvuKoMBVyCuWIQmX0PwWOLHW7w1bH0SrLCkVE4ERCB2ArxIGT9JFyxcVSz26RmpwRhnisp4MZNYmWAL8jgm2SUIM9KXkRKsR48evgg//vhjN22FFGvpRgLqKHNwwpyUbYwdhjUJVlhSKicCIhArAXo6CBYuIlxWTEInapBFMVknLN0y03Tl2jBelgQQeJlJWAYmyS5BODHpHkHyxq4y2ZFrFGMcyzN6tZMnTzZSj/kZ6dbogfmxy8wr6h3PxwHTUYgaDGsSrLCkVE4ERCBWAkSvkcWEMSqWlHnwwQddz4oB/r333jvw3IzFMIDvvWgDC/rsuPzyy11wgWesA0dgAhPgk2qsrID59bDoXbHsDR8JrMzgGUESTNrP/HBgP4kCWNWB6D+WKkrvobKcEMc8/PDDvjiJNCTpdVhT0EVYUionAiIQKwFv/Aq307HHHps6Fy9Ev6VqKICbihD4/v37uwF8xljCGkvR8JWfvryOt3ApL93MLC3MPZowYYJ7IXOuUl23DMEiWwwrW/OH0TNClBgrJBADnulG9CDC4xfuzscCLlr2LVmyxIXN01PFCGb54osvXE/Kz1q3bu3Su4U1CVZYUionAiIQK4GgL3/WN0uPSrv++utdlBl23333uag1QqV5qYY13I/Dhg1zWfPpzXmWHimYLliMox1++OEunyXzw3CBlaIh/qyDx9I99CQ9Y/wOpkFzo4jcbNSoUblLZm4c7kIEcPz48S4MPj0og3tKqrSgjDhMZUDkwpoEKywplRMBEYiNAC8+Ehizvpn3de6djCVpPCPk2ltXjG28dL3xrAYNGoRu37333usCOzJXh/aiDzMjBXGVkauSFywTm0vVcL954svCqGENV206d+84PiS8Ndxw4fbu3Tu1ajhl6DUHjZWxn3l32fSKJVhh75jKiYAIxEZg9uzZ7sVFLybIEDWyXLDKtLcoJhN9ER8CCZiESgRhZUYvigCBcePGlSvKC/jWW28tMw7DuXhh0ytDIBGubMSx3EmqcIPndqVHmo3xUVBRr5LgFSYk33PPPalqGb8ioGXUqFGBp2Ldu8xoxMDC63co6KIiOtonAiJQEAJB7sD0kzOJlUTIDP4jTEyAxZXFWBL/H0asqI+ggqCw+PQxLO/cTGaeOHGii1xk9QmCPErVEKyGDRvajjvumNUlkLJpxYoVgcewlBACtd9++6XKMCbGxwE9LPaxskOmIXTcw7CmHlZYUionAiIQOQFcfIsXL7bbb7/d1Y27ii91z5gzRDogoszoRS1cuDCvNhCa/fnnn/tOmKVib1ma9PBsXu70AiZNmuSEsVQN8UBEevXqVS7lUmXXxARj8jgGGcEbjFWlr6Lw/PPPu48LjkUoEa3MsSzufXrQS1D93nb1sCojpP0iIAKxEeBFx4A+KX+I+COcHFHy/hAOXnoERxDe7rfUTJjGPfHEE3bggQc6lyO58rxxF+9Y3F2MlXnRcZxr4MCBRiRhUoxrQjQIuMjWSNXEuB73ys9IXIx7z5tzxZjfo48+6ubUEYgxdepU37EsPli6devmV6XvNvWwfLFoowiIQCEIZDPwn0976FUw74ixJ1x7mYYoXnLJJanxKfLoUQ73WambN6eN64D3ggULnBv1n//8Z+gPAAIuEBYyZCD8mYagwY/JxuR5JKKQCcEkKT7//PPdPLpMly3iOWvWLN+xxMz6vd8SrCAy2i4CIlDUBAiHRlT4mif0PTPiL73xdevWTf0MCpggYs0zAivSfxc1iEoah0hF8WFAdCQh/X6CRRO8qQbpzaF8kNHrJW8hy5mENbkEw5JSOREQgaIiwBws5lIRwUc0WlzG2A3BFggkmTH80g/Fde5iqpe1wpjDRWRmFMYEZTJkZGPqYWVDS2VFQASKhkB66qA4G0WEHFGFvFwZp0kPLIjzvMVWNy49MtqzbthNN92UV/MIyGBidrbjaeph5YVdB4uACCSdAK5GJjPjImRicbp7MenXnnl9LG1PIEU+CzjSQ6PHSsaSbE2ClS0xlRcBERCBakyA0H7yKS5btiwnCsxpIyK0ojHHoIrlEgwio+0iIAIiIAK+BNKXHvEtUMHGwYMHV7C34l3qYVXMR3tFQAREQASKhIAEq0huhJohAiIgAiJQMQEJVsV8tFcEREAERKBICEiwiuRGqBkiIAIiIAIVE4g96IIUJ4uXrrTpM+dU3BLtFQERKHkCdRq2sBmz5pX8dWR7AbVr1bYO7dvaxvVqZ3toIsuTxDibZUPCQqixfo2XdWEL51Ju0PBRNmt5a1u70j9pYi516hgREAERKCYCdeo3s9p1atv0G/sVU7OqrC1kIbnyyitdSij+OnbsGElbYu9htWzVxpbNXL8swLQxkTRYlYiACIhAsRHo3LWnbdXnrGJrVpW2h0z3/I0cOdI6d+4ciXhpDKtKb6lOLgIiIALJJ+AJ1zbbbGNdunRxy7vMnz8/6wuPvYeVdYt0gAiIgAgkmMA777zjEvYm2ebMCY5ZyKfnJcFK8lOjaxMBESg6AiNGjLApU6YUXbuqokF+4nXyySdby5YtfZsjl6AvFm0UAREQAREoFIH27dtb37593V+QWNEW9bAKdUd0HhEQAREQgRQBRMqLImQBzjAmwQpDSWVEQAREICICrLSbdCOsfcCAAeUuMxeRSq9EglUOqTaIgAiIgAhERSBfkSqoYDVoUN+atu5gTbr3jer6VY8IiIAIFBWBlu062YrVPxdVm6qyMS1atLBzzz3XufzCuvvCtDf2TBdzF31ng0c/Z1u02jhMe1RGBERABEqOwKo1v9hmzRvYDUN7llzbS6nBsQtWKcFQW0VABERABIqXgMLai/feqGUiIAIiIAJpBCRYehxEQAREQARKgoAEqyRukxopAiIgAiIgwdIzIAIiIAIiUBIE8pqH9dZbb9mECRNsww03LHOxtWrVsksuuaQkAKiRIiACIhBE4Mcff7TLL7/cfv/9d9too41c0lrCtVu1ahV0iLbHSCCvKEFWE166dKmdeeaZ9uCDD9oNN9xghxxyiDVq1MgaNmwYY7NVtQgEE7jwwgvtgw8+8C2w11572emnn+67TxtFIJ0Aq+buvffeNmjQIBs4cKDbRbJW5hbNmDHDmjZtKmAFJpCXYHlt3WWXXezDDz+0ZcuWlettFfh6dDoRsJUrVxovGz+rXbu21a9f32+XtolAGQJ8gP/rX/+yRYsWWY0aNVL7TjjhBKtTp47deuutIlZgAnmPYa1YscJY36V79+4SqwLfPJ3OnwC9+yZNmvj+Saz8mWlreQLjx4+3bt26lRErSvGBfv/99xvuQllhCeQ1hkVTX3nlFfvtt9+sR48ehW25ziYCAQRwB7722mv288/lU+Uwvtq/f3+rW7duwNHaXBUEfvjhB5s2bZr7yMANh82aNcs++eQT924ptPtt7dq17kP8j3/8Yzkcm266qa1evdreffdd22OPPcrt14b4COQtWC+++KJr3b777htfK1WzCIQkcOedd9qwYcNsyy23dEd89tln1rZt29TRjRs3toMPPliCFZJnIYrNnTvXjYH369fPJk6caGQz79ixo7Vp08aWL19uu+22my1YsMA22CBvh1DoyyG4ArcyHziZVq9ePbdpyZIlmbv0O2YCkQgWLwG/L5GY267qRaAMgddff931rL744gsX0fXNN98YARg333yzSBUpgZ9++snuuusuu/LKK10LjzzySNthhx3c2NH+++/vFvQjuGvdunWBV/D+++/b0UcfnZWLjudj0qRJtvXWW/vWyzgoRgBZkNErlBWWQF6CxQ17++233UOVGdpe2MvQ2UTAXMTqjTfemHoWp06dGmmmaDGOnsDkyZONIAbPCN5iiOGggw5ym+69917Xy6no/bLtttva7NmzI20cbajM/FzOlR2j/fkRyKuP/fLLL2v8Kj/+OjpCAgceeGCZF9tjjz0mwYqQbxxVESK+3XbbpaqeOXOmcwWyhhLGmFaDBg3iOHWFdeI1qsw0dacyQtHvz0uwXnrpJdeioPGrVatW2bhx46JvtWoUgUoIrFmzxng+cS/JSocA96wYArgQSkLZmaqTaZ4rsNCBIJntqI6/83IJ8nBxY7t06eLLju78nnvu6btPG0UgTgIvvPCCC7xgvoysNAjwkfHGG2/Ycccdl2ow0XiffvqpderUKfAiCNo44ogj3FhXWKtZs6bhjgwawyKwgsAPv8CKr776yonZ9ttvH/Z0KhcRgZwFi68MUjPhhvGL3iG6hweCWeJhjTldpECpzOiK88Bhn3/+uQ0fPtw++ugj5w7661//6male/uJYiR9FA8g+9mnB60ywqW/X+7A0riHo0ePtk022cSOP/54498q4eTMc/KMgIxevXpVeDG4FIMym1R4YCU7jznmGLvnnnvKlSKcnflZhLfLCksgZ8GaPn26G7/ycwfyVTRgwADbb7/9Uldz7bXXusitIAGjrhEjRvjOnclEcsopp9jOO+9sfJFdeumldt1117mHniixY4891gklYbL8YyA0lRnrCBiRRuQ4bNmypSsvSyYB7vOUKVNchKCseAnwgcoUBN4J/Lt99tln3b9LL2wcEeLfb4cOHarkIs444wxj8jCepH322ce14euvv7annnrKPV+ywhPIOjUTubR4kAgVZqLfFVdc4cQDI4x4zpw57ibz//R+vCSRb775pss5SKBGVPbQQw+5ORrt2rVLVUlPi68f5t4cdthhdsEFF5Q5HWG0d9xxhw0ePDiqZqieIiPAS45nbeTIkdaiRYsia52ak06AcHY+VnGx4QpkSsLdd99tm2++uTVr1sz4OK1KIy3T+eefb127dnX5UZkjNmTIEOvZs2dVNqvanjtrwUJw+MqozBjbSu/KM4GTXleUgoVo8kBnuiSffvpp6927txOlMWPGlGsq2/72t7+V264NIiACIuBHgHlZuCubN2/ut1vbCkQga5cgOQNztS+//NJuueUWF6hBTwhBo4eE8ZV1+OGHh5r8d9FFFxlZt5ms/Oqrr7r/94y5EUQm4gY855xznPuP8p4x7qalAXK9gzpOBKonAXpXCmOv+nuftWDl02QyZXtjWLjmOnfu7PKFMc+CgAgGyrOx3Xff3a1Vg9jtuOOOLghk7NixNnToUJfjiygf3Azz5883BlAXL17s8oMhmjIREAEREIHSIpDXPKxsLzU9LxfJR/kjuWU+dt555xnzva655hqjB3fbbbelElLSg1u4cKH16dPHZeQgqgc3YvpSAfmcW8eKgAiIgAgUjkDWY1i5No0xLHpE8+bNM2aRE7hBb4v5MhWlXcn1fDpOBERABEQgWQQKJljff/+9C7hgDRl6OPwmlLUq0q4k6xbqakRABESgehAomGBVD5y6ShEQAREQgbgIFHQMK66LUL0iIAIiIALJJyDBSv491hWKgAiIQCIISLAScRt1ESIgAiKQfAISrOTfY12hCIiACCSCgAQrEbdRFyECIiACyScgwUr+PdYVioAIiEAiCPwfCOuiNyPHXvsAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "\n", + "\n", + "## Boundary value problem\n", + "This example shows the analytically solvable model - the simplest possible configuration of the pullout test.\n", + "By applying the simplifying assumptions, the model parameters specified in the table above reduce to the following symbols that we now define as variables within the `sympy` package. This will allow us to apply the `sympy` package to perform algebraic manipulation, to integrate and to differentiate automatically and concentrate on the model construction instead." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "notes" + } + }, + "source": [ + "It is convenient to classify the parameters and variables involved in the model into the groups related to parameters describing the geometry, material behavior, measured response, internal state and subsidiary integration parameters that will be resolved during the model derivation. In this classification we also associate the mathematical symbols with the Python variable name introduced in the next cell." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**Geometrical variables:**\n", + "\n", + "| Python | Parameter | Description | \n", + "| :- | :-: | :- |\n", + "| `A_f` | $A_\\mathrm{f}$ | Cross section area modulus of the reinforcement |\n", + "| `p` | $p$ | Perimeter of the reinforcement |\n", + "| `L_b` | $L_\\mathrm{b}$ | Length of the bond zone of the pulled-out bar |\n", + "| `x` | $x$ | Longitudinal coordinate |\n", + "\n", + "**Material parameters:**\n", + "\n", + "| Python | Parameter | Description | \n", + "| :- | :-: | :- |\n", + "| `E_f` | $E_\\mathrm{f}$ | Young's modulus of the reinforcement |\n", + "| `tau_bar` | $\\bar{\\tau}$ | Frictional bond stress |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**Control parameter:**\n", + "\n", + "| Python | Parameter | Description | \n", + "| :- | :-: | :- |\n", + "| `P` | $P$ | Pullout force |\n", + "| `w` | $w$ | pullout control displacement\n", + "\n", + "**State parameter:**\n", + "\n", + "| Python | Parameter | Description | \n", + "| :- | :-: | :- |\n", + "| `a` | $a$ | Length of the debonded zone |\n", + "\n", + "**Integration constants:**\n", + "\n", + "| Python | Parameter | Description | \n", + "| :- | :-: | :- |\n", + "| `C`, `D` | $C,D$ | Integration constants to be resolved through boundary and continuity conditions |" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**Let's import the packages:**" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "%matplotlib widget\n", + "import sympy as sp # symbolic algebra package\n", + "import numpy as np # numerical package\n", + "import matplotlib.pyplot as plt # plotting package\n", + "sp.init_printing() # enable nice formating of the derived expressions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Here we tell `sympy` to remember these variables for further use. The parameter of the `symbols( str )` is a string that contains comma-separated printable symbol definition. One can use latex commands in this string to introduce e.g. Greek symbols like `\\gamma, \\beta`, etc. The number of symbols in `str` must be equal to the number of variables assigned on the left hand side of the `=` sign" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "E_f, A_f = sp.symbols(r'E_\\mathrm{f}, A_\\mathrm{f}', positive = True )\n", + "E_m, A_m = sp.symbols(r'E_\\mathrm{m}, A_\\mathrm{m}', positive = True )\n", + "tau, p = sp.symbols(r'\\bar{\\tau}, p', positive = True)\n", + "C, D = sp.symbols(r'C, D')\n", + "P, w = sp.symbols(r'P, w', positive=True)\n", + "x, a, L_b = sp.symbols(r'x, a, L_b')" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAC4CAYAAAA7ZIAPAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tnQe4VNXVhhe9ShVEpIOIIIJoEAEVDRERxEYUJZaoQbESscWax6iJxhbQqBhjVDSoKAooGLGCQVSqIogIShMEpJdL8z/f5j83w71T751yZuZdzzMP3DPn7PLumTPf2Xuttcv87JlhEIAABCAAAQhAAAIQgEDKCZRNeQ1UAAEIQAACEIAABCAAAQg4AohvPggQgAAEIAABCEAAAhBIEwHEd5pAUw0EIAABCEAAAhCAAAQQ33wGIBBCoG/fvrZy5cqUMtm8ebP16NEjpXVQOAQgAAEIQAACwSSA+A7muNCqDBH44osvbMeOHSmtfffu3TZr1qyU1kHhEIAABCAAAQgEkwDiO5jjQqsgAAEIQAACEIAABHKQAOI7BweVLkEAAhCAAAQgAAEIBJMA4juY40KrIAABCEAAAhCAAARykADiOwcHlS5BAAIQgAAEIAABCASTAOI7mONCqyAAAQhAAAIQgAAEcpAA4jsHB5UuQQACEIAABCAAAQgEkwDiO5jjQqsgAAEIQAACEIAABHKQAOI7BweVLkEAAhCAAAQgAAEIBJMA4juY40KrIAABCEAAAhCAAARykADiOwcHlS5BAAIQgAAEIAABCASTAOI7mONCqyAAAQhAAAIQgAAEcpAA4jsHB5UuQQACEIAABCAAAQgEkwDiO5jjQqsgAAEIQAACEIAABHKQAOI7BweVLkEAAhCAAAQgAAEIBJMA4juY40KrIAABCEAAAhCAAARykADiOwcHlS5BAAIQgAAEIAABCASTAOI7mONCqyAAAQhAAAIQgAAEcpAA4jsHB5UuQQACEIAABCAAAQgEkwDiO5jjQqsgAAEIQAACEIAABHKQQPlE+rR06VLbvHlzIpdwLgSyisDOnTtt4cKFtmXLlpS1e9OmTbZnzx6bN29eyurIZMGVKlWyFi1aZLIJ1A0BCEAAAhAILIGExHdBQYFt3bo1sJ2hYRAoLYGff/7Ztm3bltLPucpXPbn6XVLfMAhAAAIQgAAEwhPA7SQ8F45CAAIQgAAEIAABCEAg6QQQ30lHSoEQgAAEIAABCEAAAhAITyAht5PwRXAUAhCAAAQgAIFsJbB9+3Zbv359tjY/79tdo0YNq1q1at5zyCYAiO9sGi3aCgEIQAACEEgyAcWfLF++PMmlUly6CJQrVw7xnS7YSaoHt5MkgaQYCEAAAhCAAAQgAAEIxCKA+I5FiPchAAEIQAACEIAABCCQJAKI7ySBpBgIQAACEIAABCAAAQjEIoD4jkWI9yEAAQhAAAIQgAAEIJAkAojvJIGkGAhAAAIQgAAEIAABCMQigPiORYj3IQABCEAAAhCAAAQgkCQCiO8kgaQYCEAAAhCAAAQgAAEIxCKA+I5FiPchAAEIQAACEIAABCCQJAKI7ySBpBgIQAACEIAABCAAAQjEIoD4jkWI9yEAAQhAAAIQgAAEIJAkAojvJIGkGAhAAAIQgAAEIAABCMQigPiORYj3IQABCEAAAhCAAAQgkCQCiO8kgaQYCEAAAhCAAAQgAAEIxCKA+I5FiPchAAEIQAACEIAABCCQJAKI7ySBpBgIQAACEIAABCAAAQjEIoD4jkWI9yEAAQhAAAI5TOCBBx7I4d7RNQgEjwDiO3hjQosgAAEIQAACEIAABHKUAOI7RweWbkEAAhCAAAQgAAEIBI8A4jt4Y0KLIAABCEAAAhCAAARylADiO0cHlm5BAAIQgAAEIAABCASPAOI7eGNCiyAAAQhAAAIQgAAEcpQA4jtHB5ZuQQACEIAABCAAAQgEjwDiO3hjQosgAAEIQAACEIAABHKUAOI7RweWbkEAAhCAAAQgAAEIBI8A4jt4Y0KLIAABCEAAAhCAAARylADiO0cHlm5BAAIQgAAEIAABCASPQPngNYkWQQACEIAABCAAgcQJDBkyxNauXRv1wo4dO9rQoUOjnsObEEglAcR3KulSNgQgAAEIQAACaSNw99132549e6LWV7480icqIN5MOQE+gSlHTAUQgAAEIAABCKSDQPXq1dNRDXVAoFQE8PkuFT4uhgAEIAABCEAAAhCAQPwEmPmOnxVnQgACEIAABCAQUAI///yzffjhhzZjxgzbvn17xFaWKVPGzjrrLGvdunXEc3gDAqkkgPhOJV3KhgAEIAABCEAg5QQkvO+66y4bN26c7bfffiaBLd/vgoICq1Klyj71V6tWzXr16pXyNlEBBCIRQHxHIsNxCEAAAhCAAASygsAzzzxjGzZssNdff90aNWrk2jxlyhQ3C37NNddkRR9oZP4QQHznz1jTUwhAAAIQgEDOEfjmm29s3rx59sADD1jZsv8LZfvoo4/sF7/4Rc71lw5lPwECLrN/DOkBBCAAAQhAIG8J1K5d27mchApvuaFMnjzZDjnkkLzlQseDS4CZ7+CODS2DAAQgAAEIQCAGgf3337/YGfPnz7dt27ZZ48aNi73HAQhkmgAz35keAeqHAAQgAAEIQCCpBJT1pE2bNi7wEoNA0Aggvks5IsuWLbOHHnqolKVwOQQgAAEIQAACySKgYEuJbwwCQSQQCLcTpQMaPHiwbd26NWFG8ue67bbbEr4uWRf89a9/talTp9q1115r5cqVS1axlAMBCEAAAhCAQAkIrFy50r7++mv7zW9+U4KruQQCqScQCPGtIAnNHm/ZssUJaaUGOvLII+2+++7bJ4BCOHTOunXrXAohpRYqXz5zXfjggw/s448/dqP0008/Wb169VI/YtQAAQhAAAIQgEBEAtIHCrg89NBDI57DGxDIJIHMKdcivVbSe70krGXdu3e3WrVqFWNTo0YNO/DAA61t27a2efNmW7NmTbFz0nFAu2c9+eSThVWtXr0a8Z0O8NQBAQhAAAIQiEJA/t5Vq1Yl2DIKI97KLIFA+XyvXbvWFi9e7IgcddRRMcloa1gJ8UzYv/71Lzv33HMLq87UQ0Am+k6dEIAABCAAgaASkMtJly5diq2cB7W9tCv/CARKfE+fPt2NgLaGjSc3Z+XKlTMivhVk+dVXX9mpp55qNWvWdG3WgwMGAQhAAAIQgEBmCbz88st27733ZrYR1A6BKAQCJb4///xz19Qjjjii2BOrfL3ffffdfbpSUFBgBx10UJTupeatRx55xAVYKoVR3bp1XSVyO8EgAAEIQAACEMgsAbmsZjIeLLO9p/ZsIBAYn2/B8me+w20HKx+uHTt27MO0Z8+eVqFChbRy1na1jRo1spYtW7p6ldx/0aJFGfM9T2vnI1T23XffuSBZ+cE3bdrUBctqVSKaKUD1k08+cYGq9evXt65du1r16tWjXcJ7EIAABCAAAQhAIOsJBEZ8a+b4+++/d0Al3kJNM9wjR460v/zlL/scr1SpUloHQOL/ueees2HDhhXW62c4yUefb/G455577L333nOBLRpDBczKFeeiiy6ygQMHFlvBUDrJ4cOHmx6mfvnLX1qTJk1syZIlNmrUKBswYICddNJJaR1TKoMABCAAAQhAAALpJBAY8a2ZU5nSDk6cONHefvtt27Vrl61fv97NkCptkIRaJk1Blv3793dR1L75bieZFt/vvPOOrVixolR4mjVrZscff3zcZdxxxx3WsGFDN1ZionztkyZNcg9Jf/vb3+zTTz815UH3Z8E3btxoV1xxhctUM3r06H04/va3v7X777/fZbzp1q1b3G3gRAhAAAIQgAAEIJBNBAIjvn2Xk8MPP9xFKct27tzpZlIXLlyYceEtYfvll1/aoEGD9hlfuZ3IMu3zLWG7fPnyUn32EslTro2F9OBxzTXXFNapByfNXCu36mWXXeY2H7rhhhucENeDlIS3xvaqq64q1k5tUHTTTTfZjTfe6M5hw6JiiDgAAQhAAAIQgEAOEAic+D7uuOOsc+fO+6CVe4PEWyZNQZZDhgwp1gT5K8vku6yZXwnQTNhZZ52V1monTJjghHU4kwuKXHMuvvhiJ8AffvhhF5yqtJBXXnlluEvcMbE78cQT3UoHs98RMfEGBCAAAQhAAAJZTCAQ4juav7fYrlq1yhRcGWo//PCD6dWpU6eU49duWbNmzbIRI0YUq0uiW7Z7927nIlOnTp1i5+TiAQllpYSMZK1atbJbbrnF7Vj673//222YpPRPEuHR7LDDDrM333wT8R0NEu9BAAIQgAAEIJC1BAIhvn2XE/n7htsOVoF5Bx988D6Q5X99zjnnpBy8Zt1Vl3azrFixYrH6JLgvvPBCd1wPEfkivuNJ43TyySe7LCivvfZaof9+LD5KHblhw4ZinDkAgXQQ0EP0H/7wB+calYoYk23btrny//znP1uVKlXS0SXqgAAEIACBgBEIlPju2LFjWLcN7WQZappt/vHHH61Fixb7HFdQpj+zGskFJNLxSOOi7Cann366NW/ePOwpDRo0cHWq7mgb7YTWG6kNkY6HrbjIQW36U9qAS4mNoqwj1a2sJfGYcrZLfG/evNmGDh1qzz//fNSUghrbaDPq8dTJOblPQA+9/qpTpN76efhr1KgR6ZR9jus7rMDfXr16pUR4qzIJ7n79+tkZZ5xhY8eODftAH1djOQkCEIAABLKWQCDEt7+5TtEUg5Go/vOf/3SC2Df5Ec+ZM8ftiilXh1deecX9qM2fP98OOOAAu/XWW+3999+3L774wl2ic0855ZR9tocPV5fErGZuH3vssXBvu2MKDJRLhQJDi2Y8UU7wBx980LnH6N+lS5c6gazZNZV79dVXm9ws1B+ZZs4l4O+8886ENw9SlhH1tzQmoRyv+FYGE/UjWmCkHpDk73377bfbo48+6vqv8ZH/fCTfePmIt2/fvjTd4No8IKAsOv/9739N20jr+yVr167dPjve6rukYG0FRV9wwQUuoDfabPNdd93lVq6UIjOVprgG3YsUvK1VNQwCmSbwzTffuN+e7t27Z7op1J8ggaOOOsppGiy7CGRcfEugSZTJ4hHfn332mUnUXnfddYWkJY4lWOfOnetmk66//nonCuUyIpcVzbr27t27MEBQAX0Svgrqi7S0rFkwpcxTkGUsP+XatWs78a2+hJqCR9u0aeOE/ksvveSyfZx33nnuFM2o//GPf7Rf/epXri1++kL9IEuoalk6EQvNOpLIdSU9V+z+85//OK7hTMzVJqVmPO2001xKQv0twSRBrvErylW7mL7xxhv2xBNPhCuSYxAoJKD88rKnnnrKiVg9sIX7AZKbxwMPPGBKi/nWW2+5nPThNnOaNm2aE8LKaJQO03dB3yHdF9LhPpeOPlFH9hLQ90TZxULT6GZvb/Kr5fPmzWM3zywc8syk5ggBJSEsk6tBOH9v/1Ttnvjiiy/a73//e/v1r39dbOZUM1raaVHi1p+N1ey3spHoiV4i1zcJbolrzYqFM72n9HgrV66MaybY3+yn6My3yvZvZppRU35r39QuLZ0rrV7oDU9t0yxE0E2zdxLS2t2zqOlhavDgwXbMMccUpmbUrqXK460ZcwVgyu811G1g2bJl7iHkN7/5Tdp3LS3afv7OHgL+qlno9zu09bovaOVFM3p6cNeqS1HT910P2TfffLPLM58O04Pn3Xff7VyxlCYUg0C2EdDKp1Zy9R1csGBBtjWf9kIgowQyMvOtpeJXX33V/ej44ls/RkV3sBQZzYZqRlnXyM9YP6annnpqWGgSsX7qP/8EbT9fNFjTd3koul29lq+fffZZdzORkJdJEEpIhgpnHddNRw8DEp++u4c2utHsgdxfzj777H3aqA1swpmygoSaAhn1oBF003hpGV+z95rVFh/1XcGzGlPNRp555pn7dOPYY491M/6a1ZebjFYwWrZs6R6EtMulVixOOOGEoHed9gWIgGayZT169IjaKsVmyLSBlzLwhNqYMWPcd1i7sqbT9ACrVbO///3vTvhjEAg6AQluZR/T759+l/W3LF0PrUHnQ/sgEC+BjIhvZbTwUwcWFWixGi5xLR/rcBbJjziezBwqTzcQ/Yj36dPHLeNInGs5zv/hDq1TW6hr2ViuJRLoMt2I9IAQblk7Utui+UyH62OQjqmf8r3VjKJSMSpgtGvXrm6jnEjLlwqSlauAlsr0kKPZf/GVe1CsTChB6jttyTwBrZZo9UrfLT3YRTN/Zi7cd/Ppp5927lH+Cla0cpL9nvzL5e6C+E42WcpLFoFIgjtZ5VMOBDJFYOTIkW4nbnkt6GFSf4fTe6loX0bEt34Ai26kk4rOJVqmsiL4u2vGulZCXW4V+W6aAddYJjqecjGK5maU71zpf2wCH3zwgTupQ4cOER/I9b52fvV9ufVgHWqaxdNs+DPPPLPP8XT9IXcZuWBpxSiemJd0tYt68psAgju/xz9feq9gfG3+pwmQTZs2uQnXdFlGxHe6Oqd6NBvrL4359crNISim9oVa0b+D0k7aAYGgEfDFdyxXJe22qu+VsgJcdtll+3Tjww8/dO8dffTRUbunjbaUJlMuYQqWLCqUtUI2atQo52qlVTGZVnW0KqZzw+2Oq3P04CBXOrWjaJlRG8SbEEgBAbmTFHUpiacaiRb2Z4iHVPLPkeuq2GsVPdzKXvJrzJ0StReJXjNnznRZ8tJpOSG+le1EfsbKsKEsCFrKVbCllhC0NC1XkIceeshl2FCQoPJOy7Tjom4ayrubClM6Mf0gy5RpQV+O888/32VkUVYPmVIQamt4uWuojWqfAhEVnKjgQ/lTYxCAQHECSh8qi+bvPW7cOPe9kvAeP358sbzaH3/8sXN3ipZiU8JbWUl0n1FZulkrRiE0baE24VIweL169axv376uXa+//rq7B+keoExH4Tbpknub4iX0vQ/N4FS8txyBQPIJ+DPcWoHRQ6i/4V2iNWkFSd8JLP0EdE9S/JTuY3KFzRUbPXq0iwu8+OKLU94lxQam23JCfOvGobzfAigBrqUE+YFqFkq7T+oGoyUFmZ4StXud/JILCgpSyrtRo0Z26aWX2rXXXuuCEf36lE9bGwop84ceDHz/aC2JDxgwwIl0tTeSb3tKG03hEMgCAvqhV7Cz3J6UK1+pPmX6ruvhVZtOSfhqRllBwTfccENY8avMQk2bNi2W9tJHoFUyxTXoQV1CWX6B8g/UQ31oILcf+CmR79u5555rI0aMMOWu1/c/nPjWubpfZUOGo8KO8Z+cIKDvzOzZs91vTdEN63Kig3Qiqwkonkf3+XSI70yAygnxHTprFZrtpGgmEQEumg0lldCVyUCvota4ceOih9zfypLimzYHwiAAgfAEfJcTzfYo606oKR5Dfnx68JarSLSNdZTVKFqAjepRbIcfjKkVKz0Uh+4PIME/efJkN3seWpauUWYf5fGOlg1C4lt5xjEIpJOAfpu0aiT3qOHDh7sJIQwCEEgPgZwQ3+lBRS0QgEBQCPguJ9rASdlKSmpKZer7aIcrQ6tQEvEyZefRbIz+Ds2MIn9BCRjtP1DUlEqzU6dORQ/v87ceIHQ9BoFMENDDpB7+9DmV24JS7srvW6uyGARykYBWR+Upof1lMmWI70yRp14IQKDEBPyZb6X6LI3JzzVSWkyVG1q+/L5lRXP4+y4nxx9/fLGmKKVmrDb6s+JyTcmE72GxRnMgbwlIiOulTFR6IIxXiCt9cLS4ibwFmoaO6+FdYrLojtGpqFpueNrZWnEsSt8ayXVXm+o9/vjjqWhCictUUOq9995r+u1QdjYJb7kRKrYuHlPf3377bbdJoCZhIvVdK6VaSYpliO9YhHgfAhAIFAG5ivibYMXK7x2r4YoN8eNBop2rG6+i4bVUX3Q3Tf9BIJz41oziKaecEq3owvoR3lEx5dSbmlmWsI1kCsKN5i4V6bpkHk9EiOt7xOc3mfTjL0txbulgL6GqVT+lZpVLrx64tDmZhH/dunVNsWwyrRYqDidI9u2337pAeT1U6n7tf7c0+aJUrwqqj2b6rqrv2kjR77smVhQ3IbdB32Urkb4jvqMR5z0IQCBwBPyZZt38SxsophiQeFKk6eb9/fff2wUXXFDsh06bTCloUwHWRU3ZI2699daih/f5WzOM6YxFidoY3kwpgRdeeMHFAcydOzdqPY888ogL1A+KJSLEg9Jm2pE8Agoy1468Evpy+fMzTCkbSe/evV2qPu1erViboJky2p1xxhluJUez1qEPtXpo1M7qyooVyVavXu02AVQ6WQXw+yuZKk+CXlntFNyfaJxe2UgVchwCEIBAEAn4/t6x3DniabvE+9q1a2OequwpsqIbQ2nWXD9MoZlP/MKUSaJdu3Yxl4NVf7NmzWK2gROyl4CCcs877zyXalafCW3q9M9//rNwZ1YF5Sqjjl4TJkwolo8+SD333VIkSLTypJnATM/SB4lPvG3RrOuuXbviPT2j5ynjiFZrJk2aVCi81SBtTHjLLbc4YaoZ8SCaNtCRQJa7YLjAd7nrRJrE0YqnZrwlwDXrHfqbo++BZs0VGyF3lESNme9EiXE+BCCQUQK+m0dpXU7UCYnpMWPGOP+9aNvL+xt1FQ3O1A+STPm9i5oCQYtmYil6jv6WsJeQwXKXwO9+9zt79dVX3Qxb6C6r2pNCWa7knuTvCZFNFPwZ8Wxqc1Daqgd3BWRrVlbB2ppZVjrToJn2KNHnVilXw2WQ82e7o7lRheuT8ngriD2Sae8WzazffPPNkU5x7h5KzxzN9EAra9++fbTTwr6nfuthWPuxJLPvqoyZ77DIOQgBCASRgHJmK8e2LNaulPG0X37aCnScM2dO1NM146EAHbmY+KZZEQXwyL9RMyuhO+dqJqR58+bOLzKarVy50uWyTcYsfrR6eC9zBLSpm2a6tRlKqPBWi5T7vWfPni6GQT61WH4R0KrXP/7xD+vVq5dLU6qHNAU0BmlGXMGD8mX+7W9/G3Zwli5d6o7rQSwRS0Y2nXjKkMtgSdqna/72t785N8NLLrkkbNfkiigLl1I67AUhB4P3mBWrxbwPAQjkFQHNEPniVDd6/0bXv39/J4i19Bdr9iMSsC5durgtmeWbrQj9SKaAIokobRevnSy1Ffy7777rdqe94447XC5vzWL6PoBqo9oVyyTm5XdYNIgz1nW8nx0E9EB2++23O19YCatw5q+qyDcVy18CvhCXGNf9Jggz4tu3bzfF2OjeqDaFM+0SLPMDLsOdE+6Y4meimXyxNTGhf0tjJV1NkLDX/g2a5Cm64um3RzsTyxLtu65BfJdmVLkWAhBIOQEJbAX0pMLkqyrh/uabb9rll18etQrNUH755Zf29ddfm7bT1kym/yCg5VNF/ssNRUI63sAj+Ulq1ivWDHnUhvFmYAnooU5uRddcc03EHU71vgRCogFbge00DSs1gaAIcd3n9FBYNNbF76AeLuVOJfcZTWQE0bQyqdSA/i7I8bZR93KtiirzUDiTz776Lrex0J2Nw50b7hjiOxwVjkEAAnlD4LLLLrPu3bu7Zf9YWUe0/Kqbcbgbcps2bUyveE1BSvLzlUsClpsE5CYliyRMlDFh1qxZLogtHeniQinLR9dPseb/P55l/NwcqfT3Kl7WmRTiuh/qnhdpckDic9GiRSb/7XTkGS/JKGly5fXXX3eugZEsnJuPJlDUp4YNG4a9TL7kWolVzFBJ+o74DouVgxCAQL4Q0KyF3EeU3k0+3OkyBWR26NDB+vXrl64qqSfNBLRsLwuXDUfHtXGTgn2vuOKKNLfMbMaMGftsGKW/sWATCCfE1WKJx5K6V0TrsVYGtfOp7zcdeq4e2OSCd+WVV7r7Z1BNwayPPfaYSzN4zz33FPPPVryF/5Ac2gdlRlFA5+LFi4t1TXFH119/vUsHevrppxd7P54DBFzGQ4lzIACBnCZw//3327PPPlu4eU+qO6uNKVTnww8/nOqqKD+DBLQkLQsnjDTzed9997mHL/n3YhBIhIAvxHXNnXfeGXHHxUTKDHeuMn3ILU8uVL7JDfCkk05yQZjx7OYYrtx0HVNMjeJ19F3U9yw0taw2ytGDr5/JRK6EWg3SqqRMf2tmW6tTvomDXAsVw1Ga+zcz3+n6BFAPBCAQWAJaVtV2yIMGDXKppbTUmkqTf7kCNTXzjeUuAaWPky+30mP6u+Cpt/IlVf5gZbjQ5iQYBBIhoNSmZ555pktRqFgUzeimypTSVfm9FfiodKy6NypIXas24dzvUtWO0pSrXSglquXip5zlderUcW5ecqvRjLhiMuTbLpEtVxJlOdGmaXIHU9//9Kc/WdWqVQv7Lneb0vYd8V2aEeVaCEAgZwhoBlIBRkOGDEnpbI5+xBQEdOmll+YMOzoSnoBEinxDL7roIpctolu3bi4AUzmTO3fubM8//7xVrlw5/MUchUAIgVDBLVGY6gmCUPjKdvLKK69k9Xho9Umz1eGyDmnVM5Kp7xLbyTbEd7KJUh4EIJC1BHRj1sy38m9rVjLZpuVM5f9WakIsPwgoTaZSSr7xxhsuwLZx48ZuGTxS6rZ0UVHOcT83fd++fW3w4MHF8pCnqy35WM+GDRti5sbOpODO9Jho18lEc4dnus2J1I/4ToQW50IAAjlPoHfv3inrowKYEN4pwxvYgiW0tdyNQSAWgXwW3KFstB18LhviO5dHl75BAAIQgAAEIBBoAgjuQA9PShqH+E4JVgqFAAQgAAEIQAAC4QnIZ1t7DChoMt0+3OFbxNF0EkB8p5M2dUEAAhCAAAQgkPcEFIz7xBNP5D2HfAVAnu98HXn6DQEIQAACEIAABCCQdgLMfKcdORVCAAIQgAAEgkFAGXi09fajjz5qY8eODUajaEVCBDR2V111VULXcHJmCSC+M8uf2iEAAQhAAAIZI6DNRZYsWeJeWHYSmDhxIuI7y4YuIfH9wriP7eslP2VZF2kuBOInsHFLgT01ZppV3a92/BcleObOgu1WsHOXPTjyowSvzI7Tq1erZmefUd16HtkkOxocsFZqN0TluG3SBH4BG5rC5ixcuNBtOjJ37lwbOXJkUJtJuyAQWAJmabvPAAAZGElEQVTazEx+7wo4zcedfhMS3xO/2GKbNu2wDUtmBnZAaRgESkOgoKDAPp0+y8pVrFqaYqJeu2f3Ttu9a7dN/u+0qOdl65v1m7a1mU9Otp4jBmZrFzLa7qeeespteXz00Uebct3279/fbcyCZZaAL7glumfO3Psb2L59+8w2itohkKUE9H1688037Z577rHWrVs7EZ5PQjwh8V1u1xZb9ukoT3zPytLhptkQiE3gh1njYp+UhDOWffpSEkoJXhF1ypxobdsdGbyGZVGLtPPgJ5984l5Dhw61Ll26uB8mhHh6BzGc4E5vC6gNArlPYMGCBU6E55MQJ9tJ7n+u6SEEIJDFBCTEp06datddd501bdrUunbtag8//LAtXbo0i3sV3KZLcP/5z3+2Tp062cEHH2y33HJL4Ux3cFtNyyCQGwR8Id6xY0c75JBD7LbbbrPZs2fnRudCepHQzHfO9Z4OQQACEMgiAr4QlxhnRjx5A1fSGe7du3fbokWLkteQUpRUtWpVa9CgQSlK4NJ8ILBmzRrbuHFjxru6devWmG3I5RlxxHfM4ecECECgtASmTJliw4YNK20xeXH9tGnxxQIgxEv3cSip4A6tdfXq1dayZcvSNSRJV/fp08fGjx+fpNIoJlcJ3HHHHfb4449nXfdyTYgjvrPuI0iDIZB9BJTGTIFqWGoIRBLi8hNv1KhRairN0lIlmK+44gobPXp0lvaAZkMgvwmECvEePXrY008/7TJEZZPh851No0VbIQABCMQgUKlSJatfv7571ahRI8bZ+fd2vXr13IPg9OnT7eabbw7MzHX+jQQ9hkDJCDRs2NCuvvpq++ijj+zdd9/NOuGtXjPzXbKx5yoIQAACgSFQuXJl69Wrl8uIcuqppyK64xgZBVTqpeDKGTNmOEGu17fffhvH1ZwCAQikk4AE91lnneXucd26dbOyZbN77hjxnc5PD3VBIE8JtGrVygYNGpSnvU+s2++9957JHzmWIbhjEYr//ZIK8bp169qECRPiryiFZ9asWTOFpVN0rhDQas8ll1yS8e5okx3FAkWzXBPcoX1FfEcbed6DAASSQqBz586mFxabwMCBAyOKb7mUnHzyycxwx8ZY4jMSEeIVKlSwI48kp32JYXNh2glo59wg7J4b6WExlwV36GAjvtP+0adCCEAAAvETkOD2XUr69euHS0n86Ep9ZiJCvNSVUQAE8pRAvgju0OFFfOfph51uQwACwSWA4A7e2IQT4vPnzw9eQ2kRBLKAgB80mSs+3IkiL+OlqPo53ov6XD/KthXssoNq7I73Es6DQFYRGPPoUDvpglusWo26KWv3zoJt9tqj19k5Q7Mv12o8UDbvrGjL1u+xz0YMjOd0zilCQMF/8pEnUwkfjXQQ2LBhg9WqVSsdVVFHigiQ4z1FYFNYbEIz3/de/ktbtGJDCptD0RDILIGJT1ey3scdZfsf0DBlDdm6ZZONe6K8ndmrW8rqyHTBB+5fLdNNyNr6NcOKQQACEIBA7hJISHx3aFXP9MIgkKsEhlQqb72ObpbSgBTNNFUoX9bOOK5VrmKkXxCAQJYQqFixorvftW3bNqX3vSzBkXXNHDFihAvCxrKLQEJuJ9nVNVoLgcQJNG3a1CZPnpzSHyGJb9Wzfv36xBvIFRCAAASSTKBv3742ePBgk/sCll0EypQpYwl4D2dX53K4tdmdpTyHB4auQQACEIAABCAAAQjkHgHEd+6NKT2CAAQgAAEIQAACEAgoAcR3QAeGZkEAAhCAAAQgAAEI5B4BxHfujSk9ggAEIAABCEAAAhAIKAHEd0AHhmZBAAIQgAAEIAABCOQeAcR37o0pPYIABCAAAQhAAAIQCCgBxHdAB4ZmQQACEIAABCAAAQjkHgHEd+6NKT2CAAQgAAEIQAACEAgoAcR3QAeGZkEAAhCAAAQgAAEI5B4BxHfujSk9KgWB9u3bm7ZbTqWVK1fOOnbsmMoqKBsCEIAABCAAgYASKB/QdtEsCGSEwPjx41Neb/Xq1e2DDz5IeT1UAAEIQAACEIBA8AggvoM3JrQoQARGjRpl06ZNszVr1tjatWvtlVdesWrVqgWohTQFAhCAQP4QuP3222358uXunlyrVi177rnn8qfz9DRnCOB2kjNDSUdSQUA3d81US3RPmDDBdu3alYpq4ipz06ad1rfvRHvjje9sz56f47qGkyAAAQjkEoE2bdpYzZo1bdy4cTZr1qxc6hp9ySMCZX72LI/6S1chUCICJ554or3//vu2fv16d+PPhD322Fy76qqPXdUtWtSwK69sa5dcoh+i1PqoZ6Kv1AmBbCGgh+LVq7e55q5btyNiszdt2uE9vIf/ud2+fbdt2xb+wX7Xrj2mOmQdO9a1zp3rR6yjpG/07dvXBg8ebH369ClpEWm/br/99rPmzZvbnDlz0l53kCosU6aMIeOCNCLxtQW3k/g4cVaeE6hatWpGCegR+e9//6qwDYsWbbShQz+xO++cbhde2NquvrqdHXJIrYy2kcohkI8EFi/eZB06jE551y+/vK37rmN7CShwHYNAthLA7SRbR4525xWBceO+t6++Wlesz5s37zTNiB966MvWu/cEzzVmqTcLUuw0DkAAAikicPjhdbzvX+oefKtXr2AjR55ojz/e3SpVQnCmaBgpFgJpJYD4TituKoNAyQh07lzPbrutk9WvXyVsARLcEycutVNOmWBt2rzkBLm/VB32Ag5CAAJJIzBgQKuklRVaUJs2tezTT8+wgQNTU35KGk2hEIBATAKI75iIOCEfCWzevNm2b9+ecNd13Y4dxf0+5SteGmvQoKr96U9H2ZIl59kzz/SwTp32j1jcggUbnG94rVr/8vzCp9js2WsjnssbEIBA6QkMGNCy9IUUKUGC+7PPzkjprLpf5SOPPGLdu3dPeh+SVaDuqUuXLrUtW7YkVOTu3bvddTt37vWZ9y8uKChwGVMwCGSKAD7fmSJPvYEjIIH8l7/8xT788EM74ogjvCXeSt7s8SYbNGhQzLYqb/fjjz9uBx10kIvA/9WvfmV/+MMf7M0337QxY8ZY3bp1bfr06Z6f9lDPPaR3zPIinaBl54suau1ekyevtGHDvrTXX//OC+TaU+wSZUSRn7heCtIaNKiNnXNOSy97S4Vi53IAAhAoOYHWrWu6B+IZM9aUvJD/v1Lf8YceOsauuKJtqcuKt4BWrYI5sz5v3jxTakHdm4855hg3IbJx40a76aabYnZt+PDh3qrBp6a+vfXWWzZkyBA799xz7f7777dly5ZZ7dq17Z133rEnn3zStLlattrnn3+erU3P63YjvvN6+Om8T2DhwoV20kkn2VFHHeWymlSuXNm9pRmT6667zr744ouIsCS8X3vtNXvhhResfPnyXsaDdVavXj1TFPo333xjTz/9tCeQX7cHH3zQfvrpp1KJ79BGHHtsA9NryZLNTmD/4x/zvVzk4WfrP/30R++H6EcXpHnuua2cED/iiMiz5xE7yxsQgEBYAnqwLa34bt58P3v55Z7efahe2Dry6eDYsWNtwIABdvfdd7t7sG/+hEi0lcm//vWvdsABB9jzzz/vLuvRo4f16tXL3cebNWtmN954o91www02depUe/TRR50Az1Y78sgjs7Xped1u3E7yevjpvAhs27bN85U+xbREOXLkyELhrfcqVKhgWpKVqA5n+gEYNmyYPfzww4XnaEZFucHvuOMO98Mh0+yEytePQLKtSZPq3ox9Z+eSMmLEcXbYYXUiVrFhww574omvvFm617zZ8DFOsCtoE4MABEpOYMuWXVajRulSfvbp08RbHTsT4e0Nw1dffeVmqSWYQ4W3RkgpBjWrHc69T+/Pnz/fzWxfcMEFhQPaoEEDk6vJ6NGj7Xe/+507rjp0X9cqJQaBdBNAfKebOPUFjsATTzzhZqg1y1KxYvEfUKW0atiwYdh2v/TSS54rxzkWmvZKvoQbNmxws+gHHnigu+7OO+80LaE+9NBDYctJxsGqVct7PyxtvNmd/p7rzKkuSCtadoTPPlvtnf+R17eRnhvLB94s0KpkNIMyIJAXBNatK7Bnn11gZ5zxH2+l6zkvT/bkEvW7fPmy7uF53LiTPVeISiUqI9cu+uMf/2hbt27dR0CH9nH//ff3HnZqhO32Y489Ztdee+0+70loy5TPXCuSsldffdVWrFhh/fv3D1sOByGQSgLhp/NSWSNlQyBgBDQbIjvssMMSbplcVeRiEmozZ850fx5//PGFhzWDrp3Z0mXHHXeg6TVsWIG3/fICb0Z8nif+wwd9KiuKRIRerVrV8H7wWjvhro18MAhA4H8E1qzZ7om2xd4M6iLvAfcHzy2teKxFIrwUSP3vf5/orYiFf7hPpKxcOVcz2uPHj3fdOfTQQxPu1q233mqa6Q61GTNmuD9D78lyLfTdCxOuhAsgUEoCzHyXEiCXZz8B+XvLSrJzpWa2i7qkKGBTlgoXk0Rp16lTyQs0au8tsZ5tH33Uz84//2CrUiXyM/fChRs9d5nPPRE+yvuhGudEu1xVMAjkKwHFUTz11HwvJuQtT9Q9b5dfPtkmTVpeauF9wgkNbebMMxHeRT5YWjmUK6CsJPfkosJb5Sgup2zZst6ExHH5+jGm3wEjEPlXOGANpTkQSBUB3ZSTaQrY1Ex30FJ3+QGajzzS1QtE+sYJ63Ab94iF8oZ/9NEP7nXNNf+1fv2aOuF+8smNvb4ll1cy2VMWBJJBQC4lY8Z85wU/fmvvvbcibqGt1SJlHlIQdCST18ONN3a0e+75heeuttcFItK5+XhcWaZ8S8a26XJfUdaTDh06uAwnGASCQIBf0SCMAm3IKIF27dq5+uWnXVpTGiylGpS/d7Vq1fYpTpH1QTDNhl977WE2d+6vbcqUfi5tYbT0gwUFu+2VVxZ5Avxta9ToBecnPmXKSlMqQwwCuULA9+Hu02eilynjebvkkg/t7beXxRTeCnC+/fZOXqaTM+3bbwfYrbceERFJ3bqVnW+3fLwR3uExaea6fv367s3S7o+gMj7++GMXnBnqcuLX7K9Shm8JRyGQOgKI79SxpeQsITBw4EDX0jlz5iTcYgltzar4puVNZTUpurypY6kMtky44f9/QbduDdymPatWne+2sO7Vq1FUUfDjj9tchpRjjx1rTZq86In4/7p84wjxko4A12WSgAT3M898bRLccilR4PFbby2JKbiVplMz1wsWnOMCnO+666jC1J1nntk87OqQ0gdq0xxlNcEiE9BKpILfZbNnz454orKXFDXNlCtFoR9gqfcnTZrkTisqvhcvXuzOxSCQCQJlvA8r01eZIE+dgSGwa9cu69q1q0tPtWDBApcmMNTkE64lSy1frl271urU2ZvKz5/h1rnyUZSriTKfvPzyy55Lx4jClFZ6XxvwtGzZ0uUSD7qtWLHVRo1aaP/61wJPWPwUV3MbNqxqZ53Vwn796xbWrdsBnn8ly+lxgeOktBP46acCtzGVgiYT8d3WJjpnn93Ce7U05eOOZhLzEvG+XXVVO3vggS5Rsw9FKy/f3lu1apWXDrWTx7m593A/uTBDic9B91jdaw8++GB3z/ZN+bovv/xyt/L42WefuRlvBbpLaCvoUpun+TZ48GCXhSqcj3i+8aa/6SfAzHf6mVNjwAgoYFKb4GhThrPPPtvtoOabZlC0K6U2ZpDdd9999u677zqxrR+IPXv2eFu4X+mEt7KmdO7c2Y4++mh3o/ftxRdf9Jajv80K4a02S0hfd93h3kpAf/caOvRwdyyaSbAPH/6lN+M/1rmmXH31x85ffPdunu2jceO99BBYvXpv0OTJJ+8NmpRLyYQJ2nY8eraSjh3ruhnuhQsHuBzcN93UMabwVo/OOaeF65jcubSiNHx4N4R3AkOte/GECRM83/kl3r3kapej2zfdZ7VzsPJ9L1q0yK0o6p4sW7NmjZs80W6Wujdrl2GlHlSq2GnTprlzdO++/vrr7YQTTkB4F1LlP+kmwMx3uolTX2AJaJZEM9Zvv/228zmUKNe/2gnt/PPPd7nAtU28XtpYp3Hjxm47es2M60avncYkxDU7LsGuRSU/wv7iiy8ObL/jaZhEtGYJX3xxobdU+53nixlfBpRatSraaac18/LrNvEePhqVeiOSeNrKORAQgUWLNrqgybFjv/f8flfG/SAoH26JZ81wa9v4ktjGjTs8cTfe2/X2RG/mtVZJiuAaj8DmzZvdDpRy7dN9V/dUBbJfeOGFbnZb+zLouO7FWl2UsPa3o9eKps6TyNa9W7PcSi2oPN+XXnqp264eg0CmCCC+M0WeeiGQpQQUgCkhriDMN96IX4hXrKhUXwd6Qryp83tVTnEMAskiIAdKbe8ulxJ9LuN1mVL9HTrU9TZbae7cpg45JDliWQ+sBFUma3QpBwK5RQDxnVvjSW8gkFYCO3bssXfeWeb8Z99443tTAFu8phnBU0/dK8TlJ66d/jAIJEJAbiPa7EZiW5+/pUsjp/grWq5cSiS2+/dvUeIZ7qJl8jcEIACBeAggvuOhxDkQgEBMAhLikyZJiC92s4+JCHHlPpZ7yoknNrSePRt5O9slZ/YxZqM5IesIyJ3kP/9ZZhMnLvN2Qvw+bncSdVRZSiS49WLlJeuGngZDIGcIIL5zZijpCASCQ0Azkgq4HD9+iRNI2jkzEVOAp0T4L3/Z0HsdZAcdtG/O9ETK4tzsJrB5804voG65t8Ky3IvHWJrQZ0mrKdpcSg92p5/ezJo23TeTUXaTofUQgEC2EkB8Z+vI0W4IZBGB+fPXe5uLfO9lKVjiBb+tcrsAJmKaCZcI79r1AC+AqqGXpSB69pVEyubcYBFQznj5bktsT5y41D75ZJWXMi7+z0vVquXdTqynnbbXpUkb22AQgAAEgkQA8R2k0aAtEMgDAnJH0c6BEuMSV8q7nKhpG28Jcb00s9m2bW1yiycKMSDnKzBxzpy1zndbL62WJPpwVq9eZRc/oNntnj0PsipVygekdzQDAhCAQHECiO/iTDgCAQikiYCE17RpP7rsKXItSHSW029mzZoVvdRhB7hX5871rEuXA0xpDrHgEdiyZZe3AcqPbmdUjf2UKSttw4b4Ulf6vVEWkc6d67sdWZXCUv8ns0jwxpoWQQAC4QkgvsNz4SgEIJABAhJmkyf/UCjGZ89e6+X2TbwhCuDU7Lh2JdTryCP3d8F2+++PC0LiNEt+hVxI5HI0ffoa92A1deqPLgVgojPbakGzZvu5WW25lCgwt3btSiVvGFdCAAIQyCABxHcG4VM1BCAQnYB2Jnz//RUui4pcEhYs2BD9ghjvNmlS3YlxbaSif9u1q+2J9P1IcxiDWzxvK8j2yy9/spkz19qsWWud37YenhQwWRKT73aPHg0LZ7fZrKYkFLkGAhAIIgHEdxBHhTZBAAJhCUiMa7dCuSpMnbrKzahq05/SmDb/ad26lktvqJf8xyX0tLshvsPFyUpkf/31eps3b73NnbvOvvpq70v/L41JbHfpUt9txHT88Qd6/vwNvB0Myf1eGqZcCwEIBJMA4juY40KrIACBOAhIeEuAS4xLlEuQS6AnyzRTLncHzY7r3+bN9/6r/yv9Ya76GW/btsu+/Xajt0X7Jvfv3v/v/be0qw/+2NSpU8n56Hfr1sAT3A2c33aFCojtZH12KQcCEAguAcR3cMeGlkEAAiUgsHjxJufyEPr68cdtJSgp+iUSigrq1Hbk9etXMeUm179Kg9igQRWrV6+KJ9CrOt/k6tUrRC8sTe8qs8zatdtdhpmVK7e6B5Vly7bY8uVbbMWKrW6HyB9+2Gpr1iTvAUZd00OKXH00sy3BffTR9R03+eZjEIAABPKNAOI730ac/kIgDwlIXGqGXIJ85sw1zid5yZL4tyIvLTIJdWVkqVGjoifGK7r/+3+rbD9veeXK5TxXl3KuOgl2Xacc10XdLxSEun59gedys8cqVSrrsoXo//Kv1ksrAjq2dm2Bbd26q1BwKwAy1aa2SmgrwFV+9drG/fDD6wTmASTV/ad8CEAAArEIIL5jEeJ9CEAgJwls2rTTZeLQa968de5f+S3L1aIk2ThyElKUTpUtW8a548hHXi8Fr+ol4Y37SBRwvAUBCOQ9AcR33n8EAAABCIQS0EzzggXrvaDCDfbdd5vcS64s/kv+0Plicgtp2LCatWxZw70ktlu1qum5jNR0QakEpObLJ4F+QgACySSA+E4mTcqCAARynsCqVdsKRfnSpfKV3mLyKV+5Uq+t7v/JDPpMJVDlPT/wwKrWuHF157OuINJGjaq5YwouVa50ucJgEIAABCCQPAKI7+SxpCQIQAACjoDS8UmES6gruFH+2fLB9l8bN+4M+f/e3R3lBuO7u6xbt/eY/tbxvb7g4bdMr169vOf3Xc75kPvn6f86Jr/xunUrea/Kpuwi//u3kvd35WK+5AwfBCAAAQikngDiO/WMqQECEIAABCAAAQhAAAKOAElV+SBAAAIQgAAEIAABCEAgTQQQ32kCTTUQgAAEIAABCEAAAhBAfPMZgAAEIAABCEAAAhCAQJoIIL7TBJpqIAABCEAAAhCAAAQg8H80IbFcMz1mogAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Infinitesimal bond segment\n", + "Let us now consider an infinitely small segment of the bond zone and employ the usual model ingredients, i.e. equilibrium, constitutive laws of the components and then the kinematics\n", + "\n", + "\n", + "\\begin{align}\n", + "\\mathrm{d} \\sigma_\\mathrm{f} A_\\mathrm{f} = p \\bar{\\tau} \\, \\mathrm{d}x\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Equilibrium \n", + "In the halfspace $x \\in (-\\infty, 0)$ the governing equations take the folowing form:<br>\n", + "\n", + "The equilibrium equation along the free length of the bar introduces the equivalence between the normal force in the reinforcement $\\sigma_\\mathrm{f} A_\\mathrm{f}$ and and the bond intensity within an ifinitesimal element $\\mathrm{d}x$\n", + "\\begin{align}\n", + "\\frac{\\mathrm{d} \\sigma_\\mathrm{f}}{\\mathrm{d} x} &= \\frac{p \\bar{\\tau}}{A_\\mathrm{f}}.\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAADUAAAAXCAYAAACrggdNAAADR0lEQVR4nN3XSYidRRAH8N+MW4RxIhpQXHCEgCYxMUZz8RDjvgSJT70oirjgwS2jCCIIPgOCaE6DgQgeBHE5qXFfwENiFAyuE1EiaFzQSBglkWBUjB6qn6/fm6+/eTPMmOAfPopXXd1V1VX97359zWZTBYZxeIW+0nh/w4EF/TBOqNA3ZyySaUR/QT+EvopvunAU/sJIjc0AvsffeGEyi5eSmmmsTL6fr7Fp4liR1JLJLL6vkmpgDBsK4/NxB17Hpzgec3pdPE9qDvaKnan7fsesNOfMpBvBVdiIndiD93F2hc/ZOAcviRaswqOi3e9KScFpvSaVE8UAVme/h3AdPsDLmX5HCpp2W5yPW/AKHksBnIdXcRK+zeavwMF4rhDT1WIzRvA5RjNfb002qW062e2mlNSzWFOY30rqGCzHO9nYCG4XbXR3pm9gdyHAw/CIaM1WLK1K9Xyu6s7U4iQ/rrFpObpNZ0LweJLzM90sXITXtKud4wGxQffjl6RrVaqq/fpFZ4yJY7Cc8j0Fpyb5SWH8kBTwd3iqYnwsyYMy3QWizatYb4Go7GdYl+l/SGvNxSB2ZWOX4HqRzFf4mXKl+rAoLbijYLMwBfyGIJhuDCWZn6cG/hBnrxtrxSbfaTyBjKaYFnfp5+JHvIvtae1ipU4Uu7KpME679bYVxlck+WaSB+BSvC0YMsc1OKvLvuSzdQ08Ic480XrfSBtZSurkJLdM4IDqN+IRuFm8CNYn3TIcaXzrDQpy+BNPpgC7MYRzdZ6rVSKRG7BUVt1SUoNJ7iqMw+lJXimYanf6PYCnUwJXaBPC5aJN1+vEahyNh3FPwdcZ2KyTAXfiV5HM9ty4lNTWJIfFrm/GM13zThEkMlvQ7ouCPFYKBrtX5110mej9nzLdQtwqyCa/I7uxJQU/D4fitxrbIlF8iPtESwyLncqxQNDze4LRtuJGXCsuzAvxUGa/FMcZ33otclilXekq7MGX4lwuqrFDPaU/mL4qtNrgo+Ts4gn8NJLsTmrZBPNyzOvVcKoP2jypXtAQrfr1FP1NCnWVqsMS0eOjExkm9LzL04GpVKpfvDa+UP3U+S+xRvuS/xdTqdReQdv7LfbVn8QZxf8yqX8A13+sOUFzYQsAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\frac{\\bar{\\tau} p}{A_\\mathrm{f}}$" + ], + "text/plain": [ + "\\bar{\\tau}â‹…p\n", + "────────────\n", + "A_\\mathrm{f}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d_sig_f = p * tau / A_f\n", + "d_sig_f" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "We have expressed the derivative of tensile strain in the fiber in terms of the constant shear $\\bar{\\tau}$.\n", + "By integrating this expression we obtain the stress as \n", + "\\begin{align}\n", + "\\sigma_\\mathrm{f}(x) &= \\int \\frac{p\\bar{\\tau}}{A_\\mathrm{f}} \\, \\mathrm{d}x = \\frac{p \\bar{\\tau}}{A_\\mathrm{f}} x + C\n", + "\\end{align}\n", + "with $C$ as an unknown integration constant. In `sympy` we can issue the `sp.integrate` method to perform the automatic integration" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAAXCAYAAAAWY1E4AAAFGUlEQVR4nO3ZeYhVdRQH8M+YLZZZtFC2kIEtVqZZQkSWbZZK1EgERpGVRKuaFC0UjZEUKGTTQlHkhLQQ0a6lrbTSZotaYkVWkpVJaFiWqf1xfre5786d57xsZnToC5fDO+e33bP/7qtraGiwmWECdizhN3ToKToA3Tv7AP8CE7BPCb+hY4/R/uhWRbYfbsGHWIY1ib6ES7Btu5+uHH1QV/J0FnbDWjS2Iu+JJViPp2pZuCxy6jAJV2MrvI3HsUJ47DCcgNEYUstmXRSnCSd/shV5A/YUxhlUy8JlxnkAY/AZzsInBXkPTETfGvYZg+k4Dq/VcsDNAPVYjtdLZAdhHF5AbwzALvi5LQsX09pEocjPcaSWhoHfMVmkto7ALlgnPK/a8we2SXOOSrxGEeFviMhfjfeEkxQxJ80ZVeDXoSnJbi3IdsDxeFaktiLuTPMn4tPEO6zq2+aQj5zeQul/4Uz8uoG5v7d1k41ET9yU+90H54pa+FyOv0won+b0cZJwopm4VyjmRMzCAfg2N/8qzMXNeFqzsqem/e7DNYWzjRSp/4mSc58lnKBROPu83NlebPVtc8gbZ4LwvOmY35bJHYTFKjuxsUJZjwrFlSEzzh4YijdzskZcLtLNlTn+J5iR1j5HRMt1wusfw0Ul+9RjlZbK3h5TRLrLzp5FTpvrTj6tnZ7ojLZO7iQMTPTjKmMyBVym0jBwf6IHlcy7XkRfQ5o7GbOFsdYVxm6DU/C85ojNMEk4xo34JfGyyClLa91EZC8X6XNoxiRSx/5J8G7J5FqwWMt6MD3JXi2RNdW4/oBEy+ohbC0U/x0eKpEvT3TLEtkSTBNd6R2iUx2FP0vGDhN6K3ZpB4vIXIB7cvzv09590aswZwTOw6mivLxNc1rbNdGV+K3kILVgmpY3+IGi5XxQGC+Pj2tYuw6Hihdd1sqY/kLxs7X0dqJmUVlv8sive4HW9VEvjDazwL9L6PUKLZuEeSIqBqrs7vpiqWSUDJlxViXaA1uULFoLppXwxgjjNNm4Vnpf4XVvVRmTpbTFrchHJjqnRDZa1LEfsDvG4+KScVsIL39FdIEZzsaxVdbPnzEzTpOoc0Qm+UZyoMw4P4mX6SMs+3KVhbsp98iOwIGJVmtYMuPsWCLbCReK9PV0QTZCRPYC0R6/LpqP27GwMPYY7KwypfUSTcAaUbfXl+zfR1zg83VnvDDI+RgsFxj5hmBaondrVkIedRguuqTOQparV1YZc3iiZ2C7HL8nHhZKHa+yiB8tvoIsEbVkGW4Qzlu82xB1aJ1KA98kou02kQ7HljxZK57v2FaIa8taEbH/pNV8K90o8vn5IjfOwSLhCXunF9grvWBnYVGiE0QUvI9HcvLuOEQ0CzuI9vUZ0SScJjqoa1XeSwaI+9IKcS9amviP44M0b4i4yGY4XdSHH9Pv/rhUNCH5O1kR84UR+okSUvWumI+c9cLiI9NhB6YNxwqjvSNqx7hqC7Yz5op2d40w0BEF+cGixX1HRMAi8U7niIvgySojoa9oHNYn2VeF9a5NdEqON1g4aT6lZU3AeM31uwyr8YWoWYdWGYfyb2uz0vNfokntLXNrmJyeMmTp4iOhhOEbWOtLkYpaw0tafvGuTzRvnGM2sE8e/do6sNpfBpsj8sZpL9SLtPl1O+6BzfPPtmoYJHL6vA0N3Ai02fM3Fl0pcrqJ4r5Qy88pmzqmar4c/4OuFDnrRLvcZdCVIqfL4X/jbML4G0uOIQeMo5XYAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle C + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f}}$" + ], + "text/plain": [ + " \\bar{\\tau}â‹…pâ‹…x\n", + "C + ──────────────\n", + " A_\\mathrm{f} " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sig_f = sp.integrate(d_sig_f, x) + C\n", + "sig_f " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Constitutive laws: \n", + "Assuming linear elastic behavior with the Young's modulus $E_\\mathrm{f}$ we obtain the strain $\\varepsilon$ as\n", + "\\begin{align}\n", + "\\varepsilon_\\mathrm{f}(x) = \\frac{1}{E_\\mathrm{f}} \\sigma_{\\mathrm{f}} = \\frac{1}{E_\\mathrm{f}} \\left(\\frac{p \\tau}{A_\\mathrm{f}} x + C \\right).\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJAAAAAXCAYAAADk88bYAAAG5UlEQVR4nO3ae4xdVRUG8N8MKK2ObQM1iiAOsVARobWAIUTRaq0CMWWQaCCItdR3sbXRIATjQCxgqraOCr47QlQ0VEUBbUExPEWEFgE1iLFiI0IF0ipaecz4xzon99xz9zkzl3lBmS+52bn7tdY9ez2+te/p6O3ttYthBWYk+nvHVYtnCXav6L8Yb8X+eHT81BkVrMDLEv2946vGmOMw/BZL8c2JUqIz0Xc4TsEFqo3nAJyP27ANj2ftNfgQnjfqmg4f3ehIfCYCL8KT6KuZ04WtGMSP29j7tmz+p7M9nooeV2dy6z5n122cikDnYQcuSox14BycgefiJlyG7cLrF+JNOAmvG+JHPRuwSDjpj2rm9GIfcVjz2tz/fNyCj4hza1ePeXgCq2rW/rBOgbIBHYgF+Ab+m5j/LSzG73Ey7iiNT8VKzKoTmsBirMN8/KrNtU9n9OAhXFcx/kpx+D/H3piDmfjnMPf/Df6I9+MzIsoMV4+XY09sMoL0Xk5hS0SU+X5i7kpx0H/AkVqNhzC6VSKNjRdmYsDQofh/mJKtOSrr6xPR8noRRXeKQ5mfkLMxW3NCqb8D/dnYBYX+6Xgjfqr6YL+UrV+J32V9r679ta24FPsJx0+hSo/Ds/bWNuU1oRyBFmRCfl3q31sYxhN4B/41xL6p6DVW6MK5he/deLfgCFcU+rcJA6GRKt4sjP1KfFUc3gJchdm4r7D+47hdcI7LNQ7js5m8r+MThfnHiTRflQJOFobaJ5zyzoJuV1f+2lbcWPgtGxLjVXqMugE9H3PFjymT5xXCe9fhrpEIHANs0RyCl4oDvVQcbgq5Ab0Eb8ANhbE+nC5Sy8cK/Xfgkmzvd4moc5aIHj/AB0oyesRzTBnDC7BapJVc9zwCtcuDcgM4umK8So/cgI7CvhVrVxuiCi8a0D7YDfcn5h2ftZfUbfY0wdys3VwzJz+kZZqNh+B/pwt+UsbZeKc49C4RlTcIgxoozJsirkF+phH1ijhHGO8yPJL15REolcI6RVFzouAtRa6Yp979Euuq9OgoyHlPYh08rGHclfKLHGivrH1EM7oEuR4UjH+k2KKVn6zLxq5NjPW3uf+crE1xNNhDGMff8J3E+ENZ+5zE2FasFRXnF0UVegIeK81bKJ5bqvo6WBjo3fhKof/vmexZmFZac6w46LcJOnFTafxhwQXLqNLjQMGNbpC+8ujQsIda+cUIlPOWKZrxwqzdgf8klGwXa7XeFM8Vpea3hYEVsbmNvTtwqDiMbRVzDhHGsUFz1MjRnbX3JcaU9j1N+pn0CKO6MjH2ZfHcP6qVXN8pUupczRXTLJEZyoaTY6o076zSI09fVU5WRqX8ogE9mLV7lebkOXCqSHFVFcVwsTbRt1gYUL+RlfH7C++9sWZOnr62VIwfl7UbE2MnCV71D7wYy/HB0pzdhKf+UqSXIk7B62v2L+qYG1C/4F1ERP6rhpETWWQG/tKGHu0YUK38ogHdL7xrdmmDB8XD7hbe8YsaYZ3SXj1eeEXW1hH93IBmJMb2xPtEqrq8NHasiJB3i7L4OkHYvyDuYnIcLZywnDamCVL6uOCSgwn53eIitsiDlotDW4IjtDrwbBF5N5f6q/SgPQOqlV/kQIPioczUehG4Nmsv1DikIjpwjKh8JhI5d9hRM+ewrD1RVJ45uvBd8dCXayadrxU37lsFr9iGTwoHLN79EJxoQKsBniui1hqR+pYmPvk1QLES2y6uTZ4Uka+cmo/M2muHqUenSJEDGsS9DrXyy/dA6/F2vAX3Fvr7BLdYkgndiHuEN71UPOB9xQFMJO7J2hUimtyK7xXGd8erhOdNF6XzTwSxXiQqozM135nMEfdJ28VdS16lXib+zFwk/ra5Pus/XnCFBwp7HIIPC+JevLMq4y5xUAep5jVlLMzWlA0lpYds7y7hZGfU7Ps1wSVrkTKgB3CqIHs5BoXXrMd78RrxMP8tHujNgqgVL+4mAreLUnuZMKI1mg3oYFEk3IzPC8c4TUTQW0SlUeQmswTZHhRO9eeSvDPF/cpqEQmOEI60pjQvJ87L1d+r7MSfRJQ/1NBV73RhKFcI48xRpQeNCDwNn6rYdwCfG0I2Wg3oMZHTzxN5eFNp/KrsM9ro1365XoVVqv8czFPDJnFQxwyx170i7VThGs3/9PdkbZl3VF3ypXBQG3NPFQ5RPuwqPYhXdS5uQ0YtUq9zrBElbF2ofaaiaEBjgR6RHssV0VhgqoiA6zXS57jrkXqdY6e4WZ0vSOYz7YWyOswTfGE45PGpoJ3oMVJ0C57SP5F6dOyCr7RWoVMQxy2CSE9iFFD1SuuuiAFDv7k3iTaR4kCTmMSwMWlAkxgR/g+ARKxxjvkw9QAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\frac{C + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f}}}{E_\\mathrm{f}}$" + ], + "text/plain": [ + " \\bar{\\tau}â‹…pâ‹…x\n", + "C + ──────────────\n", + " A_\\mathrm{f} \n", + "──────────────────\n", + " E_\\mathrm{f} " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eps_f = sig_f / E_f\n", + "eps_f" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Kinematics: \n", + "Realizing that\n", + "\\begin{align}\n", + "\\varepsilon_\\mathrm{f} &= \\frac{\\mathrm{d} u}{\\mathrm{d} x}\n", + "\\implies \n", + "u_\\mathrm{f} = \\int\n", + "\\varepsilon_\\mathrm{f} \\mathrm{d} x\n", + "\\end{align}\n", + "we obtain the displacement of the bar as an integral\n", + "\\begin{align}\n", + "u_\\mathrm{f}(x) &= \n", + "\\int \n", + "\\frac{1}{E_\\mathrm{f}} \\left(\\frac{p \\tau}{A_\\mathrm{f}} x + C \\right) \\; \\mathrm{d}x =\n", + "\\frac{p \\tau x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}} + \\frac{C x}{E_{\\mathrm{f}}} + D \n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAAoCAYAAADtylhqAAAH5klEQVR4nO3beawdZRnH8c8tgmBYlIrSBMMOViK0FIxLUcCACJq2qCAqUkGDohFFVFCMBUE0hdiCLNEIBSMuYXGrC2o1iIoBlE3ZVDQiVArIJqhAr3/8Zrhzp3POvbfce257mG8ymXPed96Z55x55tnedwYWLFigpWUimTLZArSs1bwIv8AfcT0ObDroWT0UqKX/eAJHi4K9ANfiR3i0elBryfqbT+CRynbuOJ//blEwuAf/wvPrB7WWrL85F9+qfH9oAq+1G9bF3+sdrZL1N/cX20QzFRfiCAzWO1t32b98W2540/ZOcWuDOAa/ESt3G/apnOMt+C+2rLQtxu3YrPj+bFyGU/HrJkFaJetfjsA0bIWVojDTiu3rmFkcdxROEHd3A76G9Yu+i3Fj0Q/H4q3YDyswgCVYhq92EqR1l/3LfcV+phiTKyQ4L5kh2eF++FPR9kncgu1FuQYleViKPxef9y4+w6twsCjn3KLt0GLsU7RK1v/sjOWGKxhRsu8YUjD4X8P4y3E1TsYbcE2l70qj8Iatu+x/djZUZqgyA9fV2naTGtftlba9sYvoSl1RR0U3Jdtegrlrxf8+Xux/Kn78OatzwQovxJM4o9b+E50D1nI7wZpBXdaVeFhu0jcwR+KWyWQb3FprWx87Gu7JBvBBXIT/FG274FK539/FKasjQJO7HMCJ+DjWk4zhYjwoWca+eC0OwR6rc9GCOaLkl9Xad5VYodsPuvRpXHc82VWU6zPFfgAb48USoxwsQfFcUb7JYIrcty1wlzwILy36DhGjca88uFvjTUXflvgBFuIC/F4s3x745VgEaFKy8zBf5qPeZlVTu4GkvduN5UINzJPg9IpK27bYVH7Qgqd5/pGYj/Oxl8y/jZVS1lvx6Yb+zSWL2xtfwUE9lq9kcXGeO7ChlCRmiLU9USzupvgxXiYucVOZHvq+oYf9BjE2p2L2WASou8tj5MfdjJdr9uWPFRc+qvh+uTzF9cnRMr0dxOdqfZvIn/89cZkluxX7q0cp/2RSynpth/7loliPSvlg614I1cAysUrrioIRJbtRFGwLCX3miaUjBdzpOLJ2roOMUcEYrmTTRHmeKE42knl/rNh/VEzwyVin0n8aDsOXcVxt7AHiiutub21Usmu6HLNCCp3koV1TmCGWqSdU3eWHJCA8HzeN4RzXSyHuMKmRLJF6yjEyb/behjHz8G8JnKuUN+6V8oQ1sbAYO9mMZMlKynrVcydOlDExIDHZ53t1waqSzS32HSu3XThBgtwF4vdPER9/qFi5KutLAfCHhrIY8uPLKvS7OlznfsNjtSk4B2+WOOLpxi+jpZR1pcSP3dik2N/X9ajeMSjJSc8o3eWG2KEQ4LercZ47sUh8/5mSkR6oubi3b3G9ela5g9yQK+UmNm1Ta2P2F4V8o7j7xrkz/NWqZZDzi76fN/Qt6fJbq7LeZuSwYodiXy8jTKR8axSlJSsnOx9SW3A2BlZUPh/R5TzzRPmW1tpL99OUbHRiO1nT1Em5ShZZ1V3NkDLKBXKTq1w3wvlG6yq3l4D/Lt1/13jLt0ZRKlkZ42wgwfuTzYd35BAJ9JdL6n403tdw3DpidZZJ3a3KWJVsicSB5On+m0wGN7GooW2+3MQlxu5iR6tkZcJz1gjHLWpom2/15VujKN3lPfK0rIc9RzmmZH952v4gUxi34N1SkKzzanF5dVfJ2JXsaJwkrnoadh/luPFgNEr2Dhwu/+uZEy1QhZFmS3q+VRVmUbE/W7OCDOD1UlspmS0Fujsl1lqBT4mFrNfGSJy2UiZmq0wR97BSbQa/Cw9KPPSkWNAV3Q8fN6qyNgX9UyUDvlCWI8/R22p/p3h20rZqdnmGWKLD5UZfLoHt4/JWymwpK1xUHL+LVIQflIVudxftF0vtaI5VpyDmSvz0z9ofM12SgYdkOqsTXzJUMJwsSlkfxkeKtil4HnbCKySD/pVk13dMgozHywO9oxRgryraOpWmpssDc7OhDL8TyySLr7NUVmmsQlXJBiVgvwTvkSmGfeQFhLulqLhUFGs7KVEM4nWG1heVHC81sIWGipC7i5J+oUGOWcV+Y81TNMRynN6hr5eUsm5kSNbH8IAo1DnyoI2UjEwke4pHulqsyUkyR/kSzcuxF8u9Kuerm6oCJTNl3dl5tfaOCeNAD1/u/awo3zbG7+k+Fh/QOeBvCRuKx5krU3lVDhSj8nap5c3UOXvdVtafzRZLPSp6uZ5sngT1k+E+nulsJPe6bsU2EAv2saJvue7ucpbEwCMVoIfRSyWbLgFzS+9ZJNbpqlr7cVIeKZOtmwy/Rx+WOK18X3OWlKHuMfx9zm92GbPWL78+rdhaOrNQSkd7GF7/3ArvlwSu5CZZI1dypLjGe4vvsyRmry94eKDLmLVeyVq6c7rU6/YyfC0/ScCmShG7ZEAs0wC+KPHzMkkizhVXenLDuUrOahjTKlkfc4YsWthLFqBW2RevEctUzSR3kjro1mLlDpAVMY8UbeWC0k7Ux6BVsn7lbLFgcyWg37xof0TqZovFyv2uNu4fxX4m/lLrK0s35dRhlRW6TEW2StaflPPGP6u1nyiKtplVX+AhMxT3SvB/Sa2vVLKba+2DUoiuz0U/Ratk/clIb0h1S5Y269B+fLGNmfa9y5YJp7VkLd3YajzGtJasZcJplaxlwmmVrGXCaZWsZcL5P81E/4tcFAxzAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{C x}{E_\\mathrm{f}} + D + \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}}$" + ], + "text/plain": [ + " 2 \n", + " Câ‹…x \\bar{\\tau}â‹…pâ‹…x \n", + "──────────── + D + ───────────────────────────\n", + "E_\\mathrm{f} 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u_f = sp.integrate(eps_f, x) + D\n", + "u_f" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**What's next?