From ce6d283bc29438fcbac1d7cfacb237056889cd90 Mon Sep 17 00:00:00 2001 From: rch <rostislav.chudoba@rwth-aachen.de> Date: Wed, 6 May 2020 10:09:33 +0200 Subject: [PATCH] after lesson 5 --- .../4_1_PO_multilinear_unloading.ipynb | 543 ++ bmcs_course/4_1_Pullout_with_unloading.ipynb | 456 -- ...slip.ipynb => 4_2_BS_elasto_plastic.ipynb} | 7 + bmcs_course/4_3_BS_EP_SH_IK.ipynb | 1123 +++ ...tropic_kinematic_hardening_softening.ipynb | 6022 ----------------- index.ipynb | 20 +- 6 files changed, 1692 insertions(+), 6479 deletions(-) create mode 100644 bmcs_course/4_1_PO_multilinear_unloading.ipynb delete mode 100644 bmcs_course/4_1_Pullout_with_unloading.ipynb rename bmcs_course/{4_2_BS_elastic_plastic_slip.ipynb => 4_2_BS_elasto_plastic.ipynb} (99%) create mode 100644 bmcs_course/4_3_BS_EP_SH_IK.ipynb delete mode 100644 bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb diff --git a/bmcs_course/4_1_PO_multilinear_unloading.ipynb b/bmcs_course/4_1_PO_multilinear_unloading.ipynb new file mode 100644 index 0000000..0e053f8 --- /dev/null +++ b/bmcs_course/4_1_PO_multilinear_unloading.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 4.1: Pull-out multilinear bond-slip law unloading\n", + "\n", + "This notebook uses the `bmcs` package to show the unphysical \n", + "nature of a model without physical representation of irreversible\n", + "processes in the material structure. It unloads along the original\n", + "pull-out curve.\n", + "\n", + "Further, the notebook shows how to define non-monotonic loading scenario\n", + "using a time-function and how to use the function of the `PullOutModel`\n", + "to plot the results into a prepared plotting area." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from bmcs.api import PullOutModel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model parameters\n", + "Let us consider the case of the CFRP sheet debonding from concrete" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "A_f = 16.67 # [mm^2]\n", + "A_m = 1540.0 # [mm^2]\n", + "p = 1.0 #\n", + "E_f = 170000 # [MPa]\n", + "E_m = 28000 # [MPa]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Construct the finite element pullout model\n", + "The model uses a multilinear bond-slip law specified by the attributes \n", + "s_arr and tau_arr specifying the pairs of slip and bond stress values." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\n", + " \\begin{array}{lrrl}\\hline\n", + " \\textrm{k_max} & k_{\\max} = 200 & \\textrm{[-]} & \\textrm{maximum number of iterations} \\\\\n", + " \\textrm{tolerance} & \\epsilon = 0.0001 & \\textrm{[-]} & \\textrm{required accuracy} \\\\\n", + " \\textrm{n_e_x} & n_\\mathrm{E} = 50 & \\textrm{[-]} & \\textrm{number of finite elements along the embedded length} \\\\\n", + " \\textrm{mats_eval_type} & \\textrm{multilinear} & & \\textrm{material model type} \\\\\n", + " \\textrm{control_variable} & \\textrm{u} & & \\textrm{displacement or force control: [u|f]} \\\\\n", + " \\textrm{w_max} & w_{\\max} = 1.84 & \\textrm{[mm]} & \\textrm{maximum pullout slip} \\\\\n", + " \\textrm{fixed_boundary} & \\textrm{non-loaded end (matrix)} & & \\textrm{which side of the specimen is fixed [non-loaded end [matrix], loaded end [matrix], non-loaded end [reinf]]} \\\\\n", + " \\hline\n", + " \\textbf{loading_scenario} & \\textrm{LoadingScenario} & & \\textrm{object defining the loading scenario} \\\\\n", + " \\textbf{cross_section} & \\textrm{CrossSection} & & \\textrm{cross section parameters} \\\\\n", + " \\textbf{geometry} & \\textrm{Geometry} & & \\textrm{geometry parameters of the boundary value problem} \\\\\n", + " \\textbf{mats_eval} & \\textrm{MATSBondSlipMultiLinear} & & \\textrm{material model of the interface} \\\\\n", + " \\hline\n", + " \\end{array}\n", + " " + ], + "text/plain": [ + "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f8ead32b2f0>" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm = PullOutModel(mats_eval_type='multilinear',\n", + " n_e_x=50, k_max=200, w_max=1.84)\n", + "pm.sim.tline.step = 0.001\n", + "pm.mats_eval.s_tau_table = [[0, 0.1, 0.4, 4],\n", + " [0, 800, 0, 0]]\n", + "# w = pm.get_window()\n", + "# w.configure_traits()\n", + "pm" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\n", + " \\begin{array}{lrrl}\\hline\n", + " \\textrm{loading_type} & option = monotonic & \\textrm{[-]} & \\textrm{possible values: [monotonic, cyclic]} \\\\\n", + " \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 1 & \\textrm{[-]} & \\textrm{for cyclic loading} \\\\\n", + " \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level} \\\\\n", + " \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.5 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level} \\\\\n", + " \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch} \\\\\n", + " \\textrm{amplitude_type} & option = increasing & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]} \\\\\n", + " \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]} \\\\\n", + " \\hline\n", + " \\hline\n", + " \\end{array}\n", + " " + ], + "text/plain": [ + "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f8eb1ee5b30>" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXhU9d3+8feHJeyEJYQthLBjIAEhEMR9B7QiSFurda9oW9s+z9MKUVGxWEStrbYuPGi1aq08LWETWdyVqihgJRsEQtgSdgIEErLO9/dH+PWKGMwAk5zMzP26rlxmcg4z99eEm8PhnM+Ycw4REQl+jbwOICIigaFCFxEJESp0EZEQoUIXEQkRKnQRkRDRxKsXjoqKcnFxcV69vIhIUFq7du1+51ynmrZ5VuhxcXGsWbPGq5cXEQlKZrbtZNt0ykVEJESo0EVEQoQKXUQkRKjQRURChApdRCRE1FroZvayme01s4yTbDcz+5OZ5ZhZmpkNC3xMERGpjT9H6H8FxnzH9rFAv+Mfk4EXzjyWiIicqloL3Tn3CVDwHbuMB15zVVYB7cysa6ACioiEivJKH89/lMO6HYfq5PkDcQ69O7Cj2uO841/7FjObbGZrzGzNvn37AvDSIiLBISP/MNc+9ylPLM9mWcbuOnmNQNwpajV8rcZ3zXDOzQHmACQlJemdNUQk5JWUV/LnDzYx++Nc2reM4IUbhzE2oW5OYgSi0POAHtUexwA7A/C8IiJBbc3WAqakppG7r4jvD49h2lXxRLZsWmevF4hCXwzcY2ZzgWTgsHNuVwCeV0QkKB0treDJ5Rt4bdU2ukW24LXbR3JB/xrnaQVUrYVuZm8CFwFRZpYHPAw0BXDOzQaWAuOAHKAYuK2uwoqINHQfb9zH/fPT2Xn4GLecE8e9Vw6gVbP6mYNY66s4535Uy3YH/DxgiUREgtCh4jJmLFlP6ld59OnUin/edQ5JcR3qNYNn43NFRELFsvRdPLgok4PFZdxzcV/uuaQvzZs2rvccKnQRkdO0t7CEhxZlsjxzN4O7t+XV20cwqFukZ3lU6CIip8g5x7y1ecxYkkVJhY+pYwZy5/m9aNLY2/FYKnQRkVOwo6CY+xeks3LTfkbGdWDWdQn07tTa61iACl1ExC+VPsfrn2/liRXZGDBj/CBuTO5Jo0Y13VvpDRW6iEgtcvYeYWpqOmu3HeTC/p2YOTGB7u1aeB3rW1ToIiInUV7p438/3syf3s+hZbPG/PGHQ7h2aHfMGs5ReXUqdBGRGqTnHebeeevYsPsIVyV25ZFrBhHVupnXsb6TCl1EpJqS8kqefm8TL67MpWOrCP73puFcOaiL17H8okIXETnui9wDpMxPZ8v+In6Y1IP7rzqLyBZ1N0wr0FToIhL2jpSU88TybF5ftY0eHVrwxk+SObdvlNexTpkKXUTC2ocb9vLAgnR2FZZwx3m9+PUV/WkZEZzVGJypRUTOUEFRGTOWZLHg3/n0i25N6k9HMyy2vdexzogKXUTCinOOt9N38fCiTA4fK+eXl/bj5xf3oVmT+h+mFWgqdBEJG3sKS5i2MIN3s/aQGBPJ336SzFld23odK2BU6CIS8pxz/N/qHfxu6XrKKnzcP24gt5/r/TCtQFOhi0hI236gmJT5aXy2+QDJvTrw+HWJxEW18jpWnVChi0hIqvQ5Xvl0C79/J5smjRoxc0IC14/o0aCGaQWaCl1EQs7GPUeYMi+Nr3cc4pKB0fxuwmC6Rja8YVqBpkIXkZBRVuHjhY828+yHm2jTvCnPXD+Ua4Z0a7DDtAJNhS4iIWHdjkNMmZdG9p4jXDOkGw9/L56ODXyYVqCp0EUkqB0rq+QP72bzl39tIbpNc166OYnL4jt7HcsTKnQRCVqfbz5Ayvw0th0o5kcjY7lv3EDaNg+eYVqBpkIXkaBTWFLOY0s38OaX2+nZsSV/vzOZ0X2Cb5hWoKnQRSSovL9+Dw8syGDvkRLuPL8X/3P5AFpEBP9t+4GgQheRoHDgaCmPvJXF4nU7GdC5DbNvGs7QHu28jtWgqNBFpEFzzrF43U6mL87kaGkF/3VZP352UV8imoTWbfuBoEIXkQZr1+FjTFuQwfsb9jKkRzueuC6RAV3aeB2rwVKhi0iD4/M53ly9nceWbqDC52PaVWdx27m9aBzCt+0HggpdRBqUrfuLSJmfxqrcAkb36chjExPo2TE0h2kFmgpdRBqEikofL3+6hafe2UhE40bMmpjAD0f0CJvb9gPBr0I3szHAM0Bj4CXn3KwTtkcCfwNijz/n751zrwQ4q4iEqA27C5k6L411eYe57KzOPHrtYLpENvc6VtCptdDNrDHwHHA5kAesNrPFzrmsarv9HMhyzn3PzDoB2Wb2hnOurE5Si0hIKK2o5LkPN/P8hzlEtmjKn390NlcndtVR+Wny5wh9JJDjnMsFMLO5wHigeqE7oI1VfRdaAwVARYCzikgI+ff2g0xNTWPjnqNMOLs7D14dT4dWEV7HCmr+FHp3YEe1x3lA8gn7PAssBnYCbYAfOud8Jz6RmU0GJgPExsaeTl4RCXLFZRU89c5GXv50C13aNueVW0dw8cBor2OFBH8Kvaa/+7gTHl8JfA1cAvQB3jWzlc65wm/8IufmAHMAkpKSTnwOEQlxn+XsJ2V+OtsLivnxqFimjhlImzAephVo/hR6HtCj2uMYqo7Eq7sNmOWcc0COmW0BBgJfBiSliAS1w8fKeWzpeuau3kGvqFbMnTyKUb07eh0r5PhT6KuBfmbWC8gHrgduOGGf7cClwEoz6wwMAHIDGVREgtM7mbuZtjCD/UdLuevC3vz3Zf1p3lTDtOpCrYXunKsws3uAFVRdtviycy7TzO4+vn02MAP4q5mlU3WKZqpzbn8d5haRBm7/0VKmL85kSdouBnZpw0u3JJEYo2Fadcmv69Cdc0uBpSd8bXa1z3cCVwQ2mogEI+ccC7/O55G3sigureQ3V/Tnrgv70LSxhmnVNd0pKiIBk3/oGA8sSOej7H0Mi23HE5MS6RutYVr1RYUuImfM53O88eV2Zi1dj8/Bw9+L5+Zz4jRMq56p0EXkjOTuO0pKajpfbi3g/H5RzJyQQI8OLb2OFZZU6CJyWioqfby4cgt/fG8jzZs04slJiUwaHqPb9j2kQheRU5a1s5ApqevIyC/kykGdmTF+MNFtNUzLayp0EfFbaUUlf34/h9kfb6ZdywheuHEYYxO6eh1LjlOhi4hf1m4rYMq8NDbvK2LisO48dHU87VpqmFZDokIXke9UVFrBkyuyefXzrXSLbMGrt4/kwv6dvI4lNVChi8hJrdy0j/vmp5N/6Bg3j+rJvWMG0rqZaqOh0ndGRL7lcHE5j76dxT/X5tG7Uyv+cdc5jIjr4HUsqYUKXUS+YXnGLh5clElBURk/u6gPv7y0n4ZpBQkVuogAsPdICQ8vymRZxm7iu7bllVtHMLh7pNex5BSo0EXCnHOO1K/ymbEki2Plldx75QAmX9Bbw7SCkApdJIzlHSzm/gUZfLJxH0k92zPrukT6Rrf2OpacJhW6SBjy+Ryvr9rG48s3APDINYO4aVRPGmmYVlBToYuEmc37jjJ1Xhprth3kgv6dmDlhMDHtNUwrFKjQRcJEeaWPOZ/k8sz7m2jRtDFPfX8IE4d11zCtEKJCFwkDGfmHmTIvjaxdhYxL6ML0awYR3UbDtEKNCl0khJWUV/LM+5uY80kuHVpFMPvHwxgzWMO0QpUKXSRErd5awNR5aeTuL+L7w2OYdlU8kS2beh1L6pAKXSTEHC2t4InlG3jt823EtG/B63eM5Px+GqYVDlToIiHko+y9PLAgg52Hj3HbuXH85ooBtNIwrbCh77RICDhYVMaMt7OY/1U+faNbM+/u0Qzv2d7rWFLPVOgiQcw5x7KM3Ty0KINDxeX84pK+3HNJX5o10TCtcKRCFwlSewtLeHBRBisy95DQPZLXbk8mvltbr2OJh1ToIkHGOcc/1+bx6JIsSit83Dd2IHec14smGqYV9lToIkFkR0Ex981P5185+xnZqwOzJibQu5OGaUkVFbpIEKj0OV79bCtPrsimkcGMawdz48hYDdOSb1ChizRwm/YcYWpqGl9tP8RFAzoxc0IC3dq18DqWNEAqdJEGqrzSx+yPNvPnD3Jo1awxT/9wKOOHdtMwLTkpvwrdzMYAzwCNgZecc7Nq2Oci4GmgKbDfOXdhAHOKhJW0vENMmZfGht1HuDqxK9OvGURU62Zex5IGrtZCN7PGwHPA5UAesNrMFjvnsqrt0w54HhjjnNtuZtF1FVgklJWUV/LHdzfy4spcOrVpxpybhnPFoC5ex5Ig4c8R+kggxzmXC2Bmc4HxQFa1fW4A5jvntgM45/YGOqhIqFuVe4CU1DS2HijmRyN7kDL2LCJbaJiW+M+fQu8O7Kj2OA9IPmGf/kBTM/sIaAM845x77cQnMrPJwGSA2NjY08krEnKOlJQza9kG3vhiO7EdWvL3nyQzum+U17EkCPlT6DX9C4yr4XmGA5cCLYDPzWyVc27jN36Rc3OAOQBJSUknPodI2Plgwx4eWJDBnsISfnJeL/7niv60jNC1CnJ6/PnJyQN6VHscA+ysYZ/9zrkioMjMPgGGABsRkW8pKCrjt29lsvDrnfSLbs3zPx3N2bEapiVnxp9CXw30M7NeQD5wPVXnzKtbBDxrZk2ACKpOyfwxkEFFQoFzjrfSdjF9cSaFx8r51aX9+NnFfTRMSwKi1kJ3zlWY2T3ACqouW3zZOZdpZncf3z7bObfezJYDaYCPqksbM+oyuEiw2X24hGkLM3hv/R4SYyJ54s5kBnbRMC0JHHPOm1PZSUlJbs2aNZ68tkh9cs4xd/UOZr69nnKfj19fPoDbzo3TMC05LWa21jmXVNM2/euLSB3adqCIlNR0Ps89wKjeHZg1MZG4qFZex5IQpUIXqQOVPscrn27h9+9k07RRI2ZOSOD6ET00TEvqlApdJMCydx9hSmoa63Yc4tKB0Tw6YTBdIzVMS+qeCl0kQMoqfDz/UQ7PfZhDm+ZNeeb6oVwzRMO0pP6o0EUC4Osdh5g6L43sPUcYP7QbD10dT0cN05J6pkIXOQPHyir5w7vZ/OVfW4hu05yXbk7isvjOXseSMKVCFzlNn23eT0pqOtsLirkhOZaUsQNp21zDtMQ7KnSRU1RYUs5jSzfw5pfb6dmxJX+/M5nRfTRMS7ynQhc5Be9l7WHawgz2Hilh8gW9+e/L+tMiQrftS8OgQhfxw4GjpTzyVhaL1+1kQOc2zL5pOEN7tPM6lsg3qNBFvoNzjsXrdjJ9cSZHSyv478v689OL+hDRRLftS8OjQhc5iV2HjzFtQQbvb9jL0B7teGJSIv07t/E6lshJqdBFTuDzOd5cvZ3Hlm6gwudj2lVncdu5vWis2/algVOhi1SzZX8RKalpfLGlgNF9OjJrYiKxHVt6HUvELyp0EaCi0sfLn27hqXc2EtGkEY9fl8APknrotn0JKip0CXvrdxUyNTWNtLzDXB7fmUevHUznts29jiVyylToErZKKyp57sPNPP9hDpEtmvLsDWdzVUJXHZVL0FKhS1j6avtBps5LY9Peo0w4uzsPXR1P+1YRXscSOSMqdAkrxWUVPPXORl7+dAtd2zbnlVtHcPHAaK9jiQSECl3Cxqc5+0mZn8aOgmP8eFQsU8cMpI2GaUkIUaFLyDt8rJyZb6/n/9bsoFdUK/5v8iiSe3f0OpZIwKnQJaS9k7mbaQszOFBUxt0X9uG/LutH86YapiWhSYUuIWnfkVKmv5XJ22m7OKtrW/5yywgSYiK9jiVSp1ToElKccyz8Op9H3sqiuLSS31zRn7su7EPTxhqmJaFPhS4hI//QMR5YkM5H2fsYFls1TKtvtIZpSfhQoUvQ8/kcb3y5nVlL1+Nz8PD34rn5nDgN05Kwo0KXoJa77ygpqel8ubWA8/tFMXNCAj06aJiWhCcVugSlikofL/1rC398dyPNmjTiyUmJTBoeo9v2Jayp0CXoZO0sZErqOjLyC7lyUGdmjB9MtIZpiajQJXiUVlTy7Ac5vPDRZtq1jOCFG4cxNqGr17FEGgwVugSFtdsKmDIvjc37ipg4rGqYVruWGqYlUp1fF+ea2RgzyzazHDNL+Y79RphZpZlNClxECWdFpRVMX5zJpNmfU1Lu49XbR/KHHwxVmYvUoNYjdDNrDDwHXA7kAavNbLFzLquG/R4HVtRFUAk/n2zcx33z08k/dIxbzunJvWMG0rqZ/lIpcjL+/O4YCeQ453IBzGwuMB7IOmG/XwCpwIiAJpSwc7i4nBlvZzFvbR69O7Xin3efw4i4Dl7HEmnw/Cn07sCOao/zgOTqO5hZd2ACcAnfUehmNhmYDBAbG3uqWSUMLM/YxYOLMikoKuNnF/Xhl5dqmJaIv/wp9Jou7HUnPH4amOqcq/yu64Cdc3OAOQBJSUknPoeEsb1HSnh4USbLMnYT37Utr9w6gsHdNUxL5FT4U+h5QI9qj2OAnSfskwTMPV7mUcA4M6twzi0MSEoJWc45Ur/KZ8aSLI6VV3LvlQOYfEFvDdMSOQ3+FPpqoJ+Z9QLygeuBG6rv4Jzr9f8/N7O/AktU5lKbHQXF3L8gnZWb9pPUsz2zrkukb3Rrr2OJBK1aC905V2Fm91B19Upj4GXnXKaZ3X18++w6zighxudzvPb5Vp5YkY0Bvx0/iB8n96SRhmmJnBG/rgFzzi0Flp7wtRqL3Dl365nHklCVs/coKalprNl2kAv6d2LmhMHEtNcwLZFA0EW9Ui/KK33M+SSXZ97bRIuIxjz1/SFMHNZdw7REAkiFLnUuI/8wU+alkbWrkHEJXXjkmsF0atPM61giIUeFLnWmpLySZ97fxJxPcunQKoLZPx7OmMFdvI4lErJU6FInvtxSQEpqGrn7i/hBUgwPjIsnsmVTr2OJhDQVugTU0dIKHl+2gddXbSOmfQv+dkcy5/WL8jqWSFhQoUvAfJi9lwfmp7OrsITbzo3jN1cMoJWGaYnUG/1ukzN2sKiMGUuymP/vfPpGt2be3aMZ3rO917FEwo4KXU6bc46l6bt5eHEGh4rL+cUlfbnnkr40a6JhWiJeUKHLadlTWMKDCzN4J2sPCd0jee32ZOK7tfU6lkhYU6HLKXHO8Y81O3j07fWUVfhIGTuQn5zXiyYapiXiORW6+G37gWLuW5DGpzkHGNmrA7MmJtC7k4ZpiTQUKnSpVaXP8dfPtvL7Fdk0bmQ8eu1gbhgZq2FaIg2MCl2+06Y9R5iSmsa/tx/iogGdmDkhgW7tWngdS0RqoEKXGpVV+Jj98Wb+/MEmWjdrwtM/HMr4od00TEukAVOhy7es23GIqalpbNh9hKsTuzL9mkFEtdYwLZGGToUu/3GsrJKn39vIiytziWrdjDk3DeeKQRqmJRIsVOgCwKrcA6SkprH1QDHXj+jBfePOIrKFhmmJBBMVepg7UlLOrGUbeOOL7fTo0II3fpLMuX01TEskGKnQw9gHG/bwwIIMdheWcMd5vfj1Ff1pGaEfCZFgpd+9YejA0VJ+uySLRV/vpF90a1J/OpphsRqmJRLsVOhhxDnHW2m7mL44k8Jj5fzq0n787OI+GqYlEiJU6GFi9+ESpi1M5731e0mMieSJO5MZ2EXDtERCiQo9xDnnmLt6BzPfXk9ZpY8Hxp3FbefGaZiWSAhSoYewbQeKSElN5/PcA4zq3YFZExOJi2rldSwRqSMq9BBU6XO88ukWfv9ONk0bNWLmhASuH9FDw7REQpwKPcRk764aprVuxyEuHRjNoxMG0zVSw7REwoEKPUSUVfh4/qMcnvswhzbNm/LM9UO5ZoiGaYmEExV6CPh6xyGmzksje88Rxg/txkNXx9NRw7REwo4KPYgdK6vkqXeyefnTLUS3ac5fbkni0rM6ex1LRDyiQg9Sn23eT0pqOtsLivnRyFjuGzeQts01TEsknPl1MbKZjTGzbDPLMbOUGrbfaGZpxz8+M7MhgY8qAIUl5dw3P40bXvwCM3jzzlE8NjFBZS4itR+hm1lj4DngciAPWG1mi51zWdV22wJc6Jw7aGZjgTlAcl0EDmfvZe3hgYXp7DtSyl0X9Oa/LutPiwjdti8iVfw55TISyHHO5QKY2VxgPPCfQnfOfVZt/1VATCBDhrsDR0uZ/lYWb63bycAubXjx5iQSY9p5HUtEGhh/Cr07sKPa4zy+++j7DmBZTRvMbDIwGSA2NtbPiOHLOceir3fyyFuZHC2t4H8u78/dF/Yhoolu2xeRb/On0Gu6kNnVuKPZxVQV+nk1bXfOzaHqdAxJSUk1PodU2XnoGNMWZvDBhr2cHduOx69LpH/nNl7HEpEGzJ9CzwN6VHscA+w8cSczSwReAsY65w4EJl748fkcf/9yO7OWbaDS53jo6nhuGR1HY922LyK18KfQVwP9zKwXkA9cD9xQfQcziwXmAzc55zYGPGWY2LK/iJTUNL7YUsC5fTvy2IREYju29DqWiASJWgvdOVdhZvcAK4DGwMvOuUwzu/v49tnAQ0BH4Pnjt5pXOOeS6i52aKmo9PGXf23hD+9uJKJJI564LpHvJ8Xotn0ROSXmnDenspOSktyaNWs8ee2GJGtnIVNT00jPP8wV8Z2Zce1gOrdt7nUsEWmgzGztyQ6YdaeoR0orKnn2gxxe+Ggz7Vo25bkbhjEuoYuOykXktKnQPbB220GmpqaRs/coE4d158Gr4mnfKsLrWCIS5FTo9ai4rILfr9jIK59toVtkC/562wguGhDtdSwRCREq9Hryr037SZmfRt7BY9w0qidTxw6kdTP97xeRwFGj1LHDxeX8bmkW/1iTR++oVvzjrnMY2auD17FEJASp0OvQ8ozdPLgog4KiMn56UR9+dWk/mjfVMC0RqRsq9Dqw70gp0xdn8nb6LuK7tuWVW0cwuHuk17FEJMSp0APIOcf8r/L57ZIsjpVVcu+VA5h8QW+aNtYwLRGpeyr0AMk/dIz756fz8cZ9DO/ZnsevS6RvdGuvY4lIGFGhnyGfz/G3L7bx+LINOGD69+K5+Zw4GmmYlojUMxX6Gdi87ygpqWms3nqQ8/tFMXNCAj06aJiWiHhDhX4ayit9vLgyl6ff20TzJo14clIik4ZrmJaIeEuFfooy8g8zNTWNzJ2FjB3chUfGDyK6jYZpiYj3VOh+Kimv5M8fbGL2x7m0bxnBCzcOY2xCV69jiYj8hwrdD2u2FjAlNY3cfUVMGh7DtKvOol1LDdMSkYZFhf4dikoreHJFNq9+vpVukS147faRXNC/k9exRERqpEI/iY837uP++ensPHyMW86J494rB9BKw7REpAFTQ53gUHEZM5asJ/WrPHp3asU/7zqHpDgN0xKRhk+FXs2y9F08uCiTg8Vl/PziPvziEg3TEpHgoUIH9haW8NCiTJZn7mZQt7a8evsIBnXTMC0RCS5hXejOOeatzWPGkixKKnxMGTOAO8/XMC0RCU5hW+g7Coq5f0E6KzftZ0Rce2Zdl0ifThqmJSLBK+wKvdLneO3zrTy5IhsDZowfxI3JPTVMS0SCXlgVes7eI0xNTWfttoNc2L8Tv5swmJj2GqYlIqEhLAq9vNLH/368mT+9n0PLZo35ww+GMOHs7hqmJSIhJeQLPSP/MPfOS2P9rkKuSujK9GsG0alNM69jiYgEXMgWekl5JU+/t4kXV+bSoVUEs388nDGDu3gdS0SkzoRkoX+5pYCU1DRy9xfxg6QYHhgXT2TLpl7HEhGpUyFV6EdKynlieTavr9pGTPsW/O2OZM7rF+V1LBGRehEyhf5h9l4emJ/OrsISbj+3F7++or+GaYlIWAn6xjtYVMaMJVnM/3c+faNbM+/u0Qzv2d7rWCIi9c6vQjezMcAzQGPgJefcrBO22/Ht44Bi4Fbn3FcBzvoNzjneTt/Fw4syOXysnF9e0pefX9KXZk00TEtEwlOthW5mjYHngMuBPGC1mS12zmVV220s0O/4RzLwwvH/1ok9hSU8uDCDd7L2kNA9ktfvSCa+W9u6ejkRkaDgzxH6SCDHOZcLYGZzgfFA9UIfD7zmnHPAKjNrZ2ZdnXO7Ah34ww17+eXcf1NW4eO+sQO547xeNNEwLRERvwq9O7Cj2uM8vn30XdM+3YFvFLqZTQYmA8TGxp5qVgB6RbXi7Nj2TP9ePL01TEtE5D/8ObSt6f54dxr74Jyb45xLcs4ldep0eu/NGRfVitduH6kyFxE5gT+Fngf0qPY4Bth5GvuIiEgd8qfQVwP9zKyXmUUA1wOLT9hnMXCzVRkFHK6L8+ciInJytZ5Dd85VmNk9wAqqLlt82TmXaWZ3H98+G1hK1SWLOVRdtnhb3UUWEZGa+HUdunNuKVWlXf1rs6t97oCfBzaaiIicCl3vJyISIlToIiIhQoUuIhIiVOgiIiHCqv4904MXNtsHbDvNXx4F7A9gnGCgNYcHrTk8nMmaezrnarwz07NCPxNmtsY5l+R1jvqkNYcHrTk81NWadcpFRCREqNBFREJEsBb6HK8DeEBrDg9ac3iokzUH5Tl0ERH5tmA9QhcRkROo0EVEQkSDLnQzG2Nm2WaWY2YpNWw3M/vT8e1pZjbMi5yB5Meabzy+1jQz+8zMhniRM5BqW3O1/UaYWaWZTarPfHXBnzWb2UVm9rWZZZrZx/WdMdD8+NmONLO3zGzd8TUH9dRWM3vZzPaaWcZJtge+v5xzDfKDqlG9m4HeQASwDog/YZ9xwDKq3jFpFPCF17nrYc2jgfbHPx8bDmuutt8HVE39nOR17nr4Prej6n17Y48/jvY6dz2s+X7g8eOfdwIKgAivs5/Bmi8AhgEZJ9ke8P5qyEfo/3lzaudcGfD/35y6uv+8ObVzbhXQzsy61nfQAKp1zc65z5xzB48/XEXVu0MFM3++zwC/AFKBvfUZro74s+YbgPnOue0AzrlgX7c/a3ZAGzMzoDVVhV5RvzEDxzn3CVVrOJmA91dDLvSTvfH0qe4TTE51PXdQ9Sd8MKt1zWbWHZgAzCY0+PN97g+0N7OPzGytmd1cb+nqhj9rfhY4i6q3r0wHfuWc89VPPE8EvL/8eoMLjwTszZR7oA0AAAF7SURBVKmDiN/rMbOLqSr08+o0Ud3zZ81PA1Odc5VVB29Bz581NwGGA5cCLYDPzWyVc25jXYerI/6s+Urga+ASoA/wrpmtdM4V1nU4jwS8vxpyoYfjm1P7tR4zSwReAsY65w7UU7a64s+ak4C5x8s8ChhnZhXOuYX1EzHg/P3Z3u+cKwKKzOwTYAgQrIXuz5pvA2a5qhPMOWa2BRgIfFk/EetdwPurIZ9yCcc3p651zWYWC8wHbgrio7Xqal2zc66Xcy7OORcHzAN+FsRlDv79bC8CzjezJmbWEkgG1tdzzkDyZ83bqfobCWbWGRgA5NZryvoV8P5qsEfoLgzfnNrPNT8EdASeP37EWuGCeFKdn2sOKf6s2Tm33syWA2mAD3jJOVfj5W/BwM/v8wzgr2aWTtXpiKnOuaAdq2tmbwIXAVFmlgc8DDSFuusv3fovIhIiGvIpFxEROQUqdBGREKFCFxEJESp0EZEQoUIXEQkRKnQRkRChQhcRCRH/D/pB6bWX9rbcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pm.loading_scenario.plot(plt.axes())\n", + "pm.loading_scenario" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\n", + " \\begin{array}{lrrl}\\hline\n", + " \\textrm{loading_type} & option = cyclic & \\textrm{[-]} & \\textrm{possible values: [monotonic, cyclic]} \\\\\n", + " \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 2 & \\textrm{[-]} & \\textrm{for cyclic loading} \\\\\n", + " \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level} \\\\\n", + " \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.0 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level} \\\\\n", + " \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch} \\\\\n", + " \\textrm{amplitude_type} & option = constant & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]} \\\\\n", + " \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]} \\\\\n", + " \\hline\n", + " \\hline\n", + " \\end{array}\n", + " " + ], + "text/plain": [ + "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f8eb1ee5b30>" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.loading_scenario.loading_type='cyclic'\n", + "pm.loading_scenario.trait_set(number_of_cycles=2,\n", + " unloading_ratio=0.0,\n", + " amplitude_type='constant',\n", + " loading_range='non-symmetric')\n", + "pm.loading_scenario" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd3BU993v8fdPEpIQqKAK6m1FMc1UY7rE49hOHJc4jh0nJG48YIp85/6RzJ25z/3jmTu3zZ0xGAwG3IhbHMd27DzETpDovZiOYVerLlBFva70u39ImyvLwlpgd8+W72tGM9rdo93vkayPP/px9hyltUYIIYT3CzB6ACGEEM4hgS6EED5CAl0IIXyEBLoQQvgICXQhhPARQUa9cGxsrE5PTzfq5YUQwiudPn26TmsdN9xjhgV6eno6p06dMurlhRDCKymlSm/1mCy5CCGEj5BAF0IIHyGBLoQQPkICXQghfIQEuhBC+IgRA10p9ZZSqkYpdfEWjyul1CallEUpdV4pNcv5YwohhBiJIw39HeDBH3j8IcA08LEK2Hr3YwkhhLhdIx6HrrU+oJRK/4FNHgV26f7z8B5TSkUppSZora87aUbhgZo7e9h1pIRuW9937h8VGMDKBelEho0yaDIhPNure66x2BTL7LRopz+3M95YlASUD7pdMXDf9wJdKbWK/hZPamqqE15aGGXLXgtv7Lei1Hfv1xputvfwb49MMWYwITzYxcomXt1jRqE8NtDVMPcNe9UMrfV2YDvAnDlz5MoaXqqhrZs/HC3lpzMS2fTMvd957D9/fI73j5eyelkm8eGhBk0ohGfaVGAmPDSI3y5Md8nzO+MolwogZdDtZKDKCc8rPNSOg1Y6enrZkJf9vcfW5WbT09vH9v1WAyYTwnNdrmrm75ereX5hBpGjXbMk6YxA/wJYOXC0y31Ak6yf+66bbd3sOlLCj6dNIDs+/HuPZ8SO4bGZSbx3vJS61i4DJhTCM20qMBMeEsTzCzNc9hqOHLb4IXAUmKiUqlBKvaCUWq2UWj2wyW7ACliAHcDLLptWGG7nISvtPb1syDPdcpt1udl02/rYcUBauhAA395o5qtLN3huoWsPGHDkKJdnRnhcA2udNpHwWI3t3bx7pJSHp04gJ+H77dwuM24sP52RyK6jpaxakknM2BA3TimE53mtwMLYkCCeX+S6dg7yTlFxG948VExrl431w6ydD7Uu10SnrZcdB4vdMJkQnutadQu7L17nt/enExUW7NLXkkAXDmlq7+GdwyU8NHU8k8ZHjLh9dvxYHpmeyK6jJTS0dbt+QCE81KYCM2GjAnnBxe0cJNCFg948XExLl431ubdeOx9qfW42HT297Dwoa+nCP5mrW/iPC9dZeX8648a4tp2DBLpwQFNHD28fLuaBKQlMSRy5nduZEsJ5eNoE3j1Swk1p6cIPvVZoYfSoQF5anOmW15NAFyN6+3AxLZ22Hzyy5VY25Jpo7+nlzUOyli78i6WmlS/PV/HrBWlEu6GdgwS6GEFzZw9vHSpmxeQEpiZF3vbXTxwfzkNTx/POkRIa26WlC/+xudBMaFAgq9zUzkECXYzg3cMlNHfayL+Ddm63Ic9Ea5eNt6SlCz9hrW3li3P97dydh+1KoItbaunsYeehYvImxTMt+fbbud2k8RE8eM943j5cQlN7jxMnFMIzbS60EBwU4La1czsJdHFLu46W0tTRQ/6KO2/ndhvyTLR02XjrsLR04duK69r4/Gwlv5qfRly4e99UJ4EuhtXaZWPHQSvLJ8YxPTnqrp9vSmIED0xJ4K3DxTR3SksXvmvLXgujAgNYtdS97Rwk0MUt7DpaQmN7D/krcpz2nBvyTLR02njncInTnlMIT1Ja38Zn31Ty7Pw0Q04fLYEuvqety8aOA1aW5sQxM+Xu27nd1KRIVkxO4M1DxbRISxc+aMteC0EBitUGtHOQQBfDeO9YKTfbnbN2PlR+nommjh7ePVLi9OcWwkjlDe18eqaSZ+alEh9hzMVdJNDFd7R329h+wMpiUyyzUsc5/fmnJUeSNymenQMn+hLCV2zZayEgQLFmWZZhM0igi+94/1gZ9W3dvOKCdm6Xv8JEY7u0dOE7yhva+eR0Bc/MTSHBoHYOEuhikI7uXt44UMSibNdckdxuenIUyyfGsfOglTZp6cIHvL6viAClWG1gOwcJdDHI+8dLqWvtdsna+VD5K3K42d7DrqOlLn8tIVypsrGDT06X84u5KUyIHG3oLBLoAoDOnl7eOGDl/qwY5qa7rp3bzUyJYmlOHDukpQsv9/peC4Cha+d2EugCgA+Ol1Hb0nVX52y5XRvyTDS0dfPeMWnpwjtVNXbw8alynpqTQmKUse0cJNAF/e182/4i7suMZn5mjNted3baOBabYtl+wEp7t7R04X227isC4OXlI1+W0R0k0AUfnSijpqWL/DznvSvUUfl5Jurbunn/WJnbX1uIu3G9qYM/niznydkpJHlAOwcJdL/X2dPL1v1FzMuIZkGW+9q53Zz0aBZmx/DGgSI6unvd/vpC3Klt+4ro05qXPWDt3E4C3c99fKqc6uYuXnHj2vlQ+Xk51LV28/5xWUsX3qG6uZMPT5bz5OxkUqLDjB7nnyTQ/ViXrZet+4qYkzbOkHZuNy8jmgWZMbxxwEpnj7R04fm27iuit0/z8jLPWDu3k0D3Yx+fquB6Uyf5K0wopQydJX+FidqWLj44LmvpwrPVNHfy4Ykynrg3idQYz2nnIIHut7psvWzda2FWahSLsmONHof7MmOYlxHNtv1F0tKFR9u234qtT7Mu17PaOUig+61PTldQ1dRJ/oocw9u53St5JmpauvjohLR04ZlqWjp5/3gpj81MIi1mjNHjfI8Euh/qtvXx+t4iZqZEscRkfDu3W5AVw9z0cWyVli481Pb9Vnp6+zyynYMEul/685kKKhs7PGLtfDClFPl5OVQ3d/HxqXKjxxHiO2pbunhvoJ1nxHpeOwcJdL/T09vHlr0WZiRHsiwnzuhxvmdhdgyz08axdV8RXTZp6cJz7Dhopdvmue0cJND9zqdnKqi46Xnt3K6/pZu43tTJn05VGD2OEADUt3bxh6Ol/HRGIplxY40e55YcCnSl1INKqatKKYtS6vfDPB6plPpSKXVOKXVJKfWc80cVd6unt4/Ney1MT45k+cR4o8e5pcWmWO5NjWLrviK6bX1GjyMEOw4W02nrZV2ucW/Ac8SIga6UCgS2AA8BU4BnlFJThmy2FristZ4BLAP+r1Iq2Mmzirv02TeVlDd0sCHXM9u5nb2l959nWlq6MFZDWze7jpbwyPREsuM9t52DYw19HmDRWlu11t3AR8CjQ7bRQLjqT4mxQAMgp8/zILaBtfOpSRHkTfbcdm63NCeOGSlRbNlrkZYuDLXzoJWOnl425Hnu2rmdI4GeBAw+5KBi4L7BNgOTgSrgApCvtf7eb6FSapVS6pRS6lRtbe0djizuxOdnqyitb/f4dm6nlOKVgZb+6Rlp6cIYN9u6efdICT+eNoHs+HCjxxmRI4E+3G+/HnL7R8BZIBGYCWxWSkV874u03q61nqO1nhMX53lHWPgqezufMiGCf5mSYPQ4Dls2MY7pyZFs2Wehp1daunC/Nw8V097TywYDT153OxwJ9AogZdDtZPqb+GDPAZ/qfhagGJjknBHF3fryfBXFdW1syPOOdm5nX0svb+jgszOVRo8j/ExjezfvHCnh4akTyEnw/HYOjgX6ScCklMoY+IfOp4EvhmxTBuQBKKUSgImA1ZmDijvT26d5rdDCpPHhPOBF7dwud1I805Ii2bxXWrpwr7cOFdPaZWO9F6yd240Y6FprG7AO+Bq4Anystb6klFqtlFo9sNm/A/crpS4ABcDvtNZ1rhpaOO6v56uw1raRn2ciIMB72rmdUooNeSbKGtr5y9mhfxgK4RpN7T28fbiEh6aOZ9L4760ee6wgRzbSWu8Gdg+5b9ugz6uAB5w7mrhbvX2aTQVmJiaE86N7xhs9zh1bMTmeexIj2Fxo5rGZiQQFyvvhhGu9dbiYli4b6z38uPOh5DfDh/3HhesU1favnXtjO7ezt/SS+na+OCctXbhWU0cPbx0u5oEpCUxJ9J52DhLoPquvT/NagRlT/Fgemuq97dzugSkJTJ4QweZCC719Qw+yEsJ53jlcQkunzWuObBlMAt1H7b54HXNNK+u9vJ3b9R/xko21ro0vpaULF2nu7OHNQ1ZWTE5galKk0ePcNgl0H9Q3sHaeFTeGH0+bYPQ4TvPAlPFMGh/OpkKztHThEu8eLqG500a+F7ZzkED3SV9dusG16lY25JkI9IF2bhcQ0L+Wbq1t46/npaUL52rtsrHzUDF5k+KZlux97Rwk0H2OvZ1nxo3hJ9MTjR7H6R68ZzwTE8J5TdbShZO9e6SEpo4e8ld4ZzsHCXSf8/fL1Xx7o4X1udk+1c7tAgIU6/OysdS0svvCdaPHET6ircvGzoNWlk+MY3pylNHj3DEJdB+idX87z4gdwyM+2M7tHp46AVP8WF4rNNMnLV04wa6jpdxs7yF/RY7Ro9wVCXQf8o/L1Vy+3sy65dk+/eabgADFutxsrlW38reLN4weR3i5ti4bOw5aWZoTx8wU723nIIHuM7TWbCwwkx4TxqMzfbed2/1keiJZcWPYVCAtXdyd946V0tDW7dVr53YS6D6i4EoNl6qaWevj7dwuMECxPtfE1eoWvr4kLV3cmfZuG9sPWFlsimVW6jijx7lrvv+b7wfs7Tw1OozH7x167RHf9ciMRDJjx7BRWrq4Q+8fK6O+rZtXfKCdgwS6T9h7tYYLlU0+v3Y+VODAWvq3N1r4++Vqo8cRXqaju5c3DhSxKDuW2WnRRo/jFP7z2++jtNZs3GMmJXo0j8/yn3Zu99MZiaTHhLGpwIzW0tKF494/Xkpdq2+sndtJoHu5fddqOVfRxNpl2Yzyo3ZuFxQYwLpcE5evN7PnSo3R4wgv0dnTyxsHrNyfFcPcdN9o5yCB7tXs7TwpajRPzEo2ehzDPDYzkbSYMDYWXJOWLhzywfEyalu6vPacLbcige7FDpjrOFveyNrl2QQH+e+PMigwgLXLs7lY2Uzht9LSxQ/r7Oll2/4i7suMZn5mjNHjOJX/poCX62/n10iMDOXJ2f7bzu0evzeJlOjRbJS1dDGCj06UUdPS5ZXnOx+JBLqXOmSp40xZI2v8vJ3bjQoMYO2ybM5XNLHvaq3R4wgP1dnTy9b9RcxLj2aBj7VzkED3Sva18wmRoTw1R9q53ROzkkmKGs2r0tLFLXx8qpzq5i7yV5hQygdPXmf0AOL2HSmq51TpTdYsyyIkKNDocTxGcFD/Wvq58kb2X5OWLr6ry9bL1n1FzEkbx/1ZvtfOQQLdK20sMJMQEcJTc1KMHsXjPDm7v6XLWroY6k+nKrje1Omz7Rwk0L3O0aJ6ThQ3sGZpFqGjpJ0PFRwUwJplWXxT1shBc53R4wgP0W3rY+u+ImalRrEoO9bocVxGAt3LbCy4Rnx4CE/PSzV6FI/18znJTIgMlZYu/umT0xVUNnaQvyLHZ9s5SKB7lePWeo5ZG1gt7fwHhQQF8vKyLE6X3uSwpd7ocYTBum19bNlrYWZKFEtMvtvOQQLdq2wsMBMXHsIv50s7H8lTc1MYHxEq7x4VfHrG3s59d+3cTgLdS5wsaeBIUT3/uiRT2rkDQoICWbMsi5MlNzlaJC3dX/X09rFln4UZyZEsy4kzehyXk0D3Ehv3mIkdG8yz89OMHsVr/GJuCgkRIbxaYDZ6FGGQz85UUt7QwYY832/nIIHuFU6XNnDIUseqJZmMDpZ27qjQUYGsXprFieIGael+qKe3j817LUxLiiR3UrzR47iFBLoXeHWPmZgxwfzqPmnnt+uZeanEhYewseCa0aMIN/v8m0rKGtr9pp2Dg4GulHpQKXVVKWVRSv3+FtssU0qdVUpdUkrtd+6Y/utM2U0Omut4aUkmYcFBRo/jdewt/Zi1geNWaen+wjbQzu9JjGDFZP9o5+BAoCulAoEtwEPAFOAZpdSUIdtEAa8DP9Va3wP83AWz+qWNe8xEjwnm19LO79iz81OJHRvCRllL9xt/OVtFab1/tXNwrKHPAyxaa6vWuhv4CHh0yDa/BD7VWpcBaK3lpNROcHbgnCQvLs5gTIi08zvV39IzOVJUz8mSBqPHES5mb+eTJ0TwwJQEo8dxK0cCPQkoH3S7YuC+wXKAcUqpfUqp00qplcM9kVJqlVLqlFLqVG2tnDxpJBv3XCMqbBQrF6QbPYrXe3Z+GrFjg9m4R1q6r/vyfBXFdW3k52X7VTsHxwJ9uO/I0HdqBAGzgR8DPwL+q1Iq53tfpPV2rfUcrfWcuDjfPyb0bpwrb2Tv1VpeWpzJWGnnd210cCCrlmRyyFLH6VJp6b6qt0/zWqGFSePDeWDKeKPHcTtHAr0CGHxav2SgaphtvtJat2mt64ADwAznjOifNhWYiRw9ipULZO3cWX51XxoxY4J5VVq6z/rr+SqstW1syDMREOBf7RwcC/STgEkplaGUCgaeBr4Yss1fgMVKqSClVBgwH7ji3FH9x4WKJgq+reHFRRmEh44yehyfERYcxEtLMjloruNM2U2jxxFO1tun2VRgZmJCOA/e43/tHBwIdK21DVgHfE1/SH+stb6klFqtlFo9sM0V4CvgPHAC2Km1vui6sX3bxgIzEaFB/GZhutGj+Jxf35dG9BhZS/dF/3HhOkW1bazPy/bLdg79a98j0lrvBnYPuW/bkNv/B/g/zhvNP12sbGLPlWr+04ocIqSdO92YkCBeXJzB//7qKmfLG5mZEmX0SMIJ+vo0rxWYMcWP5eGpE4wexzDyTlEPs6nATHhoEL+Vdu4yKxekExU2ik1yXLrP2H3xOuaaVtb76dq5nQS6B7lc1czfL1fz/MIMIkdLO3eVsSFBvLQ4k8Jvazhf0Wj0OOIu9Q2snWfFjeHH0/y3nYMEukfZVGAmPCSI5xdmGD2Kz1u5II3I0dLSfcFXl25wrbqV9bkmAv24nYMEuse4cr2Zry7d4LmF6USGSTt3tfDQUbywKIM9V2q4WNlk9DjiDtnbeWbsGB6ZkWj0OIaTQPcQrxWaGRsSxPOLpJ27y28XphMRGiTnePFif798g29vtLAuN9vv2zlIoHuEqzda2H3hBr+9P52osGCjx/EbEaGjeH5RBv+4XM2lKmnp3qavT7OxwEJ6TBg/lXYOSKB7hE2FZsYEB/KCtHO3e25hBuGhQbKW7oX+caWaK9ebWZdrIihQogwk0A1nrm5h94Xr/Ob+dMaNkXbubpGjR/Hcwgy+vtQfDsI7aN2/dp4WE8ZjM6Wd20mgG+y1QgujRwXy4uJMo0fxWy8szCA8RFq6Nym4UsOlqmbWLs+Wdj6IfCcMZKlp5cvzVaxckE60tHPDRIaN4rcL0/nbxRtcvdFi9DhiBFprNhaYSYkezeP3Dj2Tt3+TQDfQ5kIzoUGBvLRY1s6N9sKiDMaGBLGpUFq6p9t7tYYLlU2sW57NKGnn3yHfDYNYa1v54lwVKxekETM2xOhx/F5UWDC/uT+N3ReuY66Wlu6ptNZs3GMmedxonpiVbPQ4HkcC3SCbCy0EBwXI2rkHeXFRJmGjAtlUaDF6FHEL+67Vcq6iibXSzocl3xEDFNe18fnZSn41P424cGnnnmLcmGBW3p/OX89XYamRlu5p7O08KWo0P5N2PiwJdANsLrQwKjCAVUulnXualxZnMnpUIK9JS/c4B8x1nC1v5OXlWQQHSXQNR74rblZa39/On52fRnx4qNHjiCGixwTz6wVpfHmuiqLaVqPHEQP62/k1EiND+fnslJG/wE9JoLvZlr0WggIUq6Wde6xVizMJCQpks7R0j3HYUs+ZskbWLM+Wdv4D5DvjRuUN7Xx6ppJn5qUSHyHt3FPFjA3h1wvS+MvZSqzS0g3Xf9z5NSZEhvLUHFk7/yES6G60Za+FgADFmmVZRo8iRvDS4kyCgwLYvFdautGOFtVzsuQma5ZlERIUaPQ4Hk0C3U3KG9r55HQFz8xNIUHauceLCw/hV/PT+MvZKkrq2owex6+9WmAmISKEp+bI2vlIJNDd5PV9RQQoxWpp515j1dJMggKUtHQDHS2q50RxA2uWZhE6Str5SCTQ3aCysYNPTpfzi7kpTIgcbfQ4wkHx4aE8Oz+Nz76ppLReWroRNhZcIz48hKfnpRo9ileQQHeD1wcanrRz7/OvSzMJDFBskZbudset9RyzNvCv0s4dJoHuYlWNHXx8qpyfz0khKUraubdJiAjll/NS+fRMJeUN7UaP41c2FpiJHRvCs/OlnTtKAt3Ftu4rAuBlaedea/XSLAKUtHR3OlnSwJGielYvzZR2fhsk0F3oelMHfzxZzpOzk0keF2b0OOIOjY8M5el5KXxyukJaupts3GMmdmwwz85PM3oUryKB7kLb9hXRpzUvL8s2ehRxl9Ys62/prw/8xSVc53RpA4csdaxaksnoYGnnt0MC3UWqmzv58GQ5P5uVTEq0tHNvNyFyNE/NTeaT0+VUNnYYPY5Pe3WPmZgxwfzqPmnnt0sC3UW27iuit0+zdrm0c1+xZuAvrddlLd1lzpTd5KC5jpeWZBIWHGT0OF5HAt0Fapo7+fBEGU/cm0RqjLRzX5EUNZqfz0nh41PlVElLd4mNe8z9Z7yUdn5HJNBdYNt+K7Y+zbpcaee+xn600lZZS3e6s+WN7L9Wy4uLMxgTIu38TjgU6EqpB5VSV5VSFqXU739gu7lKqV6l1JPOG9G71LR08v7xUh6bmURazBijxxFOljwujCdnJ/PHk+XcaOo0ehyfsqnATFTYKFYuSDd6FK81YqArpQKBLcBDwBTgGaXUlFts97+Ar509pDfZvt9KT2+ftHMf9vKybPq0Ztt+aenOcr6ikcJva3hpcSZjpZ3fMUca+jzAorW2aq27gY+AR4fZbj3wZ6DGifN5ldqWLt4baOcZsdLOfVVKdBg/m5XMByfKqG6Wlu4MmwrMRI4excoFsnZ+NxwJ9CSgfNDtioH7/kkplQQ8Dmz7oSdSSq1SSp1SSp2qra293Vk93o6DVrpt0s79wdrl2fT2SUt3houVTey5UsOLizIIDx1l9DhezZFAV8Pcp4fcfhX4nda694eeSGu9XWs9R2s9Jy4uztEZvUJ9axd/OFrKT2ckkhk31uhxhIulxoTx+L1JfHC8jBpp6XdlY4GZiNAgfrMw3ehRvJ4jgV4BDD6zfDJQNWSbOcBHSqkS4EngdaXUY06Z0EvsOFhMp62Xdbkmo0cRbrJueTa2Ps0bB6xGj+K1LlU18Y/L1Ty/KIMIaed3zZFAPwmYlFIZSqlg4Gngi8EbaK0ztNbpWut04BPgZa31506f1kM1tHWz62gJj0xPJDte2rm/SI8dw6MzE3n/eCm1LV1Gj+OVNhWYCQ8N4rmFGUaP4hNGDHSttQ1YR//RK1eAj7XWl5RSq5VSq109oDfYedBKR08vG/Jk7dzfrM810W3rY8dBaem368r1Zr6+VM1zCzOIHC3t3BkcOj5Ia70b2D3kvmH/AVRr/du7H8t73Gzr5t0jJfx42gSy48ONHke4WUbsGB6dmcQfjpayakkmsWNDjB7Ja7xWaCY8JIgXpJ07jbxT9C69eaiY9p5eNuTJ2rm/WpebTZetV1r6bbh6o4XdF27w24XpRIZJO3cWCfS70NjezTtHSnh46gRyEqSd+6usuLE8MiORPxwtpaGt2+hxvMKmQjNjQ4J4YZG0c2eSQL8Lbx0qprXLxnpZO/d763Oz6eiRlu4Ic3ULuy9c5zf3pxEVFmz0OD5FAv0ONbX38PbhEh6aOp5J4yOMHkcYLDs+nJ9MT2TXkRJuSkv/QZsKLYSNCuTFRZlGj+JzJNDv0FuHi2npsrFejjsXAzbkZtPe08vOQ9LSb8VS08Jfz1ex8v50xo2Rdu5sEuh3oKmjh7cOF/PAlASmJEo7F/1MCeE8PG0C7x4ppbFdWvpwXiu0MHpUIC8tlnbuChLod+DdIyW0dNrkyBbxPRtyTbR22XjzULHRo3icotpWvjxXxa8XpBEt7dwlJNBvU0tnD28eKmbF5ASmJkUaPY7wMBPHh/PwtPG8c7iEpvYeo8fxKJsLLYQESTt3JQn02/TukRKaOnrIl3YubmF9romWLhtvHpaWbmetbeUvZyv51X2p8uYrF5JAvw2tXTZ2Hiomb1I805KlnYvhTZ4QwY/uSeDtw8U0dUhLB9i810JwUACrlmQZPYpPk0C/De8eKaGxvYf10s7FCDbkmWjptPG2tHRK6tr4y9kqnp2fRly4tHNXkkB3UFuXjZ0HrSybGMfMlCijxxEe7p7ESP5lSgJvHSqmudO/W/rmvRaCAhT/ulTWzl1NAt1Bu46WcrNd1s6F4/LzTDR32njncInRoximtL6Nz76p5JfzU4kPDzV6HJ8nge6Ati4bOw5aWZITx72p44weR3iJqUmRrJgcz5uHimnx05a+Za+FwADF6qWydu4OEugOeO9Y/0mXpJ2L25Wfl0NTRw/vHikxehS3K29o59MzlfxyXioJEdLO3UECfQTt3Ta2H7Cy2BTL7DRp5+L2TEuOJHdSPDsHTuTmT7bstRCgpJ27kwT6CN4/Vka9tHNxF/LzTDS297DraInRo7hNeUM7n5yu4Ol5KYyPlHbuLhLoP6Cju5c3DhSxMDuGOenRRo8jvNSMlCiWTYxjxwErbX7S0l/fV0SAUqxZJu3cnSTQf8D7x0upa+0mPy/H6FGEl9uQZ+Jmew9/OFZq9CguV9nYwSeny3lqbjITIkcbPY5fkUC/hc6eXt44YGVBZgzzMqSdi7szK3Uci02x7Dhgpb3bt1v663stAKxZJhd+cTcJ9Fv44HgZtS1d5K+QtXPhHK+sMFHf1s17PtzSqxo7+PhUOT+fk0JSlLRzd5NAH0ZnTy/b9hcxPyOa+zJjjB5H+IjZadEsyo5l+wErHd29Ro/jElv3FQHwsqydG0ICfRgfnSijRtq5cIH8FSbqWrt5/7jvtfTrTR388WQ5T85OJnlcmNHj+CUJ9CE6e3rZur+IeenRLJB2LpxsbmoWPO0AAA6lSURBVHo092fFsG2/77X0bfuK6NOal2Xt3DAS6EP86VQ51c397VwpZfQ4wgfl55moa+3igxNlRo/iNNXNnXx4spyfzUomJVrauVEk0AfpsvXy+r4i5qSN4/4saefCNeZnxnBfZjTb9hfR2eMbLX3b/iJ6+zRrl0s7N5IE+iB/OlXB9aZOaefC5fLzcqht6eJDH2jpNc2dfHC8jCfuTSI1Rtq5kSTQB3Tb+ti6r4hZqVEsyo41ehzh4xZk9b+/wRda+hsHrNj6NOtypZ0bTQJ9wCenK6hs7CB/RY60c+EWr+SZqG7u4o8ny40e5Y7VtnTx/vFSHpuZRFrMGKPH8XsS6PS38y17LcxIiWKJSdq5cI8FWTHMTR/H1n1FdNm8s6VvP1BEt61P2rmHcCjQlVIPKqWuKqUsSqnfD/P4s0qp8wMfR5RSM5w/qut89k1/O38lT9bOhfsopcjPy+FGcycfe2FLr2vt4r1jZTw6M4mMWGnnnmDEQFdKBQJbgIeAKcAzSqkpQzYrBpZqracD/w5sd/agrtLT28fmvRamJ0eybGKc0eMIP7MwO4bZad7Z0ncctNJl65V27kEcaejzAIvW2qq17gY+Ah4dvIHW+ojW+ubAzWNAsnPHdJ3PvqmkvKGDfGnnwgD9Ld1EVVMnn5yuMHochzW0dfOHo6U8MiORrLixRo8jBjgS6EnA4L8HKwbuu5UXgL8N94BSapVS6pRS6lRtba3jU7qIrbd/7XxaUv9VZYQwwmJTLPemRvH63v71aG+w46CVjp5e1ks79yiOBPpwtVUPu6FSy+kP9N8N97jWervWeo7Wek5cnPHLG5+fraK0vp0N0s6FgewtvbKxgz+f8fyWfrOtm11HSvjJ9ESy48ONHkcM4kigVwApg24nA1VDN1JKTQd2Ao9qreudM57r2Hr72Fxo5p7ECFZMlnYujLU0J44ZKVFs2Wuhp9ezW/rOQ1bae3rZIO3c4zgS6CcBk1IqQykVDDwNfDF4A6VUKvAp8Gut9TXnj+l8X5yrokTaufAQSileyTNRcbODTz24pTe2d/PukVIenjYBU4K0c08zYqBrrW3AOuBr4Arwsdb6klJqtVJq9cBm/wbEAK8rpc4qpU65bGIn6O3TbC60MHlCBA9MSTB6HCEAWDYxjunJkWz24Jb+5qFiWrtsbMiVU0t7IoeOQ9da79Za52its7TW/33gvm1a620Dn7+otR6ntZ458DHHlUPfrS/PVWGtayM/L1vaufAY9rX08oYOPvum0uhxvqepvYd3Dpfw8LTxTBwv7dwT+d07RXv7NJsKzUwaH84DU8YbPY4Q35E7KZ5pSZFs2WvB5mEt/c3DxbR02diQJ+3cU/ldoP/1fBXW2jY25JkICJB2LjyLUooNeSZK69v5/Oz3jj0wTFNHD28fLubBe8YzaXyE0eOIW/CrQO/t07xWaGFiQjgP3iPtXHimFZPjuScxgs2FZo9p6W8fLqalU9q5p/OrQN994TqWmlbW52VLOxcey97SS+rb+eKc8S29ubOHtw4V88CUBKYkSjv3ZH4T6H19mtcKzZjix/Lw1AlGjyPED/qXyQlMGh/O5kILvX3Dvo/Pbd45XEKztHOv4DeB/reLN7hW3cp6WTsXXiAgoP+IF2tdG18a2NJbOnt481AxKyYnMDUp0rA5hGP8ItD7+jSbCsxkxY3hx9OknQvv8KN7xjMxIZxNhWbDWvq7R0po6ughX9q5V/CLQP/60g2uVrewIc9EoLRz4SUCAvrX0q21bfz1vPtbemuXjZ2HismbFM+0ZGnn3sDnA72vT7OxwExm7Bh+Mj3R6HGEuC0PTR1PTsJYXiu00Ofmlv7ukRIa23tk7dyL+Hyg//1yNd/eaGFdbra0c+F1AgIU63NNWGpa2X3xuttet63Lxs6DVpZN7D9pmPAOPh3oWvevnafHhPHTGdLOhXd6eNoEsuPHsqnA7LaWvutoKTfbZe3c2/h0oP/jcjWXrzezLtdEUKBP76rwYYEBivW52VyrbuWrSzdc/nptXTZ2HLSyJCeOe1PHufz1hPP4bMpp3X/OlrSYMB6bKe1ceLefTE8kM26MW1r6e8dKaWjrlnbuhXw20Auu1HCxspm1y7OlnQuvZ2/p395o4e+XXdfS27ttbD9gZbEpltlp0s69jU8mndb9R7akRI/m8Xt/6PKnQniPR6YnkhE7ho0Frjvi5f1jZdRLO/daPhno+67WcqGyiXXLsxkl7Vz4iKDAANYtz+bK9Wb+caXa6c/f0d3LGwesLMyOYU56tNOfX7iez6Wd1ppXC8wkjxvNE7OSjR5HCKd6dGYi6TFhbCowo7VzW/oHJ8qoa+0iPy/Hqc8r3MfnAn3/tVrOlTeyVtq58EFBgQGsXZ7Npapm9lypcdrzdvb0sm1/EQsyY5iXIe3cW/lU4tnXzpOiRvMzaefCRz1+bxKp0WFsLLjmtJb+4Ykyalu6yF8ha+fezKcC/aC5jm/KGnl5eRbBQT61a0L8k30t/WJlM4Xf3n1Lt7fz+RnR3JcZ44QJhVF8JvXs7XxCZChPzpZ2Lnzb47OSSIkezUYnrKX/8WQ51c1dcmSLD/CZQD9sqed06U1eXpZFSFCg0eMI4VKjAgNYuyyb8xVN7Ltae8fP02XrZeu+Iuamj2NBlrRzb+cTgd7fzq8xPiKUp+amGD2OEG7xxKxkkqJG8+pdtPSPT5Zzo7mT/LwclJKT13k7nwj0o0X1nCy5yRpp58KPBAf1H/FyrryR/dduv6Xb2/nstHEszJZ27gt8ItBfLTCTEBHCL6SdCz/z5Oz+ln4na+l/OlVBVVMn+Xkmaec+wusD/WhRPSeKG1i9NIvQUdLOhX8JDgpgzbIsvilr5KC5zuGv67b1sXVfEfemRrHYFOvCCYU7eX2gbyy4Rlx4CM/MSzV6FCEM8fM5yUyIDL2tlv7nMxVUNnZIO/cxXh3ox631HLNKOxf+LSQokJeXZXG69CZHiupH3L6nt48tey3MSIliaU6cGyYU7uLVgb6p0Ezs2BCenS/tXPi3p+amMD4ilI17Rm7pn56poOJmB69IO/c5Xhvop0oaOGypZ/XSTGnnwu+FBAWyZlkWJ0oaOGq9dUvv6e1j814L05MjWTZR2rmv8dpA31hgJnZsMM/OTzN6FCE8wi/mppAQEcLGPeZbbvPZN5WUN8jaua9yKNCVUg8qpa4qpSxKqd8P87hSSm0aePy8UmqW80f9/06X3uSguY5VSzIZHSztXAiA0FGBrF6axfHiBo4N09JtA2vn05IiyZ0Ub8CEwtVGDHSlVCCwBXgImAI8o5SaMmSzhwDTwMcqYKuT5/yOjQVmoscE86v7pJ0LMdgz81KJCx++pX9+torS+nY2SDv3WUEObDMPsGitrQBKqY+AR4HLg7Z5FNil+/815phSKkopNUFrfd3ZA39TdpMD12r53YOTCAt2ZHwh/Ie9pf/7Xy+T93/3ETAouK83dXJPYgQrJks791WOJGISUD7odgUw34FtkoDvBLpSahX9DZ7U1Ds7MkUDS3LiWLlA2rkQw3l2fiqWmlaaOrq/c3/O+HCeX5gh7dyHORLow/30hx4X5cg2aK23A9sB5syZc0dnE5qVOo5dz8+7ky8Vwi+EjgrkfzwxzegxhAEc+UfRCmDwSVKSgao72EYIIYQLORLoJwGTUipDKRUMPA18MWSbL4CVA0e73Ac0uWL9XAghxK2NuOSitbYppdYBXwOBwFta60tKqdUDj28DdgMPAxagHXjOdSMLIYQYjkOHiWitd9Mf2oPv2zbocw2sde5oQgghbofXvlNUCCHEd0mgCyGEj5BAF0IIHyGBLoQQPkLd6dXC7/qFlaoFSu/wy2MBx6+35Rtkn/2D7LN/uJt9TtNaD3vuY8MC/W4opU5precYPYc7yT77B9ln/+CqfZYlFyGE8BES6EII4SO8NdC3Gz2AAWSf/YPss39wyT575Rq6EEKI7/PWhi6EEGIICXQhhPARHh3onnZxandwYJ+fHdjX80qpI0qpGUbM6Uwj7fOg7eYqpXqVUk+6cz5XcGSflVLLlFJnlVKXlFL73T2jsznw33akUupLpdS5gX326rO2KqXeUkrVKKUu3uJx5+eX1tojP+g/VW8RkAkEA+eAKUO2eRj4G/1XTLoPOG703G7Y5/uBcQOfP+QP+zxou0L6z/r5pNFzu+HnHEX/dXtTB27HGz23G/b5vwD/a+DzOKABCDZ69rvY5yXALODiLR53en55ckP/58WptdbdgP3i1IP98+LUWutjQJRSaoK7B3WiEfdZa31Ea31z4OYx+q8O5c0c+TkDrAf+DNS4czgXcWSffwl8qrUuA9Bae/t+O7LPGghX/Rc9HUt/oNvcO6bzaK0P0L8Pt+L0/PLkQL/Vhadvdxtvcrv78wL9/4f3ZiPus1IqCXgc2IZvcOTnnAOMU0rtU0qdVkqtdNt0ruHIPm8GJtN/+coLQL7Wus894xnC6fnl0AUuDOK0i1N7EYf3Rym1nP5AX+TSiVzPkX1+Ffid1rrXR65Y78g+BwGzgTxgNHBUKXVMa33N1cO5iCP7/CPgLJALZAH/UEod1Fo3u3o4gzg9vzw50P3x4tQO7Y9SajqwE3hIa13vptlcxZF9ngN8NBDmscDDSimb1vpz94zodI7+t12ntW4D2pRSB4AZgLcGuiP7/BzwP3X/ArNFKVUMTAJOuGdEt3N6fnnykos/Xpx6xH1WSqUCnwK/9uK2NtiI+6y1ztBap2ut04FPgJe9OMzBsf+2/wIsVkoFKaXCgPnAFTfP6UyO7HMZ/X+RoJRKACYCVrdO6V5Ozy+PbejaDy9O7eA+/xsQA7w+0Fht2ovPVOfgPvsUR/ZZa31FKfUVcB7oA3ZqrYc9/M0bOPhz/nfgHaXUBfqXI36ntfba0+oqpT4ElgGxSqkK4L8Bo8B1+SVv/RdCCB/hyUsuQgghboMEuhBC+AgJdCGE8BES6EII4SMk0IUQwkdIoAshhI+QQBdCCB/x/wD5TXvdHWcXTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pm.loading_scenario.plot(plt.axes())" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\n", + " \\begin{array}{lrrl}\\hline\n", + " \\textrm{A_m} & A_\\mathrm{m} = 1540.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area} \\\\\n", + " \\textrm{A_f} & A_\\mathrm{f} = 16.67 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area} \\\\\n", + " \\textrm{P_b} & p_\\mathrm{b} = 1.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface} \\\\\n", + " \\hline\n", + " \\hline\n", + " \\end{array}\n", + " " + ], + "text/plain": [ + "<bmcs.pullout.pullout_sim.CrossSection at 0x7f8eacdf6530>" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.cross_section.trait_set(A_f=A_f, P_b=p, A_m=A_m)\n", + "pm.cross_section # display the cross section parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\n", + " \\begin{array}{lrrl}\\hline\n", + " \\textrm{L_x} & L = 45 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{embedded length} \\\\\n", + " \\hline\n", + " \\hline\n", + " \\end{array}\n", + " " + ], + "text/plain": [ + "<bmcs.pullout.pullout_sim.Geometry at 0x7f8eacdf6470>" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.geometry # geometry of the boundary value problem" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot the current bond-slip law" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\n", + " \\begin{array}{lrrl}\\hline\n", + " \\textrm{E_m} & E_\\mathrm{m} = 28000.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the matrix} \\\\\n", + " \\textrm{E_f} & E_\\mathrm{f} = 170000.