**\n", + "\n", + "We obtained a function that describes the displacement along the bond zone $x < 0$. Moreover, it implicitly satisfies the local equilibrium conditions and constitutive laws in each material point. \n", + "\n", + "However, there are still two unknown integration constants $C$ and $D$. Thus, our local solution can be fulfilled for various boundary conditions. In other words, the obtained solution is valid no matter if we load the pull-out specimen on right or on the left hand side. To resolve these constants we have to find further equilibrium or compatibility conditions. " + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAACrCAYAAAC5fpGbAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tnQe4FNX5/w+C9B5ApCjSMRYIEKWoqJAYQjAqIIogwRLEaCARAhoQGwoGC1gSNIqCxoZGlIAhCiqgAhYEJRFFpYj0DlL3t5/zf+b+9+6d2Z29d7Z/3+fZB+7MmVM+Z3feecs5UyoUFiMRAREQAREQgRQSOCaFbakpERCBLCLQp0+fLOqtupptBErJ8sm2KVN/RSA1BEqVKmXkGEkN63xsRZZPPs66xiwCIiACaSYg5ZPmCVDzIiACIpCPBKR88nHWNWYREAERSDMBKZ80T4CaFwEREIF8JCDlk4+zrjGLgAiIQJoJSPmkeQLUvAiIgAjkIwEpn3ycdY1ZBERABNJMQMonzROg5kVABEQgHwlI+eTjrGvMIiACIpBmAlI+aZ4ANS8CIiAC+UhAyicfZ11jFgEREIE0E5DySfMEqHkREAERyEcCUj75OOsaswiIgAikmYCUT5onQM2LgAiIQD4SkPLJx1nXmEVABEQgzQSkfNI8AWpeBERABPKRgJRPPs66xiwCIiACaSYg5ZPmCVDzIiACIpCPBKR88nHWNWYRyHICR44cMaNGjTKbN28u9ki2b99uxowZY6hLknoCUj6pZ64WRUAESkAgFAqZK664wnTo0MHUrl272DXVqFHDtGvXzgwcONBQpyS1BEqFoYt6apmrNRHICgKlSpXKyJvyrbfeag4fPmzuuusuV44bN240Tz31lPn666+tVXPqqaeaAQMGmGrVqrmWx/phrLfddpvr+Uw8+M4775iXXnrJjq906dLmoosuMueee24mdtW7TygfiQiIgAhEEwjfNaIPpf3vJUuWhJo1axb64YcfXPvy7rvvhk444YTQ888/HwrfmEOHDh0KPfroo6EmTZqEPvzwQ9drDh48GGrRokWIujNdwko3NHjw4ND5558f+uabb2x316xZE+rSpUvommuuCXE+WyTzvl3ZQk79FIEcJ5Bpyufo0aOhs846K/TEE0+4kt+6dWso7IYLTZw4scj50aNHhxo0aBDauXNnkXMcePrpp0NhF5xVWJkskyZNClWvXj0UjlcV6uaOHTtCdevWDYWtwkzufqG+SflkzVSpoyKQWgKZpnzmzp1rb7z79+93BTFixIjQMcccE9q2bVuR8+vXrye8EBo/fnyRcxw4cOBAqFatWqFZs2a5ns+Eg3v27AlVrVo1NGjQINfuDBs2LFSxYkVPBet6URoPKuHA2yOpMyIgAhlEYMqUKeZXv/qVKV++vGuvpk+fbsLWjSGRIFrq1atnwjdmQxk3KVu2rK07bFW5nc6IY6+99prZtWuXOe2001z707JlS7Nv3z4zY8YM1/OZdlDKJ9NmRP0RgRwnEHafJTxCbqozZ840HTt2dL129erV5rvvvjM1a9Z0Pc/BsFvKrFixwoQtI9cy3bp1M6+//roJW1au59N9cOHChbYLbsqV42HLzZ4Px73sv5kuZbw6SBZF2BT1Oq3jIiACIpAQAW6Kjz32mAknC1gr5Mknn7RZZpFyyy23mPr165shQ4YUOv7BBx/Y+1H79u1d2/zqq6/s8cqVK7ue52ClSpVs9h5l3ZQUade0QVvhAL5nPek64YwxnvL58ssv09XFhNr1VD5h/6LJlkEkNGIVFgERSDmBcGaWVTZTp041n3/+uU1/Zq1O165dC/qyadMmc/fdd5urrrqqSP9QCOXKlTOnn356kXMc2L17t+vxyINlyvy/21046cC1bNOmTW3acjjrzbfyQZmtXbvWpn4XV44//nhToUKFuJc7YwzHtVzLOse9xud6URoPeiqfNPZJTYuACOQYgQcffNCMGzfOcINcunSpHR2utEiZP3++tUzCGW1FRo/yCicbGEeBRBdwbswoDy/B8kGIm7gJVhgWES48v/LRRx/ZWBHWXHEEHjfeeKPdaSGe+FUqfsvFay/Z56V8kk1Y9YtAnhPAhR9Og7YxF+SZZ56xVky0a+vtt9+25zt37lyEGPEcr0WiFHa2yIm1VU54zY+t1/m3SCPhA7i0wplxbqdcj7Vt29bGmjJJihNTS0f/3e23dPREbYqACOQkAayRhx9+2I4N19q8efNM9+7dTThtuNB4UT7Eexo3blyEA7EYLB8viXXOucaxtKLbjawTyyfaIvNqM9XHY/U7si+x4l6p7nOs9qR8YtHROREQgUAIVKlSxdZDGjDWSb9+/QrVywahxILIOHMT3G2xrBrHKooVe3EsAqcvbu1QJpbrzu2aVB1zxhjekcG1Scf1F8tCdL0wTQfldksTeDUrAvlIgHRpMt169OhRaPhYPcR7vJQPbjqvWA0Vsb4H2bJliydWZwfsE0880bNMeKcAw5ogv4Ky+vbbb0u0Bx6bo8ZSiE5fwtsG2f/iwnST77//3h5u2LCh2+mMOyblk3FTog6JQO4SeP/99226NMokUpx4T6dOnezh5557zvTq1asgwQCF4axzcaPTvHlzu87FK15DnAflQ2ZZrJszwfpY56PbXrZsmenTp48pSZwlvGOBIcU8nrCL91//+te4yueMM86IV1VGnJfyyYhpUCdEIPcJ4BLDsnCL6RAHwl3kWCXhjUFN3759C6CQBo1VQ1abm5VAphquPLLq2M36pJNOKgR0+fLl1jq59NJLPUET68GqoC2/0qZNG7Nq1Sq/xUtU7sILL7TrmD777DPXej7++GObTYjSzgZRzCcbZkl9FIEcIEDchoSC6IB+eFNPu6bw5JNPtqMk9oMlEyk89WNdcIP1kqFDh1oF9sILLxQpwusHsIxGjhxZ5JxzgLpRkI715VkwTScYG2nZr776qmEdZqTw95w5c8wNN9xQoMDT1E3fzUr5+EalgiIgAiUlcOedd5rZs2ebt956y7rIJkyYYLe7Ce86bTZs2GDWrVtn7rnnHnP99dcXaorFpdx8WVfjJY0aNTLTpk0z9913n+F9N4688cYbdmeFZ5991hx33HFel9vFpWS7tW7d2rNMuk/cfvvt5rzzzjOXX355gQJiOyBcd6R9e73jKN39dmvf82Vy+D61w4EbMh0TgfwgwHYzuKqClpUrV9o91Kj7ggsusBtl8v9XXnnF7r3Wu3dv06pVqyLNXnfddXZNDU/+sYRtaB555BFrKVEvFhfKLNoVF13HxRdfbC2zyZMnR5/KqL8Z04svvmjefPNN64LkdeBnn3223TEiUzP13ABK+bhR0TEREAH7iulkKJ/iomVnBBagYiF57W9W3LqxvlA8ixcvtlv/SJJPQG635DNWCyIgAgEQQBmSoo1VE7SwCJZkBCmeoMl61yfLx5uNzohAXhPINMuHyQi/Mtq6mLBQ6tSpE8j8sOvCmWeeaRYtWlSwBVAgFauSmARk+cTEo5MiIAKZRICFlvfee6+N4QThEqQOYkkPPPCAFE+KJ1rKJ8XA1ZwIiEDJCJCQwEvl7rjjjpJVFL567NixdoPTnj17lrguVZAYASmfxHiptAiIQAYQGDZsmI3PeL2V1E8XyRJjtwXWxkhST0Axn9QzV4sikBUEMjHmkxXg1ElfBGT5+MKkQiIgAiIgAkESkPIJkqbqEgEREAER8EVAyscXJhUSAREQAREIkoCUT5A0VZcIiIAIiIAvAlI+vjCpkAiIgAiIQJAEpHyCpKm6REAEREAEfBGQ8vGFSYVEQAREQASCJCDlEyRN1SUCIiACIuCLgJSPL0wqJAIiIAIiECQBKZ8gaaouERABERABXwSkfHxhUiEREAEREIEgCUj5BElTdYmACIiACPgiIOXjC5MKiYAIiIAIBElAyidImqpLBERABETAFwEpH1+YVEgEREAERCBIAlI+QdJUXSIgAiIgAr4ISPn4wqRCIiACIiACQRKQ8gmSpuoSAREQARHwRUDKxxcmFRIBERABEQiSgJRPkDRVlwiIgAiIgC8CUj6+MKmQCIiACIhAkASkfIKkqbpEQAREQAR8EZDy8YVJhURABERABIIkIOXjg+acOXPMiy++6KOkioiACIiACPghUMZPoSDLvPnmm2bq1Klm37595vDhw7bqcuXK2U+kHDhwwPBx5Mc//rEZN25ckF3xVde2bdvM+PHjTZs2bUzv3r19XaNCIiACIiACsQmkXPmcf/75hs9HH31krr32WnPssceauXPnmsqVKxfp6f79+80777xj/vKXv5idO3cWOZ+KA5MmTTK7d+82W7ZsSUVzakMEREAE8oJAypWPQ/XLL7+0/8WicVM8nKtQoYL5+c9/btavX28/qZZPP/3ULF261Da7efPmVDev9kRABEQgZwmkLebz4YcfWqht27aNC7dRo0ambt26ccsFWeDo0aPm4YcfNiNGjLDVbt261XBMIgIiIAIiUHICaVE+oVDIOMrnpz/9adxRlCpVKuXK5+WXX7buwaZNm9r+oXi2b98et68qIAIiIAIiEJ9AWpTPV199ZXbs2GHKli1rTj311EK95CZPnCVSSEZo0aJF/NEEVAIlQxyqV69eplatWgW1btq0KaAWVI0IiIAI5DeBtMR8nDgKigcFFCkffPCBqVixYqFjHTt2TOksPfLII+b66683xxxzjO1f1apVza5du6zrLV+ETMR//vOf5u2337bJHvXr1zfnnHOO6datmyldurQrhu+//95gMS5btswcOnTIWo19+/Y1jRs3di2vgyIgAvlLIC2Wz5IlSyzxSJfbDz/8YDPgnLTmdE3J8uXLzZEjR8xpp51W0IUf/ehH9v/5onz27Nljfvvb35qFCxeaDh06mLPPPtuQIPLnP//ZXHbZZea///1vkelB6ZC9iKV45513mscee8z06dPH/P3vfzdvvfVWkfI6IAIikN8EUm754Fb7+OOPLfUZM2aYmTNn2v8fPHjQpjOXKVPGnHLKKWmZFfr26KOPmrvuuqtQ+7Vr1zZff/21SZfb7b333jO33nprwbqoROEQM7vuuuusG9GP3HvvvVZxkGnoyKBBg8zkyZPN9OnTzTXXXGMefPBB85Of/MSe5ti///1vu36rZs2aBddg+aCIbr/9dus2xXqSiIAIiAAEUq58Vq1aZV1YrO/habl8+fIFM8FN9vHHHy+y4DRVU/XKK6+YLl26mBo1ahRq0on7pMvyOeOMM8zTTz9tLbLiCMqnTp06vi5dt25dQYp75AW4IH//+9/bh4Mnn3zS/OEPf7B9+uabb+xDxBNPPFGEG9fT9g033GCv+eMf/+irDyokAiKQ+wRSrnyceA/reyIVD6i56bOTQKSQGcdOB9Flg54a4hovvfSSdS2tXLmySB84kC7lw40/Vanm7777rrn44os98WJBwef99983Q4cONbhLsZSiFXZkBVhDuPIkIiACIuAQSLnycVKsHZdN5FSwkwCWR6SwwwE3uEgXUDKmjzU9uIZeffXVItVv3LjRHkuX261Ih5J44LvvvjOXXnqpZwsoQlxpAwYMMGvWrLGLhPnEExYM8xARvY1SvOt0PrcJEGP9/PPPY37ncptA8UbHPYmF78kIUSxatMjGevFaJFNSqnwi4z1ui0vbt29fZKy4wiZMmFDkeJAH+PJzY7zttttcq503b55NhkiX5ePaqSQeRNlHZxxGNle9enUzbNgwM3z4cPPZZ5+ZZ555xvTr1y9mj3CzJvvLHLMDOplxBHAj8xDDdy3WA0/GdTzNHSL5h98fbu9kCLH3wYMHG7J+vTJbg2g3pcqHLCmsG25Ep59+etz+L1682DRv3rwgHZu4AmCaNGlifvGLX1grBWuEmxquogYNGlglgUuIjUtPPvlkWy7WTQ+FCGSC4l4SK+ZDn1BKBNMvuugi89prrxlSjvlh0acTTzzRsE0PmWN79+61fbrgggtsGrdf4UkEd2BJBHeZn41RTzjhBPPtt9+aVq1aeTYHMxQOT0fE6Ug+aNasWaHsxeiLnXVd0cf1d/4SmDJlivnkk09yOhWffSnfeOONuJOM2/qss84yV1xxRUwXNmsQL7/8crvLfixXd9wGYxTo2bOnWb16tbn55ptt9nGyJKXKJ1a8J3qAxAiYuMgFp+3atbMwMDmBM3DgQEMm2nPPPWeuuuoqm+rLU/mQIUNsjIGnKf4lc8tLWMtCKnFkllZ0WSfVmrUrTH7kpGOt3XfffTYbDpcVXx7iM9RLn+gLLieeJNgoFQsBBcoTn18588wzzfPPP28zAosjPL1ELpaNVQc/gGnTpsVUPg899JCpUqWKHffdd99tE0f4ovIkVq9evSLVY1k6DIuc1IG8JIDL6J577rFj53eTq0JiDvcBlhzgKeDBmaUH/H4cYed8dvvnAZNMWzKAvXZ+ufLKK23mKg+1yRSSi7p27WrwPPFQnQzx//gdQOuO8nFzuUVWzxeTwfMUHhloZ+3NSSedZBYsWGAnFMWDsAgV6wOLgy1xEDYrxbrC4vCSL774wq5HueSSS7yK2OORN+5o1xsLZYkVsXbJUTxcQ4YaT/tkgznWF+4FEiqwFhIRrCTGinVVnA8MyVLzI05ZZ+PXyGtI/iA2hiXHjwSLkh8UC08Z69VXX23995Gydu1ae5OBjUQEHAK33HKLGTNmjP0TN2+ubl3Fb5eHVTJ8ke7du9v7GsecDwqJB2ceonmw5maPlyRaZs+ebb0SPHQnW/ht8/CPey9ZyUL+7kglGOn//vc/w2fDhg2G3QsQwP7nP/8pVCsDJOOMGALKhad81ty4CU/XkZaKs0tCdKYcE+82iWR0sQr/hRdesF98XGeYmscdd1yh5ngiIUHCUZqcJCMOxYJii+wDT/aRitJx9UUuVuV6+ooFlcnCk9Udd9xhx9ipUyfrInRiO7DHGnViQrhQUUS43VDk/DCwnlDIpG3DDusolmWZySzUt+AJcB/g941HggcWhAfHZLmRgh9B4jUSN0bwsngJHg4ES5CdRVBUjvDgd9NNN5mRI0fGDCN41V2c49xPWat3//33m9GjRxenipjXJF358ETMUw2p0rigHPF6RYKTPYX7zC0Bgeu9MqZiBcmddonFsNaoWrVqNlWY2BA/BPoYrXx4CuHJnRvuqFGj7KQTs2JvOp5WIm+oXpZFslPEY85uMU/SZ5QP+9vxAMCYMfNZp+OWXYNyYhFqjx49zKxZs6z1Q3yvZcuW1oKVy62YE5GDlxEvxEVLzBDXU6VKlewDIjfcWHHGbEbBPYb4NfePLlHZvJHj4gHdkegHVFx1eFFiLYNIBiPcfLgDsVQTiVP76UvSlQ9WAp9MEeIf3Cj9CD+GXP1BxBs/XzTS2xNJcWch629+85t4Vet8HhNgETleBsdLcPzxx9utmyJvvCXFg8XNA5DbCyhRACzzSOV+g7j+ecDFRR8r9upYR8SISeaJFBZpYxmhrFMp/P7xZtA3J6QRVPtJVz5BddRPPTxVZYNkSz+zgaX6mD0EiJf+4x//sBa1IyghlA9ut5IKCgdvBi593FReggeG2GWqZP78+bapWFYP/cVtjeBlid6RBGaOi9Kr33hkSGxAwd54441FPDmEEfD6RBoDuPdef/11u32X20s96QeuNxIiglY+KU048ILm9zhfXGIPmOhAJojH3/wfIWCHeYs4ZTFVielg+iZDaJO4Bm47nup42iKRwcnBJ1vESXqgT5QlUy+ZfUrGOFWnCJSUAAkGLGmIdFE7FpCfjDeyRb1kzpw59sWUxHCJ5fI7I5WbGypLMLgvcGzFihV2aUC08EDIWr9kiKN82BXeTVA8rDGkjyhG3JKRQsycJSVeYQjKsuvIuHHjzJ/+9Cf77jG3DDWSGljmESns00hiAfcmLyFuTRw+aMkqywcXGJlTaHb8xHyJCVJeeOGFNq0a09aJ+7CeJrps0PCoj7gGK/5x59EnAvDEq8hwwz9Ln5wYFf13ypJg4RUnSkY/VacIpJMAN36+8ySjRIqz2WwstxvxjokTJ9qkFjawxQqI3KSW7EsyVlnGgMJxYhMoI2InvB6F36ab5cF5Mrp4OOWhsHPnzvY3GpQQL3V28ecm7mT1oSDI6iWhiT6jXFiy4KY0eJhFnBdbuvWNpB7WK6JsaYO1jrThsCDWDbfWrVsXupxEApZ9EJv3ElyjWEhBS1Ypn2hwwEDZuK0t8bOINQiYXn2KNptpy61sEH1QHSKQyQR4sidg/dRTTxXppvM78XK7kVrMDRmrAMsH1xTHHOVD3cRwuQdw840OijsuJm7gbspn7Nixtj4Wh+PWCvomi8WAgiPWg4URKWS+Mg4UR6ztbOgfwkOtm+D9ISEIxYPCYSwkbkWyQAHiKUK5Rkr//v1tUlGsdUMkVqEo4U88KijJKuUT1KBVjwiIQOoIECxnH0CyIaPFSQrwcrth6XDTdd5kzA00cssXzmM9kP4f/WJK2iLOgXh5GdiRnXdXISi2oOOxjssNT8jf/vY3206i4qyzIUPXTXjxIy41BGUHS+dvp3ysuBOZu7HWXjop8FhHUj5uM6BjIiACGUeAGxbxT1xjuKSjBUsDi8TL7caNNfKmG73XGMoDwfXuJs67w9imy014mneWQ+DOj67f7ZpEjjk3/Vjre/zW53Xjj/TysBMKEr2VFv1AObNuL1pIBEEBeYnTbnT6t1d5v8ezKuHA76BUTgREIDMIkGSAa8tN8dBD4gkIsZHoBeFYNFhMKAj+zyc66QB3Gk/m7BrgJrigaCM6dRk3H/URk6UN/u+2q4dbnX6PYaVRL+KVbOCnLsd95uyS4HUNcR2UMS43Yt6OoDSwiNiyJ3otJNwbNmzoVaU97lheQad5S/nExK6TIiACxSXApqG41dxiLU6djvLh72jXm6N8nJ1G3JQPC1XZcstNaJ9MUxZJRls0kcqHbLJkKB92UkEhEI8iWaK44mQExlM+jIOF8dHuTRZ8o9ijFTD9QVlFl4/uJ9Yrbksvt190eb9/K+bjl5TKiYAI+CbAzY4sKna8iCUoD9w6WDS43iJv0sQtuHnz1B4dw3DqZF9HEg2iBYuGN+hyY2VT32gh+YcPW0NhEXjVH31dIn/72VLHT32NGjWyxVAszv/drnNegkkGbqSw/gdxU9Ks8YmVZs11bIRMurpX3MytL36OyfLxQ0llREAEfBEgfvCvf/3L7mHGmhr2cYt2lVERgX12IuDJ24klkFKN9YPi8Cts34RL79lnny24BEuJ1Gtccaz5ic6A81t3ScuxMBMpabyHFG3GQNwsllStWtWejk68cJRPdMyIdGysIS+XqNMW+2DGSkiI1adY52T5xKKjcyIgAgkR+N3vfmetFTalJIhNsgGLN6NfNsi6H1bVY/mwRo8bJjsUsOiRdTmRm2rG6gAxDJIWSOVm12duwLj66EciW0PFaiORc6zXYd9KXH7ctBGSJnhjK+nMjoJIpE6y/diaB9cgfLyEuBJZgSjcyy67zK6HxBVHXIwthXivkLMjNoqf9UXxMvDoO2NJxsv+pHy8ZlLHRUAEEiYQz4XjVIirC2URhBAwT9ZbPRPtH7snsFgVJeMoCixA1in17dvX/PKXv0y0Slve2bQ31sUocLLaWCSLsidBgDgNu1ITt2FBaa9eveyaIzb7nTx5clyrB2uLXSN+/etfx2q6WOekfIqFTReJgAiIQFECxJCSIby/jO1zUGyxNkUlOYGXPUYLFqKzDVn0uVh/s+vCz372M89swljXxjunmE88QjovAiKQFgK4i3A14UYjeM8q+6CE7XSIeWARYJngWsLFlKlCsgDWh7P5aCr6Sext6tSpRfaaC6rtUuHtKVy3f2XCg857D6rTqkcERCD5BHhtvcftIfmNh1t44IEHrMuH2AVxIwLvQbl/SD8mScFZu8L9bsSIEZ5b2KRkwHEaYZsdsvtwhaXiHVlsu4PSJ4aUDJHySQZV1SkCOUAg3conBxAGPgReBcE+bVgkyRTWQXXt2tVu5Oq2d2YQbcvtFgRF1SECIiACKSBAJiDxG17fkizB3UayBG0kS/HQdymfZM2g6hUBERCBJBAgoYC1O6yhSoZMmDDBvheIN6cmU+R2SyZd1S0CWUxAbrcsnrws6LosnyyYJHVRBERABHKNgJRPrs2oxiMCIiACWUBAyicLJkldFAEREIFcIyDlk2szqvGIgAiIQBYQkPLJgklSF0VABEQg1whI+eTajGo8IiACIpAFBDw3Fv1m7XdmyoxFxnXvnSwYmLooAiJQcgJsu5/Jwntu2KmZ1w5IgiHADgq8vyfZ70HyVD5vLf6f+WhLTbP5v28FMyLVIgIikHUE2NgzkwXlWLlyZfu6AkkwBLp162bfs8QL+Xr37m1fOJcMReSpfBjGzjWfmG/ffSKYEakWERCBrCMQ72Vj6R7Qnj177FtRJcES4GVzvJuID6/QToYiUswn2DlTbSIgAiKQUwQcRdS5c2f7NtahQ4eahQsXlljpx7R8coqgBiMCIpAwAV5elsmSye/gyWRuxe1bkBaRlE9xZ0HXiUAeEMD/n8nCS9YSlWHDhtkXyEncCezdu9f9RNTRkioiKR9fmFVIBPKTALsnZ7L069cv4e4tXbrULFiwIOHrdIE3ATdFNGTIENO8eXPPi6R8PNHohAiIgAiIQCIEGjZsaFPf+/TpY5o1axbzUimfmHh0UgREQAREIBYBR+GQls07gHjtuR+R8vFDSWVEIE8J1KxZM6NH3qZNm4T7N3z4cNO/f/+Er8uXC8hm279/f8zhFlfhRFYq5RMTsU6KQH4TyPSYD3GFRKVnz56JXpJX5UeMGOGqfIJQOJEgpXzy6mulwYpAYgRq1KiR2AUpLp2MlfcpHkJGNxe0wokcrJRPRk+9OicCIiACqSWAwhk0aJDdWieRGE6ivSwVCovbRR99scn89i9z3U7pmAiIQB4QWPrYFVkxylmzZpnu3btnRV/Vyf9PwFP5CJIIiEB+EyBryePZNL/BaPSBENDeboFgVCUiIAIiIAKJEJDySYSWyoqACIiACARCQMonEIyqRAREQAREIBECUj6J0FJZERABERCBQAhI+QSCUZWIgAgbeIN/AAAFiElEQVSIgAgkQkDKJxFaKisCIpC3BLZs2WJ4c6okGAJaZBoMR9UiAiKQgwSOHDlixo0bZ+bPn286depktm7dar744gtz8803m3PPPTcHR5y6IUn5pI61WhIBEcgiAqxxuuSSSwwKaM6cOebYY4+1vV+5cqXp0qWLGT9+vBk4cGAWjSizuqpFppk1H+qNCGQMgXxfZDp9+nQzYMAAa+k0bdq00Lzcf//9ZsyYMWbVqlWmbt26GTNn2dQRxXyyabbUVxEQgZQRmDBhgmnZsmURxUMH2M6H+M/jjz+esv7kWkNSPrk2oxqPCIhAiQnwKonly5ebBg0auNZVv359e/zll192Pa+D8Qko5hOfkUqIgAiUgAA38ffee8/UqlXL9OjRw5QtW9YcPnzYzJ4926xfv96cc845plWrViVoIfhLP/nkE1up1yslKleubMqXL28V1IEDB0y5cuWC70SO1yjLJ8cnWMMTgXQRIGA/cuRIM3PmTNOhQwezbNkymyG2c+dOc+WVV9qbN9v3k0U2b968dHXTtd1NmzbZ42XKeD+fo3BQomTASRIn4E028bp0hQiIgAgUEJg4caLp2LGjcd4cSvyEtGUU0bRp00zbtm1N165dzfbt282SJUt8pS4/9NBDZt26dcWmXLVqVTNq1ChDMkUsQUEiFStWjFXMnqNsvXr14pZTgcIEpHz0jRABEQicAJbD0qVLzU033VRQ9+7du62lUK1aNat4kD59+ljr5+qrr/bVBz/KIFZFFSpUiKt4uJ6+Ik56tVudjlW0a9cut9M6FoeAlE8cQDotAiKQOAEC9sOGDSt04YoVK+zf5513XsHxa6+91vDxK7xhMxWCkkIcC8itTRQponiPG534x6R84jNSCREQgQQJ4FqLlkWLFtlDJBhkulSvXt13F3HlSRInoISDxJnpChEQgWIQIKkANxYJBpkuTpbb/v37XbtKMsW+ffvsOa+MONcLdbCAgCwffRlEQASSTuDgwYNmwYIFpn379qZSpUqF2uNGHi8BwLmAnQU2btxY7P7iTmNngnjtnXLKKbaNDRs2uLa1efNmc+jQIbu7gZSPK6K4B6V84iJSAREQgeIQICbiBOUXL15sLQX2RIuUHTt2mNGjR5vJkyf7aqJOnToGRVZcqVKlSlzFQ90oH9ryUj5Oxl1k/Kq4fcrX66R88nXmNW4RSBIBLALiOuyJxiactWvXNjNmzLCttW7dulCrU6ZMsWt+/Eq/fv38Fi1RudKlS9sMPFLDV69ebRo3blyoPlyIWE+JJEuUqEM5eLFiPjk4qRqSCKSTwNq1a+2OBqRU42Ij8w1XGUpo27ZtBV2bO3euzSZr165dOrvr2TYLZFu0aGEmTZpUqAwWHEqTzLtsSJ7wHGCaT2hX6zRPgJoXgUwlUNxdrYnhDB482Bw9etRuqcMiUjbpZMua4cOHm27duhliJk2aNLF/x4u/pJPPmjVrTP/+/a2C5PUJjGXs2LHWLcci2ljrgNLZ72xoW8onG2ZJfRSBNBAorvJxukqm2N69e60CihTeCEqQHtdWtsinn35qlSdbAnXu3Fk7GgQwcVI+AUBUFSKQiwRKqnxykYnGFBwBxXyCY6maREAEREAEfBKQ8vEJSsVEQAREQASCIyDlExxL1SQCIiACIuCTgJSPT1AqJgIiIAIiEBwBKZ/gWKomERABERABnwSkfHyCUjEREAEREIHgCEj5BMdSNYlAThHQ1jE5NZ0ZNxit88m4KVGHREAERCD3Ccjyyf051ghFQAREIOMISPlk3JSoQyIgAiKQ+wSkfHJ/jjVCERABEcg4AlI+GTcl6pAIiIAI5D4BKZ/cn2ONUAREQAQyjoCUT8ZNiTokAiIgArlPQMon9+dYIxQBERCBjCPwf004PCJSd22pAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Resolving integration constants \n", + "### Equilibrium at the loaded end\n", + "\n", + "\n", + "__Condition 1__: Stress in the free length must be equal to load over area: $\\sigma_\\mathrm{f}(0) = P/A_\\mathrm{f} \\; \\implies \\; P - \\sigma_\\mathrm{f}(0) A_\\mathrm{f} = 0 \\implies C = P / A_\\mathrm{f}$" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFwAAAAWCAYAAABNLPtSAAAE5UlEQVR4nO3Za4hVVRQH8N+MURaWj4qyp5A9xl5mGkFkpiSSVCoVZH2wJIpeml+ihBqjsoeVWFlRhGhRQU8q7c3UB3tRWZkKQtnTyiw0S2sy+7D2Ya7nnnvu3EElwz8c9mXvdfde8z9r/dfad5paW1vtwLZDc5318XgXa7ARA7e2Q9sxWtGOH/AcDisyKiN8AB7FkXgat6TNauFQTMeHWJUOX4XXcRl2a8D5engNm3LPL/gAE9FU8J19RNDMKtm3B75N+z3XoE9tuBOLcJbgrgo7lWxwqnB8ah0nmzAN12BnLMRTIisOxkiMwHk4ufP+l2IQ/sFNgpxm9MfZeDide33uO2clu2dL9m3F/mnPQQ361JYeIugGixe4rtKojPA+aVxa56BHMAFLhAR9klvfFVMEIVsChyTfluCG3NqLeAyXqCZ8LFbj7Rr7DsBVeBl9cSz2ws9d8HGZeGG95Qgvk5RuaWwvsZkiyF6KE1WTDetxs5CVLYHBaXyvYO2tNO6Zm++J4XhByEoR7hXZOgWfprnjuuhjxlm3/EK9olmGvoLIv3Eufqtjv75kbY5I4wmdODcj/P2CtcPT+FVufrSQu2dq7DleSOhsETyfpflGZaUuygjvlcZaRE1Gd8zD4i3nUl3UIrwXbkuf5+bWxuJ3UWzz2B13CLlpTXNZhHeV8A1p7JlfqKXhTaLAbVIdLRnGpHFeF52qxLW4FSvr2DXpSPNxOFP8DQeJKO6Dl9JeGbpjFBboIKIS07AfrsCvaS6L8LykNON+UZz7iKxoK9hzRRqHyclsnvBROA1Dxdt9UHEr2EP0mZsUa2mjWKk+2dKZWdRMTWO7iM53xct/MvmVYWTyt6g7ORJX4nM8UDH/fdqzP/bA2jR/Oi4URH4hWtEizMOlmIGTsBwPYUVeUkaJojFYyMQ9NTbcO41r8UcNm62BTE5mimhvEtrcV0T4EzYnm5CTv0Tk53GfCLqrVRfTz9L+Ayvm+ovAWCgC8a8afn4n7iTtOAfXoR/VGj5ZRNCYtPkrCiqt0EOi5Sta31rICP+4k/bdcAbeFPeCSlyAU9LnV1VfpIaltUzH5+BuIV+bdMhGEUaLjPkIR4mgaKNYw9fieXG7PB8tqoviT+nAfsmxN0oObxaXlC2BRgkfKlrEvJzsIQplu0j/fFYQf9sIHTo+SdSzizBE7faSaEGJIvx55ULZxScrln1qrM9Mz2xxi1uWW28SEnWhaBvL0Fdk1krVkZihWaT3n+pfxjKMEy/7+dz8jdgXt4sbchEGi58KsghfI1rfjcp/4iAuPBRkQVlb2F7HZpa4ZR4m9O4lkXK343F8jfnKL04ZpgsSx5bYtIjit1j0/p3BGKG3P1bMHY3L8Y0gvhYWC3JbhHQ2goyzKj/LIrwozfLrE4X0XIwTRIezTkTqO+IlvNigs7VwfBoXddJ+CA4QQVCJrFBO0lGLirBBdBdH4Bhd68aqOCwj/M809i6xIaJ4fhecqcQE9W+Zc1VfaMqQZUtev4c2sEdLA7aVyDir6vvLJGV5GifiwDq2/0WMFZeOL7fhmbuITB8mmo9VeYMyEucLHRst9Hh7+wdEi23rb6uI6PdEF3SXgu6sTFLWi0o9XEfBqled/++YkZ4itIkiuVrUr0VFRmWEEzq+ID07UI42xb+rbIbtTZe3e/wLB2AXTfzh8GMAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left\\{ C : \\frac{P}{A_\\mathrm{f}}\\right\\}$" + ], + "text/plain": [ + "⎧ P ⎫\n", + "⎨C: ────────────⎬\n", + "⎩ A_\\mathrm{f}âŽ" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eq_C = {P - sig_f.subs({x:0}) * A_f}\n", + "C_subs = sp.solve(eq_C,C) \n", + "C_subs # display the result" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**`sympy` explanation**: Let us explain the two lines\n", + "\n", + "__Line 1__: Defines the equation to solve $P - \\sigma_\\mathrm{f}(x=0) A_\\mathrm{f} = 0$ in curly braces `{}`. The resulting data type is a set. Set is an unordered container. The set was assigned to a variable `eq_C`. \n", + "\n", + "__Line 2__: Then we used the `sp.solve` method available in `sympy` package with two parameters. The first parameter is the equation to solve `eq_C` and the second is the variable `C` that we want to resolve. The result is obtained in form of a dictionary defining a key-value pair of the variable and the resolved expression. " + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAADcCAYAAAAIhBoZAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tXQeYFFXWvQMMMISBAYYoGUxgQERwFQRFURGMqGAW07q6a8ZdWfOa1tXFAIKYMIIKBjDAv6iYQUFMGEHJOc8MaeC/580U9vRUV6eqruruc7+vvu6u8N6r87r71L3vhpxdKkIhAkSACBABIpCFCFTJwnvmLRMBIkAEiAARMAiQBPlFIAJEgAgQgaxFgCSYtVPPGycCRIAIEAGSIL8DRIAIEAEikLUIkASzdup540SACBABIkAS5HeACBABIkAEshYBkmDWTj1vnAgQASJABEiC/A4QASJABIhA1iJAEszaqeeNEwEiQASIAEmQ3wEiQASIABHIWgRIglk79bxxIkAEiAARIAnyO0AEiIBnCHz11Vcyc+ZMz9pnw0QgWQSqJdsArycCRIAIRELgnXfekQ0bNsghhxwS6RTuJwK+IkBN0Ff42TkRIAJEgAj4iQBJ0E/02TcRIAJEgAj4igBJ0Ff42TkRIAJBQ2DhwoUyb968oA2L4/EIAZKgR8CyWSJABNIPgSlTpkj37t1l1qxZ6Td4jjghBOgYkxBsvIgIEIFMQmDHjh0yfPhweemll2TSpEnSo0ePTLo93osDAiRBB3B4iAgQgcxHAObPM888Uxo0aCBffvmlNGzYMPNvmne4GwGaQ/llIAJEIGsRgPkT4RsnnniivPnmmyTALPwmUBPMwknnLROBbEcg1Pz5yiuvyOGHH57tkGTt/ZMEs3bqeeNEIDsRWLJkiQwePFjy8/Np/szOr0CFu6Y5lF8CIkAEsgaBqVOnSrdu3aR///40f2bNrDvfKDVBZ3x4lAgQgQxAAObPf/7zn/L888/L+PHjpWfPnhlwV7wFNxAgCbqBItsgAkQgsAhY5s+8vDxj/iwsLAzsWDmw1CNAc2jqMWePRIAIpAgBy/zZr18/efvtt0mAKcI9nbqhJphOs8WxEgEiEBMCpaWlctttt8nTTz9N82dMiGXvSSTB7J173jkRyEgEli9fLkOGDJHc3FyaPzNyht29KZpD3cWTrREBIuAjAtOmTZODDz5Y+vTpQ/Onj/OQTl1TE0yn2eJYiQARsEXAMn8+8cQT8txzzxkSpBCBWBAgCcaCEs8hAkQgsAhY5s+cnBxj/mzatGlgx8qBBQ8BmkODNyccEREgAjEi8N577+02f8IUSgKMETiethsBaoL8MhABIpB2COzcuVP+9a9/yejRo+XZZ5911fy5fft2KSoqkvr166cdLhxw/AhQE4wfM15BBIiAjwjA/HnccccJtMAvvvjCVQJEWaVevXrJqFGjfLxDdp1KBEiCqUSbfREBIpAUAiC+rl27murvbps/X3vtNWNaPf300+XGG29Mapy8OH0QoDk0feaKIyUCWYuAZf4cOXKkPPPMM3LMMce4hgXMn8OGDZOJEyfKG2+8waryriGbHg2RBNNjnjhKIpC1CKxatUrOPvtsAVnNmTPHVecXmD/POOMM0yarymfnV4zm0Oycd941EUgLBD788EPPzJ+oKg+zKsyf0AIbNmyYFphwkO4iQE3QXTzZGhEgAi4gAPPnfffdJw899JDJ/+mm+TO0qvykSZNo/nRhvtK5CZJgOs8ex04EMhABy/xZUlIis2bNkhYtWrh2lzB/oqp8QUEBzZ+uoZreDdEcmt7zx9ETgYxCAObPgw46SLp06SLTp093lQBh/jzkkENk4MCBrCqfUd+a5G4mYU1w3rx5yfXMq4kAEch4BDZv3hzTPe7atcuYP0eMGCFPPfWUoP6fW2KZP1988UV5+eWXWVXeLWAzpJ2ESbC4uDhDIOBtEAEi4BUCWNuLJmvWrJHzzjtPNm7c6Lr506oqn5+fL7Nnz6bzS7TJyMLjNIdm4aTzlolAUBD47LPPjPdn586dXTd/WlXl+/fvT/NnUCY8gONIWBMM4L1wSESACKQJApb588EHHxSUPwJRuSUwf956660ybtw4VpV3C9QMbockmMGTy1sjAkFEwDJ/4nXmzJnSqlUr14ZpmT/z8vJYVd41VDO7IZpDM3t+eXdEIFAIWObPfffdV2bMmOEqAcL8idyfRx99NKvKB2rWgz0YaoLBnh+OjghkBAIwf/73v/81HqBjx4511fxpVZVHUP2ECRPo/ZkR35jU3QRJMHVYsycikFUI1F6wQHL0jku2bJFTTjlFUALp888/d1X7s6rK5+bm0vyZVd8u926W5lD3sGRLRIAIKAI5GhbRXKsx7H3vvdLjl19M2rO2bdu6bv5EMD3Mn3369KH5k9+8hBHIUTPFrkSuRsZ1ChEgAkQgFIFqmzZJ2yeflPzvvze7S3Ny5O6OHWX4Cy+4BpRl/oRX6XPPPedqUV3XBsmG0gYBmkPTZqo4UCIQbATq/PyztNP1vtz163cPtKo+Y1/1228iK1eKNG6c9A1Y5k80hAdxlECiEIFkEKA5NBn0eC0RIALG/Nnsrbdkr/vvr0CAFjQ/NmokUr9+0kihqjzMn71793a9qnzSg2MDaYsANcG0nToOnAj4j0B1jfVrq2bJOr/+WmkwO6tXl4l77ilfNmsmXfV9omJVlR89erQ8++yzNH8mCiSvs0WAJGgLS2I74Z5dVFQkF1xwQWIN8CoikEYINICnp671VVXvz3DZombK+ZdeKrM//VQkMbcD02RoVfkvvviC5s9woPk5aQQCR4Lf64L68OHDBdnnkf4IkqOL63Xq1Kl0s5t0ET5ULrzwQjn77LMrnZeKHUuXLjUFQPfff3+SYCoAZx++IVBNf5uttCJDgZKSnazVckW/6+9wZ40adodj3gfz5znnnCP4Xd9yyy1StWrVmK/liUQgVgQCR4LIJDFx4kTZtm2bHHHEEbJ9+3b5xz/+YeKM7GTFihXy6quvypPqkWaRpt15Xu974IEHZIs+Ea9evdrrrtg+EfANgfpz50qr55+X3A0bKo2htGZNWThkiKzt3r3SsXh2WObPkSNHyjPPPONqVfl4xsFzswOBwJGgBfvixYsNAUJ69OgRcTaaNGkil19+uXz88cfSvHnziOd5eQB9f/fdd6YL5EOkEIFMQ6CamvlbvvSSNNBcn3ayuX17WTB0qGxr2NDucMz7LPPn1q1bBeZPN6vKxzwInphVCATWOxQ/AAiILRZyQzCuH+7S0FgRr3TllVea8W7QJ2TsoxCBTEGgQOvw7XvrrbYEuEtNlEtPPFF+uu66pAkQVeVRVqm7apL/+9//SICZ8gUK+H0EVhO0gvHxo4hFsF7QTL3QUi3wVoOptk2bNru7hkk0FuJO9VjZHxGIB4FcLXLbSoPRYQK1ky36e/vt/POlKOS7b3detH2hVeWRXeaYY46JdgmPEwHXEAgkCeJHYZFgt27dKt0sss+D8DpqJgpLateuLY0Qj5RCQeAuqlU/8sgjFdYCYRIlCaZwItiVuwjo769QtbIWkyZJ1eLiSm3vqlJFVvTrJ0tPOEF2VUvuLwTmz/OVSOHkNmvWLGp/ldDmDq8RSO4b7NHoftWYo/XlWScQHBsur7/+uvEWC5Ubbrgh/DTPP8MZ5m9/+5vxXm3QoIFU0T8HLOrjh52NAo/ed955R+bPn288+eDkBOemWrVqRYQD674wg33zzTeCdaDWrVvLcccdJ/n5+RGv4QHvEMhbssQ4vtjF/aHXkhYt5LfzzpNinadkBfM+RB1pzjrrLLnzzjulWpKEmux4eH12IhBIErS0wJYtW2qmpYqplqAFLlu2zPc/yU81/glj21ODgSH406+vWTHWrl2blR6iX331lfz973+XPfbYwzwQ/KwptF5UN3qQGRyXTj31VPOwECooqIo/v06dOkmvXr3Mdb///rtcp+tLF198sdhZAbLzZ+r9XVfRh5Fmb74pTf7v/ySntLRSh1j7W37ssbLs+OOT1v68rCpfaeAJ7sC6fvUkAvwT7JaX+YBAIEnQcoqBZnDjjTcaWIrVLAPzI7SMQYMG+QDVH11azjAPPvhghXEUFhYaEvTTQxQ4/ec//zFB+4kKCB2kddBBB8XUBB5K7rrrLtMvtD8I/uje1D/Ve+65x2zwnv3nP/9ptGXI/+mfLTTpu+++Ww444IDd/cAp4qSTTpKbbrpJ4PnrZtXxmG4mC0+C40trXdu2M30CjqJ27eR31dZK9AEnWbGqym/U9UY87AbN+xPjuuiii8x3Et9BSuYjEDgSxJ8n1tkggwcPliOPPNK8B/HgzxaaQ6x/zl5N3wuaJQN/1HXr1q3QRcNy93A/zaF4esUPONmYSRB6rIJ0VpgXSyvGddD6Bg4caByGoAmCEGEWvf766wUaIMgP13Xo0KFSN7gHxIaiCOttt91W6Th3uINArUWLZA/NclT3p59sGyzV+Vqi3/NVqqXrhNqeE89OVJU/88wzzRZE8+ecOXPkjDPOkH663glrBCU7EAgcCWI9EGEGEBBg6JMiwiDwR9ulSxffZgfaKJ5gkR0mXCzHHD8D5rGuAvJJlUBbB+GGEmBo38iggz88kN/48eNNGAteb7/9dlsCtK4tKCiQmhp8jXVGu2xBqbq/TOwHGV+a60NJI11aQPJrO1mna/GLTj9dtterZ3c4pn055RmfcDK0/n//+9+uV5WPaSAxnATnNnwnH330Ud8tTTEMl6e4iEDgSNBaD8SfpZ2pBBWkw71AX3vtNeOAgT9OrwUm0AVaMfvcc8+t1BWy10D8JMFKg/J4Bx5aDjzwQMdekPUf6a/GjRsnI0aMkGN1bemwww5zvAYHoSX+pFqK35p/1IGmyQkgvEJNRdZ88uSIps+tus69SLWhDZ07J3VXtXRtt92YMfKROtA8pDF/sCy4XVU+qQGWX2yZP7GGjaQXoR7nbrTPNoKPQOBI0FoPjBQfaK0RWtBCE5k2bZoxT3otMOeAaCfrn4idwOQH8102kSDWHhGeEk3+8pe/yNdffy1woPn222+Ntl8vipYBxyOscVKSRyBf12Rbvvyy1NQlBTtBnk84vqw4+mjZqQ+ayQj6aq+m7ir62xyqa2yf6priuClTBA+wQRJ8F09XbRdxiXhAg+WBkn0IBIoEEV5grQdGIkFr3c2aKoRLwIZvCcxniDnKy8sz3prI5wkNDV6KoZriunXrjKkNGmcsP06sST7++OPGrBNJrLGhbZgIQ12+EQqAcWFDGABkpRYaxfjgUWk5jOA6rH2CWOAtGa+gn5f1z85KORfv9db58NaE+TmagMhAatEE94c/GbwiJR48SWGCsu7b7nrMW+ckNRK7drNpXw39ju3xyisRA96x1oeE14vVESoZ06eFaeH770tLXWe0PExr6+9mlD7I5Opvwo2ium7N3RjVUuGohe+g3452bt0T20kMgUCR4C+//LJ7PTASCYbeJrQQmEKfeuopsxumOdj14Yl4xRVXGBdnaGXwMoT2hvWpS7W8y2OPPWZMqnDeQLLuq666So466ihHBOEMM2DAAEftxSJZOPfASzQ0vAMEirFiP16RaQbmXhDx22+/bTwrQQ7QhEGSMB3h/mB+dYqzCx90qbq3Y90S5JqoAJdYvUthskQoRDRBmSncO8yh11xzjXGOgeML3kcSnHPyySdHOsz9DghAC4PZs/H06RK6Nhd6Cbw+F6mnNV6TFv3Ot9DvdVONEw2XHfAIDlkfDD+eys/4vV122WXmP+Kjjz6i+TOV4Ae0r0CRYLT1wFAMoTXeeuutJrl2jfKSLe01iS+yziPYGkHbw4YN2+1EA8cNxJ5BS4PnoeVsgT97EJATCWINEOsF8GZ0klAtFeQbSoLwkAS5IcgfhIqxWVrQDz/8YJ5KEZZgBf3DvNunTx+ZomakeJ5UoW05EYvT+BM5hnvAA8Vvv/1mPEHtBLGdyK+Kp2+cA887eIcCBzwIwCMvXJA7Ell3YtHSw6/N5s9Y92ukf+4ttLKKXZ0/YAOND/k+V//pT654fYJw22oVl/pqXgyXRdrXM7pmPNyn5Pah44H5E981rFEjzpfmz/DZys7PgSLBDz74wMyCU9UIkB++zKNGjZK5mtPwjTfeqDRziHMDMYZ6kUIbhOy9994VvA1hDoVZsqSkxJhQwwUECFLp2bOno+kO14WGJcCUZ8XMWW1a9dAQCxdqBsTYoAGCBC3B+GHORfB40OU8zSCCtdBrr722QhJzaKXwBH1O80/C7GSRpBU4f9999xmPQWjwiM3CQwPWeKGdh2r4Qb//QIxPNbECxN3p8gBMoHaCFGcr+vY1Ae/J1vrb/T3Vh729dA5zyzM8hfa7QS0vT6hDzNby2FC7MaVqHx7AEPcH6wMy1FCIgIWA7ySIBWmkTwJpoDAtBE9p0JxCBQQDUwZMhpazBEIoIlWOwDpbqFikE56BxjoHf9ih8tZbbwlMeCjyC+J9ScvIYO0LP6LwlF44F3/aMOdaAk0Ha3P4ww/XMsO9XkGOGG940VCMOdl4vwo35dEHaNVXX321/Otf/zJegAhwhyaMed1rr72Mudp6CLGGgKTjeCABniA9bDAnY45htgZpxmMG9ujW0qLZ/HnzTJ5PeGRGkvUaVrRYMYf3p1sCza+NWl7sguxX6m9zsZpat+m4kqksn+xYLfMn0vLh+4jvHIUIhCLgOwmedtpplUgilinCulUkQsP14Sm6Ymkz9BxoftAk4aACMoKmCGeTcALENXAiQYA6NEk4w+B8ONLgmljDNpwcROIdux/nw3T58MMPm7UWaHYgeoSROM0RNGU8oS/SoG1cB8KHizqIkxIdAZAeyA8kGElQ6QHrfhs1NZ1bAqeXFvrQ0kRN1uEEh/RqizQY3gTY+yx4aMVSAn6fWGOn+dPnCQlo976TIJ72g/jEj2wwoRlhnAK2cczpeEDn3pNhIQ8otngEOWKxUWJDAOZOmD1h/gwnIauF7WpKR5WHNRqPiaoPbkl1dW5qp05etTV9Ybjs0AfG+ZdcIpsCoG2hJBPW3eHNTfNn+EzxcygCvpOgV9MBE2aoRDIrhp/n1XhC24X3aKhAw7QLaYg05lSMkX0ED4Fcja1sph6fcHyJlOkFqc4Q7wdzZLLxfuEI1FOTYhs1baPKfLjAw3S+Op5tSyCsJ7ytZD7D/AnPcDjZwceA5s9k0MyOa6uqh+WtidwqYtmCJvBQHD58uPFURJgAcgEiOwlCEBBqAPMk1vjgEYosJDDfYS0P64FYh8T6Yvhaolv3CO/I57VEDUgXTjAws8L0h7U01FFD5grESMJEiLHffPPNZv0T2zw1d4WvK7o1LrYTfASw5tZcvYTbjh0rddRRKyfsIQp3AMJDoPt8DQHatM8+ArOkW4IQi1a6Jt5S4w2rqJm/guiyBJxtFgwdKqU2SRPw3YX01XO8Fpg/j1YMYFWYpGZiP4pse32PbN99BPT3ZPOLiqEfK5whhlNTdgrIDCRjudUjVg7rAPA4xD5r3c3ab71igLgOmpdX5VNC+wLkWDOEB2jofmiDGCOOYwu/j5QByY4CgQBCD5poNiTE+tlpXxgkTJ0wecL0CROo24Ik29D+UGcwXKB1orbgeoe0ea9qqAa+y3AU81Jg/kR+Wngbn69FeilEIFYEMsocCu/KUA9LayHciiO0QLH2hy6Ug3y8IkD0G9oXnHasMYXujxQTxwX9WL/OmXEeyK+x5vgEASLZta3od2idOm4h3m+LWjDcFmh/zdTrualaUexMryiqi/W/rRoj6qfAUxwp+WBdofennzORvn1nFAmm7zRw5ERATK5NaH0obBuR/BQoOJ4s0Uw6RRGSEySLpdH+VLPKU1O8nazUJA6L1asbcYd+CpJMwPvzYK14Ae/PIDrY+YkP+44NAX+/xbGNkWcRgYxGAJldUN3BaH42TifWzRfrWhfIz81wh1Bgjfanmp/R/myqy2/X/LsLhwwRxBz6LUjAgOQM9957L82ffk9GmvdPEkzzCeTw0xcBkB80v8bQ/BzIr0RjMJf17y/runZ1Jc2ZHWK11ZmsrYY+1NAkB3aytls3E/+3Q8OB/BTL/ImKLkitxwTrfs5GZvRNEsyMeeRdpBECQSI/mF0RcN9Ic+PaxRzu0HhZaH/r1Jvab7HMn0hMAY9qxub6PSOZ0T9JMDPmkXeRBggY8lPtBZuj5qfZdozmB+JRBxgvxCTa1sTmCLq3S3uGPlFdfuHgwb5rfxgLwouQw/euu+6SoRqOQSECbiFAEnQLSbZDBCIgAMJrMnWqFCrpRCIcXFoC8tNQB3h9ekV+6KeOprVrqeWv4ABjJ0HS/hBC9Le//U1QiYTmT7vZ4r5kESAJJosgrycCERBAZQU4uxRq4mZ4fkaSEk2ebjQ/j8kPGWeQ87OhelLamT5BvCivtEQTbfu99gesfv75Z1P5HWn4aP6M9O3h/mQRIAkmiyCvJwJhCNTUiihN3n3XkE2kgra4BOSHIHcTbO6R2RP9mKB7db5pblN2zBo6wi0WqenTq7CLeL8kMH8im9Kdd94pl2g8IoUIeIUASdArZNlu1iFQa+FCE15QoOn6bDWtckQQ6gDNz2vyAwFDC22qQe+5mpbPTqDxIexitWad8ZKI7fq222eZP9/TkJGpakI+0CEbjd313EcE4kWAJBgvYjyfCIQhUFeDtpuq5peveWmdpKhtW5Pcer16N3pKOJqmDFposzffjBjygHRrq7XE0BLNOIP0Z0EQy/yJpNfIAGNXtiwI4+QYMgsBkmBmzSfvJlUIKNHUnztXmr7zjtTWpNZOshFJ0fv1S0mJoXpff21CHvLKC1TbjWtz+/bG9AmNNCiCAtSo/nDHHXfQ/BmUScmScZAEs2SieZvuIIBMKg1mzjSaX02nSirluT2XH3ecFLdq5U7nDq2gsO4eWuUhUqozXIoCu9D8vDbDOgyz0iEkt7/uuuvkXcUTG82flSDiDo8RIAl6DDCbzwwEEOOHuDp4e0ZaX8OdIp/mmu7dZYVqfluaNPH25i1tVNchkfElkqDG39IBA2Rtjx6uFtiN1F+s+2H+HKKB+G3VTEzzZ6yo8Ty3ESAJuo0o28soBKqvWWMqOjRSBxMQYSTZqWWxVvXsaWr6eVHSKLRfBLoXaMYUmGKdzJ5weoEmurJ3b9+TXYfjBvMnqj+gbibMoBQi4BcCJEG/kGe/gUYAmhVyehZohXK7UkLW4HdoIVlUcV+llRXw3kuBt2ejTz4x4ReRcnyifxAyyBhbqdbTDJJY5s+31GMVGypAUIiAnwiQBP1En30HCwGYF9WxBCbPOmqqc5JtBQWGZFYffrghHS8FWWaQaBvhDgjAjyQgvFVHHGHGhawvQZMF6kCE4HeYP+doGAm9P4M2Q9k5HpJgds477zoEgSrbtknDTz81AeU1Vq50xAYelSv79pW1qsF4XU8Ppk6UWGqoFRMwxkhitNGjjhLU+QtKuIMZqz5UWPLaa6/JZZddJsOHD6f5M9JEcr8vCJAEfYGdnQYBATi4QMPCep9TEVvE9G3o3NkQzcZ99vF26OXaKMZV98cfHYPusfYIrQ9rkV5ro/HeNB4m2o0dK4Va9f5FXb+cMGGCTJ48mebPeIHk+Z4jQBL0HGJ2EDQEEEYAk2cDDch2Smu2MzdX1sLTUzU/hBd4KVVLSkw5o8L335caq1Y5drW1USPjfYo8n15ro44DiXCw1u+/S4dHHjFetOctXy5TqlaVqbq2Wl9Jm5JZCKzW+pMobvzEE09INfWMdlvmaejPs88+a9LnVdEED16I+6P2YpRskwgkiQCcW+ppcLvRsH76ybE1eFWuUo9KeFV6vbYGB5xGH31ktNFogrye0EZR4ggZX4IoyJrT/rHHdicMb6BxgM8pnvVDTKNBHHemj2n+/Pmybt06x9usqWvKhYWF0rhxY8fzrIPrdX16gIbejBkzxhMCRD/7qOWlpS5BXHTRRfLkk0/GNK54T8rZpRLvRTj/S32yoxCBoCMApxKQTGPVsBDu4CSI64N5EfF00AK9EpRWQsA9iC9vyRLHbnapFoW6gvBALWrXzvFcvw/iflppiSYkFAiVTeo4VHfcOBHNVEPxB4ELLrhAlqtWjnhMaG8gvD+pJaFhw4ZmQNu3b5dVaoGYiwdFJUGErVx55ZURya1U5/g4Db9BcvPTTjvN85u69NJLpZ1+/4cNG+Z6XyRB1yFlg0FAANlcoPUhh6ZTGSOMddNeexnyw7qfZzk99VkTGihMnvVnz5Yq+qfjJNBAsdYHb0+v4w6dxhHTMb03VKhopiEP4bJa85I+qSR+w3//G36In31AAKT1+OOPGyelUaNGVRrB5s2bTfFinHPSSSfJRC29lWNT4eTBBx+UDz74QODwlArBuJBTdsqUKXIAcu+6KDSHuggmm/IZAf0zrvfNN4b88jWptVMlB6ylwcMTGlZx69aeDby6mqAaKvHBwzPaWh8GgRRr8PJce8ghgVzvCwcKDxhtnn5aCpTYwwUJwx9TE26RB2tF4X3xc2wIzFQLBKSPfsfspI6arkeOHClIZgCCe1OTsA8cOLDCqdAYsUb3vlpXUiUY1/XXXy+XX365fKSWHTtiTnQsJMFEkeN1gUEATiUNNYgcmV2iEc32/HxTPcFoWPreC4G5E9oeTJ51EW8YZcUBnp3runY1MYdIbp0ugpjFDvqHCUeYcNmw//4yX9dxitUjNNr9h1/Lz94gsEaXA77Rh0QQSG9d744kcHCpV6+eYM1vuj5QhpPgvffea3K87rfffpGa8GT/+eefb0Js3tFMSTDFuiUkQbeQZDspR8AyeYJsnFKaYWDQ9lbAqUTJxguPSpg34XiDsdT77jtHr1MLKIwJJk84upTm5aUcv2Q6rK2OFh0ffliw5houcCpadMYZgXXeCR9vtnyG5rZTHcQ6derk6PyyadMmWVK+Vl03LOnCNo1XHafru/fcc0/KYQMxg/yeVssDSTDl8LPDoCAApwuUMEIogfHydNCyvHYqwVjgDVmgzgb1v/oqKhEDQwSzI8E2tD5Ulk9HAfYt1VwWHl4Cj1WQH0iQEjwEUKgYcoRaQZwExYx3aIo+yCmnnFJQjOdrAAAgAElEQVThVByDOfQwFGH2QY7VepwwiRbrw1ctl+pgUhP0YSLZZfwIwPSGtGHw9HRKHYaWvXQqgcYH4quvab9AxnaaUKW7U/PTpj33NNXb16uTiJeep5X6dnEHsta0fu45aaDORuECcp9/8cWC2omUYCJgreE5kSCCBeD0AoGHaJcuXSrcDMyjDbQqyZ76fXaS0aNHG0/ULZp0/rbbbjOenaHym4YGIXkCCM2K/4Nn6tVXX20Sq5966qm2zXfXB0jkn/1cv4OR1jVtL3TYSRJ0AIeHfEYAHpWaNaVQvdBAOOGu9+GjMynN1NFlXbdurhINTK35334rBch3qa/RTK/WuODkgmB7OOAE3sMzHMywzzA9t9N4MLuqFVvVpf4X/ePaotlhKMFEYKVm8PleH96c1gMR9vCPf/xDPlZHLsTl/dfGo/cTXXvvpr8vJ8eU+++/X5pouBE8TM8880w599xzjTNLqPz973+Xl156yZBds/JEFGM1wxC01bVr10YkQXiIYs0S4yAJBvO7xlG5gIBxdNFcnoVav8+xcK32BZPnenWZBvlt7tjRhd7LmjDOLWrixDofNL9oIQ1WxyCEtfonAe/OTCEFeLa21nUgu4cQYP+bOiwEKmepa9+CzGkIWiC0PCQvR7gBNgjWCGHeRNw3SAifX3/99UrOMBYSqAHpFBe4YsUK43yDQsmQxZqd6TtdIw8VjAMaZRv1HLYIEMdRVgt9I2YxklTV33uBJq//5ZdfIp0S935qgnFDxgu8QqDWokVG64NzSbTYPmhWWFeDY4lbWhb6h6aHShK11FzjVEIpFAN4mcK5BcSHsIBMEWi8rV54wdb8ifW/peo6v1zXaDyLrcwUIANwH5YpFKEG8O4MldqagL21Omkh9VlXdRyLJEX6YAgtzSn93VNPPSVDhw41TSA4/zN9gAr3RIVGCs30nHPOqdAVstUgBds0TWnoJDDHLly40OmUuI6RBOOCiye7jQA0LDiWwNnCqTq66bd8bQ2OF9BAoAUmI1jjytfchIgtBPkhpi9WQbV2jAFrfJs7dMg4T0jMRVvVDOxCTrDmivCHTWqaoqQHAhYJIgvMxbp2m4hs1FywEHhpRpJ9dU24pz6YQl599VWBiXXQoEEVTndam4R2eIg+TDoJSHDDhg1Op8R1jCQYF1w82S0EYOaEuROmtmjOJQgfWHPoobJK4/uSTWSNfg3pKfmhZmCsZk7cN0yd69RRAMRXhAB7m0wabuHjVzsweSLzSzPE99kITM4L9Ekf9RQp6YEANDIkooZYBJXIyC0zpZNXZmhMIdb8sH4X7mHqRIJfqxWml/7OnQTaLO7JLSEJuoUk24mKAFzqUakdXp7RitaiMTi6IKgdZsZESwWhkkFd/QMA6WGL5lkafhMIY1ivgcEgv3QNaQi/p0ifUV2jrZqz8BouMH8u699flh9/fMZpveH3mmmfLdKBuRGOJYkKyAdiaYRO7WAtEM4rR+paPfq1BGuOGE+LFi2kg1pQwgWm0htvvDF8d4XP0AJhwnVLSIJuIcl2IiJQU5/akFwZzi5wOHESBLIjoB3kl0j2FKwlIkuLIT79Qdl5Mzr1j/AF5BLdoNkwsG0rTzDsdE26H4P21/Ttt40GaOf8Agyg/SUyH+mOTSaM3yLBZLRA4JCva9/Q7GIxRc5QKw8I7+STT64AIUIjkMA73ESKk1DlooZmT8qNkrwemWzsCDTRuSIJJoocr3NEwGh9GlLQSH8MsaQOg6kRji6okRdP+SJ4ktZRTzFolugHmUziFfzJb9AsGkj1BQLcWb16vE2k7flIeYbityiCaydw+Pn9rLPo/WkHTprsc4sEQYCtNOwH6deiybe6xg7ZS39PoQIShHS08eQeP368LTlWaEA/gCzh5eqWkATdQpLtGASg9Zm1PtX6oq31WeENyOW5EWaaGNbYqmlKJ5AeCK+OZoxBKaJYvTitKYK2uVmDdzeC+FTbK1HTTLYJPD+bqzs68q3aZd1BTcWFQ4YYrZySvgjALPmjxtpCoq21xXKXnbXSCtbtookVAA8nllCxvDobaWHoUEGGGpD1C+qN7CRYC0RIB8bhlpAE3UIyi9uBCbLBrFmmTFAsmhgqo0PrW6MZVByTWGs8EUi1jmp3tRcsMIHzxlvRIVWa7TQouYLoQLSbtEgnsrdkk7YXjgmy3bRSp4VI66Prdf0T2l88Gnl4H/wcDASef/55MxCYGd0gDphUEeiOTDCoSRhJ4CBz1113mXJLVtYZmFFRmQKxgcgmEyq33367/PWvf41aPR6ZYiBOWW8ijSnSfpJgJGS4PyoCdX791aQxg7NLtLg+aH0wNyKuz6TWstH6oJ2A7Gpru+ZVt2hriJEGCe9FEJ5FfI5kG6mRDNtfUwOZW2rRWzgI2Qm0v0Wa4QPB/pT0RQDlkpDxBWtnCC63UpaBjPD52WefTbgmX79+/UxJI6Q4QwqzSIIwByTavuOOO0xMIDLIfKh+AcgmA03uwgsvNDUNQcyzteIKaheiyG80maUP2zCFJuPgE94Hi+qGI8LPjgjA2xKmTpQugpYWTbDeZq31hQa1Y80QpszauiaFwHQQKtal4jVtWv2D9DarhoeYPazroUo8pQwBmKXh9ALTZ3jSa3OGPpAgBGWxprACEbopiBVDhpC7777bzWbZlo8IgOBAhiC4aAIz5+/6G0eGGhAeSNiSn3Q5A4mwQWhOWmVoHwdpeBIIE9ll3BJqgm4hmcHtgJgQW4fisPV0wdvOgzD09s1an4YVrNEnOzic4Hp4aeJaOGKA+MxaXnmm+kSggyONITwQny6yw8RKCUNAyQeaegs1QVUrT5MVjhEeFhaefbbBkUIEYkHgz3/+symqe8sttxhvUSfB8fYRamRGS8Id3i60T8Q7IrWam+J8B272xLbSDgGYz0xVdLXDR1o/Cr2pkubNZZ0+JRbr+lt1pFfS3JstJk4UtJMM4SFGrURjBuHMUqQ/qE1Kem6lSku7SYlxwPXUeaHFpEkRQ0QQCoKUZ9i8qK8Y4zB5WhoigITYDz30kKk+P3jw4JTdAdK9wRTbUv8L3BSSoJtoZkBbSCWGNGaN1NwJL8xoTihwMEEWl1JdJAfxweMw2jXRYML6HXJwgvBAfMWaSildyw9Fu1e3j8MxaQ81QZq5iyBwfFl82mnUniPgw93OCMCk+eijj5rqEHCAcTNwPVLPn+oSDLYxWsnEbSEJuo1omraHP08QHwgQsXdRBY4tam4DacLEmaiARJGJBWnILOKjaTN+NJH8u4WSXySnF7QID1k4vtD0GT++vKIiAnBiQS3Aa665RlA70EuBVylqDMKz1Mpa42Z/JEE30UyzthBzZ5xcNH8n1ujiknjDFLRxmN2KlfCKlfCwgfi2qAkV5k5KYgjU0mz6yPOJyheRNHCEOiw94QRBPCaxTgxnXlUZARDgDTfcYOoOXnXVVZVPcGEPEnCj2gQcqw7QhPVeCEnQC1QD2iYcWhBnh8rgiBXLg3dnAmQWy+3BPAoND5shPjVpYs0w2coPsfSdDedAc2+mqc7gsBRpDpFvdcXRR8vyY45JOPdqNmDJe0wcgfvuu08mTJhgUqRZAfKJt1b5StQNhBeqVwSIHkmClXFP6z2IqwPRVdf8fHitgVfdUD0B4Q2R/jCTuWmUFUKyazivwOSG98akaRMLmEw/WX+tPrAgH2rTqVOl7g8/RIQDGjfCUqD9MeA9Ikw84BICp59+ukstVW4mPO1a5TOS30MSTB7DlLaAmK/qGgQLkkP9O0NyFunp+5jW8xIZsRLaVo35gxOM2dS1Hq8lcIqpVSuRFnlNjAhAg8daLcjPrsKD1QxMnWt79JBlWulha0jm/hi74WlEICsRIAkGZdr1KT9X1+hyldhAcpVeQXzqfQlHFC8FWsQWjcEzRNe06R+v+p4eml4iX7ltaO6I82vy7ruCbDqRBCbmNUp+KHNEp6JIKHE/EbBHgCRoj4tre/HnlaveTQhWhiMK/tiqYdPPIDXzCtLTc5KJpYt7wKrZbdcK0cYjEw4qIDxds4MGQeeJuNF09QJUdW88fbpJR+f0ncADCzK9INaP5OfqFLCxLEKAJBjHZMMUWU0386prbxVeleBwDERnyK6c+OKpXB7HUBI6dZcGSCNv50pUbdBMLlyzSwhGTy4yScg15yPIL1oNRJifkYN1Zd++zgnIPRkpGyUCmYWA7ySIJ12vM1Zg3QykBFNizvbtAmIy77Xvqvrngz8gaGxYT6uCV+wrfzUamp4PgvPCqcTrrxO0OuTShMawXvPu0aTpNeLxtW/iM9Xk2UDX/KIlIUd+1JVHHSWrlQDhfUshAkQgeQT8JUFdB+s8fLhsU09C5JjcqAlW4U7vtoaCNRXUuEsbgalSY7u265/etvr1K7zW1aSzSGUWTRCOACeJNZrpnSnGoqGV2uNII1eg2fAba/00WA2iCXKjruzdW5DphSEm0dDicSIQHwIJVZEoVo1p8DWPxNeTzdnti9fJA99NrXBkXW5NmV2vmW5N5ev8JrKxWg2bK+PbdcGir+Sk5WWFJeO70t2zd0mObMitIRv0njbofa7Hpu9X1agla3PzZE31Wrrlmfc7cuwDyAu3FcvjcydrS7sqDW5Tteoyo0Fr+V+jtvJr7YJKx7nDPwQabyuSw9Yukp5rFgq+99FkW5Wq8kHD1jKlcUdZUKt+tNMDe/yXue9L6bat0vlPJwR2jIkMDImhj+nbWy483r3iromMI9OvQao0VCE5VC1ZOR6FXCWkCa7fWCxLS5vL4pnjk5qDHlU2i4T91xds3yJHrV5gNsh3u3Llk13Vdashn+qrGjXj7rNXFX3ajv+yqP2oQVXWY9tVxYxrnW5r9P1KUW+93e+riAYumP3Yt3NHaLPb9QM2xSEO+bBqdemVs9VcsUX7f3tXTZm4M08+2FFDti8tEln6bRyt8VSvEGgsO2VglRIZmFMiB+fg2xJd5un3/cVdteTlHXmyfpl6hC7TYPg0lqKVC2Rn6XbZMGN6Gt9F5aHXqltfft1cQBKsDI2re1CUF0V891AL4Wma73bQoEGuE2JCJIi7LFWNZPncN5O64Z66VqXJ4Bzb6JSzXbBdLEX6lyIyR9fm3lcTErYP1bNyg8ZQRZPlqC0HM2u5bNUni2LNcLBFt236fq2uDW7W95u0Lbyu11fr/UZ9v06Pr9NXnIdX6z3a8EMe0+D0Eo3Ze0G9SydqSAXGTAkGAntoLtTT1IQ9QLcj9LtdNYanV8zfeJ3LJ3Tt+lN1uMpEKVoZOaF3Ot5vQaOm0uqgzNJugzwPixcvNunZsLlNiAmToBuAXaCu4Meqm/5xWjWgt66B1YqSQxLKXFf1jMN2bXnR1G/VNPuJ/nF8ooT4ub7+qA4t4YbCkRpMjj8YEF5RBhDGi/qHiY3iPwLVlOT+VLu2nKCkd6x+j/fLy4tpUNv1uzhNQ2Ve0oeYSXyQiQkznkQEgIDbhOgrCf6iXpiPaDVxbDWVAHvpkzP+SI5TYtw7Ru+3zvqng+2S8qKq0NbwNI0NpIgNWp36dlKIgCsINNVQk/7lD2999ftaL6RatlMHpUp8M/RhDQ8wr2psKL6rFCJABBJHwA1CTMgxZumKNXLCsIky55lLEh99lCtbqVkJ2mEf3fDaRj8nIvjj+Va1w7lqRoXG+JW+fqPao1+mzETugdf4i0BdJbkequ0NUOI7XB/UDlRLRCzrexg1rBKfKvGNV21vgm7LNdyGkv4IwBx6wJAR8t6I+PNmLliwQC65xLv/zvRH9487+E2thUiiHa/EYzINLAmG3zRIMJQUQZKJCojxJ9VCQYhfKSFinRHvV/HJPFFIM+q6ZqrpgeywHQbSU0tDLGt7FghYof1SH7heLie+3z1OdZdR4KfJzSRDgt9o5Y/9998/Te40/YdpEeKQIUOkW7dulW7IV3NopdE47PhN/0ieXrPGbJC2WibmMH06767bofpHdYD+UWF9JhbBH9o+am7FNjjkgiX6lG6IUbc55eS4QMkyfI0xlj54TnoggG8MvgcgO2w9dWun3614BabNaeqsNVnNnO/qWh8fqOJFkOcTAfcRqK7KEsowHXjggdJR423tJG1IMHzwICdsz5U7iNTWNcVu5aQIRwUQY6HG8sQjLVQDaKEmL6z3WAJHmh/UnDpPt++VGPH+O93ma987VKOkpA8CWHfurIQHc+b++tCEVzw85ce4phd6p5h5PCy9pRmFpug2U9/DwkAhAkTAXwRAfEdrHU2EU5x44olSX53WnCQ+lnBqyedjICsrdMIaSkd9ooem2EMJER6l+OOL5oEafhsgV8sjNfQYvPtAwt8rIcLB56fyV7xfrFor/w7DkUztZzivdConPJAdTJpwtorVWmA3WqznwbHlbSW9d1Tb4/qeHUrcFw2BQk1SP2zYsGin8bgi8NlnnwliBaNJvMQX2l7GkKAdSD8rIWGztEWYQfdUYrT+FLvgz1G3eDVG9JWLtvRPFVu4lCghw3z7sxLjAn3FmtBvOo6FeNVtDdcewyFL6HMD1fQ76Hxi20vnAa948Omo7+snoN2FDgIPMdD6P1bS+6h8+1XnkEIEkkWgqVZsueeee5JtJiuuB06RSDAZ4gsFL6NJMPxbAnMVzJrYXgw5CDOoIcZyjQHkiHWh2FYYw3sRyVPt0VpzrHxUTKwiSHG5kuHv+oq1SGgVi3VbgVclyhV6LJvNrYgJbaLzguBzOKrAEQqvwBWvILxGcZq77ebC2gfN/ks1aYL0kIQBcadc13NCjMeIQOoRcIv4QkeeVSQYacpAQkvK13asc7BOhPjDffVPF2a0TuXmtNb6Z5woOVptw8SK9rSYkYiGf9gJNBEQIjLWYHz4Q16tG7RIbLvfl2e0QZYbZB5BFpwgCkgNmluB4mr3CrJrqMea62tLJTmYM5MxXTphAIwQNmN5Bc/Vtd7ZSoDQ4ClEgAgECwEviC/0DhMKkVi/qViOvnaS7NXEg4ScwcK/0mhqah7E5pvX6LZWmmoi5CZF681r06J1krfD26rvlQZjs6NUE29v0UTaRZqoe4vmGN1aLde8Yj/eF5UnJC9VIsZ+yLaq1WSHJmyGVNtZuvu9TfNmVxXVmvSLIzUUi+qlOyRXE6LiPa7NK90mVXbuklo7tpok3w1LtL6i7sdnP2SzJin/Pb/xH1vdQllWp4HBg+I9At998oZs31IsBx55pvedpbCHHTtz5NdVpTJrzFkp7DX7upqvpcYaaJrIaM4tySCTEAmiwxlzF8u2HXxyDgW/+qYNkrdymdResVTyVi2XmmtXSd5qzYazZpXU2LBWcqhpJPNdjXjtTtUwSwqbSnHjZuVbcylprJ+bNJctBY0iXscD3iPw0tMjpWjzJhl6ReY5guTXqi6H7NPUexDZg6cIJGwO7XXAHwmpPR1h2jW+n/2I4Qyj6eFk2bKybelStXeuEEHcI/bjFeEedLOvjB9yyurToDRuLIL0eEiGjq11a5GWLaWKOhrAxFy78pWx7dE1WLnjDpFbbxVJ0qHGdDhihMiZqvmU57eNbRCZedYX0+rLhg050rdrq8y8Qd5V2iOQMAmm/Z2n+gbgxKGFbs0WSUCUIEKLFPGqwdf6L1K24X3opmtZaS3wrNXcm7s3kIa6j5sN70F4SnCGAF10gqmAGQjw1FNFrr7aHQJE4/37i5x8ssiECRWql6T1XHHwRCBDESAJBmli8UcPbQdbLII/cJCiejKKOnaYDZXKrfd4xTFN4SUgTMvFH/tBuBCrsrk61pjznASEFSpIXademgIyw3v1qjVkpbGZAu0NTj/YH0p0oe9xzG+58kqR3r1FjjzSvZF06CDy73+LRuuK/O9/Zbi41zpbIgJEwEUESIIugpnypkAi8ZBmygcY8A6hqc2dKzJypPsDPewwkZ49RaOiRR5+2P322SIRIAKuIEAXOVdgZCNphwC04euvF7n7bvfMoOEgaEVseVEjUmfPDj/Cz0SACAQEAZJgQCaCw0gxAg89VLbm2KePdx0XFIicfXaZNuhdL2yZCBCBJBAgCSYBHi9NUwQQqjJmTBlBeX0L55wjMn26iNZFoxABIhA8BEiCwZsTjshrBJCQVwubuuoME2nMBx1U5u36/PORzuB+IkAEfESAJOgj+OzaBoGFC0Vuuqlsve7XX21O0F2oNP3jj/bHYtkLj014sHbuHP1sLYwrDzwgctllZQ408MiFIN7ztttE/vIXkVdfjdwOalweeqjIe+9FPodHiAAR8A0BkqBv0LPjSghoiiTjrPLnP5fFU/bqVRbuEXoiTJlHHCFy4YWVLo95x0cfiXTtGt0hRiuAyyWXiGDdEB6eX38tWqBMBOSMuEIQI4LiL7hAZOzYyN2jiriWhNkdlhL5TB4hAkQgxQiQBFMMOLtzQODmm0UefbQswFwTXAuy6vzwQ8ULQEzY36WLQ0NRDs2bJ7Lnns4noX9oek8+WdaXJvSW884TeecdkRNOKNMKEdB/3XVlsZZLlkRur1mzshjMxYsjn8MjRIAI+IIA4wR9gZ2dVkIAZIdMMcgSA3nzTS3aqMTTpk3FU99/v+wztEQ7mTFD5D//KWsLJkuEKIQG+SNpADLxRKk2LfAeveiiilU+kNoO0qNHWRYbvIc5tHt3kauushtN2T5kvIHAOSb8fiJfxSNEgAikAAGSYApAZhcxIAAtaejQshNBFjAfHn/8H2RjNWGtrSEQPVxgrhw4UGTWLJHvvxc56SSRzz8XOfroP85Ehh1INBJEFpx+/Sr2AC0UEhpWce65IticxCJBpL+jEAEiECgESIKBmo4sHkzfvn/c/CuvlCUSHzKkIiBYD4Smt/feIjAxhstTT4nsu69Ix44i7duLgLQ6dap4ltZmNFKnTvjVFT//9a+Vj3/6adm+3r0rH3PaY9WMjJaWzqkNHiMCRMATBLgm6AmsbDQpBMaPL/PehBNKqCDFGbw1jzrKvnmYOS2tC7lL4f0J78xQQa5TSLyEhNyqH35YZs5s1cq+/0h7rb6QW5VCBIhAoBAgCQZqOjgYWbVK5MsvRaAZIowhVCxTaKjWGC9k9eqVEWO8pkkQMEyp8WqBGJ9lgkXfFCJABAKFAEkwUNPBwZgwBNRUhPNJuFhOMYi7g6BuH2IGsV16qcjMmSJz5pS9x2eUpQoXrPXBlAqNMh6x+g5PswYtDzlCncQiwbZtnc7iMSJABHxAgCToA+js0gEBy3QYXncRCa9hjgSBWcVqsT7Yrp0ISheNHi1yyCFln/Eem2UaDe9ur71EvvsufO8fn6H1HXigyJ13/rHv9dfL3h98cMXrnnkmeuYZBPZDq0UhYAoRIAKBQoAkGKjp4GDkgAPKahEivMESaIaIx8M6n1aSN4KAdYRUYF+8cvjhZSWUsM5nJyitBCKEhynk449FLIcajMUSON7gvFDvU7v24K2K0kpeFQa265P7iAARiAmBBP5BYmqXJxGBxBBo3bosSB1xekhH9u67IkhCjQD1++4rM31ibfCaa8qIMZFesKYIjTM8EN9qa8CAMq0NwfFPPy3y2GNlxXGRGQamT+QeRdHcRx4RefBB5xGAaEGCyaxjOvfAo0SACCSBAEMkkgCPl3qEwPDhZRUeoIFBe0IWGcupBAmpoYGBmOzCJGIZEmIMYUadOrVyCAWuB+EitALm1xYtRGDyhMaJ7DFYdwR5ohI9UrxFExAgss+gpBKFCBCBwCFAEgzclHBABgFkVrHLroJ0acmkTEPbCJu4+GKRF14oywFqBzmcWOwcWbDuiC1WGTdOpH//xAk71n54HhEgAgkhQHNoQrDxorRH4IoryipBeFndAXGLINp77kl7uHgDRCBTESAJZurMZtN9IRQC63cwbyJEAmt3kyY5I4CMMVjPwxofMtF4IUjAjbEgww2FCBCBQCJAc2ggp4WDigsBJMhGOAOcabCGuGmTSPXq0ZsYNEhk2rQyMrz22ujnx3MG4gpnz2YdwXgw47lEwAcEqAn6ADq7dBkBEB9CJ+A8g3i8pk0jxwiGdw0PT3h7Tp4cfiTxzwjeR1ko5EBFcD6FCBCBwCJAEgzs1HBgKUEAGiNCMeBx6pZZFGZZmGPhWUohAkQg0AjQHBro6eHgUoIA6hZGS30Wz0Auvzyes3kuESACPiJAElTwn9T4r+81O8j999/v41SwayKQeQh8rLGeG+JNVp55MPCOAowAzaE6OVu3bpVi5KakEAEi4CoC2zXdHDYKEQgqAiTBoM4Mx0UEiAARIAKeI0AS9BxidkAEiAARIAJBRYAkGNSZ4biIABEgAkTAcwToGOM5xOyACGQvAgdoaSw6xmTv/KfDnZME02GWOEYikKYIFBQUaAEOGpzSdPqyYtj8dmbFNPMmiQARIAJEwA4BkqAdKtxHBIgAESACWYEASTArppk3SQSIABEgAnYIkATtUOE+IkAEiAARyAoESIJZMc28SSJABIgAEbBDgCRohwr3EQEiQASIQFYgwBCJrJjmzLjJjRs3ygMPPCBffvmlNGvWTGrVqiV33XWXzJo1S6sWtZAOHTpkxo3yLogAEUgZAtQEUwY1O0oGAVT56NKli6xdu1YmTpwoY8aMkaFDh8o555wjffv2lREjRiTTPK8lAkQgSxEgCWbpxKfTbS9atMgQ3Z577mnILhf1/1T2228/LSRfW3bs2GEIkkIEiAARiBcBmkPjRYznpxyB888/X5YvXy7Tpk2TnJycCv1v27bNfD7yyCNTPi52SASIQPojQE0w/ecwo+9g6tSpMn36dOnZs6d06tSpwr3u2rVL3nvvPWnfvr20adMmo3HgzREBIuANAiRBb3Blqy4hMHbsWNPSwIEDK7WIdcKVK1caUymFCBABIpAIAiTBRFDjNSlDAJoepHfv3pX6hIYIOfzwwysd4w4iQASIQCwIkARjQYnn+ILAli1bZPXq1ZKXlycoyRMuFkH26NHDHIIDzc6dO8NP42ciQHCoqX4AAAN+SURBVASIQEQESIIRoeEBvxGoUaOGiQVs3bq1VKtW0YertLRUZsyYIY0bN94dH3jTTTcJ9lOIABEgArEiQBKMFSmel3IE4AkKDTDcIxQDGTVqlKxZs8Y4zEBQuBVaoBU+kfLBskMiQATSEgGSYFpOW/YM+uabb5Yff/xR5s2bt/umn3jiCUOA0ALr1q1r9o8bN05OP/307AGGd0oEiIArCDBO0BUY2YhXCBx77LEyevRokxmme/fugtRp2HfLLbcYZ5mrrrpKLr74YqlevbpcccUVXg2D7RIBIpChCJAE45xYBGcjaBtrVX369Inzap6eCAIXXXSRYFu/fr3Ur19/dxNHHHGEzJkzR0pKSozzDMVbBGbPni3z58+X448/3nz/KUQgExCgOTSGWQTxTZkyRZC5pEmTJnLCCSfI559/HsOVPMVNBEIJMLRdEqCbKEdu64cffpBBgwYZM/QZZ5whr7zyihQXF0e+gEeIQBogQE0wwiRZGt/LL78sr7/+utFCKESACIgUFRXJhAkTzIbcrf379zfrsdAQ+UDCb0i6IUASDJkxEl+6fX05Xr8RCCdEWEmgLZIQ/Z4Z9h8rAiRBRQprSh9++KExdcaq8S1dulSgJVKIQLYgEG0JAIQ4fvx4s0FDPPXUU6Vly5bZAg/vM00RIAnqxMGEc+ihh0q/fv0MsU2ePNmYfJxkyZIlJEEngHgs4xBYuHBh1HtCggP8jqANIt/ryJEjTQwnhQgEFQGSYPnMICMJnlyxQTN86623HAmxW7ducuONNwZ1XjkuIuA6Ai+88IKcddZZldoNJ778/PxK53AHEQgqAiRBm5mBZhgPIdo0wV1EIKMRqFmzphxzzDG7NT4SX0ZPd0bfHEkwyvRGIkSseVCIQDYhAOI78cQTDfENGDBASHzZNPuZe68kwTjmNpQQ47iMpxKBjEDglFNOEWwUIpBJCDBYPpNmk/dCBIgAESACcSFAEowLLp5MBIgAESACmYQASTCTZpP3QgSIABEgAnEhwDVBhauwsFBatWoVF3A8mQgQgegING3aVOrUqRP9RJ5BBHxCIGeXik99s1siQASIABEgAr4iQHOor/CzcyJABIgAEfATAZKgn+izbyJABIgAEfAVAZKgr/CzcyJABIgAEfATAZKgn+izbyJABIgAEfAVAZKgr/CzcyJABIgAEfATgf8HaiExO4/fXs8AAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Compatibility condition requiring the continuity of slip\n", + "\n", + "\n", + "The solution for the integration constant $D$ requires a second thought. Can we say something about how does the displacement approach zero within the embedded length? The figure shows the geometrical meaning of the applied conditions. With condition 1 we required that the slope of the curve $u_\\mathrm{f}$, i.e the stress must be equal to the external load. Thus all the parabolic curves must have the same slope at the point $x = 0$. Now the parameter $D$ can stretch and scale the curve along the $x$ axis. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "__Condition 2__: We can postulate, that at some unknown position $a < 0$, the slip between the reinforcement and the matrix will be zero, i.e. $u_\\mathrm{f}(a) = 0$." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAAAoCAYAAAAVKqOdAAAH4ElEQVR4nO3cf5BVZRnA8c9GtmZZJFJQMUIqCpbttkxTEIb2g6w/IqzIUYhyGsec6af9sEzwR2OTooKh1EwqNJo1Nf02CyPC0mbI8gdlmhP+KGEAQU1BgqQ/nnPcs3fPuecs9+5yF+935p2z+573vPvce5/3eZ/neZ+7HQsXLtSmTaM8b18L0KbpjMNq/A13YvZQ/NEqitSJkzFpkGVp0xx245OYjHdgMQ5qcM7ZSj7/MkU6Cn/GK7GxQWHaVONLeDLTlg3w+Q3CEsEmbMOhDcq0Fd/GJejIG1BPkTrxM1yMRYlAw5GzsRZPYLN4Ta/NGbcKe5K2G/fjY0MkY5Zl6Mq0cxuYawoOwMMNyrQab8XROCtvQD1F+iiewvIGhdjXzMCVmIoThJLcjENqxnVjAcbiCNyEb+J1QyVowlahxGnbtJfzjMIKnCYWR6PswqfwFby09mY9RfqAeMObIcS+ZCauwTrcjbkYjWmZMYdjJP4gtvAHcIEw493JmHNxl9huNuNqHNhkWX+s1yrWtnkDkKMTP8JFuDXTf2gy12dwm7DS9wlfqgr3YyfeXXujniL12PvV0MocLF731kxfT3K9I9M3LrluEgo1AmfgGBF8zBQrtJmcJizieDwjFvPYpH23ohwduFZs1d+pmT9dFB/HOWLruwvXqb4otiXP9eH5BYNH4iVCs/c3LhcK88dMX4/wIx5Nfj9CRDv/wG/FKl6QGf8gfiF8hmaS/v1uoexr9F/MZXJMwxyhILOSvrnCGneJrf1dwrrAl/F3HJmMKaMTh9V2FlmkF2ceajUWKjb/aZtR8OzFOE6s9P9l+nvwKrFd7BDb4EN4mzDl47BEvNFbk3Efke/ENiJfyrFii61Voipy/F58rl2ZlipIF36iV4ngvyWy1NKpVz+epcgipf2tqEjfwA0lYx7K6VuEU3G8vm8kYQEuFc71DhFCP5PcGyWivjUiYvlXcm+t3jC7GfJlOTZn7oHKkUeX2CKzTMF2YX2r0ClHb4oUKaVKwnIl3p75fY+I9jbidiH4TzXPad+StIGwRJj740XGN8sEEcHdrL+CwXuE/zBH72uYjxfhL02Sr5bX4N4G5ajlQJEXzH7mHfgErsfTFWXLzSOVKVKVD/8NybgLkmuH8K+OFnv0HOH4zcJ/KonaXK4UlmiW2A7GJP1pwi91tP9U8PyjwpTPElvEiSJp+Dj+ORgCiwV8GF6NR4TlaVSONI1xslg0W4TDPQEnDUC2XJ0oU6THSu4fLlbzvfo6gSljhEU6QWRGP1gy32BwRnL9TU3/ecKf6cF6vY5uLTeKLW+5WLU3iChnisFLjSwWKYv1Qnl2NkGOLrF9nZc8ewh+hTcaWHT+eF5nR8Hp/1HCk/+wSGoVMScR6nqcUjBmtMjLHCRM9voq0rZpOkvFZ9HoYr4luU7Pdhb5QJNFVLOyZNI0n1C0LRBJs9uSn99UZ9y1YmXNL/mbbfaOLpESaJQbMbG2s0iR5oktaUPJpKki3V4yLt02RpaMazM4dAgfqRmKdI04v5uZ7czzkeYJR++4CsJ1C0ewLGpIz2aK/BDicPVrypW3zcDZIwKgZrARHxLpkrtFMNDPIi0T5y5vFhFNPSYKBblPeTSWmsLakDbLBuGX5TpzbVqKX+P9Ivo7kf6K9FWRlzi9wmRVt7UjRYj5iOqJszatzSh8XRw3raT/1vawyLncKbah6+pMVlWRvphclw5A0Datywh8X9QofSvtzPORtos0/6XJA7sKJqyiSKeKuqYHcMVApC1guJe0DBdys9cJ78NbkuuzFEVtt+DliutU0kPBIkd7lDggXSHKDt6r3I8aK7Lh/YqmMnS025C0epwiDrWfyHYWKVJaq9MvX5AwSWRcn8JnRYb4fGF1VokDxbNEUVWPamHnRbhHjabvQ6qW6KZMEhnnKude2bLebPt5A/IOFRPllF2XHZGMKehPz6cO1ns0skMcqazHVfiBvtV5w40Z4pxurVil54soZbK+RXEpi4UV/gJeoH55RreoA7q6pn97QxIPDa+Qk6IpU6Si+yvUPzrZG+Zrraz2zJrf54rUxDRhnbLMFicBl4mD0Mn6VltmSct6f2d4fjMnVyfKykTazm0veSW68EJhiT6f3Nuot6Q1jx6hdFW2wFYkVyeKFCkdXBSxPRe5XP8SXSK9sVpvFeI6EYhk+bTw/5YJRRohTtyz31/7XsH4VmO3HGUq2rp2JNedgybO8CIt0Z2ub4nueJyJ12f61okarSyni5B5i/Czfqg3v5byWMH4VmOnCLL6UKRI24TmVa2a25+pV6J7mUh1PJjp6xAWpkOs3KWifGaVcN67cWHOXCm141vNKj0totg+FCnSLlEEVeaM7+/UK9F9p/j2aY++EdoxokZrgqhcPFOUyU4V9UBXqe8fZceXnXfuCw7AX2s76ynKTeJrOc9V6pXo7hTh/iLxvxGy/Du5dutfApumTTbqn1rZrO+22Yq8THyT5Ze1N+op0hWiYG2M4RmmNkq9Et0nhXVZkvPcNuHbdAlfKEuqSPfU9O8RH1KrVz58TihRvyqOeoq0Xny1d6XIodwxGJK1MGVHBZfUuTe6oP/spA1HThJ1SNPzbpb5QMuFr7RAOJZrmipam+HChcJiTlWwO1Vxpm/VOudfw5Xxgzx+sDmnbED7X/+1aQptRWrTFNqK1KYptBWpTVP4P9mw8uuS/c0oAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\left\\{ D : \\frac{- 2 P a - \\bar{\\tau} a^{2} p}{2 A_\\mathrm{f} E_\\mathrm{f}}\\right\\}$" + ], + "text/plain": [ + "⎧ 2 ⎫\n", + "⎪ -2â‹…Pâ‹…a - \\bar{\\tau}â‹…a â‹…p ⎪\n", + "⎨D: ───────────────────────────⎬\n", + "⎪ 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}⎪\n", + "⎩ âŽ" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eqns_D = {u_f.subs(C_subs).subs(x,a)}\n", + "D_subs = sp.solve(eqns_D,D)\n", + "D_subs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**`sympy` explanation:** The function `u_f` still contains the unknown parameter $C$. Therefore, we substitute the solution from step 1 using the method `.subs` that replaces `C` by the solution. Let us do this step separately" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAAoCAYAAAAmEbyUAAAKHUlEQVR4nO2ce5RVVR3HPxd62ErJICsf5IBTOpLOHWZaq2VoA6WirmoYS8Mkx6jVw4pwWUqRDiaZjcaoSbRsGdTK0MrHSnsQIpIVBSUqGqXWoGQ0wBBGCRkz/fHdx7vvufvcx9xz3/uz1l13Zp999t2v3/n99u+390n09vbi8XjqhzGVroCn5EwE1gKPAw8D3RWtjScbsYzVS2KskKc6+R8wD02S1wK/B34G/KeSlfI4iWWsvKauDj4P7LU+y2Is++9okgAMAruB18RYviedYsYylrHymro6WAbcbv3/XIl+pwN4KfBMicovBQuQGXossB9Yb9I2h/KtAaabvw8AA8A1wM1lqWWKuMZy1GPlNXV1MAQ8aX0GS/AbE4DvAHOBkRKUXyo6gaXAScAMZKKuBsaH8rUBVwCHA83IbP0mcEK5KmqIYyyLGisv1JXlLjRors8Hkek1AlwM/AY99f8MnGqV8T6kwY620q4HngAOM/+/HLgTuBr4dUlaUjpOB76NNPOjwBzUrrdZeY4BDgV+BWxHWvpLQAIJO8DlwCPIJN4B3AIcFHNd7yL7eOZTj2xjlc988EJdYeYizdIEDCMBPdx8vk9qQn4CWIhMskeA75GaCD9Ek32h+f8S4P3ATDRpEsByZJ5+t4RtKReHoHk7ZKW1m+9NVtpE8z2I+mAs8HFgCjAbPSw+E3Pdco1nrnrkGqt85oNfU1eYXea7DU3UdaSba0lkbs5EphzAF4AtwBuRMI8g58y9wFPm7xnmb5BGOxcNfpdJm2PurUX6kfCut9La0doz6M9mUtbK/aiPrrDyb0X9dVzMdcs1nuSoR66xSpJ7PnhNXSWciMzG8ARIAneTGkCA/zruXwVsAK4CzgE2WtceROOctD6VFOheok3U4NMZcW8fcArSgAes9HbgSGTSPo9M9aeBd6ClyUTgBtTuIZPvQtxOqGLqFxA1nrnqkWuskuQxH7ymrg5OJBXKsEkis82mA8Utn7DSZgCtaEKUwskWJ18HVubI87Qj7TrgfOThfjJ0rQ34GnKMPY9CQ8Pm2gT0wFuHlibbzLUNuPt8tPWzcY1nofVwkSSP+eAS6l8A7wyl7Ubm3DK0sC/Ge/o64FngJuDTEXkORibFkejJ1FXgb7jaEOaLSLNVA5OBP4XSDkJhHHuMEqjPbgX2mbRW4A60zpoFLAbOKGVli2Sn+RTCDcgsnY52W9lMQp7w1WQKO8BZqC/PJTVve4BXAg/FVL8wrvEstB5h8p0PTqGeip4gV5kfH4PWKO8FvoW8rJfnUYko3mPKvDNLnl4k0COmPoUyFa09FmfJc8coyi0VY1C/HoUeeMOkQjGz0YTdiZwjk4CzzbWjgZ8gs3QFmhybgJOBX5an6iVnKdLQXchkfb1JDzZ3BE6yjRl3il1ISXQhU/YM5HfYA/ylFBXGPZ7F1iOf+QBAInSg4xj0tHsceedszkNetkGkbUfLT4G3mDIOOK4fjybmfchr2IpCGPk+PYM2PMToHgiF0IPCLdPRnt3RMsOUcwQa+P3AR1DoYhFwLdJGPwcuQhNlPArhrAM+apV1uylnWhH1yUUP8bQ7H6KswkXo4X810n6TI/IlkEk9B2mzlWgd2kHutfFocY1nsfXINR9eJKypO8z3bx2FPmC+J1hpq1CM7GzSNV/CNOoCtKvnMpP+KtTgW3ELNKjhCdOABUio25BJnQ9BGzbkmb8aWEN6nBlSTpKVuNd4Q0CLI/2cWGtWeRI5ri8wnyhG0MS/KLYa5cY1nsXWI0n2+fAiYe93IBC/c+Q91nxvtdI+S8pUH2ulX4sE+mZSAg1aV7yMaNP3PPT0Xwr8kZTnrxCNW4tC7SKJQhseDxQwH6I0dVioD0UaF7R9LeBhFCS/AJkVy9E64WJkBn4sVM4s4N+4te4haG24C5lVkGrEaIT6JLSmcdFn6lGtJNAa6ppcGT0NQUHzIexJC3asdAPvNtffgDTseBQo/0qojIVoTdOL1g+Lka0/h1RYAeS9m4nW1PvIZBFag3wSedshpanbHPnHAN9ADrzxSMM/YOW90HEPyGztzVHO2oh7y8UIMK7CdfBUDwXNB1uo34TWvKBdKgAvIM25Hmnk28h0XGxDu3wuA25E+1W7yQyKn4aE3uX1ngJ8CniM9KNqz5rfb0aNsk+8nIkEtxN5D4esNjyIPMD54CrHxQCZ66SA+x1pK5BDqdYZoDHbXbPYQh2Yrf3A/ALL2WH9PRf3oe5ZSNDvdVy7ydRlPpkOtEeRwCWRpzegGW0ysDe9B23IN5gfVY6LfrQMsUmiEN0KNPltNhVQh2qmn8Zsd83iEup8AuE2s5FjbDuKIc5DG9ZtxgLvQl7BPaFr5wNvN3+vyvI7U0kJ9XK0jgdZDlvRJvpChTqqHBf9jrQeNLmXU3mTvVT0O9J6qP921yzFCvWZ6Gn9GApVrQM+jDbTb7HynYJCYWHTexxyWr2AzHtXTLIJ7eG119XzkAB+CMW8A+1eqFBHlVNqqvE8c67QURxUY7vrjkCog03k+1EoKR+moWN/29B6eQfaevkD5EzrsvJ2I6fZ3aEyrkTa/avApRG/04HCU7YHfA/wLySE20NtGCb/AwuucspBOQSoGmnUdpeVIE7dgpxYm9H2yly0AvcgoTgVrUlBQr4RmWa2o6oLrVn/YaWdgALxzyDhjmIzEroW4BVZ8gVt2IseEL0RnyOylFFOFqCH1XPogfhj4M1Z8regqEE+ltQa3KeL7imivrVGw/ZvoKldh8yjaEYhqxF0wPup0PUFKA7dB7wVmbVHAUtC+QLn2Dyyx4z3oRMox6HTL67dbnYbxpF+ZtVmGJ32qQY60SabDUiDXYn29B6P2wN/PerTS9EGHtcRzIA2FMG4JZTeSG8Q7aRB+ze897sUfBkJ+mTgrzGWewmKaTdVSTnFcjCyfLqQVrHpRnt/P4BCfG1EP4CDve/T0N5wj2iY/i3HSxJmIcdVnAJdj7he0wNacvQBnzPXtuPejBPQjpYrhUYx6p2G6d9yCHULcmB5stNP5mt6QJt61pJy/m0mvT/nI+dmsGmnHYUQB0l///RtWe5pBPppkP4th/ntyU0fitefTPpB/ybkeGwF/mbSlqBIQBDb34JMweBo6mrgn6QfpMGk7Yy4p95pqP71rzOqPNle07MExfftk3EJpBmC87mTkTd2KdIMbejUnOstICAHZfieeqbh+tcLdWXJ9pqe05C2aCfdEzsFnaedhEKCZ6ETaXtJvdon23ovfE8905D964W6cmR7Tc9+FGK5DvhD6L7ATGwj8zU4QVgv2LJrs4Py7ZirBhq2f71QV45gf/x9ofRFaOIdhjRNmN1orZYEfhS6Fky68K7AEeDVZO67r2catn+9o6z2GUA7pQox9UZzT6MyQI31r3+Zv8dTZ3jzu/ZpKtM9jUpTme6JDa+pPZ46wwu1x1NneKH2eOoML9QeT53xf8UHJepWQwANAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{P x}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}} + \\frac{- 2 P a - \\bar{\\tau} a^{2} p}{2 A_\\mathrm{f} E_\\mathrm{f}}$" + ], + "text/plain": [ + " 2 \n", + " Pâ‹…x \\bar{\\tau}â‹…pâ‹…x -2â‹…Pâ‹…a - \\bar{\\tau\n", + "───────────────────────── + ─────────────────────────── + ────────────────────\n", + "A_\\mathrm{f}â‹…E_\\mathrm{f} 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f} 2â‹…A_\\mathrm{f}â‹…E_\\ma\n", + "\n", + " 2 \n", + "}â‹…a â‹…p \n", + "───────\n", + "thrm{f}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u_f.subs(C_subs).subs(D_subs) " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Thus, only $D$ remained to be resolved. Then, we substituted $x = a$ using again the `.subs` method with the first argument specifying the variable to be substituted and the second argument the value to substitute. Finally, the `sp.solve` method is used to get the resolved integration constant $D$." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Compatibility condition requiring the continuity of slip\n", + "Well, we could get rid of $D$ but a new unknown appeared in form of $a$. Thus, the continuity postulate did not solve the problem. Another condition must be found to get rid of parameter $a$. Still, there is a subtle difference. We can associate $a$ with clear meaning that represents the state of our pull-out problem. It is the **debonded length**. Knowing this, it is easier to find the last condition: can we say something about how does the displacement approach zero at the end of the debonded length? \n", + "\n", + "__Condition 3__: We postulate, that also the strain $\\varepsilon$ vanishes at the same distance $a$ as displacement reaches zero. i.e. $\\varepsilon_\\mathrm{f}(a) = 0$." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHgAAAAXCAYAAADAxotdAAAFTUlEQVR4nO3Ze6xdcxYH8M+99UqmuC0Z8SjFeM94lj8I0XpVbgZXSBDPVBTxKBHJpMLNZDxm4pVKhBBBkZk/EPEKErnelFKUqTYT16seTYkidK62/li/nXPuPvv8zu19tNX2m+ysc/b67d9e+/fda/3WWrutu7vbeowopqGj4nz3qrj5Bi30p+ES7IHROABzRtimtQ3TsEPF+e4hztuN6ViM13El5pcHtWcm2BMPYC88jOvw1RCN+j3gOawoHd/iTUxBW8U1W2EZZlToxqdrysdQ0YObhMMdL7hqQM6DJyZDpqs2fG3F/liOfwhy2/EnnIS7hTdeXbrm+DTu0VVnpp50wGxMEFH2x/pBOYLHJvnfYTZsTcbO4rk/xDUl3RN4EFM1EtwlQuWLI21gE8wTL+YYJYJzIXpUkn0tJj9NPPh8/IDvRDg7ZzCWrmZMSPKNCt0LSW5ROr85JuFxEaa3FBGgHObLx1JskuY4OJ2bgVPxEr7HL5glomkOBUejyopWSVYrbIr78FYy6hv8UYSse9Lvf2auvxdniZfh3iHaMhwoCJ5VodstyU9K5zuxER5J/0fj73X68eIZZ4soUGCRIJDwPjgKF+JJ3In9cCSeSvf/dMBPkpAjuCPJnzNjVmCcxuTrKuHR58gTvKahGcEdas9xf0nXhZ9Ecga9+mfI5wqC/40bm9y3IHgbHI6X63QzcLGoZq5ocn3xomxeVjQjuA2HCgLLb2w9flSK+QlfYqHaPt4Mf8MNafzqRpvwGDgRx4n12V546VjhWTfUXbMJJuNptUUuY98k52TuXRB8kf7kEondxaKqaYbeJA/Hu/WKMsGTRZg4LN30TvnSaEwyqlOEkM3039ffyVxLEDtYcntV15fN8CBOz+h3VfOA6Un2qdWZM/Ef8dIXOFqE5Fz2vE+S7zbRbyzI+yzZWMbiJDfM3GMmzhcR4hAswF3orSL40vR7Lm7LTLo3nhU14CwRgr4Vi7IjztT8oYYD/9Pca6qwsIW+CM+34rIBztmF/wvPrkKbWKeFYs+twl8Eec+I5KyM8Unm9t8vcD1uwcnp3HMqCJ4mSoCJgrBnhJcsq5h0ptibJqrVYwWKJOOtjFFDxRHDPF9BcKuoU2AU/ornRcZbhR1FVHslM08Rnnub6DuTfDYzRyfuSPeZKvKfPqrLpCV4THSvthVtyjLGiTezRyO5HWol0uyMUWsaVpbgw0TJlAvPuyc5NzOmILijQjcW5+FzwUkzTEqyGx+oK21zdXCRXFUlSkVo3En/vWELsU9th1+17ltvLRahIftbxWgXydBSA2/snChCam7hN0tySWbMAUmehD/UnR+Nh8SaXiq/HY1JsresyBHclxmzSISmXURT4F8iZH8kHma56Aa12iOvFwva1WLcSKP4mDJXvJgDwQl4FV9nxhTN/2m4WTQx6rEB/qyWq7wn9tHbxVoeIyqNR+RRcNRge47gFRkdnCJIHYcLRJvvcvFRot3I7r/DjcKL5gxw/IEiSrXqPb8tegJ9guQJJf1eotR6TWTk88UHjTPEi3+M/mVZKzRwlmt0LE1yTBP9IpEpV2GgX0vOTsfqxv0aGxg5FBFnIB8Xrk1HFYr99x1R2hy7EjbUo+CoIWLmPHhBklOEl+bGrmvoEmH14yHOU0/wYLAxDhINjiUqSrEcaU+JPalT1GDL1Loy6zr2MDxrsb9Y1/cHcW238Ng3RDJ3s4o6OheifxZ7xiS1JGRd+OC/qtAuulzzrFzDpkCPSKoWiz18TtWgVl+Tloo+69ODMGA98lgunGaw6NHYg2jA+n11Lcd6gtdy/AYf4yN4z2tU6wAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\left\\{ a : - \\frac{P}{\\bar{\\tau} p}\\right\\}$" + ], + "text/plain": [ + "⎧ -P ⎫\n", + "⎨a: ────────────⎬\n", + "⎩ \\bar{\\tau}â‹…pâŽ" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eqns_a = {eps_f.subs(C_subs).subs(D_subs).subs(x,a)}\n", + "a_subs = sp.solve(eqns_a,a)\n", + "a_subs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**sympy explanation:** The same methods of substitution and algebraic resolution were applied in the last step to resolve $a$\n", + "\n", + "Now all the unknown parameters are resolved. Lets put them all into a single dictionary called var_subs for convenience to avoid long substitution expressions to derive $u_\\mathrm{f}$, $\\varepsilon_\\mathrm{f}$ and $\\sigma_\\mathrm{f}$." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAAoCAYAAABOx2mFAAAOHklEQVR4nO2de5RVVR3HPwPaWIGOoAkqOiCgSMgMo2W+8pFSssoBLROVfBXLN5JmpsngMx8goiK1SkddGrVKc/lOMvMBlmmoaGqWIAoECmI+wEGmP757e8899+xzzr1z7r0zzP6sddaZOXufc/Y5d+/f/u3f77f3qWlpacHj8Xg82dCj2gXweDoxA4BHgZeA54BxVS2Np0uQRqjWAkcBw8pcFo+ns7EeOBPYFTgYuBb4XFVL5Kkm40ghB5OE6s7As8C2wPIMCuXxVJqfAO8HttlFnLsMaagAK4DVwFaZls7TlVgF/Aq4GqhxZYoTqrXAPcBVwDRUoTzdm/OAp4H3gJWofnwxIt8jQLvZ1gOvAd+vUBnDzAYaAtuFJV5nd2BTYEkWhfJ0SR4FvgrsApztyhQnVE8APgBuybRYnq7M/sAsYC/gQCQw5wJ9QvkagSlAf2Aw8CDwc2BEpQoaYBUS6nZbUcI1+gK3AieijsLTfWkDJgE/BbaIyhAnVL+NGoyvRB7LaOBmYCHwAnAssDWwdyDPTkAd8CQyGS0CLkbDpUaT50LgeTQcXwncBGyWcVn/QE5bDm8TAvmSylIL3AVcDswLHN/KXGsyMB9p768i26tn4+Y1YB1waFRinFBtorRe3dN96I3q0KrAsSazXxA4NsDsVyDh2hM4GRiOnKCjUe+fJSciTbke2ICUhP5m+7XJk1SWGqAVmTNuC13fdhCnABcg88DzwO1k30F4Oh+r0W9ewCaOE+qAzVEv7fG4mIGE51OBY03I7viO+X8w8pr/C/gz0u6mBPIvBu5DdqossfdvRIL/MQqVhKSy7A0ciYRlszl2LNLSG5D54+tIcwE4H3gZGGLyeDZeaoEdoxJcQrVX4ETPxksL+UIligOQgT7MVcB+wL7AJ4HjTcB2aDjdE2l7dwHfRUOmAcA55rrbAZ9B9exnZSgjwG7IDBE16koqyxO4R3MNwN3kBCrAxwnl9JSfSUgpDNOS8X1qycnJPFxC1R73QnXj5npgTkKeNyKOTQOOQcLotVBaIzAdOaY+QmFJG0xaXxQ98Bjynr5p0p4mF7qUVRktuzmuXUpZgjSQMyNYdgc+RFq5pzpMIlqDbMn4PrU45GdSnGoxM66GIGP+M8jg32b2c5HdKcug6YcpdD6sQg3iRKJjyLZBGtVMxzV7oYbVjpwc1SD8XBuA/6FGOgc4jJj4uBJ4Gw1X47YPQ+fMJCdQXwqlDUSRAHORsH2LnEAFGIPsjUcCDwEvAl8GPg/8I8MyBhkEvBJxvJSyWDZDMdzBRlUDnAHcAaxNON+TI+u2XG/OCW9Z47ymS1O1pPH81wBTgXPR8Gke8DtgDeoxDgEOQk6AfVNcLw2jUGO9xJSxB7LdHQH80tw3HI94mMl3l+OaLWgI2G6uXw1GmftfbPY1yLa9C7LpHYmcJs1I2FaaWUigNqOK388ct4H11kn1d8f576DOqxnZHL+BgvPXAP8pR4HRb74jsD2wlJyQ70hZbGjYUagDeRs5qwYCh2dX9G5BOdpyJXDKxiSh+m6Ki98EHIe0lvEUDp0+i8JOBqe4Vhp2QtrQSxTa2u5F3teJFP4QY1FDeizimrsiLeNB5B0eiUJm3s6ozGmwz/UK0TbEfmi4eSCa1fGdyhXtU042+z+Fjk9FnVIT8Do5J1GY+5FZ4Bakzc1Bv9fulC9071oUBvY6EqLrMihLAxo9TDXn9UHa7pfwETPFUI62XCnWuBJcQtXaUpNmj0xGAvWfwJ5Ea08fAZci4ZoFNozhrxFpfzH7vqHjWyBhdAf5ThXL9UgrnIxmDY1EtsGHO1rYIrDP9YwjfTkSpItQeNBAJCgqSdIw6jyzuWgHTjVbpXiEaBtbR8rSgLTbOSTbe7NmPDJd7IEUADtjbRbqPLoSWbXlrciF68XxsTl/LZrA8iRwHYozPgXZ32tRtMe5KFrFxRIcPieXzXRXU+A4odIfCcv1qLEnDUc/iklrRZX8uIRrQO6H+FtE2s5mvzh0fAwyTdwZcc54ZB+chToHGwpTaROAfS7X0Blko55v/t4z4XqtpH+nnuJoQA2v0vRGmvUg4HGkDNyJOtibkCBIopXOUy+yasu9gIvQyGEquVmgzwSOTUVKk7V32/Z9MIpBXoVGLo+jDut+YIeYst8PDI1KcGmqE9BQc1nMRSchg72dYVMpXD9EHXCF+fvWUNpYNOU23En0RqFB75DzDtrGUi2h6tJULXZoXVe+onhiqEE21SuSMpaBdhQGFl7c6AI0m+t4qlOuUsmqLS8i37t/EvA9NIq42nFv2763RdOvnwikzQRORyZB1xz/m1E43mhk+vmUKKE6AQ2X9nNczNJs9uGZJqVwHooNjBPikD/VcRzwLfQMO6AerA8K3g7GPG6GArQfoNArOxW91NPILRhjNdVGCukB3IiM6H2Ij48sBvtcG0j2PNv5xi67pSXtO/UURztyHlYD6xAMsww54cJrMETRWepF1m05SIPZL4jJY4XqaeQLVJCD7HQ0YnexHMVeT0cyY6lNCAvV2Sik5CvkDPpR9EKqbzvR9pBiWUa6H3koOaFyvtm3IQHzFBLwvyHf0XCIKW/YUzgcvbgXyV8Obqm53mDUeN4LpB2KtIH9kYc4OD2zI9jneplkM4odckSFCQVJ+049XYctkRAYg4bHm5NvwkvqkKH0erEIxwwiB7ejSBEXWbblMCPN3hVvXIsE5hJTzjBWYdk04T5/RArWXOCHSNgXCNVLkbd0Iu54TtAiGiCBExcjmDV2uDADOCvlOWORgfq+0PEb0POfRaHz6gUkOBvI9zAORhVyHtmSdug/BNnPlpIuQN2z8bAbasTboOHyHNSpt6E6MYHy1ol/U1z87dKE9CzbcpAa9K6WIh9EFCOQwHyI/DhqS73Zx00qATnRrkTP8Kk5IixUl6De5TkkraOkOMimAfLo9yTao14O7A+RpkcGle2byAMcDIE4Bq2LCKqoLkaRE6qtyE4D6j0Xk3v5HSWtUP2x2d+Q0X09XYfbkK0xyuR0kdnHOTk7ykEZXy+rthxmINLgn4zJY4f+ixzpY8w+Tjb0BH6LfotfBBOibKofIq/idHNSW0SeFaZA9UijC8ctBulBdG9QCsX+EPuh3iQ4XNgcOafaUEWNikmsR5UoaFc9EwnSE5B3MMuOJI1QPcbcexEKA+kofknHypDFbJ4BSPt6iEKBWodMUpDcKXcmsmjLUdjFcOKc51ao1kWk9QF+gGZX3h1zjbHAPmafhyuk6nHgC8SvDTnD7GcRvcJQDZqlkiaOr7+5RuSir4YeaDi+DoU+pWEcEujBl3MRCqS/Bk2DOylisxphMAJgDbJ3foKM1OGhRSulharY53I5qfqiTuBW5Ew7jHSzqZLeadRUPr9lvwVppbQ6Yofdg8i38/VFdsftUWjjghTXStPWyk1WbTkK60R8LyaPnfl3BPIhWXqh+Ne+SImKM3ccjQR3wX1cQtU6YCLjsAwzUWzcUGSDvA8JqitRONYbKJYrStMNczl6uQVSP8Aw9NALUQVKQzOyf/7X/D8CBXsvITdkimIhEp7DSD9pwb7LtGWz2Of6ABm7W0zZrkNDnTdRWMc8VBnSxkemeaeVIu1nWCzDUIVOq8UEP98S3O4tsbzlotQ6shI94xDkGL4SjbJeQe90A5qVlMbm2RnqRRZt2cWrZj8JjbaPCqVvguqetT8/j+TWLPQ+R6P6GhXTHmQojk9MJS2Y0i8mrR1pemNQ5W1AAuskNFSZj3rkMxLukZaoxY/j2AP14MHhgnVOnUnOLhzFWjQNsSd6ljSMQBpknBE9CvtcvdFUvSlIiB6OvJQ3onU996HyM6iyYn/SfYbFci3SzoejQO8kGpEHuX9oG9+RQpeBUusIKHznNmQKOBlN8ZwMXIbacTntqVmTRVt28SyK27WfPQkvJD0chWbNR9EEryI5dizqbEbjXoYyyDauhJqWlpao4/WoAU8j5gNXnZzLUI8ziOyE0dkopKU+dLwOOfamAT/K6F4bM72QOaUZaa1BxqGPBB6N3mkj8Y1vJzRNcx/inRPVpg5fR0oly7Z8PBphTyTkYCqSd1FH9rVwQpKm2pWdGWORil8J7W5f1DNOr8C9NgaiPsMCMrVchYTOKmS7biSeJmSqSWsqqBa+jpROlm3Z+kk6Wl+cstElVO0JaeyhnZVh5GZWlJt70JAiPH3QE80MCj/DAnIQPkpuVttCCn/Ds9AwzU7YaEJmmhXkZhy9jxw4Ufmrha8jpZNlWx6FOuGOfu5mPQ7B6pr7bxc/iZtV1R25GvdcYk86XJ9hqUc2+ZGBYwspXINhIhrq22UZm4Dfk4vYsLzryO/pvvRA9etlOr6Q+DocfhmXUF2NJLFfwdyTJXGfYbkGhbIsDhyrQVpnDdIKbkB2tUeQ42s2Mg9cEnE9HPk93ZcNOL4rVQJrcczYcgnVNuT9TlrE2uNJy0z05YIDKPwMyyFohlsT+R/PG47inAeitRZORdEmeyFhOxBFELjsY+H8Hk9WbIrWDSkgTmg+SHar9Xu6N3GfYVmHQqimoXCYIG+ZfSPRnzixoTnLKQz/W0nlpk97uhdbotC2B6IS44TqdShkoB/euO7pGHGfYXkfLdATtYDPamQLbUB20zBWqIZn5bSjir+mhLJ6PEmcgwRq5EpxcUL1dRRc/DAKjF2Qdck83YbwdM0wcc6/rWPSkj7f4vFkzeFoIobzI6ZJNtNbkG11CnIkVPNDWx6Px1NNLkEjoL2IGb2ncUTNo3PMH/d4oPjlFovN7/G4uCBNpqQZVR6Px+MpAi9UPR6PJ0O8UPV4PJ4M8ULV4/F4MuT/jLiDfCxVCnUAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left\\{ C : \\frac{P}{A_\\mathrm{f}}, \\ D : \\frac{- 2 P a - \\bar{\\tau} a^{2} p}{2 A_\\mathrm{f} E_\\mathrm{f}}, \\ a : - \\frac{P}{\\bar{\\tau} p}\\right\\}$" + ], + "text/plain": [ + "⎧ 2 ⎫\n", + "⎪ P -2â‹…Pâ‹…a - \\bar{\\tau}â‹…a â‹…p -P ⎪\n", + "⎨C: ────────────, D: ───────────────────────────, a: ────────────⎬\n", + "⎪ A_\\mathrm{f} 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f} \\bar{\\tau}â‹…p⎪\n", + "⎩ âŽ" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var_subs = {**C_subs,**D_subs,**a_subs}\n", + "var_subs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "With the known values of integration parameters we can resolve the sought displacement fields and plot it " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANEAAAAqCAYAAAAtb741AAAJqElEQVR4nO2cf5QVZRnHPwtZ2FEy1FLLXBSzlXTvstjpGBbUyTxaumxmaRlbZFpUHMxSjGwxrQw4LhZGp46CnX5IJpiZSYJlWhYWGKv9TgyEjRUMAxU1tj++73tm7tx35s7svXPv3d33c86cuzvzzjvvzH2eeZ/neZ/nNnV3d+PxeAbPqHoPwONpcI4EfgE8AjwEdEYbvKjGA/J4hhovALORAr0C+D3wM+Bp26AeM1FZzfZ4MnA5sDu0La1y/9uQnAJsB54EDgk3qMdMVFazPZ4MLAVWhP5/KsdrTQb2AzaHd9ZDibaZDYo1+191GItn6LPTbHlzMHATMBMYCB+od2DBqdkeTwpWIWF2bR80bQ4x/18M/AbNUn8F3h7q5z3AXuCo0L7FwN+AQ83/LwFWAl8Gfh0dSF5KtJbghl4A/g5cEGkTq9keTwpmAocDzcA+pAyHm+37pk2b+fw4MA+9tP8IfBcYY47dAmw0xwEuAd4HnAb0A03AMiTT33ENJC8lagO+gG5oAvJ5vgmcYI4narbHk4IdQB8wDsnxveb/PuB506aAXuKnAWvQLPQ5NMMca9oMoOBEF3AZcAVwBvAPc/xNwHuBDmCD2awcA/n4RMcABwH3oxsC+CIwCylXL2U02+PJwIlIzrY7jhWA25AlZHnO0W41sA64Cngn8GDo2H2UmWzymInazeeG0L4jzed2Umi2x5OBEwlC0FEKFMshyKR7Gvk8lrcCrUgfXMqYSF5KtBlNtyBzzjpq9xBodiG0bcxhHPXg55Q6uTvRW24msq8r5ZXA/4DrEtocAGwx1181iGu47iO6zYs9u7YcDfzFsX8McBzF1lYT8Cnge8CzZl8rcCvym34MXJ11AHmYc+3Aq9DC12g08JXIWdubw/UaiUnIyb0KCdoo9BI5G/g2igBdUeE1zjL9rkxo042+gwEzpqxMQr5EkkDdOoh+82AUeq6vBrai5w+BdXMucDfwBFL88cC7zbGjgJ8CC4DlwHo0c50C/CrtAJpySEDdAdyAAgnPoDWhfYlnNAZdwI3ANJRRkZVjkO39CDAxcuw8FBHajmaSSrgTOIlgRopyPBKENSiw04oc6SdS9m/vYz2DU8AsdFHZMweZYjcCR6AZ2L6oL0Ch7fnAQhSAuAv55lvN//ejgMSFof5WmL6mpB1Atc258Whwd6Mv4nGGhgJVg8nm87eOY780nweH9q1GM0U07cmGVAeAr0SOvQwJze24FQjg66aPi1E4F4JQbxrsfazLcE49WYtmlP0otnQKyE34AZqlXgpMRwoEMrNbKFYggHPIoEBQfSWyQYUHE1sNT6zw/c5x7Djz+Vho32cITL/Rof0LgRnAt1DINcwZwIuJN6XOQ2/164E/EfiaWWaUoaZEcRQIXiK5Um2fqB14lCCoMJKIU6KDgGvM3zeF9j+EQvwzgPPR7HM5mkFWABc5rjEd2IMc/ygHItt+B/KJIBCiwSjRyegN7mKBGUej0oR8omvKNawG1VaiuWYbaTQRmEydwJno2b4GzR7jgDsoNc/moXB/N7Lnr0Z2+/mUmsFj0KLhnQSRpTDzkS3/CZSPCMFMFDXnRgHfQAGPcQQ+Sfg+PhRzrzsJlDSun3ozAIyt1cVGaj3RJopzpcLc49i3HDnBcbwW+SugFXHQqvkO4AE049xMaXrTFqAHmW1fQ9kbnbgXBE9FiuaKyk0EPgk8THEpwFYzhglIqGyG8+lISaYC/yRI4LT3cR+KUJUjrh8Xm6juM28YRqoS9SAzK0wBhY+Xoy88zIYy/VkTqAeYk3Es/aG/ZxJfEjIdKdcdjmNL0Hc5h9KAw0Yk5AUUiQIp1TZKU67sfcQtXkaJ68dFD9V95g3DSFaiKF3oC11GdpPECt/6jOediwIJfcBhqM7qY452o4F3oUjUrsixDwBvMX+vTrjWJKREy5AfBpoZH0NJnJBNiZL6cdHj2NfF4J95w2CVaLhmUVcjQyANg1Gi09Eb+GEUtr4X+AjK7vhzpO2bUXg8asqNRU7+88hkdH2PzcDbCHyd2UjgP4zWm8IzVxYlSuonTxpOVq0S1UrYhiM2hWkvCiunYQpKwd+CfJ1+4PPAD1HwoSPSvhMFGm6L7L8SzWBfBS6NudZkFK62EbpdwH+R0PeF2tn72Ee6NKy4fvKm4WQ1vE40Fz3sp9CXejvw+pjzWlCEKO2bN1xfFN5+knBO3rXz1aIFOfy9KFWmHK3ovneh4jBb5XsLWl87i1KnvgP5Hf8O7TsBrb5vRsoURy8S9BZg/4R29j52I4XsjtmOSOijVmSRVchZXsM+0VS0SLcOafuVKPPgeEqjLouRGXEpWvxzRZPCtKGo1Q2R/Um/q1DL2vlKcGWtxzEBhbAHgHcQ1KxY5qI1oAXAG82+k9B6zbWRtjaYMJvkNZtnUfLv61DGsyujAoL7GItqwVzsAxYlXKtWTCW9rELO8pqUO3cAelt2IE23dKK8pPej8GkbyQJkc7GmoFylNKxCb2QXM1DSYD/waVTROBGZFLNwL0QOZb6ElOtotJBdDS5B60nNDdJPpcTJKtRAXpPSfg40x8OavT/S6M+a/X2Uz8tqR+ZEFqe7XOlvmrLf4cJ05OhXS4GGIy5ZhRrJa5IS9SCNfSC07zIUirSOZy9yRssNajTKYA77ODcnnFOu9LdA+bLf4UIL5Z/xSKeHUlmFdPI6BwWErM9dTl6j7WPXiRagsOopBKHLZmQutYba9VKalzUH+CjKXL7IDOpHlCZT/ifhHEtc6W+BdGW/HjcLzdYo/VSCS1YhvbxeiEw3WypSTl6j7Z1KtAgt4E2jWEivRWsV4UzkJqSlTQTx++hF2lCmcrivKCUDM8SV/hYIftHF4ir79Qxv4mQV0snrEuRrrkWBiqUky6urfYkSXYcSIqeh4jLLqWhVvJ3iN/5EVK8xHuVORS9yFzLJkuxL58AMrtLftGW/nuFNnKxCenmdhRKET0bKZevh4uQ12h4oFsTrkVZ3ICfsMLN/DwoRLgL+EOn0cfPZFjOos81xm9YSph9Nv86BGVylv2nKfj3DmzhZ3Y0WvdPKaxQb5k+S1xLCSmRzttZE2uxBb3fXD2M8iYS4gOzIuEFFV/IHgJdTmgcWZTEq/X2UoPS3gEy2+eitYst+38AgfqnFMySJk9X5SJEOpYbymsdvLGxCq8fRWaVa5yxBD+mcrAPzeBxsIpu8lrSv929xD4YCNSr79XjSMNSUyJb9eiXyVItmsllNJe3zqCdqzvGcmpb9ejxpGGozkcfTcHgl8ngqxCuRx1MhXok8ngrxSuTxVMj/ATd9tR4Dpe8xAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{P^{2}}{2 A_\\mathrm{f} E_\\mathrm{f} \\bar{\\tau} p} + \\frac{P x}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}}$" + ], + "text/plain": [ + " 2 \n", + " P Pâ‹…x \\\n", + "──────────────────────────────────────── + ───────────────────────── + ───────\n", + "2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…\\bar{\\tau}â‹…p A_\\mathrm{f}â‹…E_\\mathrm{f} 2â‹…A_\\ma\n", + "\n", + " 2 \n", + "bar{\\tau}â‹…pâ‹…x \n", + "────────────────────\n", + "thrm{f}â‹…E_\\mathrm{f}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u_f_x = u_f.subs(var_subs)\n", + "u_f_x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Visualization of results\n", + "We have derived a symbolic expression. But how to efficiently quantify it?\n", + "### Substitute for material parameters\n", + "Substitute for all the material and geometry parameters and the load P the value 1 and plot the curve" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAAYCAYAAAAPmZSDAAAEXElEQVR4nO3aW6gVVRzH8c9RiSCj0Id86EIllRRlFyEqS5PsRqWHIozMA/pQBF2JtDJOUWFYdDKwoCBNeigqibJ7mRRRlnSCbg9FFkGmJRh01bSH/xzcTTN7n73nIof2FzZr9syatX7z//9n/ddae/f09/fr0qUuRhW8fxE+xC/YghdwTFFRXWqnNj8WDbhpWI5TcCZ24A2MK9hul3qZpiY/jil4/9mp73OxDaeKt6TLyKA2P2aNcK9jV+qzVQy589HTpL19kza35lw/AH9jGcZjAVbjK/wuHvLdpJ+io29RithhpFOZH7NGuBOwE3cJI4/CRFyMx3AIbs8RMoBBvJ9z/aKkvdW4BA/jB6zFd8mD9Cb9nJvU2ZXTVtUUscNIZ0BFfuxJrVIPF1H6OY5OdXIZnsTmpME0S3E5piZtZPEypiT3n4F9sEY4dogJWI+DhHOfzWmrGX14HNPxdgf3F7FDGfQppr8IlfoxnbZOSsoPMjpZl5TjM67djyswo4nI/cSE9AUxHL+VHO9M1duER5LjaTltVU27dnhNvMG9qbo9WJFcW1KivlZ0qqdyP+YF3PqMjo5Mym9T55eJN2K6GBHyOB974bkmdYbYnpQ7hlG3Ctq1w012p9/RDefvwzw8ioUla2xGJ3pq8eNwA25/3JscP9FwfrkY/ueICeaE5DM2o/PZ+FVMxpsxRrxl8EqLulXRrh0+wSpMEis8uAU34GlcWYnKfNrVU5sfGxcNPTg+Oe7Fhcn1g0VUjxN5unEoviop30x1dgf6G77vjXNE7v+jhdAlYtPxJbzaom4VdGIHuA2Xiucei7uF/rn+m27qoB09tfmxMeCOEPkZbk3K7fhZrFZW4Sn/XjUOd2tgpnjo1S3qXYMb8aXdb2YrNooVYxZrM86tFG9zHp3YAb4Xq7uFeAjviYD9q0lflK+/Ez21+bEx4IbSyACuH6aA4TJbPOiaJnWuxoNi/jBD/h5QmgGR6hqZLJbuK4VDGxls0V4RO2xpOJ6P34Zxz4By9RfV04zCfswKuI8LikozGheI1cy2nDrX4QF8KkRubqP9gYxzfcJhK7S/rdCpHeaISfkmMf+51u5U1YyBjHN9OtdfVE8epfixcdFQVcCdLrYQ8obhm4XIQbFCaifYqqATO5wnRqPPcKxIJQtwVLnS9qieUvw4qqGcjD/xRQFRWfSKSerzGdcWi8nlBvFG/FRy3+3SiR1OwzNizjRTpLHFInvUufdWtZ5S/DiUUieJyeAG5e99zRIT1h9T5+fhTrF5+I6YaKbZKNJKXbRrh+PwokgxZ4mfdwiHfyTS4lTxfHVQpZ5ZSvDjUMCdmJSDHQhpxhQcKIbaNIcm5WiR+7NYp96Aa8cOE8Vyf5f4t8XXqeuLxF7VUpxckr49pac0P6Z/Sy2be8SDHoZvquyoS6WU5seq/wI0W+x6d4NtZFOaH4v+AbMVkypuv0s9lObHPf0nxy7/M7oB16VWugHXpVb+AbqAehHgQPCJAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{P^{2}}{2} + P x + \\frac{x^{2}}{2}$" + ], + "text/plain": [ + " 2 2\n", + "P x \n", + "── + Pâ‹…x + ──\n", + "2 2 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_f = {L_b:1, p:1, E_f:1, A_f:1, tau:1}\n", + "u_f_x.subs(data_f)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Let us now prepare this function for interactive visualization" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.005, 0.02 , 0.045, 0.08 , 0.125, 0.18 , 0.245, 0.32 ,\n", + " 0.405, 0.5 ])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_u_f_x = sp.lambdify((x, P), u_f_x.subs(data_f))\n", + "x_range = np.linspace(-1, 0, 11)\n", + "get_u_f_x(x_range, 1)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**`sympy` explanation:** The obtained expression `u_f_x` contains symbols. To plot a function, the symbolic expression must be transformed to a quantifiable procedure. This is what `sp.lambdify` is doing. Its first argument specifies the input variables for the generated \"lambdified\" function. In our case, it is `x` and `P`. The second argument is the expression to be evaluated, i.e. our solution with substituted data parameters `u_f_x.subs(data_f)`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "x_range = np.linspace(-2,0,100)\n", + "u_f_x_range = get_u_f_x(x_range, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**`numpy` explanation:** To prepare an array of data we first generated an array `x_range` with 100 values in the range from (-2,0). Then the newly generated function `get_u_f_x` was called with these 100 values to get the corresponding value of displacement." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**`matplotlib` explanation:** Let us plot the result using the matplotlib package. It is possible to invoke simply the method\n", + "\n", + "`plt.plot(x_range, u_f_range)`\n", + "\n", + "with the first argument specifying the data points along the horizontal and second argument along the vertical axis, respectively.\n", + "\n", + "But to prepare the later interaction with the model we directly use a more flexible plotting area with two subplots called `axes`. Such area is prepared using the function `plt.subplots(rows, cols)` which returns a figure and the `axes` for specified number of `rows` and `cols`. The returned `axes` objects can then be used to insert the data arrays as in the above `plt.plot` method. Below we construct a figure with two axes and plot into our displacement profile into the left diagram. We insert also a legend and fill the area between zero level and the data points with a value of opacity $0.2$. The second subplot axes is empty. It is prepared for the next diagram explained below." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7610dd90571e4b97806eebd39e246f6a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax_u1 = plt.subplots(1,1, figsize=(6,3), tight_layout=True)\n", + "ax_u1.plot(x_range, u_f_x_range, color='black');\n", + "ax_u1.set_xlabel('x [mm]'); ax_u1.set_ylabel('$u$ [mm]')\n", + "ax_u1.fill_between(x_range, u_f_x_range, color='black', alpha=0.1);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Range of validity\n", + "The plot looks fine, but why do we get the displacement for $x < -1$? Let us recall that the debonded length was" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHgAAAAXCAYAAADAxotdAAAFTUlEQVR4nO3Ze6xdcxYH8M+99UqmuC0Z8SjFeM94lj8I0XpVbgZXSBDPVBTxKBHJpMLNZDxm4pVKhBBBkZk/EPEKErnelFKUqTYT16seTYkidK62/li/nXPuPvv8zu19tNX2m+ysc/b67d9e+/fda/3WWrutu7vbeowopqGj4nz3qrj5Bi30p+ES7IHROABzRtimtQ3TsEPF+e4hztuN6ViM13El5pcHtWcm2BMPYC88jOvw1RCN+j3gOawoHd/iTUxBW8U1W2EZZlToxqdrysdQ0YObhMMdL7hqQM6DJyZDpqs2fG3F/liOfwhy2/EnnIS7hTdeXbrm+DTu0VVnpp50wGxMEFH2x/pBOYLHJvnfYTZsTcbO4rk/xDUl3RN4EFM1EtwlQuWLI21gE8wTL+YYJYJzIXpUkn0tJj9NPPh8/IDvRDg7ZzCWrmZMSPKNCt0LSW5ROr85JuFxEaa3FBGgHObLx1JskuY4OJ2bgVPxEr7HL5glomkOBUejyopWSVYrbIr78FYy6hv8UYSse9Lvf2auvxdniZfh3iHaMhwoCJ5VodstyU9K5zuxER5J/0fj73X68eIZZ4soUGCRIJDwPjgKF+JJ3In9cCSeSvf/dMBPkpAjuCPJnzNjVmCcxuTrKuHR58gTvKahGcEdas9xf0nXhZ9Ecga9+mfI5wqC/40bm9y3IHgbHI6X63QzcLGoZq5ocn3xomxeVjQjuA2HCgLLb2w9flSK+QlfYqHaPt4Mf8MNafzqRpvwGDgRx4n12V546VjhWTfUXbMJJuNptUUuY98k52TuXRB8kf7kEondxaKqaYbeJA/Hu/WKMsGTRZg4LN30TvnSaEwyqlOEkM3039ffyVxLEDtYcntV15fN8CBOz+h3VfOA6Un2qdWZM/Ef8dIXOFqE5Fz2vE+S7zbRbyzI+yzZWMbiJDfM3GMmzhcR4hAswF3orSL40vR7Lm7LTLo3nhU14CwRgr4Vi7IjztT8oYYD/9Pca6qwsIW+CM+34rIBztmF/wvPrkKbWKeFYs+twl8Eec+I5KyM8Unm9t8vcD1uwcnp3HMqCJ4mSoCJgrBnhJcsq5h0ptibJqrVYwWKJOOtjFFDxRHDPF9BcKuoU2AU/ornRcZbhR1FVHslM08Rnnub6DuTfDYzRyfuSPeZKvKfPqrLpCV4THSvthVtyjLGiTezRyO5HWol0uyMUWsaVpbgw0TJlAvPuyc5NzOmILijQjcW5+FzwUkzTEqyGx+oK21zdXCRXFUlSkVo3En/vWELsU9th1+17ltvLRahIftbxWgXydBSA2/snChCam7hN0tySWbMAUmehD/UnR+Nh8SaXiq/HY1JsresyBHclxmzSISmXURT4F8iZH8kHma56Aa12iOvFwva1WLcSKP4mDJXvJgDwQl4FV9nxhTN/2m4WTQx6rEB/qyWq7wn9tHbxVoeIyqNR+RRcNRge47gFRkdnCJIHYcLRJvvcvFRot3I7r/DjcKL5gxw/IEiSrXqPb8tegJ9guQJJf1eotR6TWTk88UHjTPEi3+M/mVZKzRwlmt0LE1yTBP9IpEpV2GgX0vOTsfqxv0aGxg5FBFnIB8Xrk1HFYr99x1R2hy7EjbUo+CoIWLmPHhBklOEl+bGrmvoEmH14yHOU0/wYLAxDhINjiUqSrEcaU+JPalT1GDL1Loy6zr2MDxrsb9Y1/cHcW238Ng3RDJ3s4o6OheifxZ7xiS1JGRd+OC/qtAuulzzrFzDpkCPSKoWiz18TtWgVl+Tloo+69ODMGA98lgunGaw6NHYg2jA+n11Lcd6gtdy/AYf4yN4z2tU6wAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\left\\{ a : - \\frac{P}{\\bar{\\tau} p}\\right\\}$" + ], + "text/plain": [ + "⎧ -P ⎫\n", + "⎨a: ────────────⎬\n", + "⎩ \\bar{\\tau}â‹…pâŽ" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_subs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "so that $a = -1$. The range $x < a$ is beyond our applied model assumptions. We explicitly treated only the range $x \\in (a, 0)$. Thus for nicer postprocessing we have to set $u_f(x) = 0, \\; \\forall x < a$ " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "This can be readily done using the piecewise covering the domain of $x$ piece by piece.\n", + "\\begin{align}\n", + " u_\\mathrm{fa} & = \\left\\{\n", + " \\begin{array}{ll}\n", + " u_\\mathrm{f}(x) & \\iff x < 0 \\land x > a, \\; \\mathrm{where} \\; a = -\\frac{P}{p\\tau}, \\\\\n", + " 0 & \\mathrm{otherwise}\n", + " \\end{array}\n", + " \\right.\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\begin{cases} \\frac{P^{2}}{2 A_\\mathrm{f} E_\\mathrm{f} \\bar{\\tau} p} + \\frac{P x}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}} & \\text{for}\\: x > - \\frac{P}{\\bar{\\tau} p} \\\\0 & \\text{otherwise} \\end{cases}$" + ], + "text/plain": [ + "⎧ 2 \n", + "⎪ P Pâ‹…x \n", + "⎪──────────────────────────────────────── + ───────────────────────── + ──────\n", + "⎨2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…\\bar{\\tau}â‹…p A_\\mathrm{f}â‹…E_\\mathrm{f} 2â‹…A_\\m\n", + "⎪ \n", + "⎪ 0 \n", + "⎩ \n", + "\n", + " 2 \n", + "\\bar{\\tau}â‹…pâ‹…x -P \n", + "───────────────────── for x > ────────────\n", + "athrm{f}â‹…E_\\mathrm{f} \\bar{\\tau}â‹…p\n", + " \n", + " otherwise \n", + " " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u_fa_x = sp.Piecewise((u_f_x, x > var_subs[a]),\n", + " (0, x <= var_subs[a]))\n", + "u_fa_x" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "get_u_fa_x = sp.lambdify((x, P), u_fa_x.subs(data_f))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Plot the result in the right subplot `ax_u2` in the figure above" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7381e156cd10476fbb4d5a16680fa30a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a5e3265e5de745b7b799d197ee5f703b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=0.0, description='P', max=1.0, step=0.05), Output()), _dom_classes=('w…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import ipywidgets as ipw\n", + "u_fa_x_range = get_u_fa_x(x_range, 1)\n", + "fig, (ax_u2) = plt.subplots(1,1, figsize=(6,3), tight_layout=True)\n", + "line_u2, = ax_u2.plot(x_range, u_fa_x_range, color='black');\n", + "ax_u2.set_xlabel('x [mm]'); ax_u2.set_ylabel('$u$ [mm]')\n", + "def update(P):\n", + " line_u2.set_ydata(get_u_fa_x(x_range, P))\n", + "ipw.interact(update, P=ipw.FloatSlider(min=0, max=1, step=0.05));" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Evaluate strains and stresses\n", + "With the known displacements at hand, we can directly calculate the strains as\n", + "\\begin{align}\n", + "\\varepsilon_\\mathrm{f} = \\frac{\\mathrm{d} u_\\mathrm{f}}{ \\mathrm{d} x}\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\begin{cases} \\frac{P}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f} E_\\mathrm{f}} & \\text{for}\\: x > - \\frac{P}{\\bar{\\tau} p} \\\\0 & \\text{otherwise} \\end{cases}$" + ], + "text/plain": [ + "⎧ P \\bar{\\tau}â‹…pâ‹…x -P \n", + "⎪───────────────────────── + ───────────────────────── for x > ────────────\n", + "⎨A_\\mathrm{f}â‹…E_\\mathrm{f} A_\\mathrm{f}â‹…E_\\mathrm{f} \\bar{\\tau}â‹…p\n", + "⎪ \n", + "⎩ 0 otherwise " + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eps_f_x = sp.diff(u_fa_x,x)\n", + "eps_f_x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The stresses along the fiber are given as\n", + "\\begin{align}\n", + "\\sigma_\\mathrm{f} = \\frac{\\varepsilon_\\mathrm{f}}{ E_\\mathrm{f} }\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle E_\\mathrm{f} \\left(\\begin{cases} \\frac{P}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f} E_\\mathrm{f}} & \\text{for}\\: x > - \\frac{P}{\\bar{\\tau} p} \\\\0 & \\text{otherwise} \\end{cases}\\right)$" + ], + "text/plain": [ + " ⎛⎧ P \\bar{\\tau}â‹…pâ‹…x \n", + " ⎜⎪───────────────────────── + ───────────────────────── for x > \n", + "E_\\mathrm{f}⋅⎜⎨A_\\mathrm{f}â‹…E_\\mathrm{f} A_\\mathrm{f}â‹…E_\\mathrm{f} \n", + " ⎜⎪ \n", + " âŽâŽ© 0 oth\n", + "\n", + " -P ⎞\n", + "────────────⎟\n", + "\\bar{\\tau}â‹…p⎟\n", + " ⎟\n", + "erwise ⎠" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sig_f_x = E_f * eps_f_x\n", + "sig_f_x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The profile of shear stress along the bond zone is obtained as\n", + "\\begin{align}\n", + " \\tau = \\frac{\\mathrm{d} \\sigma}{\\mathrm{d} x}\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\begin{cases} \\bar{\\tau} & \\text{for}\\: x > - \\frac{P}{\\bar{\\tau} p} \\\\0 & \\text{otherwise} \\end{cases}$" + ], + "text/plain": [ + "⎧ -P \n", + "⎪\\bar{\\tau} for x > ────────────\n", + "⎨ \\bar{\\tau}â‹…p\n", + "⎪ \n", + "⎩ 0 otherwise " + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tau_x = sp.simplify(sig_f_x.diff(x) * A_f / p)\n", + "tau_x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Plot the strains and stresses\n", + "Similarly to the callable function `get_u_fa_x` let us define the functions for the strains and stresses using the `sp.lambdify` generator " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_eps_f_x = sp.lambdify((x, P), eps_f_x.subs(data_f))\n", + "get_sig_f_x = sp.lambdify((x, P), sig_f_x.subs(data_f))\n", + "get_tau_x = sp.lambdify((x, P), tau_x.subs(data_f))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "To make the code for plotting shorter let us define a general procedure plotting and filling the curves and attaching the labels to a specified subplot in one call " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import bmcs_pullout_ui as poui" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'CB_ELF_RLM_Symb' from 'pull_out' (/home/jovyan/bmcs/pull_out/pull_out.py)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-2-ba8b1ad0059a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mpull_out\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPullOutAModel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCB_ELF_RLM_Symb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mpo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPullOutAModel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msymb_class\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mCB_ELF_RLM_Symb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mpo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteract\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'CB_ELF_RLM_Symb' from 'pull_out' (/home/jovyan/bmcs/pull_out/pull_out.py)" + ] + } + ], + "source": [ + "from pull_out import PullOutAModel, CB_ELF_RLM_Symb\n", + "po = PullOutAModel(symb_class=CB_ELF_RLM_Symb)\n", + "po.interact()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Pull-out curve\n", + "We have expressed the solution to find out what is the stress state within the bond zone $x \\in L_\\mathrm{b}$. However, to relate the test to the experimental observation we need to find the relation $P(w)$. Thus, we evaluate\n", + "\\begin{align}\n", + " w = u(x=0)\n", + " = \\displaystyle \\frac{P^{2}}{2 A_\\mathrm{f} E_\\mathrm{f} p \\tau}\n", + "\\end{align}\n", + "Resolving this equation with respect to $P$ we obtain\n", + "\\begin{align}\n", + " P_{\\mathrm{push}, \\mathrm{pull}} = \\pm \\sqrt{ 2 A_\\mathrm{f} E_\\mathrm{f} p \\tau w }\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**`sympy` explanation:** In parallel let us use again the `subs` and `solve` provided in `sympy` to define the `P_push` and `P_pull` variables in the running `jupyter` kernel. As `solve` searches for zero point of the supplied equation we must transform the above equation into" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAAAnCAYAAADXa8wEAAAFQklEQVR4nO3afcyVcxzH8dcJE5ORQmgqNVPk5G7Ms+Zx84eWNWy0tubZhI2EUbTZ5KGM5B9FHvIHZcwwIvM4T1GYxzJDS9yV1kLkj+91Odd9dd93p+Oc+3Y6571du871u37X7/e7r8/9/f2+3+/vKkyZMkWT+qVHdw9gO6Y/XsNn+BhjatHJjrVotAnYhIlCvL3xAV7Ahmp20rTA2vGTEA9WoRV9qt1JU8DKWYTNybEJX+PCDuqOxE74vtqDaApYOSNwC/phsJgeH8RhuXp74RFMEGJXlaaAlXEQ9sCbWIkVuA0FIWzKzliA2/FWLQbSFLAyWpLzkkxZ/+S8KjkXMFdMtfNqNZCmgJXRItazX5LrwZiJr/BqUnYszsFoIfQSW06v/5lmGFEZLdgf67GDsLYFOBe/J3Xe0AUGUq8WOF44BCd1U/8jcDeKwvp2xXlq4GVujWoKeIp4qbfmyo9ScrcH5O49hr9xcBXHUWsGojdeFqHDD+Jv6BaqKeCvyblXrnxS5nfvzO/9MBbP4osqjqPWpA7M+906ioRqCtianLMCDsFZWJhc75m5d7kIbqdXcQxdQQuWKzkw3UqtBbwWv+GO5Dq1wJ64CO+Kxb6emIxB3T2IlLyAK5TWq3KORzPPrhVrQSrgPhgnshPp4p4KeIHIC95ZxhjbG9Oc5N6r7dybW0ab2w35MOIbbNyG53/M/N4sREwFnCjc65nCCilNoROTvp4uo48ZIuuRpSim5oeFwFmWlNHmdkNewJP/Y3utQsDdcAkeVxL5L2GBp2EYrlCe9zajnbLxQsC5Ys+tYal2IN8qrOwiYTXZKXKdEPAq4QDM0bVUPZH8f6AWAg4SIj2PTzP31oqYcBimqfLGZhkUuri/LqHamZjUAvvbMjxYg0NFqum+Kvdbz9wgUnLpMXtbHq6FgPAeFufurU3O85Qy9l3NZDG2dfhZJBEO7aT+IcKp+6iMtrMbvNnjua08N1s4Zelxcxl9/Uuhwb5KexHzhYgFkfY7GkOVMklZXhKx6iThmP3RSdutYtZ5KFe+QfzD1IR6TWZXyunCeVqGpSIe7Su2fvKMEZ7zPSJjNLSTdtMN3sVigzd7dCTeQh3H1+OSOn2S62vwdtLWlzg1baTRBMzTS7yDvPXtIqzpuuTeSm132vO0CLHLmWpTJojPMQaIcGpsct0PTyR10j4vw03i25pPxCZAT5oCzhCB/zu58utFfLk0uV4m1qcsV+NzsYa1iH3BVdo6JE92UJ8IpVaK0KoHXley2j+TOkXxwdQZeEVY341i1hhCY2/oTscJOF5YT8oAkWg/PFO2DEfknr8Yx2G12Fp6SgifZU0H9bMMF6K159gV8YzYtkppsw43qoB34XyM0vblEGveXvguU1YQFlUQa9L9It5dhFliqpvWTlsp+frZUGG40vejeYpK02nKSOEYfUVjCniv+FZllPjsPctpOFFMidn/9GHCex2Ib4WFnoljxHT2gM7Xv2z99bl7g7S/H9pTbHRnNSrgSpGi3EjjCThLWN5o4Zzsm5SvFwmGmcI6P8w990NyHiEEzJJu8K7MtJfys7bTc3v0wIE4QOSN0/xw+gHUeWKKXi0cmYE4O3240QS8NDm/kiufKkTsKyw0T6t4gUWx1mVJBfw8V75ZZKXW6pyZIrRZLmLN9KOoopgmpwrr7y3i2CNl1stGE3Br+dDO9if7dlA+OTkqZZGwwDxF4QXPT452afQw4v9MUcR8ndIUsHIG2NIhqVb9glgDtypgo02h9cJm7F5OxaYF1jlNAeucpoB1TlPAOucfJSo8U/X7s5oAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle - w + \\frac{P^{2}}{2 A_\\mathrm{f} E_\\mathrm{f} \\bar{\\tau} p}$" + ], + "text/plain": [ + " 2 \n", + " P \n", + "-w + ────────────────────────────────────────\n", + " 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…\\bar{\\tau}â‹…p" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u_f_x.subs(x,0) - w" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "and then send it to `sp.solve`" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMUAAAAgCAYAAACisbzBAAAJEElEQVR4nO2cf5BWVRnHP7vAoLZLsOgY1NhaCq2EEFGNjNiqRIQsOKY1lshYTDShslSO1cS4OjnTZMVIptmPyZTKaaZiNVCwcCjUKUNXBCv7taWDlBEslhHKbn98z5n3vue9P865e99939b3O/POfffcc+/zveee55zn+5zzblNPTw8NNNBACc21JtBAA/WGhlOMHswEhgr8vGIxNrB+K3C4QPtNAXaPB/5WoO00hPAqsj2S4MPnGjTIvaI7dBEInSneDSxCL6mIjy8+Aswo0G6RvM6rAz6twAs0HKIQhDpFJ/BgFXhk4WzgFzWwm4V64fUeYGutSYwWhDjFGPM5WiUuSWhDIcrLI2w3C/XEawHwQA3sjkodE6Ip5gEPV4tIChYDW2pgNwv1wmsMMA74Tw1sj0odE+IUi4EvVotIChYBq2tgNwv1wuts4CGPet3AxJjynpx2a6FjFgG9aFa8oFpGQpxiMnCgWkQSMA44DhgYYbtZqCdeS4AvedTrBl4fU96T024tdMzlwFrg1moa8dUUpwO/iymfDKwEfgz8AU3hA8BO4MMB909CJ7AjoH4L8CwavTYN03YaOknn9QDZ8fNnC+JyMrDfo147w8u0uRhpHTMBOeLd1TbkO1MsBe6NKb8EuA14DmWl/ope0kXAN9FDXEL+KbYL+HJA/R7gtcbenJw2fZDFaw4S4Dem1PlRATw6gN8WcJ9Q1ELHvA/YDvyz2oZ8nWIa8HRM+dPIYTYDg5HyzwC/At6LHOSHOfm1A/2edc8ArgbuB6YAs4ATgX/ktJ2X1xtRZupx8ocmLpqBVwMHnfKkwara8NUxRWIFcNNIGGp2vn8Oje5RtJGsJbajlzLolO8Hvma+d+bkNgvYHVD/FhQOfDxy3Vty2k5DFq+55vhoQfZOQrH79THn3gw8mXDdiei9ZIVx/0X6KARLgJ8knJtn7rsBuBSt4wwAR9BAeW6gLYA3ANOB+1LqLDB2b3DK30HpWdudc99FbTQ9WhidKRYCZwFTHeN5U48vmWPePH4XcI9n3Q+gxt4A/IZSR5lD8XFvFq+inWIKmv2uQjOhxUnA8ynXtVDeQdrRaLuL8g79POqwIUjTMTZsfRfwMRRF3I4GqAWoL01HobaLVyHt8JxTfjnwfUp9Kg42rGp1yq+NfG+jNMNPRaH9vTh6OeoU96MH3YZmDTv6nwV8L4VMHMaiB7H3TcK5KMR4Z8y5uaTH5BataFo9QClcsSN5Xl0xHF7WKeYBr0uocxPwb08uu5FuuA6YDfSZ8iWowyWhn/LwbSVyirsZXmo9S8fYNp+KooSdkXMbKDn3JyPl09BMuBQlSD4YOdeE+tLFGbxsaBl1itOBZeaeFwKTIudWI11UEZK52aE+4EX0QjEXHaMyPMrC59HUvoXktN1cYDlwDtIDUUxBDuoj0K9HL+A6Sg1jZ4q48KkZjVwHzP07C+TVFLF5heHkfq6i3CGy+IB2EWxFL9hiPvDzBB5xmG2OfZ71mynvRBZZOsY6xZWUOwQo+QKV7XoYpZV3oc7bEjk3H/XJxzL4xjnFNWgt5Qvm7zZzPA7tW/tlDMfYlOk9lBq/k7CUKGgU+AQaTZan1Ps18CHUgZc557pIjlmjmIE62V5KGgZgH+pkp6HpOIrFqMN2oU7urtIPh9c0JIh3kry5b3IgH4veCJ/xaLBKCydczDLHJzzq5tUx41GHfwbF6y6sNh3nlO9H7b4ROAElZyxWAN/x4DyABm/rFCejGeZ2wwdKTrEcaa7YGTPOKaKNv5CwBZrVwM3AUygE8UmfbaKy850P/Mzj2q+iUG0t6iRRPIk64Wyn/DQUsz6MXkbSXq48vGzo5NPxQvlsRnuNTjE8tgfYaALORINFmg6xsDpmqVOepWNmog6/lfjoot0c4/QEwA+Q8L/M/H08cpA4B3MxhBzDOsUa9Nw3U1pknRQ590cS0uJxTrEDPXwHEj7/8iAEWjG9BdiDHMJnQQk0M70deI35+wTUoFk58MsoxfzbqMyqdJpzUV1xB7Aedawh0tO9eXiFOkUIn4NoBlqGMoRpmRgXp6IZ05fXbuAraGSdHSnP0jG2rfsTztutGdsSzh8y9z8fhcQXoRBnXwZfi4PIKVqAjyItvA+FUMfQ8yxEEcZ6EmRB3DrFy0gLrMN/W/S1SEf0oaxDyNrALkS8C/iGuf6nGddMQALpJeAu4mP8dtS4UV2xBvgLCo/eRuXsMlxeoU4Rwgc0i1+IVu0PedoAeJM57gm4Jqpj+kzZfGBVyjXWKSbGnGtDcfyz6DmSsBE5w6WoA9/hyRfkFJOMnYmUh0eHDYduFMZ9O+kmSdsweg0pn4WhdcghdqFOGLpYNkS5jrmAbD1xAxrB16PtJCtjPp8ydaMzxQClUWM/6aFAKK9mNKoOkhxzuwjhA3ov55EtOl1YXRX6K8FQHfNWc7wYRRkWLWjUnowGgrQU8GbUuVejmXpTAF/rFN1oYN8bOTeA1iwWob1TLybdJGlF+z7gEeTVaViBOugxNKtcHVOnn2xv70UP34pCt7Sfnc5EDfYMlQs1UewxvDpQbJpnS0IIrw708g9Tnht38XX8wwEXf0bPFbqKbXcjdKPR8lGU98/CZjSinoIEdpqOGWvqPIGSDbvRoDIeOdZU4NNkb285irTFKuBbhL036xSTqEzyHEKD1hEU5iciySlewG9r7qnmOAY1eBx2kO0UD6IRaB1a9UyDFddrSM/1HwF+j0KHM1FsGooQXnaUnIBSr3EYxG9HaxreD/wp8JrH0AbEK9F7Wo+fU0R1zDTUDkmYgVKdj6B9YRvQLN6E2v4KkrWEi43IKe70rB/lC3J6N2tqxfZdwN/TbpK298ndZxOHHorZ33MUZTvWUpktcnFOwH078hIyCOF1J+EvMQ+eynndjfgthrrw1TE2TH0cDUbudqEQPIT0QOhPfVeRrHk6fW9ST//iphel6vZmVRxh1CuvkYKvjok6xXAxhBbeavKLvtB/cVNNbKF8JbNeUK+8Rgq+OmYO0nC+SYa6RVPj32Y24IEzSA/bmlGCoR+J7f9r1NNM0UD9IkvHDDKKZtN60hQNNFAXaDhFAw04aDhFAw04+B9D9lQ2mCyjGwAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{E_\\mathrm{f}} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{w}$" + ], + "text/plain": [ + " ______________ ______________ ____________ \n", + "√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ \\bar{\\tau} ⋅√p⋅√w" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Pw_pull = sp.solve(u_f_x.subs({x:0})-w, P)[0]\n", + "Pw_pull" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Note that the obtained $P(w)$ covers both the pull-out and push-in case. If we supply the parameters defined above with unit stiffness, area and perimeter we obtain" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATcAAAAXCAYAAABu+QiwAAAHcUlEQVR4nO3ce6wcVR3A8c8tKGJLuVRMxGdVNNBa2Nb6QtErxoTYRKrBP0SN1ho1sUgxjYJg3DZBTJCS1Cf4yDXFV3xWI1qMUgMRK/Ku0YiS6xOIBUOtWgRu/eM3w907d3d2trs7u3c732Rykjln5pzfmTO/8zu/35kZq9frKioqDpmNGG9yvl5qKyrmcGSb/HPwfpyMRXghbutzmyoq5hMb8awm5+vlNuOwoo6LcD9+iQ/i99lCC3JusAxXYzm+jY/h3jaVLsJfcRDf67DB3XA2PonrsS+p/+oS6v1JUlfecXEf6x+U3PCzpL7TS6qvFYPsA1iKsSZHrxi0fP3mUOTbhcuFoXVWq/J5lturxUO6CNsKNrSOpyUNXFXwml5wMU7FfqFcTyqp3lV4BJfklPlOH+sflNxjQvZp3FpSna0YVB+URSXfXHYlB9yM1cKw2t9YKE+5LUnS3xZs5DKxhP0xTkgafDz2Fry+G84XHfMHvArXlVDnc0Uf3WpwS5BByA3Pw7FibOxvU7bfDKoPyqKSL5/fiYn2OJmxmLcsPSJJHy5YyafEjP4B3JGcW1m8jV1xHe4SFmNZrE7Sm0qsM8sg5CZ8r8SsOWjK7oPjhcXazh3xEJ7Qg/oG8YxPS+rbhjeLJeODOIBfiVVdr+hWvlQ/HZHNyFNunXCOEPgzYja/MznfzdJ0Ugj8jm4a1kf6pdwmDbfczMj+6z7df9Lw9sEibMHm5Phycv7mhnObxSR/oMU9Jg2vfMy8t6/FdjyAK4WSexGuwTPb3GPSgGXMW5aOJ+l/29zjGFwmIhf15FxquZXpdyub9AU/DU9vUeYy/Luc5pRKv5XbMDNlthviXXg7vo5PDKA9/SB9b5+KCdzQkLcN5woX1KZym9WUdAI5NpvRSrmNiSjYQfypzc03i07YgH8m51LLrdmydAE+K6IkS4TFt6tJuQvxcdzTpv5BMGZGtnUtyjxg9kswCnITcqzEo4ptC7oELxZWQFGGvQ8aqSXpbR1cM+zypcptg9mKDb4glNuyNvcoS8apJJ3A7Y0ZWeV2phiErxQCXil/+8dyIehv8LmG838XltyJWCxCvCmvEwphAncLJdCMewzvw3++mCluUHwrxCjITch+jHjmRazSmsygK8Cw90EjpyZpJzIOs3xHCcX1F3ylSf79Sfq4NvcpS8bteK+wml8u/Hefx1TW53am8BWsxh6x/ySPTwsFeb6YyRu5U1g4tcz5E4XQvxCK83/F5Rga0mVZJwN6FOSm8yVpzehu/B7DKWIy/8eA29IrVgjFtVMETrIsTdI/l9WgNvwNl4rAwpvwYUkbs8pto7BI1oqXcacmUYiEt4rQLVxrbrRoIslr9LtN4grhjDxoxqScb3Sq3CaNhtzMyF4kUvpk4bKYxk/xH9FnL+1P00rn2WJl0qllOsyk7+tUi/w1SXpt/5tSiDVi1XgLXoDHS9w9zXxu+7BDfJXwFvHp1Z5MmcXCWf6wMAubhXGX4jVm+93OEz68d4qoS9bamy90qtxGRW5mtoEUsdzSZ79JWPf3CSX/DbFP8JGet65c0g2n2fdjPpMqt/EmeUvwbrEvbUdZDWrDGUlaF66Sx8jbCpIGEpY0yduCp4iBul5EjLLHBUnZRsvtQfxLvNz3yjflTxCDZ04UpEdMOrRQ9QKx1Jo2EzhpxyjITefBhJpYfr8BPxcbLj8kLNilOdf1sw8m9W6LwuIk3Zdbai7DLF86eZ2NhQ3nF+GreJKYrFttc0np9zhOOS5Jp7IZeVtB0s1xWQW4Au8TDsctOdfvES/ByTha+y0lWS4VIfZ14oHlsTY5CKULL2u4bq+5YetUrk6th/QnAvvEi9qKq4QvplOGVW5C9oUikNDKH7vXzMS2Et8yO+KeBiHyJtZ+9kE38mdJP9beKIyAm/C1AtcNq3xHiqXd7UIp3YHviyDDWcLFcKFinxQWlXGtzsdwIy3lzVNurXYMp0GE8+RHyw6IyMVJwum6O6dst9RERzbynOQgXq5sB60Q1tQPO6wrndkW46MtykyLD3v7TU15cjMj+0JhsTdjZ6Z9X8zkrxKW7N2HUH8zajrrg27kz3KL+DZyg1BwVyim3Dqhpjz5louvKm7EVrGnbb0InOwWiqrXvraazsdwM+boq7Gc/7ldILTvG/HdAjcvyiYxGJb28J6dMi5C2peL36WUweEm9xOFdfsRMY6Il+R68T3uuX2uvxnjyn/uZTKuO/nW4Ut4j1h5zAd24PXC6ruvMSNvaXBXkq7HM9qUnW+cLpbdWwfdkJIpU+5TxGz6NrxERN+3i685Wlm8/WbUn3u38qX+8UH/6aUIR4nN4RNiEp3jx85TWNcIv9kasaflUXP3rM1XfiDM73b/pxs1ypS7hj+KZds3hf/maLENpNUG5n4z6s+9W/lWife8aKBsUNSF22u3cA9t1WRPXt6ylNCOZ5hxol9ldAdGRcXhzAJhAU2JoMIwM4FXiCX4jVpE7tv9Zvwh/Cg5KioqRpdpYcDMB3Zp/l32LEbJj1ZRUVHxGJVyq6ioGEn+Dwb8/bcU2YU8AAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\left\\{ A_\\mathrm{f} : 1, \\ E_\\mathrm{f} : 1, \\ L_{b} : 1, \\ \\bar{\\tau} : 1, \\ p : 1\\right\\}$" + ], + "text/plain": [ + "{A_\\mathrm{f}: 1, E_\\mathrm{f}: 1, L_b: 1, \\bar{\\tau}: 1, p: 1}" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_f" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEIAAAAbCAYAAADI1VnXAAADiklEQVR4nO3ZW4gVdRwH8M+qQZZGaiH1VIFK1ENPhUGgFNt2oaQwCNJ9KDTYyI0oIRCW6CG6EEJ0gaKbVgRdzMx6MZai6GIIXSgpiIySqFbX6GLubg+/mc40Z845M+fs4ezDfmGYmd9//r//7/+d323O6RsZGTEL5vTagJmCeRWfX4jxaVy/bxp1dYSqHnEpBsQGpuOYMahKxCq80wU7eo4qRMxNjqNdsqWnqELEhXi/W4b0GlWIuBxvdsuQBhjA33gDU908qhCxBL92tq/KWI/bcKXpS9CFR1kiluHrAvkS3IRX8Q3+xGG8hxt11qechMvwYgc6SqNsH3EVdhbI1+JR/CSqyfdYimvwhNjIWuF+VXEd9uC3NuZWRlkilmN/gXy/IGkXJjPyu/ARrhWkvNyGbYO4v415bWFO7voe8RazWKxxbtgjPGUyJz+Ix5LrVW3YdRZWYHeTZy4RnnZ3Tn6BWhI8Ize2Xdi6Iq8sS0Q/VgpXzqLdavFPcj7W5JkTcVqBfD1eyOgoQhoyC3PyzZnrxZnr08XedirId1ki3sLtIkNn5StV7x/mic2kevNYLjb6Mx7IjfUlc59pscZYcs4SsQxX47XkflFmbAjHaRBu+ay+D3+I5kkycUK967fCvThXeNLbBePjeBB7sQYLMmMXJTZ82mKNIiLuwBHcl9ynHnE8NuBDUdHqUFTeXhesEvE92sKgPG4VnvUV1jV45iA+wTacIBJqikGtvYEo05NqRCwVnvQ4DiSylIh1OEW99/2HIiJ2qBHRr/iNNsIQtuJLrNa69L0kOscbkvv5gpTtJdaaEmSkRGwSYbU1kVMLjU34Fq80UlZUPkdxKs4Wyez3EkbBMB7C57hYxH8rHBKld41IZquF+/5Ycs0xQcQC3IznM3MnhEf04xzcokmIF3nEMRHbW/BZSYM2CxL2ic2UISHFtsSO65VLklmkRGzAyf7v+uOCiGFR/p9qpqhRC7wjMayom8xji0iOe4Un/FJiTha7xIaGcL5axi+DMeH+w+LlfZEZOyx6igE8IhJwQzTqLHfjA/zQwpBB0dBM4F2RKPP4Dk830XFU5IqNeFJ8r5RFSsQi9Yn5EM7DX3i4laJGRBzBFSUMOTM5zxVvpQijmhNBhMdGPFtizSzSEvqx+uqWJsznlAjVvhnyc36fqP13au8DrWNU/RW7W5gSzVDPMPu/RoJZIhL8C83/zNK4VPx4AAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\sqrt{2} \\sqrt{w}$" + ], + "text/plain": [ + "√2⋅√w" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Pw_pull.subs(data_f)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Plot the pull-out curve\n", + "The symbolic expression must be transformed into a quantifiable form using `sp.lambdify`" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_Pw_pull = sp.lambdify(w, Pw_pull.subs(data_f))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Plotting is done using the same methods as above" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5eb3f54e32fd4ee5a64c90d32081b66a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax_pull = plt.subplots(1,1, figsize=(7,4), tight_layout=True)\n", + "w_range = np.linspace(0,2,50)\n", + "ax_pull.plot(w_range, get_Pw_pull(w_range), \n", + " color='blue')\n", + "ax_pull.set_xlabel(r'$w$ [mm]'); ax_pull.set_ylabel(r'$P$ [N]');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Displacement at the unloaded end\n", + "To see the difference between the displacement measured at $x = 0$ and $x = -L_\\mathrm{b}$ let us provide a callable function evaluating $u_\\mathrm{f}(x = -L_\\mathrm{b})$" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "py_vars = ('w', 'tau', 'p', 'L_b', 'A_f', 'A_m', 'E_f', 'E_m')\n", + "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", + "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\begin{cases} w + \\frac{L_{b}^{2} \\bar{\\tau} p}{2 A_\\mathrm{f} E_\\mathrm{f}} - \\frac{\\sqrt{2} L_{b} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{w}}{\\sqrt{A_\\mathrm{f}} \\sqrt{E_\\mathrm{f}}} & \\text{for}\\: L_{b} < \\frac{\\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{E_\\mathrm{f}} \\sqrt{w}}{\\sqrt{\\bar{\\tau}} \\sqrt{p}} \\\\0 & \\text{otherwise} \\end{cases}$" + ], + "text/plain": [ + "⎧ 2 ____________ \n", + "⎪ L_b â‹…\\bar{\\tau}â‹…p √2â‹…L_b⋅╲╱ \\bar{\\tau} ⋅√p⋅√w \n", + "⎪w + ─────────────────────────── - ───────────────────────────────── for L_b \n", + "⎨ 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f} ______________ ______________ \n", + "⎪ ╲╱ A_\\mathrm{f} ⋅╲╱ E_\\mathrm{f} \n", + "⎪ \n", + "⎩ 0 \n", + "\n", + " ______________ ______________ \n", + " √2⋅╲╱ A_\\mathrm{f} ⋅╲╱ E_\\mathrm{f} ⋅√w\n", + "< ───────────────────────────────────────\n", + " ____________ \n", + " ╲╱ \\bar{\\tau} ⋅√p \n", + " \n", + " otherwise " + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_L_b = u_fa_x.subs(x, -L_b).subs(P, Pw_pull)\n", + "w_L_b" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAAAgCAYAAACWyH3dAAAJoElEQVR4nO2cf5BWVRnHP7tAku2iLJpBja2lEJJCG+bIKC2JZMACa/4YS2Q0RppAWCqHamJcnZxpMmPcKVOzyRLLaaZkIcD8gYOhTiK6ImhZ5paMUka42A9Cd+mP7z3d+973/jj3vve97xvd78w7d/eec8/zvOc+z3me73PObkN3dzcFChTID421VqBAgf83DK+1AgUKJMThDMdqyHAsa+Qd6ZqB89DEZfVJIjtLuVnp9M4606necRey24YMPjVB3k73cbKbsKQTdxXwsYxlZ6HTpDrTqZ7RDLzB//gikrfTtQMP5yzT4GzgVzWSHYZ61Kme8Qngl7VWolLk6XTDnM+hHGUatAAHgLdqIDsM9ahTvWMm8EDOMk8j41Q/z0LKNOCxHOV5MRvYVCPZYahHneoZw4ARwL9ylnsNCk6ZpbR5Ot1s4Js5yvPifGBpjWSHod50Oh/oBd5WZTlp+eXZwKMW/bqAYwPud6eQWRUOmafTjQH25SjPYAQwEhiogeww1KNOlwMrgVtqrUgI5gI3WfTrAt4bcL87hcyqcMi8ON0pwG9D2sYAi4F7gd+j9GEA2AZ8hsp1bAe2JujfBOxBq9u6CmWHoZ14nR4gnh98NSN9RiEDuyej8WxwAjAI9CTov9eiXyvZVW+rwiHzinTzgA0hbRcB3wVeRZXNP6EJvgC4AxnDRaQP8R3AtxL07wbe7chrSykzDjY6taEiyw0RfX6ekT4XA1uAv2U0ng3mowX1Xou+E4HfVFedMlSNQ+bldOOBF0LaXkBOuREY8tz/CvAE8EnkgD9LKbsV6LfseyqwHLgPGAtMBo4D/ppSdlqd3o+qm0+TLi1KikXAjTnI8aIT0Y1HPPcagWOA/b6+UYt2tWDLIRMjy/SyEfgaikxetBDN5bagCR3y3d8L3Or83J5Sp8nAzgT9v41Skc97nvtQStmV6DTVuW7PWHYQ3gdMADaHtM9EUf963/0zcdPcVl/b3eh9TggZ8xh0UGEDSjEBjkf86bqA/h8Eng0Z6zhHVlwq/m/Eo20xF/hFRPs0Z9we4FK03zoAHETBYkbYg1lGulnAWcA4Sl9gJaXxN51r2r2sDmC9Zd9PoYnqAZ7HfcltZJvX2+hUDad7B+Jur/ruXw78BHeu/TApZ7Pv/irPzy24kXscogMbCOfxc1CV1Jsej0UZxtUo2zA4HngtZBwQB/cuCK0ocu+g1GleQw5hizgOaajHecDnUKZ2G1qkZyKbn4DoUgmydLr7HCXvR1HPRK6zgB+nGG84MggzdhhmoBTsowFtU4nmRAbNKL3ah5vOmWiUhtdVqpNxumnAe0L63Aj8w0KX8Sh6zEOFoU972hrQHF8Y8bxJ9bxOdwriZOuABcBoT9tSxIWi0tVOpLt3MduJeNu1wBSgz7k/Fxl0GPopTcEXI6e7h/RbVDYc0tjFOJSJbfO09eAuHl/0P5h19bIP+CcyFtDkD1KeOtrg6yit2ER42XYqsBCYjviYF2PRImBTgLkOTd61uEZmIp0/vWxEK9o+Z+z2jHVq8Mi8wtHJ/7maUoeL0ukAKrXvQA7S5Gk7B72vpyL0CXK6a9D+1Tec31uc60h0nvTXlBqhFyPRnuBmyiPPIfSu5/t0fAR7THGufRZ9GyldMAxsOKRxumWUf9c7nKv//f9XqBf9JDvSsjZgzPW4k9ZOsnK9wXLgC2i1WRjR70ngSuQg831tHUTn5AaTkBHvxuWQAK8gIz4ZpWUGs5EzdCAn8p+yqVSn8YjzbCP88PIY3zNROu11dFoLHI2KUgaLgB/G6DOAFk3jdCeg6Hgb8LJzzzjdQsSxoiLMLOT4YVXLXtx5Owot2mGpbxAmO9dnYvql5ZBGr1PR9787oN3UMEYEPex3uhdRHm77eSVgTO+kzSL55uJS4GbgOZSm2ZSx11Fu4OcCD1k8+x2Uyq7EJfUGzyIjn+K5dzLiRY8hgw47S5pWJ5NaxhmNFzY6/RQVEy5zfn87csAgo/HiMHI843Qr0JzcjLu5P9rT9iLRWxmdjn5hKeNGdN7xRDRfW2L086IBOB3ZZRQPBJdDzvPdj+OQOPqNQLYdlMW1OtcyPgflnO7cGGE22IoUn4jI+98TPNsFrAF2Obr8xfK59Wij+F3I6I5GkxG3x3IZLu+6P6JfG0px7kTRAWSMf6S8clepTkmdzlan15FBL0Cp9AyUBgYtnH7sR07XBHwWcXTz3CCKdLNQ1rCMcDoxDEXjLYSfxtmPovx8FPVXW+hncBLKSmxK/Wk5JLipZX9I+xznGmhT1dinewvxsNUk+7OVVYjH9aGKUJK9sR3ICDqA7znPPxjzzChE9t9EfxgZxLNakfMbjrUCGfWVwBmUR8ZKdYLkTpdEp7Uoul2KnOROSxn7UTS7Cp1r9KaPB5DTdaG06gcR40xHqXHchngvWhz2oMXCFh9wrrss+3s5ZJ9z7xxgScxzxumODWhrQfO0B32PMlTrGFgverG2G5qrkcPtQEaedDP6MKVccg7x3Ol6FIXWoONmiwM+X3L6mkkeQAWEQRS9otKQNDo1olV3iGhO4UUSnTYiB1oKfAT7Y27G6brQgrrbJ/9MVBy5BRVmwnAB+m6BxuhBL9rHiyrwBMFw7wMJnknDIT/sXC9E2ZxBE8oCxqDFMHCLolonUjYDjyNvj8Mi5ACDKDIuD+jTT/yq3IuMqBmlt3+O6HsaMryXKd/09WKXo9dExIGSHglKohOOnCZkNKsi+t2OXVroxyHE7ZYA38f++xinG015Yet1tFAcRIcLorAA8c64eXgJzX3SUyjm1FMXijjb0R5kFDai6HwiKqDEccjhTr9nUMFrJ1pcj0LOOw74MhG8tlpO9wZuXhuHk5zrMDRZQdhKvNM9jFao1ehEQBRM8WQF0XtdB4HfobTldMSBkiCJTuCuoKMQ1wjCEHan7cOwFjndjxI8Y7YNtlNejTbc7C6iOfgZaM9xjaXMS4A/2Cro4CnEo5fh1gfinC4ph5yEtj0eR+dne1Cm1IDs4wqi6wNVPXvpPz8Xhm6yOV94CFWjVlJabQzC9ATjTkyrEMl0AjlCEmdIg0cRJ0vCt5cQznPaLcfodK42B5xB1es0uAG7AxFeJOGQhmo8jRZk/7HHWBxp//eyF5Vpd8d1zBH1ptNhtLmd6R9mWqATpWQv5SzXBkk4pNfpUuFI+7+Xmyg9cVEPqEedaoFKMoZqIwmHbEM837bQVYaG4t+qFygA6IRJXErbiIpc/aiYkgpHWqQrUCAtbDjkEBlkLUcapytQoO5ROF2BAjmjcLoCBXLGfwDaLLRdTQr4SQAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle - \\frac{\\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{E_\\mathrm{f}} \\sqrt{w}}{\\sqrt{\\bar{\\tau}} \\sqrt{p}}$" + ], + "text/plain": [ + " ______________ ______________ \n", + "-√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ E_\\mathrm{f} ⋅√w \n", + "─────────────────────────────────────────\n", + " ____________ \n", + " ╲╱ \\bar{\\tau} ⋅√p " + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aw_pull = a_subs[a].subs(P, Pw_pull)\n", + "aw_pull" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Package the derived methods for later use" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "import traits.api as tr\n", + "class PO_LF_LM_RG(tr.HasTraits):\n", + " get_Pw_pull = sp.lambdify(sp_vars, Pw_pull)\n", + " get_aw_pull = sp.lambdify(sp_vars, aw_pull)\n", + " get_w_L_b = sp.lambdify(sp_vars, w_L_b.subs(P, Pw_pull))\n", + " get_u_fa_x = sp.lambdify((x,) + sp_vars, u_fa_x.subs(P, Pw_pull))\n", + " get_u_ma_x = lambda x, *args: np.zeros_like(x)\n", + " get_eps_f_x = sp.lambdify((x,) + sp_vars, eps_f_x.subs(P, Pw_pull))\n", + " get_eps_m_x = lambda x, *args: np.zeros_like(x)\n", + " get_sig_f_x = sp.lambdify((x,) + sp_vars, sig_f_x.subs(P, Pw_pull))\n", + " get_sig_m_x = lambda x, *args: np.zeros_like(x)\n", + " get_tau_x = sp.lambdify((x,) + sp_vars, tau_x.subs(P, Pw_pull))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Interactive exploration\n", + "Now that we have finished the construction of the model we can track the process and explore the correspondence between the internal state and externally observed response" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "import bmcs_pullout_ui as poui\n", + "po = poui.ModelInteract(\n", + " models=[PO_LF_LM_RG],\n", + " w_max = 1.0,\n", + " py_vars=list(py_vars),\n", + " map_py2sp=map_py2sp\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "06eca19989734958a85847a67c140847", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb8a530de80c4b0293766d6e0459da87", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(HBox(children=(FloatSlider(value=1e-05, description='\\\\(t\\\\)', max=1.0, min=1e-05, step=0.05), …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "po.interact_fields()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Let's learn from the model\n", + "\n", + "Exercise the relation between $P$ and $\\tau(x)$ and between $w$ and $\\varepsilon(x)$.\n", + "\n", + " 1. What is the meaning of the green area?\n", + " 2. What is the meaning of the red area?\n", + " 3. What is the meaning of the slope of the green curve?\n", + " 4. Is it possible to reproduce the shown RILEM test response using this \"frictional\" model?\n", + " 4. What is the role of debonded length $a$ in view of general non-linear simulation?\n", + " 5. When does the pull-out fail?\n", + " 5. What happends with $a$ upon unloading?" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGHCAYAAABxrm/RAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7svQd8XNWZ/v9azXKTLdmWuy333g0uGGyDwaZ3AklIgITU3y4Jv/8mW1J2s/lk/0k22TSWNEKogVBC6DXGgAGDbWzce++9yarm93zP9YBjZGk0mjv1HD6D5NHMnXOfe+c8523P2+wDDfPDI+AR8Ah4BDwCMSCQE8N7/Fs8Ah4Bj4BHwCPgEPAk4m8Ej4BHwCPgEYgZAU8iMUPn3+gR8Ah4BDwCnkT8PeAR8Ah4BDwCMSPgSSRm6PwbPQIeAY+AR8CTiL8HPAIeAY+ARyBmBPJifmcDb5wzZ47dd999tmLFir975cyZM+1zn/ucdezYsYEj+D97BDwCHgGPQKojEBqJbN++3fbs2WNTpkyxdu3aWbNmzRwWQ4YMscLCwlTHxc/PI+AR8Ah4BKJAIDQSqampsU6dOtktt9xi3bt3t9zc3Cim41/iEfAIeAQ8AumEgI+JpNPV8nP1CHgEPAIphkBolgjniTVy6NAhO3jwoOXkBHxVUFBgLVq0+NC9lWJ4+Ol4BDwCHgGPQCMQCNUSeeONN2zy5MnWp08fKysrc49vf/vbduzYsUZM0b/UI+AR8Ah4BFIVgVAtkZEjR9p3vvMdl4kVsUS6du1qzZs3T1U8/Lw8Ah4Bj4BHoBEIhEoixcXFNmHCBB9Yb8QF8S/1CHgEPALphECo7qx0AsLP1SPgEfAIeAQaj0BoJEJdSKQ2pPHT8u/wCHgEPAIegXRAIDQSIe7RunVrVx/iySQdbgU/R4+AR8Aj0HgEmoXV2bCqqsql+FKd7q2Sxl8Y/w6PgEfAI5AOCIRGIulw8n6OHgGPgEfAI9A0BEJzZzVtWv7dHgGPgEfAI5AOCHgSSYer5OfoEfAIeARSFAFPIil6Yfy0PAIeAY9AOiDgSSQdrpKfo0fAI+ARSFEEPImk6IXx0/IIeAQ8AumAQKiyJ2EAUFFRYbW1tZaXl+c1uMIA2B/TI+AR8Ag0AoG0I5H33nvPkUivXr2sR48ejThV/1KPgEfAI+ARiDcCaUcic+fONRVIup4knkTifTv443kEPAIegcYh0GQSOXDggOuljnuJRf3UNrhYDTSmKi8vt6KiImvVqpWThYcIqqur3XshBCRS8vPzTzv748ePW2VlpS1cuNC9d+DAgad9rf+DR8Aj4BHwCCQGgSYH1t9//32744477J577nGL/KmDGMbs2bPt7rvvNqyIw4cPu5dALrt377Y//elPNmfOHNf9sL6BhMqGDRts2bJlNm/ePPe7Hx4Bj4BHwCOQXASaTCJYBVgJpxuQBgTyq1/9yn7xi1/Ya6+95l4Kiezdu9cee+wxe/vttw2Lpr6BFhdWCMfbuHGjbdmypb6X+795BDwCHgGPQAIQaDKJnDrH/fv323PPPWevvPKKW/AhGSwU3E/Lly+3Z5999kMrgr9BDri1+L2+wTHefffdD11jS5cudRaMHx4Bj4BHwCOQPATiTiKPP/64vfXWW45ATm6DS5/1UaNGOcLArdXYEYmHRIgJEnnhhRcaexj/eo+AR8Aj4BGIIwJxIRGsCBb3V1991VjcS0tLrV+/flZQUPDhVAmqT58+3Xr27GkLFixwMZCGrI/Im4mr4MJas2aNHTt2zD29detW5wZbu3atc4354RHwCHgEPAKJRyAuJHL06FFbsmSJ/fSnP7Vu3brZjBkzbNiwYR87GyyRIUOG2K5du+zFF190rqxoBhlcWB38JMDOgFhWrVplTzzxRNTHieaz/Gs8Ah4Bj4BHIHoE4kIiBMWJV8yaNcuGDh1qXbt2rXMGuLdwa7Vr185+/OMfO2ukvqA8B8Fa2bFjh+EmO5V0eP4vf/mLI5RorZo6J+af9Ah4BDwCHoGYEIgLiXTs2NHOOussV++Bq4rF/XSje/fujmi2b9/uLAnqR+obxFBIBSa191S3FXESsrSwUHidHx4Bj4BHwCOQWASaXGzIdIl9DBgwwG655RZnGRCrIAYCuZw6SkpK7IwzzrALLrjAnn76aefaqm9gfWC5fP7zn3cve/LJJ93n4RYjvtK2bVtnzTRk0dT3Gf5vHgGPgEfAIxAbAnEhEXqoU4k+adIkZ10Q7yBOcuONN35sVlS09+7d2z796U/bd77znToLFE9+Ey6w/v3725e+9CX3NIWGbdq0sYsvvthZP1TKd+7c2f30I3EIkOCwbt06e+ihh5xV2b59e5syZYrbINS1eUjczPwneQQ8AolEoMkrLxYHpMDCzu/Tpk1zLqadO3e6mAdWA0F23FgtW7Y0CIfXsdhAAvxeVlbm/lbXQAqlQ4cO7sFAHgXro2/fvi5l2I/EI0D8iay4Rx991KVrHzlyxF0/YmO4Jy+//PJ6JWwSOWNcoMyP7D6Ij/uHTQcWMfeiHx4Bj0DTEGgyiUAO7EBZ7LEGRo4c6WIXfGFxMWGhXH311S5eQupvZEA6uL/Wr1/vgu3FxcVNOxP/7oQhEFEPeOaZZ+yzn/2sczdCHlgm+/btSxnXIvOE7N544w2bP3++K1RlM8L9ymYHIknGiHw/SIdHtYHvCdbboEGD3AbJD49AOiHQZBLh5j/VfTFhwoS/w2DixIkfwwQLZfjw4e7hR3ohwAYBK5ONw2WXXeasUDYJXFN29xGVAoQ2cV+yaPLcyXVDiThj4m0PP/yw/ehHP3KbFOZLijiERysBrJJt27a5zU1hYaETBg17gAP4LVq0yH7yk584cmNOfGe++tWv2tSpUx2G3koK+0r448cLgfC/NfGaqT9OyiCAC5JiUlxYxLbuvPPOD3XNIgSyYsWKD11ImzZtchZnogfxM+R3sJYhk3feecfJ7nzxi190xLFy5UrnEkXPLVLEmog54u697bbbHKleccUVdt111zkC+4//+A9HcD5JJBFXwX9GvBBosiUSr4n446QPAix4WJcUl1If9MADDzg1ZmJjuC4vueQSp1yAhYp7BsVlankSLd9PsL9Tp05O6eBVqSkQm8NlhGWEhYTrDYsqkenh4IDaAm6273//+25O4InrjZR1LLpEWETpc7f5maY6Ap5EUv0Kpej8cGGxIOMm4nfaARBkZ4dPXIydPYtipA9MXW0Cwj41SItUciwhSI7g+jXXXOOSOpIVD8GlhhsNdxWxGvAiXR13mh8egXREwJNIOl61JM+Z9O2IECYyNxdddJHRVwaLgxgDxZ+pMLCEzj//fOc2guCwAMgog0wIridjkHyCosP111/vyO3BBx90zdyoeYL0Bg8ebLgCyW7EDdelSxdXvEtSAH8/XRZjMs7Ff6ZHAAQ8ifj7oNEI4Aai1z1uItKzcQ/xHLtpFrlIoJ2FD1cR7QEaUiZo9CSieAO7fVxsEB0Ba+b8yCOPOAkdLKRTE0CiOGRcXkKGGHVPxGwgDFyCPEhbJ1aCDh0KDePHj3fuQFxfxFEgGk8icbkE/iBxRMCTSBzBzJZDQQgsgL/+9a+dL5/FGjcNO398/BSH4r5i90+GFBbKqbpnYWNFgJ94BzUiFKyyGEMkWCF//vOfXXZUMkgE8iIeg8IDWIHd66+/br/5zW/st7/9rc2cObPBAtywsfPH9wg0BgFPIo1By7/WIQBJ3HrrrTZixAi3a8ZFg19/9OjRbteP+4hdNK4t1Atw14wbNy6h6JE2SydNgv7MhZReLCbiEMRDIJRkDFyBuLGwzogdER8hLoKVEcls89lZybgy/jNjRcCTSKzIZfH72D2T9UR/mMmTJzskcGWRWRSRn8EyoSUAFgi/J9oNwzyuvPJKR2ik8KIwzWDOV111lZs3VkmiBwkHWGj/9V//9WEmFlYb5AIBR7K1aHEAZlgt//Iv/+JqSPzwCKQiAp5EUvGqpPicIBEW5/qKB0lTTaYKAXMkxkDK8ZgxY1ygmkF9C5YUc2Pnf/fdd7takfrOJZ6XA8uDzyeWhFAp7jYIGQkggu1U/xNcx6rj78SdLrzwwnhOwR/LIxBXBJrpi1R/c/MYPw4/OGKMkS9nRGOLnSmFZ/jVeRBk5EtFTn80AzcEXzQCk/iP/fAIpBMCkVgNLaQXL17svgPc+1gg1N5EUn35GxYLZEwmmc/OSqernF1zDc0SgUTefPNNV0vAwEeNuY6fnCwZSAXdIFwNFKfhtz65J3t2XQZ/ttmCABYSmyCsi/osDC8JlC13RPqfZ2gkgk+agGrEWmAHho8XPzQm/Q033OBqDdBeYicG2Zws0FgftKSN4gZANZadGimlfDn98Ah4BDwCHoHEIhAaiVAoBWH87Gc/c2eEGwv/NBYJv7P4k3aJP5jAIumY0ZIIefMEHskMiri2fMVvYm8c/2keAY+ARwAEQiMRqnKpZI7IXdx1111OP+lUi4EiNdxYuLeiHbjKqD8g3oK1c/PNN3vZiGjBS8Lrth3bZ8eOV1rH5m2tKK/uvjFJmFbqfaS+C/aDH5ikrU2BEFP0PfXm6GfkETgFgdBIJCJqRwMgRiTATq4+f8MiIT5ClgzWCOmh0Q7y60kfJesGF1mi00ejnad/ndmG8l123+ZX7b0D62xsu772bwOvTTosh6qPaV47bV/1YTurZIjlNcv52OYm4ZPU90FBQlM5vcmEN6WWeRJJ+EXwHxgLAqGRyObNm13QHKJg0JwK1xPkgUXyn//5n86tdc455zhBvMa4o9ATohWvz86K5ZIn5j3EwKo/qLWndrxrj2570ypqq21YUa/EfHgDn7Lh2C57Ysdc21S+x3q37GxdCoutoFloX4UGZnPiz8T0sMY/8xmTeW0SzYruff5VHoEkIxDaNweywOW0cOFCd4p0wMMqwRKhehipB0jlpptuSrhEeJIxz4qPP24f2I6KA/b8rvds5ZGtNrXDMJteOiIlzr2itsq2Vey3NUe3W3mtlIY/OJ78eamoULoxZt/8psm/awoaJn9OfgYegSgQCI1EyHvnUdegkpiHH5mLQI2skDf3LTfiIW3zWtmoot5yHQ1OiRMe0qaHXd9tsi05tNH6tOpk+cm2QiKoQByNcOumBJh+ElmPQGgkkvXIZjkA1cdr7Em5srZU7LWxbfvYhJKBlqvYQyqM1nmFzjLi4YdHwCPQNAQ8iTQNP//uOhA4XHPMXtn9vs3dv8oOVZe7gPqZxf3reGUWPSU3roKEpsYrpowQs7PPzqKT96eayQh4Esnkq5uEc6uSBbL26A776ZonbUflfru481g7v3SUlRa0TcJsUuQj1dvdnnkmIBH1WLHduz2JpMiliWUaFEmjxEwvGBSXKTPo06ePk3DKxtbGnkRiuYv8e06LQK2C1Purjth7B9dZ18L2dmmnM2y4srLychQ4zqZByi5kMXu22QsvBAQipV6pPZqNHZtNSGTUuZJR+o42BfSkoeiZLET66Jwty5JWzOgAZtvwJJJtVzzk81XFhRUXtLZzOwxXSm9Pm1gyyNoXtAn5U09/+EqlFuNeq/6gxhU75jVLAJlR77FunUk8ztTc3WzlSpM8g0mq1+yKK0xaP6efsP9LSiNAxik9acguRRGa4mkUohGbpX6NujfUl6dNm/ah1H9Kn1AcJudJJA4g+kN8hEDz3Hwb1qan/WH0/7HC3AIrzMlPGjwQyKqj2+zd/avtSE2F3dTzXCvKD7liXhI+JoVek0KDPf+8qbI2qEC//HKThIOpk5epSUjSMPEf3DQEsD7oeY/i8o9+9COntLFOGwa0/JBtQorpU5/6lCttQPopG9xbnkSadk/5d9eBAK6r9s2jl7Gp4xBxeWpzxR7746a/2c/XPm1tRR5XdBkfPomoyNaefNIk7haQhXam9u//btqaBsWEcTkzf5BkIYDrChfWggULnBo5bixaHUfknCCZbBupkXOZbaj78w0dgZrjtfbqniWuYj5fpNatsCQxKcZSlJZMtWlbalIcNXvkEVMbRSQbQj9n/wHhI0AAfcKECY406Db5j//4jzZv3jyjY2W2Dm+JZOuVz/DzXqDA/mt7l9nG8t1WohjNdd3OslaqDwl9SIXBPv1pk56PWe/eJjkGhON8BXrowCfmA5BnosUysY/3la5N58nvf//7LqBOWwuytbJteBLJtiueBeeLjAlWyPwDa60gJ8+GKkaDK6tlruREwh5IlqDCO3RoIF8S9uf54yccARTKIREahy1fvtz+5V/+xbm36ItEW+NsG55Esu2Kx/F8A5FF6kJ2WnF+K7fjL0hiIJ35QCBv7l9pL+9eZLsrD9oZKnL8hCRO4iL+SMGgagQkCmdaRYKMK6yMU0d+8pIJTp2K/3d8EaBtMaKyBNSxSiAOGvAdVfo2D2+JxBdvf7QMR4CakD2Vh+yBLa/ZqLZlNlnaWJ2liJuswXz2VR+xn6972hYd3CCF3k72ye5nO52sJg/VB9j27Wbz55stWmQ2blzw8Gq7TYY2nQ5A3/vnnnvuwxYU5eXlLj6CGvlY1f9kY4tvb4mk0x2cYnOtOF5tiyRieNfGl2yS6kE6Ny9OKokclSLv25JaeX3PMqvU3K7qOsFu7nlefALqtDQgbVf+bzdI2cV15Ukkxe7KcKeDcCz9kO644w7nyurZs6f927/9m1144YXWrVs3e/XVV8OdQAoe3ZNICl6UdJkSMYazRB7/M+wWG9C6q3skc9BcqlSpxSNlFVElP6X9UKP4MeaB60qFZa5oEOkSZeFo2xmk695yi6kRTsyH9m9MTwRoX0EdCEF0yARXFm2+I031yNwi4E7chL9lw8iOs8yGK5mEc8zRgooi7rkdR1ir3EJroULDZA4KHQe27mbfG3SDtVOMhmZTp7Zjjmp+FAju2WPabgZyJVu2BLEQdeB0/T7OPNPU58DXfUQFZma9KFeFosRDTtfOmzgJ/ZKyaXgSyaarHcK55rjdf2qIKyJpUpzf2snON2lAIHfeGdR4rF8fHApNJFJ3P/nJoAakroB6kz7Uv9kjkJ4IeBJJz+vmZx0mAggl4saiSRQuK9rVYn1cd51JyyLMT/bHzgQElCVoyN/s329K4Qos1gyWuvEkkgk3rT+H+CKAWCKdN7FIUN0l919BU/Opu/HFOROPRrEh1ev0jVm6NCg45f4pKcnEs3Xn5EkkYy+tP7GYEaDX+T/8Q8xv92/MYgQqKkxpW2a33mrSije7+GKzr30tkL7JUFg8iWTohQ3rtLYek8y5BoHrhMiI1HMiFBYymvEfWVPRDFwNBw4Eu0V0rnj44RFoKgI0GyOL77HHAvVmeslImNEmTTIrK2vq0VP6/Z5EUvrypM7kjmvxpS/H/2543jZLj2pmpzEq5JM+VBIGlen89/1Vj1it3AfTO460szsMiW4m6gNhTz0VVJ1PnWp2883Rvc+/yiNwKgJsSMjke/ZZs5deClLA1fHQxUKuuSboHUMDMnU8zOThSSSTr24cz42mTs/tWmDP71xg5SrqG6FajGQNCIQ2vE9sn2tUqfdsqc5y9ZEIX3Y6DdLf46GHgm6D5PCjtOuHRyBWBLinXnnF7O67zebMMdu3z6xzZ7MbbgjcWWioZYGl60kk1hsoi95XUVtlSw5tsoe2vG5bKvba+OIBNkj1GMkbuK6a2cii3iKR2tOnGKN1hZth61ZTQ2yze+4JdotMnIA57gY/PAKxIoAVQoW6GlG5RmNk8KnY0D7xiSCrzxcbxoqsf18mIUDcYZeEDO/ZPMtm7VlszSWwOK3DMFWqD07aaVLkWKjCwn/uf5VVyUKqs06FFEuKBNU4yHUapFEUZEIhmLrSuS6D9PnwwyMQKwLE4Vq0CLpVIshJ4zFcpKSEZ9HwlkgWXexYTrVcVsjSw5vsV+vl99WYWTrIWQD0UU/2GNimHmuIDoM//anZ739vhkVCcSBfbukcOQLJ4JTLZF+XrPl8COTf/z1rTvd0J+pJ5HTI+OcdApsURP/bbpnrGjiRJhYPsn6t5PdN9bF6tSavICcFg2THXHtt4Gbgd99lMNWvnp9fGiHgSSSNLlYyprrx2G7nxkLc8Ez15hhf0r9u91EyJlffZ44YYfaVr5hddVVggdBlEEsEiyTadOD6ju//lvkIkKa7c6dJ9z1wg2Zw1XlTLqYnkaagl+Hvraytth0V+22TiITugLf2usBGFJUpHqGFONUHEu20qqWCGMsDi8QPj0A0CCD7T8U50jdYtMQ7fvCD4H7y99HHEPQk8jFI/BMRBJQY6/qDzCwdY+Pa9dXP0dZBUuuJHvuqjtj7hzY4Wff+rbtYF/UtcXEONK7wS9clhsiX3butEn2p0vfzSAOn2nzlSrNZs4I0cJIyuM8IlrMZ4TV+fAwBTyIfg8Q/EUGADKjJ7QerN0dP694i8QVTFBUy5qrRFN0K6V/y+Z7TrUtbEce6dWZr1gT9zBFFrItI/KX0CESDAERx8GCQqvunP5n99a9mO3YEdUTnnWdqoh5YI96dVSeankTqhMU/GUGgTV4L45GMQVHhseNV9sPVj9u8A2usb2FH27JXwfJtCvHT1wOZif/4j6C4C4FEPzwCjUUACwOhzRdfNPvnfw7IA7JQzxC1KzS77TazoUMbe9Sser0nkay63Ol1sgeqy+3ZnfNs5ZGtdqym0vpvPGDDn1DF+RtyOaxaFVQD82X36rrpdWFTabbEP7A+fv3rQAoHi3bmzEDFecqUoAI9leabgnPxJJKCF8VPKUBgf/URu3fzq1a4a599Ze5Wu2LxQRu8XhXoR6rMBqvY8fbbzc46y9Sf1EPmEYgNATL1aINM9fnllwequ0Okw0YqePv20jn3S2RDwHqEGkLI/z3hCFAlv/boDnt+7WvW5tU59k9z1tk5y/dbn0PHrWUXpeleqIrz6dMDd0NrFT36lN2EX6OM+UAy+LA8II2B6ohJajgpvT7+EfUl9iQSNVT+hYlC4KDcWHP2rbDnVs2yy15bY9e/vsXa5re0ZmOkiEp/hnOkHsyX3dd8JOqSZO7nkMGH3tX48Z44YrzKnkRiBC4T33ZMEierjmwzFHv7tOzk+pVH3acjjoBsKN9lr+9dZisPbba+OW2t+dASa9Z3QCCvTbCTnaIfHoHTIRCRaEdVl4JBXFU9e55ekt3XfpwOyaie9yQSFUzZ8aJtFfvsm8vutb1Vh+y/Bn/apnUcbrn6L9FjZ9VB264iR2S1V35tpo3vMN5a9JGrgdiHd10l+nKk1+eRbVWlmBlimy+8EKTr0t/j2982u/TS9DqXNJmtJ5E0uVCJmGZBTp71atHRehS2t/YFRSruS06V93BVx3+u13TbVrrXPtl5kjooyvLIy08EBP4z0h0B0nWp86DHBxl85eVmtDvGGvEjFAQ8iYQCa3oetLSgrf1//ZShotGlUC6kJO36kXY/t8Nw13iqWL+7kaS5pOeVzNJZU3x6332B7D/9Y7BISAH/5CfNhg3LUlDCP21PIuFjnDaf0FwV6v1bd03MfOn3wZcebaLCwiBV94TGVb4solSQmk8MEP5TmoQAUiXr1wfWB8Qxd27QYbB/f7MxY4IH9R6oGvgRCgKeREKB1R/0tAgQ9CQvH3E7WovSFa5TJzO+9AQ/fZDztND5P9SBAJuR5cvN7rwzqDYnVZf0bzKu6DRIFl/z5v6+qgO6eD3lSSReSPrj1I8AAU++8Lt2mc2fb/Y//2O2aFHgbiDbir95gbv6MfR//TgCuDmxZPv2DeTaL7nEjAcFg34kBAFPIgmBOcs/BAI5csRs7Vqzp582u//+IHtGelcfXHWl2ac/bc38lz7Lb5LTnD7iiGwuIIu6CgCJeVxwgdnIkUHqN8WnXgbnNGCG87QnkXBw9Uc9GQGsj8ceM/vZz8z27g0IZdQos1tuseorL7eqNq0s+c12/SVLSQRI1UVht02boKq8rklCLrhEIRrvDq0LoVCf8yQSKrype/BaSYusPrLdWklevX3zNk5mPbRB/OMvfwnk2/miE/D82tfs4JSJ9kzlKvvj2llWUtDGfjL0JmWFFVuOuij6kcUIRIoFX37Z7OGHgx4fw4eb/fd/B2RyKlFwT3mNq6TdMJ5EkgZ98j6YyvSlhzfZ7za8aJ2bl9gVXcbb6Ha9w5sQlcNk0QwaFKRaIl2iRj/V7Vvb7i1LXZV8u/xWVl5bace1gORoTfAjyxDAbUVR4CZJ/dMrZulSs7ffDjoMQhKk6PLTp3qn3I3hSSTlLkn4EzpYfdT+sv1te2Tbm3Zmu/52ToeQg5DsIj/1qWC3iPouGTPyXReqVwgdE7/a+0JrnpMvfaxWSatNCR91/wmnRYCY2bvvBhl7tKUlZZd0XSwSrNaJEtycNCkIoJ/2IP4PyULAk0iykE/S59I3ffOxvfbCzoVWqWK+fmo32ylS0BfWnFgEeJwyWucU2lnqnMjDjyxGYMuWoKcHLk+sVuRtunQJ5P6VdGGTJwedBbMYolQ+dU8iqXx14jw32s2ij/XaniW2WD3LS/Lb2KTiQVbWsjTOn+QP5xFoBALPPRcUCeLSGj06UNSdMcPsjDPMkGr3I6UR8CSS0pcnvpM7UlthL+5eaP+56hHLzcm1f+x7iU0sGajguvLs/fAIJAuBm24KUnQJmOPuJNuKNN26UnqTNUf/uadFIFQSqVAwdZMCZY8++qjqgQrVsvhCtYAosPfee09Zewfdo6eqlCeourS7lyU47UWKxx/QoXpi+1x7YPNrTpNqRNsyu6jT2KZpZKFNhCuC9F3kS8aq38f555v16ROPKftjZAsCVJRHAudI3/iRVgiESiLLli2z3//+91pbxirhYp0dOnRImXh5duDAAW04BisZY7/Wn8dcMLWdzNbWFAr5EQoCm8p3u0ZPiw6ttzZ5LWxGx1HWo0UHK5ReVkxD19JVnP/2t6ZdgRnqqcXFZrgk/PAIgEBNjdnmzWYLFgStZseNcwkVdY7TPV/ni/2TqYRAaAn55ZJg3rFjhyOK6dKyaU+/Yo1qSTLny1SdqEDrueeeqyLmtcrmW+qIxY/wENhXdcR2VhywwzUVqslobTNKR6s2pCC2D8QCIQXzj38Mqs+R3CZ9F392hw51HpPPn7t/ld3EjSWgAAAgAElEQVS/ebZrfVuhNGM/MhgBpNfRtEJV91e/MnvwwSCFN4NPOVtPLTRLZLc6iuXKp3nrrbda165dHXEwjiudr0Y7lBz5P1tKMwk3V5UWpUq0k6Ice7TrfV+pgLyXxzjtcLBw/Dg9Au0KWtmg1t1st2Igg9t0tyFFPQy13EYPKs5xXT35pNkzz5iVlATiiV/4QuDKwho5ZVD/8b4C+fdunqWOhcvte4Out/M6jpQVFCOJnfoB/t+pgQBWKBbqzp3B46WXzB56KFApwE2FZeJHxiEQwyoSHQZb5Cvftm2bXXnllXb06FE7duyYs0IYuK/IFOJRJO2btkrpa45fNMoxV3LPCxcudMRBTOX11193x/Dj9Aj0b9XFvt73Uvty75musK9IPcsbNcjZZxF47TWz//1fszffDPL2VTRoX/lKEA85TSbNhqO77Mnt79rdm/7mKuO3HNtnFDz6kSEIcG9AIHgTuC+oMqdQcPt2sxYtzKgTuvZan2mVIZf71NMIjUQWyA/6z//8z/b1r3/dfSbWxu2336742TAXXMciOSxJ8J3atUAmjSGRCyS4dvPNNzs3GRZNG3R1/GgQgQ7NJVan0Uz/NXpAIK++GqjvvvVWINvOwvCtbwVS2/Vk0ry5f4XN2rvYfSoyK+ep7W7n5j51s9HXIFXfwL0xb57Zz38etKSlmyDPkWn1+c+bfe5zpi+9F0ZM1evXxHmFRiJYIMPZgZwYjz/+uIuDYHnM0w33R/nTiYNcqr7HkAGB9WgHrjGC8I15T7THztTXYf3FRB4RQJCbgKyR3FbvczvnHDNy+RsIiL53cL3N3rPUCOwPUMOrr/W5THUpnWJzpWXqxUn380Km5KmnzP72t0AAUVmYhsAm1eZk7PlNXrpf4XrnHxqJkLJ7ctouC35nLT4sZsQxcG0RB+miylReF4mZ1Dtb/8fkIUAOP6m75PRDKL161dstDg0s5FUe3TpHcZBlTljx092n2KWdx1mRssNyvAZS8q5lvD8ZlxUp+hQHIk9CMyjuD5R1kWr3I6MRCI1ETkVtFDuTE6MTN5cf6YUAJFKqynYeUYyaD2rt7f0r7aXdi+yoAusXdhpj13c/27q1CLL0ojiEf0m6IMA9QX0QVirWB8kVPtElXa5ek+eZMBJp8kz9AaJGAJn33ZUHbUflASuVLlZpQVvLU4V6IkfN8Vr7257FtlNzGNqmh53TfqiXV0nkBYj3Z0Xqf+qKfdFZkPbGPPzIOgRCqxPJOiRT6ISPqhbkmZ3z7auLfmuPbX3LWQINDjJsyJ6jgRRNgE5k0jX4vtO84Lh9ICJTcWmzPJtcMtgmKbXYjzRDgHuCB6KIKOuq7sun6abZNUzAdD2JJADkRH/E3qrDtqF8l60t3+Eq1KuOB6nV9c6DxYLq4m9+0+zee4P2tfW+of4/FqgG5couE+wf+lykOMgZ1l3V8X6kIQJYID/9qdn115v9+MeBMkEanoafcngIeHdWeNgm7ci4sKZ1GGa56hA4Vv066u1aSPU5siWk76rexklUKPXaBUjLymI+h7xmuXa2JN7PaNfP2uS3cHPxI00QgDjQRCPb6oUXAoVdiggJmLPZ8MMjcBICnkQy8HZooVqM0W37WC9JvFNYWG9lOAvFn/4UFInhtiAD67rrzHr0aBIyZF/R8taPNEOAZlBsJrgvkC2RLJFL6b7lFrMrrgh6faTZKfnphouAJ5Fw8U3K0VnAi6WPxaPOQSEY8iUUiKFpNHt2EAMhg+7qq4P6D68AUCd0Gf3krFlmL75o9sorQV9z0nOlsE0rY7v88o9k2jMaBH9yjUXAk0hjEcuE1x85Euw0UeBdsiRI22WxkCCmqj8bLCDMBAj8OdSBwD33mD3/vEmjyGzAALOzzgpSd+lKyaairsysOg7jn8ouBDyJZNf1Ds4Wgbwf/jBwV1AkdtttQeDUF4Zl493w0TlLNNUQSoQ0PvtZs0suCYjDF4Zm933RwNl7EmkAoIz8M+4sFgwCqFddZTZlipemyMgL3ciTQucOjSuJmkp621sejYQvW1/uSSQDrnxlbbXtqz5iHRTIJisKaZl6B4HS730vWCSQqmDRaOg9pzkgRYULlUZ876ZZdkAyJzNVmf7J7tLV8iP9EOBeQJkARW3IxA+PQBQIeBKJAqRUfsnB6nJ7e99Ku2fz3+yC0lFqeTvOVanXO/BvX3ZZIE2BgOKJXi/1vqeePzZT1ufWin1WoXoUNLP8SEEE1KrapW537Hj6yflkitNj4/9yWgQ8iZwWmtT/Q7WsgJVHttgDW2arf/o71rNFRzu3w4iGJ46uUX2LScNH+PAVZIJRSHh1V/nRNUYW9W7Eu/1LQ0UAQqenB2m7dJ8kI++ii8wGSj1ADeH88AjEAwFPIvFAMUnH2FN10HUKfG7XAqXztrKRbXu7/ulOsoTiMLJspJLsXBQxuqsaOrUcFRF2KmznXVgNAZXIvxPrinSgpPcLKbuLFwcW59ChQS1QIufjPyujEfAkkqaXl0Zeyw9vtXf2rzYsknGqDJ+qKvXiD9SGeNvWoPKcLCzkKsi68umZaXqlGzFtEiZwW0EgFAxGUrhRJegg2RliHqjtIt3uh0cgTgh4EokTkIk+jJoLO12s+QfXGh0L0adq2UwEwo7zvvuC/uf4uAmaT5vm3ReJvkDJ+Lw9e8zeeMPsgQfM6G+ufj1WUmJ23nlBDMzfB8m4Khn/mZ5E0vQSv6Vg+htyZW2v2G8T2vW3K1sNtlbf+4EqjrV4oLiK5YH+FZ3lfKZNml7lRkwbF+af/2z2s58F6dtHjwap2zfeGPzEEiGJIiS3ZiNm6l+aYQh4EkmzC4obC5n1p3fOM1rPlhYU2dnWyUpfesNynno6kKsgaMqu8wtfMGuvJlDelZVmVzmG6XKNCaQTD+Ga3357IFkycmTQYdDfAzGA6t8SDQKeRKJBKYVeQwLtIaX1Lji4zg4dO2hTKovtwiXbLPdFEQi9rsm6wgJBRBEpkzh3mFtzZLutUEZY85wCiTz2dq40P1IAAZInUNn9ylcCa4NYGPVA3gpNgYuT2VPwJJJ21/cDq1Q9Ro/C9lZU29EufX+PnfH8O5IwURrnCKX3nn222cyZgRsrjgSCBUTL22fV7OqhrW9Y71alqke50pNIKt0/bBoicu1xvPapdIp+LqmHgCeR1Lsm9c6IlNrOhcX2ld4XWv72Euu28a+Ws04xECTcv/vdwAppE18J9giBbDq2x17YtdDeP7TBumgOzMWPkBHARXX8uBkxjvLywLJE36quDCviHd5tFfIF8Yc/FQFPIqcikib/HlFUJsujwHIOaSHv0S+IgbATZYGJ86Bn+zZVpH97+YM278AaG9S6u53XcaQNbN0tzp/kD/cxBCCQAwfM/vIXs2efNesmzHFVYnH64RFIAQQ8iaTARYhlCnk5CqR2ks8b19XUqYGAIrvTELJvkDT55rJ77W+7Fyuk/4Fd1+0s+4Qe+dLp8iNEBEjZpTnUr34VxLsoIJ08ObBKQvxYf2iPQGMQ8CTSGLRS7bVoXrVrF+qs9lQectpcEAi928/rOMLGqGtie9+1MP64R7KrkCjh8Y5iXXPmBIWj1HvMmBFsGgYNiv9n+yN6BGJEwJNIjMBly9s2HdttL+1eaLurDikjK9+mtB9qA1pLJtyP+CNAcSD97nFdvf9+kK6NdA2V5pFkicGDg5Td+H+6P6JHICYEPInEBFsC37RrV6CDRe0HPR4SPLapmPHt/assV0H0EUW9bFLJIOvWQnUIfsQfAQiDuMe995ohWYPuGb1ebrgh6DgZogZa/E/GHzFbEPAkkqpXmoAq0t0Sz6tdvswqB/Sz6k9ca23zE6u+SmeSgpw8666U4ht7TLV+rbs4QvEjJAQoFiwuDkQzsT5uvtkH0UOC2h82Pgh4EokPjvE/Cq6N3/3O7Je/tEP7dtibl0+0VROK7ev91AckgWNMu77246E3uYD6xOKB1jJXDYv8CAcBUrO/9KXA+igtDdK2fY+PcLD2R40bAp5E4gZlnA6EBbJhg9lddwVaSOoHMW9UqS0c3ct6JaE6nG6JZxb3dydXmOu73cXpKtd9GGo8qDInWYJiQToM+uERSHEEPImk0gXat89s3ryAPGbPDiS9L7nEBlw6zdpPHGPFJf0SPtt8ubJ4+NFEBLAsEcbctCmo5aGm59QYB+nZyJR4qZImgu3fnkgE/OqQSLTr+yx84fSAuOeeoDaAIOs115h95jPWS0q8vRDVC6EGpL4p+b/FCYHNm82ee85s7lz1EVavF+T5hwwJanu8PEmcQPaHSRYCnkSShfypn0s2zssvB/0gcGeQ1klQdfz4YLE59fX+36mLABsCJEq4pjSIevNNsz/8IbBEqPfg+tJAyg+PQAYg4EkkVS4iCrz79we71OnTza68Ug3LJeNdWJiwGSJvcqy20prpv+a5+ZbnK9Ibjz0Fg8iULF0aNIaiYHD+/IA06G1Oyu7VV8etx33jJ+jf4RGILwKeROKLZ+xHQ84CNwe72N69Yz9OE955sPqoPbXjXdenfWLJQIksatfsR+MQIDHi0UfNfvITs9Wrg/eyEbjlFrObbgrUlYmF+OERyBAEPImk0oUkM4edbJIGsia/2/iS7ak8bD8ZfrPNKGhrTqPLj+gRoD0x1sfGjcF7yLj6x38MCgYHDPBxreiR9K9MEwQ8iaTQharMbWYbJTOyeO8mJ254ToehViSrIFGS66TwDlNV+pHqY0Zqb44P5Df+7iDegTTJRReZ9eplBnGcc05Q84HqgB8egQxDwJNICl1QdKqe3jHfntgx11qpqK93y1Ib2KabFSSoQrwkv7Xd1GOaygrN+rfqkjDySqFL0PSpdOoUEAiJEViWuCip9/AurKZj64+Qkgh4EknUZcFNRUYO8t783rq1WdFHrWVp/LT08CY1fXrP5u5bZWUikIrjNQn1brXKK7QJioX4cRoEiFcdOWJWXR1kzNVVDIgcP+m7fngEsgQBTyKJutCRSvSXXjKjBmTUqKAPyIlOdIdqym3+gXW25PBG1zXwmq6TnCWCbpUfKYBARUVQ40GmFZpm551nVlaWAhPzU/AIJBcBv0IlCn8qln//e7MHHggWo+uvNxs3zuyENtJb6tkxV2q5+6uO2gWlo+zbg66z5s3yVF+oKmY/ko8AleY0h5KWmRvItXsSSf518TNIOgKeRBJxCXB/UHj2zDOBOwtXFhXoCrTixuK/p3fOsyWHNlm/Vp3tok5jFQfxlyYRl6bBz8BqfPtts4cfNnv88eDlXLu6XFkNHsy/wCOQeQj4lSrsa3rwYKCHdeedQYvT4cPNLrzQTJpYiOxR4Lfw0HpbIFdW9Qe1Tuzwwk5jQs+MgryqPqhxBYVe2v2Um4DYFa1o0S/D/bhoUZCyS3Cca0cxqI97hP3N8cdPEwQ8iYR9oVasMHvoIbMXXzTr3t3sk58MFiIKCuWqqj5ea6/uWWL0Me/RooMhvd4t5CI/iIuakAe2zNZntbcJxQOsZ8uOYSORHsevqjJbuzZwPdJdEAIhmN6vX6AigAzN0KFB5lV6nJGfpUcgVAQ8iYQFL7tZ/OjPPx8QCMqsl15qdvnlQc3Aic89rgV9Y/ketZ7Ns3EikNHqXx52XUi5pE3e2b/afr72aRurzySQ70nkxAWJkMhvf+vcjdatW5Cme9ZZZjfeGHQbDOue8cf1CKQhAp5EwrpouLH+/Gez++83I6iOC+SLX/xYi9tcuZNGtS2TWynHpqi4cGibHmHNyB0XNxZWyP2bX7U96psOYXl31kmQk8hA6jXXi3bEZGFR88HvJzLpQr1A/uAegTRDwJNIWBcMQUWkv9VUys4/P3CPtGr1MdmLQgkdfq6XFqwEjeMK4u8RiTyvepRjtVU2sqjMesqN5scJBLhGVJjz8MMj4BFoEAFPIg1CFOML+qsb4Kc+FSxGqPFShJbkgets3v419qv1zzoCGSXXGe6sjtLI8sMj4BHwCMSCgCeRWFCL5j30y5461QwfO7+ngCuEFOLHt79tL+5a6JR6v9n/SheHyaqCRtyMCxea8VPNvlzMww+PgEcgZgQ8icQMXQNvhDQ6pI6bqFZZYG+rmPHF3QvtoKrjcWONV1ZW+4Ki7ClohNBfecXsySfNUBAgZdeTSAM3sv+zR6B+BEIjkUoFk/erydIBGvRolKijWzspnOboi3tEKZM7duxwz/eUQF1Lr25a/1WKw1/3VR+xhQfX27LDm61NbgubVDLIWuU1D70eJQ5Tb9oh0CmDPGhLS6Ooe+8NYlWk7NLT3g+PgEegSQiERiL79AV9X3n269evdxPsJHXTM5Tlkp+fb8uXL7dly5YpaanSJk6cqLqtIUqI+UiMsElnlOJvrlFBIfEIBkq9YafzRuDYUXnAjiq1FwLpq6r4K7qM1+cnrmtiUi4LgolsYlatCqyP++4Laj6o0Tn33EB2JikT8x/qEcgcBEIjEayNNooFfOlLX3Jo/eu//qsjilp9sRcsWGBf//rXbYUK8f7nf/7HrrvuOrVfUP+FLBiH1KtjkSrU0VtHMbeFengkYvSTtPvZ7Qe7ehRcWaQTZ/xAKPHpp4MugzSLYlDv8bWvmV1zTcafvj9Bj0AiEAiNRMokTtejRw+5no9L9PSwdenSxZFIjYrwSktLnUXSWzvCTSrIW6Sq4NGjR7vXpN1AD+uFFzC1zBBV7Nu33lP48Zq/qGfIPOulCvH/a5fbtI6SQUnAaJ6Tb5/oNtlZIFmhy0V69R//GAglUnFOg6jPfCbo9eElSxJwx2XeR1BjtVMaeIu1IVkl6xbXPN6VgQMHug1zto7QSIR4yCsKYj4kyQ+I4xOf+IRUP7rbhg0bHNao07ZSTj7PcTGOIXSXTgNXCbUgFBO+8UaQicVi1cA4v+NIdStsaW3zW0psMXGkSZdCMrLaWPJTjRuAKD5/pm8LigHl5WakWMvydT/ZqPgYXHwwzrKjrF69WiLcD2jP+IKk1Q65NayrilD/+7//W7eW7q0sHaGRSIFkPjqrsxsWBoP4RzlfaI2IvDlWCuSRq0wmLJNoB26w+7V4vy11VYL1uMwKCxPk3ydQi5sEXaXHHjObM0fBDRWosbvt2LD+1Lh2/ZwVkqP/OktuxI+QECDuccUVZmeeaTZoUKBXRq2O7zAYEuCZf1hivLjiW0uFezqKBhokCDXPckXn0EgEghig/tLTpk1zYP/85z+33bt3O6ukQg1++Llt2zZHILi3IINoB2SEWZknFdwOSqPlsxI2sDaoM7jjDrPnniPtLNDDQheLdqgNjCJZIDz8CBkBiIN+H5C+J4+Qwc6Ow2+X+sTRo0fVT26UffnLX9aesaOtWbPGue2zeYRGIhs3blRG5VIbNmyYw5eFHmsDi+SgCr1gdP4+XqqoY8aMaZRPkddjfcycOTPx145UUWIg6GIxmMPFF5tONPFz8Z94egSwOLzb6vT4+L80GgFitsRFFmoT+eqrr9rkyZMVAu37oRcFgmF9Ky4udhtlXF647LFcMnnomxbOgCiIh+DO4gGLE1jvpQAnMZCzlCXzne98xyZMmPAh0YQzkzgfVX5Re+21jw6KxhI1B354BDwCGY3AOfquD1UbgLfeeksJfl+zb33rWyo/2uq8Kgw2xc8++6zLQCXwfvfdd9t82iln+AjNEoEc7rrrrg8D5hAIGQzEQ74oNVvSenFlYRKmzeCGeOKJIB5CpfNttwVWiNxxqTToF/KeCguf37nAOjQvsk92OzuzXGjEpObNC64FCrvaETrXlR8egRARaK+Olt/97nfd2oUnhazSG9UegPIFrJJsHaGRCIHu0wW726qvOI+0G3S7Q3OJoO3ttwfiimT7KDaTSiPoUbLLpRL3bllqVyqtt8gyJA6zeXPgTvzDH8z4nXiYYm+eRFLpDszMubDpJQY7VpprZdq0kN77T//0T87qIM03W0dqrX6pfhWoNbjqKlN0LWgwBRHWk+1zTBXiK49ss01qOkWV+KA23RLSu4Mq+F4tOqpX+xjrIG2swpzEFDSGevlIAadLJMkMchm45AbSKvny0vPcD49AyAi8/vrrTsaJbCwIhd9J8iETlXgvbqzq6moXNyHxpwq5nSwYnkQac5H79DGlYpjuFpOZ1eA7l0qn6sEtr9nyw1vt8i5nqi6ks26+0MJQH86HJlMj1Oiqf2vqUKgPaXiuDZ5MMl+gDBh7991APPFvfws0r2bMMLv66sCV5UUUk3l1suazqXF7QzVhu3bt+jAjFMkmakSwUHgeuaf7JK/D76h2ZMPwJNLYq0w9SxQ1LTVSzZ2l3umPbnvLdS08UjNcSidKN03QQN497SXeIWsskEceMbvnHjOSGsh0QcL9m980ZWyYtoUJQtR/TLYjQJx3s1yoK1eudBYI2Vq3y609ePBgl4WFyCwWyp133unqSPh3pmdmcU80k+mVuJUtDnfh1KlTPywwTEqKb5TnsKNiv/3r8vvtnk2znGLufWO/Zj3UQdC3oo0SQF5GAB0LhOZeqjFy9R5YIPJDKze8EQfyL/UIJAaByHJaq1WV6rXj/DzxOwstv+c2095HDon8HP2SAcNbIiFdxLnq3bGhfJd1KyxR46d++tleNeqZcdOEBNnHD4slIvkc1/Ocos4LLgj0ybJYYuLjIPlnUgkBiKO85gNbV37cNh37wDYfO24b9fuOyg9sf9UHtr3iuNzaOWqJXWDTS6NX6Uilczx1Lp5ETkUk8m9yv1nEYnSXvLN/tW6e3ZI4KbUzi/tr16EmVX40DgHkZORCcOoANPkiE05aa9HEoxr3Qf7VHoHYEYAYNokslh46bu8fqrU1R4/Lff2BWi98YOVaQo7q92P6WSUzRC+z3iKRTLFCQM2TyKn3Di4UBBXffDNYrJAzQRcryjReajRWHN5i7x5YYweqj9rUDsOcJRLmOFpToZt4j4u9dG/RXvLyGRInIPZE0NwHzsO8ffyxG0AAF5V4wPbKktitx87K47ZHlsUe/b5LP7eKRCI/t4ol9ldLRq+gmZXo0UGPQa1zrDifBJfguXHtcm2AnsuU4Unk1CupZllO0uSvfw12vQRvFTiLdlQdr7GHtr4hItnqFnRa0PbQz7AGpAWB3L3xFdel8AtlF1gfZYH54RHwCMSOAFYDpLFFpLC1QoQh4tgpwuCxXb9DGjywQnBhQRCdFegYX5xnXQqbWWnzZiKSHBX76ndHKDlS7lbHbP3eSkGRvAyJh4CwJ5HIfUZ+AfUf6GJJHdi1VEVQEReKFudoR7VI5DlVitPB8PyOo2yaLJHCkBpPsUPaV3XYXtu71H6x7mm1uy20SzufkT4kIn0h13mQIk5GxFVVT+1NtNfBv84j0BACfOVr9L8qsUCFSKNCLqdqPVcpN9R+/bJY7qnX99bYW/trbb3iGpGAeKEIQJyg4Hgz69Yix7qKNPq1yrUzZGGML861oUXZ5br2JMKdxt0EaaiYyJ56KqiEnjTJ7NZbTZKdDd2Lf/f3AjV/uqnnudqlHLDzS0e5IsOwRuXxapu9Z6n9fO3T4rkcu6rLBOvUPHo15LDmVe9xI8mAKsqyJUvMHn00qP/gTb/9bSDbThaWHx6BEBBg44XlUK3/QR64pgiCrzxyXPVcx51lsVYxDQLiR0QqMjAUvzC5o8x6ijD6tsxR/VWOlCByra9+9ld8o6OsDQglW4cnEa48CxrqvEiZ0BMeUUXa+pIN1MhB+9kbe0w13Ey0vm0WYkbWuqM77O39K+XO2u1cZv/Q52LXqyTlB0RC29p77zXJoWobKIuEwDnDWyEpf/nSeYJYGrio/ran1l7YVW1LZG0c0JM8jwuL1FwIBk4Y0ibHzu2QZ+d2zHNxjRYyReSNcqSSJ+8EPxXqcBZKNg9PIlx99LAIpqPFxC54yhSzs88OCtsaeXcgMEnXwkSMdUohXiFZFVrfjirq7ayQfJFYSg+y3mbPDjpCYvlBICgB0LoWd1YUhZwpfX5+cimHAOSwWpbGMlkaSw/X2rz9NbZR6bfbFOs4pIg5QXN4QMaFS78l8D1Wj0Ftcq2rrIxOhTnqRipiYUuY5YRR18VN8RWnrimH8Jx0blxVNC6t884zmzgxqi6FIcwk6kPiLpunDLClhzcpiNfWLuk8zlrmpWhWFpYHcQ/aCUv91CUtEHei/uOyy0zlvUF7YfVh8JZI1LeAf2EdCJBau/tE8HubXFM7RRT8XHv0A5eGi7uKgHhbmRQ9WzZTEDxXAXH9VFCc2EYXEUZvuax66UFGVSJIg15LyKXMUZdU5OT37t2rvWwL19TvyiuvbFSvpTogCf0pTyJATFqvZJ2dLhYpvXTFS9GBT5f/Xty1yF6VrAoij5NVEX9Oh6GpK7QYkW6nnTAS7pKNcMKJEDZ4jxtnUrFLUcT9tFIZgWpZGQTBKegjcwpX1RYRBz+Ja0AgFPqRUFusaHh3xTXOaZ9jPUQSkAb/7ibi4PdSEQmvSwRxnIwpwo3vSpnh4Ycfdp0TIwrndIK98MILHYnQBZbXpWIXRU8iXE1cWMiJo8l07rlmXbum8vdGPttae3z7W8oe2WTDi3oqoD7RylTUmLJDOyuXtCBhOueuQg2ZmJO+IC77zQ+PQAMIRGo1xAlB0Z6C3hUKYBDPwE310u4a9dCpddYGMQ0ZGNZCgQ1+QhK4qUYoawpX1eT2udZOVgYp8akwUP6dLRcvVshNN93kHvul1PD88887hWAGf6NboieRVLhidc2B1rbsknGvNPLG4uauVjovI79Zrt4e/o1Zq8/rLhmVCSUDbEbpaLusixozpfKgTa3aiDqCpoGXGvk4Gfd07CmTyjhn4Nxq9f2qESlQ+b1LmVQrFNvYKKJYptjGMgXFVyuTCvdVnkwIAty4oHBFEQgfpsA4cQ1+x01VmKIRcNYMyAIX1mFZ7Xv27FF4sLtrAZ6I9aSpt423RECQzCCZjLGMw7XH7K19cs9oTCwZqABc+EH1QsZoy4YAACAASURBVFWkf2fgJxx5tdTvgREey+wT9B7JZNsVV5idf36ANUq8McrJJGjG/mNSBAFcUrOVSfXcrhp7RwFxyIRAOMFyLA4GsY0LlEE1WlbGmLa5jjAiAoeRbKoU5Q83fwjkhhtucDGROyTx85x65lyh78vnPvc5168dZeBUHp5EuDpYDzFaEO8dWG8PbJ7tdgytcgtlKkdf3R7LjcHnYOvQ9jZtRoSkYyTqtDlPP9GYEaDAD0kRSGOzMqfWqEgDDSpqOKgY36uiDkijh2IYVIMT/O4rFxU/y/TorJhGkYo6eBTIjRXj1znm+TfljTlKa++jDMUf//jHtnjxYic1v0Q1VLep/fY3vvENhWhTN0bLeXsSacrV13s7F7aTW2mgswY6N1d2UbYOZZeoyUIQX/KdBrP1LmjUeeOqIqbxjirCFyqeQZEfREKgHBcVD4yNHi2a2aTO+TZSMQ0kRSCK9uhSiUzay31VRHxDr0sH109dADFvuiWOUmFzL8ULR0tq6U1p9/1BLaCJheDaSuXhSaSJV6dPy07WRj3MsQ9Itc26gdKxMkeMjoMbNwY6YxddZOrSk3VQ+BOODgFcURAEVeKLpXo7a0+NLRCJbJfFgasKQmijlQm12+EEw+WiOlNyIgTGW8izk05kQfCflGKyxPaJHNHNGqnzIbAfGTWqncICockV7issD9J8aa9LC17+nsoju0iEi0HLShocEUQnsBtFm9v6LiDFfV3VMyTrBliiNUaBprJI7K67gmr/a64xO+ssTyJZd0PUfcJYG5XaZxzWYnpIiyiS6KjfQhrP7ayW2nWtUx1qqcW1pyyOVidcUn0U55jeMV+p67kuuyrVpdNr0N5yCQAfyb/zO2nHyMO/K2sL91xPud7+/yGFIpGP4hxkZz0luSVIpKsyQyHJhQsXqmQqx3r27OkC7qk8sotEqFegyO2JJ8zOPNNs6tQgayiFr1Ak+4vakIJmeamxC1NxlGsWReEgbWtffDFoY9u7d4CnD5qn8B2VmKkdd1mLEoPQ/zYproG7CsJwcQ49tmtxZS8u3UIboAyqYUWB1TFYGVV9tNDiwkJaJFWtjogGF/pbxGo4z41iyFWyrlapsHGFssf4HZn4cu23UPMhyE+shvjPyYNzxAL54x//aGvWrHH928vKyuzaa6+1SdLwo04kT60o8lNUzSG7SAR9LPU/dhIn9Ovu1CnlSYQMrOd3LbBjNVV2eZczQ1MEbtTSsmOH2eOPm/3yl4ErC1L57GdNKSZmQ4f61N1GgZmZL8bawE314OZqmy8CUXauHkFGFeRBMHxGaZ5dqVhHmdxWkAkBcdRxET3kkcoD8oAgntiBaneNupiKLEQOjlQg0BPkQurxIBHjGSfccdOkxUXNysmDeMhnJPtz1VVXOdcVBAVhtFRqfBEeEw36u/N8Ko7sIREWPqwQmk2xHUBqg6rpFB/bKvbZK7vflwvgsHZs3Wx0297JnfHLL5s9+KDZa6+pS4+KCOm3ImkGV33er5/8EuGnOCcXAP/ppyJAO1iyqpY7Jdxa1+GPBXabrI1d+snSN1C1GkMkQEV2VZkeKOFSLd5J23MKAlOl8O/kc2PNhvgizaeoT6EynoyxzXqgvYUKMMkAkEY76mh1Tr0kwgVJcq5YVN3ljiMRgJ4jxfp5UjjEfRyWCFXqkUr1U/Hl36ns0soOEiH4O3++2UMPBX58xP6oWUiDjnlFeS3kGx6pXU6lmtukQFrvW28FyrvERC6/3Ozqq4PCQaw678aq6/ufsc/tFEFgZcyXmwoZ9R1aUHec0KrC8kA6/equ+U7MkIZNZFaxiJZoFSWwnKpxjipZFFS+LxQZLtb5QR6HRZQExveJMCCVw/odciRIPqM00NpCNoVzo6Ohe+j3tnog7JjLxjVDR3aQSEQbCyuErCHcLuRex7BrPqJWtIdqlMqq0VmquTnq4xHmKCloYzNVlc4NW5AKCr04d9EY698/UN4955wwT98fO4UQYGdO8yYyq7A8SM19VU2bIBFqOVgmyaoa0DrX1W9AHtM75tqotnknUnBT6GROmQoaXHQyJBC+WjUqi0Qgb+2rUVA8sDR4eeT8CPSTbhxR/B0tIqFKnlTjbBzZQSKox/JgN4DsOJIbVE03ctCtcMWRLep2tkw7i1y7Wc2nKDAM2xRPKXl3pEsgEPSvzkhxuZVGXl//8r9HAB88MWDk0g/J8CR4jLAhGlVvikDmapElBkBG1QD5+bEyyKq6vHOB1Bskoy5LJNViG5GAOF0Mj+rksDAO69ywLpBSWaRzo5sh6cb0FOHcIAtSi1srgww3Fec2uSSokPf3TLYUG77/vhm900uUiksshLTeGMzLw9XHpJ670H64+nGnmHtxp7Hyeea7rKmsGcjk8/AjYxGIkAcpqwe0uM6VpTHPPVTPwM5cu3UCxvTYGKYdOTvxCQocj5Hl0a9V0OUvlbKqsKCIzECIxC6OSIxrQ/kHaqMQECIpuGhyufMScSCZ0lGE2F8W1VBljQ1W/IY4xwCdG71FaE7lx0cIZMfq9957QStWRAAvuSTmxkdIr0MiWAZT1Tud4kJEF/3wCGQSApAHKbn3bKqSWjR6VcECTCEg3fz6aGc+VVlGN/XIdwFydui5ep4FOFznbmwo63Qko0KMo9be3ocOV7WL3ZCCDLHwYN7IwdMjnTjOmSJECAO+4BuOVeIesU0ho9+VHSSCACA9K3C/DBkSJG038rLurzpic/evck2gylp0tC+UXSBrJD9l89gbeXpBh0EKB6k8Z5B4UFYWE1aN/mz/hqQhQM0CsYBVqt1Ywo5cu3MCyS67SgstgeQ+2oGjhjsEZdwTsQACx13drjx1gsacC9lSW6S9tVnzJzi+RRYH1eLuXMQauOSQWiGlGDfVAJ0TFge90qlPaafzKtWD+AYpx340jEB2kAh9K8aMCXpXxCD3Doyrjm5zD8agNt3Vl6Cvdl7xtUJ2Vx7UDX7UKfN2U8/0hAxs/eXLg5RdqYi631XYZBQOEkD3Pc8TchkS/SEIGuKawk1FWi6Nm7Zp0SWwjHYV8hxj2+XYJPn+ETpEGbeLtKoQOizGHNGIwSMc19OMyKdgYSzVA+sCQtwvkwmigAD5CXHAB+1VhDL0hPutr4gRlxUZVQg6dtTfIlIkyT6vuIKUgINlB4lghTRxLDiwTjniu/VFKpbcdB+l7sVXG2qv6kBwlb2rlrfocX2p9wy5ykKsUKdAkN7y0uyxJ580e+GFoAAT4qA5F4q7/tvUxLsm+W8nvoF8OgvqThEHAWPkRyiOg0AWafGlhSxBcVJwyaiipoFsI1w7kAgZV8lMUYUsCICjQUUA/Kh+h+j4fZOsDoLhWFEQCMWKpNVCCFhLzrrQ75AfdSl99W/ScnFdhZ0Qk/yrn5gZZAeJNAHLIMh4XKl+G2QS71MQsY9SFrVLj9MIskU+sDn7ltv9W2a7vunndxxlny+bLktHJBKnz/m7w1DjsWtXYH0gAaOuak4Hi2rziy8OigfJwMIi8SPtEOCeIn7BDhzLApkRmjetUuoqwWT6jLMAQwz0F6ddLC4dpEcIIpOB1FE79GQ1cWL+mr7LCKMR1VYRBS621YprrBUjMnee26Hz0NOO9DqekIeHCLuJLCjw66VMMVxu3fWcD4iHdxv7VaIBbLmZj9RWKP1vs7I3Dmk300FqomUNvCv6P7vjq/bkjnXP2ey9S9SNrZfL+mqp1OHQxqFDJsU3s299S7mNewL5dskq2K23BjU0oX2wP3CYCESyqlhY2bXPVRD58e1Vuq9qtPAGn4wjisyqdoqCn6VU1asURJ4p+RF27cnemUfSb0kbJphPHcoj26qdfArZVJFBsJuSDPGDi2tcqPlf2CnPhihuA6GkahFjmNc+mcf2JNIg+nIH1FS6vuadC4sVgOuiL1xsXRDr+iha3c7dv9JZOdSejGnXRxpZ4+t6afye27nT7Kc/DdxZ1Mt8+ctmN9+c8jpi8QMgM490VG4r0lUf3Fxlf9pa7fSqWJCxShhkTyHDcZ4yqy7vkm9nyHVFIJkFORSLt5EwM//1crP9Tf3SIQ8EDA9q8rTHZTBHAvlIwk9XJ8Pz9KDor7me4xwgl1Q4j0aedtq/3JNIA5eQPiHtRRpf63upbtIc586K146NndexWqVRbpurwOYBd2w6IxJYD3XQaZCMNWRfyMLChUUgXW06/UgPBKiwJmi8TO6pNVp9WXDpz4HbhwDz/mrFBvTt7i/xv8HaoaNdRTouQXLkODqIPMhASlasgzgHcRpcVCvkZiM7DIVfMqtc/EYMCDFQxIi10Y/562dfpVXRRx2LA+uJ9GIfukvuPZuZJIJWlhq6xFpUePIlcV3HcvNtmupCqA9pIy2reA2C6S/vXuQq4KuOV6tga4BNLB4UN5I67TxLS81uvz1wYw0YYGqd1uS+Kqf9LP+HuCGgddcRBr0pIA8WWrKqdutnJOhMHGNU2xz7ogLiZB3xQLeqExlIerQ7kVkVt0k14kDMnxgHOlvvqHAR0qPAD80tfhIYx2iC6KZ1yHfuqe6ynJg32VP8hDxytbHzxNEI4EN+aWaRCOmq1DrQ54LA8XXXBVlGcWh03zHOXQsra6u1A9tqv9nwgm2p2OuKF88vHSnNIS3wYY927QLhxLA/xx8/ZgRocoSlQRAZlVinFquFlsD4XJEI+k4UBTpy0AKL3DhB8ohmFfGONkm0NOjohyuKOXMOe+RXg+iwNJYqpRjpFP6NRcQ5YC1BeKQRD1SQH+l0MqtapppuSsxXNHPfmFkkgvUxd67ZL34RNE2aOTMmjaxEXO6q4zXKy9+rbKy12m21lw7XeUqpHKCgZxxqTyLtNCFPv2VLxOWMy2fQBZAFN1LvgOz4Wlke9B5focd6PRjsxin+o84hcFMFYoD8zoKcjMAyrlniL7vc/APRQnS2cFchnc5jrX7Xn12PdFJsiW30VQYV54KrCpcV2VS+yC8ut1PCDpJZJIL1MW9e0Ddk8OBAsTcOVkgYV6NQLjIC9UOLejqV3jEqXmzXlNoTrDBqP9Rq03Ud5CcWB/UeDE8mYVzGmI4ZSWFFbgMXj5yvTnqDWohndlS7oPjCg8edJeJkN/RgQ85PAslXdVU2Umm+DdTim4xx8vwjsiH03cCyeFQB8Qe3VLsAOaQSmT/Ffi6wL5LASrqhW76dp3PgDPytmYyrGL/PzCwSQWRx1apg8UQkMIX7W1DtPrFkkL048bsu1tK8qTLvxIGoNqdp1DPPyHm+xmzKFLM//MFXncfv+xKXI4kbnLWBaux6pa4SWHaSI9qpQxwsvuwJumm3jgDgcJEFIocj9MBl1VqrcRJDG47wqD9hzkt0Dkvou6HfsTbooc78CYr3UjxjuOY8VK62oToH5o+lRDU8RYHJocC4XEJ/kJMQyCwSoeUtku/qEuZ6qFMsl6LbHAL2iDfm58ShEyC1HrNmmf3618qRXB90HKTL4NSpnkBS5OvOwktQfPYe9eBQ3QMLLpXXxDX4eUQvQGGWoDJtYyM9Kqi2JgOJqnHIg8U3XtmBjYWGOMzTagf7iuZPBhWWE3LqR1QUeOREHvGZimVc1ImguOREyJ7SnJFTV5gj6fNv7Pn610eHQGaRyJYtZtu3S46za1B9HWPF9Z6qQ64lLVXq57Qfaud2GO6shZQc+/YFnQZ//vPAlVdZGZz7FVeYXXBBypJoSmIZ50lFguPvSl7kDRX+oe8EeSA5Qg+LyGB3PlGL71nKqEJOnfhAZ7l9WuuWS1YK7slQLNO8KfjjHAiIE5shtsHAmuipuMYMuaaQgydAjqghAfNkVbyfPHf/e/gIpOjKGMOJb9xotmFDEAug/qGsLOZdOIq9BLwhkrZ5rWyKiCQ/himF/paVKwPpEqrPkbsnVZemWzSOQnQyDdr/ho5RAj6AgHhEn4osJFJVI21UiRMgEIhOFTIkuHLovc0iS4C8rXbpyIyg5zRGD/Sd5AlKmgFNv/RIVhXqt2htLTjRqAnywxKCJKgxwdIgo4r6k/HFQeEfFlMq9RJJwOXP+o/IHBKh9S1xgI4dA8l3aiFidGURr0AEsUIxi84SXEzJLwWZaMi248LivKn3mDEjiIPQubFLl6y/ucMEgGI/Kqz3izC2O30nFfqRgeQsDWk96SctZCEXiuKIZRDbYNdO8RxCgGX6STYSxX/J3LUfFwlS3Y50OplgkAVaW1hOxDvobMg5DFdQn1TiQSINak8gD9JwEW9MBYspzOvtj316BDKHRJYskWP2SNB17+qrY7ZCgKp3q0725d5KD47TqP2AgGOVFp0K7TxbKogehz4k9I0niWDHjkB197bbzEhppoe8H3FDgAWWeAbBcALGkAe/Y2GsVIxgzt5ae35XjVt8CXYTUCbFlh07i2tX/ZzWMd+u6iJXlSyNDrTNS/Igu4pzgDjowQEZUun+6/WViteofkPEqKk7OZFCnQvkcXnnPLu4c1AASMaVHx6BCAKZQyLId7RXDw7UZwcNSqkrjHts9p6l9uj2N+22Ppc4FeDC3CZKjBQXm117rRnCiVghKPDmp6TTLaWuRWMngyVB3QOxDIrkqLam0hqJDiTVWYxJ08WNM0DR48EnduoUzOH2IbaBUCDckSqLL2SIpUGsZr4eC+gpIkIsV5wG452Cv+HKCjtTLir0tUbo9xKxIqSSfAps7BX0rw8bgcwhkdGjAwJpIVmSGAPqYYFdKUmT9cd2SpV0tVwDx+LzMTSLGj7cbODAQL7E617FB1cdBV0n5ESeUs3GKxIDRHb8mJ4jA4ldO3EDMqk6KQUX62K6sqmo32gplmilbxRxD7Xkdv9uToGERoye1bid0x6ZHcRlsJrQ2aKokRgNriqyrCp0XhdJCfdSCTOSkttGsRriNUXal7j2tzqNlHTrxg0hf6BYEQiNRMrLy23jxo22kuCvRn9ZCL169dJmOV8JVNtt4cKF7vnJkydLC1BigE0dpPXySMFBEeH0jiMlv91KFcbd4pfpFSkkTMFzTqcpHdDWnOZGuHSIZdB/Y71+Z7HdpH9DAASRCYATwyAwjhoucQEqr+k5Toe8VBi4p4JmTUGAn+D4Rp0b50EBIG43Av9YTj11PnT6I0bDOYxQzGagCKREfrlkk14qYOnnEB0CoZHIQXXN2717tzQQg74Yi9VBj9+Pq6qa35urEHCf0lNfVnHc+PHjJSLbO7oZp+GrWuUVaqda5mTkcWOhBtzgoHhQJGwVFdrydgpcdQ2+yb8gWgTYhUMWpKzSpMn141YmElIdBMlpiIRr6grtzCEMSILiP4iji/7dRT9baHt+wtCI9mNDeR2WE0F8+qPjdtuq8+Ac6P6HK45/U8+BZYGbyjVqEhHStKkXP93vyI0krwYlFGD8QROCQGgkUqtFsL1iFOecc447kTvuuMP27t2r2PcRZ6F89atfVV3gOvvud79ruZIm6a70VKyUTB24AiCTqAYEgnTJX/9qYuIg6+qss1LOTRfVuaTYi4I2q3SqPO5cVY9JpoOdO7VyUDu1Gd20yI4tzrGZ6ldxiQLKWCDJ0KM6HXRUs1frf5GWsRAfoowv63wW6byoeo8MivwgQDKqRsn1RiEj1gepuRFX2+k+xz/vEYgGgdBIBFLg4bqVyfooKir60CrBfZWnuEUXpaHuUHYRZLJfi2YpablRjGrpQkFGBw4csBzFBtrIrdMUf+1xZU8hiLi/+oi+WAVa7Ju7DKqED7SvsDzIuEKJGCFJqtEJoo8Z85EOVsInln4fyEJ7XMLiNDSiMA5tp0pxM02bnthebc/srHHSHXih1KLCLaj05h4m6+P67gWuaROZVsm0NDgHxNHJDiMYjsXhzkXngbLvYplLT2yvsdfUuZCqcRkaLkOM+hOyq/g39ScXK9YxVY2oCPwn83zS7y7yM44GgdBIJPLhEMhhpaOy8EMoNVKY5XcWfRb/jqrrqFLNwyG1bI2WRNavXy95qGdUHrFGYZC2asp384cEFc1Jn/qacqXfLj600b6z/EE7S02hruoyQTo/Zae+LPx/K45kb79t9pvfmL3ySpCyTNYZAXQSBvxoFAIHpUFJHGCFsqreVf+Kt/cFNRAHZHYQKO4ptxTyIkiNUCk+TDEB4h1kIbEIp8JAi4q4xmJZGNRtLDvRJx13FSm6kAskQ29xajgGiyhQ8yUtF/cb9R0E+CGXFDmlVIDVzyGOCIROIlga1yoVFfcVlgmBdsgEEuGBNVGgzCIIJdqB5bJXx12q952nYx6/8sqgyDBGxd59ag714q6FNu/gWuXxF9mBGi3myRgIJyKY+NZbQVMtpEv+4R/MRo1SfigCE35EgwCL7iNSwn1R7h2kyCu0gyejSuuviwvQk5tYxxg1b2qj1RVrhIWW1qv57r6M5lPCew3uqOUiPtrEzpHUCER4TEwh3lAWFd0wZWVozj1FeJzL+Xp0lwuOzDDqOgp1HsRrIEKfVRXedfJHDhAIjUQImhNAnz9/vmrgZsobM8a5tIiVYI3w2Kle31gSWCMtGrHTHqJMr+lyh42XRdJTTagKZs0K2rzGmOV1UKQxd/8quQQqXIV6OxUExjpq1DN98aFNtrl8t9wHXVXV27X+QDo+C4okn3zS7E9/Mlu0SE5sufUmTTK78Ub5I1R93giCjXXe6fo+spEo/NtAYFwP6jfo+ofC7DYFlOEDMqjGydKItFpFQp3f6ZSXLDFD8MaCIG0Y0iN7arPmu0GFKWSKofJLsH+n/ibucIQx+ERWGL93EWkwfyrGidmQUpzMc0nX+8fPu+kIhEYiG6Rj9fjjj9ubkiOZpAXxSS2Sl156qbVu3Vpu/wq5+39hpAHzt9Gq8YhkcUVzSj1VlX2uYiEziSEQhCaGgAxIDIMajl2VB53YIpXlg9p0k1y1+nDEMCrkFtsg8vjdhheVKrrLPtvzXJFIA/IjNJCCOCAQEa6VlQUdGceNC+IgvgL9Y1ciUnFN4R8xDnbtSHVAGuzaWYBxUbFDH+wK/pq5jn88+J06jmQtuDXaNBxQPGO5LCSKFmkNu12ksVVkwfwhQlJwUb8l7XasFHH5iWuKrCrcVmRW4abygfGP3Rr+iSQgEBqJYGngpuomEUCysXicccYZNmzYMOvZs6fdf//96pnUzr7xjW+oXk4Fc40ZtMCFPJD+YNfeo0fMPcL3VB5SJfImfYH36YvZxqXhlhS0bsxs3GtZ2CCjh7e+YXdvekVBTQU0O4+jG3T9x+I8II+lS4MujJddFriwMjhTrX5ATv9XjDZcUxQCoiz7lILjs+TywQqJ9LBgkT1XWVUX6AGJ0Kc7FYLJkaZN1GksUloxcvC4qvbJdYVFwl1CZTu1G1SI91VsY7xUcVHGJSDuh0cgVREIjUTOVD8PHnWNKxXD4BHryFfGUh4rClXbsmysb9+YAs8s/GvLd9ib+1a6RX9yyWBnhcQi+0521+qj2+2uTS8r4Fljg4q6qUCtrRYwEkcbGFgbkKEI1kjl9QTiAHOZffpJNTUprfzExYO+010bK53bB4KgorpAyXS0i52hnftXemvzIjJJVptVVH3JCiPwjeXBT1xuyKmTUgx5BBpbgVwKcRjcUVga16njHzpb/J6XCuzXwK3r/+wRCI1EwoS2u1xX6hgSVKgjd0Kh4omixsZ8Lgv/4oMbVS+wSIHI5vbFXjOsm/qdxzLWl+/UIrFYRV57XVrm+aWjVKwmafaGBnIlCEZyHmh/0QvFD4cAO3QyrN7cX+0K6dB5mq+2sbh+SHPtpuyqsYp1sGMfpywr3D4UAyZb4wlNLdR8F8rioKCRVrfEaPbqeSwmLA76iZMN1lsFf/TgwGIivkFQnEyqKLYe/i7xCKQEAmlHIlRvSG7QegEf/TKU3mstYwuEb5ULC+uhorZasZDuSvPsIzmI2FJplx7ebM/tVG2HRj+5xM6XzEmfVp0bvsikAiHXgoAiGVgppvvV8AnE/xUEy5eKNNCuouf4Hi2+ZCSV63mIpUwxgZt7FahZWJ6riaDOI9CpImupAfdh/Kf74REXHQzqNmjehHwK84U0Ij+pgKdmg85/BMVbaK5UiSMDr1NyllOyM8NChMcfOkMRSDsSkbPHiKC0wP2Du0ySKbG2wcWF1bGgSAVZZTa1/TCJzbWoP5OqjpsAl8v7qjF5WdbMpmO7RRyd7Pa+l9mwop7acUZRsMiqwSMGS6qO6aTlU8its9iSVYW8OlbHIhcwD7KWkBkhUM5OHXFAdu706+4ul1UySIOOhbindmrSNG1aowA5ulukE9MnnUJA0muRFekoy6hM83c9RFD21c/eevigeFreqn7SdSCQdiQyTSeBFZJDMJ7ufTGm9YJFsYQRp3QYpmyXDs71lN+s8XCU19KDYYl7FCk1+Oae59mVXcZrh1zUpCr6Oq5Vxj2FxYHmExIkayWPG5FYJ8OKCmyC5J/onu+qyIkREHRmMe6khTnRO3aIDll4tKnel5sKsiMLjCC/a0Cl39lQMD+6/NHilvliKaG9hT4V3QB986aMu42z/oQav2qmAGSHSkrssPpotDnvvCbNpo0sj8mqUOcR66DZFJldZGFNFSF9pfeFjkz+LoVUi4vLJlORpHNZQXwpqjgcKw7RvC/SQW+PFl5261Rdv7W/xsmTL1LcAGVZ+lZAEmeV5Nikkly7VNpVaFklw+KghoM2t8ilUwBIGjGuKjS3dipajqwIkunFIodRyqhCxHCaXGwTNW/SiVNJbyua6+Nf4xGIBYG0I5EHdJbdhwyxKxWIHk4gOsmjtUQVJ5UMlKBdW6Vm9jJk3z82JPMi/fugGp34DRaU0p2zZUR6kLMQO+LQQgx5EHimNoLFmPoNpMjPVJB8vBZh5EgoqEv0YK7EXyCOVQTzNccVsjpW6neaUtFPpEgTdpaGrAsC5KMlMYJ7DbdVS/0tWTUoicbKf55HAATSjkTWatJ7ZYmM105eilJJHwg1XthprCtUzDtdOq9qZOwnPwkKCknnCinnnwAAIABJREFUlVRLNpEIKrkvy9q4e1OV66aHYi4psPrh3D+Xydq4TK1X6WWBXAekwiMZA6JDbuR/11e5GM2RE8F8AvrIowzXHL+kFGKC+rS6pYIDaZFc/Y3f/fAIZBsCaUci2gharRziH1AjkgID/a+C+mIpkn+xefPM/vznoDiS+hhZUpk+XFW5iOL1fTX2kHSsZqu2g9Rc4gqMHrI8ZipT6dqu+U4sEAVdFulk7eJ3yT3FHJ9UNtgczZlYB3UpEB2ZU8iof6ZnvpqL5bl6FNxYyXCxZfp9488v/RBIOxJJK4iRZaES/emn5R85ZIaUCSRCT/QMHIR+aIS0Rj4fVGeRI1mM8qx29BTcYXUQNxgiFxA9LaiTIOuKgHMiBy4rYh3UcpBZRVMquhgu04O6DsQO+2qe/TXPQcqoQu2XGAdzRnLED4+AR+AjBDyJhHk3rFgRCCu++mqQwnvLLUFKstxxmTKwOHD1IHxIjGOJS9MNsq3IWiK4THyDgsAB6FjJ3KDArrPiHbiuEjlwoyELT9Ei0iNUv5NVRf9x9KqKZWEg1HiGHhQuEvOA9LA8mGuiM8ISiY3/LI9ArAhkFYlUq0J9X9URtURd7+IXKOz2UIV6VNIkJxBm0eS/Bt+jLo720ktmL7wQiENOnWp2ySUZ0+aW9FysDho7sZN/Qy6gl3fXuh09GJWKJKjnoMDuUhXXkWlFDCFRo1q1HMQzDimngQ6AxDrICJujBk50AGSeFCgiZIgrjUA5DZxo3nSW5lpE2bgfHgGPQIMIZBWJ0HwKtd4vLPpf9ZVoad/of4Vd3+3shgnhBIwEzw9UHVWGToV1KmznYiGn7aiIMi8EIjVj9Qg2+8EPlIKkCvY0r0in0I5FGd2qBarQRsfqTWVb0cubQXou5MFiDHEMEYm0TdCCTAox1kakbWxEFh4XFV0AqUfBaoI8cKMhNUIzKooYR6m3CKnEZFf54RHwCESPQFaRSPMcag5KrCRfar2SaO+i3xsjtkjzqjvWP+caWP18xOeV2tnbCTfWOdRLxbZuDeRM1JTLRoyo82Xp9uQWkcVvNlS5YPmGcsLOwUDwEEmP67oVqIAzLynZVcRdUMm9c0OlPSuF380iOkjj5DG+XY59ukeBXa2AfjJSiNPtevv5egQaQiCrSKRA6bjoWT087v9aQW6+dZD0e2MGO902qgvpUlhstQTN6xvTp6ugoCjQ9Tr77PpemdJ/o+CORklz1FqWQDmxBGIeR7U6lym2MUHV2ciVI4RI/KAdVdkhnxEBfLhhqwo6kBmJyKVgHVHtjiQJwfGu0qdCYoRqcSyiEQqMU0XeSc8zTz88Ah6BpiOQVSRC+mhhboHqESTcGMNAW+vC0rEKvvZ3Gln1xkXKykwNUwL3VQoURTb2dGnDSqCcvhe4q5AnQYX2oOIKLMzntM9XP3oK7AJJEgQFERIMc8iTpgA4irhKx1VsA1KDMKhDoS/HUREelgcV4xAbmVWdZCFRHNhBsQ90rGiB66VHwrxK/tjZhkBWkUhTLy5y8UOKekR3GIoK07ArIdYWmUr0vnh6hwhkfyBnzkkX6W45W66qS+S2mtw+zwYq2yoR0h6QB3UcZH69qQD+O5rTeyI4gvqQBlm36GyNLMlzFtFEEQi1JxBIsnqKRHeT+Fd5BNIfAU8i6X8Nm3QGuIboFkgwmmyrbXIJLdMO//Ht1a71rKQOnSuIRRq30BVd8t1Ovz0a5iGNKs2HnhxYPtRzYGkQ66AIEKuI53BHQWLoVtFDnSA5BDLZZVZ5ocOQLo0/rEfgYwh4EvkYJNnxRJCqHDR9QkGXnt/EO5D8oOgOjqDAbpR29JPltqLlbHdlL4XZ84K0XMgMeXWaOM1TPQcyKbjVqHRnTpAGsY2REjwkswrNKuTVE5k+nB13iD9Lj0B0CHgSiQ6njHwVcuu/Wl9p90jTau1JmVYKb0jSvsC+oMZPVGknaqCS+3vN5a/bgzqOkxOrkFSfoZ7pt2pOpA/74RHwCKQGAlnxbVxzZLtkN6pVLV1s7Zs3LiOrwcv0zjtmC9TRkCZZ554bBNMbfFNyXkDgeZtSdMlmImDOLp9sJlxH3cQcQ0QYU2R1UN/RR+0CS2GTkAb1JgTrqR4n1sE8lsr62CIrhE6AvSQ1AoFhbYxxciNBYBwy8cMj4BFIHQQynkQOVpfbvZtnaeHcIpfMcNfvI9qxo+KAazbF+4rzWyuIfNKunBTf/fvN7r5bKoOvBwWFg9WXhIysFByz91Sr3WyNCgRrXfU2DZWINRDvYHePLAkZTMiSkGmF6ygMMURcVkjBI3RIzIXsKmIxpBLT3RChQ3pyIAlPHIbYC8TR0mdVpeBd5afkEUhDKfjGXrQlal375r4VCszucGm50Y5dlQeURrrEfr/xJau143aBeqZ3VM8QN4hGV1aaPfSQ2axZZps2mU2alHLZWASod2uRJtPqmZ1Sp92rVF2RByFxYgsXKstqhmId58tNhOURVoYu2VX7JOmL1AhxF6rckUmByKi2IbuKtOEpyvhCcmScCIR4jM+sivZu9a/zCCQPgYy1RI5LooTWta/sfl/FcrsdAfRv1SUqpA/XHFMa6Wp7ZOsc7ZpX2tnth9jZJSe6H9YokIAuFvLuv/udck93mQ0bFggrdoqepKKaSAwvIkXX6USJPBAYJEB935Zqp07bXCwxSBlNWBxkM13TNUiJpZtgPEdQDBhYGFg7WBsUKKJbBXkQOG+t2o1BsoIQN0RuBN2qy9VXhGLARAszxvPc/bE8AtmGQMaSSKXEFucfWCv5i/laUA/a+bIkLlLzqIYG5PP+wQ32py2v2wuSN6GqfZra3uLOcgMXFtbH975ntnJl0BvkC18wQ9qkefOGDh/K38m0QjOK+g4WbNxEb2mxniO3Ebt/FmzcVqjp4i4ahGaUflJ4F2+XVSQ9d4tShRdpHsRdqOuAxMplkrSXBRSZB3NANXeA5tZcar9+eAQ8AumHQMaSyCHFQn657hlbfXS7E0sc3Ka7dZNib0MD8nls+1v2qB6tc1vYBLW+HdOurxbiwuCt9AehwdTy5cG/6Q+CrAkSJ0kaFNxRO4Gm1QOyOshykjHi3Fb0Lf9U93z7QlmBEx0M20VEAeDTind8f1Xlh8WAwKLicRsq8rqxR75dJ92qDoq75Hlt9STdMf5jPQLxQyAjSeSY1HpXHd2mPt6r7GBNubKNBmkBlYJuFOP1vcskp7FFXflqrGPLIrlYztTCeyKgTn+QZ54xmzMniH9cd53ZpZea9ewZxZHj/5ItcldRuT2bTCvt9teIPHAfsUAPVx3FFFVwE6AeoBWcTKsw5KJo8IS187Z6pr93INDXwnXFPHBVjZQ6LvpaWB20vy3RJBKhrxV/tNPniDVyue7cudNmz56t/mcDbLASPlqdpJ6wSy7Yd5RVuGXLFuskF+z48eMlMN3ZchroFrp27Vp7//33rUWLFkpEPNcKCgoaBcrChQtlvK+UMS9rXqNly5Y2XRpzpcpszAtR3ZrzfOqpp+R53uWwmDx5clTnC4689/nnn3fzLS4utrFjx1q/fv3qPO/Dhw8bGC1QtuY111xjrVu3tqoqKYcLM56LjBL1E+I4ffv2rfM46fZkRpLIweqjLqZxoPqI630+pE0PLaRdo7o2r+xe5EgE99Xotr3tvI4jPlLq1ZfgQwL5P//H7PLLTXdC0HAqqqM3/UXEPFigH9tWba8pUL7qiGTYtfsnDkLnQNrNQhz0x6DxE/GPMNrOInBIFfn9snwWHKhR69tALoU+IzR3+rIsn3MUKCc1F3l4+nbQUtaPcBE4cOCAzZ8/3374wx/ajh077AtytfbUJgcSOXbsmL3xxht2zz33yHg+2yZOnGht27ZVQmG707c0OGm6FRUVtk/tnjkWLtTGDua1fv16twhPmDDBEQef3RB5NfZzTn39unXr3JzPOOMMRyLRnu+aNWvs7bffducK8cydO9cRyjh1KGX+p46X1D/oZz/7mcP5ggsucCQJZhzjtddes+9///vuLc3l9m6fhnp6p55v5N8ZSSJHaiqU0rvZEUiPFh0ciXSW8m59g9euEHnMP7BOCrWV2j0PsKu6THCusA8HFsfMmUF21g03KKWot9T8Tkr7re8DmvA3xBAJlK+TpUEDKFrOvqgGUJv070J9/GAFy7E2yGoaqx0/mU3xbjkbWTPok75alsYKkdcCxTteVIU7dSbIqo+Q9YM0yjDVdVAQiCwJsY5U8lqVK3iEnD3B/cYvg024iCe9VXxqXZ1wZWzaXtXV1W5XvXr1anfU3bt329ChQ93OlkWLnf7o0aPdgse/a2tr3YPX/fKXv7Ru3bq51w8ZMsTy8/NjPqmlcu1iyXTo0MEdg103C+9eJZ7weZHBojlq1Cj3/NGjRx1xDRo06O8+l3my6+dxXOnz/Jv3NMVK4TiVyqJ877331J36kCMrsOnR4yP9u40bN9r27dvd50UGmPTp08f27NnjHueff74jHwj64YcfducJkZxsPYEt5IGVtki9hLhGruvnCdw5zqnn/HcApPE/MpJE8uR+Ki1oKy2lvqp/GOgsita5J2Iap7lYkMj68l0KTh+WjEZX9ZuYpGD8qL9/tUxQ3V2mO8R0J57mSPF5OshwMkcaLNjvacGeL9cVPTxo8UqwHFcRQeozHHkEu/54CyIyj0oFxMn02qTPJlj+jlxX9FCncLGTyAPBwyBgnyNrKGjylKrNnTZrzi+o18jbcv9h1SVj4M6brtTq6aX5rh6nMQMXy5IlS9zCWF5e7hayJ554QnubmXb11Ve7HTcL4IwZM9ziGHFjsfBhmcyRK/Zb3/qWI6Fn5JqFBCIL4mkbrP2/9s4Eusry3PcPIQkQCPMoMzIpk4CCgkyOaBUt1nlaWo+1darnqvWervZ4dHmX1tVBvR28FW2PtVJRUYugqEdBFFFRARGQQeYZJMwZgPv/veGjMewkOzs7ITt5nrX2SrKz9/e9339/+/m/z1zCAr/66qvgvsFtg6snUrQcGyUaCTvyiFQiVxrn4vkxY8YEIvv6668NiwFlDtGwq8c9xP8hkkSF83JOjpWdnR0wwArgb5Q+GEIwnDMSSK9du3ZHiGXAgAHhX7169Qrv4Zq5vqIkAllBEuPHjw+WR3GBRPickL7K5oTIIZyaIDWSRNrWa2o3dTlb9Q8DpNy6yZVyOLOqlE+MLKVOslpObtpdDQZ7iURO1UQ+deItKmRfMZ2wkgXdRqyB6u3JclvhuqJIUHo8xDWo5h6nRog/kOuKWAOpu5UhrIHxspDYRLmtpkj5YolQFNhUG9i+CpRfpqB9CJRre52eAhlWZIm9JevpdV3LsaEQpj8Wzpg/vYVWUM5AFcpu0qRJwWX1gDIEUYJ1ZQ3jc+/Xr5+deeaZhs8dKeomQsmxk2YX/r6KY1999VVbs2ZN2O0/+uij1rlz53Cc8ggKFTcNShUFi7sGF1lJZARh8Z5p06bZiy++GM7H76yJ40B41157bXB5Pfvss2HXjzJPlES4fgiuR48ewYUEWUIg7yq7kgfrvOaaa2zUqFExL3uRkmd279595H/169cPhAcxQSJFSaBDhw7BIlvHILoiwjVyDRDO/fffH4jpMsVSiZlAJpXtyot5YUl+spz7oCSfvZIOx8wQAulnKJ4RD4GwDCYU9m/Sxf488Cd2Y+czjyaQSlprrMOi3DR51h7+er/9n6W59oF2zRAIIQWqyX/Zq579vGc9kV16pREI69LMp1Co+L++3G+Pf5MX3GlMD5TxodqZdHukTz27o1u9EHtJBQLhmnD1dZArqbwWQKzP6Vg8hzsGZTto0KCguAmeT5gwQROYR4bddWmCNYKr5YYbbrDXXnvNfv/73werhd+LWg6lHaPo/3BdYSn87Gc/C8F5AshYSiXJ9ddfby+//LIRYGfNXbp0CS63nJyc4OLCUuAaIJGrrroqWFxYJ8kWrhWCuPHGG8O6K1OIv/zkJz8J1/ypassgxqlTp9qUKVMCodYEqZGWSCp+MLQDoQX7+wqWz1JR3nIpbFxXBLAHy22F0qabLmm6HaUEGbSUbMG9Q38tXFXMEZkpAlmoNW1RIL+ZLA8KFcm0Yh3EPSgSTDXpIhL5DxHwLQr8HytLhI8Oyy2RPmAoQLKicAVhlTRWajm7WXbapcU32AmzK0cgIY5B5hZxChR1IoFyAuSQEJYPlg7HgeRwoxUlJc47bty4cP5o543r6/bbb7fZs2eH97K7x+XzySefBCULiXBtlSGQ1U033WTHHXdcsOAglKIEjIUxZMiQYGlAbpFg9XFdkUVS3rVhlYB5f43KBn/caJG7sbzHqk6vdxI5xp9GgRQ3MY7/XpMfmhFSpLdJ230sj4FS1FeprmKAfhKExQ1CLAT6KMllkMjl0JaEoU+0Xp+sOSKk7BJ4Zh1kWuE2I+uriVwvpO2SbdVId06yCxUTWXt538P0xY5yB3ZMUXc0sQcUHu4glN9tyhIkfsBuvqTUUzBC8eFOQgiIo8yIafA76abldWVxHGINWDeQAITWqlWrYB2xDoLakXBsSOKxxx4LFhPng2hwKRHcZ228H9cWrissJdZG+m9lBKNZD1igyMlcgyiKkh7/51pIk8b9xFq4LgiH17Nm3FZkuQ0fPjxYM3wusYRYD9fG+7BKiMngRsT1yN81QZxEYn2K69ebIn0mh7Pp25b0LCxiDRQHUk/BiFequt/YXBCaENIAkcwmXC6MeCUA21rPJTPcwPlJCV4nwiJgTnEirqpF6qZLdTk75c6an35a84wwu4MxuMPkOnM59giwO8cNhJJbr/sURYcyx+/P8/jwyXBCWaGk+BtFhqA477333hBHIV2VGAnKLV4SwfrBv4/Sx6LoquxEzsM6+Bvrgt19cUKKsqRw3yxYsCCQIGvGgkEBsxsnnsDfvDYKeJMcwHVVVKiBwUrDssAi4zz85IHyj7LLip+HOAeEiHUE6XGtYEWgHXIBWwiUNUPiUaYX6b+4r8AE9x7XCnFgifE72V7EjmpKYL2OzNhjZdUX/8zi+nv06NHhy3HLLbeEjJSkC4E0+W1t8mTT3WGKgpmiYBVuaQLM7M0I7LLTx01EgSDZTjQi7CY3FZlWTOcj06mz3C5tD1d1K/5XYcHaYD75ep0L4oC8qPNYqsdikQeddEkLJlBPoWI/Bc1P0lpw/3h9R4XhT+oBSO1FGUMCKER20uyOIQmUGYHu1TQFPSwoSgiGADYEQvYQCjB6nqB6PIL7BXcVJAFZ4H6CoCAFyIi04dKEnTykh+KFkHgPJMHxKEJECUeJAgTACTwnw6UFFih09AbWB9fA3+BWWsEk1gnrJZaBgDXrhUjBnpgNWVb8zbrBvWhgnfXzHkiW+FEk1JyURFyl4Vdd/1djSIQ2J/sO5qkjbKaUYVaZeOP/36Vq9gKl9jbU7HSC8UEoKHzoIZO/wLQNMbvzTpMDNeGCQnb98gqFWoqtUuIvry+wf6qjLrt+rIum2vYTmL5Obquxh7vpJsPq4PrIotqjmApTAXfKyqGD7izFXOYoRXd+TmGNCam4jeTiwT/fR+RBrAD3GW4fF0fAEXAEykKgxvgoZm1bpOFGq7WL7qQW52U3WixQW5MZWxeGupBhLXqrMK59IVZvv62cVrU3oQhLuy05Zgt/LwvJEv6PAl+iFNmpSil9aV1+aE3Cc/IUhcrycW0zVI+Sbh21409mE0KI6xtZGbNFGHNk8dCMcZXOrUm4oadWE50fiweXGfM7GDNLrMPFEXAEHIHyIFBjSGTq5rlhgNQV7U+Pi0R2yAqZvuULFfGtUHfZPOulAkPZ5YUdejE9lUJpSkkMbU1k+iYitGH/mwLmLytYvUVmwR5lP7LjH98u3S7WgzhDQ+346aabrGQrqtup53hedR30s4JMaEXCz1CgKGuD+SGXqM6khdxlzPLA6kjVlNdEPhd/jyPgCCQPgRpDIheqUWLnrFbqFNspLnQapzdQ0LiLgtZNpcx70bOhMA5CXjpFheqzowhYwlbIW5vzbZKKBKcrYE5fKYSxs9d0yAztSTopQ6h5RlpSWoKQHkwbeFqQkCKM24p4x3Za+UrooPs9DaCCPHBVtVWmF2nC1LklM8srLuD9RY6AI1CjEKgxJHJqsx5qOthWY1Tjm+lBDGS05oTQrbdbhip8ldFif/87jYhMqROFPbIUNItXsABog471sUqB6/+RQseNhB6HPAhUj2rJI11pshUnD9IhiLEwm5yZ6QTKP5TLaqF+J4BPOjDtUDqIMAiO4zoj04r4i4sj4Ag4AslCoMaQCC1KjmpTUgZKRzr7KstEvbFNlU/yN2nmyPnnmxLA43ZjETT/Qrv/d0QcTO4jdZegdk8V51GYN1RZToObpqs4r06orahIthVZXsRUqOmgroRW8JybeEcLxTTop0UzRpoynqDW68eLQDphdVSzRohlfDT+b0fAEUgRBGoMiVQIb9oPqNWCErlNPZ8VcVbjxTIKgVDmWBm4keiqyzCo1xT7wIFESuwpIo4bOmfaeXIhNaxgwCM6FzGVXcqywlX16+W5wdKhop2GflSyn9kqI8xNJ+7R0oPkFbol/M2OgCMQHwJOIuCkNgjqc2B2wQVmTCpUzn1ZgstovYr1/rwqz15U7GOZFDvV3CNkeZwj4uBBW5Bk9JSCmKgoJ8PqfbVEeX1jYZyloT49xstepCA5ZEWtSWVPLiwLF/+/I+AI1C4EnET4vOnRg/sKC0RFUGXNSmei4ESl6/5Z42hR7srgDeRBjcUZStdtQMaVQg/JKrV4dUOB/WVNnuamH7D9CqLTGPE0xVmoLTlLMZZmirFkJTHDq3Z9BfxqHQFHoCIIOImAHim89PaPo78/g6BeV7EgFghNEmV8hMyn6zpmhvgHLUqSIRQL4ipjcuA/NbOcuMe3astORhUuqxs7ZWpWSuHY27oVCbIkY7F+DEfAEai1CKQkieQezLeFO9fYnvWzFX9oEFJ0ycpKqxNbge/QuNwFO1dpqNIWFSN2thMbd/zXyNs4P3qyr2hVwhyKqVLqyxQ876T+UlgC35c7aZi67BKbqIhEGV64xtbJ2oE43lSwnkaIrcVWZyq7q4eC5me10hRDBeqTPb2wImv39zoCjkDtRCAlSWTj/h32tmahF6xcp1TWJtYtq00Yg1uvbmwSWbZ7g4LeH6tP1Uq7tP3wUJ2ern495REUOkWDUxSPILX2DCly2rOfq1jECVLsiSp0UnWJedDPigA92VZfqhX7GvmsFouoaPl+uooSmR5Iyi4k0o6eWsnojVIeAPy1joAj4AjEQCAlSWR5nuZL5yy2fVvU0TSrtYrqdmvGd3OLVSFyUL2xPs9ZYTO2LVTVuBrI5e2W0kZtly1R/6mNqv8g+wo3Fum8p0qp3929ng1XXCLRcbQFh2Mb9LSio+40FSXShh0iwZ7JUkCltWIdFAhe3j7DhiiAXlkTDMtGwl/hCDgCjkBsBFKPROT/38WcGD2yNTe9T3ZH1UK0UTBbzaBiyK6C/aG1yVJZI90badqhCgyZYhgq1DEDsEjUEjqW7D/c9+q/luSGQVGq71a7kgz7kQLop2g4UyICMeUrtWuziIlaj7c1+Ok9uawoGsS46KiMrkEijP6q9zhDrrITVaRY0RThRNbp73EEHAFHIB4EEtOE8Ry5sl5TX0q/o1JyW2epaWELu7nLueoJ1UDqPXY84s3Nn2s++Qrt4tVkUG1O+ulRl9jJtCmmftimMWOmCTExV0vg/OeLRCAqIJQHyX7cNTPUfuBOSlQgD+Icr8jq+EjZVnsVayHbip5aV8jiYABUDxUKkqpLhpc6o7g4Ao6AI1BtEag0EmH4CrMGVq5cGWY433333TZw4MDQb59ZCMwm4MHgFwa9MJ8gLhnSVim5BdY+u5WNatFXqa69pGjTj+oBRTuTb/ZulovoIw1c2iR3UA+7sv0IqyelbZP+YRpLZpoYY3bttUeRCCm8WB503qVtehPFJa7skBE67tJGpDwurMKW84fCDBH6WlEguFg5wbRIIQWYDCtmeNBPq6+sDnpaueUR153gL3IEHIFqgEClkQjTzxh1yQAYxl5ec801YQIYM50Z9MIUNP730ksvhRGbTDGLZkCXisvANlZnX45cPt2k2EdoBy+rpJhQ4Z2j+SL/b+V0FegtDplbQ5v3tCGNuxX2xvrTn0yzLk0TZuhA+J130z7kBRUPvqQHvxPY/lmPejZSrqXOh9uHFD9faX/TAmWaYikzRCD8Toowx6SX1Vil6vZUgSC9rZhk6DM8SkPS/+cIOALVEYFKIxEmkvFgcljRcZmMi2RUJeMhGYP5yCOPhBnGjJSMi0RaNrBGOY0UK+io1iLdY2J6QMH0Tbk77NWNczQ18FsFwnupOWM7a6w6C40fM5s7t9CVJStIo8nCMaIsKSwQXE1YDCGtVsWDV6sGhMFN5SnHIF0X0iCjC0KiMWJDeeIGyOqAQM4UKVGYSHt2F0fAEXAEUhWBSiORkgA5cOBAmDvMeEpmK9dT23XmFfOIS+SNyt6Xbvnrc2xx/leBpHr16vUdoso/dEAzzHcr3qBJh+rWS0pvJ7WJD/NCPv/cTGsIwXSN55Q/zZg+SFyCNNtXVQNCb6rmqvlA4V+h1u00vo2HQKJsLjKumFvOLBEyrhg9ixusl2IdNysoP0qpwW28m25cH7e/yBFwBKo3AlVOIsDBDAtcTjyYe8wDMolLcnJt84xF9uRHM2zC0l+EOc3vv/9+mJccSboC561VP3J2q5NEDrmqKB8csrhsw0qz994rjIUQg1FQ/ZDmS++ShULs438v2q8sroNqXljHLlGA+zI9RkrhxyMQ0S6FWJZrdOCbiqW8IjLCEoErSAWmIPGitumhMWJ5YirxnNtf4wg4Ao7AsUIgPg2ZxNWlywLAnQWB7JJlsEXzO/g9bhJ5ar6NSW9rV991p40aNkIGRbr6J343LkIKb9eGbexXfa4LNSGCXUfoAAAgAElEQVSNlArcoI5SgLdvN/vww0ISufRSRbWHWkF6hi1Uqu19X+WG4r4O0vp3Hp9plylTim688cqqvYeC1fFbddelVTtZV7Rgv0oB+av1YPQs/a2S1U8r3nX56xwBR8ARqEwEKo1EyM5atGiRzZ8/3/Lz84O10Lt37+DG2i5l/vzzz9uOHTs0PPBsGzlyZIifxCU7ci2raQNr07yVdenSJeZbsHQy66QHa+SIMDd9+nSznBwFJgaE2emr2na2aasLx9cukwXRS/M3rpX7ig688Q6O2rT/YIifTNMkw5kKnq/XFEPmhlygoPlZas0+XP20onkeMRfrTzoCKYLAhg0bwsavZ8+eKbLiwmWy5s/lxl6/fr3GBbWwYcOGqc9q1lEZnSl1UdVosZVGImRntWnTRh6j/vbwww9b9+7dg8uJBx8ixJKbm2vt2rULab5xWyKJgqcbSLnFhU0Wf/xj+7p7f3tpRz17YV2eWowcCvGP27plqr1IehgfW1YMBPcVabsvqJvvDAXjcV3Re5FCRKrL+2mmBzM+6LDr4ghUFQIkq6zQiOc///nPdvnll1ufPn2ObNCIO6JM33zzzbCB69u3r40YMSLEFOOR1atX26pVqypEIm+99ZZBRpx70KBBR047XRu8jz76KGwwmzVrZrfddltwcxdNyolnjbFe85kyMbneli1bWtu2bYP3Ih6BfL788kv7xz9UEiBhEzx69OjwM5ZQzsC52EDfcMMNQaeRiTpjxgw5QOQBOSxjxozR5IkhQffVBIkPzQSuNMrOAvBRo0Z95wiQS5WLdiAFpwyxHU1a2Bennmcz9jW217fl2wbVa1CjMb6dGimqDqSs1iK0PaGOBNcX42jJ5GJQVFcRxojQnj1TDR7T5LaK3xVW5Vj4CWsEAqTM71bBLJY3mzY2ZhDI1KlT7bHHHgsEgrXOdxGFSN3WrFmzbOPGjSGRZc+ePSHJJV7JkRXPe3kPipINIectS9GTTAM5oJBZGwqdhJiIRObMmWOffvppICjWhYubdUJwzZtrdPVh4fogMsiATM6yzhu9D48I1tMpp5xylOu7tGvHcmFdXCvr/eKLLwLBsSbKF4oKuL+neOvMmTMDRldffXUgEa6b90GQEflwjWBSU6TSSKS6AXRAO59NHY+3t5Zvtye3N7EvVfBH00QaKFIlTsptaUYDmVdb1Jr9E7mu3lCfKwoRqSPp1ECdfJWqe6GC5jRkbE+ZuYsjUEkIUFOFIl27dm1QRNRanaQ5OBTrYoWgwFDGxYXd/zvvvKNpBw3swQcftFatlK2YoKAEP/jggyNFwihzyIw1oXAht0hQ+CjwrRpB/e677wbCiwqLiYVCSL///e/lYR5g9913nzLu29vChQvtmWeeCRYSbicKlNesWRPqyZYuXRpc4FxHWSTCsTkv7wErCI/r7kF9mIT/Q6ysuahAuiTsgDNE++STTwbSmjx5cng95Dl27NjvvAcS4cH1FReORZ0c1lVNlFpBItysOw+m2ez99ezn25oG64MA9/dFHLeplUk8fbAYQztVHXz/oEFU9LziViHz6hpZHgTPT1C1uUsKIMAOkL5pUe+0WEtmvgzZgkoACbNmYgk7eI6h3XEoMool8Rwn1vtKeQ6l+Ic//MEmTJgQlChJJS+++KJ1VpYhCvcsxfpwHfOaogLB0CHi5ptvDk9jDaBUeZRXUOa4bXAN8X6U6jcaL42ynTRpUnBTR/K9733PnnvuuVBc/MADD4Q4Kbt7BLKJ4hVDleQCuXANxx9/fDgmbifIA9ccx2ZnP27cuBBDJbZalkB2WAe4ynA14TZnPZAowrl/9atf2SuvvPKdQ7GWO+644whJRYk7uODmqsZsyZIlR5EIuOO6hyghwKICgYE/mCMQUrwute8cqJr+UStIhGwp5p//RplTm2RN8JVnEiHNFPs2jk/5v6zpgv+9Ni902YWAqCO5QzGUS5XF1VUV5y4pgoCUkv3tb2YvvGDSqkcvmoacFKFef73ZRRepqVmLo1/DM9Qb4SuXjz8kaxQXuT/kSzK74orSj1P8fWX8jZJiZ//222+HrMZbb701KMW77rrL8LWXJChddtxYLZH89Kc/NR6Jyl/+8pdgNaB0b7/9drv//vvtnnvuCeuKBFIoSXgdFkxprh2uF5ccsRSU/VNPPRV2++zqsV5KE859gUZe02aJ66agGffSH//4xyOuPNxOrLuoQFYQHMlAyRBIByLF4kImTpwY1lJTpEaRyDtb5qvFyGfqkltg9/b4vtrDN7N1qmGcpOB31MakZ8M6YSrgcLmeemk2R/1S5nLsVqxjkQZRETx/R912V6gIsZsIg3Yl5zNHRNZHK9WU+FzzFPo6yN1jZOrxwIooLrgj2DHKdy+tXDKJzJtncnQXHgeLpLiwU5arKYxeLu04xd9Xxt8oXCwAsozwsxPAfeKJJ4IrhYSVkhJUIusAxY/g8pqna3j00UeD4k9EiDGcd955IRbzySefWMeOHcM6irqzcOWcccYZJR6eHXksF1D0BsiPADvXTDwCwnz22WeDNVAWifBedv1YEgSxWR/4YaFELkDiHlgrRQWXV9euXUMpQkWF64fox48fH86NO+zpp58OhH7++efXCIukRpEIEw+35+0yKtbzD6aHKYRvbzlgM0QAaxQMp0fVT+S+IoW3nVKpSguiM1nwfXXvhYBwX0EoFB5eJOvlZGVfnaDqczrslvYFqOgN6O+vBASwMq680hRlLdkNhRVB4FRKq0Qhs4hxytQbleTOiuc4JZ4g9j9wYeGnx30EEeDeefzxx4NiLKq8i78b/z87/9GjR4d/LVu2zAho45ZKVLCICN5DHMvVTghFHdWARcdE8ZckKHncVlwTLrIoyI+yxWKAnDgeLjyul1gGMZa9e/eGR6IC0UIiHIv4B/38igrEw//oqFGUSFgHf5d2TcXXxDGI7fDguiCnF2QFgz/XWxPcWjWKRI7PaiuCGKQA+AH7ZEem2o7k2Udbcq2ObtYBTTLCbHKKCGmAmBYjAMYNsFF1H4ynJfMK62OmHnTWHapJhlephoReWuUpQix+U/nfxxgBSIRHRQUSKZKiWtHDxft+FBwxBTJ+UEAEzOmCzY4XJUVgnV50CPEEFDxxC1w7KEaynghKk3rKDp9AdqKCj5+gNT/ZvRPL4FFcIDeIj/VgQUB+rJ34CPEb+uhBglwXSp21kf2EsmfdxCF4Ly4g6s76aXQDVkWiAmmxXnCBmKJAe/HjQQCsHawRXHesizWzHjKxzjzzzGAVgkHUtZzYEy40YiRcN9lmEAbH4nXdunUL8Z+asgGtUSTSreFxIoe29q4U/x8W77bdC76yATu22okndLJzenWzM7o2jNkpl43kQUVK1qpe5A0VDU5W/OMjWSHkmAxW/ciFSv8d2zrDuiuN19u0F/+q+d9ViQCuGVwh7J4JMJM2e9NNN4W6CywNSATiIK0exUXGFBYCD1JmIRGUHu4tlDcEFK+wA4d0IAAUISm/rAUyQmGWJFEAHXIj04pzY2Xwd+TugSi4Fnb6ZJxdeOGFQWGj6Hk958Hywf30wx/+sExXVtG1cI6oLRLHI8AeT2AenFhDRCJYP7jwwJq1EueI6nAgCoL3vAZrA8IBI9bNdUKSIcFHBHOF4mQQYUmux5JwrK7P19GFlZBaUj2XjDnOTXvLLbeEDIlo9RT/kXU1YVWe/W7ZfmuycZ099cStNmTpZ9b4xuvM/u3frE6MQByXL09VGFH7f1fk2V9lvVB1jquqv4LuD51QPwThvd9V9bwfatuqXn/99bCjpVjtmNRbVTHgZHuh+CEVl+qJQI2xRL5Uq/VnVueFOejpe/fYqI2LbNDKBZa9X9MLo5TOGJ+Bup3Y/JwD9pTIZ4piKHmafT5Gqb/jZH0M1yx1Ou+Wo4VWjDP4U45A8hAgA4uNT03ZxZaFDIH7muL2KetaU/X/KU8i+6T0Z+G+Uv3GRyoExKoYmrHP7tqroqC8fZaGqYLfN0aLgQ2Kf5B5hfWxWg0Ut8saoW6kMPVXWSFK4/XMq1S9tWvmuktLma2JVxzXjKGaeOEpdE0pTSJYDUwK/IvmdsxSIJy/qTy/UQHGE7eutrqHFNUgQ0bpgcXz/XNVPDhTPa9eUv3IvJyDmjui0oBOav+uwPsAubGyRSAujoAj4Ag4AqUjkJIkkituWKq2Jbs1s4Msqjc356oAMN/OaVU/VJCfq78zly8tHD6lAJbKeVVeXt9oXULh4Ty5r76S+4u+V0v0s6dcVsz8uLVbvTCu1oPnpd80/l9HwBFwBCIEUpJENhysZ2/sSLfty3Lt85w8TSbcrDTczeph1cmGNW5jmUtVLKainhB1P+ccU05eGE24S+6quar5eFqxE8bgMkSKmAepv5eo/oNW8N440b8cjoAj4AjEj0BKksi8jDY2P7+F1d1xUDGLXGuQ9oGKCT+0tfvPtL3fnkw5rimXkCY1pkRuOyhLJE/uq69Uff7gkv3BeqH5Fem7tH+n/sPFEXAEHAFHoPwIpCSJpGVlW8vG2davZV0b1izN3tmywRbsUu652p3kL15oaldaSCBXXRX6F63NT7OXN+SF7K3Fcl+1VquSc1T3cdlx6TYszvG35YfW3+EIOAKOQM1HICVJZNj+lXZJ4w12Rp/uCqbv0zzzb0Ug+apEz7JG9WR90I6CYPq119r2Fm3lvsq3SevzVY1+SP2u0uzRPg2sU1adMLK2YXz9F2v+neBX6Ag4Ao5AAgikJIm0OLDHemfst/5yR61SC50d+YX9shpniESO15Q2NTsrOLGPbezexyZuTQ8BdKYQdtTsj2s7Fo6sbaDGiyV0PkkARn+LI+AIOAK1E4GUJJHoo8o9gHXxrZoj7pNFUV91HQ2tQbsOtqd5O1vQfaD9c1umUngLbJvavw8S4UQDqBhj6wRSO294v2pHwBFILgIpTSK7D+y3L3etlkurQB1621iLzGzLPZBmi/aZPZOTZc+tzdf/TG3f1TxR9R8XavxtWyZJuTgCjoAj4AgkBYGUJpGdskDm71ylKvWD1rtRe2uSnh3cVhNVhT5hldpIiy/a1a9jN2h+CCm8Xv+RlHvGD+IIOAKOwBEEUptE8veo7mO56kQOWO/sDvblziy1b8/V/PP8QB5Xq/DwB+qBxfCoLA+g+23vCDgCjkDSEUhpEqlbp64yshpYIz0y6nSxt7c2sve2FFjzzDr2b50z7Qq5sNrLfVVfBOJN3JJ+7/gBHQFHwBGwlCYRxt9e3/FsBdRP0PTB9pp/nmYtVQPyPSrQj8uwbmph4hXofpc7Ao6AI1B5CKR0lLlZRiMb0fJkq5c2xj7+trE12LzRxtfdrkaKmYqRpFlKX1zlfeZ+ZEfAEXAEkoZASlsi+9S9RAMM7X+2ZtgOjcQdt2yuXZTe2Po1VsNFF0fAEXAEHIFKRyBlN+u0cl+sTKynNEdks+aCNN++2U6f9br1nTe70kHzEzgCjoAj4AgUIpCyJLJAzRSfWpVrk9fnWYP8XPuPyb+zs1d9oY4n3kzRb25HwBFwBKoKgZR0Z21XBfrMrQdsgarR6+bl2rkr59qwZZ9Zy4YZVqd166rCzs/jCDgCjkCtRyAlSWRZXrod2FvXNucesrYH8mzcxoXWeedmy+zTs7DxYq3/WB0ARyD5CGzfvt127NhhTZo0sWbNmllaWmo4Mvbv32/z58+39evXW9OmTW3QoEGWnZ3taf9JukVSkkS2ZLW2Q1ktlZV1wLpk7LSTNy+1xpqnHuaouyWSpFvDD5OKCKDoFyxYYJ9//nlYfp8+fWzAgAH6WrS2vLw8zWr72ubMmWO7du1So+u21rdv3/CIRzZt2mRLly7VjLfuQRmXVzZu3GizZ8/WuJ9VgYhOPPFEGzx4sKWnV64aWrlypa1Zs8by8/M1LTszbvLIzc013jtt2rRwqe2kX04++WQ7/vjjj7p0yBXM582bF84xbty4gDm/I3v27LHly5cbGHLNzZs3P+oYqfpE5X56lYFKk5ZW0F6depu3say0b61V2kJrtW6pZeSKRGj/7iRSGaj7MasxAjk5OZaRkWH16tUzSGTWrFn21ltvhRWjsBtpOBtKa+vWrTZx4kT79NNPbd++fUGRjxgxwrp27WpZWVllKlfOw/FatWplBw8eNHb4KEnOHY989dVXYV0LFy7UtOr61rt373DuFi00YK7uv1pKcGxIrmHDhkkhmEWLFoV1YoFwvngFvCC9f/zjHwHbNm3aBCJq3LhxwCCSgoKCQDbvvvuuzZgxI6wZAhkzZkzAeMOGDcYaeGARdezY0Ukk3g+hUl538liz7N7WIDvDstMX2Z5d79i+Ncst++ABq9u+vZNIpYDuB61OCKDI2Nmy+0VQTOyOeeBmGjt2rP385z8P/5swYYJt3rw5kAZWxNNPP23PP/982A3/8Y9/tI8++sguuOAC69mz53cUeTzXy/GOO+64oDARlCmKlx38IUZTHxaUKq9Dmd52223Bknn99dftgQcesMsvvzy4liCRnTt32u7du49YTKeeeqq1bNkynqXEfA1khPWFBcBxvv32WyXeNAgWWCSsl3MWFUgRS4vr4/+TJk0K68cigaDpfnH11VcfeQtkCsZnaorqL3/5S9uyZYs9/PDD1q9fv0Be06dPt9dee81GjhwZc52p/mTqWSIjxpttP2QjWx6y27v2tcE721irvVMsrZNqQzQGV3dkqn8mvn5HoFQE8O2/8MIL9tBDD4XX4RZCefETpcXuNxL+Ronzkx00LqVIqXIcFCA77ETaAq1YsSJYMBGJoHB//OMfB3fZ3r0a9HNYOnXqZO+//7794Ac/CGuBAHktVhPnRmkvWbLEnnrqKXvmmWeCoh86dGiwGipCIhDIZ599FkgA6weiwvKaMmXKkbWB29///vcjf/MLFtK9994bCDkiQPDp37+/vfzyy8FtVZREsJiwOhDOAc5cE+/BCuS1l112WbBiInL/zglT/I/UI5H0TGte/4Cd1DhdLd4bW7bMzLQ7f2p1dKPKXvVBISl+Q/ryS0cA6wMC+fjjj+3xxx8PpIDyxZWCJdKjR4/vBLzZ3eOKQal11ibr17/+tf3tb38LVsiwYcPsnnvuCUovERLh2FgT7PjPP/98u/TSS+3+++833F48FwmuKxTtsmXLgiWEiwiXzmOPPRbiDCjeL774IpDGK6+8Enb1rIudP2vjtYkI1wyxYiFcfPHF4XewYA1YZqzx7LPPDgq+qECMXTRW+5NPPgnWXpRAAKFgYWFxFRWwi1x6uOFw2yE8z4Pr5wGxJoJzItdele9JPRKR2+r4tL3WO7NBGEJl2Y1NNnGhBSLWd3EESkNgl8YHLN+z0Vbv3WIH7V8ul6LvqZ+Wofk0rcOjft3YdUebcneEY0RjCJpllnzvLdq1Nrx238G8cJp6On7XMo5f0jXgEkL5nXTSSUEBvvrqq3bnnXeGGMK6desCiaDk1q5dG1xG7H67desW3Drbtm0Lu38sBxQzCg0LgPegzMur4LAohgwZEtxXKEj+Zh2QyIEDaidxWFDKKF+sCtbcq1ev8HrcRbiy2OHzPiyo9nJJz50716688sqwNmIwiZII5IRbimuDFE477bTguuL4EC4uKsgkcgtG62Xt4BWRQEmfRfHnIVWO/de//jVYXcR6aoOkHonMfs1a1TmoD2iwPh9liJDZgRXi4gjEgcCKPZtsysZP7MPtS+yg5tAcJVKsDQKJtLG7u19k7RvEVgQzty5Uu50FgRAuO264DWvR+6hDRU+8smGOGoQusz0F+8NTEM732gy21vWalkhSJR0MpYfixT2F4kVRjh49OriL+B8KffXq1fbkk08GVxPuGxQmyhNLgNdccsklQYF++eWXIWuJjCICxVEmUUnnLv48u3pIBKXLsTlHFOAvaonwOiQiEV5PkPmll14K546sJwgS9xPER1wHiwHFnGxhPaecckogLIgM8i0q4ACu/MSCigS8eW9Rd2HR94EBSQuQJLhgRdUGST0SmTbBMrS7yOjfRp9PfKmJteGD9GuMD4Gcgj22dv92+2bvphLsENNYAQV5ZbFElkOsI6/Zt9WW7F6n5I4GtjWvdEW3Yq/iELJ+9h/MD4diIucOzcI5EIvEYp2syHMoMNwqKGECuB06dAi/43LBh48ixiU0efJk+8///M+wG4Y42FmjBCEW3sNrydjCMuH5ooHwMpZw5N+4aHA9ofQhDf5GORevH4lcQKQeIxANQe6IuFDUKOzFixcHC2rUqFHBasJ6qIzdPPhBIKyX4DePWPLNN9+EdbFu3oObCvIlZgLOWB0E/zkOr8X9BoHfddddAVfiIVgz/M718Dlw3cSSwJ7PIHKDxTp/qjyXeiSSKsj6OqslAn2zO9mlxw2zPtkdS1TiWWn1wpCztvWalXgNF7cbat0btrP8QwV2SrPuJb6Of1zdYaSd0rSH7T2QG16XVbee9VeT0KwSXGWlHQzXDEqL4C6K7Prrrw9xkbPOOisoN6wL4iPXXXddIJmZM2faCSecEB7s+ImnoBhRcCg8dsvDhw+PS5mxC+f1/EQ5YlGQGUZwHpdTFGAvvn5IBAWK6w2y4RgE1ln/3XffHSwriITjYRmxLhTvhRdeGHcNS/FzFv2b40OekBtkEG8MCCVPkB9C5hi4vbAwyGwD5/vuuy9kv3HdXBsJBbgO33jjjXD6yKWFtUMMK8qqIyMO/AcOHBgX7qVdW3X4Xx19wLEdw9VhdTHWgOmOn/OWW24JJq+LI1AeBA7qdmcSZulWQB3NoZHC0aOkOAHvLzzGIb2urqXptSVJ/sECvZavWfRVqxOOzTlKOn5Jx+Lr+uCDDwb31W9/+9vgqkIxs6NFQaKIUeq4YyKfPsqTvyNlzusiEuAnpBSP/59YC8fnWDywbiK3FeeI3FbF1x6pGNaFcC7exwMlzXvJeuInZBgFsCO3UnkxKn5+XHwRBvwv3qJDrpXXRuvnJ2uLcCYGFFkbYAE+Rc/D+ll7hBvv53ewiz6vil5b8Ws9Fn87iRwL1P2cjkAFEMDyQIGx+y9vHKMCp63Ut0ZZULUljlCpYFbxwVPPndWukS1uuc/mFiy1AV+3tXZNjyNiZ9oCVDF0fjpH4NggULRY7tisIPlnTaSNSvJX4UdMBIHUI5FezWxVow321YZPbcPcpdauQQezW2+VoznLa0QSuQP8PY6AI+AIVACB1COR3s1tf942279wkdnLy1QiqpYLP/xhIYlUAAh/qyPgCDgCjkD5EUg9H1BrNYrLSrdWO/OsS47y/OmXpUCViyPgCDgCjkDVI5B6JJJZ17IKNA53d541pUpY6YmKLlY9cn5GR8ARcAQcAUs9EtGH1nRvgTXZk29pBNRJ86UVtVLpXBwBR8ARcASqFoGUJBEIhEphVfbQwtTdWVV7z/jZHAFHwBE4gkDqBda19Ox9BSryUTVxGw2nSmDCmn/+joAj4Ag4AslBIOUskTQV/bZUUL1ZU2VlqZOpiyPgCDgCjsCxQ6DKLRFaHdAGmt45CJ09o7428cDQZOs+67pur3XorHnqzA9xcQQcAUcgBRGgHQttVWg7E7WpScHLqPrAOh1D//nPf4YBNDwYG1l8PGVpQJ7z2Fy7ZHau9WnZ09RRrrSX+v8cAUfAEai2CNAVmMaNmzapo3RqtTD8DqZVbonQcx8iee+990Jzst/85jdhBsL3v//90FixLJmuF3yuFtGH1Dfo9LJe7P+v8QjQMfXFF18MLbqZsufiCDz33HPGg7G0dNItqTHksUaKVvI006S9Px2Y6bTcp0+fMIGRxpo0p0wFqXISwXyjgyV9+BFcWStXrgyDYeIhkW/1nkMy/3YfHnSTCiD7GisPARr3sTEpPrK08s7oR67uCNACn10+P6vzDh8PDG3v2UwzR4X2/rj3maHSRRtldCRdy6M59NUV9yonEVolR9PPAIUBOfgDmTcQjzAWlHnMzImmL79L7UaAuQ5sQiCT+++/v3aD4VcfEEAvcD9gpRJ7pXV7dZRIf0F0DKviwYYIocU8M94//PDDYJX07ds3PBimVd3kmKNLkB1zjuBSPDJu3LjA3EwSg0xcHAE2FojfD34vgAC6hB08wiajukrxsbxF1xmNOWbTzRwWJiEy8Ko6SpWTCKwbDXshU4uRmJhvMG88csYZZxgPF0fAEXAEUhmB3/3ud2GUblHBS4OLnxjfsGHD7Morrwwjh6vznJUqJxHcVmQj4IIgwI47a+jQocEH6OIIOAKOQG1GgAA73pbLL7+8xNnv1Q2fKicRsg+QqVOnBouEMbdkI7g4Ao6AI1CbEGA2O9YGG+n+/fsHPUjZA4H0eJKMqgtWVT4el+ysnJyckI2AdO/ePW5XVnUBzdfhCDgCjkBFEcAbs3TpUsvOzrZWrVqFzKyGDRtW20SAkq63ykmkpIX4846AI+AIOAKph0DK9c5KPYh9xY6AI+AI1FwEnERq7mfrV+YIOAKOQKUj4CRS6RD7CRwBR8ARqLkIOInU3M/Wr8wRcAQcgUpHwEmk0iH2EzgCjoAjUHMRqPI6kUShpPSfBmW0A+ARtQGg2t2lZiKwZ8+e0LaCz55OB7S7adeunfXsqTEAh4XiVboerFmzJqSK8zftIbg/aMJHg7vOnTuHV9MltVmzZpaZmVkzAatlV7V582ZbsWKFbdu2LVR5b9++PfSX4vOn8jsSWiRxj3BvUJMxZMiQWoZU5V5uypAINwDt4ynQQanQMoWbZ+zYsZWLkB/9mCEAicycOTMQB0306HRAZ9aiJLJx48ZANOvXrw+tImi4R+M6eifNmjUr/I8xAwiFXNw3LqmPAF2b58+fb2+99Vb4XGkLQrNCPl82ltRcREJnDF7LhoKNhJNIcj//lCARbgysD26GSy+9NMwHmDhxYpgj4SSS3BuiOh0NRUFn05tuuilYEAwwY/eZl5d3xJpYsmRJKNCCKGidA9FQBQzxUPXbr18/G/igMukAAAY4SURBVDlyZJggh3IpukOtTtfqaykfAjRuZR4H5PDII4+EN7PRREewsShKIlSDcx8dC8GCRnexIeIeZDNEcSHWMJZ1ceF16DvuU66F32koyWwRjhUdh3ue5+iAjnBsXs/zYBON3MBC4zX8L5qiyPuS+T1ICRLhQ0A5RNWcfAjcMFHb5OIfhP9dMxDgCxR9qbgibn6+eNwLHTWUDKHlN19ICIMvKMqDzqd84XBdYK0+8cQTYV7NjTfeaHT8TaWWEjXjk0z+VaATsD7oeBEJv2NtlGdSavJX9t0jshFavny5ffzxx2FtVKafd9554f6N1aJ+4cKF4Z6n5fv06dPD77RDYTMECXzwwQeBJE8//XQbMGBAICQEC/ztt9+24cOH2+zZs8Nr2rZtG5o3ck4stlWrVoWhVyeffHLw6CRLUoJEil8sHww706I3UPHX+N81DwF6rUEY9BaKJZBOFD/B6hgzZoyddtppYcPx9ddf27PPPhs2InyxXGoeAuzA2bXH2xG8KhAgjkufQEjvRz/6UXDH4maFALCQigtk88ILL4QZIv/+7/9u8+bNM7r9Qji4aEeMGBHI4d5777V77rkn3ONsiogJPvzww4EweJ6N1LRp08IGiuFWl112WXjdpEmTAtn84he/CDo0GZIS2VkoDpQCygBFEsVEUmV8ZDI+qNp4DL4IfMb8RHBjsRsrGhiPWmRHpj+7UKwQzHW+NHzhIB2+XHyBuYdcUh8B7gE+a3bXkWzYsCF8vpGLpzpcJbE6rGfiMFjGdOnFWuD3WEJyAMod9yxEAkngkuLe514ncQBrYufOncHCidx0kBT39xVXXGEDBw4MmycSDLDA+Q6RXII1w0aLfl24hZMlKWGJcFMAJAKzY4nwHKzsUnMRiEhkzpw5YYfJjc8AMxp4vvvuu3bOOeeELweB9DfffDNYpnyRxo8fH75wCxYsCO4sNh24EvhCEnx3SX0EUIydOnUKm8spU6YEfUCmFgoUBTtjxoxwb+A2QtniJuL/uH+Io3GvVAXZsE4UPPcia+W8EEhJGYIoef4/atSooPN4sBFik8RGiI0R3wue4zoj1x3PcW3MWmLTFLlziR+DE/9jLRwPooWskiUpQSJcLKDDwjAyIJChg2/PpeYiAHHgDybugURp3dwDkAKbCRQFKZzRTG2+VDfffHNIvmAXiG+Y1/G4+OKLQ8DdJfURQB9E339cObh7UKw9evQICpQOuShtfkfZQhj8H3cmmxCerwohc4ydP1mC7ym7lOmbxDMgk5IGTXHvslmKhO9B5MrlOSwbyITNEQSFRBsuiCIiRzCJAvm8B+uc//H9IdaSLEkZEsHPianmUnsQ4ItCNl4sueOOO448fcEFFxiP4uIxs+KI1Ky/cffwiCXEHCKBbI7VhpPNLtYQpPbOO+/Yn/70p2AJXXfddWEYX0UEAmFzVF6BkCCSZEnKkEiyLtiP4wg4Ao5AVSKAdUB9CoSHNf3QQw8FT0pFSaQqr6G0czmJlIaO/88RcAQcgQogQAEku34yAnE54XYl3oFrvqaIk0hN+ST9OhwBR6DaIUCQm5gIwX/cSMTkzj333GCZxBIyqIpnEOKKw3UVZXQR2yCpiJgPwXaE+qjzzz//SAISz5GdhZuXItyouHDw4MHBGiopOyzWmsp6zicbloWQ/98RcAQcgQQRIIBN6jEJHpAIcT7cWgT4Y1Wsk7JMnKNorIeiat4btXPhd+IqBNwhETKvSB6gFgoSIjCPcE6SDsjOgmQIqpOpRvIJzyWrTsRJJMGbw9/mCDgCjoAjoMwwB8ERcAQcAUfAEUgUASeRRJHz9zkCjoAj4Ai4JeL3gCPgCDgCjkDiCLglkjh2/k5HwBFwBGo9Ak4itf4WcAAcAUfAEUgcASeRxLHzdzoCjoAjUOsRcBKp9beAA+AIOAKOQOIIOIkkjp2/0xFwBByBWo+Ak0itvwUcAEfAEXAEEkfASSRx7PydjoAj4AjUegScRGr9LeAAOAKOgCOQOAJOIolj5+90BBwBR6DWI+AkUutvAQfAEXAEHIHEEXASSRw7f6cj4Ag4ArUeASeRWn8LOACOgCPgCCSOgJNI4tj5Ox0BR8ARqPUIOInU+lvAAXAEHAFHIHEE/j/6slhARPoS3gAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Let's make a prediction\n", + "What happens if we substitute the parameters from the RILEM pull-out test?\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1664d53c4c824665b52c816eb42f9c53", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "get_Pw_pull_args = sp.lambdify((w, A_f, E_f, tau, p, L_b), Pw_pull)\n", + "ds16 = 16 \n", + "ds28 = 28\n", + "w_range = np.linspace(0, 0.12, 100)\n", + "fig, ax = plt.subplots(1,1, figsize=(7,4), tight_layout=True)\n", + "ax.plot(w_range, get_Pw_pull_args(w_range, np.pi*(ds16/2)**2, 210000, 2, p=np.pi*ds16, L_b=5*ds16 ), \n", + " color='blue', label='ds=16, L_b=5ds')\n", + "ax.plot(w_range, get_Pw_pull_args(w_range, np.pi*(ds16/2)**2, 210000, 2, p=np.pi*ds16, L_b=10*ds16 ), \n", + " color='red', label='ds=16, L_b=10ds')\n", + "ax.plot(w_range, get_Pw_pull_args(w_range, np.pi*(ds28/2)**2, 210000, 2, p=np.pi*ds28, L_b=3*ds28 ), \n", + " color='green', label='ds=28, L_b=3ds')\n", + "ax.set_ylabel(r'P [N]'); ax.set_xlabel(r'w [mm]')\n", + "fig.legend(loc=9);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "165px" + }, + "toc_section_display": true, + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/tour2_constant_bond/fragmentation.ipynb b/tour2_constant_bond/fragmentation.ipynb index 25d28e1..26ddbd0 100644 --- a/tour2_constant_bond/fragmentation.ipynb +++ b/tour2_constant_bond/fragmentation.ipynb @@ -43,7 +43,7 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7f1e60280a60>" + "<IPython.lib.display.YouTubeVideo at 0x7f333407bca0>" ] }, "execution_count": 1, @@ -164,7 +164,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "831340191a0e46bbb0924728c5d9838d", + "model_id": "50e248b2a9e24f44b6fea55b8c853f61", "version_major": 2, "version_minor": 0 }, @@ -571,7 +571,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72740e1b8ea54068b96b532efee1b626", + "model_id": "76b3c33a1bb74b69a0da19589e74f81b", "version_major": 2, "version_minor": 0 }, @@ -709,7 +709,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e82b054e323d4678b4e03d3ade37467a", + "model_id": "c5cc9105029b45e8bb87d82ac3939450", "version_major": 2, "version_minor": 0 }, @@ -820,7 +820,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66c01c5df4884d799401e54730fcefdf", + "model_id": "a6b8b8960b48408cb754a2291653b881", "version_major": 2, "version_minor": 0 }, @@ -903,9 +903,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "bmcs_env", "language": "python", - "name": "python3" + "name": "bmcs_env" }, "language_info": { "codemirror_mode": { diff --git a/tour3_nonlinear_bond/3_2_anchorage_length.ipynb b/tour3_nonlinear_bond/3_2_anchorage_length.ipynb index 4a60141..614a1ee 100644 --- a/tour3_nonlinear_bond/3_2_anchorage_length.ipynb +++ b/tour3_nonlinear_bond/3_2_anchorage_length.ipynb @@ -35,7 +35,7 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7ffb741484c0>" + "<IPython.lib.display.YouTubeVideo at 0x7f4879ed36d0>" ] }, "execution_count": 1, @@ -172,6 +172,7 @@ "metadata": {}, "source": [ "<a id=\"trc_parameters\"></a>\n", + "\n", "| Material parameter | Value | Unit |\n", "|:- | -:| -:|\n", "| matrix area | 1543 | [mm$^2$] |\n", @@ -226,6 +227,23 @@ "execution_count": 3, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception occurred in traits notification handler for event object: TraitChangeEvent(object=<bmcs_cross_section.pullout.pullout_sim.PullOutModel object at 0x7f482032cd10>, name='material_model', old='multilinear', new='trilinear')\n", + "Traceback (most recent call last):\n", + " File \"/home/rch/miniconda3/envs/bmcs_env/lib/python3.9/site-packages/traits/observation/_trait_event_notifier.py\", line 122, in __call__\n", + " self.dispatcher(handler, event)\n", + " File \"/home/rch/miniconda3/envs/bmcs_env/lib/python3.9/site-packages/traits/observation/observe.py\", line 27, in dispatch_same\n", + " handler(event)\n", + " File \"/home/rch/PycharmProjects/bmcs_utils/bmcs_utils/model_notify_mixin.py\", line 28, in <lambda>\n", + " self.observe(lambda event: self.change_parent(event), key)\n", + " File \"/home/rch/PycharmProjects/bmcs_utils/bmcs_utils/model_notify_mixin.py\", line 96, in change_parent\n", + " event.old.parents.remove(self)\n", + "AttributeError: 'str' object has no attribute 'parents'\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -236,7 +254,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "33b29fb386294879a1083ed5b778851c", + "model_id": "a73edd19aa434f92ac2ccf9d02e2e66e", "version_major": 2, "version_minor": 0 }, @@ -363,7 +381,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b087dae97bfd45b1b5d64e318320fbf3", + "model_id": "6e4cdf4321814318a279e133411b20ff", "version_major": 2, "version_minor": 0 }, @@ -464,7 +482,7 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7fd039b6e820>" + "<IPython.lib.display.YouTubeVideo at 0x7f48174e05e0>" ] }, "execution_count": 7, @@ -677,7 +695,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f96de9a9020e4c23abc35ef3ee2bb1ed", + "model_id": "618e7a21875a481f9aad540850bf2e30", "version_major": 2, "version_minor": 0 }, @@ -760,7 +778,7 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7fd039a29340>" + "<IPython.lib.display.YouTubeVideo at 0x7f4815c0d130>" ] }, "execution_count": 14, @@ -791,6 +809,23 @@ "execution_count": 15, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception occurred in traits notification handler for event object: TraitChangeEvent(object=<bmcs_cross_section.pullout.pullout_sim.PullOutModel object at 0x7f4815c0b3b0>, name='material_model', old='multilinear', new='trilinear')\n", + "Traceback (most recent call last):\n", + " File \"/home/rch/miniconda3/envs/bmcs_env/lib/python3.9/site-packages/traits/observation/_trait_event_notifier.py\", line 122, in __call__\n", + " self.dispatcher(handler, event)\n", + " File \"/home/rch/miniconda3/envs/bmcs_env/lib/python3.9/site-packages/traits/observation/observe.py\", line 27, in dispatch_same\n", + " handler(event)\n", + " File \"/home/rch/PycharmProjects/bmcs_utils/bmcs_utils/model_notify_mixin.py\", line 28, in <lambda>\n", + " self.observe(lambda event: self.change_parent(event), key)\n", + " File \"/home/rch/PycharmProjects/bmcs_utils/bmcs_utils/model_notify_mixin.py\", line 96, in change_parent\n", + " event.old.parents.remove(self)\n", + "AttributeError: 'str' object has no attribute 'parents'\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -801,7 +836,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "398bb38fed8c4707a893172397c4bf08", + "model_id": "ef79eaa1512549ddbf40c7e06e910347", "version_major": 2, "version_minor": 0 }, @@ -890,7 +925,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9e81021899b4a28853f93eea4b9fc68", + "model_id": "46660eee2f8c4e73b3a0f334ebce0dfa", "version_major": 2, "version_minor": 0 }, diff --git a/tour5_damage_bond/5_1_Introspect_Damage_Evolution_Damage_initiation.ipynb b/tour5_damage_bond/5_1_Introspect_Damage_Evolution_Damage_initiation.ipynb index e2e7ec4..b543caa 100644 --- a/tour5_damage_bond/5_1_Introspect_Damage_Evolution_Damage_initiation.ipynb +++ b/tour5_damage_bond/5_1_Introspect_Damage_Evolution_Damage_initiation.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -41,10 +41,10 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7f31f33c8bb0>" + "<IPython.lib.display.YouTubeVideo at 0x7f315c750ac0>" ] }, - "execution_count": 28, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -296,7 +296,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 2, "metadata": { "slideshow": { "slide_type": "fragment" @@ -331,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -350,10 +350,10 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7f31f30d1e80>" + "<IPython.lib.display.YouTubeVideo at 0x7f31168cda90>" ] }, - "execution_count": 32, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -413,19 +413,27 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 4, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trait <traits.ctrait.CTrait object at 0x7f3104265680>\n", + "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f31043c1450> omega_fn <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n" + ] + }, { "data": { "text/latex": [ "$\\displaystyle \\begin{cases} 0 & \\text{for}\\: \\kappa < \\kappa_{0} \\\\\\frac{\\kappa - \\kappa_{0}}{- \\kappa_{0} + \\kappa_{u}} & \\text{for}\\: \\kappa < \\kappa_{u} \\\\1 & \\text{otherwise} \\end{cases}$" ], "text/plain": [ - "<ibvpy.tmodel.mats_damage_fn.LinearDamageFn at 0x7f31f33ad3b0>" + "<ibvpy.tmodel.mats_damage_fn.LinearDamageFn at 0x7f310443b130>" ] }, - "execution_count": 33, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -445,13 +453,13 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5bace94d8784524a61e65d822e5329e", + "model_id": "a13df2bdb92444a8b9f3a59c59480dea", "version_major": 2, "version_minor": 0 }, @@ -478,13 +486,22 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 6, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xtrait <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "name omega_fn_\n", + "name <ibvpy.tmodel.mats_damage_fn.LinearDamageFn object at 0x7f310443b130>\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "05238cd42ac94a09b507a907640b04ae", + "model_id": "34bb8a6b24524b20ab561d114ff5fe76", "version_major": 2, "version_minor": 0 }, @@ -589,19 +606,27 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 7, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trait <traits.ctrait.CTrait object at 0x7f30fc03a4a0>\n", + "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f31043514f0> omega_fn <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n" + ] + }, { "data": { "text/latex": [ "$\\displaystyle \\begin{cases} 0 & \\text{for}\\: \\kappa < 0 \\\\1 - e^{- \\left(\\frac{\\kappa}{\\lambda}\\right)^{m}} & \\text{otherwise} \\end{cases}$" ], "text/plain": [ - "<ibvpy.tmodel.mats_damage_fn.WeibullDamageFn at 0x7f31f3053220>" + "<ibvpy.tmodel.mats_damage_fn.WeibullDamageFn at 0x7f30fbfaf0e0>" ] }, - "execution_count": 36, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -622,13 +647,13 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6fdd3f63731d4dc7a1945a56448ee9e4", + "model_id": "8e3d466d82984b2fab193425e03ce460", "version_major": 2, "version_minor": 0 }, @@ -653,13 +678,22 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 9, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xtrait <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "name omega_fn_\n", + "name <ibvpy.tmodel.mats_damage_fn.WeibullDamageFn object at 0x7f30fbfaf0e0>\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dcde2433af5345299f5cf2d5992d5d13", + "model_id": "be8dce314fdf4083a58bd393d7eb0886", "version_major": 2, "version_minor": 0 }, @@ -721,7 +755,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -740,10 +774,10 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7f31f13d10d0>" + "<IPython.lib.display.YouTubeVideo at 0x7f30fbe34b80>" ] }, - "execution_count": 40, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -773,7 +807,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -787,7 +821,7 @@ "1 - ℯ " ] }, - "execution_count": 41, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -808,7 +842,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 12, "metadata": { "hide_input": true, "slideshow": { @@ -819,7 +853,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "50675aac05d148b9943ab56cbafe831f", + "model_id": "abeaa11934ab4bab909d0ee47c046b82", "version_major": 2, "version_minor": 0 }, @@ -885,19 +919,27 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 13, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trait <traits.ctrait.CTrait object at 0x7f30fbbac040>\n", + "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f30fbe4f7c0> omega_fn <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n" + ] + }, { "data": { "text/latex": [ "$\\displaystyle \\begin{cases} 0 & \\text{for}\\: \\kappa \\leq \\kappa_{0} \\\\1 - \\frac{\\kappa_{0} e^{\\frac{- \\kappa + \\kappa_{0}}{- \\kappa_{0} + \\kappa_\\mathrm{f}}}}{\\kappa} & \\text{otherwise} \\end{cases}$" ], "text/plain": [ - "<ibvpy.tmodel.mats_damage_fn.ExpSlopeDamageFn at 0x7f31f164fef0>" + "<ibvpy.tmodel.mats_damage_fn.ExpSlopeDamageFn at 0x7f30fbbb0c20>" ] }, - "execution_count": 43, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -910,13 +952,22 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 14, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xtrait <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "name omega_fn_\n", + "name <ibvpy.tmodel.mats_damage_fn.ExpSlopeDamageFn object at 0x7f30fbbb0c20>\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aeba15ba04f44388ad9aad952224c4a0", + "model_id": "43606dfae8e5486c89346f1d5119eaf9", "version_major": 2, "version_minor": 0 }, @@ -977,19 +1028,27 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 15, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trait <traits.ctrait.CTrait object at 0x7f30fbc66400>\n", + "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f30fbb78e50> omega_fn <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n" + ] + }, { "data": { "text/latex": [ "$\\displaystyle \\begin{cases} 0 & \\text{for}\\: \\kappa \\leq \\kappa_{0} \\\\1 - \\begin{cases} 1 & \\text{for}\\: \\kappa < \\kappa_{0} \\\\\\frac{\\kappa_{0} \\cdot \\left(1 - \\frac{1 - e^{- \\frac{\\alpha \\left(\\kappa - \\kappa_{0}\\right)}{- \\kappa_{0} + \\kappa_{u}}}}{1 - e^{- \\alpha}}\\right)}{\\kappa} & \\text{for}\\: \\kappa < \\kappa_{u} \\\\0 & \\text{otherwise} \\end{cases} & \\text{otherwise} \\end{cases}$" ], "text/plain": [ - "<ibvpy.tmodel.mats_damage_fn.AbaqusDamageFn at 0x7f31f15b57c0>" + "<ibvpy.tmodel.mats_damage_fn.AbaqusDamageFn at 0x7f30fbb060e0>" ] }, - "execution_count": 45, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -1002,13 +1061,22 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 16, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xtrait <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "name omega_fn_\n", + "name <ibvpy.tmodel.mats_damage_fn.AbaqusDamageFn object at 0x7f30fbb060e0>\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c2c56bd5e144d3b8b0322ab78f8e560", + "model_id": "a1c6e954f7b541e3a1e7ea8b99980d7e", "version_major": 2, "version_minor": 0 }, @@ -1052,19 +1120,27 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 17, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trait <traits.ctrait.CTrait object at 0x7f30fbce2720>\n", + "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f30fbae9b80> omega_fn <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n" + ] + }, { "data": { "text/latex": [ "$\\displaystyle 1 - \\begin{cases} 1 & \\text{for}\\: \\kappa < \\kappa_{0} \\\\e^{\\frac{\\left(\\kappa - \\kappa_{0}\\right) \\left(\\sqrt{E_{b}} \\sqrt{- E_{b} \\kappa_{0}^{2} + 4 G_{f}} + E_{b} \\kappa_{0}\\right)}{E_{b} \\kappa_{0}^{2} - 2 G_{f}}} & \\text{otherwise} \\end{cases}$" ], "text/plain": [ - "<ibvpy.tmodel.mats_damage_fn.GfDamageFn at 0x7f31f13bdb30>" + "<ibvpy.tmodel.mats_damage_fn.GfDamageFn at 0x7f30fb9f3b80>" ] }, - "execution_count": 47, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1077,13 +1153,13 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c43a2738b18d4ae0a669157316759ab4", + "model_id": "dae3e2a5cf6b42ccb915765bc30ffb3a", "version_major": 2, "version_minor": 0 }, @@ -1108,13 +1184,22 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 19, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xtrait <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "name omega_fn_\n", + "name <ibvpy.tmodel.mats_damage_fn.GfDamageFn object at 0x7f30fb9f3b80>\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45d40f92cb6d4da8bca0b5f492487caf", + "model_id": "ea666c3cfe504ef3a322c0a8f46ad9de", "version_major": 2, "version_minor": 0 }, @@ -1192,7 +1277,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1211,10 +1296,10 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7f31f0f72ca0>" + "<IPython.lib.display.YouTubeVideo at 0x7f30fbf91ee0>" ] }, - "execution_count": 51, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1264,7 +1349,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 21, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1283,7 +1368,7 @@ "╲╱ sâ‚“ + s_y " ] }, - "execution_count": 52, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1303,7 +1388,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 22, "metadata": { "hide_input": true, "slideshow": { @@ -1314,7 +1399,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "447ea461e8a948a08b9abdec310f6e9f", + "model_id": "1b05634b3d254fb7a3e2409b77da0d53", "version_major": 2, "version_minor": 0 }, @@ -1466,7 +1551,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 23, "metadata": { "hide_input": false, "slideshow": { @@ -1474,10 +1559,26 @@ } }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trait <traits.ctrait.CTrait object at 0x7f30fb7de4a0>\n", + "<ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f30fb894ae0> omega_fn <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "trait <traits.ctrait.CTrait object at 0x7f30fb822ae0>\n", + "<damage2d_explorer.Explore object at 0x7f30fb7e40e0> bs <bmcs_utils.trait_types.instance_type.Instance object at 0x7f30fb7d0100>\n", + "xtrait <bmcs_utils.trait_types.instance_type.Instance object at 0x7f30fb7d0100>\n", + "name bs\n", + "name <ibvpy.tmodel.mats1D5.vmats1D5_bondslip1D.MATS1D5BondSlipD object at 0x7f30fb894ae0>\n", + "xtrait <bmcs_utils.trait_types.either_type2.EitherType2 object at 0x7f3104603c10>\n", + "name omega_fn_\n", + "name <ibvpy.tmodel.mats_damage_fn.GfDamageFn object at 0x7f30fb7e94f0>\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "024b851bf7154e13993ece88d55f5cd9", + "model_id": "5450a06210da403fbab5e4c47d1afb74", "version_major": 2, "version_minor": 0 }, @@ -1593,10 +1694,42 @@ "source": [ "<div style=\"background-color:lightgray;text-align:left\"> <img src=\"../icons/exercise.png\" alt=\"Run\" width=\"50\" height=\"50\">\n", " <a href=\"../exercises/X0501 - Bond-slip law expressed as damage function.pdf\"><b>Exercise X0501:</b></a> <b>Bond-slip law expressed as damage function</b> \n", - "<a href=\"https://moodle.rwth-aachen.de/mod/page/view.php?id=551831\"><img