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the reinforcement} \\\\\n", + " \\textrm{s_data} & s = & \\textrm{[mm]} & \\textrm{slip values} \\\\\n", + " \\textrm{tau_data} & \\tau = & \\textrm{[MPa]} & \\textrm{shear stress values} \\\\\n", + " \\hline\n", + " \\hline\n", + " \\end{array}\n", + " " + ], + "text/plain": [ + "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f8eacdbb2f0>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.mats_eval # configuration of the material model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAbl0lEQVR4nO3db4xc133e8e+zf8QlRe2KCpcUuztbMihhlxJg2V2wSl0EbuREtBOYelEhNGCXCFQQLdTUbgsEVF7UyAsCeiEEaYuqBWG7ZRHHAuvYJSEkbggmRlC0lbKS5VgUzZIWY2pFirtRLK7IXa52uL++mLv0aDm7e4czd2bnzPMBiLlz58zMby/Eh0dnz7lHEYGZmaWlp90FmJlZ8znczcwS5HA3M0uQw93MLEEOdzOzBPW1uwCArVu3xs6dO9tdhplZR3nllVf+OiKGa722LsJ9586dTExMtLsMM7OOIuknK73mYRkzswQ53M3MEuRwNzNLkMPdzCxBDnczswTlCndJ/0rSGUmvS/qmpAFJD0g6Jel89rilqv0zki5IOifp8eLKNzOzWtYMd0kjwL8ExiPiYaAXOAAcBk5HxG7gdPYcSXuy1x8C9gHPS+otpnwzM6sl77BMH7BRUh+wCbgM7AeOZa8fA57IjvcDL0TEfERcBC4Ae5tXcn7n3z3PqR+fasdXm5m11ZrhHhFvA88Bl4ArwLWI+BNge0RcydpcAbZlbxkB3qr6iMns3IdIOiRpQtLE9PR0Yz/FCp7738/x69/69UI+28xsPcszLLOFSm98F/C3gHslfWG1t9Q4d8eOIBFxNCLGI2J8eLjm6tmGvf/B+/z05k+ZmZ8p5PPNzNarPMMynwYuRsR0RCwA3wb+AXBV0g6A7HEqaz8JlKreP0plGKflZhdmAXjr2ltrtDQzS0uecL8EPCppkyQBjwFngZPAwazNQeBEdnwSOCBpg6RdwG7g5eaWnc9SuF+6dqkdX29m1jZr3jgsIl6S9C3gVaAMfB84CmwGjkt6iso/AE9m7c9IOg68kbV/OiJuFVT/qm733Gfcczez7pLrrpAR8RXgK8tOz1PpxddqfwQ40lhpjXPP3cy6VdIrVOfKc4B77mbWfZIOd/fczaxbdUW4e7aMmXWb7gj3mbdYjMU2V2Nm1jrJhntEMLswy5aBLXxw6wOmbxSzCtbMbD1KNtxvlm8C8NGtHwU87m5m3SXZcF8akvnI1o8ADncz6y7JhvvSNMiP/lyl5+7pkGbWTZIN96We++jgKJv6N7nnbmZdJflw39S/idJgyT13M+sqXRHuY0Nj7rmbWVfpinAvDZa8kMnMukpXhPvY0BhXrl9hvjzf5qrMzFqjK8K9NFTZO+Tt999uZ0lmZi2TbLjPLVSmQi713MH3mDGz7pFsuC8flgEvZDKz7pFng+yPSHqt6s+MpC9LekDSKUnns8ctVe95RtIFSeckPV7sj1DbUrhv7N/I6OAo4IVMZtY91gz3iDgXEY9ExCPA3wNmge8Ah4HTEbEbOJ09R9Ie4ADwELAPeF5Sb0H1r+h2uPdtZFP/JrZu2uqeu5l1jXqHZR4DfhwRPwH2A8ey88eAJ7Lj/cALETEfEReBC8DeZhRbj9mFWTb0bqC3p/LvihcymVk3qTfcDwDfzI63R8QVgOxxW3Z+BKhO0cns3IdIOiRpQtLE9HTzb8c7uzDLpv5Nt597IZOZdZPc4S7pHuBzwH9fq2mNc3HHiYijETEeEePDw8N5y8htebh7IZOZdZN6eu6fAV6NiKvZ86uSdgBkj1PZ+UmgVPW+UeByo4XWa648d0fP/dr8Na7dvNbqUszMWq6ecP88PxuSATgJHMyODwInqs4fkLRB0i5gN/Byo4XWa3Zhlo39G28/X1rI5HF3M+sGucJd0ibgl4FvV51+FvhlSeez154FiIgzwHHgDeC7wNMRcauZRedRa8wdvJDJzLpDX55GETEL/Nyyc+9SmT1Tq/0R4EjD1TVgpXD3L1XNrBskvUK1Otx3bN5Br3o9LGNmXaFrwr23p5eRwRH33M2sK3RNuIMXMplZ90g23OfKc2zq+3C4eyGTmXWLZMN9+VRI+NlCpsVYbFNVZmatkWS4R0TNYZmxoTEWFheYujG1wjvNzNKQZLjfLN8EqBnu4OmQZpa+JMO9eqOOardXqXohk5klrqvC3T13M+sWSYb7XPln+6dW2zKwhU39mzwd0sySl2S4r9Rzl+TpkGbWFZIO9419G+94zQuZzKwbJB3uy3vu4IVMZtYdui7cS4Ml3rn+DvPl+VaXZWbWMl0X7kszZt5+/+2W1mRm1kpdG+4emjGzlOXdiel+Sd+S9CNJZyX9gqQHJJ2SdD573FLV/hlJFySdk/R4ceXXNrdQeyokeCGTmXWHvD33fwd8NyI+CnwMOAscBk5HxG7gdPYcSXuAA8BDwD7geUm9zS58NWuNuYN77maWtjXDXdIg8IvA1wAi4oOIeA/YDxzLmh0DnsiO9wMvRMR8RFwELgB7m134am5Phey/cyrkxv6NbN201dMhzSxpeXruPw9MA/9F0vclfVXSvcD2iLgCkD1uy9qPANXJOZmd+xBJhyRNSJqYnp5u6IdYbnZhlg29G+hR7R/P0yHNLHV5wr0P+ATwnyLi48ANsiGYFajGubjjRMTRiBiPiPHh4eFcxeZV63a/1UqDJYe7mSUtT7hPApMR8VL2/FtUwv6qpB0A2eNUVftS1ftHgcvNKTeftcJ9bGjMwzJmlrQ1wz0i3gHekvSR7NRjwBvASeBgdu4gcCI7PgkckLRB0i5gN/ByU6tew2x57XCfmZ/h2s1rLazKzKx1+nK2+03gG5LuAd4EfoPKPwzHJT0FXAKeBIiIM5KOU/kHoAw8HRG3ml75KuYW5tYclgF4a+YthgaGWlWWmVnL5Ar3iHgNGK/x0mMrtD8CHGmgrobkGZaBynTIh7c93KqyzMxaJtkVqrWmQS7xQiYzS12y4b5az33H5h30qtczZswsWV0Z7r09vYwMjnjGjJklqyvDHbyQyczSlm64960e7l7IZGYpSzLc58qrT4WESs99cmaSxVhsUVVmZq2TXLhHxJqzZaAS7guLC1y9frVFlZmZtU5y4X6zfBOofbvfatULmczMUpNcuK92L/dq3pHJzFLWteHuhUxmlrKuDfctA1u4t/9e99zNLEldG+6SKA2VuDTjcDez9CQX7nPllTfHXm5saMzDMmaWpOTC/fb+qX2rT4UEGBv0KlUzS1Oy4Z6n514aKnH1xlXmy/NFl2Vm1lK5wl3SX0n6oaTXJE1k5x6QdErS+exxS1X7ZyRdkHRO0uNFFV9LPeG+NB1ycmay0JrMzFqtnp77P4qIRyJiadOOw8DpiNgNnM6eI2kPcAB4CNgHPC+pt4k1r6qunrsXMplZohoZltkPHMuOjwFPVJ1/ISLmI+IicAHY28D31OVueu4edzez1OQN9wD+RNIrkg5l57ZHxBWA7HFbdn4EqO4KT2bnPkTSIUkTkiamp6fvrvoa5hbyz5YZHRwFvJDJzNKTd4PsT0bEZUnbgFOSfrRKW9U4F3eciDgKHAUYHx+/4/W7dXu2zBo3DltqM7xp2D13M0tOrp57RFzOHqeA71AZZrkqaQdA9jiVNZ8ESlVvHwUuN6vgtcwuzLKhdwM9yvc/JV7IZGYpWjMBJd0r6b6lY+BXgNeBk8DBrNlB4ER2fBI4IGmDpF3AbuDlZhe+kjy7MFXzQiYzS1GeYZntwHckLbX/g4j4rqS/AI5Legq4BDwJEBFnJB0H3gDKwNMRcauQ6muoO9wHxzj95ukCKzIza701wz0i3gQ+VuP8u8BjK7znCHCk4eruwmy5vnAvDZV4/4P3uXbzGkMDQwVWZmbWOkmuUK13WAY8HdLM0pJcuM8trL1/ajUvZDKzFCUX7u65m5klGu555rgveXDzg/T19DnczSwpSYZ7PT333p5eRu4b8bCMmSWl68MdsoVM7rmbWULSDPe++sLdC5nMLDVphnudPfexwTEmZyZZjMWCqjIza62kwj0imCvXNxUSKsMyC4sLXL1+taDKzMxaK6lwv1m+CeS73W81T4c0s9QkFe713O63mhcymVlqkgx399zNrNs53IH7B+7n3v57He5mlgyHOyCpMh3SwzJmlgiHe2ZsaMw9dzNLRlLhPlfOvzn2cqXBkhcymVkycoe7pF5J35f0Yvb8AUmnJJ3PHrdUtX1G0gVJ5yQ9XkThtdyeLdNX32wZqPTcr964ynx5vtllmZm1XD099y8BZ6ueHwZOR8Ru4HT2HEl7gAPAQ8A+4HlJvc0pd3WNDMuUhirTISdnJptak5lZO+QKd0mjwK8CX606vR84lh0fA56oOv9CRMxHxEXgArC3OeWurtExd/B0SDNLQ96e++8BvwVU33xle0RcAcget2XnR4DqwevJ7NyHSDokaULSxPT0dN2F19JQz90LmcwsIWuGu6RfA6Yi4pWcn6ka5+KOExFHI2I8IsaHh4dzfvTqGgn30cFRwD13M0tDX442nwQ+J+mzwAAwKOn3gauSdkTEFUk7gKms/SRQqnr/KHC5mUWv5G5vP7D0nuFNww53M0vCmj33iHgmIkYjYieVX5T+aUR8ATgJHMyaHQROZMcngQOSNkjaBewGXm565TXMLcwx0DdAj+5uhqcXMplZKvL03FfyLHBc0lPAJeBJgIg4I+k48AZQBp6OiFsNV5rD7MLsXU2DXDI2NMa5d881sSIzs/aoK9wj4nvA97Ljd4HHVmh3BDjSYG11u5uNOqqVBkucevMUEYFU61cHZmadIakVqrPlxsJ9bGiM6x9c59r8tSZWZWbWemmFe6M992whk29DYGadzuFexQuZzCwVSYX73EL9+6dWW1rI5HA3s06XVLg32nN/cPOD9PX0eTqkmXW85ML9bhYwLent6WV0cNQ9dzPreMmFeyM9d8ju6+6eu5l1uPTCva+xcPeOTGaWgvTCvQk997dn3ubWYksW1ZqZFSKZcI8I5sqNzZaBSs99YXGBqzeuNqkyM7PWSybcb5ZvAnd3u99qXshkZilIJtwbuZd7NS9kMrMUJBfujUyFBC9kMrM0JBfujfbc7x+4n833bPZ0SDPraA73ZSR5OqSZdTyHew1eyGRmnS7PBtkDkl6W9ANJZyT9Tnb+AUmnJJ3PHrdUvecZSRcknZP0eJE/wJJmhrt77mbW6fL03OeBX4qIjwGPAPskPQocBk5HxG7gdPYcSXuo7LX6ELAPeF5SbxHFV5srzwHN67lP3Zi6Pb3SzKzT5NkgOyLieva0P/sTwH7gWHb+GPBEdrwfeCEi5iPiInAB2NvUqmtods8dYHJmsuHPMjNrh1xj7pJ6Jb0GTAGnIuIlYHtEXAHIHrdlzUeA6gHryezc8s88JGlC0sT09HQjPwNQNRWygQ2ylywtZPLQjJl1qlzhHhG3IuIRYBTYK+nhVZrX2lk6anzm0YgYj4jx4eHhfNWuooieu1epmlmnqmu2TES8B3yPylj6VUk7ALLHqazZJFCqetsocLnhStfQzHAfHRwF3HM3s86VZ7bMsKT7s+ONwKeBHwEngYNZs4PAiez4JHBA0gZJu4DdwMvNLny5Zq1QBRjoG2Dbvds8HdLMOlZfjjY7gGPZjJce4HhEvCjp/wDHJT0FXAKeBIiIM5KOA28AZeDpiCj8/rmzC7MM9A3Qo+ZM3fd0SDPrZGuGe0T8JfDxGuffBR5b4T1HgCMNV1eHRjfHXq40WOLcu+ea9nlmZq2U1ArVZsyUWbLUc4+443fBZmbrXjrhXm58F6ZqpcES1z+4zrX5a037TDOzVkkn3JuwxV4139fdzDqZw30FXshkZp3M4b4CL2Qys07mcF/Bg5sfpL+n3z13M+tIyYR7s6dC9qiHkcERL2Qys46UTLjPLsw2ZXVqNS9kMrNOlVS4b+prXs8dvCOTmXWutMK9icMyUOm5T85Mcmux8LsnmJk1VRLhvhiLzJWbO+YOlZ57ebHMO9ffaernmpkVLYlwX9oOr4ieO+ChGTPrOEmE+9xC8/ZPreaFTGbWqZII92Zu1FHNC5nMrFMlFe7Nngo5tGGI++65zz13M+s4eXZiKkn6M0lnJZ2R9KXs/AOSTkk6nz1uqXrPM5IuSDon6fEifwAorucuidKQp0OaWefJ03MvA/8mIv4u8CjwtKQ9wGHgdETsBk5nz8leOwA8RGWv1eezXZwKU1S4gxcymVlnWjPcI+JKRLyaHb8PnAVGgP3AsazZMeCJ7Hg/8EJEzEfEReACsLfZhVcrMty9kMnMOlFdY+6SdlLZcu8lYHtEXIHKPwDAtqzZCFCdhpPZueWfdUjShKSJ6enp+iuvUnTPferG1O0ZOWZmnSB3uEvaDPwh8OWImFmtaY1zd+xVFxFHI2I8IsaHh4fzllHTXLmYqZBQ6bkDTM5MNv2zzcyKkivcJfVTCfZvRMS3s9NXJe3IXt8BTGXnJ4FS1dtHgcvNKbe2onvu4IVMZtZZ8syWEfA14GxE/G7VSyeBg9nxQeBE1fkDkjZI2gXsBl5uXsl3uj0VsokbZC/xdntm1on6crT5JPBF4IeSXsvO/TbwLHBc0lPAJeBJgIg4I+k48AaVmTZPR0Shd94qsuc+OjgKeCGTmXWWNcM9Iv4XtcfRAR5b4T1HgCMN1FWXohYxAWzo28D2e7e7525mHSWZFaoDfQP0qJgfxwuZzKzTJBPuRQzJLPFCJjPrNEmEe7P3T12uNFji0rVLRNwxo9PMbF1KItxny8X33G8s3OC9m+8V9h1mZs2URrgvzBYyDXLJ0kImD82YWadIJtyL7rmDFzKZWedwuOfghUxm1mkc7jls37yd/p5+L2Qys47hcM+hRz2MDo5yacY9dzPrDEmEe9FTISFbyOSeu5l1iCTCvejZMuCFTGbWWZIJ98J77oMlJmcmubVY6D3QzMyaouPDfTEWmSsXPywzNjTGrbjFO9ffKfR7zMyaoePD/Wb5JlDM7X6reTqkmXWSjg/3Iu/lXm1plaoXMplZJ+j4cF/auNo9dzOzn8mzzd7XJU1Jer3q3AOSTkk6nz1uqXrtGUkXJJ2T9HhRhS9pVc99aGCI++65z9Mhzawj5Om5/1dg37Jzh4HTEbEbOJ09R9Ie4ADwUPae5yX1Nq3aGorchWm5saExL2Qys46wZrhHxJ8Df7Ps9H7gWHZ8DHii6vwLETEfEReBC8DeJtVaU6t67uCFTGbWOe52zH17RFwByB63ZedHgOr0m8zO3UHSIUkTkiamp6fvsozWhvvYoBcymVlnaPYvVGttpF1z+6KIOBoR4xExPjw8fNdf2Oqe+/Ts9O1f4pqZrVd3G+5XJe0AyB6nsvOTQKmq3Shw+e7LW1tLe+7ZjJnJmcnCv8vMrBF3G+4ngYPZ8UHgRNX5A5I2SNoF7AZebqzE1c2VWzMVEjwd0sw6R99aDSR9E/gUsFXSJPAV4FnguKSngEvAkwARcUbSceANoAw8HRGF3oylpcMyXshkZh1izXCPiM+v8NJjK7Q/AhxppKh63J4KWfBdIQFGB0cB99zNbP3r+BWqrZznvqFvA9vv3e7pkGa27iUR7gN9A/SoNT+KFzKZWSdIItxbMd6+pDRU8rCMma17Dvc6jQ2O8da1t4ioOX3fzGxd6Phwb8VGHdXGhsa4sXCDn978acu+08ysXh0f7u0YlgH8S1UzW9eSCPdWTINc4oVMZtYJkgj3lvbcvZDJzDqAw71O2zdvp7+n3z13M1vXHO516lEPo4Oj7rmb2brmcL8LY0O+r7uZrW8dH+5zC62dCgleyGRm61/Hh3tbeu6DY7w98za3Fgu94aWZ2V3r6HBfjEXmynMtnQoJlWGZW3GLK9evtPR7zczy6uhwv1m+CbTmXu7VvJDJzNa7jg73Vm7UUc0LmcxsvSss3CXtk3RO0gVJh4v4jnaFuxcymdl6V0i4S+oF/iPwGWAP8HlJe5r9Pe0K96GBIQY3DLrnbmbr1prb7N2lvcCFiHgTQNILwH4qe6s2zdxC6zbHXq40WOLYD45x+uLpln+3maXjM3/nMzz3K881/XOLCvcRoHrMYhL4+9UNJB0CDgGMjY3d1ZdsvmczT+558vYYeCsd/oeHOXHuRMu/18zSMnLfSCGfqyI2nZD0JPB4RPzT7PkXgb0R8Zu12o+Pj8fExETT6zAzS5mkVyJivNZrRf1CdRIoVT0fBS4X9F1mZrZMUeH+F8BuSbsk3QMcAE4W9F1mZrZMIWPuEVGW9C+A/wn0Al+PiDNFfJeZmd2pqF+oEhF/BPxRUZ9vZmYr6+gVqmZmVpvD3cwsQQ53M7MEOdzNzBJUyCKmuouQpoGfNPARW4G/blI5zeS66uO66uO66pNiXX87IoZrvbAuwr1RkiZWWqXVTq6rPq6rPq6rPt1Wl4dlzMwS5HA3M0tQKuF+tN0FrMB11cd11cd11aer6kpizN3MzD4slZ67mZlVcbibmSWoY8J9rQ23VfHvs9f/UtIn1kldn5J0TdJr2Z9/26K6vi5pStLrK7zeruu1Vl0tv16SSpL+TNJZSWckfalGm3Zdrzy1teOaDUh6WdIPsrp+p0abll+znHW16+9kr6TvS3qxxmvNv1YRse7/ULlt8I+BnwfuAX4A7FnW5rPAHwMCHgVeWid1fQp4sQ3X7BeBTwCvr/B6y69Xzrpafr2AHcAnsuP7gP+3Hv77qqO2dlwzAZuz437gJeDRdl+znHW16+/kvwb+oNZ3F3GtOqXnfnvD7Yj4AFjacLvafuC/RcX/Be6XtGMd1NUWEfHnwN+s0qQd1ytPXS0XEVci4tXs+H3gLJV9gKu163rlqa3lsutwPXvan/1ZPjuj5dcsZ10tJ2kU+FXgqys0afq16pRwr7Xh9vL/wPO0aUddAL+Q/W/iH0t6qOCa8mrH9cqrbddL0k7g41R6fNXafr1WqQ3acM2yYYbXgCngVESsi2uWoy5o/fX6PeC3gMUVXm/6teqUcFeNc8v/Nc7TptnyfOerVO7/8DHgPwD/o+Ca8mrH9cqjbddL0mbgD4EvR8TM8pdrvKVl12uN2tpyzSLiVkQ8QmWP5L2SHl7WpC3XLEddLb1ekn4NmIqIV1ZrVuNcQ9eqU8I9z4bb7diUe83vjIiZpf9NjMruVP2SthZcVx7rchPzdl0vSf1UwvMbEfHtGk3adr3Wqq3d/41FxHvA94B9y15q639jK9XVhuv1SeBzkv6KytDtL0n6/WVtmn6tOiXc82y4fRL4J9lvnR8FrkXElXbXJelBScqO91K55u8WXFce7bhea2rH9cq+72vA2Yj43RWateV65amtTddsWNL92fFG4NPAj5Y1a/k1y1NXq69XRDwTEaMRsZNKRvxpRHxhWbOmX6vC9lBtplhhw21J/yx7/T9T2a/1s8AFYBb4jXVS1z8G/rmkMjAHHIjs1+NFkvRNKrMCtkqaBL5C5ZdLbbteOetqx/X6JPBF4IfZWC3AbwNjVXW15XrlrK0d12wHcExSL5VwPB4RL7b772TOutryd3K5oq+Vbz9gZpagThmWMTOzOjjczcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0vQ/wdNQv3bviWjAgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pm.mats_eval.bs_law.plot(plt, color='green')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "c='red'\n", + "pm.geometry.L_x = 200\n", + "pm.sim.run()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAEGCAYAAAAOgW4QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de5hU1Znv8e/LpQEBEWxApOVAxBugYmwRVAiijASjoGLA0XiJhkliThydyVHPM0/iOUcn5jmJZhxPzEFhFIMBxBiJB7zfFS8oKAjqoKK2jdA0t0ZpoLvf80ftLqqbuuxuqmpXd/0+z1MPq9a+vbvaqte19t5rmbsjIiIi++sQdQAiIiKFSklSREQkBSVJERGRFJQkRUREUlCSFBERSaFT1AHkW2lpqQ8ePDjqMEREpIC8/fbbm929b/P6okuSgwcPZvny5VGHISIiBcTMPktWr+5WERGRFJQkRUREUlCSFBERSUFJUkREJAUlSRERkRSUJEVERFJQkhQREUmh6J6TbJVlwGBgQMRxFLGqqiqefvpp6uvr6dq1K1u3bk27fmlpKZs3b065/PDDD2fDhg2kmirusMMOo7q6mr179yZdftBBB+Hu7Nq1K+Ux+vTpw5YtW9LGWF1dnTKGww8/nOrqanbv3p10ef/+/amtrWX79u1Jl3fo0IFOnTqxZ8+etDFs2bKFhoaGlOewa9eulOd52GGHUVtby7Zt21Ju37VrVzZu3Eh9fX3SdXr06MHOnTtTxjhw4EB27tyZ8jxLS0vp1KkTX331VdLlhx9+OF26dGHDhg3U1tbut7x3794cccQRbNy4kY0bN+633Mw49thj2bx5M1VVVUmPUV5eTm1tLZWVlUn/5qeccgolJSVs2LCBysrK/eIYNWoU/fv3Z8OGDfFX4t/ktNNO4+ijj2bjxo3x5Ymxjh8/nqOPPpq9e/eyceNGvvrqKzZs2MCmTZvo0qUL48ePp6ysDAB3p6amho0bN1JVVUVdXR0nnngivXr1ahJTXV0dNTU1uDu9e/fGzJKee3tnxTafZHl5ubd4MIFZCeW/B3pkMyJJpqamhiVLlqT8YRSRwtKpUyfq6uqSLuvfvz+TJk1i8+bNbNq0iU2bNlFVVcU333zDuHHjOPbYY/Mc7f7M7G13L9+vXkkyhFnN3vcFLshWRNLohRde4KOPPmr19j179qSmpibl8pKSkrStKjNL2aoLK90PBUDXrl2TtmbyKdPnIFJIDj74YL7//e+zY8cOtmzZwtatW9m7dy/l5eV06pS9zlAlyUCrk+S3gEOBtxLqZ2YvrmK2cOHClN11AP369WPixIl07949j1GJFI6GhgbcnY4dOyZdvnPnTmpqaujXr1/SdT777DMqKyvp378//fr1o3v37k26T19//XU+/fRT+vbtS2lpKaWlpfTp04cuXbrQ0NDAf/zHfzTZX58+feLrbNu2jQ8++CC7J9wCY8aMYdeuXdTW1rJ792769u3LyJEjW7wfJclAq5Pk0cD4hPeNlChb7bPPPuPJJ5/cr75z586cd955lJaWRhCViORCQ0MDHTrsf69oZWUlS5YsoaGhgY4dO8aTdElJCStWrGj18aZOnUq/fv1Cr5/3JGlmXYGXgC7EbhBa5O6/MrM+wAJit8KsB77v7luDbW4GrgbqgZ+7+5NB/cnA/UA3YAlwnbu7mXUB5gInA9XAdHdfny6uVifJYcAZCXX3AQ3Ad4EjWra7YldXV8ecOXP2q7/yyispKSmJICIRKVQNDQ00NDTs17X68MMPZ7yBr2fPnlxyySWhjpMqSeby7tbdwAR332lmnYFXzGwpcCHwrLvfbmY3ATcBN5rZMGAGMBw4HHjGzI5293rgHmJttteJJclJwFJiCXWruw81sxnAb4DpOTmb5p/UNcBDQHE1xA/YSy+9tF/XzIQJExg6dGhEEYlIIevQoUPSFujFF1+cdP1ly5axatUqgJR3hrdEzpKkx5qojfd1dw5eDkxhX8flA8ALwI1B/Xx33w18ambrgFFmth442N2XAZjZXGAqsSQ5Bbgl2Nci4G4zM89F8zjZJ/X3WT9Ku7V161YefvjhJnVdunThiiuuiCgiEWmPxowZw5gxY9ixY0dWbuzJ6XOSZtYReBsYCvwfd3/DzPq7+wYAd99gZo2dxgOJtRQbVQR1e4Ny8/rGbb4I9lVnZtuJ3V7T5AE5M5tJcPVw0KBBrTsZPVHaas899xzr1q1rUjdjxgwOPvjgiCISkfYuW78vOf3pD7pKR5rZIcCjZjYizerJnlT1NPXptmkexyyC223Ky8tb18pUkmyVBQsWNHnW8YQTTmD06NERRiQiEl5efvrdfZuZvUDsWuJGMxsQtCIHAJuC1SpoegtMGVAZ1JclqU/cpsLMOgG9gNRDnBwIJckWmzWr6QOmV111FZ07d44oGhGRlsvZ2K1m1jdoQWJm3YCzgQ+AxUDjhagrgMeC8mJghpl1MbMhwFHAm0HXbI2ZjbbYgz2XN9umcV/TgOdycj0SlCRbqHmCvOaaa5QgRaTNyeVP/wDggeC6ZAdgobs/bmbLgIVmdjXwOXAxgLu/b2YLgTVAHXBt0F0L8BP2PQKyNHgBzAYeDG7y2ULs7tjcUJIMrXmCnDlTD5OKSNukwQTCmAVMpmmnrySlBCkibVEUz0m2L+opTKuhoYH77ruvSZ0SpIi0dUqSYemTSqn5CDqdO3fmqquuijAiEZHs0E9/WPqkkqqtrWXu3Lnx94ceeigXXXRRhBGJiGSPfvrD0ieVVGKCHDJkCBMnTowwGhGR7NJPf1j6pPaTeJPOsGHDOOOMM9KsLSLS9uTsOcl2R0myiaeeeqrJeyVIEWmPlCQzaQj+TT7XaVH6/PPPWb9+ffy97mIVkfZKSTKTuqgDKCx79uzhiSeeiL/XXawi0p4pSWZSn3mVYnL//ffHy+eee66GmhORdk1JMpO9UQdQOBJv1Bk6dCgDBw5Ms7aISNunJJmJuluB2GzfiSZMmBBRJCIi+aMkmYmSJFVVVaxatSr+XjfqiEixUJLMpMiTZH19PY8++mj8/WWXXRZhNCIi+aUkmUmRJ8nZs2fHy2eeeSYHHXRQhNGIiOSXkmQmRZwk//znP8fLpaWlHHXUURFGIyKSf0qSmRRpkty2bRs1NTXx9xdeeGGE0YiIRENJMpMiTZILFy6Ml6+55poIIxERiY6SZCZFmCRffvnlePn444+nQwf9ZyIixUm/fpkUWZKsr69n7dq18fdjxoyJMBoRkWgpSWZSZEky8W7W6dOnRxiJiEj0lCQzKaIk+dlnn8XLJSUl9OrVK8JoRESipySZSRGN3frkk0/Gy1deeWV0gYiIFAglyUyKpCW5YMGCeFnjsoqIxOQsSZrZEWb2vJmtNbP3zey6oP4WM/vSzFYGr8kJ29xsZuvM7EMzOyeh/mQzWxUsu8vMLKjvYmYLgvo3zGxw1k+kCKbK+vrrr9m+fXv8/dChQyOMRkSkcOSyJVkH/JO7HweMBq41s2HBsjvdfWTwWgIQLJsBDAcmAX8ws47B+vcAM4GjgtekoP5qYKu7DwXuBH6T9bMogu7WefPmxcvqZhUR2SdnSdLdN7j7O0G5BlgLpJuAcAow3913u/unwDpglJkNAA5292Xu7sBcYGrCNg8E5UXAWY2tzKxp592t77zzTrw8ZMgQSkpKIoxGRKSw5OWaZNANehLwRlD1MzN7z8zmmFnvoG4g8EXCZhVB3cCg3Ly+yTbuXgdsBw5NcvyZZrbczJZXVVW1LPh2nCTdneXLl8ffT5w4McJoREQKT86TpJn1AB4B/tHddxDrOj0SGAlsAH7XuGqSzT1Nfbptmla4z3L3cncv79u3b8tOoB0nyXvvvTdenjp1apo1RUSKU06TpJl1JpYg57n7XwDcfaO717t7A3AvMCpYvQI4ImHzMqAyqC9LUt9kGzPrBPQCtmT1JNppkty6dWuT9/369YsoEhGRwpXLu1sNmA2sdfc7EuoHJKx2AbA6KC8GZgR3rA4hdoPOm+6+Aagxs9HBPi8HHkvY5oqgPA14LrhumT3tNEk+/PDD8bIGMBcRSa5TDvd9OvADYJWZrQzq/jtwiZmNJNYtuh74BwB3f9/MFgJriKWma9298QGMnwD3A92ApcELYkn4QTNbR6wFOSPrZ9EOk+THH38cL48YMUIDmIuIpJCzJOnur5D8muGSNNvcBtyWpH45MCJJfS1w8QGEmVk7fE7y2WefjZdPO+20CCMRESlsakIUmQ8//DBePvXUUyOMRESk8ClJFpkXX3wxXj7xxBMjjEREpPApSRaR1atXx8unn356hJGIiLQNSpJF5LXXXouXhw8fHmEkIiJtg5JkkVi5cmW8PH78+OgCERFpQ5Qki8Sbb74ZLx999NERRiIi0nYoSRaBt956K14+++yzI4xERKRtUZIsAitWrIiXv/Wtb0UYiYhI26Ik2c4l3qwzadKkNGuKiEhzKUfcMbMbQmz/tbv/3yzGI1mW+NjHoEGDIoxERKTtSdeS/AXQA+iZ5vVPuQ5QWi9x4IBzzz03wkhERNqmdGO3Puju/zPdxmbWPcvxSBYlDkE3cODANGuKiEgyKVuS7v7fMm0cZh2JxjPPPBMvT5kyJcJIRETarnTXJC9Pt6G7z81+OJItn3zySbzcv3//CCMREWm70nW3npKkzoDzgIGAkmSBSnzk44ILLogwEhGRti1lknT3/9pYNjMDLgVuBF4nyZyPUjgSBw/o27dvhJGIiLRtaSddNrNOwJXE7mJ9A5jm7h+m20aitWXLlnj529/+doSRiIi0femuSV4LXAc8C0xy98/yFpW02qJFi+Ll8vLyCCMREWn70rUk/x3YBJwB/C3W4wrErku6u5+Q49ikhRoaGuLlkpKSCCMREWkf0iXJIXmLQrJiwYIF8fJll10WYSQiIu1Duht31L3axtTU1MTLnTqlvdwsIiIhpBxMwMwez7RxmHUkP9577714eerUqRFGIiLSfqRrbpxhZovTLDdgWJbjkVZ6/fXX4+V+/fpFGImISPuRLkmGGctsT6oFZnYEsQEHDgMagFnu/m9m1gdYAAwG1gPfd/etwTY3A1cD9cDP3f3JoP5k4H6gG7AEuM7d3cy6BMc4GagGprv7+hBxtyvbtm2Ll084QfdTiYhkS7prki+mWhZSHfBP7v6OmfUE3jazp4k9d/msu99uZjcBNwE3mtkwYAYwHDgceMbMjnb3euAeYCaxgQyWAJOApcQS6lZ3H2pmM4DfANMPMO42Z+HChfHy6NGjI4xERKR9ydmky+6+wd3fCco1wFpiw9lNAR4IVnsAaLyANgWY7+673f1TYB0wyswGAAe7+zJ3d2Itx8RtGve1CDjLEp5VyZoCvgcm8bGPDh00h7aISDbl5VfVzAYDJxEbtae/u2+AWCIFGi+gDQS+SNisIqgbGJSb1zfZxt3rgO3AoUmOP9PMlpvZ8qqqqpafQAEnyUceeSRevuKKKyKMRESk/UmbJM3sJDObZmbHtfYAZtYDeAT4R3ffkW7VJHWepj7dNk0r3Ge5e7m7l7dqLNMCTpJbt26Nlzt37hxhJCIi7U+6R0B+SewGm4uA/2dmP2rpzs2sM7EEOc/d/xJUbwy6UAn+3RTUVwBHJGxeBlQG9WVJ6ptsE4wz2wvYQrYVaJJ8//334+Xzzz8/wkhERNqndC3J6cBId7+E2LRZM1uy4+Da4GxgrbvfkbBoMdDYL3gF8FhC/Qwz62JmQ4CjgDeDLtkaMxsd7PPyZts07msa8Fxw3TK7CjRJvvrqq/HyYYcdFmEkIiLtU7qf/1p3/wbA3avNrKXXL08HfgCsMrOVQd1/B24HFprZ1cDnwMXBMd43s4XAGmJ3xl4b3NkK8BP2PQKyNHhBLAk/aGbriLUgZ7QwxnAKMEnu2LGv53r48OERRiIi0n6l+/k/MmEwAWv2HndP27/n7q+Q/JohwFkptrmNJHNVuvtyYESS+lqCJJtTBZgk58+fHy+ffvrpEUYiItJ+tWQwgd/mMpCCpvthRESKUi4HE2g/OkYdQFOJQ9DpsQ8RkdzR0+dhFFhLMnEw8y5dukQYiYhI+6YkGUYBXZOsr6+Pl4cM0ZSfIiK5FDpJmln3XAZS0AooSS5evG9ilrPPPjvCSERE2r+MSdLMTjOzNcTGXsXMTjSzP+Q8skJSQEkycVi9XAxTKyIi+4RpSd4JnENsKirc/V1gXC6DKjgFkiR37twZL5922mkRRiIiUhxCdbe6+xfNquqTrtheFUiSfOihh+LlESP2e2xURESyLMzP/xdmdhrgZlYC/Jyg67VoFEiSFBGR/ArTkvwxcC37pqwaGbwvHgWQJCsrK+Pl8847L8JIRESKR8aff3ffDFyah1gKVwE8J/n444/HywMGDIgwEhGR4hHm7tYHzOyQhPe9zWxObsMqMAU24o6IiORHmO7WE9x9W+Mbd98KnJS7kApQxC3JxBF2Lr20uBv1IiL5FCZJdjCz3o1vzKwPBXGVLo8iPtvEsVq7dy/eMR1ERPItzM//74DXzGwR4MD3STKdVbsWYZJMnEO6X79+0QUiIlKE0v78BxMtrwMuAiYQmx/yQndfk4fYCkeESfLpp5+Ol3VXq4hIfqX9+Xf3BjP7nbuPAYorMSaKMEmuX78+Xu7YUXcQiYjkU5hrkk+Z2UVWjAOFNvZ0RpSbdu/eHS+feOKJ0QQhIlLEwrSRbgC6A/VmVhvUubsfnLuwCkTj4HsR/e/B/Pnz4+VTTz01miBERIpYmMEEeuYjkIJUF+3hE1uSIiKSf6GutpnZ+eyb+eMFd3883frtRoRJMnHGjwkTJkQXiIhIEQsz4s7twHXEbtxZA1wX1LV/ESbJxK7WoUOHRheIiEgRC9OSnAyMdPcGiA1TB6wAbsplYAUhwiTZ0NAQ3cFFRAQIOZ8kcEhCuVeYDcxsjpltMrPVCXW3mNmXZrYyeE1OWHazma0zsw/N7JyE+pPNbFWw7K7Gu2zNrIuZLQjq3zCzwSHPJbyIkuTXX38dL48fPz6aIEREJFSS/DWwwszuD1qRbwP/GmK7+4FJServdPeRwWsJgJkNA2YAw4Nt/mBmjQ9e3APMBI4KXo37vBrY6u5DgTuB34SIqWUiSpILFiyIl48++uhoghARkdRJ0sxOD4p/AUYH//4FGOPu81Nt18jdXwK2hIxjCjDf3Xe7+6fERvkZZWYDgIPdfZnHxmebC0xN2OaBoLwIOCvrz3JGlCTr6iK+rVZERID0Lcm7gn+XufsGd1/s7o+5+1cHeMyfmdl7QXds48DpA4EvEtapCOoaJ3puXt9kG3evA7YDhyY7oJnNNLPlZra8qqoqfKQR5KpvvvkmXh43blyaNUVEJNfS3biz18z+AxhoZnc1X+juP2/F8e4B/hexsWz+F7HB039I8sf1PU09GZY1rXSfBcwCKC8vT7pOUntDr5k1ixYtipePPfbY/AcgIiJx6ZLk94CziQ1s/nY2DubuGxvLZnYv0Pi8ZQVwRMKqZUBlUF+WpD5xmwoz60TshqKw3bvhRNCSrK2tzbySiIjkRcok6e6bgflmttbd383GwcxsgLtvCN5eADTe+boYeMjM7gAOJ3aDzpvuXm9mNWY2GngDuBz494RtrgCWAdOA5zxxXqlsyHOSTEyQY8aMye/BRURkP2GGpWtVgjSzPwPjgVIzqwB+BYw3s5HEukXXA/8QHON9M1tIbLCCOuBad28cOfUnxO6U7QYsDV4As4EHzWwdsRbkjNbEmVaek+Sjjz4aLx9//PH5PbiIiOwnZ5NAufslSapnp1n/NpJM5uzuy4ERSeprgYsPJMaM8pwka2pq8ntAERFJK8ywdEPC1LVLeUySe/bsiZdPOeWU/B1YRERSCjOYwCNJ6hYlqWt/8pgkFy9eHC+fdNJJ+TuwiIiklLK71cyOJTYCTi8zuzBh0cFA11wHVhDymCS3bMnujbkiInLg0l2TPIbYYyCHAOcl1NcAP8plUAUjT0ly7959D2SOHDkyPwcVEZGM0j0C8hjwmJmNcfdleYypcOQpSS5ZsiReHjVqVH4OKiIiGYW5u3Wmme3XcnT3H+YgnsKSpxF3Nm7cmHklERHJuzBJ8vGEcldigwBUpli3fclDS7K+vj5eHj58eO4PKCIioYUZTKDJ3a3BIAHP5CyiQpKHJPnkk0/Gy6eddlruDygiIqGFnXQ50VHAoGwHUpDykCQrKvZNcpLtmb5EROTAZGxJmlkN+2bkcOAr4MYcx1UYcpwkGxoa4mVNriwiUnjCdLf2zEcgBSnHSfK5556LlzV3pIhI4Qk1dquZnQ80/oq/4O6Pp1tfwvnkk0/i5Q4dWtPzLSIiuRRm7NbbgeuIzdCxBrjOzH6d68Dau8RZvQYPHhxdICIiklKYluRkYKS7NwCY2QPACuDmXAbW3r300kvx8tlnnx1hJCIikkrYPr5DEsq9chFIsfnwww/jZXW1iogUpjAtyV8DK8zseWJ3uI5DrcgDktjVWlZWFmEkIiKSTpi7W/9sZi8ApxBLkje6+1e5Dqw9W7Zs31C455xzToSRiIhIOqH6+dx9g7svBvorQR641atXx8sdO3aMMBIREUmnpRfDfpyTKIpUv379og5BRETSaGmS1LhpB+itt96Kl7/3ve9FGImIiGTS0iR5XuZVJJ0VK1bEy506hRrLQUREIpLyV9rMbkhRD4C735GjmIpC7969ow5BREQySNeS7JnhlZaZzTGzTWa2OqGuj5k9bWb/GfzbO2HZzWa2zsw+NLNzEupPNrNVwbK7LMjSZtbFzBYE9W+Y2eCWnXr+rVy5Ml6eMmVKhJGIiEgYKVuS7v4/DnDf9wN3A3MT6m4CnnX3283spuD9jWY2DJgBDAcOB54xs6PdvR64B5gJvA4sASYBS4Grga3uPtTMZgC/AaYfYMw59eabb8bLJSUlEUYiIiJhpOtuvSvdhu7+8wzLX0rSupsCjA/KDwAvEJt2awow3913A5+a2TpglJmtBw5292VBTHOBqcSS5BTglmBfi4C7zcw88Un9AtWjR4+oQxARkRDS3Tnydg6O19/dN0Ds2Usza3wGYiCxlmKjiqBub1BuXt+4zRfBvurMbDtwKLC5+UHNbCax1iiDBkUzX3Tis5EXXnhhJDGIiEjLpOtufSCPcSR7tMTT1KfbZv9K91nALIDy8vJIWpqvvfZavNy1a9coQhARkRbK+AxCMGbrfonF3Se04ngbzWxA0IocAGwK6iuAIxLWKwMqg/qyJPWJ21SYWSdiA69vaUVMedWlS5eoQxARkZDCPKj3zwnlrsBFQF0rj7cYuAK4Pfj3sYT6h8zsDmI37hwFvOnu9WZWY2ajgTeAy4F/b7avZcA04LlCvR6ZOOPHxRdfHGEkIiLSEmEGOG9+bfJVM3sx03Zm9mdiN+mUmlkF8CtiyXGhmV0NfA5cHBzjfTNbSGxS5zrg2uDOVoCfELtTthuxG3aWBvWzgQeDm3y2ELs7tiC9+OK+j+uggw6KMBIREWmJMN2tfRLedgBOBg7LtJ27X5Ji0Vkp1r8NuC1J/XJgRJL6WoIk21Y0DsQgIiJtQ5ju1rfZdxNNHfApsWcUJYRPPvkkXp4xo2AbuyIikkSY7tYh+QikvXrmmWfi5Z49Mw5UJCIiBSRMd2tX4KfAGcRalK8A9wTdnSIiIu1WmO7WuUAN++4qvQR4kDZ2PTAKn3/+ebw8fXpBj5gnIiJJhEmSx7j7iQnvnzezd3MVUHvyxBNPxMu9evWKMBIREWmNMPNJrgieUwTAzE4FXs1dSAWmY9QBiIhIVMK0JE8FLjezxr7DQcBaM1sFuLufkLPoCkEr50WurKyMl6dNm5alYEREJJ/CpIBJOY+ikLUyST7++OPxcp8+fdKsKSIihSrMIyCf5SOQgtXKJCkiIm1fmGuSxa0VSXLjxo3x8gUXXJDFYEREJJ+UJDNpRZJ87LHH4uW+fftmMRgREcknJclM1N0qIlK0lCQzaWGS3Lx5c7x83nnnZTkYERHJJyXJTFqYJP/yl7/EywMGDMhyMCIikk9Kkpl0jjoAERGJipJkJi1oSW7bti1enjx5cg6CERGRfFKSzKQFSXLhwoXxcllZWQ6CERGRfFKSzER3t4qIFC0lyUxCJskdO3bEyxMnTsxRMCIikk9KkpmETJLz58+Pl4cMGZKjYEREJJ+UJDNRd6uISNFSkswkRJL8+uuv4+Uzzzwzh8GIiEg+KUlmEiJJLliwIF4+6qijchiMiIjkUyRJ0szWm9kqM1tpZsuDuj5m9rSZ/Wfwb++E9W82s3Vm9qGZnZNQf3Kwn3VmdpeZWdaDDZEk6+rqsn5YERGJXpQtyTPdfaS7lwfvbwKedfejgGeD95jZMGAGMJzYBNB/MLOOwTb3ADOBo4JX9ieIzpAkd+3aFS+PHTs264cXEZHoFFJ36xTggaD8ADA1oX6+u+9290+BdcAoMxsAHOzuy9zdgbkJ22RPhiT5yCOPxMvHHXdc1g8vIiLRiSpJOvCUmb1tZjODuv7uvgEg+LdfUD8Q+CJh24qgbmBQbl6/HzObaWbLzWx5VVVVyyLNkCS/+eablu1PRETajKgecDjd3SvNrB/wtJl9kGbdZNcZPU39/pXus4BZAOXl5UnXSSnNJ7R79+54efTo0S3arYiIFL5IWpLuXhn8uwl4FBgFbAy6UAn+3RSsXgEckbB5GVAZ1Jclqc+uNEnyr3/9a7x8wgknZP3QIiISrbwnSTPrbmY9G8vA3wGrgcXAFcFqVwCPBeXFwAwz62JmQ4jdoPNm0CVbY2ajg7taL0/YJnvSJMnt27dn/XAiIlI4ouhu7Q88Gjyt0Ql4yN2fMLO3gIVmdjXwOXAxgLu/b2YLgTVAHXCtu9cH+/oJcD/QDVgavLKj8Qgp/jdi79698fLJJ5+ctcOKiKSyd+9eKioqqK2tjTqUNqtr166UlZXRuXO4yYLzniTd/RPgxCT11cBZKba5DbgtSf1yYES2YwT2JckU/va3v8XLSpIikg8VFRX07NmTwYMHk4vHwts7d6e6upqKiorQY2wX0iMghWVv+sWbN2/OTxwiIoHa2loOPfRQJchWMjMOPfTQFrXElSRTSbGp7cMAAA/vSURBVDOITuIIO7phR0TySQnywLT081OSTCVNknziiSfiZT36ISLSfilJppImSVZWZv9JExGRtqBjx46MHDmSESNGcPHFF8cHVNm1axff+c53qK/PcENHFt1yyy389re/bVK3Z88exo0bl7UxtZUkU0nx+TY0NMTLGoZORIpNt27dWLlyJatXr6akpIQ//vGPAMyZM4cLL7yQjh07ZthDbpWUlHDWWWc1mZ3pQGhK4VRSJMmnnnoqXj7jjDPyFIyISFOzZs3KyX5nzpyZeaXA2LFjee+99wCYN28eDz30EAA//elPmTRpEueffz4XXHABvXv3Zs6cOcyePZtPP/2UW2+9lcmTJ3PffffRvXt3Ro0axeLFiznmmGO45JJLmDBhAj/60Y9afQ5Tp07l5ptv5tJLL231PhqpJZlKiiT5+eefx8u6gC4ixaquro6lS5dy/PHHs2fPHj755BMGDx4MwLhx43j55ZcB+PLLL1mzZg0Ar7zySny2pCVLlnD44YfTq1cv7r77bq688krmz5/P1q1b4wly+vTpjBw5cr/X3Llz08Y2YsQI3nrrraycp1qSqSR5BCSxq/XII4/MYzAiIk21pMWXTbt27WLkyJFArCV59dVXs3nzZg455JD4OmPHjuX3v/89a9asYdiwYWzdupUNGzawbNky7rrrrv32OXHiRB5++GGuvfZa3n333Xh9a7tMO3bsSElJCTU1NfTs2bNV+2ikJJlKkpbkCy+8EC+feeaZ+YtFRKRANF6TbF6X+OzhwIED2bp1K0888QTjxo1jy5YtLFy4kB49eiRNWg0NDaxdu5Zu3bqxZcsWyspiw3JPnz6dDz/8cL/1b7jhBi6//PK0ce7evZuuXbu25hSbUJJMJckNWuvWrYuXO3RQT7WICEDv3r2pr6+ntrY2npjGjBnD73//e5577jmqq6uZNm0a06ZNi29z1llnMXfuXAYOHMidd97Jcccdx7/+67/ywx/+kGXLltG5c+dWtySrq6vp27dv6KHn0tEvfSrNultj8zrHDBo0KM/BiIgUtr/7u7/jlVdeib8fO3YsdXV1DB06lG9/+9ts2bIlfj2yoaGBdevW0adPHz766CPuu+8+fve73zF27FjGjRvHrbfeGvq4t956K2VlZfEXwPPPP8/kyZOzcl6W+ONfDMrLy3358uWZV3wdeA8Iuv1feuklPvggNu3lNddco5akiOTd2rVrC/bRsxUrVnDHHXfw4IMPZlx39erVzJkzhzvuuCMnsVx44YX8+te/5phjjkm6PNnnaGZvu3t583X1S59Ks2uSjQkS1NUqItLcSSedxJlnnhlqMIERI0bkLEHu2bOHqVOnpkyQLaVrkqmkeARkwIAB+Y1DRKSN+OEPfxh1CJSUlGS8qacl1CRKJSFJvv766/Hyd7/73QiCERGRKChJppKQJBtHlADo1EmNbxGRYqEkmUqS7tbS0tL8xyEiIpFRkmzuY9h+2XZ2Td1Fwz80sMN24D91Xpj9AsOGDYs6OhERySMlyURLoW54Hd3mdaNbfTc60IGDOZir6q/i3jfv5eaRN7N06dKooxQRiUwhTZW1e/dupk+fztChQzn11FNZv349AFVVVUyaNCkrx1CSbPQxNFzUQKfdnSihpMmiEkroTnf+tPtP/OLCX/Dxxx9HFKSISLQKaaqs2bNn07t3b9atW8f111/PjTfeCEDfvn0ZMGAAr7766gEfQ0my0e+gobYh7Sqd6cxPd/+UO++8M09BiYgUrrFjx8aH65w3bx5TpkwBYlNlLV68GIALLrgg/mjI7Nmz+Zd/+RcAJk+eTGVlJdu3b+eYY46Jj9F6ySWXcO+994Y6/mOPPcYVV1wBwLRp03j22Wfjo6NNnTqVefPmHfA56lbNRn+CTp7+4yihhEv9UgY9OIi77747T4GJiKSQiyklQ04u0jhV1qRJk1JOlXX++efz5ZdfsmHDBiA2VdaMGTOA2FRZjRqnyrruuuv2myor3QDnX375JUcccQQQe/KgV69eVFdXU1paSnl5eTwhHwglyUY7w63Wgx7s3BlyZRGRXIpgtqxCmior2bCqjfP89uvXj8rKyladY6I2nyTNbBLwb0BH4D53v71VO+oB1GRebSc76dGjR6sOISLS1hXSVFllZWV88cUXlJWVUVdXx/bt2+nTpw8AtbW1dOvW7YDPt00nSTPrCPwfYCJQAbxlZovdfU2Ld3YZ1P2xLm2X6x72MM/m8YMf/KC1IYuItDtRTZV1/vnn88ADDzBmzBgWLVrEhAkT4i3Jjz76iBEjRhzwubX1G3dGAevc/RN33wPMB6a0ak//BB26pv849rKXP3T5A9dff32rDiEi0l5FMVXW1VdfTXV1NUOHDuWOO+7g9tv3dSQ+//zznHvuuQd+Yu7eZl/ANGJdrI3vfwDcnWS9mcByYPmgQYM8pSXue7vs9d3sbrKH3ez2nez0qV2m+pIlS1JvLyKSQ2vWrIk6hJTeeecdv+yyy0Ktu2rVKr/++utzGs/YsWN9y5YtSZcl+xyB5Z4kz7Tp7lbAktTtdyXX3WcR3AdWXl6eegLN70Kn9zux7VfbqH+4ni57ulBDDQs6L6ByeiW/veW3HHnkkVkLXkSkvUicKivTs5K5nCoLYoMJ3HDDDfTu3fuA99XWk2QFcETC+zLgwG5nOhIO+dMh8KfY2170YmYUt5CJiLQxhTBVFsQGE5g6dWpW9tXWr0m+BRxlZkPMrASYASyOOCYRkZzxJI89SHgt/fzadJJ09zrgZ8CTwFpgobu/H21UIiK50bVrV6qrq5UoW8ndqa6ujt+BG0Zb727F3ZcASzKuKCLSxpWVlVFRUUFVVVXUobRZXbt2jT+HGUabT5IiIsWic+fODBkyJOowikqb7m4VERHJJSVJERGRFJQkRUREUrBiu0vKzKqAz0KuXgpszmE4+aLzKCw6j8LSXs4D2s+5RHEe/8Xd+zavLLok2RJmttzdy6OO40DpPAqLzqOwtJfzgPZzLoV0HupuFRERSUFJUkREJAUlyfRmRR1Alug8CovOo7C0l/OA9nMuBXMeuiYpIiKSglqSIiIiKShJioiIpFC0SdLMJpnZh2a2zsxuSrLczOyuYPl7ZvbtsNvmU4jzuDSI/z0ze83MTkxYtt7MVpnZSjNbnt/I94sz03mMN7PtQawrzeyXYbfNpxDn8YuEc1htZvVm1idYVhB/DzObY2abzGx1iuVt5buR6Tzayncj03m0ie9GEE+mcym874e7F90L6Ah8DHwLKAHeBYY1W2cysBQwYDTwRthtC+w8TgN6B+XvNp5H8H49UNpG/h7jgcdbs20hnUez9c8DnivAv8c44NvA6hTLC/67EfI8Cv67EfI8Cv67EfZcmq1bEN+PYm1JjgLWufsn7r4HmA9MabbOFGCux7wOHGJmA0Jumy8ZY3H319x9a/D2dSD8HDH5cyCfaZv6ezRzCfDnvETWAu7+ErAlzSpt4buR8TzayHcjzN8jlYL6e0CLz6Ugvh/FmiQHAl8kvK8I6sKsE2bbfGlpLFcTawE0cuApM3vbzGbmIL6wwp7HGDN718yWmtnwFm6bD6FjMbODgEnAIwnVhfL3yKQtfDdaqlC/G2EV+nejRQrp+1Gs80lakrrmz8KkWifMtvkSOhYzO5PYD8EZCdWnu3ulmfUDnjazD4L/08u3MOfxDrGxFXea2WTgr8BRIbfNl5bEch7wqrsn/l91ofw9MmkL343QCvy7EUZb+G60VMF8P4q1JVkBHJHwvgyoDLlOmG3zJVQsZnYCcB8wxd2rG+vdvTL4dxPwKLHumShkPA933+HuO4PyEqCzmZWG2TaPWhLLDJp1JRXQ3yOTtvDdCKUNfDcyaiPfjZYqnO9Hvi+CFsKLWAv6E2AI+y5oD2+2zrk0vTnhzbDbFth5DALWAac1q+8O9EwovwZMKuDzOIx9g1+MAj4P/jZt6u8RrNeL2HWZ7oX49whiGEzqG0UK/rsR8jwK/rsR8jwK/rsR9lyC5QX1/SjK7lZ3rzOznwFPErsDbI67v29mPw6W/xFYQuwuvnXAN8BV6baN4DTCnscvgUOBP5gZQJ3HRtfvDzwa1HUCHnL3JyI4jbDnMQ34iZnVAbuAGR77xrS1vwfABcBT7v51wuYF8/cwsz8Tu2Oy1MwqgF8BnaHtfDcg1HkU/HcDQp1HwX83GoU4Fyiw74eGpRMREUmhWK9JioiIZKQkKSIikoKSpIiISApKkiIiIikoSYqIiKSgJCmSB2Z2pZndHZRvMbN/ztJ+p5rZsBasP97MHg/K5+dyZohgBoeVZnZ4Dvb9v83sq2x9jiKpFOVzkiLtyFTgcWBNSzd098XA4qxHtM8udx+Zix27+y/M7OvMa4ocGLUkRVrIzAab2Qdm9kAwF+GiYEDmxjnvSoNyuZm90MJ9XxLMmbfazH6TUL8zoTzNzO43s9OA84H/HbTYjmy2r4uD/bxrZvuNcdmsdXu/mf3RzF42s4/M7HtJ1v+DmZ0flB81szlB+WozuzXEue00s98EA1Q/Y2ajzOwFM/skYb9XmtlfzexvZvapmf3MzG4wsxVm9roFcwuK5IuSpEjrHAPMcvcTgB3ATw90h0G35G+ACcBI4BQzm5pqfXd/jVhL8BfuPtLdP262yi+Bc9z9RGLJNJPBwHeIDTv3RzPr2mz5S8DYoDwQaOzmPQN4OcT+uwMvuPvJQA1wKzCR2Agr/zNhvRHA3xMbYu024Bt3PwlYBlwe4jgiWaMkKdI6X7j7q0H5TzSdQaK1TiGWRKrcvQ6YR2yS2tZ6FbjfzH5EbFiyTBa6e4O7/yexMT+Pbbb8ZWBscA10DbDRYvNIjiE2lmYme4DGocRWAS+6+96gPDhhvefdvcbdq4DtwN8StklcTyTndE1SpHWaj+fY+L6Off/z2bwl1oSZHcG+BPBH4KuQx0u73/gG7j82s1OJtQxXmlmm64Opzqlxf1+aWW9i8/y9BPQBvg/sdPeaECHt9X3jYDYAu4P9NphZ4m/R7oRyQ8L7BvSbJXmmlqRI6wwyszFB+RLglaC8Hjg5KF+Ubgfu/kXQTToyGNz5DeA7ZlZqZh2D/b4YrL7RzI4zsw7Euicb1QA9k+3fzI509zfc/ZfAZppOm5TMxWbWIbi2+S3gwyTrLAP+kViSfBn4Z8J1tYq0SUqSIq2zFrjCzN4j1qK6J6j/H8C/mdnLQH1LdujuG4CbgeeJTWv0jrs/Fiy+idhdrM8BGxI2mw/8IrixpcmNO8Ru6FllZquJJbV3M4TwIbGkvBT4sbvXJlnnZaCTu68jNtlvH5QkpR3TLCAiLWRmg4HH3X1ExKFkjZndT+ycFmVxnzvdvUe29pdk/7cQ6+r9ba6OIaKWpIjkyo5cDiYAXAboWUnJKbUkRUREUlBLUkREJAUlSRERkRSUJEVERFJQkhQREUlBSVJERCSF/w+L15cdZaRKBwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 504x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(7,4))\n", + "pm.hist.plot_Pw(ax,0.68)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO2deZhU5ZXwf4duaPa9QWTfREEUBZQoLhFRccOZxAQTR2KS8ZuJMxMmGWd0MpNJvvmcOE72RTNkZaIGdVxAE42CgrvYIjuyCUILQoNssjRLn++Pcy9V3fTedeveqjq/56nnvXXrVtXp27fued+ziqriOI7jOACt4hbAcRzHSQ6uFBzHcZwTuFJwHMdxTuBKwXEcxzmBKwXHcRznBMVxC9ASevbsqYMGDYpbDMdxnJzi7bff3qmqpbW9ltNKYdCgQZSVlcUthuM4Tk4hIu/X9ZqbjxzHcZwTuFJwHMdxTuBKwXEcxzmBKwXHcRznBK4UHMdxnBNEqhRE5O9FZKWIrBCR34tIWxHpLiLPi8i6YOyWdvxdIrJeRNaIyJVRyuY4juOcTGRKQUT6An8HjFPVM4EiYBpwJzBfVYcD84PniMjI4PVRwFXAfSJSFJV8juM4zslEbT4qBtqJSDHQHtgKTAVmBa/PAm4ItqcCs1W1UlU3AuuB8yKWz3EcJ14OHoSbb4Y//CFuSYAIlYKqfgB8F9gMbAP2qupzQG9V3RYcsw3oFbylL7Al7SPKg33VEJHbRKRMRMoqKiqiEt9xHCc73HcfPPggXHstHD8etzSRmo+6YbP/wcCpQAcRubm+t9Sy76QOQKo6U1XHqeq40tJas7Qdx3Fyh8OHU9vz58cnR0CU5qPLgY2qWqGqR4HHgQuA7SLSByAYdwTHlwP9097fDzM3OY7j5C/vvpva/u1vYxMjJEqlsBmYICLtRUSAScBqYC4wPThmOjAn2J4LTBOREhEZDAwHFkUon5PvqMKBA3FL4Tj1k64UnngC9uyJTxai9Sm8CfwvsBhYHnzXTOAeYLKIrAMmB89R1ZXAI8Aq4FngdlWN38Dm5C5f+hJ07w4rV8YtiePUTlVVSimMGGGmpIcfjlUkUT3JbJ8zjBs3Tr1KqlMrVVVQFEQ0X3stPPVUvPKEHD0KrVvHLYWTFDZvhoEDbfIyYwZ885swYQK8/nqkXysib6vquNpe84xmJz9ZujS1/cYbdjOOm02boE8fW8E4DqRWCYMGwWWXQYcOdr2uXh2bSK4UnPzk+edT2zt3wnPPxSdLyA9/CLt2wa9/Ddu2xS2NkwTCm/+gQdC2LUyebM9nzarzLVHjSsHJT0IlMHy4jQ88EJ8sYPHnjz+eeh6z3dhJCOFKYfBgG6+91sbf/S62nAVXCk7+cegQvPIKiJiNFuDJJ2HfvvhkmjcPtqTlZj70UHyyOMkhfaUAcPbZMGAAbN0a2+rWlYKTf7z8MlRWWjTHGWfAuedaVMcTT8Qn069+ZeOtt0L79vDWW7B+fXzyOMmg5kpBJLVaiClnwZWCk3+EM6wJE2ycMsXGuExIO3faSqVVK/j0p+HSS23/738fjzxOMti9G7Zvh3btoFev1P6rrzbl8OSTdkyWcaXg5B+hk/n8822cNMnCQOfPt2V5tnngAYt+mjABeveGq66y/Q8+aAl2TmESmo4GDrQJQ8gpp9i1e+RILBMHVwpOfvHhh7BsGZSUmH0WoHNnmDjRbsDZ/pGpwi9/adtTp9p43nnQtSusWQNLlmRXHic51DQdpROjCcmVgpNfzJtn49ix0KZNan9cJqRFiyyjuls3uPhi21dcnAo9dIdz4ZK+UqjJpZdCx47me8pyRr4rBSe/CE1H59VoxXHhhdCpk83Ms/kjCx3M11xTPZP5yqCx4OzZln3tFB71rRTatoUrrrDtLK8WXCk4+YNqSimETuaQkhK4/HLbfvDB7Mhz4IDd9CFlOgo56yzLbi4vt/BZp/CoGY5ak9CE9NBDWZ04uFJw8oeVKy1TuEcPGDr05NdDE9KDD2bnR/boo7B/vymAmrPBVq1SqwU3IRUehw/Dxo1Wn2vAgNqPGT3aAhO2bjUzZJZwpeDkD2Eo6vnnW0hfTcaMsciOzZuzMzsPTUc1VwkhYRTSo49apIlTOKxbZxOTvn3rLpAoAp/8pG1nMcfGlYKTP9QMRa1Jq1bZczi/+64pnvbtU07lmgwbZiuajz6qXqvJyX8aMh2FhErh8cezFr7sSsHJDyorYeFC265LKUBKKTzySPU2iJnm17+2cfJkUwx14SakwqQ+J3M6Y8ZY+PL69bBiRfRy4UrByRdefdVqHg0bBj171n3ckCFW/mLvXnjmmWhkOXo0VeXyhhvqPzZUCk8+6V3iConGrhSKiuCSS2w7SyakyJSCiIwQkSVpj30iMkNEuovI8yKyLhi7pb3nLhFZLyJrROTKqGRz8pC6oo5qIzTnPPlkNLK8/DLs2GE/+DPPrP/Yvn3NEX3wIMydG408TvIIlUJDKwWobkLKAlG241yjqmNUdQwwFjgIPAHcCcxX1eHA/OA5IjISmAaMAq4C7hORoqjkc/KMdCdzQ4S1h55+Go4dy7wsixfbOH587Q7vmrgJqbCoqrJsdmh4pQCWc9OhgzWOeu+9SEWD7JmPJgEbVPV9YCoQdpCYBYTr66nAbFWtVNWNwHrgvJM+yXFqUlEB77xjURznnNPw8YMGWRjgRx+Z2SnTLF9u47BhjTv+8stNeTz3nIWwOvnN+++bP6tnT8tabog2bSz5ErJiQsqWUpgGhEVneqvqNoBgDMsD9gXSCs5THuyrhojcJiJlIlJWUVERochOzjB/vkVmnHOOZYI2htBOO2dO5uVpqlLo0cNi0o8c8SikQqCxTuZ0LrvMxiyYkCJXCiLSBrgeeLShQ2vZd1IMlqrOVNVxqjqutLQ0EyI6uU5dpS3qI1QKc+dmNtTv2DFYtcq2a0ugq4uwLpL7FfKfxjqZ07ngAlsxvPZa5K1cs7FSmAIsVtXtwfPtItIHIBh3BPvLgf5p7+sHxFDn2Mk5QhNQU5TC6NFWpG7DhtRNPBOsW2fhsX36NM40EBIqhT/8IbY2jE6WCFcKTVEK7dun/GVRrG7TyIZSuImU6QhgLjA92J4OzEnbP01ESkRkMDAcyF5ut5ObHDgAa9da6F5jzTVgx0+caNuZ/JE11XQUMniwRSLt3Alvvpk5eZzk0ZyVAmTNhBSpUhCR9sBkIP2vuAeYLCLrgtfuAVDVlcAjwCrgWeB2VfUpk1M/K1ea+Wfw4OqlshtDFH6F5ioFETchFQpNCUdN56KLbDLz4ouRdmSLVCmo6kFV7aGqe9P27VLVSao6PBg/SnvtblUdqqojVDWizCInr1i61Mbhw5v+3vPPt+qpixZlriPbsmU2NlUpQEopPPVUZmRxksfOnbBrl4WYNtUn2rWr9Rs/dszCqSPCM5qd3KYlSqFdu5QfIlM/suauFMCipzp2NB/Hhg2ZkcdJFumNdRqTw1KTLCSyuVJwcptQKZx2WvPen0kT0v79Vg65devau2k1RHGxRZmArxbyleY4mdMJEy+ffTaysiiuFJzcRTVlrmnOSgHMTitiuQ4ff9wyecKCZYMH2w2+ObgJKb9prj8hpFcvK51y+DD86U+ZkysNVwpO7vL++7BvH3TvbglgzSFMHKusbPmPLDQdNSU/oSYXXGDOxJdegj17WiaPkzxaqhQgchOSKwUnd2mJPyGdcHbeUhNSqBRaIk/nzlYu+dgxMxE4+UVLzUeQUgpPPx1JcyZXCk7u0lJ/Qkhop/3DH1pWIK8lTuZ0LrrIRg9NzS8OHrTVbVER9OvX/M8ZMABuvhnuvz9zsqXhSsHJXVrqTwjJRIG8dP9GS5VCuHJ55hnrzeDkB2vX2nXSv3/zfU4hd9wBN93U9NycRuBKwcldMmU+gpZHIW3daglFnTs3Pf68JgMGmKLasyc7vaSd7BCWU2mJPyELuFJwcpOPP7ZY/uLiltlnQ9KVQnMK5KWbjpoTf14Tj0LKP955x8ZMTGIixJWCk5ssX2437yFDLC+gpYQF8t57r3kF8jJlOgpJL3mRpYbtTsSESuH00+OVowFcKTi5SaZvwukF8pozO8+Ukzlk9Gjo0sVWQ2HEipO7qKY68o0YEa8sDeBKwclNMhV5lE7Y3ao5+QqZCEdNp6VKykkW779vPqdu3SwBLcG4UnByk0w6mUPGj4dWrSwCqSnZzUePppKShgzJnDwempo/hKuE00/PjM8pQlwpOLlHVVXKfJTJlUKXLjBypN3kFy5s/PvWrrUkor59rfplpvjEJ8yR/vrrkZZKdrJAjvgTwJWCk4ts2mQz+R49bDmeSSZMsPG55xr/nkyUt6iNDh3grLNMCb7wQmY/28kuOeJPgOib7HQVkf8VkXdFZLWIfEJEuovI8yKyLhi7pR1/l4isF5E1InJllLI5OUwU/oSQliiFKEINw9LeYR9qJzdJNx8lnKhXCj8CnlXV04GzgdXAncB8VR0OzA+eIyIjgWnAKOAq4D4RKYpYPicXicKfEHLmmTZDf/dd2LKlce/JdCRUOqGScqWQu2zbBh9+aL0y+vaNW5oGiUwpiEhn4GLgVwCqekRV9wBTgVnBYbOAG4LtqcBsVa1U1Y3AeqAJndidgiHKlUJxMYwda9uNvRFnOhw1nTPOgE6dLH/ivfcy//lO9KSbjhLuZIZoVwpDgArgNyLyjoj8UkQ6AL1VdRtAMIbxWX2B9KlZebDPcaoT5cwcmmZC2rfPwg3btLGaNpmmqAjGjbPtefMy//lO9IRO5hzwJ0C0SqEYOBe4X1XPAQ4QmIrqoDYVelIqp4jcJiJlIlJWUVGRGUmd3GHfPpsxt26dmfIWtZFusjl+vP5jM9FYpyHOPz8lj5N75JA/AaJVCuVAuaq+GTz/X0xJbBeRPgDBuCPt+PSpVj/gpG7qqjpTVcep6rjSlhYec3KP0FQzZEh0N+H+/eHUU61qajjLq4uoVy2QUlLz5zespJzk4UrBUNUPgS0iEq6ZJgGrgLnA9GDfdCAsSzkXmCYiJSIyGBgOLIpKPidHidLJHCKSmp03ZEKK0p8Q0q+fOSh3707dYJzcYNcuMy+WlDSvb3cMRB199LfAgyKyDBgD/AdwDzBZRNYBk4PnqOpK4BFMcTwL3K6qPi1yqpOpHgoN0Vi/QpThqOl4aGpusmSJjaedZv6hHCBSpaCqSwJTz1mqeoOq7lbVXao6SVWHB+NHacffrapDVXWEqj4TpWxOjhJl5FE6YcmL116D/ftrPyaTjXUawv0KuUmOmY7AM5qdXKKqKnsz886dYdSo+ktelJfD3r1WHqNHj2jlGT/ezFqvvgoHDkT7XU7myKFM5hBXCk7usGGD3RBLS6Fr1+i/ryETUrqCijr+vEsXy1k4ehReeina73Iyh68UHCdCsuVPCGnI2fzWWzZGbcqqKY+bkHKD/fth3TqLkst0XawIcaXg5A7Z8ieEhCUv1qyBzZtPfv2NN2wcPTo78rhSyC2WLjW/09ChmekOmCVcKTi5Q6gUonbqhhQXp7KJa96Iq6rgzSAFJ1tK4ayzoG1bS5jbti073+k0nxw0HYErBSeXSA/vyxZ1+RXWrrW8gdJS6N07O7K0aQPnnmvbXvIi+bhScJwI2brVTDgdOmQ3CShUCvPmVc8mDk1HZ56Z3SJnYb6CK4Xkk2M1j0JcKTi5wWuv2XjmmdlNAgqziT/6qHo2cagUzjore7JA9bpMelJpMCcpHD4MK1darku2AiMyhCsFJzcIlcLZZ2f3e+sqefH66zZmy58QMnSo5URs2warVmX3u53Gs3y5rSwHDYJ27eKWpkm4UnByg1ApZHtmDimTzYsv2rh/vzl7i4qyby8W8ZIXuUAOJq2FuFJwks+hQ/YjEzHzUbYJnbuvvQZHjlh+QlWV/eDbts2+PB6amnxcKThOhJSVWSbvsGHW0jDbdO9upboPHTKFkO5kjoNQKSxcaErKSR6hkznHIo/AlYKTC8TlT0gnbNG5YEF8TuaQ0lJTUgcOpLKqneRw9Ggq+95XCo4TAa++amNcN2GorhRCJ3NcKwWAc86xsa5ifU58rF4NlZUWtdapU9zSNBlXCk6yUY3XyRwS+hVeeQV27oRu3exHH7c8rhSSR44mrYW4UnCSzbp11r2qR494b8KhX+HwYXs+enR2k9ZqEq5cXn3VzBVOcggnMaNGxStHM4lUKYjIJhFZLiJLRKQs2NddRJ4XkXXB2C3t+LtEZL2IrBGRK6OUzckR0lcJcd6EITU7h+znJ9SkZ08YMMD8Ct6iM1mEpc3Tr5ccIhsrhU+q6hhVDSqLcScwX1WHA/OD54jISGAaMAq4CrhPRHKjf50THaE/IU4nc0g4O4f4lQKk5HETUnLYvt2q6rZt6+ajJjAVmBVszwJuSNs/W1UrVXUjsB44Lwb5nCSRBH9CSLo5IAmlC9yvkDxeecXGs86yKrs5SNRKQYHnRORtEbkt2NdbVbcBBGOvYH9fYEvae8uDfdUQkdtEpExEyioqKiIU3Ymd3butlEObNsmYdW3fntretCk2MU6Q7vw+dixeWRwjx01H0AilICKXiUj7Zn7+hap6LjAFuF1ELq7vq2rZd1LFL1WdqarjVHVcaWlpM8VycoIwH+CMM0wxxE3YfhOSYcfv3duc7/v2pcqKO/ESKoUwZDgHacxK4QvAEhF5XUTuFZHr0p3D9aGqW4NxB/AEZg7aLiJ9AIJxR3B4OdA/7e39gK2N+iuc/CQJ+QnppCuFt9+OT4503ISUHPbssUZQxcU5G3kEjVAKqnqLqp4GfAq7cf8MaNBuIyIdRKRTuA1cAawA5gLTg8OmA3OC7bnANBEpEZHBwHBgUdP+HCevSEImc4hqdaWwZEkyTDbubE4Or75q18moUfHUxMoQDXpCRORm4CJgNLAT+CnwciM+uzfwhFgYYTHwkKo+KyJvAY+IyJeAzcCNAKq6UkQeAVYBx4DbVfV47R/t5D3HjqXaXSZhpbB9uyWtdegAnTunSlfHLVu4Unj5ZSvVnM1eE0518sCfAI1QCsAPgQ3Az4EXVXVTYz5YVd8DTpriqeouYFId77kbuLsxn+/kOUuXwsGD0L+/JY7FTVjLZuhQyxHYts38CnErhVNPhVNOgQ8/tJXMmDHxylPI5IE/ARpnPuoJfBFoC9wtIotE5HeRS+YUNkkKRYWU6WjYsFQklPsVnJADB6yab6tWyblmm0ljoo86AwOAgcAgoAtQFa1YTsGTNKWwYoWNw4ZZNBQkx6/gSiF+3njDroURI+Ip755BGhN99ApwHbAM+KyqjlDV6Q28x3FaRpKczEeOwLvvWpmNoUOha1fo08f6K6xeHbd0KWfzSy9Z8x8n++SJ6QgaZz46S1W/AjwF7IleJKfgKS+HzZvNqTtkSNzSWNmCo0fNft8+SNlJkgmpXz/rsbBrl/dtjos8cTJD48xHZ4rIO1g46aogOznGQvJO3pNuOmqVgEK+S5faOGxYal9oQkpCEpuIh6bGSWVlKtEyDxz9jfnFzQS+pqoDVXUA8PVgn+NEQ5JMR5AKjQ0VAaRWCu5XcMrKrKT6kCFmWsxxGqMUOqjqi+ETVV0AdIhMIsdJkpO5sjK1GkjvtNatm4WCHjxo/oa4SVcKelJ1GCdK8sh0BI1TCu+JyL+KyKDg8S/AxqgFcwqUffus6XlRUTJKBSxZYoph4EDo0qX6a+Fqoaws+3LVZOBAa0S0Y0cylFQhkUdOZmicUvgiUAo8jtUvKgVujVIop4CZN8/MMaNHm6M5bkJbcW39mENz0jvvZE+euhBxE1IcHD+eqtFVKEpBVXer6t+p6rmqeo6qflVVd2dDOKcAeeYZGy+4IF45QkJ/Qm1NdU47zcZly5IRCupKIfssXQr791sEWK9eDR+fA9RZ5kJEnqKW0tUhqnp9JBI5hYtqspTCzp2wdq2V7a6tqU7Pnmay2bULNm60HIY4qelXiLt9aSGQZ6YjqL/20XezJoXjAKxcCR98YDfacBYeJ+Eq4fTT6+7nMHy4KYUlS+JXCkOGmAN82zbYsKF6CK0TDXnmZIb6zUffVNWFwNWqurDmI1sCOgVEuEr4xCeSkZ8Q+hPq68ccKq8wlyFORFJhvKGd24kO1bxcKdT3y+sjIpcA14vIOSJybvojWwI6BUSSTEdVVbAoaOeRK0oBXClkk9WrbZXYq5d1wMsT6jMffRO4E+uA9j2qt8tU4LII5XIKjf37rddwq1Zw/vlxSwPr19sPvls3K29RF/37W0OVDz6AigorNxEnrhSyR+jQP+ecvPLf1LlSUNX/VdUpwL2qepmqfjLt4QrBySwvvGD1hc488+R8gDh4/XUbR4+u/wffqlXKCZ2E1ULo/1i1Cj76KG5p8ptnn7UxLDGSJzQmJPXfW/IFIlIkIu+IyNPB8+4i8ryIrAvGbmnH3iUi60VkjYhc2ZLvdXKMJJmOoP5Q1JokyYTUpg2MHGnboWJzMs+hQ/D887Z94YXxypJhsuHN+yqQXl/4TmC+qg4H5gfPEZGRwDRgFHAVcJ+IeG/BQiBpoaiHD1tCmkjjsqrDlcKSJdHK1VjchBQ9L7xgiuH006F377ilySiRKgUR6QdcA/wybfdUYFawPQu4IW3/bFWtVNWNwHrgvCjlcxLC6tVWKrtbt1TpiDhZvNhMWYMGQadODR8/dKiZkdautVpIceNKIXqeesrGiy6KV44IqFcpiEgrEVnRgs//IfCPVO/U1ltVtwEEY5gG2BfYknZcebCvpky3iUiZiJRVVFS0QDQnMYS22QkTcicUNZ22ba320PHjqQ5tcRIWEly0yBoEOZlFFZ5+2rYvvjheWSKg3l+gqlYBS0VkQFM/WESuBXaoamO7kNTmzTspo1pVZ6rqOFUdVxp3pIeTGULTUVJss/XVO6qLJPkVuna1VU5oBnMyyzvvWLRZaWkyVrYZpjHTsj7AShGZLyJzw0cj3nchluOwCZgNXCYiDwDbRaQPQDDuCI4vB/qnvb8fsLWRf4eTq3z8sSUAidhKIW62b4f33rPZf22lLeoiVAruV8h/QtPRxIl5FYoa0hil8G3gWuD/YvkK4aNeVPUuVe2nqoMwB/ILqnozMBcIezxPB+YE23OBaSJSIiKDgeHAoib8LU4u8uKLZuIYOTIZDUrSG+oU15fGU4NQKSxfnoymO64UoiNUCnloOoL6k9cAiKCkxT3AIyLyJWAzcGPwPStF5BFgFXAMuF1Vj2f4u52kEfoTkhB1BE33J4R07WqZrTt2WOJb3GaFdKXgxfEyx9at1pe7pATGj49bmkhoTI/mCSLyloh8LCJHROS4iOxrypeo6gJVvTbY3qWqk1R1eDB+lHbc3ao6VFVHqOozTf9znJwiPRQ1Cf6EqqrUSqEp/oSQJPkVBgywaK7QHOZkhtDBfN55ZmLMQxpjPvopcBOwDmgHfDnY5zgtY+1aKzndpUv1/sdx8e67sHevlcQ+5ZSmvz9J+QoiqSgkNyFljtB0dMkl8coRIY2K/1PV9UCRqh5X1d8Al0YqlVMYhKuECROs/WbchL2hGyptURcjRti4dGky+iS7XyGzHDxonQHBnMx5SmM8aQdFpA2wRETuBbYBCeiT6OQ8SfMnzJ9v45gxzXt/nz7WQnTHDvjwQ3seJ64UMsu8eRbmO3KkrSbzlMasFP4iOO5vgANY2OinohTKKQA+/hgWLEhOKOrGjbBuHbRv33Qnc0h6cbwkmJDOOMNqIa1cCbu9g26LyfOoo5DGFMR7H0ss66Oq31bVrwXmJMdpPnPmQGWl3YB79IhbGnjuORvHjYPWrZv/OUlyNntxvMxRVZVyMudhaYt0GhN9dB2wBHg2eD6mkclrjlM3Dz5o41VXxSsHmP0/rHjZ0lWLJ7HlJ2+/bSbB3r2T0So2QhpjPvoWVphuD4CqLgEGRSeSk/fs2GEz86IimDw5bmnMbLRpkxW/C2fWzWXwYEt627DBGgfFTagUXnklXjlynfQCeHme89EYpXBMVfdGLolTODzyiBWPmzDBYunjJlwljB/f8iioNm1MMajCsmUtl62leHG8zJDHVVFr0hilsEJEPgcUichwEfkJ8FrEcjn5TGg6mjIlXjnAbt6hPyFTDu8kdWLz4ngtZ8sWMwe2a2c+pzynMUrhb7HGN5XA74F9wIwohXLymA0brJREu3bJSABatcoqXnbtmsozaCnp+QpJwP0KLSN0ME+YYOUt8pzGRB8dVNVvqOr4oGT1N1T1cDaEc/KQhx6y8dJLTTHETbhKOO+8zPVyGDrUxpUrvThePvDwwzbmeShqSIPJayJyGvAPmHP5xPGqell0Yjl5iWqyoo6qqlIZqpnMlejSJVUcb8OGzK1AmosXx2s+GzfCwoW2QvjkJ+OWJis0JqP5UeDnWEtNr1rqNJ/Fi2HNGnMun39+3NKYI3j7dsuTGDYss589bJgpheXL41cKNYvjhSsZp2H+539svOwy6NgxXlmyRGOjj+5X1UWq+nb4iFwyJ/8IVwmTJzetV0FUhKaj88/P/Ow5VDJJiEBKL47nSWyNp6oKZgXt5K+9Nl5ZskidSkFEuotId+ApEfmKiPQJ9wX7HafxHD8Os2fbdhKijo4fT9U6iqLMRqgUktCzGVKlO8J+EU7DvPyymY969y6IqKOQ+qZrb2M9ksMp1B1prykwJCqhnDzkxRdh2zbo1695vQoyzeLFsGuX/eAHDcr85/fvbzkLmzfDnj3xd5ULz7mvFBrPb39r4zXXJKOKb5aoc6WgqoNVdUgw1nw0qBBEpK2ILBKRpSKyUkS+HezvLiLPi8i6YOyW9p67RGS9iKwRkSsz8yc6iSCMOrrqqmQ4OqM0HYGZxwYPtu0krBZGjrToqqVLrQS0Uz8ffwyPPmrbBWQ6gsbVPrpRRDoF2/8iIo+LyDmN+OxK4DJVPRsYA1wlIhOAO4H5qjocmB88R0RGYr2cRwFXAfeJSOGo53zm8GF47DHbTkLU0bFj8MILth1lhdYk+RXatzd5jh+3Oj5O/Tz2GBw4YJFbAwbELU1WaYyj+V9Vdb+ITASuBGZh0Uj1osbHwdPWwUOBqcFnEIw3BNtTgdmqWqmqG4H1WM0lJ9d5+mnYt4D1kLkAACAASURBVM9KOUdhqmkqb75pHdb69jUzT1SESmH58ui+oym4X6HxhKaj666LVYw4aIxSCMNQrwHuV9U5QJvGfLiIFInIEmAH8Lyqvgn0VtVtAMHYKzi8L7Al7e3lwb6an3mbiJSJSFlFRUVjxHDiJkm5CQB//KONUfdxCJXCypU2Q4+bUCm4X6F+Nm60Xh8lJXD55XFLk3UaoxQ+EJH/Bj4D/FFEShr5PoL2nWOAfsB5IlKfh7E2w+5JPQ1VdWaQWT2utLS0MWI4cbJrl92EW7WCKxPgJtq506KORODCC6P9rq5drUPXwYOWHxA36UohCe1Ck0oB5iak05ib+2eAPwFXqeoeoDvVI5EaJHjfAsxXsF1E+gAE447gsHKsq1tIP2BrU77HSSAzZ1p1zgkTktHC8IknzKdw7rmQjUlFkkxIAwZA587WF2DLloaPL0QKNDchncbWPnpcVdcFz7ep6nMNvU9ESkWka7DdDrgceBeYC0wPDpsOzAm25wLTRKRERAYDw4FFTf2DnARx5Aj85Ce2/bnPxSsLwNGjKYd3tvo4JEkpiKRCU92vUDsFmpuQToYqgNVKH+BFEVkGvIX5FJ4G7gEmi8g6YHLwHFVdCTwCrMK6vN2uqgkwxDrN5uGHLTdhyJBklLV44QUzH/Xt2/JmOo0lLKOdhAgkcL9CQxRobkI6kdUaUNVlwEmhq6q6C5hUx3vuBu6OSiYni6jC979v25//fDJyE8Jql5MnZ0+eAQOs5/P771vEU5cu2fneuvAIpLop4NyEdKJcKTiFzIIF1pike/dkRB2tXm2z9fbto3cwp5O0JLYzzzSFuHgxVFbGLU2yePzxgs1NSMeVghMN4SrhxhuT0ZgkXCVccgm0bZvd7w6rkiZBKXTsaErqyBFT2o6hCvffb9sFmJuQjisFJ/OsWWMJa23awKc/Hbc0sHu3lbUQiSfuPGl+Ba+DdDKvvGImtS5d4Ior4pYmVlwpOJnnhz+08ZprrI5/3DzxhM2Mzz7bmt9km/SKqVVV2f/+moRltN2vkOKee2z8zGfMxFjAuFJwMsvOnak475tuilcWsJyEMAw1rhlgt27WyOfAAQt3jBsPS63OsmWWYFlSAp/9bNzSxI4rBSez/Pd/w6FDcMEFFooaNwsWWMexPn1g1Kj45EhSvsLgwdChg0VEbdsWtzTxc++9Nt5wQ/wlzhOAKwUnc1RWwk9/atuf/3y8soQ88oiNkydbqY24CJ3NSVAKRUUpBVnoq4VNm6z5U1ER3Hxz3NIkAlcKTuaYPdtKKAwbBucloMDt2rUWetm2LUycGK8sobM5CUoBPF8h5Hvfs2KFV1xhq0nHlYKTIZKYrBY29rn4YmjXLl5ZBg60nIX33oP9++OVBVwpAFRUwK9+ZdvTp9d/bAHhSsHJDE8/bQ67Hj2SUQ110yZ45hkzGSUhxLB161QviZUrYxUFSDmb33rLakIVIj/5ifm/Jk5M+XwcVwpOBjh6FP7xH237llssPyFufv5zMwtccokVN0sCSerE1rWrNRg6dCg5Jq1s8vHHKf/XF74QqyhJw5WC03J+8Qt4913o18/ivONm1SqYN89m5zfc0PDx2SI9XyEJFLIJ6Re/sKTGs86CMWPiliZRuFJwWsbevfBv/2bbf/d3diOOm3AGeMUVVnspKaQrhSQ0uSlUpXDkSMr/5auEk3Cl4LSM//gPS1g75xz45Cfjlsb6Ly9aZFmpSat02b27lVHYtw82b45bmsIto/3QQ1Bebnk0cUelJRBXCk7z2bgxVdJixoz4I45U4Wc/s+1rrkleK0WRVL5CEpzNw4ZZFu/69abYC4HKSvj3f7ftW26JN3cloUR2RkSkv4i8KCKrRWSliHw12N9dRJ4XkXXB2C3tPXeJyHoRWSMiCQhhcerlrrtsKT5lSrzZwiEvvGD+hCQXNUtSxdTi4sJLYvvRjywsePDgZJR0TyBRqsljwNdV9QxgAnC7iIwE7gTmq+pwYH7wnOC1acAorJfzfSJSmK2PcoE33rBy1CUlcPvtcUtjNY7uu8+2b7gh++WxG0uSlAKkQlMXFUDn2w8/TK0SvvY1U4rOSUSmFIJezouD7f3AaqAvMBUIKqYxCwjDQ6YCs1W1UlU3AuuBBKTFOiehaj8qsN7Lp5wSrzxgeRLvv29VUC+9NG5p6mbIEDMjrV2bjCY34UrhzTfjlSMb3HWXhaJedBF84hNxS5NYsmJQE5FBWGvON4HeqroNTHEAYS3jvsCWtLeVB/tqftZtIlImImUVFRVRiu3UxaOPmnOye/dkRG8cPmwhhmD9G5I8A2zXDk491VY2a9fGLU31lUISIqKiYtEi67/cunVqQuPUSuRKQUQ6Ao8BM1R1X32H1rLvpKtUVWeq6jhVHVdaWpopMZ3GUlkJd95p2//n/1i1zbh59FGrhDpgAJx/ftzSNEySTEi9ekHPnrBnD6xbF7c00VBVZeHSYCvb/v3jlSfhRKoURKQ1phAeVNXHg93bRaRP8HofYEewvxxI/2/1A7ZGKZ/TDP71Xy3qaNgwmDo1bmms9PPMmbb92c/mRjRJkiKQRFKrhXw1IT34oP1tPXrAF78YtzSJJ8roIwF+BaxW