src=\"../icons/bmcs_video.png\" alt=\"Run\" height=\"130\"></a>\n", "</div>" ] }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRkeHRsfIy4lIiIiJCctKigoMi09NjAnMjI1SFBCODhPOS8tSGFFS1NWW11bMkFlbWRYbFBZW1cBERISGRYYLxsbL18/Nz1XV1dXV1dXV1hXV1dXV1ddV1dXV1dXV1djV1dXV1dXV1dXV1dXV1ddV1dXV1dXV11XV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAwQBAgcGBf/EAEgQAAEDAQQFBgsFBwQCAwEAAAEAAhEDBBIhMQUTQVGRFiJUYXGhBhQyNVKBkrGy0dIHcnOioxUjQlNiwfAzgsLxY+ElNEOD/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECAwT/xAAnEQEBAAIBAwMEAgMAAAAAAAAAAQIRIRIxQQNR8BNhkaHR4QQycf/aAAwDAQACEQMRAD8A5+iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiyRCwgIiICK1o7R1a1VNVQZffBMS0YDPEkBfW5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6k5E6S6N+pS+pB59F6DkTpLo36lL6lrU8DNItaXGzQAJP7ylkP9yD4KL6H7EtP8v8zfmn7DtP8AK/Mz5qdUHz0X0hoG1fyvzM+azyftf8r8zPmm4unzEX1B4OWz+T+dnzW3Jq2fyfzs+abiafJRfXHgvbf5H56fzWw8FLd/I/PT+aux8ZF9oeCVv6P+en81DbfBy2Wek6rVo3abYk32HMwMAZzKD5iwiICIiD1H2decm/hvXV1yj7OvOTfw3rrCCF1oAMQVjxobivieE1d1OlLHlhNVrSQ5rcCcec4ED1r5Fi03UDXM1jHEOqc+s9paAxrTcvsgOJvEzsxwMIPZeNDcU8aG4rzVHTNV9Rv7traZfTYQZ1gNSkH9mBMKKwaZfUqtc6HtdQa/V0ZcWkviHDeBgfcg9V40NxTxobivJv03Ue2s3msc0i4W483WhpxBI29Rzw2rFbTtSnrI1fM1zoe4y4U6pbcb1kIPW+NDcU8aG4r4Gl7eaDqT5ht2oSHTBIAuzHWVS5QVdWHCk1ziajWgTBdTeJGZzZeIxzbmg9Z40NxTxobivgVNLOFj8YDAbz4ZnFw1LrXn1Q7ZnsVcabqTZwW0xrSWkyTdh92+YJwcMAJwcQJKD0/jQ3FPGhuK8m7wgqAOhtJx/eQ0F0tNOoGc/tvT81MNNVRVq03U6Z1V8E3ruLWXrxk4NOWWEgyg9N40NxTxobivJO8I3iiHXad4OId1AMDsr3OwP8JdhjGxSv8ACB4qVbtIOZTaTEw4xS1gOOMGQIjr6kHqPGhuKeNDcV57RNufUrWi/UpvaxtMjVmWiWknr3f5gqNPwjqOpucG0pvMgg4XXtLsAXAki71HbGEEPX+NDcU8aG4r4NbShFKzPZqxryOc8kMaCwunYcYgZZr51i08+LKx1x5qXA8k87nvcARlhzdgPXCD1/jQ3FPGhuK8mzTloNIVSyjGp10AumA6C3tOc7OtZb4ROJqgNpwCy46TADqppy7GYGez+6D1fjQ3FPGhuK8m7whqCAGU3G9UxDua4U3BsNJIxN6Zx7FPpm21qNYOY4XGWerVLCDznMiATuxHf6g9L40NxTxobivNP0zUdUcykKRAeWhxJIgURUJwOOJIW1m0w6q6mBqaYdTpOio43nGoCYbvgiOvqQej8aG4p40NxXj7FpmrqqJe5jnvpMJccGtc6oWy4Dd1RjAwU507Vuuc1lIim1xcZdDrtW4SzqMTj3oPU+NDcU8aG4qqiC140NxTxobiqqILXjQ3FPGhuKqogteNDcU8aG4qqiC140NxTxobiqqILXjQ3FPGhuKqogteNDcU8aG4qqiC140NxTxobiqqILXjQ3FQW20A0aog+Q73FaKK1f6VT7jvclHlAFK1q0apWryttmhTNCiB618rTelLjHMpvggAucM8cmjrOc7ACtSbXb61W30aZh9VjTuLhPBTWW20quFOox5GwETwXNS4lSUHOBBBIIOBGYXTpY6nVGKZq8/obSxcy7UdfeBIcMLzd8bwZB7F9myWi+6I2KwXWrznhgSLHaBsNwjtvtXqGU153w7pRY6h3hvxhaRzJERUEREHqPs685N/DeusLk/2decm/hvXWEFOvZi4mWgidsKPxPAC42BiBAhfQRBQ8VPojOdme9G2QgkhoBOZEK+iCh4pnzG454DHtUZ0cDU1lwXgI2ZTOW+dq+mtGVGum6ZgwY3jMIKbrKTm0HthBZP6Bh2K9Kygo+LGIuiIiMIjctfE/wChuUZDIZBfQRB8yho1tNpa2mACSTMGSXFxz6yVL4qZm6JynCY3SryIPn+JYXdW2JmIETvhbeKmb10XspwniryIKDLIW+SwDsgLHiWBGrbBzEBfQRBRdZiRBaCNxiFr4n/Q3DLAb596+giCh4phFwREbMtyjraOD2uaWwHZlpunOcxivpog+XZ9FtpsDGskAl3ON43iZJkyZUxsxmbonLZluV5EHz22OMmNHqHYs+KHDmDDLLDs3K+iD54sefMbjngFnxTCLgiI2ZbuxXkQU9Q7d7k1Dt3uV1UrRrDImASQ27gfIOMkwcfcgah273JqHbvcoSy0OcJLmScSCCG8w4xOPOhWaT3mpD23RDoxzEtg9uaDTUO3e5NQ7d7lBoq2Vqla0tq0nMY2p+6JjFkAbOsXscecF9NBT1Dt3uTUO3e5XEQU9Q7d7k1Dt3uVxEFPUO3e5NQ7d7lcRBT1Dt3uTUO3e5XEQU9Q7d7k1Dt3uVxEFPUO3e5Q2yi4Uahj+B3uK+koNIf6FX7jvhKUeHYVLsKgYp2leZtQ0tTe51K60kC9eIGWULytscTUcJwvYjswXpfCWsRZgAYvPAPZBMdy8rTdLwTvXXFm931LLUZMSF9WzmkHNLiwY7YXxvF2ktxAk4r6o0fTp1HVJlgE+VszjL/IWXTwr6DqMbanl72sY0vF4nCJOzthev0ZpCyms1rbSwuOAEESTsk4LmzXkk9c/NWbE+KjDucD3rq47dmpsXnftCb/APHPP9TfiC9OF5z7QB/8XV+8z4gtDkiIiiiIiD1H2decm/hvXWFyf7OvOTfw3rrCAiIgIsLKDCoaBM2KznaabXHrJEk8SVfVDQH/ANGzfhM9yCOpZ3GvVqGlMhrWzcILWgkOON7ynOy3BWhVe+kS1t1+QkYTvgxIE5dStIgjo3rjb/lQJ7dqkREBERAREQERaueBEkCcpQbIi1LxMSJ3f52Hgg2REQEREFe06zm6vfzsst3fO3LrUdrPOEklsYsh0HrkDuOCuLCCta3VRBpiQMSMMer/AAcFJZqhc2XCDJ2ET1wVKsoCIsIMrCyiCCh5dX74+BqnUFn8ur98fA1ToCIiAiIgIiICIiAiIgKtpD/Qq/hu+EqytKlMOaWuEhwII6ig581y2q2htNhe4w0Zr140BZf5X53/ADUVp8F7FVAD6JIGQ1lQe4rlMK1tynSGlalcXXQGTIAHDFUJXXeROjejfqVfqTkTo3o36lX6l00w5nZ3SRirekrWbopz5Qx6gBlxXRG+B+jxlZ/z1PmuceF9lZZtI1adEXWNDYEk5sBOJneszHlvq4fNMAYbQrmiLDUr2ilTZBLnDbEDacepfLLyVLQtdSm4OY66WmQYGBC256d4XnPD7zXW7WfGF4PltpLpP6dL6VWt/hPbbTSNKtXv03RIuUxkZGIAKLp8hERFEREHqPs685N/DeusLk/2decm/hvXWEBV6lR4fDQC26Sc56h7+CsLCClSrkimyCQ5kuqTkSJn/MOzCZGV3mlTdclzmgkYiCR2FT6sXbsCN2xbIIKtZ4oueGS8AkNx+U9y10bSbTs9FjHX2NY0Nd6QjA+tWl8/QH/0bN+Ez4UG9a1GkXOqeRJDQANjb0yT1EdqO0nTGx2ROEbCAR1nHLgriIIK9R5Y00wDJbt2SNwOyVisTepTAlxnaJumP87FZWCEFWjWeHtbUiXBxGyIIjDrBlTy+95Lbu+8Z4R/dbgjgiCpXtDqbnOf/piIgCZxnEnqCwdJ09zsju2EiO3Aq4CDiDIRB8+tVLoczyXNYXdheN39N/gs2tzXVAHXJpw8S8iP6jhhkRnv3q/A4qCvZGPD9hc0tJGYBEGJ7BwQR1cDefTog7C5+Pe1V7UwS2o64HOIDTfJmDeu4NxBunDtX01pUotdF4TH/f8AYIKgkUWiWktLAC104yBuEfIq+oLLZW0mw2SMM+poaO4BToPn1bZUYXl1PmzDd5hpP/HD7w7FZtDniLo5v8RGLh2A/wDvsUyIK9oqPAZq23pIknd8+GRyWlsq3XQajQ2MWhwa4+s7OGWZVtEEFepUD2BjZaTzj1dXfu/sd7NW1jGvwx3GVIiDKwRIhZRBUdYsGBjroaIgbcQZMRuPErUWJ+E1nGI37J69s9yurCCvSZL6uJ8sZEj+BqqaXe+mxgouIqveGtkkjDnEHtAj1q7Q8qr98fA1VK/PtbR/KYCe17wB3MdxUrfp993wu2auKtNlRuTgCPWpVQsH7upVo7AdYz7r8SPU693K+kTOavAiIqyIiICIiAiIgIiICIiAiIgwuReH3nWv2M+ALrq5F4feda/Yz4Ag86iIgIiICIiAiIg9R9nXnJv4b11hcn+zrzk38N66wgIiICIiDCoaA/8Ao2b8JnwhX1BY7NqWasGWgm4I8luxvXGQ6o7SGhtD2udeAuh7WDAzzogycxj/AJCne9wODZ9YWzmg5gHbitkEFV7w9obEQSZBOUYTsz96jpVy914Axq2uaJ9KZ9wVohaupAiIjAgRgQDu3IKVmaBeLWl1/E88d27PZ/dShrgHBrHCRE3wY4ys2axNpOJZg26GhsZQ5x7P4so2KZtFjTIY0HeAJQUrMwsc0MEtaHAi/JkukcII/wClbpON+oMwI9RIxHuPrUYsTQ4Obgb94yJnAjjjmrIaBltQZREQEREBERBUq2ste8XDdY2Z68MO/uUtoqOaBdbO85wN8DE9gUjmgiCARuKygrV7Q5lIOaDUdsAGe/8Avn2Le0OeIu5fxRF71Th/mSnWj6bXeU0HtCCGvXcxrLjS8kjPON/blh27oUtCrfbeiJJjitwIwCNaAIAgdSDKIiAsLKIIKHlVfvj4GqpY+drqnpVgB2MIb7w4+tS1K4pMtNQ5MJdwptKWSiadnpMPlAMvHe6RJ4yp5bnGFvv8/hrpDmPpV/Rdcf8Acfh3OunslXlHaKLajHMcJa4Fp7CodG1nPpC//qNlj/vNwJ9efrTyXnH/AItoiKsCIiAiIgIiICIiAiIgIiIMLkXh951r9jPgC66uReH3nWv2M+AIPOoiICIiAiIgIiIPUfZ15yb+G9dYXJ/s685N/DeusICIiAiIgLCyq9ta80zqyQ7DKJOOIxwyQToq7r1Qcx126SDImY7CFparLfNHa5jg69hGBEyDtImDmN6C2i+eyy1PGNYcAXTOE3bl3V+1ztyqnR9SC0MGr1zaoZLcDrJdhlEC92u6kH2llfDZo+tSozRltVzQ0jmAC6HXTGRxcJM7Bug/SrOqOa24C03+dMeSDB7sR6kFlFWDzWYCx1zHaOrqI3qvbrHUeacEG60g7IcXNIqY7g13FB9FZVR1Im0U6lyAKb2k4SJcwgflKrhloDzi8i8dtPK+f+MIPpLK+XZPGWEGrfeIAI5md1mOH9V9XLSKhLLnpC9l5O35+ob0E6KB01GgsddxOYnLDYVWtljqPdSIM3RBOUG+03uDXD19ZQfQWVRbRm0ipqS03CL8txmMDBnCB1ZqFjLSHGXPLbx208i58flLOCD6ayvmWXxhjgal5zYgjmZkMxw69Z6vUvpoCIiAiIgKCpZg51/J3NxjYDMevJTrCD4+lHGCwEzUrsbGGQa1zvytKv1SCboqG9eGHN3zGW7FUKsvtjmgE3BeMRgXhoBxO5r+KuVLKQXOD4LnAzHW0DuCkby4kizqz6bvy/JUzY3ipUdTrOYXQSC1paTESRAMwBkRkr4UbPLd6lWZlZ2VtbaWeVTZVG+m6672XYfmT9q0h/qX6J/8jSB7Xk96vLBCmmurG95+GtOo1wlrg4bwZC2VBujKLmh1y68gS5hLXH1tglZ8UrM/07QSN1Vod6pEHjKcmsb2v5XllUfGa7fLoXhvpOB9cOg8JWzNKUSQHPuOOyoCw+q9EpuH08vC4iwDOSKsMosLKAiIgIiIMLkXh951r9jPgC66uReH3nWv2M+AIPOoiICIiAiIgIiIPUfZ15yb+G9dYXJ/s7IGkhOH7t66prmek3iEEiKPXM9JvEJrmek3iEEiKPXM9JvEJrmek3iEEiitFYU2lxBIwGHWYWdcz0m8QtajqbhDiwxjjCDFesKQHMcZP8IC1qWgh1EAYVCQZzHMLv7LNnLWNi+0mSZneZ3rZ5puLSSwlplpJGBiJHqJQQC3fvzTu4X7k/1au/PZGHatRpVkkXXyJ2DZe6//ABv4dasNFIEEXAQIBwmNyj1Fn9Gn+Xr+p3tHegzZ7a2o66GuBgnEDZE5febx7Ut1pNMNuiS50RBOEEnAdQKwaNDMBgO8ROYP/EcApKgpOguuEiYmNuaCCx2sl7qTwA4F0FohpAifXzhxU9K03nltxwjaQI96MFJpJbcBO0R/mwcFvrm+k3iEHz36ULc2if3pP3abw3ibwKkpaQL9bDQC1pc32nNg+xPr6sZ7lHdTzLtnlEyT2ys3aUOHMh3lZY9vE8UHz62l3ineaxoLaVR9QGTD2ZsEZ4zj2b1Zp6RgtbVaWlziAYgECecQcRkf8IUr6NB3lNpnAjG7kRBHrAHBZeyi4guFMkZExP8AmJ4oIWaRaHBhY5rpgwBEy2dv/kbxW9HSDXuDbrwTlIG4kZH+l3DsWzqVAuvEUyZmcJnDH8rfZG5G0qDSCBTBGREYZ/M8SgsotNc30m8Qmub6TeIQbrKj1zfSbxCa5vpN4hBIij1zfSbxCa5vpN4hBIij1zfSbxCa5vpN4hBIij1zfSbxCa5vpN4hBELJD3vD3NL4mLuwQMwobUXMIF6oRmSAyBjh/CreuZ6TeITXN9JvEIW7aNpuIB1jxO8M+SgAeKhBc+CQA7mY4Ez5PVHrCta5vpN4hNc30m8Qg11Lv5r+DPksGk4CdY/gz5LfXN9JvEJrm+k3iEFSylx5he9rgJImmYxgfw7VZ1Lv5r+DPkttc30m8Qmub6TeIQa6l381/BnyWr7MXCHVHEbiGH/ipNc30m8Qmub6TeIQfNq6MpUoc19SnjH7qGiTvaBHEK7TaXNDhVfBEjBmXsqU1Wek3iFhtRgEBzQBkJCaauVvdDaaDjTeNc7FpGIZu6goND2c0KQZUtb6531C2Rs2Y57yVZrtpviXNkZYjA71D4rS2vxzPOGck/8AIoyuCqCYGOEyMv8AMQt1UoU2MdIeIjaRuA9zQp9c30m8QgkRR65vpN4hNc30m8Qg3XIvD7zrX7GfAF1rXN9JvELknh44HSlcgzgz4Ag88iIgIiICIiAiIg9R9nYnSTfw3rqurb6I4LlX2decm/hvXV0EFWoxrrkAvIkNjt27MjnuKhdbaQNEBoIrCWGAAcsJO2HTGcNO5T1LMC/WAkPu3ZkxAmJGRiTxWviTLjGQbrA0ASY5pBE78QEELbfR1d991gyMjCccJjHInqWtXSFEU3vDZLb+BaRiwkHGMPJMHbCkZoyk0QLw517BzhzoIJw3gmVl2jKRvYOF4ODocRIcSSD63O7JKDd1eiGXyW3ZImNoMERnhB4LR1soAEkiGmCbpwwndux7Fi0aPa+lqwYBeXmZMkkk5EbSs1NHU3tLXXjeMnEiTdu7OpBG/SFEFsXS05mCIEEgxGXNdj1HcVI21UtpaMXDASBdJGJjDyT6wc4UTNEs1d2oS4kFpIJEgyI4OdxUo0bTxi8LwcHQ5wm8S4zHW5xG6UEXj1MuhrA5vNE5Yl7mkRGYLTgpjaqOr1gEt5uIYT5URhHWFrT0bTb5MjEHMxIcXfE4n1qSlY2incOMm8SJHOmZG7HIdSCBmkKF1xeWsLXFpB6nOE5Zcx3A7lvarVTpOY0hvOOJ2NF1xvH2T37k/ZlO9e58zMh7htcdn33ceoLe0aPp1HS8EyIPOIBgEbOpzuPUEEfj1AwGlpJLdhGbro2YGQRG8LJttCASQAYiWkZ4bR1epbfs9m0vPkYlxJ5jrzc+srbxGnIIBaQ4ulriMXeVlsO5Boy1Uy+o2GhtNocXHLEuB4XTiomaRoXSXwznOGLT/DOJwwwaTB3Hcpm6OpAPEGHtuOF4xdkmBu8p3+AKOpoii7O8Zn+J22Z+I/4Ag38coQ4yIb5XNOGJGUb2u7IKy+10G3pc3miTh/k5jJanRdI3pvG9nzjtcXe9zuPUFo3RbbzyXEh0HAuBBbEGZ2QMs0G1e2U2ashocHi9egxdES6QDvC2bbKBddvNnHMRlen4H+yVJWsbHwHSYaW5nIxPuGKhGiqQMw4ySSC4kEkuJz/Efx6ggC20S+4AL3NmWuA5xIGMZ804LYW2gSAHNk5c09XVlzm49ayNHUxB5xIujFxMhpJAM55nitRoylhF7AR5Ry5sD8rf8JQbVLRSY5wddEQMiTJBOUbgVu6rSBYDdl/k4Z+tYq2JjnFxmTGR3Aj3Eo6xMJYTM04DcTsQQ1rdSZUuOAgNLi6DhBEjLHPZlCkbaqBddBEzHknOYzjfh6xvC1raLpPMuDtuAc4DnRew6444rI0dTBB52Bnyjneve8IMeO2eYvNmbsRtw7uc3HLnDetm2qgQ4hzCG5/5t9SgOiGBzXMJEGTJJx5sHP8ApGc781YZYKbW3QMMhJJujcJyHUgidbKYLrwa1oOZ3XL5MRu2f9KV1elcLhBgxEGZ3RE92WKhraKYaZY2W82G4kgcwsBjbzSp/E23QDMh169Jm9ETPZh2IIaFupOa1zrrbxaAM8XBpg4YYvA9Y3rdtsoEAgtIJgc07p3biDO7HJajRNIAAB3NII5zsxdj4G9+8rFm0Y1jA0kmJyJGbbu+cuvBBn9oWf0h7Jnb1f0u4FW9W3cOAVQaJpCYvY/1Hc4f83ceoK4xl0RJ9ZQY1bfRHBNW30RwW6INNW30RwTVt9EcFuiDTVt9EcE1bfRHBbog01bfRHBNW30RwW6INNW30RwTVt9EcFuiDTVt9EcE1bfRHBbog01bfRHBNW30RwW6INNW30RwXJPD0RpSvG5nwBdeXIfD7zrX7GfAEHnUREBERAREQEREHqPs685N/DeurrlH2decm/hvXV0FHSlpfSa0sxzLgIvEAfwzgT1YSq1TSri661pZFVrTO0Xy0gjZMSOor66Qs2V0xzxk5j4tn026rdimGyYMunHVB8ZZySP9pRmm3XAdUSbrTJdEzcxOGXPz3tK+0kJq+7XXhv8A1/apYLbrgDDRLQYDpIMkHYMMMD3K4sLK05Wy3gRERBERAREQEREBEWEGVhZWEGUREBEWEGUREBERAREQEREBEWrnAZoNkWjagMwcs+E+4r5+gtJPtNOo6pSfTc2o4APaWksmWOg9WHaCg+miIgIiICIiAiIgIiICIiAiIgLkPh951r9jPgC68uQ+H3nWv2M+AIPOoiICIiAiIgIiIPUfZ15yb+G9dYXJ/s685N/DeusIKlvq1G3NW0nHHCcP+p4cYtZWbSpnFzr0PkYxJnLD+3Wr6INaVUPaHNyP/S3WrGBoAaIA2LZBgqnrnuuy0sbeAM4E9+UwI61dWEFelUqlji5oDpwHV1455/8Avblz6gpkhoL9gyHvKnRBXoV3PDgWEOaNu0yR/ac8iEqGqab4EOjmwBnxKsIgp/vLgEOkVAf9ms2/7VJTc666Mecbs44T2jbKsLDnBoJJgDMoIKmsLBs5wvRnd6oJUlmv6tms8u6L33ox71IDKygKtbSQ0bBeaHEejOPq39UqysIPkmpXJa5zXXgXCAzAYY7ecMoPvyQ17SQ3mkeQXEN3VGh2f9N75DCfrIg+fZKtYuY1zS1sSeZgfKkZ80+T6jt2QV7Tag0lrSTL4/dmIDiG7Zyg7M/UvsLCD5TbbW1zWRhJmWkYS6OyYbB6nLey1aznUi+Q4k3mlt2GXMZxMw+ADuPrP0romYxRBlEWr3hsSQJMCd5yCDZERAREQEREBaVKbXi64Ag7Ct0QaUqbWNDWgBoyAWlmyd993xFTKGzZO++74igmREQEREBERAREQEREBERAREQFyHw+861+xnwBdeXIfD7zrX7GfAEHnUREBERAREQEREHqPs685N/DeusLk/2decm/hvXWEFS324UbkgG8YxMYTie9RDSBFKm9zRL33TBwGJG6TwV9EBrgRIMg7QsrSlTuNDQSQN63QaucBmVEbUyTjAbmTvLi0DiCt61BtQXXCR2ke5aGyM2iQRBBJxic+J4oNm1wb2y6YPAEdxCw+0tDHPHODQSY6hO1ZbRaL2E3jJByyA9wCyaDbpbdAa7AgYTwQZdUaIkgTvKOqtGbgJykhbAYQqtvc+GBgMl2JAOAAJMxsMR60GKZaK1R99kOa0DnCZaXZ+13KS1PBpPIIOGxa2esDLYMtxxziAf7gYrV73OoOLm3Tjh60FhlZpcWiZGeBjjkpFBVsrXbxzrxjaYj3AKNthaCDfeYjMjGPUgnNdocGFwvHZPZ81o61NBMzAddwBMmJyHaFKWCQdoEcf8AoLQUReJ673YYj3INjUaBJcI3zgtaloa0Akkg5XQXe5ZpUg1oaMQN62cwGJGWXCP7oNlDWrhhxGwkdZEYd4ULdHtAAD34RtGz1da3FjaGhsnAECcxJme3AIFd3OZ+8a26ecJzWwqtmdaI3S2FpVtBa4yzmgDndZIEd/cVM8uBwYCN8wgpio9rv9Vjml0mSMBIw7IvdyltVUEXdzqZ7QXj5JXtJY4zTlgHldc5d/vS0tF2/tc6mOwB4+ZQTurNDrpcAYmOrKUqVWtiTicgMSfUtatma/EjHftzHyC2NFsAR5OW8dhQZdVaHNaTDnZDaYz94WrawLi0SYwO4LJpNJDiJLcju/ySsannhxJkZYN+UoMtrNJLQ4SDBHXExwUihNmbevAQZBJG2JwPVzjxUyAo69UMY55BIAnBSLV7A4FrgCDmCJBQR+MDWauDO/ZOccFpQqtAcCf4ne9Sii0G8GgO3wJxMnvxWtmyd993xFBtrm7017d63RBpr2701zd6htFvp03XJLn+gwFzu0gZDrKiFa0v8mkymN9R0u9luH5lNtzC91vXt3pr271TdZ63/wClqLfuMY0fmvHvWDYKbs313/8A9agHcQE3V6cfN+fpcNdnpBRut9EZ1WDtIVf9l0TnQYfv8498qRmjKTcqdNv3abR/ZOTWHuwdMWXpNH22rU6Yo4lrg9jcXPaQQ1WhZmD+AesSsVaLS9hLRIO7qTlL0eEH7Ys385qftizfzmq6icm8Pa/n+gGVlYWVWBch8PvOtfsZ8AXXlyHw+861+xnwBB51ERAREQEREBERB6j7OvOTfw3rrC5P9nXnJv4b11hAREQEREBFXtFR7SAxhcCMxGB3mSP87FGx1SRAB55v9QnCP9sf5mFxFATUv5NuT1zCha2rfMzdh8xG0i4RO4T60F1FQsd+828HiQ4kOIJAkXRgT19+WSsUzUvc4Nu9WaCZYc0OBBAIOYORUNmDw10gzfdF47Jw7lu+oWsLnQIxOcQgkaABAEAZBR1Kt17Gx5U4zlAlRG1QYlk7ud1dX9Q4rIdeuvimcLzXTsIzGG5BZRVzXIcG8y8dknr6uo8FmhaA8ubLSWxIE7yJ4g8CgWN7nUmOfEuAOAIGOMZlTr5bW1CyjcvXdSJg4TLO+6H4qy3WimNrr20/w38PyoLaKpamuJaMcWOHNJGOGR3xeW9G+KbRAkYYknDZjjjCCdZVS2tqEN1c3udiDgOYYn/dCgdfBOd2DmTIbLc+vy4QWWWsOqupxlInsDT/AM+5YZUDwTUphtxwi9BxgGR2EkdoKwS0vIDaZcN+eEHd93uWtjc26RRbSDQcQ2RiQDlG4juQSWm2BjQ4C8DOXU0uPuW+v/eNZHlNLpncQIj/AHKK0vhv7wU4xzk7DOzdKyABUaC2mHQ4gjOCRegxvIlBIKjtaWmLt2RhjnGc4qZUrMTrBP8ALw7L2HdCmYal7nBt3qz6kE6KhSZV54eHEFux0G9LiYMyARdiO5ZstF7HibxF2CXPcd2Uk4zPDNBeVfxoa3Vxsznb2bsc96sLUtGcBBVpWt5cxrqYF4uBc10gFuQyBxg7AMM8lvZ3kB3NJ5zso9I9anuiZgTko7Nk777viKDbWH0Hfl+a+bXtNWpUNJhuQ6HhsXw2M5mBOGMZHevqr5mhXXxUqn/9Xl4+7Ja38rWqX2bxnFy9k9no6tt1lK4MzEEk7yScT1lSwdoefW0e4qdZVZttu0LcMqRHs/NbXz6Dvy/NSIiI9YfQd+X5prD6Dvy/NSIgjvn0Hfl+a1LiXM5rhnnG7qKmUdTymdp9yDdZWFlAREQFyHw+86V+xnwBdeXIfD7zrX7GfAEHnUREBERAREQEREHqPs685N/DeusLk/2decm/hvXWEBERAREQFhZRAREQEREBR1qd9jmkwHAjDrSnVDi8CZY66Z3wD7iFivULQCBJJAAJjM70EB0e0uDpMg3hlnDRPBo4n1bixNDKbJMUwA31CATvyVhZQVqljDnh8kEQcIzAcAcepx4Bb0aF1z3FxcXHaBhuAjZ/m9TLVzwIkgTgJ3oIrIxzaTGuABa0DAzkIUyLAeCSARIzG5BsiitFUsAIE84A4xgTE96lQEREFYWQCoXgkEknjdnuYOJW1GzXWkFxcSZJMAk/7Y3KdEFe0WRtRoaSQBO2Ti0tOfUSthQ57X3jzQ5oGGTiD3XQpkQQhjtaXQLt2BjtmVMiICwsogIiIChs2Tvvu+IqZQ2bJ333fEUEWlapZZqrh5VwhvacB3kLNioim1rAIDWNHCVBpnnNpU/5lZg4G8fhVxvlu7B/dTy6XjCfPnlIsoirmIiICIiAo3+U3tPuUijf5TO0+5BusrCygIiIC5D4fedK/Yz4AuvLkPh950r9jPgCDzqIiAiIgIiICIiD1H2decm/hvXWFyf7OvOTfw3rrCCm/SDA8sAcXBzQRGV4wDj2FTMtDXVHUwecyJHbl/nyWosdOSbgkmduc3p4kn1nelSzAva4YG9LsTiIy4wfUgsIiIIa9cU4kGDuBPu/zAqEWp+JuEm81t0bJaCTxPcrixAmYxQQMrOuExJDnDbkHEbAdy1r1nCleAg3hvyvAHMbpVkAAQMAsoI31CDAY53WLv8AcrSvaAwiWnHIywY7sSNynVS1Wdz3scCIYDAkjnGIOGyJEbZQKTovObSeb5vE3mGcAJHO3ALeu6WsJBHPbgY39SxTZULXtJAzDSM4kxwELFSm4U2AkuIc0k7TjiUG1K0OLrrmxJddIM+SYMyApBUJdFxwHpc2PfPctyBMxiElBV8acA6WYw4tAMzd3yBnsSqwOuSx1S7Dg4FsTvzGPz6yrRaJmMQqtoo1Jmm66A2A0ZTv/wA/6DM8694u69v/AHc8ZUeqF68KLw69eJlmJAI9Lr9wVlpvgObUMdUQeIUVenUvOe1x8iGtwid+PrQR2l5MjZ+6MHMEv/8ASvKva2S3ASS5uXU4HH1BTygyiLEoMosSFhjw4S0yN4QbIiICIiAiIgIiIMKKy5O++74ipVDZsnffd8RQVrWL1qszd2sqcAG/81cb5buwf3VNlQPthj+GmWz13ucAdsQFcb5buwf3Ujed4k+yRERVgREQEREBR1PKZ2n3KRRv8pvafcg3WVhZQEREBch8PvOtfsZ8AXWxVaXFocC4ZicR6lyTw+861+xnwBB51ERAREQEREBERB6j7OvOTfw3rrC5P9nXnJv4b11dBlERAREQaueBmdkqNtpadoEuLW9cYHvlK1mY8guBMbiR7s//AGd5QWZs5TDi4dRJk98lBtrm3rt4Xty1daQ3WSCBTbeJ6scuBW+qbM3RO+MVqaDSSSMXROJxA2R6yg0pWkOcWxBEz2iDHBwUjazSYBBK1ZZ2tcHDYD3xJPALdtJoMhoB3gBBrTrBwJygkGY2LbWNiZEb5RlJrZAGZk4k4laWmRTfd8q6YgTjGGCDbXM9NvEKGqWl9NwczmkzjjiIwVZ9StfwBu3hPNybDMcs5L+/cp6b6mqpEsBeWi+I8kwJPqOzagsa5npN4hbNeDkQewqvVcRWbgdXq3l0NnnAtjITMXsFrY3VC94eMAMMIxvOwHquoMWKtDKLCM6bSHYRMeSOvAlWw8EwCCe1VrFRaadFxHODGwf9se4niVagbkFehaw+JaWkgkh0S0CM+vnDDrVcUv3bG3qfNJMXsDM4ZZc6fUrVOysYQWiM565AH/FvBV9Y/VtwMybxuY3cYwjfdQSsgNa3XeSAM24xtxUTmDW3xUb5V7F39N272Yz2qdhfdbNMF0C9iBB2qJznirF3mXvRnm3c+29A7EGLNFO8YZBc0cx0wPJbsHV/mClszgKbiTAvv+MqOztL7wcTAeIlhb5OM5ZSJ29u6WytBYQRIvvwP3yg2faWim545waCTHUJWte1tYWgzzhPqvNHveFIaLbpbdAa7AgYTPYtXWZhIJExlJPV9I4IJkREBERAREQFQtdhow+oad52cBzhJ4wO1X0RZbOz5dhs9MmLrhdAIaT5JOY38VIwsvAGmWy8sBk4w0ungFfREReKs3d5TxVm7vKmRBD4qzd3lPFWbu8qZEEPirN3eU8VZu7ypkQQ+Ks3d5UNqpspsvXC4jIAmevulXEQVaNJjwTdIxIzOwx/ZSeKs3d5UoCygrvo0mxewkwJJULXUY5xDTtF44bfcrVWi18XhMEEdoyKg/Z7CIdJJEGC4ThGU7kFCpo+xm0eMwH12thsuOF29gB2tdwO5c78PfOlfsZ8AXUn6OpmSAQ7GDLjBN7GJ/8AI7j2Llvh750r9jPgCDzqIiAiIgIiICIiD1H2d+cm/hvXVYO8cFyr7OvOTfw3rrCDSDvHBIO8cFStVtdTrgXb1O62YIwLn3QevMeoHsMFPTchrn0i1paHTeBgFheMOxpn1Z7A+pB3jgkHeOConSZa9jH0rhcYkuBbjEAHKedkYOBiVtX0lcc4CmXBrgwmQOe4AgQdnObj15ZlBcg7xwSDvHBUhpTOWEODmtIkHF1TV4bxt7NyidpoNAdUpljC0vvTsAJgYQTDcpnEZ4wH0oO8cEg7xwUNhtRqtcSxzC0wQZxwBkSBOfEFWUGkHeOCQd44LdEGkHeOCQd44LdEGkHeOCQd44LdEGsHf3JB39y2RBFTpXRDbrRuDYC3g7+5bIg1g7+5IO/uWyINYO/uSDv7lsiDSDvHBa06QY0NaGtaMgGwOClRBrB39yQd/ctkQawd/ckHf3LZEGsHf3JB39y2RBrB39yQd/ctkQawd/ckHf3LZEGsHf3JB39y2RBrB39yQd/ctlhBiDv7kg7+5eQ0pb7TrKzKdVzT4w1jI2AsdhxhNKacq1KVB1F5bzA+qW7y4Nu8byx1x6p/i5XXPd6+Dv7kg7+5eOqW2tdtT9faA5lWo1ga0FgDTheJGAx2lemo2w6qmXAvLmNJcyC0kjEhaxu3P1fRvpzdq3B39yQd/co6FoD55pbHpQquk9aaNUUS7WS27dicxMT1StSc6cLeNr0Hf3JB39y8tXo6TbjTc92LsCW/wkhoB2gtLfWFiubY1xDKr5l8XnNMt1QuntvkgHfGxdPp/dj6n2eqg7+5IO/uXy6VoqXG3jzrocZI2CCP7rZ9d2EOMSJkids/2Weir1x9KDv7lyPw986VuxnwBdSsb3EmTIiRxPyXLfD7zrX7GfAFmzTUu3nURFFEREBERAREQeo+zrzk38N66wuEWC31bNU1lF5Y+CJAGR7V9PlhpHpTvZZ8kHXatkpve17my5uRx2GRhtxx7QFq2w0hADBDQAOwNLR3Ej1rknLDSPSneyz5Jyw0j0p3ss+SDrLdG0QQRTEgzmcThE74gROUCMltVsNJ7i5zASRBnsiY3xhOa5Jyw0j0p3ss+ScsNI9Kd7LPkg6z+zqPN5g5hkYnO9ek7zexk7Vt4hSlpuDmi6M4gTAI2xJicpK5Jyw0j0p3ss+ScsNI9Kd7LPkg6/Z7OykCGCATJxJJMRJJxOAA7AFKuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyIuN8sNI9Kd7LPknLDSPSneyz5IOyLC45yw0j0p3ss+ScsNI9Kd7LPkg6Y/QLXVjV1hk1m1ogZtBEd60d4N07lZoe4a14fMDmgOvBo6pJXNuWGkelO9lnyTlhpHpTvZZ8lOmOv1s/d0g+D7v3wbaqjWVnOc9oa3+LMScclcGi2hrWtIAYwMbLWuIjbJ9fFcr5YaR6U72WfJOWGkelO9lnySTXZnP1Ms5rJ1Wno8tMte1p3imwYK6GwSd647yw0j0p3ss+ScsNI9Kd7LPktb256djXz69gdiWw43S2Heog4bcOpcs5YaR6U72WfJOWGkelO9lnyU2unWPEcPKO2cN8fJZ8SE+UYxw7VyblhpHpTvZZ8k5YaR6U72WfJXqqdMdgpUg0k747hC5L4feda/Yz4AoeWGkelO9lnyXyrbbaloqGrWeX1HRLjGMCBl1BRUCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg/9k=\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/j7pylPE-Fd8\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7f30fb577550>" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('j7pylPE-Fd8')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1615,6 +1748,13 @@ "</div><div style=\"background-color:lightgray;text-align:center;width:10%;display:inline-table;\"> <a href=\"#top\"><img src=\"../icons/compass.png\" alt=\"Compass\" width=\"50\" height=\"50\"></a></div><div style=\"background-color:lightgray;text-align:right;width:45%;display:inline-table;\"> \n", " <a href=\"../tour5_damage_bond/5_2_PO_cfrp_damage.ipynb#top\">5.2 Pullout behavior governed by damage</a> <img src=\"../icons/next.png\" alt=\"Previous trip\" width=\"50\" height=\"50\"> </div> " ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/tour6_energy/6_1_energy_dissipation.ipynb b/tour6_energy/6_1_energy_dissipation.ipynb index 4cb83c9..5c109f1 100644 --- a/tour6_energy/6_1_energy_dissipation.ipynb +++ b/tour6_energy/6_1_energy_dissipation.ipynb @@ -9,13 +9,46 @@ "# **6.1 Energy flow - supply, storage, dissipation**" ] }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4ae2a798-0bb4-4f7c-bd9f-653e9ae333a1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGBodHRofIB0fIB8dICUgHyUfLicxMC0nLSs1PVBCNThLOSstRGFFS1NWW11bMkFlbWRYbFBZW1cBERISFxYZLxobLVc3NUJXV1dXV1dXY1dXV1dXV1dXV1dYXVpXXVdXV1dXV1ddYFdXV1dXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAwQBAgUGB//EAD8QAAIBAgIDDQYFBAIDAQAAAAABAgMRBCESMXEFEzJBUVJTYXKRorHSFBUiM4GyBiOCocFCYuHwNNFDY8Ik/8QAFwEBAQEBAAAAAAAAAAAAAAAAAAECA//EABwRAQEBAQACAwAAAAAAAAAAAAARASESMQJBUf/aAAwDAQACEQMRAD8A+fgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW6WAlKKlpRSd7J6V9duJdQoqAu+7ZdJDx+ke7JdJDx+klFIF33ZLpIeP0j3ZLnw8fpFwUgXfdkufDxeke7Jc+Hi9IopAu+7Jc+Hi9I92S58PF6RRSBd92S58PF6R7slz4eL0iikC77slz4eL0j3ZLnw8XpFFIF33ZLnw8XpHuyXPh4vSKKQLvuyXPh4vSPdkufDxekUUgXfdkufDxeke7Jc+Hi9IopAu+7Jc+Hj9I92y6Sn4/SLgpAu+7ZdJT8fpHu2XSU/F6RcFIF33bLpKfj9Jn3ZLnw8fpFFEF33ZLpIeP0j3ZLnw8fpFFIF33ZLnw8XpM+7Jc+Hj9Ioogu+7JdJT8fpHuyXPh4/SKKQLvuyXSU/H6R7sl0lPx+kUUgXfdkufDxekz7sl0lPx+kUUQXvdkukp+P0j3ZLpKfj9Ioogve7JdJT8fpHuyXSU/H6RRRBe92S6Sn4/SPdkukp+P0iiiC97sl0lPx+ke7JdJT8fpFFEF73ZLpKfj9I92S6Sn4/SKKIL3uyXSU/H6R7sl0lPx+kUUQdbAfh+riKip06lLSabzc0sv0nTf4CxSV3Vw6S1tzn6SpXlgd3E/hepTSbxGGd72tOedtdno2OTiMJOnJxmrNEuNZm76QA6W5W4dfFz0KOje1/ibSS5dR0qv4IxcOE6SXLpSaXhFw3I82DsV/w3Wgr6dKXZlJ+aOOM3N9EgACoAAAdXD14wp07tJ6Mvvkcomr8Gl2H98iaOj7VT5yHtVPnI5AKOx7VT5yHtVPnI44A6/tVPnIz7VT5yOOAOv7VT5yHtVPnIgw8pOnG1OMopNXcllm231PV9ETTnUd06LaVm0pJvO+Ty42n9UEZ9qp85D2qnzkVp4tJpb1GMoyu7ZO/wAV11cL9lyK2rxsbW3qKV4uyetJ3z5db7wq37VT5yHtVPnIqxxlNO+8R48r5Z/T/e8wsZFNveo2epcmSVtXV+4Fv2qnzkZ9phzkVK2NjOOjvaXXdX8ivHUB0/aIc5D2mHORzbBoDpe0w5yHtEOcjmADp+0Q5yLVPGpU7JJrRlnnazes4ZcknGlk8mk3sb/wRF73km07p/E5cet21cmr9zMt0Ytp/Dk3+71fuceDyM6QHX9vhdSyuo6NrfDa2ske6UGn8Mbt55cXIcTTMphXYePp24EOPi8sjK3SjZpQgk+RdVjkKRew+G0oKVgLPt8OZDi4jSWNptNOMUnbNLNZ3yIKmDfIaQwMmwL8cbF2+BSass+RG3tLdr04uyS5dTuTYLc29rnVpbmrjQHEhUa0nGHCza1Ja9Xf5Galdp3lSWfHLM9DDc9X1FXdXBLe1bXd+QHCrYi6d4RWrNK3+8XcQxTepPuZaqUnHNcWZfqVVUoprWvIo5Gg+QyqMrX0XYnaJ8LLXHlA5xi5vXjoyaI7gbAwmbXA1ckjXfY8prVK7Atb7HlM6a5Snc3TAtJiUkld5Ihg2aYlvQewDu/hSvF4xaMk3oVH+x3sep1cpSduaskeO/B0rYy//rqath7OT/1smmOJupuTUrUqWimoU4yimrSvd3eWtGlfGQdSrvmioyVleM7q1SUknlbVN9yO04uyjCpFVFGVWzTbUZJR5LcXKcTdGpGKk6jadmuJR131OWsxl8eumc2xJ+Fd0lh6vy3KOlJaUbJJO1trPV/iihKpSpaMllUTs21daLdnbWeVoyShFqFrtaMXZO8nq7vI9msRRr0bUakKmhwlGSm4uzWed19S53IfPnXB3mnZJxjbksfND6PVpuV3dpZ5rWfODTlgACqAAATV+DS7D++RCTV+DS7D++RBCACgAAAAAv4aS0F+a42Wq6Vs338WXWzeTik2q7u7ReaeV/4/zxmuG0lTi950ovU01fKT6uXyI6mIUZ2dKKlBxVuuMm336gNcVSiry31Tlx22lUu08bFKN6SeiorO1na+errKQAAACWGoiJYagNgABhgGQBPvl4JciafWr3ICzhoa29TTX1AqAyzAGUWqdO5WRdoAZeE6z0u4mCUsOv1Z/U4ctSPSbgP/APP+qQGa2FSWogjRszpYqPwlOOogsYVK50YxOfg9ef7HTjHK/LkBoynujmorr/gvTlbrfIlcobpaahdRjfOyu9dtgHKr0LplDB1NGUoM7GjJ6N7Ztcpyt2cM6Ne/WUR1FZiDtJM2m7xTNEBvupRyU0cy52U9Ok4viOPo52Aw5GumbSgRuAGW7keiSKIA10TZGDSTAnizTE8CWw1gYr8CWwCx+FJ6OLv/AGTPWzr52s+U+eUa86ctKEnGWq6yZNLdGu9dWb+pNwfQauGVJ79KtDSlTUdBtXSvpHBxGHVevCUnenT4rp6U76lZLkPPR3VxClpqtPSV875mZ7rYiUtJ1puV0734x1ry/XQ/EW6ElXlSg7KmlBtP+v8Ar/d6P0KW4mOlhsRGrFvJSUlzotWa/wB47FGc3Jtt3bd23rbMJ2d0XE3a+kqo4pRnk5vLNSTyvrR81OjT3RrOlK9WXwaCjnqWa8jnGcv2gADQAAATV+DS7D++RCTV+DS7D++RBCACgAAAAA6FBRcIvf8AQaUm1ZXTu8lnnrIMTSimmqqm5Ntvkz1vvN6CpKC3yMrtvPPNci4v8szag3ZaVtL+m7ejo9fWBrToUnrqaOWv9Kfncr1opSai7riZLWpRy3tTeV5XWr/ciGVOS1xa2pgagAASw1ERLDUBsDFzIAwZAAuU5/lRtrjN37LRTJcMm5pcuQEdRfE9pobzVnY1AI6OGpyaVot7Ey9uLKmqS0tFSvLN2udB4uC/q7iDlzoyS4L7j0O4DtQs8npPJ6zlTxMW28xvkeUD0WLTaVipKNnY8/jcVKEL05uLuleLadixuLjnKFWE4SqS3uOjJZ6CUldvyA72FlaSXG9SOlC91na/F9LnBw2PpaajpWqaSVmne74rnoXHOLtq5P8AesDKVk7Ip4+HwLaXk8jl1saqsHoRnoqTWk46Ky5L7QIYa1tRt+MMFeOkkR0pppNanZ/Q9PuthVWw748rlHzbB1bw0XrM6RDXg6VVrrMznxgWqFS0tpWx0NGd+JmVMlxC06d+NAUdMwa2NooDWRpcmcTTewIzVkjiRyA2gYr8CWwzAxX4EtgHOAAAAAAABYpfKq/o82VyxR+VV/R5srkAAFAAACavwaXYf3yISavwaXYf3yIIQAUAAAAAHVwbqqnF09B5PXdNZu3Hr16iCrKoq15KCmot5aso34uMp6Ltezs+MzoSfE+5gdNwraTleClF9eTcY/4/fiKc8dOV9Watx8klfb8TK7usnddWo1AAAASw1ERLDUABkwAAAGbljCpfHLjjFyW0rIloTtLanF7GBtic2pc5JkJLXfBXElb9yIDJcw7KRcoAXW8jsbk0oToTU4p3bV+PUtTOK3kX8BW0aclfj/gg52OpRjVlCCeirLN3vlrLG5E97xCSloqcHGVlxNp270jSrScnUqZWTim78bWSXcyx+H1GWJbkk4qMtauB2Ke5VOOIjW03JykssrKVuo9NoWW04OGh8t3vere9nHK2xHeq5Wu7rICNrMqboL8tt555dWaLMqiuU906i3p69aA5n9OWq1jydDFyhlGpKOyTR6tIt4WhhrrRoUr8uhEo8ZOrp5uV3yt3ZmMro9X+IsJHQTjFJdSSPIxWjKzAlpsuYZ61ylJZMs05WsBFVp2k0Y0S1iY3+JEFgNLCxtYwBHNGjpksjaMcgK8KRriqdoS2F2kjTdBfly2MDggAAAAAAAsUflVf0ebK5Yo/Kq/o82VyAACgAABNX4NLsP75EJNX4NLsP75EEIAKAAAAACxDGSUNBJWa0Xru1dvl6zaOPmouOVmras7WS/gqgDapNyk5PW3c1AAAAATQ1IhJYagNmYAAGDIYGDeDs0+tGhsmBYxVneSVryeXJ1FYs1WnGb5XFr+SsALlAplugBbfBLOEV09pWeotYOtGnTnOepWsuNvkQEGMqKN4JPfHJ7LWVv5L+4dNKqo/2STf8nNjTnKo5zVpO2XImsv2OnuUrV12ZeRB3KVRS0GnN/mJfG1+3edyrmjzmFfwxTbb33jvfiy1I9HVn8KAqvX9CpulH8t58cS03rtrIMclvUmuPO7YHGjBxjFJ3sksyvgsZoyzZabPPKraUupvzKPZYurGrQPI4vCu2kuIs0ce1GzZewWjUhJMDgPVcxpljE0lCpKPFxFSeQHSwr0oNELNMHVtJdeRNiFaV+UCJmrNhYDRokjqFjdIDWlrM46n+TN8kWa09Zvjav5M1/awPOAAAAAAAAnpfKqbYebICel8qpth5sgIAAKAAAE1fg0uw/vkQk1fg0uw/vkQQgAoAAAAAAAAAAAAABJDURkkNQGwAABgwBkAAWakHtTpxZWLVBtxau+S30KgGS1QKpYpysgLk5JRzLu4uD32TqTV1G2jHivys50YN/FL6I7W4lWyqJvkfmBHjPnT+n2o23N/5Edkl+xHinetL6eRtud/yY/XyIO1ScNGOhkt9V7tN3yOzVqqyzvszOHSfwq/FVWt3t1a8kdipK0b2zt9QNM2+RfuV8fFb3K/xas278Zu6ma2keMn+XLYByErxTllK3Ezzknactr8z0lzztWF5y2vzKNoXbsi7ByprJ6zNOiqVPSesqvGXAlx9JxSnfNlRxurl6rHTplanmrcgGlKFi/UV6afIVIsuUZXi0BU0jKkR1Y2bRHpATuRvCZSnMloTAkcrEOKqXpy2MsziUsSvglsYHMAAAAAAABPS+VU2w82QE9L5VTbDzZAQAAUAAAJq/Bpdh/fIhJq/Bpdh/fIghABQAAAAAAAAAAAAACSGojJIagNgABhgyLAALACejLRV1zrEeJgo1JRWpMnwtSFtGono6Sl8Ou9rEVdpzlJam7q+sCNInpIgbJ6IFziLu5kraWxFBytEs7lN6Um+RZAWKvzXy2XkbYKWhiIt8Vytjb742r5JO64jOBleos+JgdyrXg0lGLXxJvLXmdGWIySz1PYch05Kzaazj5nSjC8VyW/e5BrvmZpiK3ws1asyKrwZceRRBGd1c5FKN6su0/M7KWSOOnadR/3S8wIt08Rd6HEijGRtWu5NsiA6mFndWI7aM7cTIcJVsyXFVM0wNpqzJKVQxJpxTId9sBNilxlVliNTTiyuwIqgpTsxVILgdPfVYrYh/BLYyDfGJTvCWwCkAAAAAAACel8qpth5sgJ6Xyqm2HmyAgAAoAAATV+DS7D++RCTV+DS7D++RBCACgAAAAAAAAAAAAAEsNRESw1AZAAAGABkyYSDYGbk1anlpLUtFPlTsVy24uUJtarRf1AqlikViamBYvpbEdPceN5y7P8nOirROruBnUmv7f5Ajxd1Uks81G64nrIsIrVVbkfkT7p236Wf9Mf5K9CVqifU/Ig7dVt6au2lKCz1a+Q6NJ/CjkUp6abzT+F3slfPltmegp4J6CvOV83b4f+gKU4ZkNSnaEsra/r1km6eIWHp6c3fiSjlJvkuedW7Lk7OmrPknNv92UdZPI40+HU7UvM6VJrQ+Gbs80nY4taUlKdk3mwK9WZEayvfMygN4SsTVHdECi+Rkzvo6ncCzg3pRcSrVVnY3wsnCSbTS1Zolxsc7rjAiw87O3KK2UiKLJa6vG4FepMiTMyNUBk3fAew0NnwHsAqgAAAAAAAnpfKqbYebICel8qr+jzZAQAAUAAAJq/Bpdh/fIhJq/Bpdh/fIghABQAAAAAAAAAAAAAC1QoSkk+J/8AZVJadSSSs2BcngGnwka+x/3ELxE+czXf5c5gWPZP7jPsfX+xW36XOZnfZc594Fr2TrNquFi5NxulxJ5lWFbNaTduPPiNsXitOpOUVoRbbjFPKK4kBOsJHlubxoJauMoqtLlJaeJauuUCw8JE3jhkkVXV6zeDu1draBb3r/ciSi3B3jKz1ZWK1VRUpaDbhdqLas2uJ2JMHSVSbUr2s3kBJUlKTvKV3ytoxb+794kWLgoSsuRPM0oq8knxgWlN6tPxIkdR2+b3z/wYeGiot53SudJ7lUnCLV81fWyDk14p205d8n/0VqihFrQd+tO+fcjq4rcyMoWjlJam22ijTwFSD0pRi0s83kBSxFXSnJvjbdlqzJsI/oXKGDptLSTb5bs52LejOUY5JNr6FF+Ead3pys9kn5Eyjh+KWfZn6jhXZm4Habh122P1mk502nox+Lls7d7m/I5NzeDAvYmokk7Reep3/hoxOtCdOySUuy0u9yfkYp14RjJTpqcZLl0WnxNMqUpZ5agM2JoZpojazMxArzVmRljEx4yuBk2fBew0N/6GBVAAAAAAABPS+VU/R5sgJ6Xyqn6PNkBAABQAAAmr8Gl2H98iEmr8Gl2H98iCEAFAAAAAAAAAAAAAAN46jQlgsgMGCSw0QNDMjZRzDQEYNrADUyZMgYJqRETUgLC1Frc35n0ZVWovbkRvVfZf8AYx9Fym2uKMb/Vsr4eDVSJa3WvGqrc1ebIcNd1I35QLlVfBLYzr01+VHYijVw/5cnd6mdmOCtTi4t8FZPNEHPcCHFQ/LlsL0qL1XXd/kr4tONOWS1Na/wDAHHg7HJxXzJbWdbiOViOHLaUQmTLMMDKNjSJJYCSGasRamSQZpW1gS3yMojpyyNlMCSrG8SiX6cr5FOrG0gNDd8F7DQ2/pewCsAAAAAAACel8qpth5sgJ6Xyqn6PNkBAABQAAAmr8Gl2H98iEmr8Gl2H98iCEAFAAAAAAAAAAAAAAJqepEJJB5ASA1AGyNWzL1GoAAIDNhYyZuBroktJEdyWmwLCOhuGr112ZHNR1NwPn/ol/AEu6rtXjks4Wzz/qK9J3q09pY3a+bDsfyVaT/Mh2kQdyfy5dlnoKMVvMOW2o89L5cuy/I9Bh0nSje2oCpXgrWKOLpt05dWq/mXq8rN3tYr4t/ly2MDz84nFxHzJbWeg0MjgYpfmz7TKITDNjDQGpPCN0QE+HnYA8jFRXRYqJMgsBHTZIokWpk8NQCF0zGJjlcn0TVxumgKJn+l7DDVjL4L2AVwAAAAAAAT0vlVP0ebICel8qp+jzZAQAAUAAAJq/Bpdh/fIhJq/Bpdh/fIghABQAAAAAAAAAAAAACWCyIiSLyA2uYNbmyAzLiNTaWsxYDAM2FgMs1NmYsAJqREkTU0BMdT8PxvXdnb4H5o5Nzp7gv8/bGX8AT7tfNhnf4X5lWn8yHaRb3a+ZT7L8ynHhw7SA7bl8Euy/I7uHadGLvayOBb4Jdl+R38E/yI7F5EFesr8d11EdezhJcei2buKirLWuS9u40rRehLVwcwOOo2Vlqz/fM4WKh+bPtM77RxcVH8ye1lFbe0Z3tElhYCJ00ZhFJkjRrYDdyRq2jGiYcQIpxVxTdjMkRvWBZ0xF5kOkZ0gI8TG0tpF/S9hZqLSjsKz1PYBAAAAAAAACel8qp+jzZAT0vlVP0ebICAACgAABNX4NLsP75EJNX4NLsP75EEIAKAAAAAAAAAAAAAAbI1N46gBtEwZQAxcXMAZubLlNDfiAI3RGbXAySxZCb0wJTobiv8+OdrqSOedDcRXrrY2Bc3Yj+ZT2S8ykvmQ7UfMu7uTanTadspL6ZFCFRucO1HzA7v8ARLsvyO3g5N0YWS1K9ziX+B7H5HX3Of5Mdi7iDNTWRVl8Ms+L+CS6eazvmaV38L2MDiwTSzzd33XyOPjJpVJ7TsXPO49/nT2/wUbuqjG/oqMwwLUq6NVWK1jKQFj2gb8QWNkBvp3NJsyZlG4GIsya2sTU6LYCk+IgqxtpIvwpKJHjaa0W+oDlgAAAAAAAnpfKqfo82QE9L5VTbDzZAQAAUAAAJq/Bpdh/fIhJq/Bpdh/fIghABQAAAAAAAAAAAAADJg3SyAwjdamYsbJZAaA2cRogam6MaJu42QGjZi4YsBm5JSZFYkpATnQ3Ef8A+iOyXkc86G4n/Ij9fIC1u/8A0OzaWldpZLVrOXTrRUk7vWnq6z1VeCcbNJ7f2KHssW84q2WVusghe6F42hCcm01dJnf3Lk1RjfLJXTydyjhqFmopfCkzoxf8AbyaWXXxGtTgvruYyTeeeV7lec66m1vcHSdrS02pLVe6tblA5cXfqzaOFj6f509q8kd842N+bL6eRRT3ob0TXAEW9Gypo2MgaOCIZZFghrICO5LSkQm0HZgS1EWKVT4StOpkZw8+IBOo2yZyvRlfiTDopmaitTkupgcoAAAAAAAE9H5VTbDzZAT0flVNsPNkBAABQAAAmr8Gl2H98iEmr8Gl2H98iCEAFAAAAAAAAAAAAAAN46jQ3jqA2Mt2RhGZ6wGkLmpkDZSE53NGYAybI1NkwMs2p6zS5vTAmL+4v/Ij+ryKBd3I/wCRTvyvyA9PKH1NVT6mTiLvlyAaqSjt72bKplmrbf5Ns8jPEBiLTzTT/czpt8ls1n+xnRUtdhJW6uQg4cePqOPj5Wqy+nkdhqzfLf8Ac4G6kvzpbF5FGN8Rq6pBc1AndYw6pCAJd8NXK5qAJIq6NWjakzacQI2hB2ZlmgF+LujGI4EtjI8PLKxJWfwS2MDlgAAAAAAAno/KqbYebICej8qpth5sgIAAKAAAE1fg0uw/vkQk1fg0uw/vkQQgAoAAAAAAAAAAAAABvHUaG8dQG8dYkZiJAaAAAzBkWAGTCJNFAaWJKesyoJm0aT4gNyxgJWqxfWQaMkTYW++RvG3WB6BYokp4rUc9pGUB11ikbqujj6bNlUdgO1GojffEcaFZ6rk3tLArVZZvazz+6fznsXkdqWTbvrdzibp/NexAVQDAAyYAGTNzAA2g8yxe5WiTxeQCUSGSJ7kbjcBRlZlis/glsZVtYsN3py2MDngAAAAAAAno/KqbYebICej8qpth5sgIAAKAAAE1fg0uw/vkQkyrrRinCMtFWTele12+J9ZNEIJt+j0UO+fqG/R6KHfP1CiEE2/R6KHfP1Dfo9FDvn6gIQTb9Hood8/UN+j0UO+fqAhBNv0eih3z9Q36PRQ75+oCEE2/R6KHfP1Dfo9FDvn6gIQTb9Hood8/UN+j0UO+fqAhN46jffo9FDvn6hv8eih3z9QoXDZnf49FDvqeob/Hood8/ULo1MM33+PRQ76nqG/rood8/UKNEZM7/Hood8/UN/XRQ75+oUYRNGndayPf10UO+fqM+1Lo4d8/UKNtGxnMx7b/AOun4/UY9r/9cO+fqF0SxrSXGSRxb5Cr7Uujh3z9Q9pXRw75+oC/DGLlaJ44y9viRyfaV0cO+fqHtS6OHfP1CjrqrK91LLkeaJViXxxy6n/BxFi7aqce+fqJI7pSX9EPG/8A6F0dv2mPHdbUSxqxlqa+hwfesuZDx+o1e6Lf/jh4v+xdHcm8zlY+leo9iII7pyWqEO+b/wDo1nj3J3dOF9s/UKDodZj2aXErhY59HDvn6jZbotf+OHj9QojlSa1pmtid7pS6OHj9RpLGX106fj9QoiMG/tC6KHfP1GN/XRQ75+oUYTJITNN/XRQ75+ob+uih3z9QonTMEaxSX/jh3z9Q9qXRw75+oUbSNXL4Wh7Uujh3z9Rj2hdFDvqeoUQAm36PRQ75+ob9Hood8/UKIQTb9Hood8/UN+j0UO+fqFEIJt+j0UO+fqG/R6KHfP1CjNH5VTbDzZATSxHwuKhGKdr20r5bWyEYAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/9k=\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/Kz9mQzfSGgE\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7f38f0030910>" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import YouTubeVideo\n", + "YouTubeVideo('Kz9mQzfSGgE')" + ] + }, { "cell_type": "markdown", "id": "rocky-asset", "metadata": {}, "source": [ - "[](https://moodle.rwth-aachen.de/mod/page/view.php?id=551846) part 1\n", - "\n", "<div style=\"background-color:lightgray;text-align:left\"> <img src=\"../icons/start_flag.png\" alt=\"Previous trip\" width=\"50\" height=\"50\">\n", " <b>Starting point</b> </div> " ] @@ -58,15 +91,53 @@ "" ] }, + { + "cell_type": "markdown", + "id": "f95b7f7c-c5a8-4b03-91a1-6ef5ff3e09d1", + "metadata": {}, + "source": [ + "# **Classification of energies**" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b8a1668c-c01d-460e-aa32-2009ba2456f8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRoeHRwfIDMmIiEiIjEmLiknOC07MjkxLzc+PlBCNThLPTItRmFFTVNWW11bOkFlbWVYb1BZW1cBERISGRYZLxsbL2NAOT1XV1dXV1dfXVdXV1dXY11XV1ddV1dXV1dXXVdXV1dXV11XV1dXV1dXV1dXV2BXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAQUBAAAAAAAAAAAAAAAAAwIEBQYHAf/EAEYQAAIBAgMDBgoJAwIGAwEAAAABAgMRBBIhEzFRBUFjkrHhBxYiMzVhcXKBwQYUMkJzg5Gh0SNSYhXwNENTgqLSJMLxVP/EABcBAQEBAQAAAAAAAAAAAAAAAAABAgP/xAAjEQEAAgICAgICAwAAAAAAAAAAARECQRIhAzETUWGBIpHR/9oADAMBAAIRAxEAPwDn4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFxPDKLcXVhdOz0l/6ksW4MjyZyNPF1dlRnTlOzdm5LRe1GX8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0eIOO6Lr9w8Qcd0XX7hY1cG0L6A43ndFetzfyRXL6AYtK7q4dL35f+pUtqgM7ifovUppXxGGd72tOWtt9vJMViMHOnJxnZMlw1ETK3Bk+SuQq+LnkpZb2u7tpJfoZGt9CcXD7TpJcc0n/APUXBVNbBlq/0erQV81OXuyf8GJETE+iYoABUAAAJsZ52p777SEmxnnanvvtJsbF4PPSH5UvkdQOX+Dz0h+VL5HUCgDAfSyvLDwo4qGZulKUWk96nBxV1z2llMNybia9DbRnmqS5Po1N7flym80W/UopgbwDVZcu4lKUI1KFSaqUYxqxi8n9W+jWbevbuZTheUK9LlGpRm1knWhGpWa8nNsU1CKvpmaYG2A1/lblatRxcYKVONFKGZ5c7vKVvLtLNBbrPKyFfSGo5U43p5nUxEZR50qcZOOl9NyuBswNMf0oxMaE55qFSX1enWTjFqMHKooOEvKd3Z35if8A1CtVrUqcqkJunjFBVaatGSdGUt13ez9YG2Awf0f5VrYqU86UVSgoTVrf17vNb1JJfqZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjru0WzX8cpVVaUm1/atEZzHStSk+wws3/u5JIa/wAqckVK9Ok4xahTi4pqzvd3frRTUxcdpVdRRUZKyvGV1abklutuk/0My4OyjColUSdSzT3SWXhbm4mIx80k88rNq1tEuP8AdvMRc49unqVz9DcZRpTeepTgnKWW7SutLGwfSii6tGk4yTW0vv0ayt203mmYfA0qzc8srSbdk1prwN/eFhHDQhCLUY6q/sZce4oziv5Nf2FOyTjG3CxzQ6NWg5ZtWlrqc5NOUAAKoAABNjPO1PffaQk2M87U999pNjYvB56Q/Kl8jqBzDwdK/KP5UvkdU2aKLerSjNZZxUo8JK601CpRTlJRinL7Tsrytor8S42aGzQFnDB0oxyxpU1HNmsoJLNxtbf6yqWHpu96cHdqTvFayW5v1rmZdbNDZoCzq4OlOcZzpQlOP2ZSim17HzFFTk6jJzeygpzTTmorNqrN3tvsy/2aGzQGGlyBQ+q/VkssWoKUoqKlLI005O2r8lF5HB0oxUYU4QSblHLBLLJ/eWmj13l7s0NmgMfydgI4eDjFyk5Tc5zlbNKT3t2SX/4XZLs0NmgIgS7NDZoCIEuzQ2aAiBLs0NmgIgS7NDZoCIEuzQ2aAiBLs0NmgIgS7NDZoCIEuzQ2aAiBLs0NmgIgS7NDZoCIEuzQ2aAiBLs0NmgIgS7NDZoCIEuzQ2aAiBLs0NmgIgS7NDZoCIEuzQ2aAx/KkrUZP1rtNdqYjmszb6uGhNZZK64Mt5cj4d76UX8CTBDWa2G2b2zrRvKnlUG9UvtGl/SDGOVZRUtIrmfO9+5LmOtx5Kw6mpqlFSW6VtSLEcgYSrNzqYenKb3ycU2+YLbkfJ/KzoRtbNZ7m7K3r5zM/RX6Q1Y1qtOpJzVfW19FNveuG97vkb/4s4H/APlo9RHOfppQhhuUXHDxVJRhFpQVteILv22XM4eTNNOUtFv5jmxkaXKmIqVaeerOXlre/X3mOJF7TfQADQAAATYzztT332kJNjPO1PffaTY2TwcekvypfI6scp8HHpL8qXyOrFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAPQU51xW+2/nPQPQeAD0HgbA9BRTqRnFSi1KLV007pr1FQHoAAA8AHoKIVYyvlaeV2dnez4P1lQHoBTOaim20kldt8yAqBTGSaTTunqmj0D0HguB6Dw9AAAAcm8InpOf4cew6ycm8InpOf4cewDXsH52n767SEmwfnqfvrtISbAAFAAACbGedqe++0hJsZ56p777SbGyeDj0l+VL5HVjlPg49JflS+R1Yo8bLXDcoUquzyt/1IZ4XTWaOmq6y/Urx8ajoVI0vOODUbuyTa0Yw+Dp08rjHWMMkW3dqOmi4blu4LgBTUx8IO080U6ipqVrpyaut27hrbUrWKWZRtL7Tje1ldLN2cC1nSVVzg4qcHUaqJtbnTtZr4nmHozp7KNSanLau0ueUVBpN+u1r+sDJAAAAAAAAAAAAAAAAAAAAAAAAHh6ANY+r1tn/h9evk2bzW218177ufcSKeKm3GM6qqNVM6cbQg19jK7WfNubur3NiujzMuKMcXf5r0wWFxGJqVqd1OMKstpZq2SEU1lfC7yP4sq5TniNrWdOVVKKpZVFXTcpuMuZ3sv0M5dEOGxUaik4/dk4u+msXZ/AtatPk7vixEK9anOOZ1ZU4V5xbyuTcXBON7LVZnvI8DWrN01XlXV6UcqUG1KWubO7ac2+xnaleEXCMpJObtH1u1+xElxR8nXpg+QIVaexhJ1Mjw0W1JaRmnay0005iCdfFXxF5TU1GraKhJqyTyOLy2vu59dfhsd1xF0OJ8vczMNdrVcVDMlKrKP9KUpON2k1LNa0eKjuV1dkuHlWlODnWqKEaUpt5cqbU3ZSzJPd7L2MxicRGlTnUl9mEXJ232RXGSlG/M0OJPk69NZwuNrbCdWVWeelGFV05Jq8Pvb4r7WtkrpWMlXlXhg4u83Ucouo4rNKMZSvLKvUnb4EtJ4VZacKcMtVv7MEotw339nMZG5Ihc84v01mjKpDNrXjRlWqNyjB528scl1lvZ6829K5kK1bERwdGrJS2sMsqkIrWS3SVuOt/ajLXQuXik+W66a6p41RqxvNzpU/tW+25tO8eLjHMi6oynPCYi8pTvGSheEk7ZN3lJN635jJ0K6qRUkmr80lle+25ntOvCUpxjJNwdpLg7J9jQonO9MDGpWpRcL15R2dJppaxbupaqLstFeybXqEKuLdKlrUzVM1Ju2sGqmk3pp5ClrbXQzccZTdWVJSvUgk5Rs9EzzC42NVyilKMo2vGcXF2e5/syV+Wvkn3xY3B1a7xTU5SSU5eS4ScXTt5NnbKuZ3vfeQ4lVYVsU4bXM3BpqLf9PRScdLOS1st/qNgBeLHyd3Sw5IqTlGpmc3BTtTlNWk42W+6T333oyB4elhzym5sABUDk3hE9Jz/Dj2HWTk3hE9Jz/Dj2Aa9g/O0/fXaQk2D87T99dpCTYAAoAAATYzz1T332kJNjPPVPffaTY2TwcekvypfI6scp8HHpL8qXyOrFAAARRrQc5QTWeKUpLnSd0n/4v9CSxhsHyTUp8pV8S6+aNWCWzyWsty1vzZXzc7M0AAAAAAAAAAAAAAAAAAAAAAAAAPD0Aa7LkmqpVHCEbbWNRZms0mqmZrMlutuzbiOpgaiqU1UoRnnqVp5Lpq0kmru1jZjwzxh2jz5NWhyXVcnScVKcadFbVv7DTd3HjoraeonxPJs/JW6dWvUi7a/0Ztye7dol8TYgThC/PlbHY/A56mGnGnGSpSd07aRasrX4Oz+Bbcn8m1KdaEpRinHPnqKV3VzPS/Pp691tDNAtMR5JiKYLEcjzlHENKKnOspJ3+1TWVuO5pXs9GrcSHE8kVZUFTjTja02szi3CTtltZJRW/wCyrrmNjA4w1Hmyhga3JlV/WL04znUg1Cq5ax/pqOX9b+rUvOTsA6VSr5MY05whotzkk1J2/T2mSA4sz5cpimv4fkV2ownRp5YOpm3NSuvJdv8Ae4op8jVr0XUvLLTpxupxvCUd+ri31d/ObGBxhr58mB5Zwkq2IlGNJTcsM1FydlGWbSV+K9Wp6+S6u2zWi3tYTVa/lKCSThbfrZ6btTOgcSPNlEVDWnyHUdJxlCLksPOMLtaVHNyTXDR7zJ8m4OVKtXlKEVtJKSmrX+yk0/im/iZICMYhMvLllFSwmG5Orxq067cXJ1JOpG2qhPmzX1tlhzcxksDQyKbccspzk35WZvXTW3C2nNuLkFiKZyznL29ABWAAAAAAOTeET0nP8OPYdZOTeET0nP8ADj2Aa9g/O0/fXaQk2D87T99dpCTYAAoAAATYzz1T332kJNjPPVPffaTY2TwcekvypfI6scp8HHpL8qXyOrFAAARR85L3Y9siUij5yXux7ZEoAAAAAAB4W+MxsKVk7ynL7EI6yk/UvnuHsXAMeqOJq6zq7Bf2U0pP4ykn+yDoYmlrTq7Zf2VUk37JRSt8UzVflLZEFtg8ZGsnZOMou04S0lF8H/JcGVegAAAAAAAAAAAAANaw3KlVVpuVScoxlXlOMowUdlTlJLZ2Sk5J5Vq+d35i9hytVainQtKbioXclG8rtptxT0UXuWt1uAzAMXX5TnTq04ShB3cYzyylJxlJ2/sslu3tN3fDW35ExNSdaSlOUlsISs3zurVTf6JfoBnAa/QxmJlsH5DlKtWjbM4xcYuaV9OaysTUeXJVMmSi3eEJyXlNrPzJqNtEm9bXAzQMbylynKhJxjTzycL01ms5SzJSW7SylF/rwIo8rzqVFChThLNncJSm0nCCgm9E9c87W9TfqAy4NfrcsVK1Cc6cMlNU4TzZnn8pJ2SS15+f2XL+PKf/AMSWJcNLNxjfVq9lfg3zrm+AGRBgnynWpVZxnBOc6kIQjGUpRX9Nzb+zfdF6JcPhBicfXlKpNxcIxoJuGeUWm5yi2tNb5Va63cLsDZAYiXKs81nTioSq1KSkpvNmjGUr2torQfPwLJcpV3GVknTVChK+0ams97u+R3en7esDZAYafLUks+yjs5TqU4PP5WampvylayT2c+d204u11gMfOpUlTqQjGSpwqLLJyWWeZWd0tU4P9gL8AAAAAAAAAADk3hE9Jz/Dj2HWTk3hE9Jz/Dj2Aa9g/O0/fXaQk2D87T99dpCTYAAoAAATYzz1T332kJNjPPVPffaTY2TwcekvypfI6scp8HHpL8qXyOrFAAARR85L3Y9siUij5yXux7ZEoAAADwEOMxUaNNzlrbRJb5N7kvW2BHjsZs0owjnqz0hDj63wiudnmBwWzvOcs9af25tfsuEVwKcBhZRzVatnWn9rhFc0I+pfu9S9NT11DMd9gPQZaWOPwkm1Wo2VaC04Tjzwl6uHBk+DxUa1NTjz6NPemtGn60yYxuI/+NW2y81UaVVf2y3KfyfwfMajvpn0yYPD0y0AAAAAAAAAAC3WBpeT5EfJnKa9UpXzP45pX9pHHkugoOCpRyu2nDK7xtwtzW3GJlyrUdarGnVjbZ1fOZUqc4SileyvFav7V777HtDlSbnQ/qycZPLlvTc5SzuOZpLyqe7yo2tq36gyy5NoXUtmrppr2x3P2rjvJKOEp03mhBReVRuuCbaX6yf6mv0+Wqs6NLLUi6n1bNV0Ty1c9OLTXM1ml5JdUcVXVZxdVyjDE7GzjHyoukp3dkvKTlbSyst3OBlKWCpRalCCTzOaa/ulva9t3+pSuTaCy2pxWRJRtwTuk+KT4mBwOPrbCLjNQjTw2HnkjCKi3NyUlu0Vkt1rF7ybj6lTFzhKqrRdVOn5C+zPLHKvtWy3zN89raAZepQhKUJyinKDbi+Das7fBshfJlDJGns4qEL5UtLX329vOYupylUSrvapVY1HHY2i9nT2ijtbWzPyPL1dhRxtWpUjThiM1N1nFVoxg3KOyzaO2VtS0ulbm3oDL/UqVpRyK0kk0tFZbv0PfqlPLOGSOSo25xto82+69fOYbC8o1Zzw6nV85SXk08mbPaV5Si03l0Vmufeiypcqypcn4fJXcqkcPnaeRpyjFXg9Ltp3Vl5XFgbCuTKCi47NWbTe+91ud991xK3gKNmsis45X64pt2/Vt/ExrxVbbedeV4l0cuWOkdm5J3tfMn8PUWtP+pyNbbSk9klN+S2npmg9PamnqBnVhKTSeVNZnNe9JNN/FSf6lH+m0f8Apr7Chvf2Y6pPjYxVXHVKdV01UtKFWnTp0XGN6tN5M09FfTNPWNksmq3nkMdVUKMquJ2cKrnmqZYRUXF2jBXVtdXd8NLXAy/+nUc0pbON5Xv8d/sb53zkkaEISc1FJ5VFv/GN2l8Lv9TE0cfVli3B1aaSnbZSklKVPLdSSy3bb1ve29Wui+5Zm1hqij9qayR0vZy8m9uCvf2IC7hUUtwjUjLdJOzto+dby3w2CUKjndfYUEoxypRTvx1f++JZVaG0ccjUasZVZU5NXtLac/qaumuDYGVVWLeVSV7XtfW3ErMbgN9Num6bcarcGtzdSP8Au5kgAAAAAAcm8InpOf4cew6ycm8InpOf4cewDXsH52n767SEmwfnafvrtISbAAFAAACbGeeqe++0hJsZ56p777SbGyeDj0l+VL5HVjlPg49JflS+R1YoAACKPnJe7HtkSkUfOS92PbIlAAADxmNwv/yau3fmoNqiuL3OfyXqu+cq5Rm6ko4aDs5q9Rr7tPn+Mty+PAv4QUUoxVklZJcyNeoZ9y9PTw9MtAAAFFSmpxcZK8ZKzT50ysAY7k+o6U3hqju4q9KT+/T/AJjufwZkS1x2E2sFZ5ZxeaE/7ZfxzNcC2p8tU4q2IapVU8sou+/iuMXxLlMVZjEzPGFfLePlh6KdOMZVZzjTpRluc5O2vqSu/gSck476zhqVa1nKPlR4SWkl8Gmi35R5KWLq0JyqPZU05KMJOLcmrKWaLTVlfdxK+SOTPqu1hGblTlUc4J3bjdaptt31u/iQZEAAAAAAAEEsXTTisyvObhHnvNJtr9Iv9CY16PJks8IujJJYyU5yvZODhUs7p3+9FP2kf1LE6KW2yqMo08jTlBqrKz1ktXDZ2bvud9+obKDF8rYSrUnBU3JRqRdOq4u1o3Us3tspR0/uRZU8NiHkqYiFSalKW0pwluajGEXvV4+TN24zT5tAzuIrxpU51Ju0IRcpO17JK73ENDk+lCeeKd9Wrzk0szu7Juyv6jCVOTK86GIVRTlUeDUKac7+W41E1vs5axTbL2NCusHioSUnXaqWkn9tuPkuH9qtlVuZrn3sMwDX8Vgq8ZyVNT2P9KUlmzOT8tTteX4TeuqXPuKauCr2iv67hs5KNsuaE3Nv++y0ccrd7Ja2vqGeq14wlCMnZ1JZY6b3lcrerSL/AEJDXZYKu60HkntY4ipLauScMjp1I07K/NmgrW3346+UsJWVL7Ff/l7SDkk5JN5rPO23uu7+UtNdwGdWKp5JzzJRg5KTeiWXff2WJjBvATlyfi6SpyUqm2yQlJN+VfLre3DnKMVhqrzbOlVi3CKoNSSVKV3fMs3sb33Wmu4DO1KihFyk7KKbb9SKaOIjO+W7ta+jW9Jq19+jW4xfLeHnUk1s6lSDozjFQlltUdrN6rm3Pm14lpXwmIyVHGE3JTi6cL3jK1CMbPyk0s19eZ62A2NlGHrxq04VIO8JxUovddNXTMFRpznXk4xqZo4mWaefyVDJrG1+L3W3681yLB4TERjhI7OUXShRjJ3voopT+/ZW1TWV3tf2BsxRTpqKaXO297erd2a9HC19hSThV2kZR+svMpbXSSbj5WqzOMraaac2UzXJ1NwoxjJzvr9u10rtpaN6JWS13WuBO6azqf3kmlq9zs927mRWAAAAAAADk3hE9Jz/AA49h1k5N4RPSc/w49gGvYPztP312kJNg/O0/fXaQk2AAKAAAE2M87U999pCTYzz1T332k2Nk8HHpL8qXyOrHKfBx6S/Kl8jqxQAAEDjepLVryVu9sirZf5S/b+AvOS92PbIkAj2X+Uv1X8EeJlGlTlUnOSjFXe4uDHV/wCviI0v+XRtOp65/dj8PtfoWISXvJuEkoupUclVqvNPXdwj8F8y82X+Uv1X8Eh6JmyIpHsv8pft/A2X+Uv2/gkBFR7L/KX7fwNl/lL9v4JABHsv8pft/A2X+Uv2/gkAEey/yl+38GufSLkitUrQnTTmnFR1aundv9NTZyOr933jGeEZxUuvh8uXiy5YrDketkhHDVLxq042yv7y/ui+ddhkiDF4OFaKUr3TvGSdpRfFPmLWGMnQahidYvSNdK0X6pr7r9e5+rcdIxiunLLKZm5ZIHh6QAAAAAFv9fo3mttTvTV5rOrxXGXD4lWHxNOqm6dSE0nZuMlKz4O3OYbF8jV6u1z1INypVqcXd2tUacdLWjZKz3t77mReBbliLu0asFFW3qyab/dAeV+V6MabqRqQqKM4QllmnlzTUbvha9/gSwx1Obhs5QnGeby4zi15O/n1+G4xlXkitOKzOkpQVKMVG+WShUjNt6aXy2S1td6u5FW5KnUqThPR141ZTcE3GGaEaaSk0rvyb8d4GYXKNB03UVals07OedZU3uV72vqv1PMPyjRq1JU4TjKUUm7NPRq91+q/VFguSqicKqUFVhNSSdWpNSShONm5XcfttqydvWXuGw9SNac5ZMs4xvZu6klayVt3ruApcrYeUJz2sFGE3CTlJJJp2487WhdQqxlFTjJOLV1JO6a434GK/wBNrRkpRdNunXnVgm2sympXT08lrPo1fd6y8wWDdOhs3JOTcpNpaJyk5aLgm9PYBcqtF28qPlbtd+jenwT/AEI3iEpuMnGKSVm3a7d9P2LfBcn7N6tNK2Wy3WgoJez7T/7v1Yig6lRpaWlTndxbTyybsnx0AnrYqKpzlBxk4xzWzc28qxVbZwc7XtbS6jz23vQx1Tk+UISeZS/p1VljB3bqTzcebd+5fcoYd1aMoRaTdt/qafyArp4mnOUoQqQlKH2oqSbj7VzEpY4HBzpVaruo05NtQUnJZnJty1Xk3vuWl9S/A8SS3A9AHgPQAAAAAAAAAOTeET0nL8OPYdZOTeET0nP8OPYBr2D87T99dpCTYPztP312kJNgACgAABNjPPVPffaQk2M89U999pNjZPBx6S/Kl8jqxynwcekvypfI6sUAABFHzkvdj2yJSKPnJe7HtkSAQY3EqjSlUetlouL3JL2uyKOTcM6VJKTvUk3Ko+M3v+C3exEFX+tiow+5QtOXrqP7K+Cu/ijImp6hmO5t6ADLQAAAAAAAAR1fu+8SEdX7vvASFMoppppNPenzlQAxn1aphtaHl0uei3rH8N//AFfwsXmExcK0c0Hezs09HF8Gt6ZMWeMwGeW0py2dZLSaWj9U195f7Rq79pVel6Cik5ZVnSUrapO6v6isyoAAAMJynjqlOWLUJu8MPGpBWXk/bu92v2OfiZShdtyzNxatFaW0+9u5/wBAJwWksfFNqz0dvtQ/9jzlWtKFCTg2ptxhFpJtSlJRTs9+8C8Bj1XqU5yc1KVOUoRhe2bM3aTdvu6x9ekvUXGFxSq6xi0nFSTdrNO9uy/xQFwDE1K9SmqdSMpSgk3VhbM3G+so89477c6urXsSLlJU4JvNUWzlVzrLrCLW61r6NW4gZI8LN4jNUgldONVwkr6P+k5/HfEvAPQAAAAAAAAAAAAAAAAAAOTeET0nP8OPYdZOTeET0nP8OPYBr2D87T99dpCTYPztP312kJNgACgAABNjPPVPffaQk2M89U999pNjZPBx6S/Kl8jqxynwcekvypfI6sUAABFHzkvdj2yKcXiFSpTqS3RV/b6viVR85L3Y9sizxf8AWxFOj92n/Vqe37i/W7/7SwkpeTMO6dJZ/OTeeo/8nq/03fAvDw9JM2sdAAAAAAAAAAAEdX7vvEhHV+77wEgAAAAAAAAAAgqYSnNzcoJucMknxhrp7PKl+pMlZWWiAAp2ceC/Qpq0Izy5lfK7rVrXiSgCipSjNJSV7O65rP1HlGjGnFRgrJbl6txIALfD4bLZv7STV03a177tx5LAUmsuTyVBwSTaWR71Zc2iLkAWv1RKcZR08vPK7bbeRw7LfoXJ6eAegAAAAAAAAAAAAAAAAAAcm8InpOf4cew6ycm8InpOf4cewDXsH52n767SEmwfnafvrtISbAAFAAACbGeeqe++0hJsZ56p777SbGyeDj0l+VL5HVjlPg49JflS+R1YoAACCVRRlOUnZRgm3wSzFvyTB5HVmrTrSztPmW6MfhG3xuQ8p/1KkcOv+bbP+HFty/XRfEyhr1DOw9PD0y0AAAAAAAAAAAR1fu+8SEdX7vvASAAADw8hNSSlFqSe5p3TAqAAAAAa7jMZWjiKrU5qEKtOP3XBRko3zL7TvfmJPr1T6vfP5f1vZ817ba2XqmVlyfRdTaOlBzunma1utx79Ro7Xa7KG0/vyq/6mOMu/yYVHSx5PhU+tV4yr1JxpONlLLZ5o31siXlLlCdGSjGCk5wezu7XqZopRftzX9iZewoxjKUlFKUrZnxsrK4qUYycXKKbg80W1udmrr4NmoinLLLlNsL/qVSvUoyo2UXNpZm0pf0czulvs3a3FMrXLrcaE8kbVFTzxWZuLqSUd9rJJu+u/1GVhhaccuWEVlbcbLc5Xu17bsi/0yheL2MPJSUfJWmV3jb2PcVlY4bE1ZYLE1KslJxdZLLeLtGc1vvdbtGivk1zlia0pSbjGMIxjeWicVLdezer1tcv44SklNKEUql86t9q++/t1K6dGMW3GKTdr257Ky/YCyxMpSxUYRzOMaTlJRm46uSUL67tKh5SqTpqW1lmdKjGUnuV25XfwUVr7eJfKjBSc1GKk1ZySV2vWzx0U5uXGOWS4rmv7Lv8AVgW9HFOo8rhl1yy8rVeQpO3sckiuhiHsIzlZu2ruld7rkqoRinkSg3zpIKilTyRbilHKmt60sBa4LGbWpJ6WtaKUk9FvdvW/2S4ipyi0pSyXjGezvm1zXSV1bRXe/grl7CCikkrJKyXqKXQg224xbkrPTet2oFjPlOSnOCppuDkpeVZXUIzVtNU1Jex8SjFcqSUamSFpKm5Rcr2dknvs1fV6XvoX7wtN2vTg7XteK59/6iOGppNKnFJqzWVbt1gLeePy1FBxT1SbUr2bUvVzZf3IJ8p1MiapxUna3lXXnFB83rL94am98Ivd91c248WDpLdTgtLaRW697ey4EsXdJ6a8NSo8SsrLcegAAAAAA5N4RPSc/wAOPYdZOTeET0nP8OPYBr2D87T99dpCTYPztP312kJNgACgAABNjPPVPffaQk2M89U999pNjZPBx6S/Kl8jqxynwcekvypfI6sUAABDPDQc87XlWy3Tadr3toe7BcZdeX8koAi2C4y68v5GwXGXXl/JKAItguMuvL+RsFxl15fySgCLYLjLry/kbBcZdeX8koAi2C4y68v5GwXGXXl/JKAItguMuvL+RsFxl15fySgCLYLjLry/kPDx/wAuvL+SUARbBcZdeX8jYLjLry/klAEToLjLry/kxXIf0ZoYHWlKq5Pe5Tdn/wBqtH9jNFpjqM5bNwteMm9Xb7rt/wCWX4XAuyLD1dpCM7NZldJ8GRYHD7OCT35YrffdFLX1mMp4OdSMZwUWnSopPNZ3hNuXNwdv2AzLq2moWesW7+xr+SQx2DpyhUjCVk/6skk7+S5pr2b7GQA9BiqnKtSNSpB0F/ThtG9p93W3Nv8AJPcRyyoRjLJfNQlW+1uypO2717yXDp8WX0ygMTV5ZdKNOdamoRnPLeM89llbzPTcrF7hcVtJ1YpW2c8t73v5Klf/AMhcJOGURcrkFtjMWqUb6OV4+S3bRySvufeWlblaUdqtmm4YiFFeW9c6g832dLbRaereVhlARUqkpOV0lFO0Wne6521bTW/E8WKpt2VSDb/yQEwLbHYl0oxcYqTlOMUnLLvdm72e5XfwIqGPc5OKhZqo4XTvFpRUnJPS61y+9cC+BD9bp6f1I67tVxS7XFfFFni+WKdCPlpue0yKEd7dlK6vollak29FxAyQLShjoylUUrRy1Mi1+15MXwVn5VrE9OtCf2ZKWiejvo9zAkAAAAAAAAAAAAADk3hE9Jz/AA49h1k5N4RPSUvw49gGvYPztP312kJNg/O0/fXaQk2AAKAAAE2M89U999pCTYzztT332k2Nk8HHpL8qXyOrHKfBx6S/Kl8jqxQAAAAAAAAAAAAAAAAAAAAAAAAAAA8PQB4D0AY+vye51K08yW0oKmtNz8rX/wAi0q/R+LilDJB/V50pNQtmcklmf6P9TNgnGHSPLlHqWIo8kyWyUtio05uWWnTyqScHB31eupcclcm/VlUipOUZTzRvvSyqKj67WL8CoSfJlMVKyxOAzynKM8rmop3V/sSbVtVxd/kUVeSoydZ5mnVnGba5nHLu9uRfsZAFYeRikkluRDHCpNPNPT/Jk4AtsThdpUpSbVqcnJRte7cXHjwky35UxlLDulUqSyq7jub0a5retL9zIkdahCpbPCMsrusyTs+K9ZJ/DWPG/wCXpr8OVMFCWb6ymrt2ySvrNz7bfBIp/wBbwc1UzTktpUUlLI7K2VLXh5CbNiVCC3Qivgjyvh4VI5akIzje9pK6uSsvt1jLw7xn+4/xhJ43CqUpPGU7urtPJV7PZ5Lb3wT9qRLhOWcFSgorERdoqK8lrRKyRkoYCjH7NGmvZBFf1Wn/ANOHVQ/kl+H6n+4/xJCakk07pq6fFFR4kemnEAAAAAAAAAAA5N4RPSUvw49h1k5N4RPSUvw49gGvYPztP312kJNg/O0/fXaQk2AAKAAAE2M87U999pCTYzztT332k2Nk8HHpL8qXyOrHKfBx6S/Kl8jqxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTeET0lL8OPYdZOTeET0lL8OPYBr2D87T99dpCTYPztP312kJNgACgAABNjPO1PffaQk2M87U999pNjP8A0Ak1yhp/0pfI6ZtZcWcy+gP/AB/5cvkdKKK9rLiz3ay4soAFe1lxY2suLKABXtZcWNrLiygAV7WXFjay4soAFe1lxY2suLKABXtZcWNrLiygAV7WXFjay4soAFe1lxY2suLKABXtZcWNrLiygAV7WXFnm1lxZSR7aObLfyr2t67XBSbay4sbWXFlt9bp/wB6ta9/VbN2ah4qHHT43ve1rbyW1xn6XO1lxY2suLIIYiEmkpXbV1+l+wop4uL3+TeTSvfmdr7tNRZxn6XW1lxY2suLLb65T0ebfu0f+9+ntPZYmGVyTvpf9m/kxZxn6XG1lxY2suLIY1ou6W9K9v8Ae8jp4uEoqV7Xtx0ur6+r17hacZXW1lxY2suLIqdWMr5Xezt8SsqKtrLixtZcWUgCray4sbWXFlIAq2suLG1lxZSAKtrLixtZcWUgCray4sbWXFlIAq2suLG1lxZSAKtrLixtZcWUgCray4sbWXFlIAq2suLG1lxZSAKtrLizmf0/d+UG+jj8zpJzX6e/8f8Alx+YGBwfnafvrtISbB+dp++u0hJsAAUAAAJsZ52p777SEnniVJuTpQu3d6y/9iDO/QH/AI/8uXyOlHIeTuV54WptaMKcZ2au8z0ftZlfHnG9F1O8WOlA5r4843oup3jx5xvRdTvFjpQOa+PON6Lqd48ecb0XU7xY6UDmvjzjei6nePHnG9F1O8WOlA5r4843oup3jx5xvRdTvFjpQOa+PON6Lqd48ecb0XU7xY6UDmvjzjei6nePHnG9F1O8WOlA5r4843oup3jx5xvRdTvFjpQOa+PON6Lqd48ecb0XU7xY6UDmvjzjei6nePHnG9F1O8WOlEMsOm27tNyUrq2jStzrgc78ecb0XU7x4843oup3giZh0D6hDJlvK3t/wydhW8LHPm1ve/x0/g554843oup3jx5xvRdTvJ+mueTf6OEcKmZS8m1rWV7W9nHX5FbwkeMvWtNVmzWenFvcc98ecb0XU7x4843oup3j9HPJ0JYSNoq78lRS/wC2Skv3RS8FH+6VnvWnr9X+TOf+PON6Lqd48ecb0XU7x+jnk6HTwsYycrttprW25/D1Eb5Pi42cpPS3NuSslu5uO80Dx5xvRdTvHjzjei6neP0c8nR6cFFWXr/d3Kzmvjzjei6nePHnG9F1O8rNulA5r4843oup3jx5xvRdTvFjpQOa+PON6Lqd48ecb0XU7xY6UDmvjzjei6nePHnG9F1O8WOlA5r4843oup3jx5xvRdTvFjpQOa+PON6Lqd48ecb0XU7xY6UDmvjzjei6nePHnG9F1O8WOlA5r4843oup3jx5xvRdTvFjpQOa+PON6Lqd48ecb0XU7xY6UDmvjzjei6nePHnG9F1O8WOknNfp7/x/5cfme+PON6Lqd5iuUuV54qpta0Kcp2Susy0XsYsWuD87T99dpCTwxKjJSVKF07rWX/sQAAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf//Z\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/rMmmb-cuxqA\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7f38f0036be0>" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('rMmmb-cuxqA')" + ] + }, { "cell_type": "markdown", "id": "necessary-balloon", "metadata": {}, "source": [ - "# **Classification of energies**\n", - "\n", - "[](https://moodle.rwth-aachen.de/mod/page/view.php?id=551846) part 2\n", - "\n", "## Supplied energy\n", "\n", "Consider a general force displacement curve obtained in an experiment. The curve represents a response of a test setup with an arbitrary geometry of the specimen, material components and their layout, and even the boundary conditions. \n", @@ -173,6 +244,48 @@ "To start in a transparent way, let us first address two elementary examples that can be solved analytically: elastic bar test and a pullout test with constant bond-slip law which has been analytical solved in Tour 2." ] }, + { + "cell_type": "markdown", + "id": "89ba5444-8fa2-4792-b257-a234c2b43fe7", + "metadata": {}, + "source": [ + "# **Application to elastic bar**" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "aff5b80d-6dfe-4336-a2d0-02685720e6fa", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRodHRwfIiglIyEhIS0qJyYtLy09MC0pNSs1Q1BCNThLPzItRWFFS1NWW1xbMkJlbWRYbFBZW1cBERISGRYZLxsbL2I/Nz9dV1dfV1dZXV1XV1dXV1dXV1dXXV1XXVdXXVdfV1dXV1dXV1dXV1dXV1dXWF1fV1dXXf/AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAQUBAAAAAAAAAAAAAAAAAwECBAYHBf/EAEgQAAIBAgMCCQkGBAUEAgMBAAABAgMRBBIhEzEFFkFRY3KSseEHIjM1YXGBkcEUMlKDodEGFUJTIzRiorJDgtLwc5NUo/Ek/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwUE/8QAJhEBAAIBBAICAQUBAAAAAAAAAAERAgMhMUESUSJxBCMyQmHwE//aAAwDAQACEQMRAD8A5+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPPDKLcXVhdOz0n/wCIsQA9HgzgaeLq7KjOnKdm7NyWi9rR6/EHHdF2/AljVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHEHHdF2/AcQcd0Xb8BY1cG0cQcd0Xb8BxBx3RdvwFjVwbRxBx3RdvwHEHHdF2/AWNXBtHELG8ropc7m/oir/gPFJXdXDpe2U//ABLG6W1YHt4n+GalJJvEYZ3va05a23282x5VfCzpyyzVmS2oiZQg9LgvgSti55KSje19W7Jc+4z638GYun9500ue8v2FlNeB6lfgKrBXzU5dVv8AY8sRMTwTFAAKgAABNjPTVOvLvISbGemqdeXeTsbF5PPWH5U/odQOX+Tz1h+VP6HUCgDwv4ihCVfBQqyy05VKmfz3BO1NtXaa5bHk4LGSjs5QlGbhDG7KpVm2ssZLJeTdnHdq+begNzBqcOHcU6MkpQdaNWEZJ00ppSi5ebBzyzemlparkMevw7NOWJp7OU1gYyzZZpN/aHBrK3py+2/LYDdChqr4dr3qUdrSlONWMY1IUrxmpU87STmlePK3IYPhWvXrYCq6sYRq0arlSSdpyhJJpedva3b7a7wNrBplD+KsS6FWs4UpLZKcbWWRuahZpSbcVe92o7mj0OB8XUUuEakpxrypuLWz0jK1K9oq7tut7wNjBp+H/iPFzoSnajmaouMrKydSai4uKm3bXRu25kuJ4fxVNbJ7N1FiKlF1VDzbRgprzZTSTd7ay5HvA2sGuYPhbFVakdKUYRw0a1SKWZybclaMk7WeX2mFR/iHFyi3GWHqP7J9pywi7xtON6b8565c3xA3AHncCY6WJoyrO2SdSey0s9mnaLftdm/ieiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDiX5jNdx0ZVPvSbX4VuPf4QlalJ9x4U3pfvZJIa/wpwVUr06WWLUKcZRTSTvd3em9FtTFx2lV1FFRktLwldWm5JbrbpP5HsuDsowqRU0nUs072klHmtyPlPIxsklJzk7tNWVkufc5bzG/ju6RtNs3+CMTTjWcXOCbcsquldch738W4aVSlStJaVNzurrK3Z854H8P4WnGrBqEZZtNdbt6p7vYbjwlTzU9Vud/9rNY7xSZxU21ZUKdknGNuaxzk6DWg5ZtWlruOfFcwAFUAAAmxnpqnXl3kJNjPTVOvLvJ2Ni8nnrD8qf0OoHMPJ0r8I/lT+h1TZooxMRhadVJVKcJpblOKlb5lfs1PTzIeanFeatE96XMnzGVs0NmgPPXBmHVN0thS2bd3DZxyt89rWuWY7gmjWoyouKgpRULwUVJRUsyitN11uPT2aGzQGA+DqDgoOhSyKWbLs42zfitbf7SRYWmsqVOCyO8PNXmvnXN8DL2aGzQGJHC01mtTgs/37RXne/n+JWhhqdJWp04QWmkIqO7duMrZobNAYccHSSaVKmlJqTSgrNrVN6asrPCUpKUZU4NSeaScU1J87XK9FqZezQ2aAx40oJ5lGKdlG6STstyvzew8tfw/TUq01VqqpVi451kThFyzOMVltrzu7Pc2aGzQGLhsPGlThTgrQhFRivYlYlJdmhs0BECXZobNARAl2aGzQEQJdmhs0BECXZobNARAl2aGzQEQJdmhs0BECXZobNARAl2aGzQEQJdmhs0BECXZobNARAl2aGzQEQJdmhs0BECXZobNARAl2aGzQEQJdmhs0B53Cs8tCT9q7zW6uI5LM3KrhoTWWSuuZmPLgfDPfRg/gSSGrVMI4Pa7WLlKnlUOVK99xpnD+KlKso3fmL9Xv5jr1LgyhCe0hTjGevnJa679SHE8A4SrN1KmHpznLfKUU2+QLbkmG4aqUqeWH3rON3yJq117dT3f4S/iGpGnVw9SUpppbO7u027NXfJrf4G9cWcD/8Ai0ewjnP8Z0o4XhFxw8VSShHSCtv3j6LvlsGZw82omnKWi38nOc8PQpcJV6lWnnqyl58d79tjziRfaAANAAABNjPTVOvLvISbGemqdeXeTsbJ5OPWX5U/odWOU+Tj1l+VP6HVigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcm8ofrOfUh3HWTk3lD9Zz6kO4DXsH6Wn1495CTYP0tPrx7yEnYAAoAAATYz01Try7yEmxnpqnXl3k7GyeTj1l+VP6HVjlPk49ZflT+h1Yoo2Y2G4QpVdnlb/xIZ4Xi1mjpqr+9fMux8ajo1FS9I4tRu7JNrRlMPg6dPK4x1jDJFttuMdNFzblu5lzAUq4+EHaeaKc1TUrXTk1dardzXdtS9YpZ1G0vvON7WV0s3Lv05UYsqKqucHFTg6klNNrc6drNfEph6M6eyhUmpy2krS5ZRUGk37bWv7QPSAAAAAAAAAAAAAAAAAKAVBQAVAAAAAAUKgACgFQUAFQAAAAAAAAAAAKAVBQqABRstp1YyvlknbmdwLwUKgAAAOTeUP1nPqQ7jrJybyh+s59SHcBr2D9LT68e8hJsH6Wn1495CTsAAUAAAJsZ6ap15d5CTYz01Try7ydjZPJx6y/Kn9Dqxynycesvyp/Q6sUAABFGtBzlBNZ4qMpLlSldJ/7X8iSx42D4JqU+Eq+KdfNGpCK2eSySWkdb8mV8n9TPaAAAAAAAIqdW8pLkVrPn5yS4FQAAAAAAAUPPxcYVHJ1G1Tg1Gy1zSduT4paa3uegYqcqcpeY5Rk8ycbXV96aft5jWIxqMFCk6tN1Ek3eE2nonZxstOR2e/uM/bRu03Zp215dL6EEabnaORwpp3d350ne9rLcr8/usK8VtU2vwW7Ti+9DKRN9pj7X7ot/QfaI80+xL9iUGRF9oXNPsS/YPELTzZJXSu1ZakxDi3/hT6r7gJSOupZW4yaaT0VtfmmXTUnbK0ver/VGPXp1WlaWvJlVre+7+jA87hKpWVNQ++5Qc8t7XUbKzaSdryi2kt0WtbmbhW9tZttulBzu+W7SdrJJuz5FuM2Cdlms5W1a5+UpClGLk0tZO7fPpb6AY+LWaUKbbUWpSlZtXtbS65Nf0MPCuGyhUpqMJZopqDdmnK272rXU9KvRU0tWmndSW9Msp4a0s05OTW7RJJ7r2XL7WbidhWtiMjfmtqy3Wvq7cr9xXbP+3P8A2/uRY121/wBMvmmmvqTutBb5R+aMC3bv8E/kv3G3/wBE/kHiaf8Ach2kPtVP8a+YFssTa3mTd2lyLvZkGJXxEPN85aSRkxkmrrcBcAABg1ak5Tk9qqVKGjdldy970S1S3b7l9OVTbSjq4JJ+dblvut7uUtlaDnGaeWUs0ZZcyT5U+bXW/tNQLqFSSlGMpKcZpuE0rfB8j01uuZmUYOCovzPvZIJ5cys23zLeopaK/wBNZ8RTTnTvfe1o2uT2e4Zcicx/s0c05y0vu5LLLZl/2aHM+0/3KSw8LPzW/Ym/3MhhauePtWjfO1vt8SZtLezzo0MsIx2LurX1XPd8vvJ6GFyylmjTabumopNewDKjJPc0/cVMetSjG04pKWaKutLpu1n8zIAHJvKJ6zn1Idx1k5N5RPWc+pDuA17B+lp9ePeQk2D9LT68e8hJ2AAKAAAE2M9NU68u8hJsZ6ap15d5Oxsnk49ZflT+h1Y5T5OPWX5U/odWKAAAij6SXVj3yJSKPpJdWPfIlAAAAR15NReW2Z6RvzvcSELWaouaGvxendf5gYmPm6VGtl1kqdop8smna/xMfC5aOanKEW6CgqVlZZZJRVnyO97+yz5Uj1Y/fl7o/Ug4QxlOlG01mctI00ryl7LfXcIixLhq20je1rSlF++MnF9xKeE62In/AFqhHkhTSb+Mmt/uRWFfEU9Y1Nsvw1Ek/hKK0+KZqv7S3ugxcDjoV4txupR0lCWkovma+plGeFAABQFQBQx8RTzTir281u/ulFmSUsBFsOec38bd1h9mjy3fvlJ97JgBD9lp/gj8kUlhaeVrZx1T3RVycpKKas9UBbtFlzclrmLSw9SWIdaVV7PKo06UdFrZuUvxS5uZe8o6SjLKqEcqX3ml3/P5e086nwhLLUUXljTpxqxVknlunCC5XdLXTfKy3Ae+AAAAAsqxTi7297tp7dTCoyTjF53dpP7ifJ7EZ4AxNq+Sf/6ZPuG2nzv/AOmf7mWAMTay/FL/AOmRXay/FL4Umu8yioGJCc9pFNzy2d7xSXJb285LNVNbSjbmyNv/AJFlXPtItKNrNXbfsfN7CtHNnk5Ws1G1r25QGEU1F5ufS++3zfeTgqBQxcbXUJQb1td2ut1rcvvMstyrfZARRrSaTULp7mpIpUzyi45FqmtZc/wJyoGPTdVRScYXSV/Pf/iXZqn4Idt/+JMAMHGV5RUVKMFeSf39dGm+QzITUkmndMrYAVOTeUT1nPqQ7jrJybyies59SHcBr2D9LT68e8hJsH6Wn1495CTsAAUAAAJsZ6ap15d5CTYz01Try7ydjZPJx6y/Kn9Dqxynycesvyp/Q6sUAABFH0kurHvkSkUfSS6se+RKAAAFspJJtuyWrb5CKlmte0XfW6lvv8C3GO6jTdNzjUbjK25Rs2238LfEri8TGhSc5blokt7e5RXtZaS2Pjca6P8ASpVJ6QgnvtvbfIlznn0aLTc5yz1Zfel9EuRLmFGEnKVWrrUnv5orkgvYv1ZMWZraEjfcABlpDVhKMlVpaVI/Ka5YP/3Rns4PFRrU1OO57096a3p+1HmEVKt9nq5/+lUaVT/TLcp/R/DmNRvszw98FCploAAAAAAAAAAFCmVWtZWVtPduLgAAAAAAAAAAAAAAWVaeaLje1+Utw9HJCML3srJ+wlAFCoAAAAAAAAAAAADk3lE9Zz6kO46ycm8onrOfUh3Aa9g/S0+vHvISbB+lp9ePeQk7AAFAAACbGemqdeXeQk2M9NU68u8nY2Tycesvyp/Q6scp8nHrL8qf0OrFAFG7K5Dh8XTqWySTusy1Wq/EudbtfaBdH0kurHvkSkUfSS6se+RKAAIcVUlCnKUIZ5pebG9rvkVwLKDzVJ1FUzQsoqK3RcW8zvz8nwPJqVvtFXaf9KDapr8T3Op9F4k/Cc1GMcNSSi5pueXTLC+vxk7r5lkYpJJKyWiRvhnlUAGGkKr3qunFfdScm+S+5Lnel/lzl9KUnG8kou70Tvy6P4qzI54VNzabW0SUlprZWvqt9u4ko0owhGEVaMUkkuRIC8pOKkmmrpqzXOioAk4IxLi/s9R3lFXpyf8AVD91ufwZ6x4GIo50rPLOLzQl+F/tzmVR4cpZFt5KlUTtKLvv51zx9pcpirMYmZ8YTcNY6WHoOUEpVJSjCnF7nOclGKfs1v8AAu4Ix32jD06rWWTTU4/hnF5ZL5pkHCfBSxdTDylUexptzywbi5SatGSnFpq13u5y7gjgr7K68YzbpVJ54Rk25RbXn3k273av8WQekAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcm8onrOfUh3HWTk3lE9Zz6kO4DXsH6Wn1495CTYP0tPrx7yEnYAAoAAATYz01Try7yEmxnpqnXl3k7GyeTj1l+VP6HVjlPk49ZflT+h1YoxeEnPYVFTTdRxajbkbVk/gMPgowcZatwhkje3mx0ukklvyx+SMoAQOLdSVpNebHdbnlzov2b/ABy/2/sUj6SXVj3yJQI9m/xy/wBv7GDi6kVJydeaVBZ5xVtbpqKemvLp7vYeieBiakq0405wjFxeeqo8sv8Apxb5WlZv4GsYZmVmHpzeapUk1UqO8t2nNHdyL6k2R/il+n7F4JM2sRSzI/xS/T9hkf4pfp+xeCKsyP8AFL9P2GR/il+n7F4AsyP8Uv0/YZH+KX6fsVnNRTlJpJb23ZI8fFcNOXm0Fp/cktP+2PL72Yzzxwi8pZnKIehisTCjG9So1fctG37lbU8avTq4qcZxg7SezinKN20s3ssY+XVyk3KT3yk7s9Pg3L9rw6hKUop3d92Zxeay/wDdx8OWv/1mMem9DXy0s/PF7/A9bJCOGneNWnG2V/1L8UXyruPSIMXg4VopSvdO8ZJ2lF86fIYsMZOg1DE6xbtGulaL5lNf0v27n7Nx6URFbJOUzNy9IFEVIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcm8onrOfUh3HWTk3lE9Zz6kO4DXsH6Wn1495CTYP0tPrx7yEdgAAAAAE2M9NU68u8hJsZ6ap15d5Oxsnk49ZflT+h1Y5T5OPWX5U/odWKAAAij6SXVj3yJSKPpJdWPfIkA8/hrFU4UnCcpJyTaUd8srXm35Luy+JgYWm4xvLWcm5TfPJ7/hyfAY2pOrinTll2VFxkrb3JrRP3au3uJjc7RTMbzYADDQAY2Mx1OivPer3RWsn7kSZrlJmmSedjOF4U24wW0mt6T81e+X03nmYrHVa103s4fgi9X1pfREEYpKySS9h8er+XEbYMTnM8Lq9SdV5qss1t0VpBe5fVlADz8spym5YT4RSUnUik9naTzbt9l+pPwO74yi3vcm/9rMaWTJG2bO283NbSxkcC/wCbo9Z/8WdNP9+MNQ3YpKKaaaTT0ae5lSp7Lq8z7NUw2tC86XLRb1j1G/8Ai/hYzMJi4Vo5oPdo01aUXzNPVMmMPGYDPLaU5bOslpNbn/pkv6l3chq75Sq4ZoLKWbKs6SlbVJ3V+WzLzKgAAAAAAAAAAAAAAABQw51HPEumpSiqcIzlb+pzk0lf3Ql80XYXCzg7zqOXNq+Ze33v4+wDLBQAVBQqAAAAAAAUAFQAAOTeUT1nPqQ7jrJybyies59SHcBr2D9LT68e8hJsH6Wn1495COwAAAAACbGemqdeXeQk2M9NU68u8nY2Tycesvyp/Q6scp8nHrL8qf0OrFAAARR9JLqx75EfCGMjQoyqSu0rKy3tt2RJH0kurHvkeVwtUdSvCimskFtKi9t/MT+TfwLjG6SxuDsNsqUYv7z1l737f0+BkgCZubI2CyrVjCLlOSjFb23oedjOGYxbjRSqS5X/AER975fcjyarlUlnqyzy5Pwx9y5D5tX8jHDbmWZz9M7FcMTnpQWSP9yS1fVj9X8jz4ws29XJ75N3b97Lgebqa2Wpy588gMnIslJWV5OTbt/SnZd0iCV227W5bJbkc5ilWklCi6k4wVk5cr3L2kZLBRUJZott2UHyLXzvfp3iORSvWdSWaVr2S03WSsrGTwL/AJuj1n/xZhGdwJ/m6PWf/FnTSm9SPsjlupUoVPadgAAAAAAAGHwlVlGNOMXl2lSMHL8Ker+LtlXtkimHUNvJQzrZxyyTd4tys09/3rL36mXKKaaaTT3p7hCCirRSS5krAYdTGzUmlTTs3y1PpBlOFZ5VRleSSrQTSbV73jb26taGcGgPL4OTlKrCUpPZ1pN+c97SlGPuSlu9x6FSq4vSEpe1Zfq0SJFQPP4WnJ4ZpZoucoQ0dpRzzUb3T0avfeZFKKdSTV7RSitXa+96fFak0oppppNPenuEYpKySSXIgMSrjJxk0oJpct5/SDX6mXF3SZcWzkopt6JK7A8/gl56mKqXupVnCPupxUGu0pnpHl8E1VTo0oSTU5pTkuaVVubT+OY9QDyKsJ1q2JVOVssYUk88koTs5OSS3u04fImeIlBVZfekqkKau7b1FJfGUv19hnRhGN2ko332VrluxjeTt9+2Zcjtpf5WXwQGFPFSqUqjSUUo1GnfVOMmoy9zy3KcKYp7KpFea3QqVLttWstya5dd/JpzmdPDxlFxslGW9Jb+dfEvnTjL7yT96uBgvHuNRQcVZuMVK/LllOV/dGKfxMmNWWzhJwbk0rxi1o7a77F+xhp5sdLJaLS24vAi23mSlKEo5U3Z2u7L2NmFwfTbpYeM5NzyKpN529Wt1+a7duqemWQhGOkVGN9bJJX9oGBHGbOnTnLdUlJyb5LRlL9FG3wRWeIm6cZyioyU6Ssnf77ipL2/ef6GZChFJq11mcrPWzert8bv4iVCLyq1lF3SW6/J+4EoAAHJvKJ6zn1Idx1k5N5RPWc+pDuA17B+lp9ePeQk2D9LT68e8hJ2AAKAAAE2M9NU68u8hJsZ6ap15d5Oxsnk49ZflT+h1Y5T5OPWX5U/odWKAAAgnUUJVJSdlGCbfsWY8TBXkpVZK0qss7XMn91fBWJf4ixcIWpykoqplzN/gTba+Oi+J4mK4WqVNKSdOH4n99+5f09/uM56uOnjvLE5REvTxvCNOjpJ3nyQjrJ/svazxMVi6tfSbyw/txej6z5e4hjBK9t73t6t+98pceZq/lZZ7Y7QxMzPKiSWiVioB8qAAAuzu1ru3NcvlXbjlsvelryfsvkRAtqGbk8/ZykpwpRk9N26+9e2yIMNZPPKDnCP3lya6K795FCbjufsLE0L3HzVaOru9L7t37mVwKv/APZR6z/4sxqWIlGWZb//AH/+GTwL/m6PWf8AxZvSrzx+yOW6lShU9p2AUKQmpJSi1JPc07p/EC4AAAAABQXAqClxcCoKXFwKgpcXAqRV8PCokpq6Wtvg0/fo2viSXFwIZYWLmpu99Pc7Xt8rsnKXLak7LTV7l7wPH4QwOIrY7DyVSP2WlLNOnuedJuLf4tcr5LHtllOOVW/XnfKy64FQUuLgVBS4uAPF4GwOJjicRXxNSNRTUVRyqyjC7bWXkv5vOetV855OR6y93N8f3JAKgoAKgoVAHJvKJ6zn1Idx1k5N5RPWc+pDuA17B+lp9ePeQk2D9LT68e8hHYAAAAABNjPTVOvLvISbGemqdeXeTsbJ5OPWX5U/odWOU+Tj1l+VP6HVigAAMXE8HUas1OpTUpJWTfIiP+UYf+1H9TOBJiJ5SmD/ACjD/wBqP6j+UYf+1H9TOBPDH0tMH+UYf+1H9R/KMP8A2o/qZwHhj6KYP8ow/wDaj+o/lGH/ALUf1M4Dwx9DB/lGH/tR/UfyjD/2o/qZwHhj6GGuC6Ci4qmsrabV3rbcW/yfD/2o/qZwHjj6GD/J8P8A2o/Nl1PguhGSlGmk1uabuv1MwxsZQc1G39M4y323O/07+ceOPoSbFc8u3L9xsFzy7cv3IOD8NKnFZ7Z8kYyad7tXbfxcpGYaEToLnl25fueVwF/DNDA60pVZSe9ym7P/ALVaP6HtGJjqM5Om4WvGTbu7f0u3+7L8EwMsjw9XPCM7NZkmk/buIcDh3Tgk99orff7sUrt855sMHOpCM4KLTp4dJ5rO8J3nyczt+gHsOraahZ6pu/Jo1p+pIedhKbhUjGVk/wDGkknfzXNNd56IFlTcQk1TcQgW1akYRlKTtGKbb5kt5jR4UoNpKortpbnve7k0vyPlJsXR2lKpTvbPFxva9rq17GHU4KzZv8T72x/p/tO/Py/p7TM306YRhXylLW4TpQVR5runFyas7u2jtprrp7OUujwjS828rOSTs4tWu7K+mmumtrmJLgZylNzrOWaFWG53SqW5W3utyJIulwQ3OM5ThJ5YxneldPLuaWbzX8yXk346XtNLhKm5RjTlGT2ihK91Z6rm1ej0KYjhSmoTlTalKGW8XdaOVr6rVb9VzFIcG2jCOf7taVW+Xfdt5d/+rf7CCPAsrSzVnKUoxi5OLvpPNd3k9eTkQ+REaV8snF8IRo1YQnpGUJycrN2ytci9/wChL9tpZlDOm3a1r211Svuu+Yix2ClUqRnCooNQnDWGbSTV3vXMQ0eBY06icXHKsjcZQzO8UkmpX03LkZbm0iNOcYud0mB4Vp1YJtqMsrlKOuiTs2nbX4E1PH0pWtPV5t6a+6rtO600d9TFXBDUYKNZxcKU6ako2fnNPNv0tbxRZLgO9OcXV86VRTzKL08zJJatvVX5eX2EvJrx0pnlk0+E6bztySgsmVrM5SzRuvNte/sVyRcI0W4JVE3U+6knrrbv+RBV4LvUdSE1GWeMoebdRywyWavqrN8xXCcGbKcZ58zUZp+ba7nPO3v0XsLeTMxp1ym4Qxexpqdk/PhF+xSkk3+pR8JUcqln0bcVo73W9ZbX09xZXwk6tCEJzSqJwk5KN1eMlLdf2EMeCpRltI1Uq2acnJwvF50k1lvp92PKJmejGNOt53Zf2+jZvOmkoNtXatPSL9tykeEKLm4KazJyWqa1j95XemhhfyS0csKtouNNSThdt03dO91a5JU4IUkk56bSrN2j/ci4238mbf7CXkvjpe19LhWnOpNJ/wCHCEJZ7PXM2rWtruW7fck/mdDzf8T798qs7uzs1a17p8hirgqp5z2/nOFOF4wcdISb5JX1Ts7NEmC4K2VSM897Kpplt6SSlzvdYROSzGl7/wBX0y6OLp1GlCSleCmrX+69EyYweC8FslUbVnOcmle+WN3lXu1b+Jnmocc4iJqElLlJCOlyl5WVTk3lE9Zz6kO46ycm8onrKXUh3Aa9g/S0+vHvISbB+lp9ePeQk7AAFAAACbGemqdeXeQk2M9NU68u8nY2Tycesvyp/Q6scp8nHrL8qf0OrFAAAAAAAAAAAAAAAAAAAAAAAAAAAUBUAUKgAWVNxES1NxFZgALMWYA8+XCsVGc9nNwjJwUll86Sko5Ur33u13zM9CzMSXBdJ57qVp3bjmllu2m5JX0d0nck303h4/yQvhVXUNlPabTZuF46PJnTve1rGPjOGb0Jyoxnn2LqX83/AA9Wle+/VPdfcZ9Pg2nFxklJyjNzzOTbcnHLdt79NCKfA1Fxy5ZWyuDtKSvFu9nbfq2ZrJ1jLSieGN/MqiqqCi6l60oa5VZKnmstfjd+32FaHC/+HdxqVJJTnKyinGMZuPPZ7nu32Mx8GU75rST2m0upNPNly/K2li2XBFJpLLJLzk7SkrqUszi7b1dvQVkeWlPSP+bxz5VCTjnhDPpa9RJx0vflRNgMfGvnyxayu2rV/ik7rdy85V8HU7vzXrOE973wso9yKLg6Klmi5qTlFtuUm2o3tG7e7Vl3ZmdOY2R4vhONKqqeSUpPLuaV80sqsm9d2vMiJcO0vPeWWWKk76O+V2el7q/JfeX4zgydSsqkajhpFaZk1Zt6WaTvflTJlwbT89WllmpJwzSyedq7R3IfJf0oiLQy4VSeV0pqpmhHJeN/Pvld72to/kW0+GoPWVOcI5aju7PWn99aPk/WxkR4MpqztJvNGeaUm23H7ur5FzFVwZSsllbS2mjbt/iO87j5F6XphPhpyy7Om3JzhFptWtK70adr6P3E/wDNFeV6U1CNRU3O6tdu1+e2q+ZI+C4ZcrdRpOLTdSTcXHdZ30GI4OUqNWlHzdq222r6y3sfIvT9JcJiFVpqaTSle1+VXsn8d5OWwp5YqMVZJJJexF1macZq9gCzFmESUuUkI6SJABybyies59SHcdZOTeUT1nPqQ7gNewfpafXj3kJNg/S0+vHvISdgACgAABNjPTVOvLvISbGemqdeXeTsbJ5OPWX5U/odWOU+Tj1l+VP6HVigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgKgAAAAAAAAAAAAAAHJvKJ6zn1Idx1k5N5RPWc+pDuA17B+lp9ePeQk2D9LT68e8hJ2AAKAAAE2M9NU68u8hJsZ6ap15d5Ox7/8AAEmuENP7c/odN2sudnMf4B/z/wCXP6HR69XJCUrXyq5RPtZc7G1lzsxqFfPeysk5LfzO362v8i+FRS3dzXeBI67W+VveyqrSe6RhQhGpUq5kmouMNfYlN/8AJfIkr1tnlSje99NeRN8z93xAytrLnY2sudmKsVG3nebv0e/R2e72uxSpilGMm96vpz2V+5r5gZe1lzsbWXOyCFaMnZO715HyOz7iQC/ay52NrLnZYQYeu5xjJpJOKlv5936AZW1lzsptpfiIZ14xeVvUtcf8VSv/AEuNrc7Tvf4AZO1lzsbWXOzBo426jKUXGMknF663Tdt3Ml8zJhK6TXKrgS7WXOxtZc7LCDbvPKKSsnFXvytXa3cis/iBlbWXOxtZc7IJ1oxV29H8e4Oqst00r7m19AL1jE91RP3NMk2sudmBQpUoKGt3FRWa7u7Ky+Gr09rMtO4Em1lzsbWXOywpJpJt7lqBJtZc7G1lzsxaeIvvSXmqTWa7Se66+fyKVcUlTnOPnZIt23blfeBl7WXOxtZc7MWjXc3LRJRbTd+bdycq1+XOVq4hKEpR85xW6+98iv7QMnay52NrLnZDCTd9Fo7Kzvfn/W6+BeBftZc7G1lzssAF+1lzsbWXOywAX7WXOxtZc7LABftZc7G1lzssAF+1lzsbWXOywAX7WXOxtZc7LABftZc7G1lzssAF+1lzsbWXOywAX7WXOxtZc7LABftZc7G1lzssAF+1lzs5l/H7vwg2/wC3A6Uc0/j31g//AI4fUDwcH6Wn1495CTYP0tPrx7yEnYAAoAAATYz01Try7yEnniVKTk6ULt3esuX/ALiD3f4B/wA/+XP6HSZwUk4ySaas09zRyLg7heeFqbWjCnGdmrvM9H7Gz1ePON6LseIsdJjFK9la7u/a3yltoxTaSXPZfsc44843oux4jjzjei7HiLG/4OTTcWneTlNv3y0XyaXwMlwV1K2qTSfv39yOb8esb0XY8Rx6xvRdjxFjoroR5VfVtey+r/USoRaaavdtu/t07tDnXHnG9F2PEcecb0XY8RY6PGnGLbSSb3l5zXjzjei7HiOPON6LseIsdKIpUINJW0XIrru3nOuPON6LseI4843oux4ix0ognBuqnZ5bO+qs/Zb/AN/TXnnHnG9F2PEcecb0XY8RY6O6cWknFWW5W0Rcc24843oux4jjzjei7HiLHSS104u90tVZnOOPON6LseI4843oux4ix0iEVFJJWS0SIsXGThaGa9/6Wk17deb9jnnHnG9F2PEcecb0XY8RY32MasZSk4tpyulf7vnZdyevm2dvY+cy4NtJtWbSuub2HN+PON6LseI4843oux4ix0oHNePON6LseI4843oux4ix0iFOMdyS9yKuKaaaunvRzbjzjei7HiOPON6LseIsdJSEkmrPVe05tx5xvRdjxHHnG9F2PEWOkpW3FTmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6UDmvHnG9F2PEcecb0XY8RY6Uc0/j31g/8A44fUrx5xvRdjxPK4R4Xniqm1rQpynZK6zLRexMWMXB+lp9ePeQk8MSotSVKF07rWfJ/3EAAAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH//2Q==\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/qGF6G4OhM3c\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7f38f00581f0>" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('qGF6G4OhM3c')" + ] + }, { "attachments": { "3c39f190-91b6-482f-ba3b-901355f2026e.png": { @@ -189,10 +302,6 @@ "id": "interesting-times", "metadata": {}, "source": [ - "# **Application to elastic bar**\n", - "\n", - "[](https://moodle.rwth-aachen.de/mod/page/view.php?id=551846) part 3\n", - "\n", "\n", "\n", "The first exercise demonstrating the above equations presents the elastic bar for which we can readily derive the force-displacement curve $P(w)$ and the stored energy function $\\mathcal{W}$.\n", diff --git a/tour6_energy/6_2_Energy_released_in_pullout_constant_bond_and_rigid_matrix.ipynb b/tour6_energy/6_2_Energy_released_in_pullout_constant_bond_and_rigid_matrix.ipynb index 5b04904..08e9921 100644 --- a/tour6_energy/6_2_Energy_released_in_pullout_constant_bond_and_rigid_matrix.ipynb +++ b/tour6_energy/6_2_Energy_released_in_pullout_constant_bond_and_rigid_matrix.ipynb @@ -5,8 +5,41 @@ "metadata": {}, "source": [ "<a id=\"top\"></a>\n", - "# **6.2 Frictional pullout and energy dissipation**\n", - "[](https://moodle.rwth-aachen.de/mod/page/view.php?id=633308) part 1" + "# **6.2 Frictional pullout and energy dissipation**" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBgYFhoaGBodHRofIiIlISEgIikrJSYlLicyMC8nLSs1PFBCNThLOSsyRWFFS1NWW1xbMkFlbWRYbFBZW1cBERISGRYZLRobL1dBMD9XV1dXV1hjV1dXV1ddV1dXV1dXV1djV1ddV1dXXVdXV1dXXWNXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAwEBAQEAAAAAAAAAAAAAAQMEAgUHBv/EAEcQAAIBAgIFBwoDBwQBAwUAAAABAgMREiEEBTFBURYiVGGjsdITFDIzUnGBgpGhwdHwBhUjQnKS4WJzovFTQ5OzJDSDssL/xAAXAQEBAQEAAAAAAAAAAAAAAAAAAQID/8QAHhEBAAICAwEBAQAAAAAAAAAAAAERAiEDMTISUUH/2gAMAwEAAhEDEQA/APn4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPef7GayW3R0v/wAtLxHXInWfRu0peID8+D9ByJ1p0btKXiHInWfRu1peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btaXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1n0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D9ByJ1p0btKXiHInWnRu0peID8+D33+xOs+jdpS8R4LVsgIACQAHSgw4NbQOQThZAH3eTvO9o2yzadzjSqlKVoynZxd8r7bNfiefpWu6dKuqMoyu8NmrW53xNKXPq2tfK1/cTra9rdGrUqcbeVcs/5r/QoUKOJPy0spOVle1275ncYz5jeHLFjSSz4WE4TtaOFO7d2la13Ze/YImyYpbpFajUVnUtnu7ivR5UoSxeXnLJq0ndbduzaUuGkJKzpPjx7junGsmnPybSeags2vj8Co7rSoynjVVxla11w+nWWw0ikoYPKN5NXd28zL5OvfJ0rdeb7iFHSMSuqWG+duHD3gdRhRX/r1Lbuc8i/Rq9KnG3lXLO95XbKowqY2+ZgzsmldK2S+pbTWSxqOLfbZ8AM8qdG7ca8orPKOSV3fgaatelKGB1OGfuKHCo1L0E7rDktl9jOpxm8drK6ShfDk97f6ZIm1mKcKnRvfy9R/F/kWaLUhTvirud+N7bzmEKiUk3GT/ldlx2tWyytxIpxqpvFgkrZWS9K+XwKiayoyk5eWnG+1Ju2y2z4F9DSaUIKLqYmt7vdmSMNI3uj9Nv2EFpFndUr2dut2yfuA3+e0vbX3HntL219zBg0jjSWa3bV9PgaYp87Eo2/ltw6wLvPaXtr7jz2l7a+5mlGWPJQwW4LbYU4ySjis2vSslzvd+kSJtZimnz2l7a+489pe2vuYcFfjR28HsJpKraWKML/y7Pq+r8yo2+e0vbX3HntL219zz/J6Qltot/8AXV7yfJ6Rd50er9WA3+e0vbX3HntL219zDONa6t5K1ltW/e/xLqcZXSlgatm1x/IDR55S9r7MeeU/a+zM9bQ1JRcKdO7fObinc4lq7KaUKd3K8XhSwxvs2bREx0m2vzyn7X2Y88p+19mY6mrZOUnCFKKdsKlFO2Wd0lxz2nNPQJqaxU6LjvtCPXkvt9S6Tbd55T9r7MeeU/a+zMMtW1MV4xoKPBwV7XOf3bWts0fZuh1Lq43Gjb0PPKftfZjzyn7X2Zm8xWKT8lTw25scMbp22tkUtAaSx0qLd90Vs+izGjbV57S9tfcee0vbX3KK1FRxKnGMXlbJWOIxndN4bYbNK18V9vusZvdN1q2rz2l7a+489pe2vuY3CrhilgxK+Jy2Phay/I4dPSLvOlbd/nIqN/ntL219x57S9tfcxKNbC7+Tx3Vnbmpb+u5y411f1T4WWfvzA3+e0vbX3HntL219zFONZxjh8nGX810re5bRCNa7xeSas7W47r5bANvntL219x57S9tfcxaYuZG9r3zt7jGB7PntL219x57S9tfc8YAez57S9tfcee0vbX3PGAHs+e0vbX3HntL219zxgB7PntL219x57S9tfc8YAevPTaVnz1s6z4XU9J+9n1x7GfIp7X7wICAAspqUnaO0sr6PUglKUWovY9z+J7P7O6upTSnUTle9k07Zb+s97XlOitCqQjFejiVo5K3cZmXWMLi34JyOQDTk+6unFu7jFvi0rldFvFXcVeVlZddnYxaVrWVOpOKhFwpuCm3K0ud7MbZ7TfoqvUq/L3AdavnVlGTrQUXfL3WX43L6eLPEks8rPcdYEMC4AZ6UqnlJKS5l3hdl1fbr7t8VJVFVVr4MssN113e404EMCAz6XjusDaybsop3fB8C2u5qL8mk5ZWUnZbc8/cc6VVhSpTqSyjCMpP3JXZxoNeFejTrQXNqRjJfFXsBdWclCTgk52eFPY3uOdHc3Ti6kUqluclsT95EatNuykm7tWvvW1B1aeLC2k28KTyu7XsuOQE6O5tPHtvllbd7+NyKDqNy8pGKX8uGTd83tyyysTCcJOyzefHc7P7lmBcAKNJlVTXk4pqzvs25W2v3/Y50Wddzl5WEYx3NO/w/yacC4DAuAEnKviassPG/4E4FwGBcAJsLEYFwGBcAJBGBcBgXACQRgXAYFwAkEYFwGBcAJBGBcBgXACQRgXAYFwA6IIwLgMC4ASSc4FwGBcAJBGBcBgXACQRgXAYFwAkEYFwGBcAJBGBcBgXACQRgXAYFwAkEYFwGBcAJBGBcBgXACQRgXAYFwAkEYFwGBcAJBGBcBgXABPY/cz4HV9KXvZ97lTVmfLJfsDrBtvDS2+3/AIA/Kg/UcgNYcKX95PIDWHCl/f8A4A6/ZLTsnTa5sM028+du+vebv2kr4dEnB811GkutXTfwKNC/Y3WlBycFSu1b09nWstp3p37Ja1rtOoqOWLZPjb8kSYdYzrGn4ydNx/NHJ+on+w+nq0WqXOvbn8COQWsOFL/3EVyfS6miUpTU5U4ucdkmldfE60T1lX5e45nXtJRwt33rYdaJ6yr8vcBsAAAAAVaRRjUhKE4qUZJpxaumutHGiUYU6MI04KMVHKMUkuORdLYzmj6Efcu4DLoOhWhTlUV6kXKdna0Zzviat/U17mRUoeVc4NO2N85NXi8MbSXXc3kAZdHU1KCqYceCWLDsbxLNLcayCQIJBAEkC+dt5i0rWcITVONp1ZOyjdJJ9b3e7b1CNjcCESAAAAAAAAAAAAAAAAAAAEEgACCSAJBBIAAAAAAAAAAAAAAAAAAACCQBAJAEAkgDJpfrKXzdxYV6X6yl83cWAcOnFu7im+LSI0T1lX5e4yaTrWnSrwozUliWUv5c3ka9E9ZV+XuA2AAAAAOZbGVUoywx5y2Ld1e8tlsZFH0I+5dwEYZ+0v7f8jDP2l/b/ksAFeGftL+3/Iwz9pf2/wCSwAV4Z+0v7f8AJzUk4pylOKis22sl9yNK0qFKOKb6klm5PglvZ5c1Os1Ktkk7xpbl1y9p/ZGscbZnKnkvRq1fTvKQx4ZSuqno8xcN6Ltb6ur1Kzjo1GGDR6adNzlKP8ZtTxx5rxtKKW1ek8z29G9bH+mX4G85xxxhM1/Xfk555YxuOopVotbylOE8LjiinhkrNXWxouIBpySCABIIAEggASCABIIAEggASCABIIAEkAACSABIIAEggASCABIIAEggASCABIIAEggASCABJAAGTS/WUvm7iwr0v1lL5u4sAplo1OU8bhFyune2d1s7zrRPWVfl7js40T1lX5e4DYAAAAA5lsZFH0I+5dxMtjIo+hH3LuA7AAAzabpkaKWWKcsoQW2T/BdY03TFRissU5ZQgtsn+C6zzqVJ3c6jxVZbXuS9mPBG8cb3LOWVEKcnLylV4qj2W9GC9mP57y4A6OazRvWx/pl+BvMGjetj/TL8Decsu3THoABloAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZNL9ZS+buLCvS/WUvfLuLAIONE9ZV+XuOzjRPWVfl7gNgAAAADmWxkUfQj7l3Ey2Mij6Efcu4Dso0vSY0oOcti2JbW3sS6y6Ukk28ktp4qqOvU8s/QV1SXV7b633e81jjbOU0mlCTk6tWzqS3LZCPsr8eLLgDq5gAAs0b1sf6ZfgbzBo3rY/0y/A3nLLt0x6AAZaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHj03/APU1P91//HE9A8+n/wDc1P8Adf8A8cT0ABxonrKvy9x2caJ6yr8vcBsAAAAAcy2Mil6Efcu4mWxlUq0adHHLZGN38EBh1pV8pJaOtllKr/Tuj8WvoiUUaLCWFyn6c3jl1N7I/BZfAvO1VpxnewElFfSMEoJrmybTlfY1Fy2cLJlFwM2j6Xjw8xq7mmm844XbZ1/ijSFWaN61f0y/A3mDRvWr+mX4G85Zdt49AAMtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDXoxjWg4qzlKTl1vCl3IuONL9ZS98u47AHGiesq/L3HZxonrKvy9wGwAAQSABzLYzy9YSxKhR3StOX9MLWXxk0epLYzxoPFWqS9mNOC+EcT+8vsbw7Zy6XgA25pKa2jxm4OX8ksSW69ms/qXEFVVR0eMJTkr3m7u72ZbFw2FoARZo3rV/TL8D0Dz9G9av6Zfgegcsu3THpBIBloIJAAAACCSAJAAAAAQSQSAIJAAAAQCSABJBIEEkEgAAAAAAAAQSAAIJAAAACCSAJAAAgkgDJpfrKXvl3HZxpfrKXvl3HYA40T1lX5e47ONE9ZV+XuA2AAAAAIlsZ4Wr5XpuXtTm/+TS+yPdMP7ujTptU3LJSwq625vhxNYzTOUWqBZomjSlShKpihNpYopppPethd5kvan9vyNfcM/MsoNXmS9qf2/IeZL2p/b8h9wvzLKDV5kvan9vyHmS9qf2/IfcHyp0b1q/pl+B6BmjoaTupzvnw/I78i/8AyT/4/kYmblqIpcQVeRf/AJJ/8fyHkX/5J/8AH8iKuB49HVHktJnXekV5eUkv4eJKCytmvgeuBIOKc1KKktjV8zsAAAAAAAAAAAAAAAAAQSQAJIJAAAAAAAAAAAAAAAAAAAAAAAAAEEkAZNL9ZS98u47ONL9ZS98u47AI40T1lX5e4sK9E9ZV+XuA2Ai5IAAgCSAABJAAkEACQQABJAAkyaVo85yjKMrJWurtfzxb+0bfE1ACicMMYJbFJfj+ZkoaDUhg5y5saSeb2xcsT2b00vgekAKtFX8OHuRcQAJBAAkEACQQAJBAAkEACQQAJIAAkEACQQAJBAAkEACQQAJBAAkEACQQAJBAAkEACSAAMml+spfN3FhXpfrKXzdxYBBxonrKvy9x2caJ6yr8vcBm1B6FX/dmeqeTqD0Kv+7M9Y6cvuXLh8QrqSacbb3n9GZ4aRUdrxsubue1tX739DYDDpTNpVSSg5Rhikn6PHO3cVLSJWp/w23K2K38jy2/V/Qu0xTcP4bSnla+zatvwKF5a1O2F2S8q2nnsu45Z7yKujKWNpxtFbJX2/Aoo6XKU8MqbXNu3nlm1w6vvsLqmNpYGk753W4r0ry1/wCHa1lwvfErvPqKIqaVNXSptu8rLilbPZ1nMNJqN2dJrNLfkn8C2p5TLDa+d88r2yf1OHGvucXmr3ta1s7fEsUzNirzsrwztG7s7Xcknl1bS3FOzeFZYrLe7PL6/kULzhwvkpbk7cXt+FvuTKNfnWatadtl754fw+5JhYkWkzcrKk7N2Tz2cXkTCvUyxU9ts1fLJXurcSYxqx8o3K7k3gVso7bXf0O6cp4VjXP34fRV3ub22Rlu4/FXnM8Lk4OOTsmntT2/TuJpV5udpQUVeS96X83u2fUnRvLXTq4Vk7qLyvlb8fqaQXH4qhUlKTWGyX8z2NdR1Rk5Qi2rNo7BWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmG0g6htAzaX6yl83cWFel+spfN3FgEHGiesq/L3HZxonrKvy9wFGo6Uowq4ouN6s2rprLiekeXqGTcKt23/Fntdz1Tpy+5c+LxCAcVJ2cet2+zf4FENKk7c23o5572k19/sc7daW6VTc4SissUZK/vRlpaG4eUtKX8T/ht9H6/Y3Rd19SnQ6zqKUnsxzilwUZOP3tcIy1dAlOMVKrO6d27ZvbdcEs93AudKflMeJ2t6vdf2r/HYazmrPDFuzdtyt+IFNGm44r/AM0m7cP1b7lhxLSLq0PTbSs1mrq+a9xVHToxpSnUb5ivLK3wtdgaAcVdLjFwSTk5NpW6lv8AsviJ6ZTi3d2SSeLdnsA7BytLpvY75pfF2t3r6nMqk/IuSdpJN5rhuYFgOqNRThGS2SSf1VzoCsFgArBYAKwWACsFgArBYAKwWACsFgArBYAKwWACsFgArBYAKwWACsFgArBYAKwWACsFgArBYAKwWACsFgArOoHQAyaX6yl83cWFel+spfN3FgEHGiesq/L3HZxonrKvy9wGX9n/AEKv+7M9U8vUC5lX/dmeodOb3Llw+IAAc3Uleztt3XPP0eMno0fJO08d5X9ryn8T4XxHoGfQqThGUGv55yT4qUnL8bAcaI6kebUUpN/zbrJ2TfBtJOyLqkMcXFpO72PLL4FoAy+bPFitG+HBtdrFE/JxjUUowUYRvNPFazT6s8ro9Eoq6HTnixK+LJ3e7PL7sDPWjCDp3jG7clCzlfPnNfbuFSNNNRl5NOCi827WzjG/Hay9aFC6fOusVnf2mm+5ES0GDUU72Vk1f0kk0r/UBHR7bIQWaeV9q2P7L6Ita5klJJRs9nDeWFekqTpyUVeTTSWzaBVq2/kKV/ZVv6d1+u1rmoroU8EIw24YpfRWLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEEkAZNL9ZS+buLCvS/WUvm7iwCDjRPWVfl7js40T1lX5e4DWSABAAAkgy60nOOj1nCWCahK0sLlhdttkn3M/P0NaVr08NVziq1pWcakZp0pNU4VElfnR3q6bS6gP1RJ+c0bX1ao4RjGk5TlTWJOWCLnCcpQf+qODP3rYRH9oqr8penCCUorFJ5U7zcf4iTuss934gfoyT8/R1tVhoEa0rTlKrOLk/RjHyklibduaklta3ELXte8W6UFG+jKSu3K9WbhzXsysn8QP0APzuia/r1sKVKmnKcI5v0XJTbjJJt4lhXDbsRK1/WbqWhT/hxlOUVixxjGqoyUv9WG8vp7wP0RB5dbTm9AqaROOXk51IxV845uF/erE6No0Z06VFyc4UoQTkpPnTVrPEnm1b7gemSQSAAAAAAAAAAAAAAAAAAAAAAAAABBIAAAAAAAAAAAAAAAAAAAAAAAAAgkgDJpfrKXzdxYV6X6yl83cWAQcaJ6yr8vcWFeiesq/L3AbAABAAACyOK9RwhKSV3FN2va9uszR1jHEoyi1Juytmttr396A2WFjC9aQvLmytG93luduP6ud0dZU5zUUpXbaV7blfiBrsLHnvXFPC2lJ5Pha/C9+o7r60hCTi0+ak3s4XyA22Mj1XQamsL/AIialaUk7N3aTvkm9yOaus4RcFZ873ZLP67HsOP3vC11GVrxWbjv+Pv+gG9RSSSVkla3USklklZGB62p3Vk2mm28ss7WO4aypylGNpLE7Ju1u/qA2Enn/vandqzy9364fpM7WsoNStGV4ptp23NJrb1+4DaDBHWkGnzZKSg52fBK9rha1pvYpdeS3bd//e64G8GFazhhUrOzbSzjfJXvtEdaU3KKtPnNJZKzv8QNwMM9a04uWUnhbTsltTXX1nVXWMIycXGV1luz92YGwGOWsYK2Tu1eyte1k77ev7FcNaweTjJPdazy/X6vkB6AMT1lBRcpKSSlaztff19T+hH70hb0Z3te1le22+3gBuBg/etPPKeW3JZff9e7M6qazpxaTUs4qSyWx/EDaDDV1lGEpqUZWjbPLNvO23qD1pTSg2pc/Fayvslbd8PqBuBilrOmoxnaWGSb2bLO2ZwtbU20kpXbis1b0mvzA9AGKOsoWndSWC99m52/L9JnEtbU8rKV3uatna9vo19UBvJPPlrektl3lfK2zfvOnrKPN5srSSd8slnu+G4DcDDLWdPDCSUufitsWzbvIetqSV2p26lfjw936zA3gw/vOCjFuMryx2Ss/Rdtt7ELW1N3ynla+SXe+P6sBvBiesoYVJKTTlhey6eFv4/5JesIWi0pNSvbLhtA2A85a5pWu1PrVl+ef6ew6etYYsKjJvFh3beG0DeDEtZ08LlzrJpbt9+vqYhrOnKSilK7tu67fZ3+gG0GD96wTalGStJxWx3a27NhNTWcFNwwybTtLLZle/WBuBhp60pymopSztbLj+l+kzmGtoOywyxOysrbXsV7/wDW+wHoA8/96wtJ4ZYY4c8r533fKJa2pqN8M80mslnf48f1YD0AZKem4qc5KOcbvC3ttvurnEdZRxKM4yUm0lbNO/WBuIAAyaX6yl83cdnGl+spfN3HYEleiesq/L3FhXonrKvy9wGwAAQAAOK9aNODlLYv+jJLWtFW2u+zK3X3GutUUYty2ZLZfa7W+5klrKhltb2+jmlx7gE9a0U7LN57LW25ncNY0pXtfJOTdur8kTDSaTjNpegrtWz42IoafSlKMVdSd7JrquBy9Yxw3UJNY1Ddm7X4/ALWNGUJvNxVlK645fmRHWVF5K+y/osmOsaTys029mHfu/D6oCI61pNXtLYsrbL5d+RP7zpYZPPCrLZtvfd8GHrGhms3tvaL3bbhaxov0bu7iso7W3k8/r8AH7zpXS513bLDx2fW5MdY05Rk4ptxi5WtuWW0mWsKKk1fOLaeWy1iqnpdCna0HFSine2SV3t+N/qBbDWFJqTV7Rw3y9rYVLWWj5zSex3lh3K236ndTTKLgrq8J4ssPB53X1OY6zo2WFPddW2K6We7K/2AT1tSSTzz2ZWvlf8AXuLP3hSUMedrtPLZbb9DlaxoO2e/Cubv4Fk9JpUrp5JPcr5u8vzAplrSllk9vBZcf11kvWtFbbqyu7rZmbVFcEHFcEBmlp9NYcnaSve27PN/RlX73o3/AJurK+z9fc32RGBcF9AMX7yp85JO8U21luTdvsHrSleyUm7tPLZZNvuNuFcEFFcEBiWtaL2XefA689pWVRJ87K9s3b/tmvAuC+hNlwAwy1rS3XeaWzrs/pn9B+9aTdldu8UsuLVnf4m7CuBGFcEBl/eELTybw7fql+KOaes6TT2pxg5tW2JZm3CuBEoJpppNNWfu4AYZ61pK2152fUWQ1hTlKMY3bba3ZNJv8LGpQXBfQKCWxL6AYI63otZKV3usvpfZxLnp1PFOL2wTb9y/SNOBcF9BhXBAYFrejnk7K/Dd8Tp60orbfbZZfrqNuBcF9BhXBAY3rOkoqTuk3JLY9n/YnrKnFxunhcVPErWSbf5GzAuC+hOFcAMn7wpWg80p3tdcHY5WnUakZXTccLk7rJpf9fY2YFwXDYThXADDDTqajlFqOPCrWzdk+9nNPWtBLCk1hurW3L/B6GFcDidGEtsU9j2cAMNTWdC6clnGzu0srrJmiWmwVTBZ3Td3wtFu/wBjRgXBfQmyA86GtKCu0rYm3szbS2l1DWNObsr3z4bFfP7GrBHgvoMK4IDD+9qNk+dZ/wCksjrGk2lnd2tlxtbvRqwrgjjyEMWLCsWWe/8AWYFEtY0k7Z3TayW9fplf71p8Httu/W43YVwQwLgvoBietaV7K76+vgdR02jUnCNrtt4brhfNfR/Q14FwX0JwrgBhhrSm4ptSTaTtZXzyt9n9DqesYLBzZWlizyyw3v3GvCuCJwrgBVo2kxqxxQva9s0WhK2wAZNL9ZS+buOzjS/WUvm7jsCSvRPWVfl7iwr0T1lX5e4DYAAIAABo48jD2Y/RHYA58nH2V9AqcVayWWzI7AHHk4+yvoPJRz5qz25LM6AHPk4+yvoPJx9lfQ7AHHko581Z7clmPJx9lZZbNx0SBwqcclhVlsyCpR9lfRfrcdkAcKjD2Y/RE+Tj7Kytu4bDozPRL1ZSlZxkoq39N8mve7/TgBpStsK6VbFKpG3oNL33in+JyqU/KOXlOZ7GH8RSk3Oaa2Wzss7/APXcBMazdSUEsopXfW930X3RaZtBaanLfOcn8E8Kf0ihVhVU3OMrq1lB5Ldm/v8AXqA1ENpbXYyxpVW027c68lfasPo/X9ZlPmtXDHHao1vu1uX5AegDG9Hq2ti/la+a+U/8E1tHquo5Rmlk1HblfC7f8X/d1AayunVxTnG3otfG6uQ6c/KRkpcxJpx4vIilN+UnFp5Wd7Kzvff8PugJVVuo4JZRSbfW72X27i0zaFJN1JXznOTS6o81f/rf4nE6Fa87TupKSW7Dk7W+q+nWBsF1e28x1aFZ3wzw3d1/pWFq31z/AOhHR3fElZ4s7t85W4+/P4AbAZI0KqT/AInOwSWLbnfmu3Uu8nRdHqQeclhtLLN2bk3f72+AF9epghKVr4Yt29yuTjWHE9lrlMITjTalLHLN7Fsvs+hxpUnLR7Zp1FGNmrNY2k8upN/QC/R6jnCMmrYle3BPZfrLCItWytbqMslXjiw2ldt3b2cEkBrDaW0ySoVM+dlz9+2/o+62SKqkJxknKMqstqadktmT+P6YHoAy+RqX25Xk2r+kmsl1WyOKui1W4Pyi5sbX34sLTl90/h1gbQc0lJRSla+Wz3HQAEkAAAAAAAAAAABJBJAGTS/WUvm7js40v1lL5u47Akr0T1lX5e4sK9E9ZV+XuA2AgkCAAAJK9IUnCWBtSs7Wtt3bcjG5aTHZFTXF2va+/NZ2920D0AYK9fSYuWGnFxulHe2uvM5lW0pyypJRu9rV99t/u+4HoAx056Q08UIrmu1tuLdvY8rpGBPyccfOur7Lejv3gbAYKVTSnKOKCSb52x2XDb+Z3o89IulUjG1s3xdtiz4/reBsJPOjX0rLFTiru1vjt27M7/BnUp6TidoRavKzb2x3b9u4DeDA6mlYPQjjbfDLJW38b/Try6qz0lN4YRlHdx2LPbx7gNhJ50aulvbTgsuOx8Np15TSWpvAk044Vk7q+b28OvcBuOPIx51kouW1rJvruY1V0vNunBbeane/DO6CraVlelFPerrgnx+HwbzyAt8wimnFyjayWF8El3I1GKrV0lKOGnFtxvLqlw2nM6ulWyhFZrhsvn/Nn9toG8GCFXSnJKVOMViV2nfK6vv/AF9yVPScErxipLDh2Z557+H6YG4kxQqaTzlKEMovC+Mr5ZX2WK5VdL2KnHdnu3Zel70B6Bx5GKxNJJy2tZN/Eoo1K15KcFvwtb3ntzyWz6lSqaXfOEN+/blwv+rgXLQYKUWnJYbWSeWSa/E1HnxqaVbOEW1vyz+GL9fclVdKf/pwSu+u63b/ANXA3gwQqaU2sUIRV43tm7Xz38O/4HXlNIflOZFWUsHW75b/AMvgBtIMUp6S4xtGMZYs96w/X3/4I8rpWG/k4qWPZdPm4Xtz42/IDbOCkmpJNPansZXPR4SwprKN7JbFdW2e4yurpVsqcfx9/pbvvt6jqVXSE7KCatHbbbbnfzfgBbR0NQaanO22zeTdrZmgxRq6TzsUI2UW01vl7rnHldKxNYI2csm7ZKyz9LPO/wDgD0QeZU0nSoq7pRfN3K/O3K1/gW+V0nDfyccWK1r/AMttu39cANxBhq1dIxWjBO0YtvZzs7pXfV/k48tpf/jitmV1nsvv94HpEHnyr6QnnBWadss00m9zfBK3WXaRVqprycL8U/fnn+toGoHnOppe1Qjs9F247dp35TSrvmQt+stu3r+wG4GGNfSJRg401d4r3VrZ812vllnv+B1VqaTGUsMIyjiVtiysr7/eBsB5zq6ZiypwasupXz6/d+syalfSo4ngi0rbFf4pJ9Wzr2gegDI6lZ0W4xtU3X2bTl1dJwq1OOLG1m8sO57QNoMHl9KvfyStk7Jq9rZrbtWX0I8tpbfq4pX6tnH0vfkB6JBRosqrv5WMY8Le95bfd9S8DJpfrKXzdx2caX6yl83cdgSedLSqeKTflIu7Ttsy4nzblnrLpHZ0/COWesukdnT8IH0ujWhO9pVcknm3azdtpFWpgk4tyduE2fNeWesukdnT8Jzyv1h/51/7VLwgfVY0bpPFPP8A1Mz1p4KVWpz/AOHiyc2r267ZHzTlnrLpHZ0/CRL9sdZNWekXT2p0qXhA+haq056RTqycZxdOTVlO98r5OyNdZ4KU6jxvC3kpPja+zI+Yw/a/WEfRrqPupUl//J1yz1l0js6fhA+naJarTjO81fdifHuKo1rp8yviSva+3Zkn8T5tyz1l0js6fhHLPWXSOzp+ED6T5wrPm18uH4bzqVS0VK1XdlfNXvt+n3PmnLPWXSOzp+Ecs9ZdI7On4QPp2jWqRv8AxY23Sdi7zde1P+5nyvlnrLpHZ0/COWesukdnT8IH1Tzde1P+5jzde1P+5nyvlnrLpHZ0/COWesukdnT8IH1Tzde1P+5jzde1P+5nyvlnrLpHZ0/COWesukdnT8IH1Tzde1P+5mPy+bTjWvnsbay6z5vyz1l0js6fhHLPWfSOzp+ED6VGvF3yrJq11fPP4nMtIS/lr9XW7e/qPm/LPWXSOzp+Ecs9ZdI7On4QPo/nK9jSNjNvm/8Aqn/cfK+Wes+kdnT8I5Z6y6R2dPwgfVPN/wDVP+5jzf8A1T/uZ8r5Z6y6R2dPwjlnrLpHZ0/CB9U83/1T/uY83/1T/uZ8r5Z6y6R2dPwjlnrLpHZ0/CB9U83/ANU/7mU6UvJxuvKSztZSfB/ikvifMeWesukdnT8I5Z6y6R2dPwgfSVXWJLDXz38P8EyqYW01Wedlhbf1/Ww+a8s9ZdI7On4Ryz1l0js6fhA+kOultjpH6+JdQSnf1sbW9JnzHlnrLpHZ0/COWesukdnT8IH0uM71XT5+/PE/r+uKLKtou16ryvk+s+Ycs9ZdI7Ol4Ryz1l0js6fhA+nVFZPOd07ek9nHJPIik8WzyqV7Zu25u/2sfMuWesukdnT8I5Z6y6R2dPwgfTa/Mkl/Ekmm8pZ+5FMdKT9GNd7lnvPnHLPWXSOzp+Ecs9ZdI7On4QPpU6tpWtWattT32TS+l/p1kKun/LpHx/7Pm3LPWXSOzp+Ecs9ZdI7On4QPptCSm7fxo5X5zsJuzqK8+ala8nzrrcfMuWesukdnT8I5Z6y6R2dPwgfS51LSS/iNYU+bK7u28vhY4WkwvFNV05bLv4ces+b8s9ZdI7On4Ryz1l0js6XhA+lVayjJq1eVt8XdP3HHnMfZ0j9X6+o+ccs9ZdI7On4Ryz1n0js6fhA+mxkm4q9XnRTviyjlsfWVecRysq7+O7ifN+WesukdnS8I5Z6y6R2dPwgfS4VItSf8ZWS2uzd9yXUcuul/LpG/9bT5tyz1l0js6fhHLPWfSOzp+ED6XTqqT2Voqzzk7LLccecK3o6R+vifN+WesukdnS8I5Z6y6R2dPwgfS51YxaX8aWSfNd0ur3kVK0YxjJ+Vs9tpbOpnzXlnrLpHZ0/COWesukdnS8IH0pVU4uVq21LDfnbL3twOVpCd+bXsv1sPm/LPWXSOzpeEcs9ZdI7On4QPpKrxU/RqycW0tjT9131myhVxxUrOPU9p8q5Z6y6R2dPwjlnrLpHZ0/CB4IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/Z\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/EqOZra8l_ls\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7f9a20164550>" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import YouTubeVideo\n", + "YouTubeVideo('EqOZra8l_ls')" ] }, { @@ -639,6 +672,46 @@ "K_w_" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **Local evaluation of dissipated energy**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRoeHRsfIy0lIiIiIycnJyUjLi03MC8qMi01RVBFODhLOistRWFFS1NWW19bMkFlbWRYbFBZW1cBERISGRYZLxsbL1c9NT1XV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV11XV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAwEBAQEAAAAAAAAAAAAAAQMEAgUHBv/EAEkQAAEDAgIDDQUGBQQBAgcAAAEAAhEDIRIxBEFRBRMWIlRhcYGRoaOx0hQyM1LRQnKCksHwI1NiouEGFbLxQ2PCJDREc4OTs//EABkBAQEBAQEBAAAAAAAAAAAAAAABAgMEBf/EACIRAQEBAAIDAAEFAQAAAAAAAAABEQISAyExYQRBUVJxkf/aAAwDAQACEQMRAD8A+foiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIveP8AozdEZ6OB/wDlpepdcCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QcCd0uTeJS9ScCd0uTeJS9SD8+i/QH/RO6XJvEpepfnyEBEXQYSg5RWCg46u8I6i4ZjvCCtF3vLomFyQg+7PMvmGxa5BlcaU+k+GudGEzrzgj9V5+lbtU6VcUXNcScMERHGWkDj1YibRPQp89r9W6PWpU2kb6XXnjSY5uhUCnRDp34jjF0CYkmV21r+IThtOIAC+yP8AtHsfENw4pJkgRhkwOmISXfZZi3SK1KoINSLzbyVdB1NjsW/vdaIcSRnn0qosrgC9InXb/C6ptqyC/eyJuGi5Ec/PCqO6xpPfjFUtdGGRsv8AVWMr0gzBvhOYkyTfnWYU6050457nuH7lQG18VxSw5kjZOXSg7a2kMq9SNQxG37/7V+j16TGxvpdeZdJKqDH4yeJgOQIEgR9VZTFhiDcWuMkFBp0pJbWc0GbNsBJm0LRVr0nswF+y8bFQW1CHe4DIw2GU6105rjjiBIAZ7pwnWT+ypLsWzHAp0pnf6hO2SrdFqMpzirF87ZXDWPAcCWuP2TAHWRFrRtUU21QTi3twi0Ae99FUdVhSc4u35wnMAmMgMupXUNIpsYGmoXEazMlZQyvto9n+FDRXvIpZGOc6j0IN/ttL5x3p7bT+cd6wYK5GdIXGrMfuy0NHvYg2Psxs50F/ttL5x3p7bS+cd6zOa7HbDgjYM48kptcA3EASPegN43R+wpLq2Y0+20vnHenttL5x3rCWVttHsOWpTT3yHYmsn7OWd8+bLtVRt9tpfOO9PbaXzjvXn73pAGdI+erm6VO915N6PMIP0Qb/AG2l84709tpfOO9YntrTxd7i2Y7T+qtY10gODCIuQNf/AEg0e20/m7intlP5u4rNX0IODSynTkmXEtaZ/wArl251ngU6cl0tOFohs5ZZxzJLNxPbX7ZT+buKe2U/m7isT9ziXOLWUmgxhDmgxa4IFs7qGaA4Obip0nN+1DG8+XPl28yvo9t3tlP5u4p7ZT+buKwu3OfikNoBuoFgmJyP7+q5O5tWPd0cW+QbBzbZ/eT0e3oe20/m7inttP5u4rMdBGJzt6p4Ys3C2QdpP+VS7QaoDIo6O44xikZM16hf9wnpPbf7bT+bzT22l8471RWohuIU2tabRYQuGtfIJwkYYIETinPoWd943nrWr22l84709tpfOO9YyyrDQMGITiLog7IgfRc73Xk3pRq/zZVG722l84709tpfOO9YwyrhM73jkQY4oGvn2rksrifhHZAv0360G722l84709tpfOO9YntqlrcIptd9qcp2DNGNrTxhSIgxG3Vq6UG322n8w7CnttP5u4rDpg4jZABm8dCxoPa9tp/N3FPbafzdxXiog9r22n83cU9tp/N3FeKiD2vbafzdxT22n83cV4qIPa9tp/N3FPbafzdxXiog9l2mU4PG818JdmV9dK+RHMoIVjCq101UaaAc4w0ElXaTotZjQ9zDh+YQRPSFp3E0NjyC+dcC4BA186/V16VBmiVaYDYLDAF9RyXO3HWcdj8EaipJkyhKhbjm+6Gk0mS0E7SBKrok4q5aJdAgc8GFi0vdV1Oo8BgLKZaHkuh3G+VsXzW/RR/Eq9XkiJ3PfVc1xrMDTi4v3YB85HUtFPFfEAL2gzIXWEbEwjYgopOqb44OHEkwYHN3Z38ovzUNQVbe5aBhkG976oWnCNiYBsQZ9LxyMBIgEwGg4jsOxW6QXhp3trS6RAcYGd79ErjSXNYwudOHIxM3tq6VmqFgDH/xIdx7OMQBNwTlGoINtbEGOLAC+DhByJ1Bc6OXmm01GgPjjAZArzxplEgWqRYDjEXA6efr51c2rTfS3wB+HLNwOfSqNWj4yDjAmbWjV0nXKigahLt8a0D7MOJm5zta0LNXrMpxiD7gu942gc5UgsIY4TDiPtuEWkWn/vnUF2lGsC3eg0j7U55jLqxdo2Qc5qaVb+Gy4baRYycQ8r/S/LdIpAA8fIH3iRmOfnUHS6ZsS/WLGNU6j36r5K4z2X06mkFwxU2BtpM3I121R1rUJxEQI2z+iwh9NxAAf70Xe4CcJO3m/VKFWnUiMeTT7zjncXBvnmouvQhIWShXa9uKMOdidma5lhxZywuHvm5iTr59eSmmtsJC8luk08TQA+5ZB3xxzFtf/a30nBzQ6IlJdJdXwkKrCmEKqthIVWFMKC2EhVYQmFBaiqwhMKC1FVhTCEFqlU4UwhBaiqwphQWoqsITCgtRVYQmEILUVWEJhCC1FVhTCEFqKrCEwhBaiqwhMKC1FVhCYQgtRVYQmEILUVWFMIQWOyK+BuzPSvvGFfLj/oHT5ypfn/wg/LKQv1HADT//AEvz/wCE4Aadspfn/wAKiP8AS+kg8SDDdZjXeB+9a9Pdevg0OoBAe/iibWJvE80qvcv/AEnp+jlxDKLpj/ybD0fuyt3R/wBMboaRhltIRNt8kCTqtsAWbHWc/T8NUYWmHAgrhfra3+itNgNcKeI+6cfaMlVwC07/ANL8/wDhVyfSqmiU3PbUdTaXtycQJHWutE+JV/D5KH1ocBhcecCynRPiVfw+SDWiIgIiIKdKqFjZAkyLX1kDV0rLTr1L/wAIjpJOom3X5rXpIdh4pggg3sIBBInnAIWeKsU4cLAb4SDfK7ew9qCkV6riA6hxZGcnXnEdd4WsvdjjDxYnFIz2QqqrapMscAJFiNWvVMqks0qwD2+6ONAjFN7RsmEFz3uJIw2lwMtJEAW7fqq9/rT8MRLdR1i60ua6Ww6w94bVQRXNQwQKeJsZXbfEBbozUs/KWFCtUkb4yGxqBzmAutIqupwG05ba41TOodXauXNqb01of/EAu42BsRMgc4OS6riqScBAbhMyCDigwR1kdiQkDXdxP4Zk3cM8JgT0xiPZC5NSthaQwXw2gyLHFI6YXbN8BdiIIPuQDbP3u5cb1pE2qNi2YEkxfVlPcqYlzqoBJayYOQJMzbqjNWvdxXFrZcAYERJjJUaONIzfBEe7YEmc5AyV2lMeQTTcQ4B0C0OMWmedPqq6OkPJdip4cMbc4kpTq1C0YWBpgQCCBnGzZFlDKdeeM9uG2UTYGdWs4e/JcMp6VfE9k6gBzj+nZKos394ddpwDFJDTMCYga7R0yrdIe5oGESb2g7DF9V4XVKYM/MY12kwu1nExRo9R7pxiLA9cu/QNPWr0RVRERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAUszUKWZoM+l/Epfi8lYq9L+JS/F5KxBw6m0mS0E7SBKjQ/iVfw+SyaTuqylXZSeHDELO+zfL9Vr0T4lX8Pkg1oilBCKVCDPpobgON2Fsi+oEEETzTCoNMOFI74QGgYeNGMS2MVtuHtWjTcG9nfBLdY23Ed8LG11J7C8AkURLZEYeLIjqA7OYoO69NjncaphdLTZw6h1lZjo9K0aQMGAfbE2dnOwnPatFR9IsYagkuINjrgwdWoHpVL20ZuwyGe6HWgOjORcEZq4mtrmtxMl0Ee6JHG+qzPos34udVHvMOHFF7wD0zYcytOkU98a0jjSQy05Z9CprOosqFzg6cbGgzYOiRAn+q/SoqXNpigwYw2nAwPBjUYtEZT1rvSabXS59TDxCCA6xBDrkfm7FnqaTQcwMc1xZFmGDkY2zr6Fp0tlMNNR7cZbxZGYBOEgR0lB1TpgF5D8WLOXe7c5DpnsWfeKMgitAtADhGRA/U9Ksa+m3C4AtNeDYTimM9nvKK+8scS5hmzZ1XERnsQc6JQaHS2sHPggXkROcTfnV2nNpkQ9wa4tcGuOq1z2LHTrUGCQKkluc8aCbCx5+obF6GkQ6m/XxTYGDllOoqykZmUKQdO/T7sDEInCQ23WT1DYqmaNREjf5MfMLcYRbpgKwPoscSGGZbcHFm0gHPY49Mqph0fDxaTocAc4kF4GZO2CoPRogQYM8Z3bJkKxY/bGNmxjjknXiDhIjpd3FWs0oEEhrobcyNUT15IL0WRm6DDaDPUdcZ9nao/3FuGS1wOEOi2vK6mtda2IuWvmJtOXPaVTU0xrXYTM4g3VmRO1VloRZG6e2wg4iAYEHMhsatZVh0oYS7CYBgzA2fVDF6LL7cwAEzciNZggEGOtd0tJDiQAZEbMjGvr/AHKLlXoq6tUNYXCCBnfnvfmuqRp7CSBJIJBMQARmCURqRcUage0EawDGyVkfuoxobIMlocQCLAmCJOsSg3IsrdPacgY43SS2LAfi7layvikhpgbYGqfoOtDFqLJ/uDcIcQYMZXzn6FDp7YkNJ7PmDf1BU1rrWtFlOnNtEySQOcgdyP00NIsSDABGsm46udNTrWpFnp6VicG4b4cWfPBVtN+IG2RI7DCpZjtEREEREBERAREQEREBERAREQFLM1ClmaDPpfxKX4vJWKvS/iUvxeSsQUu0WmX4yxpdIOKLyMvNdaJ8Sr+HyVir0P4lX8Pkg1qURAREQU6S4hpLRiOoLMKzi1xczC4DiAn3jE+dv+1p0kOLTggO1E5LM0VQx4e4YiOKWzAMa7bb9HRJA6s4Np8TE4nYQBZ1xI5o60NWpkGTbONcwbdHmu2scWNGLLCSQ6Zg3E9C4DHls4swbhxj3pHdZWM1JquDowcUuMuyDQIuekfRRUrPb7tPE3EAIP2SBLuqT2Ka4qEg0yBAIM5TaLR+5UFlfU5pmJnUIvEDb5pi6pOlVMXwBjw3ubDFa8ZH9Frc+GktGTriD83GMa9Z51SKekRd7ctmvsXQFUPBLhgkyLl2Zwx2t7EJXIquDWSyS4DfIdZhtP69i6qVnt9xmNsgCDM7SuazK5vTe25tiGQgRq6e5c4NJxkBwwg5kC7dmWe3VsUVw7SqmIfwBjw7dRInVkO9bC8hri1skTbKXRlP6qKoeWcXiunWdU7ecLhxqYmQRh+3IOIkfLtnWg5Fapi+HxQRfaC07crwobWqkTvIyFsUSZI1jYAetTVbWN6bmgYhZwyZAnVMzPcqizSZgObl7xjORqjOJ5kFtSo5hDWsBnERFtp+n5kdXqgkb3Oes6urWrqgcWEDiu1X1T+o80YH4SDGICAdRMC/bPYou/hDHGJcIyEAE3mJ6MuhcaTUe2S1mPi2Ea5GvoPcuAyriu4EDDab6pmANWLuyhGU6+HjVADGoCJ16lRwK9Y23qDx4ds+W3ZzK8VXk/DgSLk6oJNtWzrUVhVluA5zJMQDFuqVyW1ps9pbIzAnDF+9NWR06o8PjDLQ0EkA7b92pV+0VSPhQb65Fhb6daupYgIJxPtIkCxOfZ5LjSm1D7jmtZhMkmDMGDPTHeoaCtUkyyRqInngRtt3qG1XxJbE4dWUug90HrXJp6QXE4gBfC3r12yjr8lBp18Imo2dcW283Qib+DfqoaeIAcMxBztNuku7FoLnS21iTNshH181xXa8yWkDiuHvfamx/fQtCQ3UAKURVBERBEDYpREBRhEzF1KIIDQMgBq6lICIgIiICIiAiIgIiICIiAiIgIiIClmahdMzQZtL+JS/F5KxV6X8Sl1+SsQFXofxKv4fJWKvQ/iVfw+SDYiIgIiIKNLaHMILsIIueZZG0minUG+YmlvHJdJaMMSI5r9MnWtWmlopuLxLdYGZuP1WOk+kadQsBDQ3jD5hh9MCerVADpzGmnTO+EMBEWMmZA58yOxQ+lTMy4kYYykRiP6+QVjarAxpOvDbEXRcwb84z5uZc6O+m+A1roLSZJzBN9c5361qM0qU2tqAmoQZLsMwHZZ9Ch9KnUJO+QcTXmCNQECdn1KirUpuJxjEG4gZMZQSANf+Fw2vQeQCwnjNwze5Fib2t+ymHZwdFpyP4/Fwn7Qn3pz2CFtJDwW4xOK0ZyHEgRr909hWdm9QCKf2W2Bn3iWgX61NY06dRpc2HcYh2cSb258RKzcaktSWsGBu+Bu9QIxi8AEB1tglKzabzJqhplps4ash+qU20q+KWzBm5zxAGbdA7FnNSjixOY/EcLoBsCRMi41WKmr1q2rue0Z1HBkAZ658jr6VaNHaHNeHmcwC7PFAGdwLKahBpOxNJaMRPGM8V2o56rdimrTYP4jrmlMG0tteOraqiGYWVHE1ASSAWl1mk7La+dZjo9GB/HgBke824mMR5517SVax1GsDYujDUM2uW2NjsA7FW1lEsFVzYBHuh0gS73tV7C/Mg6paMG1DFUl5Li3MhtsN9U2OeZWmtTbU+1ETkRabTzGxv0qilvTnjAzCZcQ6wuM7Tf3zq1lSHU2OdAgl0VDtMF3lfrCuJsc73SIH8YXiILb3dEfmMbIGxWUadIkYXhxg2xAgibkjWs4rUHOksM+6OjCBtta3VrXdJlNgkB04SCQ69nYcIy29SZYsv8La1BmIAvIccUc8/TJW0mBoa1rhaxykgWVWk1Wh7S5pkBxBm4AjVkc+5cUqtPE5zGuD3EYjAk2J7gDl3rLXup0kU6gJ34NDmi4cMgTBB6T5Lhmi0iSBVknEIxDWIMDbrXVFtGoQQwzggT8oOGLHm7lSX0qbjLXyS4Yg64zbAy+W2xXU6342Gkxrg5z7kzciJg5BUPpUi7EKmGzYiAMiBB6J7F23SKdYgYTnhvaxaScsxxcl02hTccJZcNa73icy7v8AenbJT6t2OGMpb26mHtMh2REgE3gLUa7ATLmjPWNWaNpNBBAEiwOuFDtHYc27dv2s0/xPV+uqdQOEtMjNQ+s1pgm9ra7mBbpIQUwAAJAGVz3rl+jMc7EW8aImTlM+YCIgaVTmMbZvr2ZqfaWSAHtJOUGfJcDQqcRhmTNyZnJdN0WmMMMAwxHVl05DsQdOrNBwk3tt1mB3qxVmg0mSCYjWTkQR3gKxAREQEREBERAREQEREBERAREQEREBERAXTM1yumZoM2l/EpdfkrFXpfxKXX5KxAVeifEq/h8lYq9E+JV/D5INiIiAiIgp0l5a0loxHUFm35xa4uZheBxAT7xifO3/AGtOlMc5sNMExfmkT3SqHb5xMDgQPfLhdwtcRrse1BLXuwtkca2KAYgmDE3VB0qpkaV8MxJteDq/7VtYVSeI4C4sdmvVN1SWaTYBw90S60YpvaNmSupYsNarIApWvz2AMK1lR03FuKAYIzEn9867c18tgiB7wjNZy2uahggU8TYyu2+IDuzSmNcJCymlUNNrMZDxGJ+3adSmuKrjxCA3CcxDsUGCOst7FFaEAAEAQAqWb4C8OII+xAMgSfe7uxVFlefiNw2uYkmOjWe5BrwjKBCkBY6G/jjPIgA8WwM7Z2K7SmPgmm4hwDoFocYtM86C1zQVKysp154zmxbLOwM6tuHvyVbKelXxPZzADnHNslBtIlGtAyC5pAwZ2mOibLtASEQFAREQcsptbkAOgfvaVIAClEEEdymERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQF0zNcqWZoM+l/Epfi8lYq9L+JS/F5KxAVeifEq/h8lYq9E+JV/D5INiIiAiIgo0xoLCHOwjWesZ8ywUKVIFhbUxGeLMZ4TbK1j3Aalu01zRTJeJaL2sZkRHPMLHRfRwPfTaRgGLX8pIjqJ5pJ1ygtaAKjjPGPvNmwgNkzGzD2lQ2k1tMtNTE2Rie5wnUYOqIjtXO+tbD3Ate4wcp13g6iGbJMDWuGVKVNuBrYAGLACIkOiZN8x3K4mxDtHpS7+NclxAxNAFriOiFboNJjQ6KuMlrcXGmBhseYHNcFtDGWFpDnudGck/aPNGaCpSoS3C4DE2mTnLiBGvYRNtaiutIpMNDCKoDdTyQR2/vIJQp021BheHP4+Zk3LcV+a3aqK2l0XMwFr2g3huEEXgjPn7zrWqo1lNhcwe7IEE6yARr2C0alaKTRpb64mpxpGJsiMyY59Y6La10abN6pDHDGxgcNcMOqNknqUkUmupl7XB74gGTxpBgxbMzslRpD6bIY8OLWloGUAkEAZybT1KDrSKQJLnPw2jCDImDeMyYm3Mum0gBUG+Eh0kkuHEaZiLZC6y1NKok4nNeXlsTxcWEm2R55lazSpsZUcBDTLnga5EmepBQaFLFO+xJbADgADBiFOh0WgjDWDnxqMjDikwO5c46Lqh4kkluIk/0kjInZHPOtc6O+kGyxtQ2BLpBJl5zg3u05akGnTW0yQHua18WJ+WRKqZo9If+aZiJc33sJg9MGeoKzS67bsc05Fwgge7JzzHuqoOoNLw1lxIN7EQefpTWsrilo1EOtXk2tiadYIst9AANsZ4zj1lxJHUZCz0dGokBwZAMXJOc5Z5yAu6mkMo2dZt3Tzl17dLh2oy0oszdMBLRBGIxxoBynJW1KobhNocYmdoMfvnQWIvPbuvSIkB0RIy+bCbTtCv9sF5BtimL+6SP071VaUWfSNK3sAuab842T/hd7/DA5zSJ1RKmmVaipr6SKc4tQnVe8fqO1cM05rsgdezMCelNMrSizO01rYxAgmMoNiJnoz7Fx/uDYxBriInVtIOvmTV61sRZX6ewaiTxoFvsgk9GRU1NMDXhsEy7CDz8Xu4wTTK0osp00BocRYhp6MRj9FdvnGDSIJDj2ED/wBwRLMWIiIgiIgIiICIiAiIgIiICIiAiIgIiIClmahSzNBn0v4lL8XkrFXpfxKX4vJWICr0T4lX8PkrFXonxavV5INalEQEREFOkuLWktGIjILMK7y1xczC8DiAn3jE+dv+1p0kOLSGEB2olZwKwY8PcMRHFLcmmNdtt+jokhJ3zC2Q3GCJgGACYMTrwyo3ypBMHI6jmHfqFIpOwBuMmC04puRMkdEWzv5xvVSDJvB+0fmkd1lYzTSKrgeI3GCDMGLiIuoFaoB8OZgAAm0jMk6plTpG+Fw3twbY2drygxF1GCtqe03EzkBAmIGevrVLrgVqk4t5GLDnJnPLJdsrPDoNOGkul2QF3Z9PFP4ly1tcj4jctQGe3LLJdtFUPBxDBLpH2okxHUW9ilI4rVqjZwUsYJtDjcRnzXPcuRpVQOwClkYNzl82Wtd1m1zJpvaJOTgLCBGrpPYuA3SC6z24JBDrGW9me3VsUaX1nnCXsZicLCQZzg88a1xSrVMQxMDGy6T5HzVlYvdTOAhrjYXG2M4N+pV0mVg4F75AJsIuNWr9zmUHQruxPBAgDiGYxHpRtdxZODC8kcRxuBMSY5roBUxPJNiOJrg84hGb4WAFwDyc2jigYrxI2d6Co6XVEk0oaDEk6onErNG0h7hx2FkxAudU3tbLvjNVFuk3ONudgInDHOM5y75UsbpEDFUYHHVH9OXbH7sguNR2+EObxLQYJvb6nohRXrPaThZisCM7mYOWwX51UylX11BAINiJiZIJw7J7slaC41A4GWYcrzO0DXmL8yDh9aoJG94vet1SB3x1K5jnyQWgARBn3tsbFWDVAfic2TOC1hnBdz5di5LK+IxUbhlsTEkQZmBrsgN0qo5mIU+8/MRs2Adq7ZWqEwWYcxMkxnHl3qrRXVoDqjmkRES2Zx2MgbFZpLapc3e3AATInOxGw7R0bCou/hc59nQCS3VGZibdqze1VRhJpnjRa9vem/4W55Yl01lQNeHPlzhxSMmnCBssMUnWpcKuCGuaHySSZIwmYAtmJHYqitmkVuKDRk4ZJmBPWradR5DsTYMnDYm3PtU1xUdJpuw2gAgZzmZB1Kh7dJkQ5t8V4ENtxdWWX+UGnRzLRIwuAEgCALZBZn6TWAaBSLjhBcYI40wR5rVSxRDswBfaddlQKde0uFgNcS4OBzAFokdeWtAbWqk/Dj3gBOZERc5fa5rK1mIyS0N2jMni83PbqVYp1rzUAziAOaJt97uzVjmPgQ++skCPdjsmCn7LFDatQMaRSBcQLARAE/QR0rrfqpuKcHnBn3h+hPYu6TKuLjukRq2yObmPau62M0zghr9U3155bFFtio16hgCmRMj7trHnUms/FZtuLqOvM/vYq6lOubNcACHSZ1kCMxOeL92XTadfEZe3DaLAnn1a1cNdUqtQkAgQWzMHOdfSFdScSDPzEDoBsqBTq71hJBfHvYjnNtSuqBzmOA4riCAZ7DbtUjO6sRY6lPSC8lr2huobNs2uum06sXeJgSc7gmbRGRHYtDUiz1Kbyx0OOO8ZAZ21LltOriBLhGIzBORH6WU1cakVbGkOdJkQInbrPkrEQREQEREBERAREQFLM1ClmaDPpfxKX4vJWKvS/iUvxeSsQFXonxavV5KxV6J8Wr1eSDYiIgIiIKNMaCwhxwiLnmWRtJop1BjxNLeMS6S0YYkQNl+mdq3VqQe3Cbg53hUt0RoBa0AB1nCc7Rfqt0AbEFLWMLGYSQzEMNj70mZm+e3WuaIpU4IqNJDYlzhcTnPSthoA6tmsxYyFR/t7JHFsBESYzkdisZuqnCnf+KJcXDMGJFx1QopaKwEQ90gtMExJAt02Wn2Jkzh26zrz812NHgzeba84EBNJP5UjRRESSIaI5mkkecFK2ihzg6S2AfdzuQfMLThKYSo3LnxRo+jinigk4oN+YRPSqP8AbgYl7pAAtYWESt2EphKmL2qh2jyxzZzxXjIOMnzXTqcteCfenLVIVuEphKrLLR0XewQHF0gN4xyAESLKW6G0UxTaSGjrMzM3WnCUwlBmp6KGuxC5GLP+qNfUns0kkuIJMiLwMJEX5yT1rThKYSrqZGJu57R9p2c5/vZbYrTow2mII7XB3+FowlMJS3STGbSNDbUjVE5awRC6oaMKbnFuRi3Qr8JTCVMa25jGNAAM4jOENytAI1dXetBp8YOygG3SQf0VmEphKFtqEU4SmEoiEU4SmEoIRThKYSghFOEphKCEU4SmEoIRThKYSghFOEphKCEU4SmEoIRThKYSghFOEphKCEU4SmEoIRThKYSghFOEphKCEU4SmEoIXTM1GEqWtQZtL+JS/F5KxV6X8Sl+LyViAq