1e+nvTQXCKtPTQfmpO2fJiIlIjIYGA4UgPcrh1iwAL77Xbvx3nVX/GYaVXMcHjoE48en4u6TTpJWCpDyK+Sjs3n/fvinf7Ltv/3bZKxsE06Uv+oLgb8AlotI2CH8n4F7gEdE5EvAZuBGAFVdKSKPAKuwyKXbVfV4hPI5TWH3bovrVoUvfclaW8bNk0/ajaxjR6tyGXeeRGPp18/qQ5WXm9km7sYu+bxS+M53bDU5ahRcfXXc0uQEkSkFVX2F2v0EAJPqeM/dwN1RyeQ0E1X467+GLVvsBvLlL8ctkYUXholzt9xiuQm5QlGRVUxdu9ZWC3Fn1Z5xhinUJUvMaZ/UcN6msmGD9UsAuOOO3DAtJgA/S07DPPCA5SS0a2fmmiSYjf7f/7Oex+PGwYQJ8crTHJLkV+jY0ZK5jh6FpUvjliYzqJpz+cgRK3cSroacBnGl4NTPxo2p5LQ77khG5MacOZY817GjhcTmitkonaT6FfLFhDRzJvzxj3aN/M3fxC1NTuFKwambY8esb+3+/XDZZXDddXFLZGajH/zAtnPNbJRO+kohCfkB+aQUVq60Wlxg4dM9e8YrT47hSsGpm+98B157DUpL4Z//Of4ZuapVZT1wAMaOzU2zUUiPHqmKqVu2NHx81ORLuYvDh+Gmm2y87jqvb9QMXCk4tfPii/Dtb9v2t78df4QMwNy5pqQ6dMhds1FIesXUJJiQ0ium7toVtzTN5447rJPcgAG27TQZVwrOySxfDn/2Z9bO8gtfgPMSUIJq7Vq4917bvuWWZCiplpIkpVBcDKefbtu5ulp46ilrsFRcDHffbT01nCbjSsGpzvvv25J7715rmvPXfx23RDZz/fu/txIbEyfmTzGzJCkFyG0T0tatcOuttn377RZm6zQLVwpOip074cor7Qd27rkW9lkUc/XyykozA2zfbiaOW2/NbbNROoMHe8XUTHD8OPzFX9jkYcIE+Pzn45Yop3Gl4BgHDlg895o1dvP93vfMxhwnqmYGWLbMHLMzZlgmcL7Qvj306WNRXkkoRperFVPvvdcaLHXvDt/6lieptRA/e44lLd14o80Q+/SBn/wEOnWKWyqYNctizUtKzHyUq+Gn9ZEkE1KfPnZj3bXLupPlAk8+mYqM+7d/8/DTDOBKodCpqrJaRs88Yzfdn/zEQlDjZsGCVL/lv/orGDgwVnEiI0lKQSS3TEivvGLhpwC33QYXXhivPHlCYSqFqiqYPdvGQubIEYvk+d3vrITFj35kNXniZu1aK9GtaiuYcePilig6kqQUIHcqpq5caXkIhw9bpFwS6nHlCYWpFO6+22YYf/7nlq1biHz0kTW3f/BBK4D2/e8noz7M5s1W4vjQIbjggmRkUUdJzYqpcZMLFVO3bLEIuT174JJLrDR2vgQfJIDCVArnn2+mkjlzLFph/fq4Jcou69bZ371wodlgZ860fgRxs349/OVfmk37jDPMrJXvP/bi4tTqLAnF8cKVwjvv2EoyaXz0kSmE8nIr33733fEXaMwzClMpXHEFPPushQSuWmU3xOeei1uq7LBwoSmEdevgtNPMmTtyZNxSwerV1t5z1y67MX3ta/kVaVQfSTIhdepk/pvKSov6ShKHDsH119tvdsgQW93mS5nvBFGYSuHQIbOj//SncPHFtgydMsUuslwKxWsqs2bB5Mk227roIvjlL6F377ilsnLNf/VXljA3ZowphEL6sSepjDYk09lcWWn+pVdftWv2xz/Oz2i0BBBlO85fi8gOEVmRtq+7iDwvIuuCsVvaa3eJyHoRWSMiV0YlF2DhjffdZ7brGTPMSVVVBV//ujleDx6M9Ouzzr59Zor5whcs/PSmm6ytZhLKALz1lpU2PnDAyml89auFs0IISVrF1KT5FfbuNZPRH/5g5U1+/GM45ZS4pcpbolwp/BaoWaLwTmC+qg4H5gfPEZGRwDRgVPCe+0QkulTaO+6w5ed771mG7PjxcM89Njt94AGzZ//pT5F9fVaZM8fMQ7/+tdleZ8ww5Rd3pjJYSOFXv2ort4kT4StfKUz7cFgxde9eKzMSN0mKQPrgA1vVLlhg5+lnP0spUScSIlMKqvoS8FGN3VOBWcH2LOCGtP2zVbVSVTcC64HoqrANHWo3/7PPth/iV75is+mf/9yUxebNNjP59KeTUda4OWzbZvLfcIP9sM480/7mm2+OWzJblf3mN6agjhyBSZPMwZwERRUHIjB8uG0nwa9w2mm2Wluzxnpzx8WqVVbnavly83P85jcwYkR88hQI2fYp9FbVbQDB2CvY3xdIv/uWB/tOQkRuE5EyESmrqKhoviSdOpntesoUq53yH/9hCVyzZlkbv3bt4LHHbNVw773JjMSojaoq+MUvTO7HHjMT0T/8A/zqV1a+Im727DHzXZiY9md/BtOne2mC8H+TBOdu69apm+9bb8UjwyuvWDLali1w1ll2/Z56ajyyFBhJ+SXWFndYq3FVVWeq6jhVHVfa0szbVq3gc59LzVIffthuoNdfD48+ajPYAwcsDnrMGPjtb02BJJGjR815fsoplt25d6+ZZB55BKZNS8YsfPlyK1b26qvWJvHrX7dckXwPO20MoVJYvjxeOUJCv8Krr2b/ux97DC6/PJWHcN99+VEqPUfItlLYLiJ9AIJxR7C/HEhv/tsP2Jo1qS6+2OqndOxozrUbb7Sl83/+p5V96NXLQiZvvdV+vN/9brzL6nT27TN5hgwxJ3lFheUe/Mu/WNvKJDjkVC1J7stfTlU7/fd/N0XrGIMHm+LesMEmInEzdqyNL76Yve88csQmZZ/+tEUbfepTtkovpEi0BJBtpTAXmB5sTwfmpO2fJiIlIjIYGA5k18t12mlWUOu00+yG//Wvw113WeORxx83+3ffvrBpkzmq+/a1uPq4bMBLl8I//iP072/ylJebYvjmN61D2Q03JGMGvn27OZN/8ANbZU2ZAt/4hhcuq0mbNtYtrKoqGaGpY8faSvqNN7KjpN591/Jnvvc9U44zZlh/5SSscAuMKENSfw+8DowQkXIR+RJwDzBZRNYBk4PnqOpK4BFgFfAscLuqZt9Oc8opdsO6+WarzPn88zZrWbDAzB6PP243t/PPt4iZmTNh9GiLHLnzTivfG1Vd/CNH7PO/9jVTXGPGwH/9l60Uxo6FH/7Q6jldf30yQjqPHDFz26c+ZS00i4pMOXzuc4UZYdQYkmRC6tTJJkRHj0ZrQlI1H9i551oWdd++lj9z883JmNQUIKJJiItuJuPGjdOysrKmv/HgQVsVnHFG3TfQHTssjDOctV10kd2Q+wdWrk2bLJrnyServ69dOzNHTZ5sP6qzzjIHWVNmPMePW2jimjUwf75tP/ecKYCQzp0trn/atOSZYV5/3RTW5s32fNw4U6q+Oqif1183+/nEiabk4+bHP4b/+R/zqd1zT+Y/f9cu8+c98YQ9v/pqW/127Jj578o3Wre2e0szEZG3VbXWSpOFqRS+9S1rRt+zp92sxo6tfVaiamUhHnggtQK48UbzLfQKAqcOH4YlS8wX8eabVuGzJq1bm2lg0CB7bNtms/2qKlMAx4+bOahXL3v/hg21RzsNGWLK6aKLzBGYtBn3Bx/YSmrBAnvep491xBo9OlaxcoaKCpt4dOkC8+bFP1N+/XVL8Bw/PrM5C6q2qp0xwyZfHTrYSnvKlMx9R77jSqF2mq0UFi6EL34x1Uhk9GhbrtYV8rZjh0UjvfmmXdBt2phZZPr0k2e/u3bZD+iZZ6wC69attq+p9O5timTgQDNrTZ5sS+sksmmTmQDChL+2bc2nceWVyVNcSUbVbsJ791oETtw9JA4dgksvNbl27cpMBNDbb5sZMTRJDR9ugRJJvbaTiiuF2mm2UgAzy/zgBzYePmzmnSuusLj5du1qf095uS11w1lTSYmtHKZNqz/K5/Bh+PBDm0mvWmXva9Uq9SgqsjFsctK/fzJKUDTE0qVmXnjpJbtxiFhC4K23Wgcvp+n88Id24/zWt6w9atx8+cu2Ep4zx/xVzeXDDy3C77e/tWule3dLGr3uOncmN4cIlULhTuOKisxhfOaZphjefttm96+9ZvkJ11xzsr+hXz+byW3ebMqhrMxMSw88YPHUU6daD4Cas+O2bVOmo1zvDnXsmIUpzp5tSgHsAp040Zb/ffrEK1+uM2yYXYvLlydDKYwfb0rhhReapxT277fJ13/9F3z8sf02brrJanG57yCRFK5SCOnQwS72ceMsumjHDhvnzTPzx+WXnzxrHzDAlsDr15tyWLHCTFJhf4LrrrPP7N+/9u/MNaqqLDLkT3+yvzdcXbZvb+fniiu8YmWmCMtdJCECCex38YtfmFJoCjt2WI7Pd76TSvi8+GLzIwwYkHk5nYxRuOajBQvg5Zer71M1887LL5svAMyUNGmS1UKq68a3Z4+l5S9caMvkkB49LKT1wgstEimXSjmE8fLz5llo7o4dqddOPdUin66+um5Tm9M8jhyxjHRVW5F16BC/PJ/8pAVabN+eCrCoiw0bLNfgN78xsymYmeOWW8w/4WQG9ynUTsaVQoiqXdwvvwwbN9q+sB7M1Kk21hWttHat/ZhrxnZ3727JORdeaNFOSQvPrKqyv7mszMwXYQRRSM+eJv+ECTbTizsyJp/55jfturv//mR0xLv9dguyePhh+MxnTn79+HFLmJw1C556KtX7/KKLLBgjaSHT+YD7FLKMiNl2hw2zglzz5tmPdMUKe/TqlQoN7dGj+vtGjLDHF75gM+1ly8z2vmsX/PGP9gCLLjr9dMuVCMf0z4qSY8fMaR4qgfJyWyHt3Vv9uB49rKLsVVfZuXBFkB2GDbPrbfnyZCiF8eNNKbzwQnWlsGaNKYLf/c6uoZDrrrNQ5CFDsi+r02JcKTRE//4WTbNrl9nVlywxU8pjj5nvYdQoC2mdONESykLatrUVwdixtoL44ANTDi+9ZJ3Ptm+3x8KF1b/vjDMskqlPn9SjUydbabRvb4927U52Zqvazf7YMUvO273bZA4fq1fbcn7rVkuGO3r05L+1e3f7/vBRWuqKIA6GDTOTXZL8CmABGR98YNf9Qw9ZCYyQvn3NnHjttR5emuO4UmgsPXqYU/Wyy2yG/c47qZXDihUWjTN8uKXrn3tu9SgcEYtc6tfPopqqqsz3sHGjxfhv2mS1X8Bu3qtXNyxPSUkqoa642JRBU+jZ0368ffuaj2DYMBtdCcRPermLMNQ3LlTNF9a6tQVW9OuXei0MNLj2WjMR5ZLPzKkTVwpNpVUru/kPH24/hsWLTUls2mT+hLVrTUGccordcEMnc6dO1T/j1FPtEYaoVlWZ+WbnTnvs2mXjihX24zt82B6VlZZUlF5jKVQIRUX2OHLEnOKnnmpj+GjXzvwB/fu7gzjJlJba/2vPHjNfZjtaZ+dO8ymtXm1ZzelBBmEo9wUXmH/Nr6O8w5VCS2jf3sxGEyfaDXvDBpvxr1ljK4EPPzSnLZiCOP108zcMHXqyaaZVK+jWzR5hWGJdqJr55+hR+5EWF9vos/z8IPRphfkKUSoFVfMHvPNOyjxas9tg1662sly/3lYGd98dnTxO7LhSyBRt25p/YdQoi8bYtMmS3DZtsh/dBx/YY/58O75Tp1RCW/horA1fxBLrklAN1YmGdKVwzTWZ+czjx+2aXLMm9aitplFJiU1Mhg0zf9nw4aYovvENUxpxm7ScSHGlEAVFRbYaCBuMHztmDt5Nm+xHdeCAZXouX36yM3Hw4JRp6dRTzTfRu7fXECo0WtKe8/Bhu/m//749Nm0yc5Bq7aXdW7e2SKGxY20lO3DgyaUn+vWzicz27fGYtJys4XeabFBcbD+iAQMsq1PV/Adbt9pj2zZYt86O3bgxlRuRTpcu5qcoLbWlfGmp/Uh79zaTU9u2PnvLJ8JObOvXWzRZmFWvauUitm2zKLbw+gkfS5fadVBX/lHHjlahd+DA1Aq1W7eGr51WrSwibdEi69vsSiFvcaUQByJmp+3aFUaOTO0/cMDKJ4fO5ooKUxYipkT27rUlf22UlNiPu0sXuyGccoopj06d7NG5szkFO3e2G0xJiSuRJBDO3j/+2G7++/enHp06mbN5xgwz/YTXRUONnFQtl6Zfv+qhzWF4c3MZOdKUQlmZVQl28pLEKQURuQr4EVAE/FJVI+jukVA6dLDHoEHV9x87Zg12du+2m8SePebULipK3UAqK1PObai9r0M6RUWmHMIyCqrmDG/XzlYd4cqjVSsLx23TxhRJmza2r6TEjmndOvUoLk6N+RKeqJrqexE6948etf/JkSN2Iwc7/0eO2OPwYYvYad/eIsXCqLEDB2wV2L27bR88aI8wA7guFi+u/rxtW5tQHD5sNv+ePVOrxx497POjMDeGE5iyMpM5X/7HTjUSpRREpAj4Gdaqsxx4S0TmquqqeCWLmeJi+6Gnl6OeNCm1Hc429++3UNbwRpR+49myxRTB8eP2+rFjKYUSsn175mQWSUVFFRWZLN27p0qFh+XCy8tNCaaXEhcxeQcOtO30x+bNJ/cZKC+3WXCrVqkbbJgw2KtXan94g//gA1tVFRdXb3S0c6cptZISOz/Hj9uY6VIwNTPHW7e2G/3+/XYuOnQwhbJ/v0WznXqqZRJ37mwrwYYa2YeKKtO0b2/fv3u31frKl4KPuUhxsV2nI0Zk/KMTVftIRD4BfEtVrwye3wWgqt+p7fgW1T5y04njOLlOM+/f9dU+Str6ry+QHiRdHuw7gYjcJiJlIlJWUVGRVeEcx3HynUSZj4Dapu/VVKGqzgRmgq0Umv1NCVohOY7jJIWkrRTKgXRDZT9ga0yyOI7jFBxJUwpvAcNFZLCItAGmAXNjlslxHKdgSJT5SFWPicjfAH/CQlJ/raorYxbLcRynYEiUUgBQ1T8Cf4xbDsdxnEIkaeYjx3EcJ0ZcKTiO4zgncKXgOI7jnMCVguM4jnOCRJW5aCoiUgG834KP6AnszJA4mcTlahouV9NwuZpGPso1UFVLa3shp5VCSxGRsrrqf8SJy9U0XK6m4XI1jUKTy81HjuM4zglcKTiO4zgnKHSlMDNuAerA5WoaLlfTcLmaRkHJVdA+BcdxHKc6hb5ScBzHcdJwpeA4juOcoCCVgohcJSJrRGS9iNwZoxz9ReRFEVktIitF5KvB/m+JyAcisiR4XB2DbJtEZHnw/WXBvu4i8ryIrAvGblmWaUTaOVkiIvtEZEYc50tEfi0iO0RkRdq+Os+PiNwVXG9rROTKLMv1XyLyrogsE5EnRKRrsH+QiBxKO28/z7Jcdf7fYj5fD6fJtElElgT7s3m+6ro3RH+NqWpBPbCS3BuAIUAbYCkwMiZZ+gDnBtudgLXASOBbwD/EfJ42AT1r7LsXuDPYvhP4z5j/jx8CA+M4X8DFwLnAiobOT/A/XQqUAIOD668oi3JdARQH2/+ZJteg9ONiOF+1/t/iPl81Xv8e8M0Yzldd94bIr7FCXCmcB6xX1fdU9QgwG5gahyCquk1VFwfb+4HV1OhJnTCmArOC7VnADTHKMgnYoKotyWhvNqr6EvBRjd11nZ+pwGxVrVTVjcB67DrMilyq+pyqHguevoF1NMwqdZyvuoj1fIWIiACfAX4fxXfXRz33hsivsUJUCn2BLWnPy0nAjVhEBgHnAG8Gu/4mWO7/OttmmgAFnhORt0XktmBfb1XdBnbRAr1ikCtkGtV/rHGfL6j7/CTpmvsi8Eza88Ei8o6ILBSRi2KQp7b/W1LO10XAdlVdl7Yv6+erxr0h8musEJWC1LIv1rhcEekIPAbMUNV9wP3AUGAMsA1bwmabC1X1XGAKcLuIXByDDLUi1qr1euDRYFcSzld9JOKaE5FvAMeAB4Nd24ABqnoO8DXgIRHpnEWR6vq/JeJ8ATdRfeKR9fNVy72hzkNr2desc1aISqEc6J/2vB+wNSZZEJHW2D/9QVV9HEBVt6vqcVWtAn5BREvn+lDVrcG4A3gikGG7iPQJ5O4D7Mi2XAFTgMWquj2QMfbzFVDX+Yn9mhOR6cC1wOc1MEIHpoZdwfbbmB36tGzJVM//LQnnqxj4c+DhcF+2z1dt9waycI0VolJ4CxguIoODGec0YG4cggQ2y18Bq1X1+2n7+6Qd9mfAiprvjViuDiLSKdzGHJUrsPM0PThsOjAnm3KlUW0GF/f5SqOu8zMXmCYiJSIyGBgOLMqWUCJyFfBPwPWqejBtf6mIFAXbQwK53suiXHX932I9XwGXA++qanm4I5vnq657A9m4xrLhSU/aA7ga8+ZvAL4RoxwTsSXeMmBJ8Lga+B2wPNg/F+iTZbmGYJEMS4GV4TkCegDzkGHa0wAAAxBJREFUgXXB2D2Gc9Ye2AV0SduX9fOFKaVtwFFslval+s4P8I3gelsDTMmyXOsxe3N4jf08OPZTwf93KbAYuC7LctX5f4vzfAX7fwv8VY1js3m+6ro3RH6NeZkLx3Ec5wSFaD5yHMdx6sCVguM4jnMCVwqO4zjOCVwpOI7jOCdwpeA4juOcwJWCk/cE1S0jyV0Iqmj2bOz+Fn7XIBH5XNrzL4jITzP5HY7jSsFxcodBwOcaOshxWoIrBadQKBaRWUHxtf8VkfYAIjIpKHC2PCjKVhLs3yQi3xaRxcFrpwf7e4jIc8F7/pvaa85UQ0RuFpFFQQ3+/07Liv1YRO4WkaUi8oaI9A72Dw2evyUi/1dEPg4+6h7gouBz/j7Yd6qIPBvU1783s6fMKURcKTiFwghgpqqeBewDviIibbHM1c+q6migGPjrtPfsVCsKeD/wD8G+fwNeUSuKNhcYUN+XisgZwGexAoNjgOPA54OXOwBvqOrZwEvAXwb7fwT8SFXHU71+zZ3Ay6o6RlV/EOwbE3z+aOCzIpJe/8ZxmowrBadQ2KKqrwbbD2BlBEYAG1V1bbB/FtZ0JSQsQvY2ZroheP0BAFX9A7C7ge+dBIwF3hLr4DUJKyMCcAR4upbv+ASpCrAPNfD581V1r6oeBlZhTYccp9kUxy2A42SJmvVclIZNP5XBeJzqv5Wm1IYRYJaq3lXLa0c1VWem5nc0lsq07eZ+huOcwFcKTqEwQEQ+EWzfBLwCvAsMEpFhwf6/ABY28DkvEZh/RGQK0FBDn/nAp0WkV/Ce7iLS0Gz+Daz4GlgV35D9WGtGx4kMVwpOobAamC4iy4DuwP2ByeVW4FERWQ5UAQ01Y/82cLGILMZKim+u72BVXQX8C9bFbhnwPNZ/tz5mAF8TkUXBsXuD/cuAY4Fj+u/rfLfjtACvkuo4CSOIjDqkqioi04CbVDWWPuJO4eH2R8dJHmOBnwaNVvZgfZUdJyv4SsFxHMc5gfsUHMdxnBO4UnAcx3FO4ErBcRzHOYErBcdxHOcErhQcx3GcE/x/QLv2SXpcTgsAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = plt.axes()\n", + "for t in np.linspace(0.,0.62,4):\n", + " pm.plot_sf(ax,t)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xUZf73/9c1M+m9EEIKoYUUugQIBOyyWAklKNjW1VVXZRcrCL/b3fu7i3V19VZcRVddd1UISgQRRQSRXgSkhZaEQBrpPZl+/f6YkG/EICAzOcnkej4e80jmnDOZd4ZwPudc5zrXJaSUKIqiKMrZdFoHUBRFUTonVSAURVGUdqkCoSiKorRLFQhFURSlXapAKIqiKO0yaB3AmcLDw2WfPn20jqEoitJl7N69u0JK2aO9dW5VIPr06cMPP/ygdQxFUZQuQwhx8lzrVBOToiiK0i5VIBRFUZR2qQKhKIqitEsVCEVRFKVdqkAoiqIo7XJZLyYhxHvATUCZlHJwO+ufBG5vkyMJ6CGlrBJC5AP1gA2wSilTXJVTURRFaZ8rzyA+ACada6WU8iUp5XAp5XDgaeB7KWVVm02ualmvioOiKMovMFqNLvm5LisQUsqNQNV5N3SYCXziqiyKoijuyGa3sWDdAtLeS6PJ0uT0n6/5NQghhC+OM43P2iyWwDdCiN1CiPvP8/r7hRA/CCF+KC8vd2VURVGUTqPGWMPkJZN5dvOz/Hj6R77P/97p79EZ7qS+GdhyVvNSmpSyWAgRAawVQhxpOSP5GSnlYmAxQEpKipr9SFEUt3e4/DCTl0zmeNVxAjwD+GjqR1wff73T30fzMwjgNs5qXpJSFrd8LQOygNEa5FIURel0VhxZwZh3x3C86jh9gvvw8sSXuarvVS55L00LhBAiCLgCWNFmmZ8QIuDM98BE4KA2CRVFUToHu7Tzfzf8X9KXplNvrmd87HhevPZFIv0jXfaeruzm+glwJRAuhCgE/gx4AEgp32rZbArwjZSysc1LewJZQogz+T6WUn7tqpyKoiidXZ2pjruy7mLF0RUIBHcNu4upiVNp2U+6jMsKhJRy5gVs8wGO7rBtl+UBw1yTSlEUpWs5VnmM9CXpHK44jJ+HH0+Me4KRvUZ2yHt3hovUiqIoSjtWH1/NrM9mUWuqpXdQb+aPn09UQFSHvb8qEIqiKJ2MlJIXtrzA/HXzkUhSY1KZM2YOvh6+HZpDFQhFUZROpNHcyD0r7mFZ9jIAbh9yOxnJGehEx/cpUgVCURSlk8irziN9SToHyg7gY/Dh8bGPMzpau17+qkAoiqJ0Amtz13Lrp7dSbawmOiCaBRMWEBMYo2kmVSAURVE0JKXklW2v8NS3T2GXdlKiUng89XH8PP20jqYKhKIoilaaLE38/ovf8/GBjwGYkTyDWUNmaXK9oT2qQCiKomjgZM1Jpiydwt7Te/E2eDNnzBzGxY7TOtZPqAKhKIrSwTbkbyBjWQYVTRVE+keyYPwC4oLjtI71M6pAKIqidBApJa/vfJ3H1jyGTdoYETmCJ8c9ib+nv9bR2qUKhKIoSgcwWo08uOpB/r3v3wBMS5rGHUPuQK/Ta5zs3FSBUBRFcbHCukKmLp3KruJdeOm9+OOYPzKh9wStY52XKhCKoigutPnUZqZlTqOssYwIvwgWjF9A35C+Wse6IKpAKIqiuICUkrd3v83sr2ZjtVsZGjGUp9KeItArUOtoF0wVCEVRFCczWU3M/mo27+x5B4DJCZP57bDfdurrDe1RBUJRFMWJSupLmJY5jW2F2/DUe/LwqIe5qo9rpgR1NVUgFEVRnGR74XamLp1KSUMJ4b7hzB8/nwGhA7SO9aupAqEoiuIE/9rzLx5a/RBmm5lBPQYxN20uwd7BWse6JKpAKIqiXAKzzcyjXz/Kmz+8CcCN8Tdy74h7Mei6/u7VZSNCCSHeE0KUCSEOnmP9lUKIWiHEjy2PZ9qsmySEOCqEyBFCzHNVRkVRlEtR1ljGtR9ey5s/vIlBZ2D26Nk8MPIBtygO4NoziA+AN4APf2GbTVLKm9ouEELogUXAdUAhsEsIsVJKme2qoIqiKBdrd/Fu0pemU1hXSKhPKE+Pf5qEsAStYzmVy84gpJQbgapf8dLRQI6UMk9KaQaWAJOdGk5RFOUS/Gfffxj//ngK6wpJDEvklYmvuF1xABcWiAs0VgixTwjxlRBiUMuyaKCgzTaFLcvaJYS4XwjxgxDih/LycldmVRSlm7ParTy25jHu+vwujFYjE/tNZOHVCwn1CdU6mkto2VC2B4iTUjYIIW4APgfiAdHOtvJcP0RKuRhYDJCSknLO7RRFUS5FRVMFt356K+tPrMegM3D/ZfczacAkrWO5lGYFQkpZ1+b71UKIN4UQ4TjOGGLbbBoDFHd0PkVRlDP2nd5H+tJ08mvyCfYOZl7aPJJ7JGsdy+U0KxBCiEigVEophRCjcTR3VQI1QLwQoi9QBNwGzNIqp6Io3duSg0v43Yrf0WxtJj40nqfHP024b7jWsTqEywqEEOIT4EogXAhRCPwZ8ACQUr4FTAf+IISwAs3AbVJKCViFEI8AawA98J6U8pCrciqKorTHZrcxf918Xtz6IgDX9L2GP6T8AU+9p8bJOo7LCoSUcuZ51r+Boxtse+tWA6tdkUtRFOV8qpurmfnZTNbkrkEndNw34j5ujL8RIdq7ROq+3ONuDkVRFCc5WHaQ9CXp5FbnEugVyNxxcxnSc4jWsTShCoSiKEqL5YeXc1fWXTRaGukX0o/54+cT4RehdSzNqAKhKEq3Z5d2nvnuGRZuWgjAFXFX8MioR/AyeGmcTFuqQCiK0q3VGmu5ffntfHn8S3RCx2+H/ZbJCZO73fWG9qgCoShKt3Wk4giTl0zmWOUxAjwDeHLckwyPHK51rE5DFQhFUbqlL45+we3Lb6feXE9cUBwLJiwg0j9S61idiioQiqJ0K3ZpZ+HGhTyzwTHDQFpsGn8c/Ud8PHw0Ttb5qAKhKEq3UW+q5+7P7ybrSBYCwV3D7mJq4lR1veEcVIFQFKVbyKnKYfKSyWSXZ+Pn4ccTY59gZNRIrWM5hWMQCufTerhvRVEUl/s652tGvTOK7PJsYgNjeXniy25THNbkriFjWQZWu9XpP1udQSiK4raklLyw5QXmr5uPRJIancqc1Dn4evhqHe2SWe1W3t3zLqtzHKMSrTq2ivTEdKe+hyoQiqK4pUZzI79b+TsyD2UCMGvwLGYMmoFOdP2Gk1pjLc9veZ5D5YfQCz0vT3zZ6cUBVIFQFMUN5VXnkb4knQNlB/Ax+PDY2McYEz1G61hOkVedx7ObnqWsqQx/T38ykjK4dfCtLnkvVSAURXEr3+Z9y62f3kpVcxXRAdEsmLCAmMAYrWM5xeZTm3ltx2uYbCaiAqLISMogwCvAZe+nCoSiKG5BSskr217hqW+fwi7tpESl8Hjq4/h5+mkd7ZLZpZ2PD3xMZrajuWxIxBBujL8Rg861u3BVIBRF6fKaLE38/ovf8/GBjwGYkTyDWUNmucX1hiZLE69se4WdxTsRCK7tdy2jo0Z3yL0bqkAoitKlnaw5yZSlU9h7ei/eBm/mjJnDuNhxWsdyiuL6YhZuWkhBXQHeBm+mJk6lX0i/Dnt/VSAURemyNuRvIGNZBhVNFUT6RbJgwgLiguO0juUUe0v28uLWF2m0NBLuG86M5BmE+oR2aAZVIBRF6XKklCzatYg5X8/BJm2MiBzBE2OfcOkF244ipWTlsZW8v/d97NgZGDaQyQMnazI3hSoQiqJ0KUarkYe+fIj3f3wfgKmJU7lz6J3odXqNk106s83Mol2L+C7/OwDGx47nirgrNBsrymUFQgjxHnATUCalHNzO+tuBuS1PG4A/SCn3tazLB+oBG2CVUqa4KqeiKF1HYV0h0zKnsbNoJ156L2aPns3lcZdrHcspKpsqeW7zcxyrOoaHzoNbBt5CUo8kTTO58gziA+AN4MNzrD8BXCGlrBZCXA8sBtreyXKVlLLChfkURelCtpzawrTMaZQ2lhLhG8H8CfM79IKtKx2pOMJzm5+j2lhNkFcQM5Jn0NO/p9axXFcgpJQbhRB9fmH91jZPtwPucSeLoihO9/YPbzP7q9lY7BaGRgzlqbSnCPQK1DqWU6zLW8eiHxZhtVuJC4pjauLUTnPvRme5BnEv8FWb5xL4RgghgbellIvP9UIhxP3A/QC9e/d2aUhFUTqWyWrij1/9kcV7HLuAyQmT+e2w37rF9Qab3cZ7P77HF8e+ACClVwrX9buuU/1umhcIIcRVOArE+DaL06SUxUKICGCtEOKIlHJje69vKR6LAVJSUlwzKLqiKB2upL6E6cums7VgK556Tx5OeZir+l6ldSynqDfV8+LWF9lXug+d0DGp/yQu63WZ1rF+RtMCIYQYCrwLXC+lrDyzXEpZ3PK1TAiRBYwG2i0QiqK4nx2FO5iaOZXi+mLCfcKZP2E+A0IHaB3LKU7WnGThpoWcbjyNn4cf05Km0Tuoc7Z+aFYghBC9geXAnVLKY22W+wE6KWV9y/cTgf/RKKaiKB3s/b3v8+CXD2K2mRnUYxBz0+YS7B2sdSyn2F64nVe2v4LRaiTSP5KM5AyCvIK0jnVOruzm+glwJRAuhCgE/gx4AEgp3wKeAcKAN1v6+J7pztoTyGpZZgA+llJ+7aqciqJ0DhabhUfXPMqiXYsAuCH+Bu4bcZ/LB6TrCHZpJ/NQJh8fdIwVNajHIG6KvwkPvYfGyX6ZK3sxzTzP+vuA+9pZngcMc1UuRVE6n7LGMjKWZbDx5EYMOgMPjnyQif0nah3LKZotzby641W2FW5DILi679WkRqdqdvPbxej6pVlRlC5td/FupiydQkFdAaHeocwbP4/E8EStYznF6YbTLNy0kJO1J/HSezElcUqXupaiCoSiKJr5z77/cP+q+zFajSSEJfD0+Kc7fEA6V9lXuo8Xt7xIvbmeMJ8wZiTPIMw3TOtYF0UVCEVROpzVbuWptU/xj+3/AGBiv4k8MPKBTt8mfyGklHx5/Eve3fsudmlnQMgA0hPT8TZ4ax3toqkCoShKh6poquDWT29l/Yn16IWeB0Y+wKQBk7SO5RQWm4W3dr/F2ry1AIyLGceVfa7sshMXqQKhKEqH2Xd6H+lL08mvySfYO5h5afNI7pGsdSynqG6u5rnNz3Gk8ggGnYGb4m9icMTPxintUlSBUBSlQyw9uJR7VtxDs7WZ+NB4nh7/NOG+4VrHcorjVcd5dtOzVDZXEuAZwIxBM+jl30vrWJdMFQhFUVzKZrcxf918Xtz6IgBX97mah0Y9hKfeU+NkzvFd/ncs2rUIs81MbGAs05Km4e/pr3Usp1AFQlEUl6lurmbmZzNZk7sGndBx34j7uDH+xi5xD8D52Ow2Ptz/IVlHsgAYETmCSf0ndarB9i6VKhCKorjEobJDTF4ymdzqXAK9Apk7bi5Deg7ROpZTNJgb+Pu2v7OnZA86oeM3/X7DyKiRWsdyOlUgFEVxuqzDWdyZdSeNlkb6hfRj/vj5RPhFaB3LKQrrCvnbpr9RXF+Mr4cv0xKnERccp3Usl1AFQlEUp7FLO3/Z8Bf+uvGvAFwRdwWPjHoEL4OXxsmcY1fRLl7e/jJNliZ6+vUkIznDbQYSbI8qEIqiOEWtsZY7su5g1bFV6ISOu4fdTXpCultcb5BS8unhT/nv/v8ikSSFJ3HzwJvd5kL7uagCoSjKJTtScYT0JekcrTxKgGcAT4x7ghGRI7SO5RRGq5HXd77OplObALgy7krSYtPcovCdjyoQiqJcki+OfsHty2+n3lxPXFAcCyYsINI/UutYTlHeWM7fNv2NEzUn8NR7kp6QzsCwgVrH6jCqQCiK8qvYpZ2FGxfyzIZnAEiLTeNPY/7UJcccas/BsoO8sOUFak21hHiHMCN5Bj38emgdq0OpAqEoykWrN9Vz9+d3k3UkC4HgzqF3Mi1pmts0u3yV8xWLdy/GJm30De7L1MSp+Hj4aB2rw6kCoSjKRcmpymHykslkl2fj5+HHE2OfcJt7ACw2C+/seYevcx2TWI6JHsM1fa/psoPtXSpVIBRFuWBf53zNzM9mUmOsITYwlgUTFhAVEKV1LKeoMdbw/JbnyS7PRi/03Bh/I0N7DtU6lqZUgVAU5byklLyw5QXmr5uPRJIancqc1Dn4evhqHc0p8qrzWLhpIeVN5fh7+pORnEF0QLTWsTTnsgIhhHgPuAkok1L+bMxb4WisfA24AWgCfiul3NOyblLLOj3wrpTyeVflVBTllzWaG/ndyt+ReSgTgFmDZzFj0Ay3aXbZfGozr+54FbPNTHRANNOTphPgFaB1rE7BlWcQHwBvAB+eY/31QHzLYwzwT2CMEEIPLAKuAwqBXUKIlVLKbBdmVRSlHSeqT5C+NJ39pfvxMfjw2NjHGBM9RutYTmGXdj4+8DGZ2Y7CN7TnUG4YcAMGnWpYOcNln4SUcqMQos8vbDIZ+FBKKYHtQohgIUQvoA+QI6XMAxBCLGnZVhUIRelA6/LWMePTGVQ1VxEVEMWC8QuIDYrVOpZTNFmaeGXbK+ws3olAcG2/axkdNdptemE5i5alMhooaPO8sGVZe8vPecgihLgfuB+gd+/ezk+pKN2MlJJ/bP8HT659Eru0kxKVwmOpj7nNHAfF9cUs3LSQgroCvA3eTE2cSr+QflrH6pS0LBDtlWr5C8vbJaVcDCwGSElJOed2iqKcX7Olmd9/8Xs+OvARADOSZzBryCy3ud6wp2QPL219iUZLIz18e5CRnEGoT6jWsTotLQtEIdD2fDUGKAY8z7FcURQXOlV7iilLp7CnZA/eBm/mjJnDuNhxWsdyCiklnx/9nH//+G/s2EkIS+CWgbe4zSizrqJlgVgJPNJyjWEMUCulLBFClAPxQoi+QBFwGzBLw5yK4va+z/+ejGUZlDeVE+kXyYIJC9xmjgOT1cSiXYvYcHIDABN6T+Dy3per6w0XwJXdXD8BrgTChRCFwJ8BDwAp5VvAahxdXHNwdHO9p2WdVQjxCLAGRzfX96SUh1yVU1G6Mykli3YtYs7Xc7BJGyMiR/DE2CfcpptnRVMFz25+lpyqHDx0HtyScAtJ4Ulax+oyXNmLaeZ51kvg4XOsW42jgCiK4iJGq5GHvnyI9398H4BpSdO4Y8gdbjOn8uGKwzy3+TlqjDUEeQUxY9AMevr11DpWl6I6/CpKN1RUV8TUzKnsLNqJl96L2aNnc3nc5VrHcpq1eWv55w//xGq3EhcUx7SkaW5z13dHUgVCUbqZLae2MC1zGqWNpUT4RjB/wny36eZptVt5b+97rDq+CoBRUaO4tu+1bnNW1NFUgVCUbuTtH95m9lezsdgtDIkYwty0uQR6BWodyynqTHW8uOVF9pftRyd0XD/gereZ1U4rF1QghBDewEPAeBz3JGwG/imlNLowm6IoTmK2mZm9ejaL9ywG4JaBt3DP8Hvc5sg6vyafhZsWUtpYip+HH9OTpxMb6B53fWvpQs8gPgTqgddbns8E/gNkuCKUoijOU1JfwvRl09lasBUPnQcPj3qYq/terXUsp9lasJVXd7yK0Wqkl38vMpIz3OasSGsXWiASpJTD2jz/TgixzxWBFEVxnh2FO5iaOZXi+mLCfcJ5esLTxIfGax3LKezSzpKDS1hyaAkAgyMGc+OAG/HQe2iczH1caIHYK4RIlVJuBxBCjAG2uC6WoiiX6v297/Pglw9itplJ7pHM3LS5hHiHaB3LKZosTby641W2F25HILi679WkRqeqm9+c7EILxBjgLiHEqZbnvYHDQogDOG5p6N7TLilKJ2KxWXhszWO8sesNAG4YcAP3jrjXbY6sTzecZuGmhZysPYmX3oupiVPpH9pf61iaOVh2kAe+eICs27KcPmbWhRaISU59V0VRXKKssYyMZRlsPLkRg87AgyMfZGL/iVrHcpp9p/fx4tYXqTfXE+YTxozkGYT5hmkdSxN2aWdD/ga2Fm4FYMWRFUxJmuLU9/jFAiGECJRS1uG4QP0zUsoqp6ZRFOVX2128mylLp1BQV0Codyjzxs8jMTxR61hOIaVk1fFV/Gvvv7BLOwNCB5CekI63wVvraJowWo18fvRzcqpyEAieueIZ0hPTnf4+5zuD+BjHtKG7+flQ3BJwj7trFKWL+2j/R9z3xX0YrUYSwxKZN36e2wxjbbFZePOHN1l3Yh0A42LHcWXclW4zBPnFqmyqJDM7k8rmSjz1noyLGcedQ+90yfWXXywQUsqbWr72dfo7K4pyyax2K3PXzuWV7a8AMLHfRB4Y+YDbXG+oaq7iuc3PcbTyKAadgZsH3sygHoO0jqWZ3Kpclh9ZjslmIsgriLTYNJdO5HS+JqbLfmm9lHKPc+MoinKhKpsqufXTW1l3Yh16oef+kfczqf8kt+nJc6zyGM9ufpaq5ioCvQKZkTyDSP9IrWNpQkrJ9qLtrD+xHokkOiCa0dGj8dC59kDgfE1ML7ezrO2sbe5zt42idCH7Tu8jfWk6+TX5BHsHMy9tHsk9krWO5TTrT6xn0a5FWOwWYgNjmZ40HT9PP61jacJis/BlzpccLDsIQHJ4MoN6DOqQA4HzNTFdBSCEmAF8LaWsE0L8H+Ay4K8uT6coys8sPbiUe1bcQ7O1mQGhA5g/fj7hvuFax3IKm93GB/s+YMXRFQBcFnkZv+n/G7cZEuRi1Znq+DT7U4obijHoDIyOGk1MYEyHvf+FdnP9/6SUmUKI8cB1OM4s/onj/ghFUTqAzW5jwfoFvLDlBQCu7nM1D416CE+9p8bJnKPB3MBLW19i7+m96ISO3/T/DSN7jdQ6lmYK6wpZlr2MRksjfh5+pMWmEewd3KEZLrRA2Fq+3gi8JaVcIYT4i2siKYpyturmamZ+NpM1uWvQCR33jbiPG+NvdJvrDadqT7Fw00JKGkrw9fBlWtI04oLcY8rTX2Nf6T5WH1+NTdro4duDcTHjNJk/+0ILRJEQ4m3gWuAFIYQX0D37mClKBztUdojJSyaTW51LoFcgc8fNZUjPIVrHcpqdRTt5edvLNFub6enXk4zkjA4/Uu4s7NLOt3nfsrN4JwADQgYwPHK4Zl16L7RAzMBxN/XfpZQ1QohewJOui6UoCsDyw8u5K+suGi2N9Avpx/zx84nwi9A6llNIKVmWvYyPDnyERJIcnsxNA29ymyazi9VsaWb5keWcqDmBTugYETmC/iHaDiFyQQVCStkELG/zvAQoOd/rhBCTgNcAPfCulPL5s9Y/CdzeJksS0ENKWSWEyMdxB7cNsEopUy4kq6K4A7u085cNf+GvGx19QS7vfTmzR8/WpJnBFYxWI6/teI0tBVsQCK7qcxXjYsa5TZPZxSpvLCczO5NqYzVeei/GxY6jh28PrWO5bkY5IYQeWITjonYhsEsIsVJKmX1mGynlS8BLLdvfDDx61vAdV0kpK1yVUVE6o1pjLXdk3cGqY6vQCR13D7ub9IR0t9l5ljWWsXDTQk7UnMBT78mUhCnEh7nHEOS/xtHKo6w4ugKzzUywdzBpsWn4eXSOLr2unHJ0NJAjpcwDEEIsASYD2efYfibwiQvzKEqnd6TiCOlL0jlaeRR/T3+eHPskI3q5z7SZB8sO8vyW56kz1RHiHcKtg251my66F0tKyeaCzXx/8nsAYgNjGRU1CoOu88wE7cok0UBBm+eFnKNbrBDCF8c1jkfaLJbAN0IICbwtpVx8jtfeD9wP0Lt3byfEVhRtfHH0C25ffjv15nriguKYP34+vQJ6aR3LaVYfX807e97BJm30C+nHlIQp+Hj4aB1LE2abmS+OfcHhisMADIkYQmJYYqc7S3RlgWjvN5XtLAO4GdhyVvNSmpSyWAgRAawVQhyRUm782Q90FI7FACkpKef6+YrSadmlnYUbF/LMhmcAx2B0fxr9J7fZeVpsFt7Z8w5f534NQGp0Klf3vbrbDrZXY6xhWfYyShtLMegMpEanEhUQpXWsdrmyQBQCbWcNjwGKz7HtbZzVvCSlLG75WiaEyMLRZPWzAqEoXVm9qZ67P7+brCNZCAR3DL2D6UnTO92R5K9VY6zh+c3Pk12RjV7ouWngTQyJcJ8uuhfrZO1JPjv8GU2WJvw9/RkfO75Tz5/tygKxC4gXQvQFinAUgVlnbySECAKuAO5os8wP0Ekp61u+nwj8jwuzKkqHO155nPSl6WSXZ+Pn4ccTY59gZJT73DmcW5XLws0LqWiqIMAzgIzkjE57pNwRdpfsZk3uGuzSTk+/noyNGdvpu/S6rEBIKa1CiEeANTi6ub4npTwkhHiwZf1bLZtOAb6RUja2eXlPIKvlKMoAfCyl/NpVWRWlo311/CtmfjaTWlMtsYGxLJiwwK12nhtPbuT/7fx/mG1mYgJimJY8jQDPAK1jacJmt7Emdw17TjsGvx4YOpChPYd2iSY2l14ul1KuBlafteyts55/AHxw1rI8YJgrsymKFqSUvLDlBeavm49EMiZ6DI+mPoqvh6/W0ZzCZrfx3wP/5bPDnwEwrOcwrh9wfafqmdORGs2NfHb4M07VnUIndKT0SqFPcB+tY12w7vmvpigaaDQ38ruVvyPzUCYAswbPYsagGV3iSPJCNJobeXnby/xQ8gMCwXX9rmNU1Ci3uZ5ysUobSsnMzqTWVIu3wZu0mLQuN3+2KhCK0gFOVJ8gfWk6+0v342Pw4bGxjzEm2n0GQy6qK+Jvm/5GUX0RPgYfpiZNpW9w952I8nD5YVYeW4nFbiHUO5S02LQu2StNFQhFcbF1eeuY8ekMqpqriAqIYsH4BcQGxZ7/hV3E7uLdvLTtJZosTUT4RpCRnEGIT4jWsTQhpeT7k9+zuWAzAHFBcaT0Sumy81moAqEoLiKl5NXtr/LE2iewSzspvVJ4bOxjLp1DuCNJKck6ksW/9/0biSQhLIHJCZM7fc8cVzFZTaw4toJjlccQCIb2HMrA0IFduolNFQhFcYFmSzO//+L3fHTgIwAykjOYNXhWlz2SPJvJauKNXW+0DhNxee/LmdB7QpfeGV6KquYqlmUvo7ypHA+dB2NjxrrF/NmqQCiKk52qPcWUpVPYU7IHb4M3f3kiTSUAACAASURBVBrzJ9Ji07SO5TTljeU8t/k5cqpz8NB5MDlhMonhiVrH0kxedR7LjyzHaDUS6BlIWmwaAV7u0aVXFQhFcaLv878nY1kG5U3lRPpFMn/C/C7VrfF8ssuzeX7L89QYawj2DmZG8gy3mZ/iYkkp2VW8i7V5a5FIevn3IjU6FQ+9h9bRnEYVCEVxAikli3Yt4tE1j2K1WxneczhPjnvSbY4kAb7J/Ya3dr+F1W6lT3AfpiZOdZv7Ny6W1W7lq5yv2Fe6D4Ck8CQG9xjsdk1sqkAoyiUyWo089OVDvP/j+wBMSZzCXUPvcpvrDVa7lXf3vsvq4457XkdHjebafte6zf0bF6veXM+n2Z9SVF+EXugZFTWK3kHuOZK0KhCKcgmK6oqYmjmVnUU78dJ78cjoR7gi7gqtYzlNnamOF7a8wIGyA+iFnusHXM/wyOFax9JMcX0xy7KXUW+ux9fgS1psmlt36VUFQlF+pS2ntjAtcxqljaVE+EYwf8J8+oX00zqW05yoPsHCzQspayzD39Of6UnTiQmM0TqWZg6UHWDVsVXYpI1wn3DGxY7D2+CtdSyXUgVCUX6Ft394m9lfzcZitzAkYghz0+Z26mGbL9bWgq38Y/s/MNlMRPlHMT15ulv9fhfDLu18l/8d2wq3AdAvuB8jeo1AL9yjCfGXqAKhKBfBbDMze/VsFu9xTHB4y8BbuGf4PW5zvcEu7Xxy8BOWHloKOGY6uzH+xm472J7RaiTrSBa51bkIBCMiR9A/pL/bXYw+l+75r64ov0JJfQnTl01na8FWPHQePDzqYa7ue7XWsZymydLEP7b/gx1FOxAIrul7DWOix3SbneHZKpsqWZq9lKrmKjz1noyLGdftuvSqAqEoF2BH4Q6mZk6luL6YcJ9wnh7/NPFh8VrHcpqS+hL+tulvFNQV4G3wZkriFPqH9Nc6lmZyqnLIOpKFyWYiyCuI8bHj8fP00zpWh1MFQlHO4/297/Pglw9itplJ7pHM3LS5hHi7T8+Vvaf38tLWl2gwNxDuE86MQTMI9QnVOpYmpJRsK9zG+vz1AMQExDAqehQeOve5+e1iqAKhKOdgsVl4bM1jvLHrDQBuiL+Be4ff6zZ3ykopWXlsJe//+D52aSc+NJ70hHS8DF5aR9OExWZh1fFVHCo/BMCgHoNIDk/utk1soAqEorSrrLGMGctm8P3J7zHoDDw48kEm9p+odSynMdvMvLnrzdYj5bTYNK6Mu7Lb7gzrTHUsy15GSUMJBp2BMVFjiA6M1jqW5lSBUJSz7C7ezZSlUyioKyDUJ5R5afPcajC6yuZKntv8HMcqj+Gh8+DmgTeT3CNZ61iaKagr4NPsT2m0NOLn4cf42PEEeQdpHatTcOm98kKISUKIo0KIHCHEvHbWXymEqBVC/NjyeOZCX6sorvDf/f9l/PvjKagrIDEskZcnvuxWxeFo5VEeX/M4xyqPEegVyN3D7u7WxeHH0z/y3/3/pdHSSIRvBNf2vVYVhzZcdgYhhNADi4DrgEJglxBipZQy+6xNN0kpb/qVr1UUp7DarcxdO5dXtr8CwMR+E3lg5ANuc70BYN2JdSzatQir3UrvwN5MS5rWLXvmgON+j7V5a9lVvAuA+NB4hvUc1m3HlzoXVzYxjQZypJR5AEKIJcBk4EJ28pfyWkW5KJVNldz66a2sO7EOvdBz/8j7mdR/ktu0x9vsNj7Y9wErjq4AYGSvkUzsN9Ftbu67WE2WJpYfXk5+bT46oeOyyMvcaogUZ3JlgYgGCto8LwTam6V9rBBiH1AMPCGlPHQRr0UIcT9wP0Dv3u45oqLiOvtL95O+JJ0TNScI9gpmbtpcBkUM0jqW09Sb6nlp60v8WPojOqHjN/1/w8heI7WOpZmyxjIyszOpMdbgrfdmXOw4wn3DtY7VabmyQLR3+CXPer4HiJNSNgghbgA+B+Iv8LWOhVIuBhYDpKSktLuNorQn81Am96y4hyZLEwNCB/B02tP08OuhdSynOVV7ir9t+hunG07j6+HL9KTpbjss9YU4WnGUFcdWYLaZCfEOIS02rdvOZ3GhXFkgCoHYNs9jcJwltJJS1rX5frUQ4k0hRPiFvFZRfi2b3caC9Qt4YcsLAFzV5yoeSnnIrfr/7yjawcvbXsZoNRLpF0lGcka3vfgqpWRzwebW+bN7B/YmJSql244vdTFc+QntAuKFEH2BIuA2YFbbDYQQkUCplFIKIUbj6FVVCdSc77WK8mtUN1cz87OZrMldg07ouHfEvdwUf5PbXG+QUpKZnclHBz4CIDk8mZsH3uxWF9svhtlmZuXRlRypPALA0IihJIQluM2/t6u5rEBIKa1CiEeANYAeeE9KeUgI8WDL+reA6cAfhBBWoBm4TUopgXZf66qsSvdwqOwQk5dMJrc6l0CvQJ4a9xRDew7VOpbTGK1GXt3xKlsLtiIQXNnnSsbFjOu2O8MaYw2Z2ZmUNZbhofMgNTqVXgG9tI7Vpbj0HEtKuRpYfdayt9p8/wbwxoW+VlF+razDWdyZdSeNlkb6hfRj/vj5bjUyZ2lDKQs3LyS/Jh8vvRfpienEh7rPYIIXK78mn88Of0aztZkAzwDSYtO67XwWl0I1wiluzS7t/GXDX/jrxr8CcHnvy5k9erZbXW84UHqA57c8T725nlCfUGYkz+i2PXOklOwu2c03ed9gl3Yi/SJJjUnFU++pdbQuSRUIxW3VGmu5I+sOVh1bhU7ouHvY3aQnpLtNk4uUktU5q3lnzzvYpZ3+If2ZkjjF7afBPBeb3cbXuV+z9/ReABLCEhgSMUTd/HYJVIFQ3NLRiqNMXjKZo5VH8ff058lxTzIicoTWsZzGYrPw9u63+SbvGwBSo1O5uu/V3XZn2Ghu5NPDn1JQV4BO6BjVaxRxwXFax+ryVIFQ3M6qY6u4ffnt1JnqiAuKY8GEBUT6R2ody2mqjdU8v/l5DlccxqAzcGP8jQyJGKJ1LM2cbjhNZnYmdaY6fAw+pMWmddv5LJxNFQjFbdilnWc3Pcsz3z2DRDIudhx/Gv0nfDx8tI7mNDlVOTy76VkqmisI8AwgIzmDqIAorWNp5lD5Ib449gVWu5UwnzDGxYxzq39vrakCobiFelM9v13xW5YfXo5AcMeQO8hIznCb6w0A35/8ntd3vo7ZZiYmMIbpSdPx9/TXOpYmpJRsOLmBLQVbAOgT3IeRkSO77fhSrqIKhNLl5VTlkL4knUPlh/Dz8OPxsY+TEpWidSynsdlt/Gf/f1h+ZDkAwyOHM6n/pG57J7DJauLzo59zvOo4AsGwnsOID413q4OBzqJ7/oUpbuPrnK+Z+dlMaow1xAbGMn/8fLeaCazB3MDft/2dPSV7EAgm9p9ISq+UbrszrGquIvNQJhXNFXjqPRkbPZae/j21juW2VIFQuiQpJS9ueZGn1z2NRDImegyPpj7qVoOvFdQWsHDzQorri/Ex+DAtaRp9gvtoHUszudW5ZB3OwmgzEugVyPjY8d22ia2jqAKhdDkN5gbuXXkvmYcyAZg5eCa3DrrVrbp47iraxd+3/Z1mazMRfhHMSJ5BsHew1rE0IaVke9F21p9Yj0QSHRDN6KjR3XZ8qY6kCoTSpeRU5TBl6RQOlh3Ex+DDo6mPkhqTqnUsp5FSsix7GR8d+AiJJCk8iZsH3txt7wS22Cx8efxLDpYfBGBQj0Ekhyd32ya2jqYKhNJlfHnsS25ffju1plpiAmOYP34+MYExWsdymiZLE6/teI1thdscg+3FXUlabFq33RnWGmv59PCnlDSUYNAZGB012q3+vbsCVSCUTs8u7SzcuJA/b/gzEklqdCpzUue41fWG4vpiFm5aSEFdgWOwvYR04sO692B7yw8vp8nahJ+HH+Njx3fb+Sy0pAqE0qnVmeq4K+suVhxd0Xp/w/Tk6e51vaF4Fy9ve5kmSxPhvuFkJGUQ5humdSxNSCnZUbSDdSfWIZFE+kUyJmYMXnr3GVyxK1EFQum0DpQeYGrmVHKqcvDz8OOJsU8wMsp95lO2SzuZhzL55OAnSCSJYYncPPBmtxpp9mJYbBZWHV/FoXLH1C+JYYkMjhjsVgcDXY0qEEqn9O8f/80fvvwDzdZm+gT34em0p91qspcGcwOv7niVnUU71fUGHDP9LTu8jLLGMnW9oRNRBULpVIxWI3/66k8s3rMYgGv6XsODIx90q6PqvOo8nt/yPKcbTuNt8CY9IZ0BoQO0jqWZ41XHWXFkBUabEX9Pf9Ji0tT1hk5CFQil0zhRfYLpy6azp2QPHjoPHhj5ANf1u86tjqq/zfuWt3a/hdlmpqdfT6YlTeu2I4/apZ3vT37fOp5SlH8Uo6NHd9suvZ2RKhBKp7Dy6Eru/vxuaow19PTryby0efQP7a91LKcxWU0s3rOYtXlrAcd4Sr/p95tue7NXg7mBrCNZnKw9iUAwOGIwiWGJbnUw4A5UgVA0ZbKamPftPF7d8SoAo6NGMyd1jlsNoVBSX8LzW57nRM0JDDoDk/pPYnjkcK1jaeZU7SmWH1lOg7kBb703qTGpbjU/uDtxaYEQQkwCXgP0wLtSyufPWn87MLflaQPwBynlvpZ1+UA9YAOsUkr3GZ5TAeB45XFu++w29pTsQS/03Dn0TtIT092q18rmU5t5fefrNFubCfEOYVrSNLeavOhiSCnZVriN7/K/QyLp4duD1OhUNX/DJTJZTazNW+uSM26XFQghhB5YBFwHFAK7hBArpZTZbTY7AVwhpawWQlwPLAbGtFl/lZSywlUZFe38d/9/+cOXf6DB3ECEXwRPjnuShLAErWM5jclq4p0977ROCZoYlshNA2/qtvNFN5gbWHl0JXk1eYDqwuospY2l7CzayZc5X5ISleL0Ye5deQYxGsiRUuYBCCGWAJOB1gIhpdzaZvvtgOrX5uYazA08vPphPtz3IQATek/goZSH8PP00ziZ8+TX5PPS1pcoqCtAL/Rc1+86RvYa2W3b13Orcll5bCWNlkY89Z6MjhrdrWfBcwa7tHOw7CBHKo8AMLzncMJ9w53+Pq4sENFAQZvnhfz07OBs9wJftXkugW+EEBJ4W0q5uL0XCSHuB+4H6N279yUFVlxrW8E27sy6k9zqXLz0Xvz+st+7VS8lKSVf5XzFv/b+C4vdQrhPOFOSptDTr3vOV2C1W/ku/zt2FO0AIMI3gtHRo91qiBQtNJgb2F64nSpjFQCxgbH865Z/uWQoeFcWiPb+18t2NxTiKhwFYnybxWlSymIhRASwVghxREq58Wc/0FE4FgOkpKS0+/MVbZltZv6y4S+8sOUF7NJOpH8k88fPd6u5DWqNtby+63V2Fu0EYETkCK7rd1237bJZ2VRJ1tEsTjecbu2llBCWoJqULlF+TT57Tu/BarfipfdiYNhAgryCXDa7oCsLRCEQ2+Z5DFB89kZCiKHAu8D1UsrKM8ullMUtX8uEEFk4mqx+ViCUzm1/6X7uyrqLfaX7EAimJU1j1uBZbtW9c1vhNt7c9Sa1ploEgimJU0jukax1LE1IKdldsptvT3yL1W7Fz8OP1OjUbju2lLOYbCb2lOyhoM7RKBPuE86A0AEun3bWlT99FxAvhOgLFAG3AbPabiCE6A0sB+6UUh5rs9wP0Ekp61u+nwj8jwuzKk5ms9v4+9a/83+++z9Y7BYi/SOZM2aOW+04G8wNLN69mA0nNwAQFxTHzQNv7rYT+9QYa1h1bBX5tfmAuvHNWYrqi/ih+AdMNhMAA0IG0NOvZ4c0zbqsQEgprUKIR4A1OLq5vielPCSEeLBl/VvAM0AY8GbLL3umO2tPIKtlmQH4WEr5tauyKs51sOwgGcsyOFLhuIA2acAk7hl2j1t1Z9xdvJvXd71OVXMVBp2Ba/pe023nipZSsuf0HtadWIfZZsZL78VlvS4jNjD2/C9WzslkM7H39F5O1Z4CINArkPiQ+A79f+TS8xMp5Wpg9VnL3mrz/X3Afe28Lg8Y5spsivM1WZr46/d/5e/b/o7VbsXH4MNTaU8xspf7jMBaZ6rjX3v/xXf53wEQExDDLQm3dNvhMmqNtaw6vooTNScAx+dxWa/Lum13Xmdpe9agEzriguKI8o/q8AMQdSe14hRrctbw0OqHyKvOQyC4YcAN3Dn0Trfpviql5PuT3/P27rdptDQCcHWfq0mNSe2WF17t0s7Wgq1sOrUJm7ThqfdkZORIYoPUWcOlaLY280PxD5Q0lAAQ6BlIfGjHnjW0pQqEcklKG0p5dM2jfHLwE8DRDv/wqIdJDE/UOJnzFNYV8tYPb7G/bD/g6FZ4/YDru+3wEIV1hXyV8xWljaUARPhFkBqdqs4aLoFd2smpyuFg+UGsdisAfYP7anLW0JYqEMqvYrQaeW37a8xbNw8AL70Xtw2+jckJk13es6KjmKwmPj38KZ8d/qy1yeyavtcwrOewbnmtocnSxPoT6/mx9EcAfD18GRE5guiAaI2TdW0VTRXsKdlDjakGgBDvEPqF9MPHoP01O/f4n6x0GCklSw8tZd638zhZexKA5PBk5qTOcZsxhqSUrD+xno8OfkRFk2Okl2E9h3FN32u65U1edmlnb8leNpzcQLO1GZ3QkRCWQFJ4ktscDGjBaDWyv3R/a68vL70X/UL6Eeod2mkOQNS/rnLBtpzawuPfPN56Z2xcUBy/G/47RvQaoXEy5zlUdogP9n3A0cqjAAR4BjAlcQq9g7rfXfpSSo5XHeernK+oN9cDjuakyyIvI9ArUON0XZfFbuFY5bHWqVUFgpjAGGICYtDr9Bqn+ylVIJTz2l28m7nfzmXdiXWA4xT49iG3c03fazrdH/Svdar2FB/u+5CdxY47of08/Li89+UMjxzuNr/jxThVe4r1+esprCsEHM1JyeHJ9A3u22mObrsam91GbnUuhysOt97TEOAZwMDQgZ22C7gqEMo5bSvYxsJNC/ny+Jety24bdBtTEqd02j/oi3Wq9hRZR7L4Lv877NKOh86DsTFjSY1J7ZY3eJU1lvFd/nccrzoOOJo9ksKT6B/Sv1sWSmewSzunak9xsPwgTZYmwFEY4oLiOv1NlapAKD8hpWTdiXUs3LSQDfkbAMdOYtKASaQnpLvNkAm5VbksP7KcTac2tS4b2WskE3pPcKvJii6ElJLCukLW569vHcrBoDMwMHQgCWEJbjUsSkey2W3k1eRxpOIIzdZmAHwNvsQFx3Wq6wy/RBUIBYBGcyPv//g+b+x8o7X93c/Djxvjb+TmgTe7xSTyUkp+LP2R5YeXs690HwA6oWNwj8HdclYzu7RztOIo24u2U1RfBDg+j5jAGIb3HK66rf5KRquR3OpccqpyWpuS9EJP/5D+9PDt0SUKwxmqQHRzu4t3886ed/j4wMetFyIFgjuG3sENA25wixvdGswNrD6+mk2nNrX2vPLUezIicgSjo0cT5NX1i9/FaLI0cbDsIDuLd1JjdHSt9NR70j+kPwNCB3SK7pVdUa2xlmNVxzhZexK7tAOOg6zogGjCfcO75A2VqkB0QyX1JXx04CM+PvAxe0/vbV2eGJbIxP4TmdB7Al4GLw0TXjqb3ca+0n2sP7Ge7UXbMdvMgKP4XRF3BSN7jXSb6ygX4swF0gNlBzhccbh1uZ+HHwPDBtI3uK/qsvorGK1GTtWeIrc6t/UACyDUO5SogCiCvIK61BnD2dRfRDdxrPIYnx/5nM+PfM62wm2tywM8A7iqz1VM7D+xy3fllFJyqPwQu4p3sfHkRiqbW0ePp09QH4b2HEpSeFK3aVOXUlJUX8TBsoMcKj/U2g4Ojsl7egf1pk9wny55ZKslq91KUX0RJ2tOUtpYimyZ5kYv9AR7BxMXFOc298uoAuGmGs2NrDuxjnV561ibt/YnR40eOg+GRQ4jpVcK1/a7tkv31jFZTewv3c/O4p3sKt5FVXNV67oQ7xCG9hzKkIghnb63iLOYbWZO1JwgpyrnJ2eH4BgNNC4ozq12YB2l0dxISUMJ+bX5P/kbEwhCvUPp4deDUO9Qt+vppQqEm6gz1bHl1BY2ntzI9ye/Z1fxrtYxXcDRlDAqahSpMamMiBzRZZtXbHYb+TX5bC7YzMnak+wv3d/afASOM6IBoQNICEugf0j/Ln16fyGklBTXF1NYX0hOVQ6nak9hk7bW9V56LyL9IxkYOpBg72C3/zycxWq3Ut5YTmljKacbTlNnrvvJei+9FzGBMYT7hLv1GakqEF1QVXMVe0v2sve04/H5kc9b+1efoRM6BoQMYFDEIJLCkxgdPbpLtjGbrCZyq3M5VH6I7PJsDlcc/tnv2su/F/Gh8QwMG9hhE6loxWq3UlxfTEFdAQW1BRTWF2K0Gn+yTZhPGL38e9HLv5cqCheo2dJMRXMFFU0VVDZVts73fMaZ5qMQ7xBCfELw0nfta3QXquvtMboJq93KyZqTHKs8xvGq4xyvPM7XuV/TYG7gdMPpdl8T7hPO5XGXMzhiMEnhSV2uB1KTpYm86jzyqvPIrc4lrzqvtddRW8HewfQO7E1UQBQDwwa67bAPJquJssYyx1Fs42myy7Ox2q2tPWTO8DX4EuwdTK+AXsQExHT5DgauJKWk2dpMjbGGGmMNxfXFNFubf3J95gw/Dz98PXyJ9IskwCugW16rUQWigxmtRiqbKqlsruRkzUkazA2UNJRQWFdIUX0RRXVFbCnYct6fkxCWQL+Qfo5HcD96B/XuEjsGKSWVzZUU1RVRVF/U+nuf3V5+hkDg5+lHn6A+DAgdQO+g3m5VEM7ssM78TVQ2V3K86jh2af9JW3dbfh5+RPpH0sO3B2G+Yfh5dK0DgY5gl3aaLE3Um+upN9VT2liKxW6hzlT3kybJtoK9ggn0CiTQKxB/T/8uecbtbN3+EzhScYTbl9+Or4cvPgYffD18Wx/eBm9O1Z4iMTwRndChF3r0Oj35Nfn0C+mH1W79yeNg2UHiguJotDQ6HmbH151FO4kOiKaquardI5Vz8TZ4MzB0IFEBUfQK6EVUQBRR/lFEBUR12othRquRquYqShpKaDA1UNZURlnj/z7O3JB1Lj18exATGEOkXyQ9/XvS069nl27jPVMA6k311JpqqTXWOr6aasmpykGv0/+siaitYO9gx8PL0bwR5B3UpTsVOItd2jFajTRZmmiyNNFoaaTJ0kRpYykCQaOl8WdnWmcYdAb8PPwcD0+/1u9VU9zPdfsCUd1czZ6SPb+4zRfHvrjk9zmzYzToDAR4BhDgFUCAZwBGq5GEsAR6+PUgzCeMcN9wQn1CCfMJ0/yMwGKztP7nqzXVYrQaqTPVUW+qp85UR52pjsMVh/Hz8KPaWH1RBTAmIIZw33DCfMMI83E8gr2DO23ha8tqt9JsaabJ6tg5NVuaabI0UdJQgkFnoMHcQIO5gXpzPY3mxp9cND6bxW752d9EgGcA/p7+BHkHoRed//NwBiklVrsVs82MyWbCZDNhtpmpMdYgEBhtRowWI0Zry8N27qJ6hqfeEx+Dj+Ph4YOX3osAzwA89Z6qGFwglxYIIcQk4DVAD7wrpXz+rPWiZf0NQBPwWynlngt5rbPkVudiEAaEEK1nCHqdHoPOgJQSu7QT5BWEh84Dg96Ah84DD70HtaZaovyjWp976D0w6Aw0WZqI9IvEx8MHb4N36x+nt96bQO9AfA2+6HQ6dEKHQJzzD/XMfxQpJXbsSClb/xNJHLlsdhs26XgYLUaEEFjsFqx2KxabBbPNTJ2pDk+9Z+vPM9vMNJobKW8qJ8AzgGZrc+t/uhpjDUX1RQR7BdNgaTjnqfgv0Qs9/p7+BHgGYLFb6Bvcl2DvYIK8ggjyDiLIK6jDCt+Zf78zZ3itn43dgsVmwWJ3fEb1pnr0Oj1mm7n10WRporKpEh8Pn9bPx2Q10WBpuOgcHjoPLHYLkf6Rre3aZ76eOXPtajssu7S3frZnvtrsNqzS8bXZ2oxA/Oyzr26uxtvD2/H52yyY7WYsNkvrkBQX68zn523wxkvvhZfBC0+9J74G3y5xsNHZuaxACCH0wCLgOqAQ2CWEWCmlzG6z2fVAfMtjDPBPYMwFvtYpssuysUorSLBggXYO9mpNte2+Nq86z9lxOoW2PTgMwoBBb2j9zx7sFfy/hVLngR073npvfDx88NR7otfpEQjqzfX4GnxBOIYgqDHWIGskdea61jbztsWv1lTbutwu7a1FsMZYg6+HLwLRulOySRvVzdX4ePigE7qfFMoGcwMCR7G3Smu7v5+z+Hv4Y9Ab8NR5th4gICHAKwAvvWNHdaY5SKfTgaT1pioAk82E1W6lzlTnWN6y3mJznFWc2VbiODgw2UwYdIbWz+LMOqPViF7o0Qld6+cmpWO5TujQ6/Sty+zYabY4dt4GnaH1Mz2z3C7teOo9sUlb6zqjxYjZbsZL7+X4nO22n/weF+0XTjI99Z6tf1tnPlO7tLce+XvoPVo/7+540bijufIMYjSQI6XMAxBCLAEmA2138pOBD6WUEtguhAgWQvQC+lzAa53ihvgbeG7Lc87+sW7DKq1Yrf+7oy1vLtcwzU81WZvaXS6RLi8OgONswuLyt+k0fu1R/sU4cwZ3tjPzXyv/f3v3H3tVXcdx/PmaJE2zH4g6UuALRpSbgfjN5QL+oZW4kn4tQCuylrNyC51bOFpqW1vaqrm58aPFYqnprFzf9RPHmmQbwRfip4CAsiAI0Ap0GQq+++N8bpzv9dzv93v5cs+5cF+P7e6e877n3Pve+5zv+dxz7vl+PsUmLZlE3D2ERruBVjbBlwJ7c/P7UmwwywxmXQAk3SKpV1Lv4cPNH7ymjp3a9DpmZp2glWcQRRdV65u4RssMZt0sGLEUWArQ3d19Sk1oK1peM7MzXSsbiH3A6Nz8ZcD+QS5z7iDWNTOzFmrlJaa1wARJ4ySdC8wBeuqW6QE+r8wHgCMRcWCQ65qZWQu17AwiIo5Lug34FQvUowAABxRJREFUA9mtqssiYqukW9Pri4Hfkt3iuovsNteb+1u3VbmamdkbKbuB6OzQ3d0dvb29VadhZnbGkLQuIrqLXvONxGZmVsgNhJmZFXIDYWZmhdxAmJlZobPqR2pJh4E3jjAzOCOBF05jOqeL82qO82qO82rO2ZjX2Ii4qOiFs6qBGApJvY1+ya+S82qO82qO82pOp+XlS0xmZlbIDYSZmRVyA3HS0qoTaMB5Ncd5Ncd5Naej8vJvEGZmVshnEGZmVsgNhJmZFer4BkLSdZJ2SNolaUGFeYyW9EdJ2yRtlfT1FL9H0t8lbUiP6yvIbY+kzenze1NshKQnJe1Mz+8oOaeJuZpskHRU0vyq6iVpmaRDkrbkYg1rJOmutM/tkPSRkvP6nqTtkjZJekLS21O8S9IrudotLjmvhtuu4no9lstpj6QNKV5Kvfo5NrR+/4qIjn2QdSW+GxhPNkjRRuCKinIZBUxJ0xcAzwJXAPcAd1Zcpz3AyLrY/cCCNL0AuK/i7fgPYGxV9QKmA1OALQPVKG3XjcBwYFzaB88pMa8PA8PS9H25vLryy1VQr8JtV3W96l7/PvCtMuvVz7Gh5ftXp59BXAPsiojnIuJV4FFgVhWJRMSBiFifpl8CttFgHO42MQtYnqaXAx+vMJcZwO6IONX/oh+yiFgF/LMu3KhGs4BHI+JYRDxPNh7KNWXlFRErIuJ4ml1NNmJjqRrUq5FK61UjScBngJ+14rP7yanRsaHl+1enNxCXAntz8/tog4OypC7gKuAvKXRbuhywrOxLOUkAKyStk3RLil0S2eh/pOeLK8irZg59/2irrldNoxq10373ReB3uflxkv4q6SlJ0yrIp2jbtUu9pgEHI2JnLlZqveqODS3fvzq9gVBBrNL7fiW9BfgFMD8ijgKLgMuBycABslPcsn0wIqYAM4GvSZpeQQ6FlA1JewPweAq1Q70G0hb7naSFwHHg4RQ6AIyJiKuAO4BHJL21xJQabbu2qBcwl75fREqtV8GxoeGiBbFTqlenNxD7gNG5+cuA/RXlgqQ3ke0AD0fELwEi4mBEnIiI14Ef0aJT6/5ExP70fAh4IuVwUNKolPco4FDZeSUzgfURcTDlWHm9chrVqPL9TtI84KPATZEuXKdLEi+m6XVk167fXVZO/Wy7dqjXMOCTwGO1WJn1Kjo2UML+1ekNxFpggqRx6ZvoHKCnikTS9c0fA9si4ge5+KjcYp8AttSv2+K8zpd0QW2a7AfOLWR1mpcWmwf8qsy8cvp8q6u6XnUa1agHmCNpuKRxwARgTVlJSboO+AZwQ0T8Jxe/SNI5aXp8yuu5EvNqtO0qrVfyIWB7ROyrBcqqV6NjA2XsX63+Bb7dH8D1ZHcF7AYWVpjHVLLTwE3AhvS4HvgpsDnFe4BRJec1nuyOiI3A1lqNgAuBlcDO9DyigpqdB7wIvC0Xq6ReZI3UAeA1sm9wX+qvRsDCtM/tAGaWnNcusmvUtf1scVr2U2kbbwTWAx8rOa+G267KeqX4T4Bb65YtpV79HBtavn+5qw0zMyvU6ZeYzMysATcQZmZWyA2EmZkVcgNhZmaF3ECYmVkhNxDWUVIPnC3534jU0+fIwcaH+Fldkm7MzX9B0oOn8zPM3ECYnZm6gBsHWshsKNxAWCcaJml56hTu55LOA5A0I3W8tjl1Fjc8xfdIulfS+vTae1L8Qkkr0jpLKO4Dpw9Jn5W0Jo0fsCT3n7gvS/qOpI2SVku6JMUvT/NrJX1b0svprb4LTEvvc3uKvVPS79P4APef3pJZJ3IDYZ1oIrA0It4HHAW+KunNZP8tOzsirgSGAV/JrfNCZB0WLgLuTLG7gacj66ytBxjT34dKei8wm6zzw8nACeCm9PL5wOqImASsAr6c4g8AD0TE++nbn84C4E8RMTkifphik9P7XwnMlpTvj8esaW4grBPtjYg/p+mHyLoymAg8HxHPpvhyssFjamodpK0ju7xDev0hgIj4DfCvAT53BnA1sFbZqGQzyLoyAXgV+HXBZ1zLyZ5qHxng/VdGxJGI+C/wDNkASmanbFjVCZhVoL5/mWDgy0PH0vMJ+v7dNNNXjYDlEXFXwWuvxcl+b+o/Y7CO5aZP9T3M/s9nENaJxki6Nk3PBZ4GtgNdkt6V4p8DnhrgfVaRLhFJmgkMNDjRSuDTki5O64yQNNC3/NVkncJB1ttwzUtkw0+atYwbCOtE24B5kjYBI4BF6bLMzcDjkjYDrwMDDUJ/LzBd0nqybtD/1t/CEfEM8E2y0fk2AU+SjTfcn/nAHZLWpGWPpPgm4Hj6Ufv2hmubDYF7czVrY+kOq1ciIiTNAeZGRCXjplvn8TVKs/Z2NfBgGjTm32RjSJuVwmcQZmZWyL9BmJlZITcQZmZWyA2EmZkVcgNhZmaF3ECYmVmh/wFD0ee/bS1+/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = plt.axes()\n", + "for t in np.linspace(0.,.99,5):\n", + " pm.plot_s(ax,t)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEGCAYAAABy53LJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAbzElEQVR4nO3de9RdZX3g8e/PMODSURETnBiICRIvVBQwA2qLOlLbJKjptF6AVgO6mkGJy8tChaH10jW2VGkdumQSo2ZAq6JWO6aSFlm01rGdlITIVUAjUglkIF6IdhAw+Js/9o7vycu57fOefa7fz1pnnXOevZ9zfme/J+eX59nPfp7ITCRJ6tajhh2AJGm8mDgkSZWYOCRJlZg4JEmVmDgkSZUcNOwABmH+/Pm5ZMmSYYchSWPl2muv/UFmLphdPhWJY8mSJWzfvn3YYUjSWImIf21WbleVJKkSE4ckqRIThySpEhOHJKkSE4ckqRIThySpEhOHJKmSqbiOQ9IU+dqpcPeWYUcxWs7o7/IZJg5pnPijqBFgV5U0TkwaGgG2ODR5/F+5VCtbHJo8Jg2pVrY4NL46tSxWjOnEln+3vP32Q58Lzzp3MLEM2y0XwX3Xt95+7B8NLpZxdewf9v0lTRwaX+2SxoJfHVwcdXnBp4YdwfC1SxqPWza4OHQAE4fG37i2LNQ9WxYjxXMckqRKTBySpEpMHJKkSjzHodE3qddlXPtW2PNPw45iNHQaPaWRYotDo29SR0+1SxqHPndwcYwCR0+NFVscGh+TOnrKYbczHD01FmxxSJIqMXFIkiqpNXFExIqIuC0idkbEeU22R0T8Rbn9hog4oWHbpoi4NyJumlXnsIi4KiK+U94/sc7PIEk6UG2JIyLmAZcAK4FjgNMj4phZu60ElpW3tcD6hm2XAiuavPR5wNWZuQy4unwuSRqQOlscJwI7M/P2zHwIuBxYPWuf1cAns7AVODQiFgJk5teBHzV53dXAZeXjy4DfqiV6SVJTdY6qWgTc2fB8F3BSF/ssAna3ed0nZ+ZugMzcHRGHN9spItZStGJYvHhxtcg1eJN6rYY0gepMHNGkbPbCt93s05PM3AhsBFi+fHl/F9xV/3VKGuN8vYYX+mnC1Jk4dgFHNjw/Ari7h31muyciFpatjYXAvXOOVKNjEq/V8EK/GV4hPhHqTBzbgGURsRS4CzgNOGPWPpuBdRFxOUU31t793VBtbAbWABeW91/ua9RSXbzQzyvEJ0RtiSMz90XEOuBKYB6wKTNvjoizy+0bgC3AKmAncD9w1v76EfFZ4CXA/IjYBbw3Mz9BkTA+HxFvBL4PvLquzyCpJl4h3j93fAp++p3W2298D5zR3976WqccycwtFMmhsWxDw+MEzmlR9/QW5T8ETuljmJI0vtoljZo4V5UkTYKjz25efuL65uVz4JQjkqRKTBySpEpMHJKkSkwckqRKPDmuwXJqEWnsmTg0WJO6DCw4tYimholDw+HUItLYMnFI/ebUIs5JNeE8OS6p/5yTaqLZ4pBUH+ek6p9Oc1INkC0OSRoH7ZLGYwa7WJ0tDkkaJ63mpBogWxySpEpMHJKkSkwckqRKTBySpEpMHJKkShxVpXo4maE0sWxxqB6TPJmhNOVscahekziZoTTlTBxSVU6friln4pCqcvr0Gc6CO5VMHFKvnD7dWXCnlIlD0tw5C+5UMXFI0igZoenTW3E4riSNkhGaPr2VWlscEbECuBiYB3w8My+ctT3K7auA+4EzM3NHu7oRcRywAXg0sA94c2ZeU+fnkKSBG4Hp01uprcUREfOAS4CVwDHA6RFxzKzdVgLLyttaYH0XdT8IvD8zjwPeUz6XJA1InV1VJwI7M/P2zHwIuBxYPWuf1cAns7AVODQiFnaom8Djy8dPAO6u8TNIkmaps6tqEXBnw/NdwEld7LOoQ923AVdGxEUUie+Fzd48ItZStGJYvHg0+gUlaRLU2eKIJmXZ5T7t6r4JeHtmHgm8HfhEszfPzI2ZuTwzly9YsKDLkCVJndSZOHYBRzY8P4JHdiu12qdd3TXAl8rHX6Do1pIkDUidiWMbsCwilkbEwcBpwOZZ+2wGXh+F5wN7M3N3h7p3Ay8uH78UGO0Bz5I0YWo7x5GZ+yJiHXAlxZDaTZl5c0ScXW7fAGyhGIq7k2I47lnt6pYv/fvAxRFxEPAA5XkMDYnrbkhTp9brODJzC0VyaCzb0PA4gXO6rVuWfwN4Xn8jVc9cd0OaOk45ov5w3Q1papg4pFZcd0NqyrmqpFZcd0NqyhaH1Inrbrhgkw5gi0NSZy7YpAa2OCR1zwWbhIlDkoZjDBZsasWuKkkahjFYsKkVWxySNEwjvGBTK7Y4JEmVmDgkSZWYOCRJlZg4JEmVmDgkSZWYOCRJlZg4JEmVeB2HuuNKf5JKtjjUHVf6k1SyxaFqXOlPmnq2OCRJldjikFwiVqrEFofkErFSJbY4pP1cItYlYtUVWxySZrhErLpgi0PSI7lErNowcUhSncZ4idhW7KqSpDqN8RKxrdTa4oiIFcDFwDzg45l54aztUW5fBdwPnJmZOzrVjYi3AOuAfcAVmfmuOj+HJM3ZGC4R20pXiSMing68E3hqY53MfGmbOvOAS4CXAbuAbRGxOTO/1bDbSmBZeTsJWA+c1K5uRPwnYDXwnMx8MCIO7/rTSpLmrNsWxxeADcDHgIe7rHMisDMzbweIiMspfvAbE8dq4JOZmcDWiDg0IhYCS9rUfRNwYWY+CJCZ93YZjySpD7pNHPsyc33F114E3NnwfBdFq6LTPos61H06cHJEfAB4ADg3M7fNfvOIWAusBVi8eDz7ESVpFHV7cvxvIuLNEbEwIg7bf+tQJ5qUZZf7tKt7EPBE4PkU3WefL8+VHLhz5sbMXJ6ZyxcsWNAhVElSt7ptcawp79/ZUJbAUW3q7AKObHh+BHB3l/sc3KbuLuBLZffWNRHxC2A+sKfzx5AkzVVXLY7MXNrk1i5pAGwDlkXE0og4GDgN2Dxrn83A66PwfGBvZu7uUPd/AS+FX560Pxj4QTefQ5I0d21bHBHx0sz8+4j47WbbM/NLrepm5r6IWAdcSTGkdlNm3hwRZ5fbNwBbKIbi7qQYjntWu7rlS28CNkXETcBDwJqy9SFJGoBOXVUvBv4eeEWTbQm0TBwAmbmFIjk0lm1oeJzAOd3WLcsfAn6vQ9zqlUvESuqgbeLIzPeW92cNJhwNnUvESuqg6yvHI+JU4FeAR+8vy0xnQptULhErqYWuTo5HxAbgtcBbKIbKvpriKnJJ0pTp9jqOF2bm64EfZ+b7gRdw4HBZSdKU6Lar6oHy/v6IeArwQ2BpPSFJNXFtcakvuk0cfxMRhwIfAnZQjKj6WG1RSXVwbXGpLzomjoh4FHB1Zt4HfDEivgI8OjP31h6dVAfXFndtcc1Jx3McmfkL4M8anj9o0pDGnGuLaw667ar6akT8DjNzREmaBK4t3j8TuERsK90mjncAjwX2RcQDFENyMzMfX1tkkjROJnCJ2Fa6ShyZ+bi6A5GkiTBBS8S20u0FgFd3UyZJmnydZsd9NPAYYH5EPJGZBZYeDzyl5tgkSSOoU1fVfwHeRpEkrqU8twH8FPhIvaFJkkZR266qzLw4M5cCHwCOKx//T+B24P8MID5J0ojpdq6qV2XmTyLi14CXAZcC62uLSpI0srpNHA+X96cCGzLzyxRLtkqSpky3ieOuiPgo8BpgS0QcUqGuJGmCdHsB4GuAFcBFmXlfRCwE3llfWKqdS8RK6lG3FwDeT8P64pm5G9hdV1AaAJeIldSjrpeO1YSaxCViXXdDqpXnKTR5XHdDqpUtDk0u191w3Q3VwhaHNMlcd0M1sMUhTQPX3eifKVp3oxVbHJJUxRStu9GKLQ5J6sUUrLvRSq0tjohYERG3RcTOiDivyfaIiL8ot98QESdUqHtuRGREzK/zM0iSDlRb4oiIecAlwErgGOD0iDhm1m4rgWXlbS3lxImd6kbEkRSTLX6/rvglSc3V2eI4EdiZmbdn5kPA5