9E+LV6vJWKvRPi1eryQbEREBERBxUyWGi2qKjy8yz7I4tr811vebLzdG3QqPr1KZovYxmTzk68WQemFKgKUEKURARFSNJYRIJI6CguRU+0t5/yu+ie0t5/yu+iC1FV7S3afyu+ie0t2n8rvogtRVe0t2n8rvontLdp/K76ILUVXtLdp/K76KinpxNV7CwhgALXwbzmI5v1QbEVXtLNp/K76J7Szafyu+iC1FV7Szafyu+ie0s2n8rvogtRVsrNcYBvnkR5qxARFUdIaCRNxnAJQWoqvaW7T+V30T2lm0/ld9EFqKr2lm0/ld9E9pZtP5XfRBaiq9pZtP5XfRPaWbT+V30QWoqvaWbT+V30T2lm0/ld9EFqKr2lm0/ld9E9pZtP5XfRBaiq9pZtP5XfRPaWbT+V30QWoqm6Q0kCbnKxCtQEREBERAREQEREBERAREQEREGTS/iUvxeS7XGl/Epfi8lYgKvRPi1eryVir0T4tXq8kGxERAREQcvyWSnpdN7nsa5pcww4A3B/ZWqpkqQ1oJjM3NszlfqCDQpUKUBQi86nuSGgDfHGO3t7xsJJQeivOGmb1TpDeatSWC9NoIFhnJCu0fQcBnGTxSNmZn9O87VxTdUFKngE8UT+UIVOi6bvj8Ps9anacT2ADomV3RrkxipObiJAi/F1E7F1o76hJxtgR3qyiXmcYAuQOiTB7ISJKqoVsZdxC2DFxE6rc2a0qHfqpRRERAREQEWPT91KOjgb6/jO91jQXPd91ouV5VXTtK0j3R7LT28V9Yjvaz+49ClrXHjeXx6+nbpUdHANWoGk+63NzvutFz1Ly37q6TWMUaYoM+esJeeimMvxHqVWjaFTpEuaCXn3nuJc93S43WkZrPZ34+D+z1D8Vv3HebVcqXfFb9x3m1c6Xou+hvGLYk2iDIi/atvM0LG91QNqGkxr34jDXOwDMTeD5Lmludhc12MmI1bP11dFlZSa6HhrgDiN3Au/UIIovrkMx0abSScYFQuwt1EcUSeay7cX75GEb3Hva52QpYyrIl7CNYFMg9uJdYX43Eu4uodWuyC0IgRAREQEREBERAWXdHS95pFwbjebMZMYnah0bTsV2k6QylTdUecLGiSeZeE2atU6Q8EEiKbHf+NmsfeOZ6hqWeVx18Xj7Xb8esxziygXkF5IxQIE4TMcy1rKz3KPSP8AiVqWnO/REREEREBERAREQEREBERAREQZNL+JS/F5KxV6X8Sl+LyViAq9E+LV6vJWKvRPi1eryQbEREBERBxUyWRmiNbUdUBOJwAMuJEAk2HWtdTJYaNGoKj3OfiYfdbs+kZWzzQegpUKUELGN06dpxDmIuIznZAgnpWxVjRqYyYz8o2z5oK6WmsebEixNxGUT5jtVDGPNOnhdh4o1xNgtjKLG+61otFgBbOFzofwqf3G+SLLl1Xo7HtJL3giNq60Vrmh2NwJJ2k+eXQFoUIW77ckjvXSIiCIV4mk7uOqEs0MNfBh1Z3wm7Yj3z0W50WS349PTdOpaOzHWeGN1TmTsAzJ5gvHq7o6TpFqQOjUvncAarhzNyZ1yeYKujoQD99qOdVrH/yPzA2NGTRzBaVi8no4eH+yjRdCp0pLQS93vPcS57ulxuVepRYeiTPggzRBmivUd8Vv3HebVcs9Wo1tRpc4NGE3JjWFGk6Xha1zBjBOo967PmtKysZixiXDjm7TBVdLT3Oc0b0RMXvaerPX0di0aMZx2jjnNByyhBBx1DGokwgoAVHVJJLhERzAZ/h7ytCIu6BEREEREBERAQmEXh7o6UNJL6DCd7aYquGTzrpg+Z6lLcb4cLyuOdIru0ioZA9nYRgGe+PF8f3Rq7disUNAAgCAMlK5vdJJMj0Ge5Q6R/xK1LKz3KHSP+JWpdXz+X0RERBERAREQEREBERAREQEREGTS/iUvxeSsVel/Epfi8lYgKvRPi1eryVir0T4tXq8kGxERAREQcVMljpVaheQcuN9kiIdDbzeRdbKmSxaPp4fUfTDSCybmIMGCg3hSoClBC88P0r5W69kZnDr2RPNz2U6O5x0h4JOETAkmeqbDqW/ENqDJo7q+LjgRhOz3uqf+udXaH8Kn9xvkrQVVonwqf3W+SC5ERBCy7oboUtGZjquiTDWgS5zvla0XJVG6m6ooEU2N3yu8cSmDq+Zx+y0beyV5lDRTj36s/fa5tiiA0fKxv2R3nWpbjpw8d5Oa++6WZ0j+HR1UGn3htqOGf3RbbK1taAAAAALADIBEXO3Xs48JxnoUoijQiIgIM1CgPEjX0XRLZPrbumYFiQcOrP32/v6rZQ9xv3R5LHukwutMDCZMxAlutatHtTYDAgAZzlzrs+ctVWj/b++VbKq0f7f3ygtREQEREBERARF5m6W6Ja8UaQmo4S52qm3aefYFLca48byuRxuppryd5oOAdP8R4gmmM4A+Y92exUU2BoAAgBcaNo7aTcLZ2km5cTmSdZKtXO3Xu48ZxmRKIuXvDRLjAUV6TPcodI/4lalkpmadA7SM7fZK1rtHz79EREQREQEREBERAREQEREBERBk0v4lL8XkrFXpfxKXX5KxAVeifEq9XkrFXonxKv4fJBsREQEREEESqxRbMxdWoghSiIKaVEtc443EOvBuAeZZf8AamTOJ2ZOrWZOrs2LesX+6M2O17NWevZfn1Sg60fc9tMyC48Ut1CxM6uhXaH8Gn9xvkq6GnsqGAHZE3A1ROXSFZofwaf3G+SC5eZuxumaOGlRAfpFT3GnJrddR39I7zZX7qae3RqReRicThYwZvecmj92ElePoejubifUOOtUvUdz6mjY0ZAfVS3HTx8O1NE0QU8Ti4vqvvUqO955/QDUBYLQpUErm9skkyJRcY9glL7QOhRz5eXhx+10oxjVfoUBg6em66R5+X6r+sRJ2dqiDrPZZdIjjy8/O/u5wDZ23XQRSM0crbfrXuo6ATkMBnoxNlSzQmvo024jAEzDROL/ALU6cxziGtEy0zeLS1aqIIY0HMAT0wuzsy0tzGNc1wc60bNXV+xbJX6MIxj+s5klXqnR/t/fKC1FKIIRSoQEReVului4k0tGLS+Ye/MUurW7m7VLca48byuR1ujujBdQokb9EkxLaYOt3PsH6LHQohjcMlxzLnGXOOskqaVIMBgXJlx1udrJ2ldrnbr28OE4TIlFXUrBtrl2pouf8dJXG9uf75gfKD5nX0eazrHk83Hh/qXVpMMGI6z9kdJ/QIyjBxOOJ23UOgalaAAIFgNQRMeDyeblz+/HpN9yj0j/AIlaVlb7lHpH/ErUu7USoUoioRSoQFKIghFKIIRSiAoUoghFKIPJ39z9IcDkyoWt6MDT5krcvNpf/M1f/un/APkxekgKvRPi1eryVir0T4tXq8kGxERAREQEREBERBC5FJoyaB1DpXa88jSZsbXzw/McOXNE83Og3NYBkAOpV6J8Kn9xvkqdHbXxcciMJ2e91fuI1rNuhpbqO55ez4m9taz774a3vIQee6r7TpT62dKiTTo7C4WqVO3ijmB2rSTGao0aiKVNlJmTGhs9H6q4Njp2rla9F8vHxTrPqJJ5ulMA6eldIo8nPzc+X2iIiOYiIgIiICkZqFIzQeqfit+47zaudKrOYG4W4pJGRP2SdXOB2ro/Fb9x3m1XLs7sNLTKhc0GkQDEm9p1Zdfdmr9GPv2jjlXKrR/t/fKC5FCIJUOIAk2AWfS9Np0QMbrmcLRdzo1NGteNXdU0ofx24KcyKQOY1b4dfQLdKzeWOnDx3l/jRpW6L6rsFG1KONVm7pGVOP8Al2bVTQoNptDWCGjUoNdo4reMRqbeObYOtML3ZnANjbnt+nauduu18nj8UyOqlVrbE3OQFyepcw92fEGwQXduQ711Tptb7oiczrPSda7UeXn+o5cvnpzTptaIaI27T0nWukRVwERER6Lfco9I/wCJWpZW+5R6R/xK1Ls7xKIiKIiICIiAiIgIiICIiAoUqEHmv0fBXxTO+PLssuI1sdy1qvS/iUvxeSsQFXonxavV5KxV6J8Wr1eSDYiIgIiICIiAiIghFKhBGITEic41wvB3YM0dBYPtVWdjWOf/AO0L2jo7S8vvJGHq/YWXeQW0Q+g5zqYhp4pg4SCc9kjrQYgIUr0MA/kH+z6pgH8g/wBn1XPq59K89F6AaCJ9nd14Pqm9j+Qf7PqnU6PPRbyxsx7Of7Pqp3tv8g/2fVXrTpXnovQ3sfyD/Z9VDWNIn2c/2fVOtOlYEXob2P5B/s+qYGzHs7v7PqnWnSvPUjNehvY/kH+z6qHNABPs7rXtgnzTrTpVx+K37jvNquVDMRqAlpaA0i5GsjYeZXrbo5LgIki+XOq9H+394qatAPLSZ4pkdoPmAs9SnxXsdSc9jnGwIuD1yg603dKhQbiq1GtGyZJOwAXK8qvu4+qB7MMLTm9zS5w6Giw/ER0LdR3Pos9zQ2t5w2nPbKvwD+Qf7Pqs3V3Pk/68OnRON1QN47veqVDid2DIcwICt3mffcXc2TewZ9cr1Q0X/wDh3W+59VOAfyD/AGfVZ6M8uXPl9rzmtAEAAAagpW8tA/8AA7+z6qd7H8g/2fVOjn0rz0Xob2P5B/s+qgNB/wDp3f2fVOq9KwIvQ3sfyD/Z9VBaBH/w7r/c+qdadKwIvQ3sfyD/AGfVN7H8g/2fVXrTpUt9yj0j/iVqWYFzt7im5oBm+Gwg6gVpW20oiIoiIgIiICIiAiIgIiIChSoQZNL+JS/F5KxV6X8Sl+LyViAq9E+LV6vJWKvRPiVfw+SDYihEEooRBKKEQSihEEqERAWF+55II3wiXF1hcTzznbPnO1bkQcUKeBobMx1DoA1BcV6Bc5jg6MM6pnL6R0E7VciDLouhmm4EvxQ2MoOczM/sztWpEQYf9vOFo30jDIkCDcRtWmk5rQGFwJa0X26p7iu6tIPaWuuDms/+3UoaMNmgAAnYSQem5QNKpBzgd8w/ZtnJkdWfaBsTRNDNNzjjxYotEARqF7DYFLNAptILRBmem4PmAtKDmqzE1zZiQROyViq7mlwA3yOKG2B1Gdv7st6ICzVtFLnOdiiWFkETnrzWlEFGjaOWFxLsWLmjbz88dAA1LQoRBKx1tCLi8h8Y41TlHPlbvK1ogp0WhvYcMRdLpv8Avm7Sp0qjvjC2YnXmrUQZBoZ3zHjm4MRewOubZ9gha0RBjfoJJJ3wiXYsunnzvn/S3Ze3R2ik0NL8Rlxk5mST+qvWRu5lIMDA04QZiSZNs56Ag70toc0ccNDTiJ5gD/31KunoJbVFTGTdxiLcbr/cBSdzKUGGwYcJBuMQgrWgLC/c4kEb4buJyuJjK+ds+d21bkQV6PSwMa2ZjWua9AucxwdGGbRnMfTsJ2q5EGbR9ELHYi6bEQBAu6dpyWpQiCUUIgKVXTpBrnOkkuznmXaCUUIglFCIJRQiCUUIglQiIMml/Epfi8lYq9L+JS/F5KxAXnO0mnicTjBm+E7LXhfNuGe6PKPDpelD/rPdHlHh0vSg+l0qzHyA6pIAN3GIOV1FWpgcWkuMbKh+i+a8M90eUeHS9K54X6f/ADh/+ql6UH1VtEEA4n3/AKis9d+ClVqcf+HMAvImOeLL5pwz3R5R4dL0qHf6y3QIg6RI2GnS9KD6HuXpx0inVeW1GmmSMIqE4oE2sFrrHBTc84+KYjGdsTMWGvoXzBn+r9PbZtYN6KVIf+1dcM90eUeHS9KD6don8Wm18vE6sROuM9iqZWJB4leQAYnOYsDtv3L5twz3R5R4dL0pwz3R5R4dL0oPpIriCcOkWzj9Jv3Lp9SGggVTJFsRkAzePw5c6+acM90eUeHS9KcM90eUeHS9KD6ZSqNe7CN+BvcmBA194WjeP63/AJivlfDPdHlHh0vSnDPdHlHh0vSg+qbx/W/8xTeP63/mK+V8M90eUeHS9KcM90eUeHS9KD6pvH9b/wAxTeP63/mK+V8M90eUeHS9KcM90eUeHS9KD6oaFvef+YrGNI2trzzEkdRXzfhnujyjw6XpThnujyjw6XpQfSxWaQSN/sYIm4MdK4OkiYw6RP6W5+dfN+Ge6PKPDpelOGe6PKPDpelB9JZXBIGGuJIFza5zWveP63/mK+V8M90eUeHS9KcM90eUeHS9KD6pvH9b/wAxTeP63/mK+V8M90eUeHS9KcM90eUeHS9KD6pvH9b/AMxTeP63/mK+V8M90eUeHS9KcM90eUeHS9KD6pvH9b/zFY/aIJBZXtsJvc/oAetfN+Ge6PKPDpelOGe6PKPDpelB9MD5aHAVbmIJIOvUJ2Lnfv6dI7R9V814Z7o8o8Ol6U4Z7o8o8Ol6UH0ptcEgBukXMSbDMX71Zpf8NuKXm8e8V8x4Z7o8o8Ol6UP+st0eUeHS9KD6gG/w8c1PdJgON+hQIORqxiiS60QeN0WXzDhnujyjw6XpThnujyjw6XpQfTMXGw/xbuiQ4wLxJ2bdarpVi5wbhqgH7WIxr5v3fYvm/DPdHlHh0vSnDPdHlHh0vSg+nVuI4D+I4EE2dfojrVDdJBPFbXN4mdf6fvJfOOGe6PKPDpelOGe6PKPDpelB9LfUgxFYiNR1wCB2T2c6gVwfs6RnF1814Z7o8o8Ol6U4Z7o8o8Ol6UH02g4PMfxm2njGNn1R5gvE1OKARxjxrarL5lwz3R5R4dL0pwz3R5R4dL0oPpjnw6P4pGEHium5Jt1QuBpLZAIrgnKTGcDbtIXzbhnujyjw6XpThnujyjw6XpQfSqtYNcRFd0a2mQehQNJb8ukfufovm3DPdHlHh0vSnDPdHlHh0vSg+mtcCWj+KMTQZxWbzE7bKv2gWgVzPPq2yvmvDLdHlHh0vSp4Z7o8o8Ol6UH0xlQEOP8AGERYmCZ2DmXDq4H2dI/YlfNuGe6PKPDpelOGe6PKPDpelB9Lp1Q7+c0QbuMTGpc7+I93SP31r5twz3R5R4dL0pwz3R5R4dL0oPpdSqGkD+M608UyBzdKipWa1ocd+gi8Oy5jz2XzXhnujyjw6XpThnujyjw6XpQfS21AWzFaZjDN8pmDqXIrg/Z0iP3qXzbhnujyjw6XpThnujyjw6XpQfShXaH+7WcWkgZEHok84WyhVxtDsJbzHNfKeGe6PKPDpelOGe6PKPDpelB4KIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIP//Z\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/hcSbTHvYjFY\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7f9a203b8a60>" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('hcSbTHvYjFY')" + ] + }, { "cell_type": "markdown", "metadata": { @@ -646,8 +719,6 @@ "editable": true }, "source": [ - "# **Local evaluation of dissipated energy**\n", - "\n", "[](https://moodle.rwth-aachen.de/mod/page/view.php?id=633308) part 2\n", "\n", "In the above evaluation, the dissipated energy has been evaluated as a difference between the total supplied energy $\\mathcal{W}$ and the elastic stored energy in the whole volume of the specimen $\\mathcal{U}$, i.e." diff --git a/tour6_energy/6_3_localized_energy_dissipation.ipynb b/tour6_energy/6_3_localized_energy_dissipation.ipynb index 778d183..6d19146 100644 --- a/tour6_energy/6_3_localized_energy_dissipation.ipynb +++ b/tour6_energy/6_3_localized_energy_dissipation.ipynb @@ -10,11 +10,38 @@ ] }, { - "cell_type": "markdown", - "id": "grand-conversation", + "cell_type": "code", + "execution_count": 3, + "id": "e3ba2c71-f9b2-4ba2-9dbb-7b97ef2a46b3", "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBgYFhsaGRoeHRsfIy0mIiIiIzEtLSktMjE4MC0tMjI0QFBCNThLOTItRWFFS1NWW11bNUJlbWRYbFBZW1cBERISGRYZLRsbL2M2Nz1gXWNXV19jYVdXV1dXV1deV1dXV1dXV1dXV1dXV1dXV1dXV1dXXVdXV11XY1ddXV1XZP/AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAwEBAQEAAAAAAAAAAAAAAQMEAgUHBv/EAEIQAAEDAgMEBggEBAYDAQEBAAEAAhEDIQQSMQVBUZEUIlJhcaETFjM0VHKBsRUywdEjQlPwBmKSsuHxgpPC0qIk/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECBAP/xAAgEQEAAQQDAQEBAQAAAAAAAAAAAQIRMlESISJhMUED/9oADAMBAAIRAxEAPwD5+iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAi9Qf4dxpEjDvIOhtH3Qf4cxx0w7/JZ507HlovV9W8d8NU5J6t474apyTnTsu8pF6vq3jvhqnJPVvHfDVOSc6dl3lIvV9W8d8NU5J6t474apyTnTsu8pF6vq3jvhqnJPVvHfDVOSc6dl3lIvV9W8d8NU5J6t474apyTnTsu8pF6vq3j/AIapyT1bx3w1TknOnZd5SL1fVvHfDVOSereO+Gqck507LvKRer6t474apyT1bx3w1TknOnZd5SL1fVvHfDVOSereO+Gqck507LvKRer6t474apyT1bx3w1TknOnZd5SL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyT1bx3w1TknOnZd5aL1PVvHfDVOSereO+Gqck507LvLRep6t474apyXlqxMT+AiIqCLoUzwU+hdw80LOEXXozwUFpCD7XgQDh6ANIv/AIbeFua9KLRpZeds2Oj0RacgsusUwFzBpJ3LFEdQX6SzBVW5MtWwAzTv4rTi6Tn0y1pgmL+BBWDJS9J6OX5vFUOxGHAkl+7lMTzWoqifxZiY/W+jhaoqBxqS0fyz4/uOSvxNFz2gNdlM3PdoRyJ+sLzBUoFuYF5GYN75IkD7c1ya+HgEF5kgWnf/AGeSqNlPC4gFs1hANxl1HDu3+S1YmiXsygltxccAQSsjcKwgEF0G+qnobeLuaDuhhqzS3NVkNAEcfH6K7F0XPaA1xaZmRvsbLN0NvF3NOht4u5oJGGr7615ta2//AIV+EpPYDnfmJMz9AFmOEb/m5rhlCm9uZjnQdCguxWEqOc403hubXXgrsLTqNzekeHTEd3FebUw+V4YapzHTq/8AKhlDMKhbUJ9GSCMupFrdbiCPokTE/kk3j9huxWGqufmp1MtgPPh+vkqxhK4kisTa3jbj9eaxvY1oY51YgPbmBybrG97WK5dkBA9MZMWyEa+J/uVbfUv8ergqdVs+kdMxA4cbrnFYaq52ZlUt0tu0M/dea0McQ0ViSSBHozabXk2SoKbS4GvduvUNvrKW+l/j08HRqtLvSPzCbff6LUvBmnE+nMcfRn9/7hd4ikKTgHVTJ4MNtYm/cUt9L/HtovDptY5wa2sSSYHUPCePmr6eCzAltWYseqdd41S30v8AHqovJqtpMcGkvl2l122g0uc2H9WLyLzuH971mJieoamJjt6aLx6hotax7i8NcJngLG/NVuxFACZqH+/0kKo9xF4hrULwahIvH0nf3XVlE0X5spf1RJ3az+yD10XiCtRgnrgNEmfED66go6vQAN3mNRfkg9tF51PDMcAQXQe9c06NNxIBd1TBvoeCD00XgEniVEniUH6BF+fk8Uk8UH6BF+fk8Uk8Sg/QIvz8niUk8UH6BF+fk8Uk8UH6BF+fk8SkniUH6BF+fk8Uk8UH6BF+fk8Uk8Sg/QIvz8niUk8UH6BF+fk8Uk8UHvv0Pgvgb/zHxX1xxMG5XyJ2pQQgRAEGigwusPJeq3YlR7CW5mx2xE8tFH+HaLjU4EbiF+qr1yKLnBoDQ0yZ/uy86pl0UURMXl8+kiQdQVWTK6qvzOc7SSSuFt4S+qVdivxDKFRr2tik1t5nfw8V69OiWDDsJktsTxgLvZnu9L5Au6vtKXiVKMYSFppNDrlubx/RdHDDg3ksWN2b6arn9KWiWHLBiWumdQL6XC9FzgQRJ+kq2sXVHCNIgtaR4KBQYbdQ3Ntb6n6q2jlY0NBJgReVmo4YNqmpmBkm2W0HhwPfvVFtSGxmc1s6SYXfozxCrxNMPLXWJaTY6Gfou6YAphk/yxp3IOKNRlScj2OjXKZhWeiPELNReym/rOptMAQLT3nyXVV9F5p1TVgMJiHQDab8bCYQXmkTwUCjwgKrE4ii5j2OqBuYFpM3EiFXgX0KFJtMVg4NBMucJv1v1Qa3U2F0nXxR2HYZ6ovr3+I3rKKlH0uf0rLE8JkiNV1ijSqNbNXKJMFromxGu/VSw0dHZ2QeE3jwnRc9Fo6ejZw/KFDMRSa1gziCBlJMkjSZ3rDiaOHquL/TQ48COGXTj+YfUqjeaFIT1WCL7gR3zu01XQw7OyL6yJnx4ryqmCw8Qa5u2DJFxMyf9Q8lL8JQBAdiHCRMZtQZg+UzvgoPRdgqRIJYJAgbvL6Lo4amdWgni6581nFagKYZ6YQ3eHQRHf4K4YyiAP4jeffH3QddFpSDkbIMiwsYieS7bTa0ENAE8FUcbR/qN5ro4qmCAXiTEX1nRBy7DA6x5qTh5M280djKQJBe0EayVBxtH+o23epYujoomYH7eHBT0YcG8k6bRmPSNmY136LoYmnmy5xm0ib/AN2KorODaXZi1sgRMbk6G2IytA7rf9rsYukTAe2ZiJv/AHopOKp9brjq69277oODhGwRlZBEaIMKBNm31t9P0Ck42j/UbbvXTcVTJyh4Jvab21QBSI0hQ2hGkBc9PoxPpGxE67uK6bi6RMB7SZiJ3jVBkOzD2xyT8LPbHJbH4qm0w57QeBKh+MpNdlL2h3An++I5oMn4We2OSfhZ7Y5LT0+jb+I2/f4/seSsGJp26462l9bxb6kIMX4We2OSfhZ7Y5LWcZSBIztkbpUdNo/1G80GX8LPbHJPws9sclvzhM4QYPws9sck/Cz2xyW/OEzhBg/Cz2xyT8LPbHJehnCZwg8/8LPbHJPws9scl6GcJnCDz/ws9sck/Cz2xyXoZwmcIPP/AAs9sck/Cz2xyXoZwmcIPP8Aws9sck/Cz2xyXoZwmcIPOdswweuNOC+KP/MfFfenPEFfLH/4Dx5JMUte3/wg/LKQY0X6b1Cx/Cl/r/4T1Cx/Cl/r/wCEHlbBrhmIGZ2XMCJK9X/EO1MtPo7HSTGc8BwsnqFj+FL/AF/8KfULaHCl/r/4Us3FcxFn5pwESPquF+lb/gbHkkAUpGvXUVv8D45jHPcKcNEnrhVh+zZjqobTp0306YZRa8l4nN3BenhsQarcNUIguuQucJg6VXD0PSU2vhgjMJhaagipSjis0YwkNylEWlEREBQpRBnq4Om9xc4EkiDfw/YLluz6QZkDerMxPdH2WpEGT8OpZi6DJ1ueMrk7KoGZZqQdeEfsFtRBjZs2iIgGwgXNrQeYAXXQKWVrQCGtmADuOo8O5akQZzg2dWx6ogXOmirZsyk3TMAdesb7wtihBk/DKUEEEzGpJ0iPsF2/BUzqNwbruAI+zitClBiGzKIkAEA2MEiRwPcujs6lnzwc0zqdZzfda0QYxs2kAQA4AiCA434TxXT8DTOWQerEXP8ALotKlBkq7PpOdmLb338dUbs6kJhsTO/iZ+61qEGQbMogyAQZmxPEGPCQrBg2B+eDmmdTE33fU81oRBjp7NpNcHAGQZ/MdV0MBT/iWP8AE/NfvJ+5K1Igxu2ZRIALTbS5XdDA06bi5oMmZkzr/wBBaUQYnbMpFuU5iIA/MdBIA8yuvw6nIPWls5TmPVnWOC1qEGepg2OcHEEkQdd40McUq4Km+cwmdb/L/wDlq0Igxv2XSdqHHjLjc3AJ4m5VnQqfUt+T8t+8O+7QtCIMxwNMz+a82zGBJkwPFcDZdGA2DAuBmMAxEjv7+5bUQctbAi/1UqUQEREBERAUKUQQilEEKURAUKUQQpREBQpRBCKVCDDS9rV8QuNp+71fkK7pe1q+IXG0/d6vyFZrxklxs+q1uHo5nAdQakBXVDNSl4rLhKBdQokOjqN7X6ELS8Q+iOB/RKMYSHoIiLSiIiAiIgIiIIUoiAiIgKEVGGxIeXiILXERxHFFtMxdeoLhMb1w+oZytu7yHj+y6YyO8nUnegoNOoB1Ted/iZ/RC2ruOvGLf3daUReTORVgXvm8lBbWvfdbTWFYcSzMWkkEayLc/qnSGdpWycnDRVtJnlw/dc5a3HcNYVvSGdpSK7DodbKLyGOIaM0k7yAu2uB0MqVy5gOovxRlXjiRRqkGCGOgjwK4bgacaO/1u/dRjw4UasGRkdr4cVa2sABmBb3nTmi2cdBp8Hf63funQafB3+t37rQDOiIjP0Gnwd/rd+6rw+DplsnNqf53cT3rYqsL+T/yd/uKv8HHQafB3+t37p0Gnwd/rd+60ooM3QafB3+t37qt9BrKlLLmEuIPWJkZXHee4Las+J/PR+c/7HINCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAoUqEGGl7Wr4hcbT93q/IV3S9rV8QuNp+71fkKzXjJJsz3ej8gVlX2lLxXgYnalWhSw4p5SBTDnC5MaX4DS69wPzOougtkzB1FkpxgeiihStAiIgIiIKq1YtjqPdPZA/UqvpZ/o1eQ/dcY2q1tShmcB1zr8jlZ0yl/UbzVsI6Wf6NXkP3TpZ/o1eQ/dT02l/UbzTptL+o3mlpEdLP8ARq8h+6dLP9GryH7qem0v6jeah2PojWo3mlpDpZ/o1eQ/deN05wLagpvEFx3XaXAnfwK34raLHtc2m4HidPEDiVi6oYQXNADOPANt5FYmJdP+URGT1KWJgDLSqwbzAv36q3C1/SNLspbDiIOtjCx4XHU2Uw3NJBIA7ptfhELjBV6bmuzVGmargGg2u4xPFbiJc9UWmYega02YMx47h9f2UtpGZccx5AeAVWCpVWgio5pvbLuutKT0iupQY7UTvVbm0wYOo8eH7BaFw6i0zI1/6S4oYKJho36XPcTCtbh2iIGnepZQYIgaadysS45LLyCQo644HyXaKDJj6n8CrLXDqO3TuPBaKdRrhYg/VV4/2FX5HfYqw0muAzNB8Qgg0RqJae79tFHXHBw5H9vsnoI/K5zfrP3lP4g7LvL90W7ptZpMaHgbKnAnquHB7vNxKs9N2mOH0n7LyyypUOakJAJGYPy7yn8aoiKpt+PZUrymDFgi1vnB+4Xo0c2XrwD3KQVU8f7dYs2J/PR+c/7HLSs2J/PR+c/7HKsNClEQEREBERAREQEREBERAREQEREBERAREQFTi3EUqhBghjiD9FcqMd7Cr8jvsUGHZ7iZJuS1hJ74Xe0/d6vyFV7N/L/4s/2qzafu9X5Cs14yOdmsBw9KQD1ANFdV9pS8Sq9me70fkCsq+0peJSjGBuREWgREQEREGXFe0ofOf9jlphU4nCsq5M98pkD6EfquPw+j2BzKDSizfh9HsDmU/D6PYHMoNKQs34fR7A5lPw+j2BzKDShANis34fR7A5lPw+j2BzKDTC8uD6MkZZFc/m+eFr/DqPYHMqvD7NpsaQWN/OXAxcdaRdWJtIivVrhzYyz2RJkb91ua3KrE0s9NzYBJBidJ3JhqPo2BuYujeVZtYWoiLIIiIJUKUQZ8f7Cr8jvsVc3QJUYHNLTcEEHwKo6G3t1P/Y790GlFm6GO3U/9jv3WfGUnU2gszuveapED9VYi424j2b/lP2WTZjGt9JlAA6ugi+Rp/VcCkXNJBlu/+O767lY+gS52QAaTFRzdwiQBwhLDai82gxz3xJyic38V+YHdYgLV0Mdup/7HfukxYaVmxP56Pzn/AGOToY7dT/2O/dSzCNDg6XkjTM4ndG/xKg0IiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC4qMDmlp0IIP1XahB5+GYGve0aCAPACFG0/d6vyFd0va1fELjafu9X5Cs1YyGzPd6PyBWVfaUvEqvZnu9H5ArKvtKXiUoxgbkRFoEREBERAREQEREBERAREQFClQgIpUICIiAiIglQpRBClEQFClQgpbhmBhYB1XTMd+qrwtFzHPkDKYynMSTbfOi1IreRxTpNaXEC7jJXaIoJRQiCUUIglFCIJREQERQglFCIJRQiCUUIglEUIJRQpQEREBQpRB59P2tXxC52n7vV+Q/Zd0va1fELjafu9X5Cs14yGzPd6PyBWVfaUvEqvZnu9H5ArKvtKXiUoxgbkRFoEREBERB4+N2u6liHshuRlMPi2Z1nWEuHZGgKg7fGYs9C/M2xEjXPkieE716NbF0mPDXEZvsO9QcbRAnO3Sdd0xKDCNutzFvo3TnDNQesSQAeH5T5KMVtosxHogywIDjN7upiwmwh+p4LTnwrYeMkl2aQN92z43PmrunUYkvaNN/ET9pQeZ6xtLRFMgua4iYMFs2t4a6Lr1iZb+GbvDRcbzHOdRwXp1MTSYYc5oIGn9/Rc069BoDWuYADAA4oPMw3+IJa0vpwXRZp0lrDAn8xl/IHgram3Wtw7qzqbhlcGlsjewPF/A81uGMpdtsWvPGf2XB2jQDC8vblifpE6eCDO3bTCys7IR6JwEEi8mAZ3KKu2gG03NpOcKjA/UCJ0C21MXSbIL2g6xN937jmuaWOpPnK4EgTGltd/iEHmv/wARtzENpkhpOYzeMr3CBxlkR3rs7esHejIbvJI7JdaPAXXo0sXSfOVwkTP0MH7KBjqET6RsROu5Bgp7cBpOqlkNzsa0FwH5g03JtYlSNutJb/CeA50CSP8ALu49cW7jwW12IoPgFzDDhHzA280djqAaTnaRc8dBJ8kHnM/xGwhv8J3WBNiCNAdd5vcboKtZtk5w11Igue1rQHAmS1rr/QuP/iVrZiqDGgBzGtaAALWG5RWxFD0jA8jOLtJ3SCJnwlBziMU8NY9mWHNJIInRpdYgxuUUdpZqjaZYQ463sNeYt5haGYuk6A17TOl/74jmuHbQoggekbcxr3E/oeSDMNrXnJ1IknNceP7blA2y3Lmy2nLrvvMclrONpCoaZcA4azbcD/8AQXXSaWUHM2CYHeUGJ22AIOSQRaHX4weBjzt3ro7VAIlsTuJgwJk9+mneFpp4yi5uYPbEA8NY15hGYyi4mHAxCDEzbEn8oiO1vzFtzuFtVfT2kHNe7IQGtzCTrGvgtFHEUn2Y5rrTbh/ZHNcDH0b9cAibHWxLfuCgz/iLix7w1sNc1ovrJgmd44cV1Q2nmqMplhDna3sLT9dPMK8Yyl2xv8v+jyUtxdIuDQ4E5S76CP3CDI3a4OjO+cwgXAEncZN+CHbDYByG5AiROk3G7u4rTSxVGCGkZWtBJ3QSR+hXP4jRyh2YGYgb+4oK6G1Gve1uWMxI13i64O1wJ6oIBdo4GY4fXlqtJx1EfzttN53yBHMrrpdKHEOacsF0XidNP7sgoobRzVPRlhDrzedJ5iyrp7VnLLImIJcADx8NLBa6eNpOyw8dbQb91vMc06ZRktztkaidI/6PJBgdtoClOUZ8skTABgm/jFlbT2s1zw3IRLssk/TTX+9VoGOoX67bcfAO+xC6GMpW6wkmw365fugyP2y1pcC3R2XUbiQfA9WYUHaxBEsABaCJdxjU6DVamYmiMwDmiHGRpeTP6qW46iROdvC/dxQZam12g2boDMnfmygW008wpbtWSDkOV0Bt7ySQPstRxdIEguaDMa71zUxFHqFzmxYtM2uDHlKCivtL0dRzS2wLRM8ROm9TiNphj3MIAy6knUZSfp/dlodi6QcWlwBBgza8A/qFz06gZ/iM590oKqO0w4PlhGRsm87tP+VW3a4IByWNpzCJ7+A71rfi6TWglwAIkd4C5djqQLWuMFwBEjjMfYoMjtqPDaTsgOZgebwbtcTH+kc1aNqNNN78joa4N5mL8O9auk04zZ2xMTO/guG46if526xfjMfogyu2uBBNN0HS/jM8DZDtdo/MwgRJuJA4xwhbaeJpvIDXtJNxCz1KuGc7rFhJETxg6Sg2McS0EiCRpw7l0s3T6MgZ230vrePuFpQFClQgw0va1fELjafu9X5Cu6XtaviFxtP3er8hWasZDZnu9H5ArKvtKXiVXsz3ej8gVlX2lLxKUYwNyIi0CIiAiIgzVcDTe7M4GbHUxI3+NgqH7KolhAkdUgHNpN55qcTg6j35m1C0SLAnSFnZsqqC3+IIbECTuaW6fXyQajsukTJzTxzHXj5qRsykLQYggDMbAggx4yVVTwNUEE1SS3S7oOkzffB8JXWKwdV78zKpYIggSb8eeXz4oO62zqT3FzgZIjU6W/YIdmUpJg316xuOB7lRUwdbJTaHmQSS7MbcPGOBsuHbNrER6UkQ4QXO3iJ+pv3TZBqds6kYnMSIiXHcZHJcDZNGCACJtIcZ0g37wqqmArOHtIMZRBMxIOv96LvC4GoyoHOqEtvIk6kk6fXyQXVcBSe8vLZdETPcR9nfZdNwVNu43ka8YB+wWEbLqtYWsqZXEXMu3BoB17jzV1TZznMY1zrtcSTJ0Lw79EFzdn0wSRIJBGp3mT5lct2ZSiOsTaXZjNgRr4EjwXFHB1Wh+aqTLMoudYif74qr8Prf1Y1ghzheAProec7kFw2VSiDmMHj3yB4BcU9lUoGZznnjPdl+y6qYKqWsb6TQQSSf7NrXUVdmkuBa6IaAIJFwCBpuugubs6kDMG2lz4E/ZduwVMmYP5Q3XcFl6HWFPLnLiXgk5iLRe4vreFH4dV/rGTMmXb53T3jwy2QX/htK0BwiIhxtECR3wByXFLZVNpdckEQGzYCCD/uKpOz694qkA6DM62kDjuN5kyrThKvo3tzyXPmczgY3wRofsgvqYGm4uLhObW9t3/5Cj8Pp5Wtgw05hc6qgYGrM+lOsi7tZBk34SI0UdCrehyel6+ac0nh+90Fx2bSygEGBb8xuLWPHQKXbPpkgkvJ39Y3335Dks7tnVJH8SRIcQXO1DgZH0ERomK2fVeTFTqkukEu0No5INVHA02OzNBBgDXgAP0HJcu2fScCIOpJvvMk/dVMwdUMeDUJLnAjrHSZInUSLWUHAVPR5RVIcXBznCQT1Y+9/ogsOy6JMwZiNT/e881NLZtJlgDGUtguMQYB+wVJwFXMCKzomSJPGZ5WjRUvweIDoa90AAZi43/KHWnhnvxIQbhgqYa4X60SS4zIMgzxkrhuzKIkwZIgmT/e4KrE7Pe+pnFSI0ubCBaNNxM63VVXZ9fI6Kt8sDrO13X/X7INvQaeYOgyBGp4yuKOzmMziSWvAEToASbfUlUO2fWkfxbDdmcf5s2/WLKaOz6oNMvqF2Uzdx758ZtrpFkGjoFIOa7LdsAX4AR9gj8DSdrN72ceLj/8ARWV2zaxLs1YuaSYFxGoF54ZeR4qRs1+gqENg2DnakbjOkiYQWjZNDSCYEXcdIj9ArDs+lnD4MgyL75zfdc9Gf6XPmtky+BtfyWd+zasECs6CLdZ3Zged+9Bpq7NouOZwJMyJcbTrHCZQ7NpEgwbRFzu0+yzO2fWzWq9XxPaBGu8aSrqGDqMqNOcloBEEuP3PHeUHX4XRgDKYAjU3HfxuAVbUwdN0SNG5dd0EfYlYzgK0Aeli0fmdwMnXUz9Isn4fVk/xJ7Ml1ryN+4IL6+ApPdmc2Se/wH6DkunYGmSZBv3n+96y/htUtE1SSDvcYgEkDzbfuVtbCVTUL2vAsQJJ3xyiN2qC52ApENaQYaIiTpqJ+oldVMJTJkj+XLruv+5WUYCpM+kdx1OskjfoJ0XFLBVnUXsqGCXEiXE2yZdd0ukoNQ2bSFM0w0hpMwCd2iO2dSO4/mza71QcJWyFuac1SfzOEN3ideS4qbPrhpiqXOg/zOFyTwPAt8MttUGmns2k0gwTE6mRfuQbPpNM31P8x3iFlrYLEC7XlwiMocRIkECSd176qGbOryC6rOm91jBBPmOSDUzZlFujTzPGfutq8+hgqjXAmoTBFpcRG/XWdb6SvQQFClQgw0va1fELjafu9X5Cu6XtaviFxtP3er8hWa8ZDZnu9L5ArKvtKXiq9me70vkCsq+0peJSnGBuREWgREQFClQgwV6tcVjlEsA0y66b+Oq5GMrj81ObCcrXWsOdyRG6FdW2jTpuc18gNiTrYxc/UgLmptNjdzpiYIjfCDLS2hXe4hoHV/M3KTF4yzOsCZ79FfWrYhtR+VuZo0blibCL+MqTtGk2SQQZA01JA/cc10zajCASHAndG8mw8bFBycTXyUzk6ziQ7qnja27jfzXAxeIDATTzOI0ykaazw4x3wrqm06TQHHNBbmmNBMX75suvxBkxDp8OEyfpBQUdLrjNLC7TLDHDs8v5tVZhMRWc8tqMyiBBAOsfbXwUN2vRMRmMzHV1gZrcZCsqbQY1odBMtkAchPibIKHmu2oS0uc3MbOEiIbpEbyb3XTMZVL2zTIZ/Mcp7M/eQu620GsLQWmTE9xIJAnjZG7SpGPzQf5otoD/APQ5oK8VisQx7mspZmxZ30n9COSVMVXFNrhTvlJdY9oAW10JMd0Lv8UpRPWjTTfMR42Uv2lTaGmHQ5ubS4FyZG6wKDI7aVe4FOXAAloa4wYmJ3zx3K9lbEGqwOENMzDTpBiTMC8K7D45jzEFpgkyOETceI5odoU8gfDiCSLC9hJ8ggo6TXbRzZCX5ojKdIndylS7F1/RPcKZzh0NGU3G62p4Sun7VpNMQ6d9tOM+EhT+K07Wd3201gd/5SgVa9fMMrBlygkFpJkySJnuA03rK7H4m5FIwJgFju4g+cea0/ibPRmoGki+UDU9XN9LTyXTdo0ycsHNwA132+gQUOxeJBk09dwBMDMQfrEGVLsZXENDZcKbXGWnUgzppEab57ladqU+DjNxbdYA+BJCiltSm4gEOaTA00JMAE8bFBUcdXFRrfR6k/yu3ECORnNooZicU7+QNuNWnjfwi/3Vw2pTzGQYtBjWQSBxm32WitiWMzZrBrcx8CY/RBlOOq+hp1BTJLzOUAmG98aGN65GMrwP4fGeo7n9OGp3LUcWz0bXgEh1gIvv/Yqv8TpyB1pOltTMDnCCg4zEf0zI3Bh0ym+vHdqIXLcZiZ9lPdlI3C0+Mm/gtuGxbKpeGzLIkHv0VNHatNxcL2fkB1ng7wmeSCs4nECmHBmc5nSMpacoMggHuB13kLhlfFekgiw1GQx+YCx5rTW2lTY/LBJmDHgdPqIXP4rR4mJiY8/BBVXxtcF+RmYNJA6hOg8bz3aI7FYkOPV6p06hsJcCTxIAaYtMrRQxzHOyw5rpNiOA1/vuXDdrUiAQHHwH1HNBW/F17RTNpnqmNDFj9D5LulXruplxYA6WgDKeAkn6k8lP4pTzAQ7U3jgSJ8JB5INrUiLZpvqPA/qgpfjMSAP4ZnechO4mdfAR3qW4vEnWnABvYzqLeZvvhXO2rSBg5p8J3kDTiQV0/HBtIVC03MRv1IvyQc4LE1XT6RpDosMpAMF3HuyrM/HV2y5zYaG9ggb5MnSNIOu5aqe0mOcGw4EwLjQnju4c1ydp05c0g2eWERN5gfcc0FHTMUQ7+HlMGOo43jT6Gb74UvxmJbpSzd8HfMW+n0kLQzaNMyROUNLs0cI/dSzHtOfquAaQ0cS42iPGyCujiqx9ICyXMaSBxmco8j5Lh2KxADiG5hbL1HDhJjWLm2q6btajAJDmkxNtJG89y6dtakACc0ET+XcZIP1hBWcZiOqfRTM2ym3C/iuel4kOszMJt1HNkQOW830iN6v/ABNubLldOnfO8fRdM2jTcHETaNREguygj6goMz8RiQYyzFz1De+4813SxtX0rKb2tEkzANxBMi9ogC+sq8bQp5Gv60EndcRck8ICrdtSlNw4CCZI8I5yg5wuIrl7WvYYJMnKbDKCL6ayvQWapj2NcWkOkGLDUwDA5hVt2pSIBGaDEdWNdCg3IvObtenEuBb/ANkAjxIW6jVD2te2YcJEiNe4oO0REGCl7Wr4hcbT93q/IV3S9rV8QuNp+71fkKzXjJJsz3el8gVlX2lLxKr2Z7vS+QKyr7Sl4lKcYG5ERaBERAREQZ3ii55DgwvEagTfTyC49DhhBy0haxgab4Svs9j35yTNuHd3dwXL9ntIaLw1uUaackEmlhgYLaU3Og3XP7rsU6AOlMFo4C15Hms/4PT7T5tvG643d6k7JYWZczgL6RvAHDuQXCjQeQYa4tBAHASZtzUObh4zEU4JBmBc7j5rluzmDP1nddpaRI36nxXFLZFNhBBdbwv1s3Dig7LMNJBbTlszLRYHX6KwCgcvs7CW6WG+O5Zm7Gpj+Z0SDFtRodJUu2U0MhjjmEFpMaiYm3eg0V2UPzvFPSzjGgvbuT0dAADKyOEDeQNOSods1uSm0uMtblkQJkX3I7ZLCR1n23W4zw4oLOi4efSQyIy7oub90zKmpUw4LWuNOT1QDHcCP/6A+q4dsxhbEkXBEboEW3KBsunvLuG7SWnh/lCC5raAJIFOSDMRJG/6I1lCA0CnBJgCLnQrOzY9IACXGIuY3Zhw/wAxRuyg2oxzHQ1sEiBeAAPDRBYDhXOPsiRrYbjfzXYbhyDanAOU6a8PPzVbtmUzJl0kzNuJMad5QbLZ6H0WZ+X6TGXLGnBBd6CiR6PKwjXLA8NFxGHJNqZMwbDWJPkopbNpte14JJbOsd99P8xVA2LTt1n28NwAG7dAQaYw7bxTE33Xki/OPJCygIEU+sYAgXOn6+ardsxhJILhJm0ayTOneVxR2RTY4Oa51ota8fl3bkF/oKFgAwZSAAIF23A+lrKS6iWmcpDZad+kiPuqW7KYH587yc2a5HGY00Uv2XTc4uJcSc0aWzTO7vQdCphnDKDTLYki0WiD5hWVKVGes2nIG8CY3/S/ms79k03CC52kbu7u7lZU2bTc5pvbLa0dXTd3lBc0UgYGQGN0TH7XXJZRsIp9WANLdkd3cqq+zw+oH5yO4Aa9W4kf5Qq/wenM5n2iLi0TG7vQaIoF0wzM4ZrgAnvVRfhMwH8PNOkCZO/y8lFXZNNwAlwGXKRIuPqLfSF0/ZlNxJl1zJ04kx5oOhTo0wagDQ1rTdosBq7Tw8lLBRyzlaB/mbl5g+CrpbMYyk+kCcrwQdN4jhw+yh2y2Eg5nAgECIFiZNgOIH9ygsp08O0loFMGSSLTe5lSylh5s2nM2gC5jdxtCynYrPR5Q4zEAmDujgrDsikTcuNySDEXIOkcQEF7aFAAQ2nBsLCDO4eaU/QOYIDMjusBAg8DHJV/hzcjGZnQ2eEkEyRp3DRKuzGODLuGVuURGnJBZUFAEFwZM6mPopfToyMwZmOkxOs/dUDZdOSSXGSSZjUiCdP+FZU2fTcQTJIAG7d/2glow4Jj0UkQdLjSP0XUUYywyNItEjd42WX8Gp3lzzJnUcA3hwHmrHbLpmILgAZtHazcOKDsU8PlkNplvV0aP/H7hcvpYbJBFPI7gBe8Wjx81DNmMaHCXdYtO7+UyN3FQNlMknM68SLXy6brb9EFrqWHsC2ncQBAuB1v+V21lIAQGQ6IiL3kRxvJWN2xmGZc8zr+W9oG7cCVcdm0yxrJMAEHS+Yyd3HggsDKEAAU8o6wFoEb/wDlc1aWHIl2S0O3fyw4fYH6Ko7Ip7y4ukOzW1Exuj+Y2Q7JpmJLrTw3x3dyC/0NFxe6GOJ/MbHcLeQVdE4Z/wCUUzYO0Gm4rrDYBtIuLSetrMcSfuSqHbGpE/mdoBFtwIG6d5QamYeiZysYZ1gC83V7QAIAgBZ8JgmUpyzczc74A/QLSgKFKIMFL2tXxC42n7vV+Qrul7Wr4hcbT93q/IVmvGUk2Z7vS+QKyr7Sl4lV7M93pfIFZV9pS8SlOMK3IiLQIiICIiDDiqOIL5p1MrZFraRfdxVBwmJhvXki8SAAQ0gbu9eopQea2jid9TfpIsLRNr7542Sjh8TNP0j5AdJv3HuvqOC9JEHmGji4/PBveRG68ZfG3epbQxM/nMWgyLDNf+W5hekiDx+i42J9KC64mYG7dHGT4LVXp4g1BldDIAMEcbm41W5Qg82nQxMuLngnI4NMjUxFo3R3qW0cUXXfDbWkExIm8axPNeipQeSzD4stOapDrxBG8eHHyVhoYqDD72i4jw0816KIDSYuIUoiCEUoghSiICIiAiIgIiICIiAiIgKFKICIiCFKIgIiICIiAiIgIiICIiAiIgKFKICIiDBS9rV8QuNp+71fkK7pe1q+IXG0/d6vyFZrxlJNme70vkCsq+0peJVezPd6XyBWVfaUvEpTjCtyIi0CIiAiIgIiICKFKAiIghRmHEI9sgjiFkbgj1bi3dpBmyo0srNdo4HXyMHzXeYcVk6HaAR+VwmOJlG4KDNptoNIcTbxlLQjU1wOikuA3rGMDA1E8Y/yhseUpQwvVAc0Drl2WLXkfqloGvOOI4I2o06EG8fVYXbPOXKHAWANt8AT5Kx2DJjSJdu3OM8xxToai8cVy6s0TJ0ifros5wdoBA1OmsuDv0UNwRFMszAzl1Fur9e5OhrzCJmygVGkAyIOiyjBGQZB+mlybcNfJcv2f1crSAPD/KG7vBOhtLhbvQOHELMMHdxnU2toIMjm4lKOEyuDjlJExA0mBb/SitSlQpUBEUIJRQiCUUIglFCIJRQiCUUIglFCIJRQiCUUIglFCIJRQiCUUIglFClAREQYKXtaviFxtP3er8hXdL2tXxC42n7vV+QrNeMpJsz3el8gVlX2lLxKr2Z7vS+QKyr7Sl4lKcYVuREWgREQEREBERARFCCUREBQpRBCKUQERQgqxLy1trXVNOq8uEmRPALrFvOmUxOu5UsdBBgm+gQegoUMdImCO4qUEoihBKhSoQFKhSgKERAREQEREBERAREQEREBSoRBKKEQSihEEooRBKKEQSihEEooUoCIiDBS9rV8QuNp+71fkK7pe1q+IXG0/d6vyFZrxlJNme70fkCsq+0peJVezPd6XyBWVfaUvEpTjCw2qVClaBERAREQEREELl7w2J3mPKf0XaqxFEPEExr5gj9UE+mZbrNvYXF/BQa7RvnUWvoJ/RVdFMgyJkzLbXjQbtAuRgdZeTIjyI/VXpGj07L9ZttbiyCs2SARYwe603+iznBkhwL9TMgRaIA13KTghBGa3h/ly/onR2vFZlusL6X18EfWa2ZcBAk33cVScHNybngO8G3IKamFzOJmxndvLcuvggtbVaQ0yBmEiVAxDCAczYInXdxXFTDyWkGMvdu4eS5GDt+a8NbMbmkn9U6FxrN3kAcSbGUblEgRO8BZ24EARM/TuI/Vdsw2VzjNiIiPPyToWHEMAJLgIEm+niuw9pJAIJGolZugjLGbcRMcY/ZWU8PDs08YEcbn7J0LBUaQSCCBrfRctrsN5Ecd2sfoqW4KGuBcTmi/guTgLHrXN5jS7jaD/mToaTWZfrNtrfTxT0re0Lidd3FUdEPERMjq3mQb91tFLcGBeb23cJ/cp0LW4hhE5hBAIM2M6Lo1AN/96LO3BCGyZgAacAW/qnQv81t1u8H9E6GhlVrhIcDu174XSyjCnO07hJ8ZMgfSStSiiIiAiIgIiIClQpQFCIgIiICIiAiIgIiICIiAiIgKVClAREQYKXtaviFxtP3er8hXdL2tXxC42n7vV+QrNWMpJsz3el8gVlX2lL5iq9me70vkCsq+0pfMUpxhYbVKItAiIgIiICIiAiIgIiIChSiAiIgIiIKMWeqPELPS/M2514lXYlrzoAWzPeqWMdMtFxxQb0XLJjrRPcukBERBClUY3D+lpOphxYXCzm6jvCtYCAATJjVB0ihEBFKhAREQEREBERAUqEQEREBERAREQFKhEBERAREQSoREBSoUoCIiDBS9rV8QuNp+71fkK7pe1q+IXG0/d6vyFZqxlJNme70vkCsq+0pfMVXsz3el8gVlX2lL5ilOMLDapRFoEREBERAREQcPqNb+ZwE2uYXPp2X67ba3FtyitQzxeIkfQ6hcdEG4kG8f6s33V6RZ0in222AOo36LplVrohwM6QVScKA05dZBHiFzhcKWGSf5Q367z9uSdCwYqmTAcDGpkQNf2K6OIZE5gbTqNypGBHaJtAkDSCB46ocFIguOhB75nyunR2u6QySMwkaidFHSWTAMmx5mAqhg7ulxuSRG6Y/ZS3BgCJMW8nFw+5To7WdJpxOdsTGq7NVoIBcJMRfjp9iqW4MAi5MaeEEAeZUVcE1wAJIhsCPI+P7p0dunYtgBJO4nxAAJ+666SyxzCDvkRrEea5fhAZuRmkHwIA/QI7CguzSdZ+3/AOU6FjqzAAS4QdDOqOqtBILgCBJk7uKqqYMOYGSYE+amrhQ4kyRIggb7Qg6biaZmHtMa3RuIaXBoMzv3Ll+FBm5EknnH7KKOEawggmydDsYqmROdusa7zohxNMAnO2BaZVdDB5Q3M4kiPC0/uUGDiIcZEQYFgAQPuUF3pmX6zbXNwjazCQA4Em4Eqrog619eIFjafspp4bK4HMTAjx8U6HXSafbbrGqnpDL9dttbi25VdDkGXkkzJgXB1HkFLsIDFyCCSPEuzJ0NAIIkXClcsZlAA3KVFFKhSghERAUqEQEUoghERAREQFKhEBERBKKEQSoREBSoUoCIiDBS9rV8QuNp+71fkK7pe1q+IXG0/d6vyFZqxlJNme70vkCsq+0peJVezPd6XyBd1iA+mTYSUpxhYblKq6RT7beadIp9tvNaFqKrpFPtt5p0hnbbzQWoqukU+23mnSKfbbzQWoqukU+23mnSKfbbzQWqFX0in22806RT7beaCxFX0in22806Qztt5oLEVfSKfbbzTpFPtt5oLFKq6RT7beadIp9tvNBYpVXSKfbbzTpFPtt5oLUVXSKfbbzTpFPtt5oLUVXSGdtvNOkM7beaCxFX0hnbbzTpDO23mgsRV9IZ22806Qztt5oLFKq6Qztt5p0in2280FqhV9Ip9tvNOkU+23mgsRV9Ip9tvNOkU+23mgtRVdIp9tvNOkU+23mgsRV9Ip9tvNOkU+23mgsRV9IZ22806Qztt5oLEVfSGdtvNOkM7beaCxFX0hnbbzTpDO23mgsRV9IZ22806Qztt5oLEVfSGdtvNOkM7beaCxFX0hnbbzTpDO23mgsRV9IZ22806Qztt5oLEVfSGdtvNOkM7beaCxSqukM7beadIp9tvNBaiq6RT7beadIp9tvNBlpe1q+IXG0/d6vyFdUCDUqkXEhc7T93q/IVmrGUk2Z7vS+QLnFYjK/KaeawiLm/23L5M3/EONAgYh4A3CP2U+seO+If5KRyiLD6icaz+g6QJIgEwtLA1wacrWS3N1gOXBfJfWPHfEP8lB/xFjTriH+SvrSvqPpj2Wn/AMV6Aot7A5L496w43+u7y/ZT6x474h/knrQ+ttZ/Ec00xlAsY8P+eXevAftWqMY2jlpGmapYercDNFzOq/B+seO+If5Lj8excz6YzxgTzhPWh9fyfxMvohkyzmgazosfpX9J9H6JuT5d0fmlfL/WPHfEP8k9Y8d8Q/yT1ofW8SzK2W0w4yLRu36BUekfecNukandppqvlfrHjviH+SeseO+If5J60Pqz6lmZaGYkdYdk8Db+4XdKT+aiG9aNNbEyO7RfJvWPHfEP8k9Y8d8Q/wAk9aH1FlWrInDWgTA37/7716HoWdkcl8e9Y8d8Q/yT1jx3xD/JPWh9h9CzsjknoW9kcl8e9Y8d8Q/yT1jx3xD/ACT1ofYfQs7I5J6FnZHJfHvWPHfEP8k9Y8d8Q/yT1ofYDRb2RyWBlWpYHDyeIbAmYGu79ivl3rHjviH+SeseO+If5J60PqjKxzNa6gAXT5Dw/uQgqPOmHH1kf/P9x4L5X6x474h/knrHjviH+SetD6gMQ83GG7tN877d3nqrKL3Oc0HD5QSZJG6D3cY5r5X6x474h/knrHjviH+SetD7B6FnZHJPQs7I5L4/6x474h/knrHjviH+SetD7B6FnZHJPQs7I5L4/wCseO+If5J6x474h/knrQ+wehZ2RyVWJZlYSymHEEWjUSJ8pXyT1jx3xD/JPWPHfEP8k9aH1H01SPdrzw7/AA4fa8WVpJLGu9FlJNxlLiLGLW1Mc18p9Y8d8Q/yT1jx3xD/ACT1ofUzVfeMNpz+yGo+Y6Nfju5wvlnrHjviH+SeseO+If5J60PrWFGcOLqQZewI3QP1lZ8W9zKga1jb6dXW372tpqV8t9Y8d8Q/yT1jx3xD/JPWh9drUwGOLWAkCwiVUZOeKItGWRqJvaLL5P6x474h/knrHjviH+SetD6xWs7q0w5sT+Q31m+6LbrypotLshdSDZzSIuI/Kvk3rHjviH+SeseO+If5J60PrOJaWlmWmCCTm6s/ZZjiH5sow4kXI1ty/uCvl/rHjviH+SeseO+If5J60PqtN5LS51CNIEXgm4jiuG1Kob1sMCQLxx7tbfXivlvrHjviH+SeseO+If5J60PqfpXxJw26Yjy0VuHJcRmohgIJuP8AhfJ/WPHfEP8AJPWPHfEP8k9aH1qqMtRo9G3IQczo04eH/KrzWf8Aw2kg9QRGYW0nXffRfKfWPHfEP8k9Y8d8Q/yT1ofU3VnRbDXmNDz00Uemf8NPEwRFh3fbgvlvrHjviH+SeseO+If5J60PqrqhhkUQ5zh1gP5TAsfPkq34hzQScNAHH6d3evl3rHjviH+SeseO+If5J60Pqrqv8MubSbnuA3XS02vEhVvxDwD/AP5jad3C/BfLvWPHfEP8k9Y8d8Q/yT1ofUjWfNsNbwN/Cy6dVcGOccPERAg347rL5X6x474h/knrHjviH+SetD6mMTUAOShEWOuttwHf91bjyThahIgmmbcLL5P6x474h/kod/iHGkQcQ8g6gx+yk8piyPMREW1EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERB/9k=\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/RnTqmagpwhc\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7fe90c740430>" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "[](https://moodle.rwth-aachen.de/mod/page/view.php?id=643794)" + "from IPython.display import YouTubeVideo\n", + "YouTubeVideo('RnTqmagpwhc')" ] }, { @@ -580,10 +607,43 @@ "source": [ "<div style=\"background-color:lightgray;text-align:left\"> <img src=\"../icons/exercise.png\" alt=\"Run\" width=\"50\" height=\"50\">\n", " <a href=\"../exercises/X0601 - Energy supply and dissipated energy.pdf\"><b>Exercise X0601:</b></a> <b>Energy supply, storage and dissipation</b> \n", - "<a href=\"https://moodle.rwth-aachen.de/mod/page/view.php?id=551850\"><img src=\"../icons/bmcs_video.png\" alt=\"Run\" height=\"130\"></a>\n", "</div>" ] }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ebfc3072-6d30-4d04-8372-e12438f34a7e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoXFhsaGRkeHRwfIyciIyIiIjEpKSUnMDI1MDI4Ly05QlBCNThLOSsvRWFFS1NiW11bMkVlbWRYbFBZW1cBERISGRYYLxoaLVc2NT9ZV1dXV1ddV1dXV1dXV1dXV1dXV1dXV11XXVddV1djV1tXV1dXV1dXV1ddV2RXV11XV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAQUBAAAAAAAAAAAAAAAABAECAwYHBf/EAEgQAAIBAgIEBg8GBQQCAwEAAAABAgMREiEEBTFRExZBVJGhBhQiMjVSU2FxgaKjwdHSBxUjc7GyQmJygpIzwvDxY+EkQ0Q0/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECAwT/xAAhEQEBAQACAgICAwAAAAAAAAAAARECIRIxAxNRYQRB8P/aAAwDAQACEQMRAD8A5+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlau1dW0upwVCGOdm7XSyXnbSPW4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+DYOJOsube8p/UOJOsube8p/UBr4Ng4k6y5t7yn9Q4k6y5t7yn9QGvg2DiTrLm3vKf1DiTrLm3vKf1Aa+D06vY/pcJOMqVpRdmscdvSW/cWleS9qPzJsMecD0l2P6V5L24/Mu4u6X5H24/MbFx5YPVXY3pnkfbh8yvFnTfI+3D5jYmPJB6/FfTfIe3D5l3FXTvIe3D5l0x4wPa4p6d5D3kPqLeK2nXtwGf9cPmB44AAAADaPs68JL8ufwOsHJ/s68JL8ufwOsAYZaQk7WZTtpbmeH2UaROlSThNwbqwi2pKOTefdPJHnvW1WlSWBxqWpVqsnOopv8NxyUo5Z4vUBtnbS3MdtLczVo6/nKVa1JKMIVJK7zTgk81e7Tvu3CrrqrCSjLgcV6Kw3d5cK9sVypL9GBtPbS3MdsrczwtWaylXlUi4KPBLDP8ANu00vNaKf9yIOjdkMpU5ylGClGVK6TyUZzwt4r2a2u/SkBtfbS3MdtLczU6/ZDJKUo8DaKrSV5Pu1TnhSj52i3SNfVHCulwaaWkxiov8SDpxbUmt2S9dgNu7ZW5jtpbma9q7Wc6lZUJRWKEXKpLO2FqLhbzvF7LI2k9kMoVq8FGElThVks88VOKdn6b7vWwNq7aW5jtlbmaxLXFVPBJUYy4RQxttQSdPhM/Pyf8ALF2j6ynHQtEm5Rc60lBzm+5V8Tu3/bb1oDZe2o7mO2luZpdDXdWNKE21UlKDecu5zqyjle17JZZolU+yFyqUI2hgqKnd53xTbjZLas1lk150BtXbS3MdsrczUVr6pCC7x2puo1OTxz/ElDDDe8kY9I7IKs1WVNwhgdJqf8sqvBu9/N6Nr8zA3LtpbmO2VuZqnGGp+N+FG0MaTcrKLjPBeWd7O99mViRomsZqlplWUlV4KcsKg7xaUE7R8wGx9tLcx20tzNVpa7rTUEoU1KU5xUm7xajT4S9k3Z5NW9DLdG7Ip1HlSSXBqW3NN0lUvtu1d22ecDbO2luY7aW5mp6Vr6tSpOUlRUlRjWs21ixO2GG9rl9KPQ0PWE6ledFxSdLFwjz39xb0xu2B7nbS3MdtLcyIVAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIoAldtLcx20tzIpQDXNYu+kVX/MzGkX6Z/rVP6mWo899txkiiFrbW0dFissU5bI35N78xXS9YcFKMcN3JNmr6VUekaTOVTkyS3LkRqRV9bsj0qTuqmFboxXxPU1R2RV3NRqJVFtysp2W2y/ifmIVLQ6fiIprGChCnUp2WCX8PI+T9DUsqXjZ3re6NSM4qUWnFq6a5TNE1jUWlSqqq1fBwjaTytdXfXc97RL40VNToow1I2qxe/ImwgYdNhbBLczWI4uACoAADaPs68JR/Ln8DrByf7OvCUfy5/A6wBCr6NjbvFSV9js11li0KysqcUs1ZJbHtJ5UDz+082+Djdqzdlmtz8xgramhUqRqTg3KNrLFllsyvbaeuAPN0bV3BJqEX3UnJtyu3J7W2y9aFk1gjaW1WVn6d5PAHmPVkcanwaxJYVssle+zZe/KKGrI08WGC7uUpSvZ3cnd+q72HpgDzKOrlTlOcYvFNrE3K+zJJbktxe9Cu2+Djd7XZZ8h6AAgPQ73ThFp2vdLO2wPRLxwuCw7srdBPAHnvQrq3Bxs8rWWzb+o7TzTwRvHJOyyXm3HoADy1qyPCcJwaxWUeSySbasuR3bz85k7SWf4cc9uSzvvPQAHnrQ828EbtWeSzXn3lYaI45RgkvNZE8AefHQrWSpxSV7WSyvtHaf/AI45LDsWzd6D0AB4+l6mhWa4SDdla2KytusnYy0NXcHKcop4qksUm5Xbezl2LzHpkXSas1NRp2vhcnfZtSXxAs4CW7rHAS3dZgWm1HiWSaXcNxyk7R2+t+v1EvRK0p3xK3ma2ZtevZtAx8BLd1jgJbuslQqKV7NPC7O3I9tn0ovAhcBLd1jgJbusmgCFwEt3WOAlu6yaAIXAS3dY4CW7rJoAhcBLd1jgJbusmgCFwEt3WOAlu6yaAIXAS3dY4CW7rJoAhcBLd1jgJbusmgCFwEt3WOAlu6yaAIXAS3dY4CW7rJpQDS9OVq9RfzMsii/WP/8ATV/rZjizz/228LX+mKFaCteUY57rP/o8GjHE5b9pO7JnfSnZ3tFJ+Z5nl0KmGVzrJ0zvb2dH0Cc6Llje3Z5jJX0FR0able6V1/0WavqtPJIz6zqvgHG9nKyt+pI6WTEXVuta1CjJU8KTlibaT81rG0dieuKukVZU6qg+5xJqNmrf9mkym1FRVsN75cr/AOjY+wSV9Nt/45fA6Y466JTgYtZw/DX9SJdNGHWP+k/Sv1KrhIAIAAA2j7OvCUfy5/A6wcn+zrwlH8ufwOsAAAAAAAAAAAAAAAAAAAAAAAETSKClUUsbjhV5K+TX/L/8RKAqAABQqAKJWVlsMMq8VO1nfJXtlnszMxjdCDeJxTd07+gDztVaF2vV0mTrSnwlTE1K2UrLZ5rNL1Hp8JHeukx0O+q/1/7YmYC3hI710jhI710lwAt4SO9dJVVFvRE0vWVOlLAsVSq9lOCvJ+nkivO7IwLRK+kZ6RPg4eSpSzf9dTa/QrelgT6WkQm5KE4yccpJNOz8+4ynl1dVxjaWjKNKpTyhZWi42XcyS2r9HmSdA01Vk004VIZVKb2xfxW58oEsFCoAAAAAAAAAAAChUoBpGs5f/Krf1s8vW2mcFQk07SllH0/9G+1dTaPOUpyp3lJ3bxPb0kXSexbQqzTqUcVtndy+Zz8O2tcfqO/nMVjr/ErV3Nvbn8ynErV3Nvbn8zoxjnGq4uUXadnH9DBpuk46kc7qPL5zp67DNXL/APP7c/mc57LNEp6Lp9WlRjghHDZXb2pPlMyd61b1jzm8kejqbWlTRanCwezJrxlyo8bhGVVVpWub1jHeNGqxqU4zi7xklJehmHWf+i/Sv1OSaF2V6bQpxpU61oR2LCnbqMlXsy0+atKvl/RH5EajwQAAAAG0fZ14Sj+XP4HWDk/2deEo/lz+B1gAAAAAAA8vXumVKMIOm7Ntp5J8h4333pHjr/FAbaDUvvvSPHX+KH33pHjr/FAbaDUvvvSPHX+KH33pHjr/ABQG2g1L770jx1/ih996R46/xQG2g1L770jx1/ih996R46/xQG2lDU/vvSPHX+KH33pHjr/FAbDpGjxqTksdpYLWUmmk282k80SzwNRaXOtpNR1HdqnFLK3KzYAAAAAoABjdeClhxK+65kME9EjKeNt3y9X/ACwFaHfVf6/9sTMYKK7qr/X/ALYmbAtyAwaZp9Ogljlm+9ik5Sk/5YrNkTBpOkd83o1LdFp1ZLzy2Q9V350Wamgqkq2kNf6k2oXXe04dwreZ4XL+49XAtyAw6JoVOhHDTgop5t8snvk9rfnZnKYFuQwLcgKQ2y9PwRF07QnNqpSlgrQ72XI14s1yxfVtRIhBXlktvwRfgW5AQNH1vTl3FW9KqnhlBp5P+rZZ8jPRPJ1nqlVpOUJYJtcqvFtWtdbuTIlav0/hsUZRwVoZTpt7POnyxfIwJgAAAAAAAAAAFCpQAVAAAAAcg7PPClb0Q/ajr5yDs88KVvRD9qA14AAAAAAAAAAbR9nXhKP5c/gdYOT/AGdeEo/lz+B1gAAAABQDy+yPD2rU2cJhlwV/Htl5uk55j1l4sOiB0PXuiVK0IKnHE1Jt5pch4v3NpHk+tfMDVsesvFh0QGPWXiw6IG0/c2keT618x9zaR5PrXzA1bHrLxYdEBj1l4sOiBtP3NpHk+tfMfc2keT618wNWx6y8WHRAY9ZeLDogbT9zaR5PrXzH3NpHk+tfMDVsesvFh0QGPWXiw6IG0/c2keT618x9zaR5PrXzA1bHrLxYdEBj1l4sOiBtP3NpHk+tfMfc2keT9pfMDzexSWsO3YY1Hg7PhLYL4bO2zO1zdH21ycD7R5eodFnR0moqkcLdOLXLys2ACH/8r/we0Qqn3nw/cdq8DZd9ivfltY9ooBE0mlUnCnFqN8ac2tiSz5duaSJFClgiopt25WXlQBQqUAw0O+q/1/7YkfXOkOno08DtOdqdP+ubwx62SKHfVf6/9sSHpX4umUaf8NKLrT/qfcw/3v8AtQEvRNHjSjCnFWjCEYr0LIkFn8XqLwAAAshtl6fgi8shtl6fgi8Cx98vQ/gRdYaBwuGcJcHWh3k/1UlyxfKviSn3y9D+BeBC1fp/C4oTjwdaFsdO+zc4vli7ZP4k0haw0DhcM4S4OtDOnUSvbemuWLtmvjmU1fp/CuVOpHg68O/he+XJKL5Yvf6nmBOAAAAAAAAKFSgAqUKgAAAOQdnnhSt6IftR185B2eeFK3oh+1Aa8AAAAAAAAAANo+zrwlH8ufwOsHJ/s68JR/Ln8DrAAAAAABhraVTpyjGUknJNpb0rX/VFvbtLx0Y9JhVdWLg+57m/T3V/USwMHbtLx0O3aXjozgDB27S8dDt2l46M4Awdu0vHQ7dpeOjOAMHbtLx0O3aXjozgDB27S8dDt2l46M4Ai9s0cWPFHFa17Z2L+3aXjox6Hjx1MUZLFJtXeSSslb02v6yWBFnrKjG16iWJ2W3NkpGHSqzhFOMcTbSSz32/9mZbMwBUAAUKgDBQ76r/AF/7YkPU34jr6R5Wo1H8uF4x9T7qX9xTWOkOnR0hw7+U1CH9c1CK63f1E7RNHjRpQpR72EVFehKwF/8AF6kXln8XqReAAAFkNsvT8EXlkNsvT8EXgWPvl6H8C8sffL0P4F4Ahaw0BVsMoy4OtC7p1Es4+Zrli+Vf+iaAIOr9OdRunViqdeC7qF7prxoPli9/qZOImn6EqyTUnCpDOnUW2L+KfKizQNOc26VVKFeC7qPJJeNB8sX1coE4FCoAAAChUoBUFCoAAADkHZ54UreiH7UdfOQdnnhSt6IftQGvAAAAAAAAAADaPs68JR/Ln8DrByf7OvCUfy5/A6wAAAAAAUKlABUAAAAAAAAAAChUoAKlCoFAVAFCpQqAKFSgHj1FwunRp8lKTryXncFCF/af9p7BBo6HOFatUUot1ZRecXdRUUktued36yR+Lvh0P5gZP4vUXkGGkyeacNqj3r5c1y+dGe1XfDofzAzgwWq74dD+ZbUnUjFybhZeZ/MDNDbL0/BF5DjVndWlDur2yfJt5fMZfxd8Oh/MDI++XofwLyA9Jl3TvB4Lp5PfZ8u+LJH4u+HQ/mBnBg/F3w6H8x+Lvh0P5gZyJp+gxrJO7hUg706i2wfxT5VymT8XfDofzH4u+HQ/mBH0HTnKTo1koV4q7XJOPjQfKutcpPPL1nosqsYKUowni/DqRTxQlZ5rPZlmtjM+j1qklbFTco2u8LV+S6V96YE0oYXwu+n0P5kDSYac69N0alFUsPd4k3d3yslns84HrFCl9ivmVAFQAAAAHIOzzwpW9EP2o6+cg7PPClb0Q/agNeAAAAAAAAAAG0fZ14Sj+XP4HWDkv2etrWKsrvg55XtuOp8JPyftIDODBwk/J+0hwk/J+0gM4MHCT8n7SHCT8n7SAzFTBwk/J+0hwk/J+0gM4MHCT8n7SHC1PJe0gM4MHC1PJe0hwtTyXtIDODBwtTyXtIcLU8l7SAzgwcLU8l7SHC1PJe0gM5Qw8LU8l7SHC1PJe0gMxUwcLU8l7SHC1PJe0gM4MHC1PJe0hwtTyXtIDMVMHC1PJe0hwtTyXtIDOUMPC1PJe0hwtTyXtIDOUMPC1PJe0hwtTyXtIC/gY+Ktt/WZDBwtTyXtIcLU8l7SAzls4qSaauntRi4Wp5L2kOFqeS9pAXLR4JpqKur2e6+0yGHhankvaQ4Wp5L2kBe6EHfuVnty2l5h4Wp5L2kOFqeS9pAZwYOFqeS9pDhankvaQGcGDhankvaQ4Wp5L2kBllBO11e2aEKajsSV9xi4Wp5L2kOFqeS9pAWVtHm5OSm8Nn3G92/66zBLRKzTtVw3vbbkni/S8f8AElcLU8l7SHC1PJe0gMdGhOM7yliWdvNt+DS9RLMHC1PJe0hwtTyXtIDMVMHC1PJe0hwtTyXtIDODBwtTyXtIcLU8l7SAznIOzzwpW9EP2o6xwtTyXtI5N2ctvWda6s7Qyvf+FAa+AAAAAAAAAANo+zrwlH8ufwOsHJ/s68JR/Ln8DrAFsnkzztF1m506UpKzlwal6ZpNNea/IekYlo0FhtFJRd0lkr7wIel6bUhUlCKX/wBSWWac5ON3nnaxknrJQqcFKLx5Z5JSurqyvy2l/izFT0qhUblKCTdmrq8mk7JvLLO9jNPT6F4vEpOTjhaV9uzP19YCnrGMqbqYZKN4qN/4sVlG3md1tLKutoQveM8rJrLKTjjtt3eoKvouFwXB4Z3k1hykmlJt+qSfrKyq6LwXCPg+DawXsrWV1b1WfQBZPW0L4bSTy2pePgds87PdsuiyGt71JLBKUWoOCis2niu9uzuTI62iJNvg0ltdvO3+qfQUVTRJWsqbvLLudsk35t7fWBllp/4eNQl/qKmrtZvFgb27EzBomt1OFNShJ1JKN0lvUW3t2d2jPKvQVGUkk6atKyW1yzVlvba6Smj0qUm1wUIyptO3cuztls2ZZAVq6yjGbgoTlhlGLaStik0ks3/MjBU1rlBxg7OVpJ2vhcJTyzt/CZ60tH4SWPBjSWJtZ2XdK79V/UY4VtEaSTpWaxWstkbrqzAxV9dRwSdOMm8MnBtZPCm3yrZYr97/AIjWFyjZYUlnKV5qVs9ncMQ0nRZ3c404ynKWUkrywtxv60mVhU0eUIznSjHhJSjnG+cHJ3btl3reYGWlpzqV3CK7nBN3a/ijJRfL530GKhrdSpxbhJvDTxOKVlKWHLN/zpmadWjGM60YpvvW1HO7aVny7iPKtQShalByaUWlbuVFSks7Zq9NoC+WuYYZOMJNxpyqWyWUUnZ7tu307jNoGmOpijJWknL0NKcorl/lMOiUtHlLFGKUpRs42WSwptbNlpLzZlaOl0ISnZRgo2WJLvr3l0bWBWemzVPSJdzenNxirbUknnntzMy01OGJQm+6lFpK7Ti2ns9BijW0VttYLu7fc7cs+pPoMsNOoJJKcUrPzWte993ey6GBdW0hqNOSVsUopqSzSfxMWk6yjSm4OEnZXurW2Slv3QkVraXRlSjUyqRxWjbPu1fozTzMar6NVUJTwYp2VpWvdrZ0St6/OBd96Rx4HCS7rDfK3fKO/e10ldI1lGnVVNxk27bLWza8/nKTlosZZqCli8XPFePXdx6UUnU0ec43jGTk4qLw3d2nJXyyyi8wKUNZqrUpqC7mV1K+1PCpW27miyjrW8njjhhbLls06id/SqZl4TRqdRK0IzWStHPl2ZekpTq6LKSceDbcrJpfxf8AJdYFamnt0VUhBpuUYpSt/E0r9ZHp63wv8XOOGLxKNs3jvdXfiGfSK2j0aco4Y2h3eBR5VZ5Lfmn6yypXpU2oypRU7RukrpRnJx22zzvl5wM+jafwjmuDnHCrvFb1cvmMVLXEJuMVCbk0nay71pO+3+ZF9Gpo6xQo4FJwvaNleNsv3dZg0Spoqo0naCUUmsSV4vCs3luazAujrdNKXBztKMZKOV7SU3e990GZPvSN4xUJuTvllkss35u6Rir19FjTlJRhLBHKNs8lKyWXmkukyzejwlFSjTTVpRyzTd9mW6PUBjp64Uop8FNu0W7WspSUWle+20kStK0tUlFuMnibVlbK0XL9IsjOroibuoJpxhdxtfJSik+Vd1Es0nTKNWVO/dQj+Ji5LO8VtXdbQJktLVotQnJSSaai9j3lZV2q8aeWGUJy894uK6O6LJaxoRV3Uila9+S23LpRnwRclOybtZS5bPz9AEOWtoptOE8m1fLkbjv3rrMuj6fGpLDhlF2bztyYd39cS96HSe2nB+pb7/q2HoVLPuIq6tkuTL5LoAtradGEpKzeFJyeVlfZtZGo61UpPuW8WHBG1pbG2nd2/hZOno1OUsUoRcrWu1nbcWdpUrW4OFrp96tq2ARFrZScHFNJtYsVtjjKWWf8pRa5i9lOb2pLK7km1ZL+1u5NWiUr34OGeferz/N9JR6DRas6UGnyYV/zkAj6Xp8oSjGML3VOXqlNRtbfmZNE1hGs0oxlbCndrJXSdvTZmepQhK2KEXbZdev4FKWjU4O8YRi7KN0kslsXoAzAAAAAByDs88KVvRD9qOvnIOzzwpW9EP2oDXgAAAAAAAAABtH2deEo/lz+B1g5P9nXhKP5c/gdYAFDHXm4wlKKu0m0r2u/SQaeuINJO6m8rYWsLvZJp+dk3GuPC8psZ1q6mla8rWS77kUsS62W0tVUoJKOJJOLSxO142SfpskiNo+vIygsUXjwY2ls73Fl6jJDXEc8aa2ZJbE4qTu+XaPKN/Vz9YyR1RRSatKzi42xPY0o/pFdBmnocZRjFufcPEpYnivmtvobXrMWi6zhWlKMYyvFpO9uVyjfbsvFk0rHLjeNyob1ZTcsV53TumpNNO7eXS+kseq1wlOak+4cmrt7ZSxO+9X6D0CgZRqWhRVF0pJNSu5WyTbd3bd5t1kUhoEY1FO7bvd4ne7thXQv1JYAiaRq6nUbcsWe20muRr4lHq6m8V8bxK0u6edtjfn85MAED7ppZ9/3W3unm7uSb86bbRklq+m4KDTcbyebeblfFf04n0ksoBH7ShglDO0mm3fNtWtn/augxvVdLFi7q/8AU7fxcn98ukmFQIujaGoSby72MFt72K5d78/oMMtT0XHC1LDkrYnsSaS6GTwBC+6qe+ey3fPc1+kmYlqaCm3ngcXFxu9ksV/3P0HpADBPRIypqDcmk73cniv6THQ1bTpyUo401/M88krPeu5RMAEOpq2nKeN4sV75Sdr3i9n9kegrT1dTi4tYrxw2z2YU0uqTJYAhy1bTdThHixXb77LNNbN1myn3ZT/D798HbDebdrNNfoiaUAiV9W0qjniT7vbZvbZRbW52SRfX0KFSWJ3v3Oadu9eJdZJAEbRtBhSVoYrWSs5NrJW2b7JGL7qo2tZ7MO13cbJYX5rJZeYnACBPVNKTbeO7TV8T2PFf97MtXQITkpNyuoqOT5Ff6mSgBEjq6nGSksSatmpPPJRz81ox6C16rptKPdWUVHvnsTur+smgCDDVVKKSTmrNNWm8mla69K2kyMbcrfpZcAKAqABQqAAAAAFAKgAAAAByDs88KVvRD9qOvnIOzzwpW9EP2oDXgAAAAAAAAABtH2deEo/lz+B1g5P9nXhKP5c/gdYAtlFNWauizteGXcRy2ZLIvnG6au151tPFjpNWEKM7zk3GblGV884r1PcFlx6sdDpJpqnBWVl3KyW4LRKa2U48n8K5MkQamm1ZaNXmoqM4qWBJSbT86azfoLKmn1aUWowxqM8K75tpWu7/AN3V0MPK/l6UdFpp3VOKd08ktqz/AFb6TKeT941ngkorC03JYJXXdQTvflSlLoC1lVwOWCOWFbJZN8rW22XJvBbb7esDzdN0+rTwqNNNuGJ3xWb5UrLb6THLWdW8kqa7lTd2pWla+yy8y278gj1geVT1lVbqrBG9NKWx5rJu2/Jv1k/R6kpXxWvk7WatfeBmKnm168sdRNzVnGFNQ2vFbuvPZv0LCyVo2kcJisnaLcb+dNr4ASChgpV5SlZwa89n8iFVr1oym1icIVop5Xcoywppb7Ym/UgPVBDVRxtjk7QjeW9tvJfr1Furas5Osql7xqWSyyi4xfJ52wJoBUAAAAAAAAAUKlABUoVAAAAAAAAAAAAAAAAAAAARNM0ng5RbkkrSdn/Fa3zZLKSimrNXQCLukypQqAAAA5B2eeFK3oh+1HXzkHZ54UreiH7UBrwAAAAAAAAAA2j7OvCUfy5/A6wcn+zrwlH8ufwOsAWVaihFyd7JXdldmFabTcnFNtpQeSeybtEzVI4otbLpojUtXxhKEk33EMFn/FndN+fb0gSZ1IxTlJpKKu2+RecspaTGeKz712d/+bMylbR1ONSLeVROLss1dW9ZDqaoUsTx99nlFbbwee9dwsvOB6DqRVryWezPaOEj4y6SJX1ZCdOEL4cCsnFJWy5N2aT/ALUY6uqIyk3i5b2aTztFdHcrLeBMoaRGom4vY2uh26Mi/hY+Muki6NoHByqNTuqjbaa2N32ea3JsyvysiV9SfhyUZNtwaSdrPKaSvtt+IwJ8oUrN4YO+b2O7WfreRko14zjGUXlJJrfmr7PQedT1S8d3azSbaS75NOy3LJenMz6FoPBTb5FGMV/M0rOXmbSS/tAmcJHxl0mKrXp0YSk7JJ5pb35t5C+5Y3bxKzd2nBNPObd09v8AqPoRR6jjnaebxK+FXs3fPe1bJ7gPQr6RGnCU5PKKbdivDwvbEk0lJq+xPYzz5ali4OOO18WeFXaaaz3tX2kitoCnPHis7RWxNdzi2/5PqAy1a8Kckn31R8nLayv6FkUq6bCEsLv/AA5pZd1LCs/SYK+qozhCGJpQpyprK7s7Z3/tRb912/jbzTtZZtVOE/XID0FNNXurekxUNLhUipRlk77cnk2n1oj0tXpUODvhvZ5Z4bO8Y+dJJLzpEf7jV4vhO9k5LuVbOTk11gepwsbXxK2+44SOeay257DzZamThKGPKVk7RS5JL/f1GOlqdt1MbXdSvmk01eWTXKu6e3lfmA9KrpcISUZSzdsvTyvzZGXEt63+oiaRq9TlF3tZJWwp7Nn6luh6sjSk3fF3KjdxV9iTz227lZATOFj4y6SlOtGTwprEldq+aTuk+pnmR1GkkuE2JJdyrqygl1U0StF0BUm2pXbjh2LfJr9wErhY+Mukqpp7Gny7TyqeooxUljviw54Vk00+judnnJGj6sVOopxlsi4JKKSSajsS/o6wJVOvGcpxi7uDtLzO1/iZSHo+g8HUxqbd4qMk7900275vLa8lvJgAAAAAAAAAAAAAAAAAAAAAAAAAAADkHZ54UreiH7UdfOQdnnhSt6IftQGvAAAAAAAAAADaPs68JR/Ln8DrByf7OvCUfy5/A6wAAAAAAAABQqABQFQBQFQAAAAoVAFCoAAAAChUoBUoABUAAUKlCoAAAAAAAAAAAAAAAAAAAAAAAAAAADkHZ54UreiH7UdfOQdnnhSt6IftQGvAAAAAAAAAADaPs68JR/Ln8DrByf7OvCUfy5/A6wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkHZ54UreiH7UdfOQdnnhSt6IftQGvAAAAAAAAAADaPs68JR/Ln8DrByf7OvCS/Ln8DrAAAAAAAAAAAAAUKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQdnnhSt6IftR185B2eeFK3oh+1Aa8AAAAAAAAAANo+zvwkvy5/A6tZ710HKfs68JL8ufwOsAW2e/qFnv6jz9L0+VKvZq9PBFy3pynhT8+0xQ13linScY4VK+JPJwc1l6IvqA9Wz39Qs9/Ued96tThCdJwcmlfEms7Wz357HbzXL9I1lglP8ADcoxkoOWJLu2k0rPk7pZ+cCdZ7+oWe/qIENap3Tg1JSjFq983Pg8t65TFLXajZzpuMXFzvfkV9mVr5bL8vKB6lnv6hZ7+ojav03h4yeFxcXZp33J5XS3ksC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXAC2z39Qs9/UXFALbPf1Cz39RqWs9P0nHWhSqyT7YUI25E4N26SusdeValPR3Rm49xCdVr+aShbpuY849U/ic7nfttlnv6itnv6jTp6bWw6TPh66lCrUjBRinBKLyxO2Sz3mzUdN/DptpzcopuULYdnIal1z+X4r8c21Ls9/ULPf1GKhpCnfJxtyStmR9Z8K6NRUb47xtbbtV+q5qTvHDetTLPf1Cz39Rq1elrOK/DlOWc3ZuPI2opPlTTT9KK1VpkXLBVm852xSTWHg1hfpxtpec6fX+45/Z+m0We/qK2e/qPLpV6qhG7zwxk7tbrP5l0607ZSdrra8+W5nwrXm9Gz39RyPs88J1vRD9qOp6HOTbu7q110/+jlnZ54UreiH7UZsxqXWvAAigAAAAAAANo+zrwkvy5/A6ucI0HT6ujVOEozcJ2autzPS426w51Poj8gOvVtDpzmpygnKOx577rLlzzKR0GkrdwskkvQk4rqbRyLjdrDnU+iPyHG7WHOp9EfkB1qGrKEWmqaunfa83yX32srX2WVi+roFKcnKVNOTVnfovbfbK+05Fxu1hzqfRH5DjdrDnU+iPyA61910O4/DXcO6ze3Fiu97xK93ylz1fRbi3TTwqy3Wz2rY9r27zkfG7WHOp9EfkON2sOdT6I/IDsGj6NClHDBWV7vNtt7M289iXQZjjPG7WHOp9EfkON2sOdT6I/IDswOM8btYc6n0R+Q43aw51Poj8gOzA4zxu1hzqfRH5DjdrDnU+iPyA7MDjPG7WHOp9EfkON2sOdT6I/IDswOM8btYc6n0R+Q43aw51Poj8gOzA4zxu1hzqfRH5DjdrDnU+iPyA7MDjPG7WHOp9EfkON2sOdT6I/IDswOM8btYc6n0R+Q43aw51Poj8gOzA4zxu1hzqfRH5DjdrDnU+iPyA7MDjPG7WHOp9EfkON2sOdT6I/IDswOM8btYc6n0R+Q43aw51Poj8gOzA4zxu1hzqfRH5DjdrDnU+iPyA7MDjPG7WHOp9EfkON2sOdT6I/IDswOM8btYc6n0R+Q43aw51Poj8gOzA4zxu1hzqfRH5DjdrDnU+iPyA7MUONcbtYc6n0R+Q43aw51Poj8gOnz1FF1XU4R3daNa1ltSat1mPi3TUa0Yza4WcZ7O9UZYrLzXv0nNON2sOdT6I/IcbtYc6n0R+RPGOv3c/wA/6Okvsel+Ko6VUjCrKUpRUY/xbVf0E2Oq4xjGEGkoQUI3ipNW879ZynjdrDnU+iPyHG7WHOp9EfkWdemefycuczlXV6er3B3jOKe9U4omqNm3vON8btYc6n0R+Q43aw51Poj8i265yY7KRHq9P+J8i9SOS8btYc6n0R+Q43aw51Poj8hLZ6LJXW3oKz7p536x2kvGds8vSck43aw51Poj8hxu1hzqfRH5F8qeMdipUlG/nt+ljknZ54UreiH7UYON2sOdT6I/I8zTdMqaRUdStNzm7Xk+W2RlWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//9k=\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/5637oi3pJbM\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7fe90c722dc0>" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('5637oi3pJbM')" + ] + }, { "cell_type": "markdown", "id": "blocked-color", -- GitLab