cDqWfusBj6Zha3AoeV0Jp3qfhh4F8XaIJKkAaozcSwC7mx4vqss62aflnUj4pXAXZnZdnB6RKyNiO0RsX3Pnj29fQJJ0iPUmTiiSdnsFkKrfZqWR8RjgAuA93R688zcmJnLM3P5ggULOgYrSepOnYljF3Bkw/MjgLu73KdV+dOApcD1EXFHWb4jIv5DXyOXJLVU53DcbcCyiFgK3AWcBpwxa5/NwLqIuBw4CdibmbsjYk+zupl5M3D4/spl8liemT+o8XOMN6dPl9RntSWOzNwXEeuAK4F5wKbMvDkizi63bwC2AKuAncD9wFnt6tYV60Sb5OnTnQVXGopaLwDMzC0UyaGxbEPD4wTO6bZuk32WzD3KKTGJ06c7C+4MJzPUAHnluMafs+A6maEGysQhTRInM+wfJzNsyUkOJakZJzNsyRaHJLUzxZMZtmKLQ5JUiYlDklSJiUOSVImJQ5JUiYlDklSJo6omxSTPSeXUItJIMXFMikmek8qpRWY4tYhGgIlj0kzinFT7ObWIU4toJJg4pHHk1CL949QilXlyXNJ0c2qRymxxSBI4tUgFtjgkSZWYOCRJlZg4JEmVeI5Do8GL/GZ4rYZGnC0OjYZOSWOaLvTrlDS8XkNDZotj3Ezy1CLgRX6NvFajv7xeo29scYybSZ5aRKqT12v0jS2OcTXJU4tIdfJ6jTmzxSFJqsTEIUmqxK4qDZbDbmc47FZjyhaHBsu1NWY4RbrGVK0tjohYAVwMzAM+npkXztoe5fZVwP3AmZm5o13diPgQ8ArgIeC7wFmZeV+dn0M1cNjtDIfd9pfDbmtXW4sjIuYBlwArgWOA0yPimFm7rQSWlbe1wPou6l4FPDsznwN8Gzi/rs8gaQw57LZ2dbY4TgR2ZubtABFxObAa+FbDPquBT2ZmAlsj4tCIWAgsaVU3M7/aUH8r8KoaP8PwTPqFflLdHHZbmzrPcSwC7mx4vqss62afbuoCvAH422ZvHhFrI2J7RGzfs2dPxdBHgBf6SRpRdbY4oklZdrlPx7oRcQGwD/h0szfPzI3ARoDly5fPft/xMa4X+jl6aoajpzRh6kwcu4AjG54fAdzd5T4Ht6sbEWuAlwOnlN1cGjWOnprh6Kn+8wT4UNWZOLYByyJiKXAXcBpwxqx9NgPrynMYJwF7M3N3ROxpVbccbfVu4MWZeX+N8asfHD01w9FT/dMpaXgSvFa1JY7M3BcR64ArKYbUbsrMmyPi7HL7BmALxVDcnRTDcc9qV7d86Y8AhwBXFaN52ZqZngWTppEnwIei1us4MnMLRXJoLNvQ8DiBc7qtW5Yf3ecwNReey5jhuQxNCaccGbZxH3bruYwZnsvoP89ljCQTx7BNyrBbz2XM8FxG/3gx30gycYyKcR12O43skho8z2WMFBOHuuO5jBl2SWnKmTjUHc9lPJJdUv3juYyxYuJQNdN0LsMuqcHxXMZYMXHoQHZJzbBLqv86tSw8lzEWTByDME5Dbu2SeiS7pPrHlsVEMHEMQqekMYrDbu2SUp1sWYw1E8cgjdKQ22nskuolQdgl1RtPdk80E8e0msYuqU7nLJa8bnCxTDq7pCaaiWPSdWpZTGKXVKeWhecs+seT3VPJxDHpJrllYdfT4PTS9WTLYmKZOPppmKOnJrll0WuCsOupul4TxFNW1ROPRpKJo5+GOWHhuLcseh3ZZILojQlCc2DiqEOdo6fGpWXR7yGuJoj2+jmKyQShDkwcbRQLDHYvP13We9Lz+vL+q162lysu33lg4bBaFoO41sHkUBjUUFYThHpk4hhhW656QpMklH157a+ceyqnHl/v+ZgrvrmKl190Ra3vUadBHKO+MhFoQEwcU6pfP+jtflxPPX4L+emKzTYB459021n1whu54sP/Y9hhaA5MHG1kwpve9MjyN//KqRx7WOv/if7xudce8PyyLx7Nbd97Qr/Dm5Ox+9/0kEzyD/iwbPnnY4mT1tf6Hianepk4etAuaezc+8jRU19556kc/YT+TO9x6oe+wpbrTq1UZ9VxV3DFO1/el/dvZs8DR3HdD1/d1b5/sOlMrrn1mbXFst8Ln30rf77u0jm/zvyjYeuG8+YeUBPv+MiZ/PNN9R+Ll5xwC5v+6ydqf59uvOGP38jXdjyr9vepmpxMNNVEZn/6zEfZ8uXLc/v23kY6NWtxrD+56H75k29295rnH7+8p/euopeE8uvH/gPvet2VNUXUP/1MNv1KKMPSz2QzSgmlnwaRnMYq0ZzYe+suIq7NzEf8gJk4OqiSOF591Fv71rJo5869z+Dq28/qat8Pf/FV3PC9p1V6/ROfeSv/7Q2X9hDZaOgl0Yx7Qmmll0QzqQmllX4mmpFMKCaO3gwqcfS7ZVElQVRlQnmkurqkRpEJpXe9JJqhJhQTR29GPXHUmSCqmsaE8hvvurDltkltibTSKaHc/lfnDjCa8TKyCcXE0Zu6EkcVP/v5Y/ncTX/YUwyjYJITil1bnT3/7NbJ1ZZIe50SSv5Lkx+ZfjJx9KbnxPGZ3q5BuPSbrf+RTRoTyoEmNaHYtdV/R73qopbb+toSGbfEERErgIuBecDHM/PCWduj3L4KuB84MzN3tKsbEYcBnwOWAHcAr8nMH7eLY5CJY5S6nYbJhHIgE8oME0phYF1b45Q4ImIe8G3gZcAuYBtwemZ+q2GfVcBbKBLHScDFmXlSu7oR8UHgR5l5YUScBzwxM9/dLpa6Esc0tSz6pZeE0s4oJRuHDc9w2HDv+p5QxixxvAB4X2b+Zvn8fIDM/JOGfT4KfC0zP1s+vw14CUVromnd/ftk5u6IWFjWf0a7WHpNHMcvCb63p/m2fQ/D/3uw8kuqpWcDTxp2ENIEOo7M/95TzVaJo84rxxcBdzY830XRqui0z6IOdZ+cmbsByuRxeLM3j4i1wFqAxYt7W4nsxjvh4V/0VFWV3dRDHZONNAx1Jo5m/Tyzmzet9ummbluZuRHYCEWLo0rd/fY9PPkDBySpqkfV+Nq7gCMbnh8B3N3lPu3q3lN2UVHe39vHmCVJHdSZOLYByyJiaUQcDJwGbJ61z2bg9VF4PrC37IZqV3czsKZ8vAb4co2fQZI0S21dVZm5LyLWAVdSDKndlJk3R8TZ5fYNwBaKEVU7KYbjntWubvnSFwKfj4g3At8HupuWVZLUF14AKElqqtWoqjq7qiRJE8jEIUmqxMQhSarExCFJqmQqTo5HxB7gX3usPh/4QR/D6Rfjqsa4qjGuakY1LphbbE/NzAWzC6ciccxFRGxvNqpg2IyrGuOqxriqGdW4oJ7Y7KqSJFVi4pAkVWLi6GzjsANowbiqMa5qjKuaUY0LaojNcxySpEpscUiSKjFxSJIqMXG0ERErIuK2iNhZrm8+rDiOjIh/iIhbIuLmiHhrWf6+iLgrIq4rb6uGENsdEXFj+f7by7LDIuKqiPhOef/EAcf0jIZjcl1E/CQi3jaM4xURmyLi3oi4qaGs5fGJiPPL79ttEfGbA47rQxFxa0TcEBF/HRGHluVLIuJnDcdtw4Djavl3G/Lx+lxDTHdExHVl+SCPV6vfhnq/Y5nprcmNYjr37wJHAQcD1wPHDCmWhcAJ5ePHAd8GjgHeB5w75ON0BzB/VtkHgfPKx+cBfzrkv+P/BZ46jOMFvAg4Abip0/Ep/6bXA4cAS8vv37wBxvUbwEHl4z9tiGtJ435DOF5N/27DPl6ztv8Z8J4hHK9Wvw21fsdscbR2IrAzM2/PzIeAy4HVwwgkM3dn5o7y8U+BWyjWZR9Vq4HLyseXAb81xFhOAb6bmb3OHDAnmfl14Eezilsdn9XA5Zn5YGZ+j2KdmhMHFVdmfjUz95VPt1KsvDlQLY5XK0M9XvtFRACvAT5bx3u30+a3odbvmImjtUXAnQ3PdzECP9YRsQQ4HviXsmhd2bWwadBdQqUEvhoR10bE2rLsyVms5Eh5f/gQ4trvNA78Bz3s4wWtj88ofefeAPxtw/OlEfHNiPjHiDh5CPE0+7uNyvE6GbgnM7/TUDbw4zXrt6HW75iJo7VoUjbUscsR8e+BLwJvy8yfAOuBpwHHAbspmsuD9quZeQKwEjgnIl40hBiaimLZ4VcCXyiLRuF4tTMS37mIuADYB3y6LNoNLM7M44F3AJ+JiMcPMKRWf7eROF7A6Rz4n5OBH68mvw0td21SVvmYmTha2wUc2fD8CODuIcVCRPw7ii/GpzPzSwCZeU9mPpyZvwA+Rk3N9HYy8+7y/l7gr8sY7omIhWXcC4F7Bx1XaSWwIzPvKWMc+vEqtTo+Q//ORcQa4OXA72bZKV52a/ywfHwtRb/40wcVU5u/2ygcr4OA3wY+t79s0Mer2W8DNX/HTBytbQOWRcTS8n+upwGbhxFI2Yf6CeCWzPzzhvKFDbv9Z+Cm2XVrjuuxEfG4/Y8pTq7eRHGc1pS7rQG+PMi4GhzwP8FhH68GrY7PZuC0iDgkIpYCy4BrBhVURKwA3g28MjPvbyhfEBHzysdHlXHdPsC4Wv3dhnq8Sr8O3JqZu/YXDPJ4tfptoO7v2CDO/I/rDVhFMUrhu8AFQ4zj1yiakzcA15W3VcCngBvL8s3AwgHHdRTFCI3rgZv3HyPgScDVwHfK+8OGcMweA/wQeEJD2cCPF0Xi2g38nOJ/e29sd3yAC8rv223AygHHtZOi/3v/d2xDue/vlH/f64EdwCsGHFfLv9swj1dZfilw9qx9B3m8Wv021Podc8oRSVIldlVJkioxcUiSKjFxSJIqMXFIkioxcUiSKjFxSPxyRtNarusoZ06d3235HN9rSUSc0fD8zIj4SD/fQzJxSJNlCXBGp52kuTBxSDMOiojLysn0/ioiHgMQEaeUE9bdWE6yd0hZfkdEvD8idpTbnlmWPykivlrW+SjN5wc6QET8XkRcU67f8NGGK4//LSI+EBHXR8TWiHhyWf608vm2iPijiPi38qUuBE4uX+ftZdlTIuLvyrUZPtjfQ6ZpZOKQZjwD2JiZzwF+Arw5Ih5NcXXwazPzWOAg4E0NdX6QxSSP64Fzy7L3At/IYpK7zcDidm8aEc8CXksxYeRxwMPA75abHwtszcznAl8Hfr8svxi4ODP/IwfONXQe8L8z87jM/HBZdlz5+scCr42IxrmKpMpMHNKMOzPzn8rHf0kxncMzgO9l5rfL8ssoFvXZb/+kctdSdBNRbv9LgMy8Avhxh/c9BXgesC2KVeROoZjOBeAh4CtN3uMFzMz6+5kOr391Zu7NzAeAb1EsaiX17KBhByCNkNnz7ySdu5keLO8f5sB/T1Xm8gngssw8v8m2n+fMvECz36NbDzY87vU1pF+yxSHNWBwRLygfnw58A7gVWBIRR5flrwP+scPrfJ2yqykiVgKdFoy6GnhVRBxe1jksIjq1CrZSTKYHxczN+/2UYglRqTYmDmnGLcCaiLgBOAxYX3bvnAV8ISJuBH4BbOjwOu8HXhQROyimmv9+u50z81vAH1CspHgDcBXFWtLtvA14R0RcU+67tyy/AdhXnkx/e8va0hw4O640hsoRXz/LzIyI04DTM3P1sOPSdLCvUxpPzwM+Ui7kcx/FGuHSQNjikCRV4jkOSVIlJg5JUiUmDklSJSYOSVIlJg5JUiX/H2MgGbD7jSB3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = plt.axes()\n", + "for t in np.linspace(0.,.99,5):\n", + " pm.plot_eps_p(ax,t)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEGCAYAAACUzrmNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdX0lEQVR4nO3de7SddX3n8fcHUBCEIhCYQIgJNDDlMgY4gzBUioPKzQLaFoOOILKMMDCK1o5ErVK7spYXLgOiwVgYwHIvULI0cpFVQVsiJBBIuJVAohyTJpGLSQdNSfjOH8/veHZO9t7PPufs53n25fNa66w8+/dc9pfnbPb3/C7P76eIwMzMrJmtqg7AzMw6n5OFmZnlcrIwM7NcThZmZpbLycLMzHJtU3UARdltt91iypQpVYdhZtZVFi1a9OuImDCyvGeTxZQpU1i4cGHVYZiZdRVJv6hX7mYoMzPL5WRhZma5nCzMzCyXk4WZmeVysjAzs1xOFmZmlsvJwszMcvXscxZm1id+chKsnF91FJ3lw+1fesLJwqyT+YvQOoSbocw6mROFdQjXLKz7+a9vs8K5ZmHdz4nCrHCuWVj3yKtBHN/FE0fePdB4387vgD/6XHmxVO3pi+HVxxvvP/ir5cXSjQ7+60Iu62Rh3aNZophwVHlxFOnI71cdQfWaJYodp5UXh23GycK6TzfXIKx1rkF0FPdZmJlZLicLMzPLVViykHSNpDWSltaU3SJpcfpZIWlxKp8i6bc1+66qOecwSUskLZN0hSQVFbOZmdVXZJ/FtcCVwPVDBRHxoaFtSZcAv6k5/vmImF7nOnOAmcACYD5wPPCjAuK1TtHLz00s+jSs/eeqo+gMeaOerKMUVrOIiAeBl+vtS7WD04Cbml1D0kRgp4h4KCKCLPGc2u5YrcP08qinZoli53eUF0cn8KinrlLVaKh3Aasj4rmasqmSHgPWAV+KiJ8CewGDNccMpjLrB7086slDZId51FNXqCpZnM7mtYpVwOSIeEnSYcA/SjoQqNc/0XA6RUkzyZqsmDx5chvDNTPrb6WPhpK0DfBB4JahsojYEBEvpe1FwPPAfmQ1iUk1p08CVja6dkTMjYiBiBiYMGFCEeGbmfWlKobOvgd4JiJ+37wkaYKkrdP2PsA04IWIWAWsl3RE6uc4A7irgpjNzPpakUNnbwIeAvaXNCjp7LRrBlt2bB8NPCHpceAfgHMiYqhz/Fzg74BlZDUOj4QyMytZYX0WEXF6g/KP1Sm7Hbi9wfELgYPaGpyZmY2K54ay6vTy8xRmPcbJwqrTy89T+OE76zFOFla9Xnyewg/fDfOT2j3BycKsSH74zk9q9wgnCzMrh5/Ubp8V34f1z9Xft+TL8OGGzy6PmacoNzPrNo0SRYFcszAz61Z/eM6WZYfPKeStXLMwM7NcThZmZpbLycLMzHI5WZiZWS53cFvxPK2HWddzsrDieVoPs67nZGHl8bQeZl3LycKsHTyth+eA6nHu4Daz9vAcUD3NNQszay/PAdU+zeaAKplrFmZmnapZoth+cnlxUGDNQtI1wPuBNRFxUCq7CPgEsDYd9oWImJ/2zQLOBjYBn4qIe1L5YcC1wFuA+cCnI6L9UyqamXWqenNAlazImsW1wPF1yi+LiOnpZyhRHADMAA5M53xH0tbp+DnATGBa+ql3TTMzK1BhySIiHgRebvHwU4CbI2JDRCwHlgGHS5oI7BQRD6XaxPXAqcVEbGZmjVTRZ3G+pCckXSPpbalsL+DFmmMGU9leaXtkeV2SZkpaKGnh2rVrGx1mZmajVHaymAPsC0wHVgGXpHLVOTaalNcVEXMjYiAiBiZMmDDeWM3MLCk1WUTE6ojYFBFvAN8DDk+7BoG9aw6dBKxM5ZPqlJuZWYlKfc5C0sSIWJVefgBYmrbnATdKuhTYk6wj++GI2CRpvaQjgJ8DZwDfKjNmGwVPGGjWs4ocOnsTcAywm6RB4CvAMZKmkzUlrQA+CRART0q6FXgK2AicFxGb0qXOZXjo7I/Sj3WiXp4w0KzPFZYsIuL0OsVXNzl+NjC7TvlC4KA2hmZF68UJA836nKf7MGuFpyK3PudkYdYKT0U+zLPL9iUnC7PR8FTknl22TzlZmNnYeHbZvuJkYWZWtQ6airwRT1FuZla1DpqKvBHXLMzMOkUHTEXeiGsWZmaWy8nCzMxyOVmYmVkuJwszM8vlZGFmZrmcLMzMLJeHztroed0Ks77jmoWNntetMOs7rlnY2HndCrO+4WRhVsvrVpjVVVgzlKRrJK2RtLSm7JuSnpH0hKQ7Je2cyqdI+q2kxennqppzDpO0RNIySVdIUlExm3ndCrP6iqxZXAtcCVxfU3YfMCsiNkr6OjAL+Hza93xETK9znTnATGABMB84Hq/DbUXzuhVe5Mg2U1jNIiIeBF4eUXZvRGxMLxcAk5pdQ9JEYKeIeCgigizxnFpEvGY2ghc5shpV9ll8HLil5vVUSY8B64AvRcRPgb2AwZpjBlOZmZXFixwZFSULSV8ENgI3pKJVwOSIeEnSYcA/SjoQqNc/EU2uO5OsyYrJkztjDngzs9/rgkWOGin9OQtJZwLvBz6SmpaIiA0R8VLaXgQ8D+xHVpOobaqaBKxsdO2ImBsRAxExMGHChKL+E8zMxqYLFjlqpNSahaTjyTq0/yQiXqspnwC8HBGbJO0DTANeiIiXJa2XdATwc+AM4Ftlxmxm1nYdvMhRI4UlC0k3AccAu0kaBL5CNvppW+C+NAJ2QUScAxwNfFXSRmATcE5EDHWOn0s2suotZKOgPBLKzKxkTZOFpF1auMYbEfHqyMKIOL3OsVfXu0BE3A7c3mDfQuCgFuIwM7OC5NUsVqafZg/CbQ10dmObmZmNS16yeDoiDml2QBruamZmPSxvNNSRLVyjlWPMzKyLNa1ZRMTval9L2h3Yrmb/L0ceY2Zmvael5ywknSzpOWA58ACwAo9KMjPrG60Onf1b4AjgxxFxiKR3A/VGO1kv8Yp4Zpa0+gT36+kJ660kbRUR/wTUmyHWeolXxDOzpNWaxauS3go8CNwgaQ3Z3E7WD7winlnfa7VmcTLwGvAZ4G6yuZv+tKigzMyss+Q9wf1OYC6wL7AEODsirisjMLNCeflUs1HJq1l8G/gcsCtwKXBZ4RGZlcHLp5qNSl6fxVYRcV/avk3SrKIDMiuVl0/18qnWkrxksbOkDzZ6HRF3FBOWmZXGy6daC/KSxQNs3pFd+zoAJwuzXuHlU62JvOk+ziorEDOzntHFy6c2kjca6rPN9kfEpe0Nx8ysB3Tx8qmN5DVDXQwsJpsHagPN17UwM7NaXbh8aiN5yeJQYAZwErAIuAm4PyKi6MDMzKxzNH3OIiIWR8SFETGdbEnUU4CnJJ2cd2FJ10haI2lpTdkuku6T9Fz69201+2ZJWibpWUnH1ZQfJmlJ2neF0uLdZmZWnlanKJ8AHAIcDAwCa1o47Vrg+BFlF5LVTKYB96fXSDqArAZzYDrnO5K2TufMAWYC09LPyGuamVnBmiYLSWdJuhu4jay/4rSIeG9ELMi7cEQ8CLw8ovgUYGi6kOuAU2vKb46IDRGxHFgGHC5pIrBTRDyUmr6urznHzMxKktdncTXZnFC/BI4D3lfbChQRuc1RI+wREavSuavSynsAewG1CWgwlb2etkeW1yVpJlkthMmTu3PEgZlZJ8pLFu8uJYr6o6yiSXldETGXbOJDBgYG3AlvZtYmeQ/lPdDm91staWKqVUxkuO9jENi75rhJwMpUPqlOuZmZlSivz2Ju3gVaOabGPODMtH0mcFdN+QxJ20qaStaR/XBqslov6Yg0CuqMmnOsXX5yEtyoLX/MzJK8ZqhTJf2uyX7RoKlK0k3AMcBukgaBrwBfA26VdDZZP8hfAETEk5JuBZ4iW4HvvIjYlC51LtnIqreQPRz4o/z/LBsVL59qZjnyksVftXCNn9YrjIjTGxx/bIPjZwOz65QvBA5qIQ4bLy+famYN5PVZeFU8MzNreQ1uMzPrY3nNUGbdzWttm7XFqGsWkraStFMRwZi1ndfaNmuLlmoWkm4EzgE2kc0++weSLo2IbxYZnFnbeK1tr7Vt49JqzeKAiFhHNi/TfGAy8NHCojKz9vNa2zYOrfZZvEnSm8iSxZUR8bokT6dh1o281nb79ODyqY20WrP4LrAC2AF4UNLbgXVFBWVm1hV6cPnURlqqWUTEFcAVNUW/kFTWJINmZp2th5ZPbaTVxY8+LWknZa6W9Cjw3wuOzczMOkSrzVAfTx3c7wMmAGeRzfNkZmZ9oNVkMTQF6YnA/42Ix6m/1oSZmfWgVpPFIkn3kiWLeyTtCLxRXFhmZtZJWh06ezYwHXghIl6TtCtZU5SZmfWBVmsWARwAfCq93gHYrpCIzMys47SaLL4DHAkMrVGxHvh2IRGZmVnHabUZ6p0RcaikxwAi4hVJby4wLivCT05qviqemVkDrdYsXpe0NVlzFJImMMYObkn7S1pc87NO0gWSLpL0q5ryE2vOmSVpmaRnJR03lvc1vHyqmY1ZqzWLK4A7gd0lzQb+HPjSWN4wIp4l6ywnJaBfpWufBVwWERfXHi/pAGAGcCCwJ/BjSfvVrNFto9Vry6d6zQqzwuUmC0lbAcuB/022fraAUyPi6Ta8/7HA8xHxC6nhYxunADdHxAZguaRlwOHAQ214f+sFeYnC61aYjVtusoiINyRdEhFHAs+0+f1nADfVvD5f0hnAQuAvI+IVYC9gQc0xg6nMbHNes8JrVlhhWu2zuFfSn6nJn/+jlTrITwZuS0VzgH3JmqhWAZcMHVrn9LrTo0uaKWmhpIVr165tV6hm3SMvUXjdChujVvssPkv2bMVGSb8j+wKPiBjP8qonAI9GxGqyi60e2iHpe8AP0stBYO+a8yYBK+tdMCLmAnMBBgYGvN6G9S+vWdFefbRuRSMt1SwiYseI2Coi3hwRO6XX412H+3RqmqAkTazZ9wFgadqeB8yQtK2kqcA04OFxvreZWev6aN2KRlpdg/v+iDg2r6xVkrYH3gt8sqb4G5KmkzUxrRjaFxFPSroVeArYCJznkVBmVok+WLeikabJQtJ2wPbAbpLexnD/wU5kw1jHJCJeA3YdUdZwTe+ImA3MHuv7mZnZ+OTVLD4JXECWGBYxnCzW4ek+zMz6RtNkERGXA5dL+l8R8a2SYjIzsw7T6tDZf0trWCDpS5LukHRogXGZmVkHaTVZ/HVErJf0x8BxwHVkz0WYmVkfaDVZDI0+OgmYExF3AZ511sysT7T6UN6vJH0XeA/wdUnb0nqisbJ5KnIza7NWk8VpwPHAxRHxanqA7q+KC8vGpVenIvfssmaVaSlZpOci7qh5vYps/ibrZL02FXmzRNFvM8t6wkArWas1C7PO4dllmycKTxZoBXCyMOtmnjCwvTxhYEPupDYzG+IJAxtyzcLMbKQ+njCwEdcszMwsl5OFmZnlcrIwM7NcThZmZpbLycLMzHJ5NFQ369U5oDyth1nHqSRZSFoBrCebzXZjRAxI2gW4BZhCtgb3aRHxSjp+FnB2Ov5TEXFPBWF3nl6dA8rTegzztB7WIaqsWbw7In5d8/pC4P6I+JqkC9Prz0s6AJgBHEi2vOuPJe0XEZu2vGSf6rU5oIZ4Wg9P62Edo5OaoU4Bjknb1wE/AT6fym+OiA3AcknLgMOBhyqI0awantajfTylx5hU1cEdwL2SFkmamcr2SLPZDs1qu3sq3wt4sebcwVS2BUkzJS2UtHDt2rUFhW5mXS0vUfT5tB6NVFWzOCoiVkraHbhP0jNNjlWdsqh3YETMBeYCDAwM1D3GzAzwlB6jVEnNIiJWpn/XAHeSNSutTosqkf5dkw4fBPauOX0SsLK8aM3MrPRkIWkHSTsObQPvA5YC84Az02FnAnel7XnADEnbSpoKTAMeLjdqM7P+VkUz1B7AnZKG3v/GiLhb0iPArZLOBn4J/AVARDwp6VbgKWAjcJ5HQpmZlav0ZBERLwBbDJaPiJeAYxucMxuYXXBoVjY/fDfMz1NYh/N0H1YdP3w3zM9TWIfrpOcsrJ5endKjlh++G+bnKdrHz1O0lWsWnS4vUXTztB5mRfISqW3lmkW36NUpPcyK5ucp2sI1CzMzy+VkYWZmudwMZcXzENlhHiJrXco1Cyueh8gO8xBZ61KuWVh5PER2mIfIto+HyJbCNQsz624eIlsK1yw6RT88fGdWJA+RLZRrFp2iV9fTNrOe4JpFp+nmh+886mmYRz1Zj3GysPbxqKdhHvXUfu7IrpSThbWfRz0N86in9nFHdqWcLMysu7gjuxJOFjZ67psY5r4J6xOlJwtJewPXA/8JeAOYGxGXS7oI+ASwNh36hYiYn86ZBZwNbAI+FRH3lB132/TCEFn3TQxz30T7uW+iI1VRs9gI/GVEPCppR2CRpPvSvssi4uLagyUdAMwADgT2BH4sab+uXYe7l4bIum9imPsm2sd9Ex2pijW4VwGr0vZ6SU8DezU55RTg5ojYACyXtAw4HHio8GCL1M1DZPuRm5vK576JjlJpn4WkKcAhwM+Bo4DzJZ0BLCSrfbxClkgW1Jw2SIPkImkmMBNg8mT/BTJu7psY5uYm63OVJQtJbwVuBy6IiHWS5gB/C0T69xLg44DqnB71rhkRc4G5AAMDA3WPsVFw38SW3NzUPu6b6CqVJAtJbyJLFDdExB0AEbG6Zv/3gB+kl4PA3jWnTwJWlhSqQX/1Tbi5qTzum+gqVYyGEnA18HREXFpTPjH1ZwB8AFiatucBN0q6lKyDexrwcIkh9z43Nw1zc1P75dUg3DfRFaqoWRwFfBRYImlxKvsCcLqk6WRNTCuATwJExJOSbgWeIhtJdV5XjITqpiGybm7akpub2sc1iJ5QxWion1G/H6LhN2tEzAZmFxZUEbpxiKybm6xIrkF0NT/BXbROGiLbj81NY0kKbm4aG3dY9zQni37Sj81NeX0QUz5aXiy9zs1NPc3Johfl1SB6rbmpldqD+yDaxx3WfcnJohf1ag1irP0MblYam7E0K7kG0bOcLMarylFPvVqDGGs/g5uUxmasSWHPE4uJxzqSk8V4VTnqqdtrEE4K5XJSsHFwsmiXokY9tTKCqVNqEO0cjuqk0Fy7Rx45KVgOJ4tOl5coiqxBlPEsgpNCpqxhp04KNkZOFp2ijP4Hf/nn66ZnBfzFbyVysugU7ex/KLo5qNkX6vrnYMmX2/Pe/cZf/tbBnCxa1a5RT6OtQQx98T9U0V/r/fjl7y9tsy04WbRqtKOexjq1RlVJYbT8hWrWV5wsRqvVUU+dOgeTv+TNbAycLMarjMn5/AVvZhVzshivdiYKJwUz61BOFlVwUjCzLuNkMVp3D7R+7FbbwT4fKywUM7OyOFmMdGO9Rfxa4GmZzayHdU2ykHQ8cDmwNfB3EfG1smP44WMn8v6Lf1j225pZm53435bww8u+U3UYXaUrkoWkrYFvA+8FBoFHJM2LiKfa/l4fiXZf0sw6zPx/ORi9c07VYWym0xNYVyQL4HBgWUS8ACDpZuAUoO3JYvrbxfK19fdt3AT/b0O737EIBwG7Vh2EmY3C/H8BvbMdV7qAiP/TjgttpluSxV7AizWvB4EtbqukmcBMgMmTx7Zi15IXYdMbYzq1gyytOoARnLzMul23JIt6vc5btBdFxFxgLsDAwMCY2pM2bnIzlJnZSFtVHUCLBoG9a15PAlZWFIuZWd/plmTxCDBN0lRJbwZmAPMqjsnMrG90RTNURGyUdD5wD9nQ2Wsi4smKwzIz6xtdkSwAImI+0IYFJczMbLS6pRnKzMwq5GRhZma5nCzMzCyXk4WZmeVSRG8+hCZpLfCLMZ6+G/DrNobTLo5rdBzX6Diu0enVuN4eERNGFvZsshgPSQsjYhQLV5TDcY2O4xodxzU6/RaXm6HMzCyXk4WZmeVysqhvbtUBNOC4RsdxjY7jGp2+ist9FmZmlss1CzMzy+VkYWZmuZwsakg6XtKzkpZJurDCOPaW9E+Snpb0pKRPp/KLJP1K0uL0c2IFsa2QtCS9/8JUtouk+yQ9l/59W8kx7V9zTxZLWifpgqrul6RrJK2RtLSmrOE9kjQrfeaelXRcyXF9U9Izkp6QdKeknVP5FEm/rbl3V5UcV8PfXcX365aamFZIWpzKS7lfTb4biv98RYR/sn6brYHngX2ANwOPAwdUFMtE4NC0vSPwr8ABwEXA5yq+TyuA3UaUfQO4MG1fCHy94t/jvwFvr+p+AUcDhwJL8+5R+r0+DmwLTE2fwa1LjOt9wDZp++s1cU2pPa6C+1X3d1f1/Rqx/xLgy2XerybfDYV/vlyzGHY4sCwiXoiI/wBuBk6pIpCIWBURj6bt9cDTZOuQd6pTgOvS9nXAqRXGcizwfESM9en9cYuIB4GXRxQ3ukenADdHxIaIWA4sI/sslhJXRNwbERvTywVkq1CWqsH9aqTS+zVEkoDTgJuKeO8mMTX6bij88+VkMWwv4MWa14N0wBe0pCnAIcDPU9H5qcngmrKbe5IA7pW0SNLMVLZHRKyC7MMM7F5BXENmsPn/wFXfryGN7lEnfe4+Dvyo5vVUSY9JekDSuyqIp97vrlPu17uA1RHxXE1ZqfdrxHdD4Z8vJ4thqlNW6bhiSW8FbgcuiIh1wBxgX2A6sIqsGly2oyLiUOAE4DxJR1cQQ13Kltw9GbgtFXXC/crTEZ87SV8ENgI3pKJVwOSIOAT4LHCjpJ1KDKnR764j7hdwOpv/UVLq/arz3dDw0DplY7pfThbDBoG9a15PAlZWFAuS3kT2YbghIu4AiIjVEbEpIt4AvkdB1e9mImJl+ncNcGeKYbWkiSnuicCasuNKTgAejYjVKcbK71eNRveo8s+dpDOB9wMfidTQnZotXkrbi8jauvcrK6Ymv7tOuF/bAB8EbhkqK/N+1ftuoITPl5PFsEeAaZKmpr9QZwDzqggktYdeDTwdEZfWlE+sOewDwNKR5xYc1w6SdhzaJuscXUp2n85Mh50J3FVmXDU2+2uv6vs1QqN7NA+YIWlbSVOBacDDZQUl6Xjg88DJEfFaTfkESVun7X1SXC+UGFej312l9yt5D/BMRAwOFZR1vxp9N1DG56vo3vtu+gFOJBtd8DzwxQrj+GOyquITwOL0cyLwfWBJKp8HTCw5rn3IRlY8Djw5dI+AXYH7gefSv7tUcM+2B14C/qCmrJL7RZawVgGvk/1ld3azewR8MX3mngVOKDmuZWRt2kOfs6vSsX+WfsePA48Cf1pyXA1/d1Xer1R+LXDOiGNLuV9NvhsK/3x5ug8zM8vlZigzM8vlZGFmZrmcLMzMLJeThZmZ5XKyMDOzXE4W1rfSTKGFPHuRZiTdrdXycb7XFEkfrnn9MUlXtvM9zJwszLrfFODDeQeZjYeThfW7bSRdlyas+wdJ2wNIOjZNCrckTWS3bSpfIelvJD2a9v3nVL6rpHvTOd+l/pw8m5H0PyQ9nNY/+G7NE8D/Lmm2pMclLZC0RyrfN71+RNJXJf17utTXgHel63wmle0p6e60vsE32nvLrB85WVi/2x+YGxH/BVgH/E9J25E9pfuhiDgY2AY4t+acX0c2meIc4HOp7CvAzyKbSG4eMLnZm0r6I+BDZBMzTgc2AR9Ju3cAFkTEO4AHgU+k8suByyPiv7L5/D4XAj+NiOkRcVkqm56ufzDwIUm18wOZjZqThfW7FyPin9P235NNp7A/sDwi/jWVX0e2EM6QocnbFpE1AZH2/z1ARPwQeCXnfY8FDgMeUbba2rFk06kA/AfwgzrvcSTDM+remHP9+yPiNxHxO+ApssWgzMZsm6oDMKvYyPlugvwmpA3p301s/v/QaObOEXBdRMyqs+/1GJ6HZ+R7tGpDzfZYr2H2e65ZWL+bLOnItH068DPgGWCKpD9M5R8FHsi5zoOkZiRJJwB5Cy3dD/y5pN3TObtIyvvrfwHZhHWQzYo8ZD3ZEptmhXGysH73NHCmpCeAXYA5qenmLOA2SUuAN4Crcq7zN8DRkh4lm7r9l80OjoingC+RrTr4BHAf2frKzVwAfFbSw+nY36TyJ4CNqUP8Mw3PNhsHzzpr1iXSSK3fRkRImgGcHhGVrBNv/cftmGbd4zDgyrQAzqtka2ablcI1CzMzy+U+CzMzy+VkYWZmuZwszMwsl5OFmZnlcrIwM7Nc/x/GiyIl4NlIIwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = plt.axes()\n", + "for t in np.linspace(0.,.99,5):\n", + " pm.plot_sig_p(ax,t)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Questions and Tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1 Define a symmetric loading scenario with increasing amplitude and 3 cycles" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bmcs_course/4_1_Pullout_with_unloading.ipynb b/bmcs_course/4_1_Pullout_with_unloading.ipynb deleted file mode 100644 index c403cab..0000000 --- a/bmcs_course/4_1_Pullout_with_unloading.ipynb +++ /dev/null @@ -1,456 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Example 4.1: Pull-out with unloading" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from bmcs.api import PullOutModel" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model parameters\n", - "Let us consider the case of the CFRP sheet debonding from concrete" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "A_f = 16.67 # [mm^2]\n", - "A_m = 1540.0 # [mm^2]\n", - "p = 1.0 #\n", - "E_f = 170000 # [MPa]\n", - "E_m = 28000 # [MPa]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Construct the finite element pullout model\n", - "The model uses a multilinear bond-slip law specified by the attributes \n", - "s_arr and tau_arr specifying the pairs of slip and bond stress values." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\n", - " \\begin{array}{lrrl}\\hline\n", - " \\textrm{k_max} & k_{\\max} = 200 & \\textrm{[-]} & \\textrm{maximum number of iterations} \\\\\n", - " \\textrm{tolerance} & \\epsilon = 0.0001 & \\textrm{[-]} & \\textrm{required accuracy} \\\\\n", - " \\textrm{n_e_x} & n_\\mathrm{E} = 50 & \\textrm{[-]} & \\textrm{number of finite elements along the embedded length} \\\\\n", - " \\textrm{mats_eval_type} & \\textrm{multilinear} & & \\textrm{material model type} \\\\\n", - " \\textrm{control_variable} & \\textrm{u} & & \\textrm{displacement or force control: [u|f]} \\\\\n", - " \\textrm{w_max} & w_{\\max} = 1.84 & \\textrm{[mm]} & \\textrm{maximum pullout slip} \\\\\n", - " \\textrm{fixed_boundary} & \\textrm{non-loaded end (matrix)} & & \\textrm{which side of the specimen is fixed [non-loaded end [matrix], loaded end [matrix], non-loaded end [reinf]]} \\\\\n", - " \\hline\n", - " \\textbf{loading_scenario} & \\textrm{LoadingScenario} & & \\textrm{object defining the loading scenario} \\\\\n", - " \\textbf{cross_section} & \\textrm{CrossSection} & & \\textrm{cross section parameters} \\\\\n", - " \\textbf{geometry} & \\textrm{Geometry} & & \\textrm{geometry parameters of the boundary value problem} \\\\\n", - " \\textbf{mats_eval} & \\textrm{MATSBondSlipMultiLinear} & & \\textrm{material model of the interface} \\\\\n", - " \\hline\n", - " \\end{array}\n", - " " - ], - "text/plain": [ - "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f05d5785530>" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pm = PullOutModel(mats_eval_type='multilinear',\n", - " n_e_x=50, k_max=200, w_max=1.84)\n", - "pm.sim.tline.step = 0.001\n", - "pm.mats_eval.s_tau_table = [[0, 0.1, 0.4, 4],\n", - " [0, 800, 0, 0]]\n", - "# w = pm.get_window()\n", - "# w.configure_traits()\n", - "pm" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\n", - " \\begin{array}{lrrl}\\hline\n", - " \\textrm{loading_type} & option = monotonic & \\textrm{[-]} & \\textrm{possible values: [monotonic, cyclic]} \\\\\n", - " \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 1 & \\textrm{[-]} & \\textrm{for cyclic loading} \\\\\n", - " \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level} \\\\\n", - " \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.5 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level} \\\\\n", - " \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch} \\\\\n", - " \\textrm{amplitude_type} & option = increasing & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]} \\\\\n", - " \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]} \\\\\n", - " \\hline\n", - " \\hline\n", - " \\end{array}\n", - " " - ], - "text/plain": [ - "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f0590610e90>" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXhU9d3+8feHJeyEJYQthLBjIAEhEMR9B7QiSFurda9oW9s+z9MKUVGxWEStrbYuPGi1aq08LWETWdyVqihgJRsEQtgSdgIEErLO9/dH+PWKGMwAk5zMzP26rlxmcg4z99eEm8PhnM+Ycw4REQl+jbwOICIigaFCFxEJESp0EZEQoUIXEQkRKnQRkRDRxKsXjoqKcnFxcV69vIhIUFq7du1+51ynmrZ5VuhxcXGsWbPGq5cXEQlKZrbtZNt0ykVEJESo0EVEQoQKXUQkRKjQRURChApdRCRE1FroZvayme01s4yTbDcz+5OZ5ZhZmpkNC3xMERGpjT9H6H8FxnzH9rFAv+Mfk4EXzjyWiIicqloL3Tn3CVDwHbuMB15zVVYB7cysa6ACioiEivJKH89/lMO6HYfq5PkDcQ69O7Cj2uO841/7FjObbGZrzGzNvn37AvDSIiLBISP/MNc+9ylPLM9mWcbuOnmNQNwpajV8rcZ3zXDOzQHmACQlJemdNUQk5JWUV/LnDzYx++Nc2reM4IUbhzE2oW5OYgSi0POAHtUexwA7A/C8IiJBbc3WAqakppG7r4jvD49h2lXxRLZsWmevF4hCXwzcY2ZzgWTgsHNuVwCeV0QkKB0treDJ5Rt4bdU2ukW24LXbR3JB/xrnaQVUrYVuZm8CFwFRZpYHPAw0BXDOzQaWAuOAHKAYuK2uwoqINHQfb9zH/fPT2Xn4GLecE8e9Vw6gVbP6mYNY66s4535Uy3YH/DxgiUREgtCh4jJmLFlP6ld59OnUin/edQ5JcR3qNYNn43NFRELFsvRdPLgok4PFZdxzcV/uuaQvzZs2rvccKnQRkdO0t7CEhxZlsjxzN4O7t+XV20cwqFukZ3lU6CIip8g5x7y1ecxYkkVJhY+pYwZy5/m9aNLY2/FYKnQRkVOwo6CY+xeks3LTfkbGdWDWdQn07tTa61iACl1ExC+VPsfrn2/liRXZGDBj/CBuTO5Jo0Y13VvpDRW6iEgtcvYeYWpqOmu3HeTC/p2YOTGB7u1aeB3rW1ToIiInUV7p438/3syf3s+hZbPG/PGHQ7h2aHfMGs5ReXUqdBGRGqTnHebeeevYsPsIVyV25ZFrBhHVupnXsb6TCl1EpJqS8kqefm8TL67MpWOrCP73puFcOaiL17H8okIXETnui9wDpMxPZ8v+In6Y1IP7rzqLyBZ1N0wr0FToIhL2jpSU88TybF5ftY0eHVrwxk+SObdvlNexTpkKXUTC2ocb9vLAgnR2FZZwx3m9+PUV/WkZEZzVGJypRUTOUEFRGTOWZLHg3/n0i25N6k9HMyy2vdexzogKXUTCinOOt9N38fCiTA4fK+eXl/bj5xf3oVmT+h+mFWgqdBEJG3sKS5i2MIN3s/aQGBPJ336SzFld23odK2BU6CIS8pxz/N/qHfxu6XrKKnzcP24gt5/r/TCtQFOhi0hI236gmJT5aXy2+QDJvTrw+HWJxEW18jpWnVChi0hIqvQ5Xvl0C79/J5smjRoxc0IC14/o0aCGaQWaCl1EQs7GPUeYMi+Nr3cc4pKB0fxuwmC6Rja8YVqBpkIXkZBRVuHjhY828+yHm2jTvCnPXD+Ua4Z0a7DDtAJNhS4iIWHdjkNMmZdG9p4jXDOkGw9/L56ODXyYVqCp0EUkqB0rq+QP72bzl39tIbpNc166OYnL4jt7HcsTKnQRCVqfbz5Ayvw0th0o5kcjY7lv3EDaNg+eYVqBpkIXkaBTWFLOY0s38OaX2+nZsSV/vzOZ0X2Cb5hWoKnQRSSovL9+Dw8syGDvkRLuPL8X/3P5AFpEBP9t+4GgQheRoHDgaCmPvJXF4nU7GdC5DbNvGs7QHu28jtWgqNBFpEFzzrF43U6mL87kaGkF/3VZP352UV8imoTWbfuBoEIXkQZr1+FjTFuQwfsb9jKkRzueuC6RAV3aeB2rwVKhi0iD4/M53ly9nceWbqDC52PaVWdx27m9aBzCt+0HggpdRBqUrfuLSJmfxqrcAkb36chjExPo2TE0h2kFmgpdRBqEikofL3+6hafe2UhE40bMmpjAD0f0CJvb9gPBr0I3szHAM0Bj4CXn3KwTtkcCfwNijz/n751zrwQ4q4iEqA27C5k6L411eYe57KzOPHrtYLpENvc6VtCptdDNrDHwHHA5kAesNrPFzrmsarv9HMhyzn3PzDoB2Wb2hnOurE5Si0hIKK2o5LkPN/P8hzlEtmjKn390NlcndtVR+Wny5wh9JJDjnMsFMLO5wHigeqE7oI1VfRdaAwVARYCzikgI+ff2g0xNTWPjnqNMOLs7D14dT4dWEV7HCmr+FHp3YEe1x3lA8gn7PAssBnYCbYAfOud8Jz6RmU0GJgPExsaeTl4RCXLFZRU89c5GXv50C13aNueVW0dw8cBor2OFBH8Kvaa/+7gTHl8JfA1cAvQB3jWzlc65wm/8IufmAHMAkpKSTnwOEQlxn+XsJ2V+OtsLivnxqFimjhlImzAephVo/hR6HtCj2uMYqo7Eq7sNmOWcc0COmW0BBgJfBiSliAS1w8fKeWzpeuau3kGvqFbMnTyKUb07eh0r5PhT6KuBfmbWC8gHrgduOGGf7cClwEoz6wwMAHIDGVREgtM7mbuZtjCD/UdLuevC3vz3Zf1p3lTDtOpCrYXunKsws3uAFVRdtviycy7TzO4+vn02MAP4q5mlU3WKZqpzbn8d5haRBm7/0VKmL85kSdouBnZpw0u3JJEYo2Fadcmv69Cdc0uBpSd8bXa1z3cCVwQ2mogEI+ccC7/O55G3sigureQ3V/Tnrgv70LSxhmnVNd0pKiIBk3/oGA8sSOej7H0Mi23HE5MS6RutYVr1RYUuImfM53O88eV2Zi1dj8/Bw9+L5+Zz4jRMq56p0EXkjOTuO0pKajpfbi3g/H5RzJyQQI8OLb2OFZZU6CJyWioqfby4cgt/fG8jzZs04slJiUwaHqPb9j2kQheRU5a1s5ApqevIyC/kykGdmTF+MNFtNUzLayp0EfFbaUUlf34/h9kfb6ZdywheuHEYYxO6eh1LjlOhi4hf1m4rYMq8NDbvK2LisO48dHU87VpqmFZDokIXke9UVFrBkyuyefXzrXSLbMGrt4/kwv6dvI4lNVChi8hJrdy0j/vmp5N/6Bg3j+rJvWMG0rqZaqOh0ndGRL7lcHE5j76dxT/X5tG7Uyv+cdc5jIjr4HUsqYUKXUS+YXnGLh5clElBURk/u6gPv7y0n4ZpBQkVuogAsPdICQ8vymRZxm7iu7bllVtHMLh7pNex5BSo0EXCnHOO1K/ymbEki2Plldx75QAmX9Bbw7SCkApdJIzlHSzm/gUZfLJxH0k92zPrukT6Rrf2OpacJhW6SBjy+Ryvr9rG48s3APDINYO4aVRPGmmYVlBToYuEmc37jjJ1Xhprth3kgv6dmDlhMDHtNUwrFKjQRcJEeaWPOZ/k8sz7m2jRtDFPfX8IE4d11zCtEKJCFwkDGfmHmTIvjaxdhYxL6ML0awYR3UbDtEKNCl0khJWUV/LM+5uY80kuHVpFMPvHwxgzWMO0QpUKXSRErd5awNR5aeTuL+L7w2OYdlU8kS2beh1L6pAKXSTEHC2t4InlG3jt823EtG/B63eM5Px+GqYVDlToIiHko+y9PLAgg52Hj3HbuXH85ooBtNIwrbCh77RICDhYVMaMt7OY/1U+faNbM+/u0Qzv2d7rWFLPVOgiQcw5x7KM3Ty0KINDxeX84pK+3HNJX5o10TCtcKRCFwlSewtLeHBRBisy95DQPZLXbk8mvltbr2OJh1ToIkHGOcc/1+bx6JIsSit83Dd2IHec14smGqYV9lToIkFkR0Ex981P5185+xnZqwOzJibQu5OGaUkVFbpIEKj0OV79bCtPrsimkcGMawdz48hYDdOSb1ChizRwm/YcYWpqGl9tP8RFAzoxc0IC3dq18DqWNEAqdJEGqrzSx+yPNvPnD3Jo1awxT/9wKOOHdtMwLTkpvwrdzMYAzwCNgZecc7Nq2Oci4GmgKbDfOXdhAHOKhJW0vENMmZfGht1HuDqxK9OvGURU62Zex5IGrtZCN7PGwHPA5UAesNrMFjvnsqrt0w54HhjjnNtuZtF1FVgklJWUV/LHdzfy4spcOrVpxpybhnPFoC5ex5Ig4c8R+kggxzmXC2Bmc4HxQFa1fW4A5jvntgM45/YGOqhIqFuVe4CU1DS2HijmRyN7kDL2LCJbaJiW+M+fQu8O7Kj2OA9IPmGf/kBTM/sIaAM845x77cQnMrPJwGSA2NjY08krEnKOlJQza9kG3vhiO7EdWvL3nyQzum+U17EkCPlT6DX9C4yr4XmGA5cCLYDPzWyVc27jN36Rc3OAOQBJSUknPodI2Plgwx4eWJDBnsISfnJeL/7niv60jNC1CnJ6/PnJyQN6VHscA+ysYZ/9zrkioMjMPgGGABsRkW8pKCrjt29lsvDrnfSLbs3zPx3N2bEapiVnxp9CXw30M7NeQD5wPVXnzKtbBDxrZk2ACKpOyfwxkEFFQoFzjrfSdjF9cSaFx8r51aX9+NnFfTRMSwKi1kJ3zlWY2T3ACqouW3zZOZdpZncf3z7bObfezJYDaYCPqksbM+oyuEiw2X24hGkLM3hv/R4SYyJ54s5kBnbRMC0JHHPOm1PZSUlJbs2aNZ68tkh9cs4xd/UOZr69nnKfj19fPoDbzo3TMC05LWa21jmXVNM2/euLSB3adqCIlNR0Ps89wKjeHZg1MZG4qFZex5IQpUIXqQOVPscrn27h9+9k07RRI2ZOSOD6ET00TEvqlApdJMCydx9hSmoa63Yc4tKB0Tw6YTBdIzVMS+qeCl0kQMoqfDz/UQ7PfZhDm+ZNeeb6oVwzRMO0pP6o0EUC4Osdh5g6L43sPUcYP7QbD10dT0cN05J6pkIXOQPHyir5w7vZ/OVfW4hu05yXbk7isvjOXseSMKVCFzlNn23eT0pqOtsLirkhOZaUsQNp21zDtMQ7KnSRU1RYUs5jSzfw5pfb6dmxJX+/M5nRfTRMS7ynQhc5Be9l7WHawgz2Hilh8gW9+e/L+tMiQrftS8OgQhfxw4GjpTzyVhaL1+1kQOc2zL5pOEN7tPM6lsg3qNBFvoNzjsXrdjJ9cSZHSyv478v689OL+hDRRLftS8OjQhc5iV2HjzFtQQbvb9jL0B7teGJSIv07t/E6lshJqdBFTuDzOd5cvZ3Hlm6gwudj2lVncdu5vWis2/algVOhi1SzZX8RKalpfLGlgNF9OjJrYiKxHVt6HUvELyp0EaCi0sfLn27hqXc2EtGkEY9fl8APknrotn0JKip0CXvrdxUyNTWNtLzDXB7fmUevHUznts29jiVyylToErZKKyp57sPNPP9hDpEtmvLsDWdzVUJXHZVL0FKhS1j6avtBps5LY9Peo0w4uzsPXR1P+1YRXscSOSMqdAkrxWUVPPXORl7+dAtd2zbnlVtHcPHAaK9jiQSECl3Cxqc5+0mZn8aOgmP8eFQsU8cMpI2GaUkIUaFLyDt8rJyZb6/n/9bsoFdUK/5v8iiSe3f0OpZIwKnQJaS9k7mbaQszOFBUxt0X9uG/LutH86YapiWhSYUuIWnfkVKmv5XJ22m7OKtrW/5yywgSYiK9jiVSp1ToElKccyz8Op9H3sqiuLSS31zRn7su7EPTxhqmJaFPhS4hI//QMR5YkM5H2fsYFls1TKtvtIZpSfhQoUvQ8/kcb3y5nVlL1+Nz8PD34rn5nDgN05Kwo0KXoJa77ygpqel8ubWA8/tFMXNCAj06aJiWhCcVugSlikofL/1rC398dyPNmjTiyUmJTBoeo9v2Jayp0CXoZO0sZErqOjLyC7lyUGdmjB9MtIZpiajQJXiUVlTy7Ac5vPDRZtq1jOCFG4cxNqGr17FEGgwVugSFtdsKmDIvjc37ipg4rGqYVruWGqYlUp1fF+ea2RgzyzazHDNL+Y79RphZpZlNClxECWdFpRVMX5zJpNmfU1Lu49XbR/KHHwxVmYvUoNYjdDNrDDwHXA7kAavNbLFzLquG/R4HVtRFUAk/n2zcx33z08k/dIxbzunJvWMG0rqZ/lIpcjL+/O4YCeQ453IBzGwuMB7IOmG/XwCpwIiAJpSwc7i4nBlvZzFvbR69O7Xin3efw4i4Dl7HEmnw/Cn07sCOao/zgOTqO5hZd2ACcAnfUehmNhmYDBAbG3uqWSUMLM/YxYOLMikoKuNnF/Xhl5dqmJaIv/wp9Jou7HUnPH4amOqcq/yu64Cdc3OAOQBJSUknPoeEsb1HSnh4USbLMnYT37Utr9w6gsHdNUxL5FT4U+h5QI9qj2OAnSfskwTMPV7mUcA4M6twzi0MSEoJWc45Ur/KZ8aSLI6VV3LvlQOYfEFvDdMSOQ3+FPpqoJ+Z9QLygeuBG6rv4Jzr9f8/N7O/AktU5lKbHQXF3L8gnZWb9pPUsz2zrkukb3Rrr2OJBK1aC905V2Fm91B19Upj4GXnXKaZ3X18++w6zighxudzvPb5Vp5YkY0Bvx0/iB8n96SRhmmJnBG/rgFzzi0Flp7wtRqL3Dl365nHklCVs/coKalprNl2kAv6d2LmhMHEtNcwLZFA0EW9Ui/KK33M+SSXZ97bRIuIxjz1/SFMHNZdw7REAkiFLnUuI/8wU+alkbWrkHEJXXjkmsF0atPM61giIUeFLnWmpLySZ97fxJxPcunQKoLZPx7OmMFdvI4lErJU6FInvtxSQEpqGrn7i/hBUgwPjIsnsmVTr2OJhDQVugTU0dIKHl+2gddXbSOmfQv+dkcy5/WL8jqWSFhQoUvAfJi9lwfmp7OrsITbzo3jN1cMoJWGaYnUG/1ukzN2sKiMGUuymP/vfPpGt2be3aMZ3rO917FEwo4KXU6bc46l6bt5eHEGh4rL+cUlfbnnkr40a6JhWiJeUKHLadlTWMKDCzN4J2sPCd0jee32ZOK7tfU6lkhYU6HLKXHO8Y81O3j07fWUVfhIGTuQn5zXiyYapiXiORW6+G37gWLuW5DGpzkHGNmrA7MmJtC7k4ZpiTQUKnSpVaXP8dfPtvL7Fdk0bmQ8eu1gbhgZq2FaIg2MCl2+06Y9R5iSmsa/tx/iogGdmDkhgW7tWngdS0RqoEKXGpVV+Jj98Wb+/MEmWjdrwtM/HMr4od00TEukAVOhy7es23GIqalpbNh9hKsTuzL9mkFEtdYwLZGGToUu/3GsrJKn39vIiytziWrdjDk3DeeKQRqmJRIsVOgCwKrcA6SkprH1QDHXj+jBfePOIrKFhmmJBBMVepg7UlLOrGUbeOOL7fTo0II3fpLMuX01TEskGKnQw9gHG/bwwIIMdheWcMd5vfj1Ff1pGaEfCZFgpd+9YejA0VJ+uySLRV/vpF90a1J/OpphsRqmJRLsVOhhxDnHW2m7mL44k8Jj5fzq0n787OI+GqYlEiJU6GFi9+ESpi1M5731e0mMieSJO5MZ2EXDtERCiQo9xDnnmLt6BzPfXk9ZpY8Hxp3FbefGaZiWSAhSoYewbQeKSElN5/PcA4zq3YFZExOJi2rldSwRqSMq9BBU6XO88ukWfv9ONk0bNWLmhASuH9FDw7REQpwKPcRk764aprVuxyEuHRjNoxMG0zVSw7REwoEKPUSUVfh4/qMcnvswhzbNm/LM9UO5ZoiGaYmEExV6CPh6xyGmzksje88Rxg/txkNXx9NRw7REwo4KPYgdK6vkqXeyefnTLUS3ac5fbkni0rM6ex1LRDyiQg9Sn23eT0pqOtsLivnRyFjuGzeQts01TEsknPl1MbKZjTGzbDPLMbOUGrbfaGZpxz8+M7MhgY8qAIUl5dw3P40bXvwCM3jzzlE8NjFBZS4itR+hm1lj4DngciAPWG1mi51zWdV22wJc6Jw7aGZjgTlAcl0EDmfvZe3hgYXp7DtSyl0X9Oa/LutPiwjdti8iVfw55TISyHHO5QKY2VxgPPCfQnfOfVZt/1VATCBDhrsDR0uZ/lYWb63bycAubXjx5iQSY9p5HUtEGhh/Cr07sKPa4zy+++j7DmBZTRvMbDIwGSA2NtbPiOHLOceir3fyyFuZHC2t4H8u78/dF/Yhoolu2xeRb/On0Gu6kNnVuKPZxVQV+nk1bXfOzaHqdAxJSUk1PodU2XnoGNMWZvDBhr2cHduOx69LpH/nNl7HEpEGzJ9CzwN6VHscA+w8cSczSwReAsY65w4EJl748fkcf/9yO7OWbaDS53jo6nhuGR1HY922LyK18KfQVwP9zKwXkA9cD9xQfQcziwXmAzc55zYGPGWY2LK/iJTUNL7YUsC5fTvy2IREYju29DqWiASJWgvdOVdhZvcAK4DGwMvOuUwzu/v49tnAQ0BH4Pnjt5pXOOeS6i52aKmo9PGXf23hD+9uJKJJI564LpHvJ8Xotn0ROSXmnDenspOSktyaNWs8ee2GJGtnIVNT00jPP8wV8Z2Zce1gOrdt7nUsEWmgzGztyQ6YdaeoR0orKnn2gxxe+Ggz7Vo25bkbhjEuoYuOykXktKnQPbB220GmpqaRs/coE4d158Gr4mnfKsLrWCIS5FTo9ai4rILfr9jIK59toVtkC/562wguGhDtdSwRCREq9Hryr037SZmfRt7BY9w0qidTxw6kdTP97xeRwFGj1LHDxeX8bmkW/1iTR++oVvzjrnMY2auD17FEJASp0OvQ8ozdPLgog4KiMn56UR9+dWk/mjfVMC0RqRsq9Dqw70gp0xdn8nb6LuK7tuWVW0cwuHuk17FEJMSp0APIOcf8r/L57ZIsjpVVcu+VA5h8QW+aNtYwLRGpeyr0AMk/dIz756fz8cZ9DO/ZnsevS6RvdGuvY4lIGFGhnyGfz/G3L7bx+LINOGD69+K5+Zw4GmmYlojUMxX6Gdi87ygpqWms3nqQ8/tFMXNCAj06aJiWiHhDhX4ayit9vLgyl6ff20TzJo14clIik4ZrmJaIeEuFfooy8g8zNTWNzJ2FjB3chUfGDyK6jYZpiYj3VOh+Kimv5M8fbGL2x7m0bxnBCzcOY2xCV69jiYj8hwrdD2u2FjAlNY3cfUVMGh7DtKvOol1LDdMSkYZFhf4dikoreHJFNq9+vpVukS147faRXNC/k9exRERqpEI/iY837uP++ensPHyMW86J494rB9BKw7REpAFTQ53gUHEZM5asJ/WrPHp3asU/7zqHpDgN0xKRhk+FXs2y9F08uCiTg8Vl/PziPvziEg3TEpHgoUIH9haW8NCiTJZn7mZQt7a8evsIBnXTMC0RCS5hXejOOeatzWPGkixKKnxMGTOAO8/XMC0RCU5hW+g7Coq5f0E6KzftZ0Rce2Zdl0ifThqmJSLBK+wKvdLneO3zrTy5IhsDZowfxI3JPTVMS0SCXlgVes7eI0xNTWfttoNc2L8Tv5swmJj2GqYlIqEhLAq9vNLH/368mT+9n0PLZo35ww+GMOHs7hqmJSIhJeQLPSP/MPfOS2P9rkKuSujK9GsG0alNM69jiYgEXMgWekl5JU+/t4kXV+bSoVUEs388nDGDu3gdS0SkzoRkoX+5pYCU1DRy9xfxg6QYHhgXT2TLpl7HEhGpUyFV6EdKynlieTavr9pGTPsW/O2OZM7rF+V1LBGRehEyhf5h9l4emJ/OrsISbj+3F7++or+GaYlIWAn6xjtYVMaMJVnM/3c+faNbM+/u0Qzv2d7rWCIi9c6vQjezMcAzQGPgJefcrBO22/Ht44Bi4Fbn3FcBzvoNzjneTt/Fw4syOXysnF9e0pefX9KXZk00TEtEwlOthW5mjYHngMuBPGC1mS12zmVV220s0O/4RzLwwvH/1ok9hSU8uDCDd7L2kNA9ktfvSCa+W9u6ejkRkaDgzxH6SCDHOZcLYGZzgfFA9UIfD7zmnHPAKjNrZ2ZdnXO7Ah34ww17+eXcf1NW4eO+sQO547xeNNEwLRERvwq9O7Cj2uM8vn30XdM+3YFvFLqZTQYmA8TGxp5qVgB6RbXi7Nj2TP9ePL01TEtE5D/8ObSt6f54dxr74Jyb45xLcs4ldep0eu/NGRfVitduH6kyFxE5gT+Fngf0qPY4Bth5GvuIiEgd8qfQVwP9zKyXmUUA1wOLT9hnMXCzVRkFHK6L8+ciInJytZ5Dd85VmNk9wAqqLlt82TmXaWZ3H98+G1hK1SWLOVRdtnhb3UUWEZGa+HUdunNuKVWlXf1rs6t97oCfBzaaiIicCl3vJyISIlToIiIhQoUuIhIiVOgiIiHCqv4904MXNtsHbDvNXx4F7A9gnGCgNYcHrTk8nMmaezrnarwz07NCPxNmtsY5l+R1jvqkNYcHrTk81NWadcpFRCREqNBFREJEsBb6HK8DeEBrDg9ac3iokzUH5Tl0ERH5tmA9QhcRkROo0EVEQkSDLnQzG2Nm2WaWY2YpNWw3M/vT8e1pZjbMi5yB5Meabzy+1jQz+8zMhniRM5BqW3O1/UaYWaWZTarPfHXBnzWb2UVm9rWZZZrZx/WdMdD8+NmONLO3zGzd8TUH9dRWM3vZzPaaWcZJtge+v5xzDfKDqlG9m4HeQASwDog/YZ9xwDKq3jFpFPCF17nrYc2jgfbHPx8bDmuutt8HVE39nOR17nr4Prej6n17Y48/jvY6dz2s+X7g8eOfdwIKgAivs5/Bmi8AhgEZJ9ke8P5qyEfo/3lzaudcGfD/35y6uv+8ObVzbhXQzsy61nfQAKp1zc65z5xzB48/XEXVu0MFM3++zwC/AFKBvfUZro74s+YbgPnOue0AzrlgX7c/a3ZAGzMzoDVVhV5RvzEDxzn3CVVrOJmA91dDLvSTvfH0qe4TTE51PXdQ9Sd8MKt1zWbWHZgAzCY0+PN97g+0N7OPzGytmd1cb+nqhj9rfhY4i6q3r0wHfuWc89VPPE8EvL/8eoMLjwTszZR7oA0AAAF7SURBVKmDiN/rMbOLqSr08+o0Ud3zZ81PA1Odc5VVB29Bz581NwGGA5cCLYDPzWyVc25jXYerI/6s+Urga+ASoA/wrpmtdM4V1nU4jwS8vxpyoYfjm1P7tR4zSwReAsY65w7UU7a64s+ak4C5x8s8ChhnZhXOuYX1EzHg/P3Z3u+cKwKKzOwTYAgQrIXuz5pvA2a5qhPMOWa2BRgIfFk/EetdwPurIZ9yCcc3p651zWYWC8wHbgrio7Xqal2zc66Xcy7OORcHzAN+FsRlDv79bC8CzjezJmbWEkgG1tdzzkDyZ83bqfobCWbWGRgA5NZryvoV8P5qsEfoLgzfnNrPNT8EdASeP37EWuGCeFKdn2sOKf6s2Tm33syWA2mAD3jJOVfj5W/BwM/v8wzgr2aWTtXpiKnOuaAdq2tmbwIXAVFmlgc8DDSFuusv3fovIhIiGvIpFxEROQUqdBGREKFCFxEJESp0EZEQoUIXEQkRKnQRkRChQhcRCRH/D/pB6bWX9rbcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "<Figure size 432x288 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "pm.loading_scenario.plot(plt.axes())\n", - "pm.loading_scenario" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\n", - " \\begin{array}{lrrl}\\hline\n", - " \\textrm{loading_type} & option = cyclic & \\textrm{[-]} & \\textrm{possible values: [monotonic, cyclic]} \\\\\n", - " \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 2 & \\textrm{[-]} & \\textrm{for cyclic loading} \\\\\n", - " \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level} \\\\\n", - " \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.0 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level} \\\\\n", - " \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch} \\\\\n", - " \\textrm{amplitude_type} & option = constant & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]} \\\\\n", - " \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]} \\\\\n", - " \\hline\n", - " \\hline\n", - " \\end{array}\n", - " " - ], - "text/plain": [ - "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f0590610e90>" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pm.loading_scenario.loading_type='cyclic'\n", - "pm.loading_scenario.trait_set(number_of_cycles=2,\n", - " unloading_ratio=0.0,\n", - " amplitude_type='constant',\n", - " loading_range='non-symmetric')\n", - "pm.loading_scenario" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd3BU993v8fdPEpIQqKAK6m1FMc1UY7rE49hOHJc4jh0nJG48YIp85/6RzJ25z/3jmTu3zZ0xGAwG3IhbHMd27DzETpDovZiOYVerLlBFva70u39ImyvLwlpgd8+W72tGM9rdo93vkayPP/px9hyltUYIIYT3CzB6ACGEEM4hgS6EED5CAl0IIXyEBLoQQvgICXQhhPARQUa9cGxsrE5PTzfq5YUQwiudPn26TmsdN9xjhgV6eno6p06dMurlhRDCKymlSm/1mCy5CCGEj5BAF0IIHyGBLoQQPkICXQghfIQEuhBC+IgRA10p9ZZSqkYpdfEWjyul1CallEUpdV4pNcv5YwohhBiJIw39HeDBH3j8IcA08LEK2Hr3YwkhhLhdIx6HrrU+oJRK/4FNHgV26f7z8B5TSkUppSZora87aUbhgZo7e9h1pIRuW9937h8VGMDKBelEho0yaDIhPNure66x2BTL7LRopz+3M95YlASUD7pdMXDf9wJdKbWK/hZPamqqE15aGGXLXgtv7Lei1Hfv1xputvfwb49MMWYwITzYxcomXt1jRqE8NtDVMPcNe9UMrfV2YDvAnDlz5MoaXqqhrZs/HC3lpzMS2fTMvd957D9/fI73j5eyelkm8eGhBk0ohGfaVGAmPDSI3y5Md8nzO+MolwogZdDtZKDKCc8rPNSOg1Y6enrZkJf9vcfW5WbT09vH9v1WAyYTwnNdrmrm75ereX5hBpGjXbMk6YxA/wJYOXC0y31Ak6yf+66bbd3sOlLCj6dNIDs+/HuPZ8SO4bGZSbx3vJS61i4DJhTCM20qMBMeEsTzCzNc9hqOHLb4IXAUmKiUqlBKvaCUWq2UWj2wyW7ACliAHcDLLptWGG7nISvtPb1syDPdcpt1udl02/rYcUBauhAA395o5qtLN3huoWsPGHDkKJdnRnhcA2udNpHwWI3t3bx7pJSHp04gJ+H77dwuM24sP52RyK6jpaxakknM2BA3TimE53mtwMLYkCCeX+S6dg7yTlFxG948VExrl431w6ydD7Uu10SnrZcdB4vdMJkQnutadQu7L17nt/enExUW7NLXkkAXDmlq7+GdwyU8NHU8k8ZHjLh9dvxYHpmeyK6jJTS0dbt+QCE81KYCM2GjAnnBxe0cJNCFg948XExLl431ubdeOx9qfW42HT297Dwoa+nCP5mrW/iPC9dZeX8648a4tp2DBLpwQFNHD28fLuaBKQlMSRy5nduZEsJ5eNoE3j1Swk1p6cIPvVZoYfSoQF5anOmW15NAFyN6+3AxLZ22Hzyy5VY25Jpo7+nlzUOyli78i6WmlS/PV/HrBWlEu6GdgwS6GEFzZw9vHSpmxeQEpiZF3vbXTxwfzkNTx/POkRIa26WlC/+xudBMaFAgq9zUzkECXYzg3cMlNHfayL+Ddm63Ic9Ea5eNt6SlCz9hrW3li3P97dydh+1KoItbaunsYeehYvImxTMt+fbbud2k8RE8eM943j5cQlN7jxMnFMIzbS60EBwU4La1czsJdHFLu46W0tTRQ/6KO2/ndhvyTLR02XjrsLR04duK69r4/Gwlv5qfRly4e99UJ4EuhtXaZWPHQSvLJ8YxPTnqrp9vSmIED0xJ4K3DxTR3SksXvmvLXgujAgNYtdS97Rwk0MUt7DpaQmN7D/krcpz2nBvyTLR02njncInTnlMIT1Ja38Zn31Ty7Pw0Q04fLYEuvqety8aOA1aW5sQxM+Xu27nd1KRIVkxO4M1DxbRISxc+aMteC0EBitUGtHOQQBfDeO9YKTfbnbN2PlR+nommjh7ePVLi9OcWwkjlDe18eqaSZ+alEh9hzMVdJNDFd7R329h+wMpiUyyzUsc5/fmnJUeSNymenQMn+hLCV2zZayEgQLFmWZZhM0igi+94/1gZ9W3dvOKCdm6Xv8JEY7u0dOE7yhva+eR0Bc/MTSHBoHYOEuhikI7uXt44UMSibNdckdxuenIUyyfGsfOglTZp6cIHvL6viAClWG1gOwcJdDHI+8dLqWvtdsna+VD5K3K42d7DrqOlLn8tIVypsrGDT06X84u5KUyIHG3oLBLoAoDOnl7eOGDl/qwY5qa7rp3bzUyJYmlOHDukpQsv9/peC4Cha+d2EugCgA+Ol1Hb0nVX52y5XRvyTDS0dfPeMWnpwjtVNXbw8alynpqTQmKUse0cJNAF/e182/4i7suMZn5mjNted3baOBabYtl+wEp7t7R04X227isC4OXlI1+W0R0k0AUfnSijpqWL/DznvSvUUfl5Jurbunn/WJnbX1uIu3G9qYM/niznydkpJHlAOwcJdL/X2dPL1v1FzMuIZkGW+9q53Zz0aBZmx/DGgSI6unvd/vpC3Klt+4ro05qXPWDt3E4C3c99fKqc6uYuXnHj2vlQ+Xk51LV28/5xWUsX3qG6uZMPT5bz5OxkUqLDjB7nnyTQ/ViXrZet+4qYkzbOkHZuNy8jmgWZMbxxwEpnj7R04fm27iuit0/z8jLPWDu3k0D3Yx+fquB6Uyf5K0wopQydJX+FidqWLj44LmvpwrPVNHfy4Ykynrg3idQYz2nnIIHut7psvWzda2FWahSLsmONHof7MmOYlxHNtv1F0tKFR9u234qtT7Mu17PaOUig+61PTldQ1dRJ/oocw9u53St5JmpauvjohLR04ZlqWjp5/3gpj81MIi1mjNHjfI8Euh/qtvXx+t4iZqZEscRkfDu3W5AVw9z0cWyVli481Pb9Vnp6+zyynYMEul/685kKKhs7PGLtfDClFPl5OVQ3d/HxqXKjxxHiO2pbunhvoJ1nxHpeOwcJdL/T09vHlr0WZiRHsiwnzuhxvmdhdgyz08axdV8RXTZp6cJz7Dhopdvmue0cJND9zqdnKqi46Xnt3K6/pZu43tTJn05VGD2OEADUt3bxh6Ol/HRGIplxY40e55YcCnSl1INKqatKKYtS6vfDPB6plPpSKXVOKXVJKfWc80cVd6unt4/Ney1MT45k+cR4o8e5pcWmWO5NjWLrviK6bX1GjyMEOw4W02nrZV2ucW/Ac8SIga6UCgS2AA8BU4BnlFJThmy2FristZ4BLAP+r1Iq2Mmzirv02TeVlDd0sCHXM9u5nb2l959nWlq6MFZDWze7jpbwyPREsuM9t52DYw19HmDRWlu11t3AR8CjQ7bRQLjqT4mxQAMgp8/zILaBtfOpSRHkTfbcdm63NCeOGSlRbNlrkZYuDLXzoJWOnl425Hnu2rmdI4GeBAw+5KBi4L7BNgOTgSrgApCvtf7eb6FSapVS6pRS6lRtbe0djizuxOdnqyitb/f4dm6nlOKVgZb+6Rlp6cIYN9u6efdICT+eNoHs+HCjxxmRI4E+3G+/HnL7R8BZIBGYCWxWSkV874u03q61nqO1nhMX53lHWPgqezufMiGCf5mSYPQ4Dls2MY7pyZFs2Wehp1daunC/Nw8V097TywYDT153OxwJ9AogZdDtZPqb+GDPAZ/qfhagGJjknBHF3fryfBXFdW1syPOOdm5nX0svb+jgszOVRo8j/ExjezfvHCnh4akTyEnw/HYOjgX6ScCklMoY+IfOp4EvhmxTBuQBKKUSgImA1ZmDijvT26d5rdDCpPHhPOBF7dwud1I805Ii2bxXWrpwr7cOFdPaZWO9F6yd240Y6FprG7AO+Bq4Anystb6klFqtlFo9sNm/A/crpS4ABcDvtNZ1rhpaOO6v56uw1raRn2ciIMB72rmdUooNeSbKGtr5y9mhfxgK4RpN7T28fbiEh6aOZ9L4760ee6wgRzbSWu8Gdg+5b9ugz6uAB5w7mrhbvX2aTQVmJiaE86N7xhs9zh1bMTmeexIj2Fxo5rGZiQQFyvvhhGu9dbiYli4b6z38uPOh5DfDh/3HhesU1favnXtjO7ezt/SS+na+OCctXbhWU0cPbx0u5oEpCUxJ9J52DhLoPquvT/NagRlT/Fgemuq97dzugSkJTJ4QweZCC719Qw+yEsJ53jlcQkunzWuObBlMAt1H7b54HXNNK+u9vJ3b9R/xko21ro0vpaULF2nu7OHNQ1ZWTE5galKk0ePcNgl0H9Q3sHaeFTeGH0+bYPQ4TvPAlPFMGh/OpkKztHThEu8eLqG500a+F7ZzkED3SV9dusG16lY25JkI9IF2bhcQ0L+Wbq1t46/npaUL52rtsrHzUDF5k+KZlux97Rwk0H2OvZ1nxo3hJ9MTjR7H6R68ZzwTE8J5TdbShZO9e6SEpo4e8ld4ZzsHCXSf8/fL1Xx7o4X1udk+1c7tAgIU6/OysdS0svvCdaPHET6ircvGzoNWlk+MY3pylNHj3DEJdB+idX87z4gdwyM+2M7tHp46AVP8WF4rNNMnLV04wa6jpdxs7yF/RY7Ro9wVCXQf8o/L1Vy+3sy65dk+/eabgADFutxsrlW38reLN4weR3i5ti4bOw5aWZoTx8wU723nIIHuM7TWbCwwkx4TxqMzfbed2/1keiJZcWPYVCAtXdyd946V0tDW7dVr53YS6D6i4EoNl6qaWevj7dwuMECxPtfE1eoWvr4kLV3cmfZuG9sPWFlsimVW6jijx7lrvv+b7wfs7Tw1OozH7x167RHf9ciMRDJjx7BRWrq4Q+8fK6O+rZtXfKCdgwS6T9h7tYYLlU0+v3Y+VODAWvq3N1r4++Vqo8cRXqaju5c3DhSxKDuW2WnRRo/jFP7z2++jtNZs3GMmJXo0j8/yn3Zu99MZiaTHhLGpwIzW0tKF494/Xkpdq2+sndtJoHu5fddqOVfRxNpl2Yzyo3ZuFxQYwLpcE5evN7PnSo3R4wgv0dnTyxsHrNyfFcPcdN9o5yCB7tXs7TwpajRPzEo2ehzDPDYzkbSYMDYWXJOWLhzywfEyalu6vPacLbcige7FDpjrOFveyNrl2QQH+e+PMigwgLXLs7lY2Uzht9LSxQ/r7Oll2/4i7suMZn5mjNHjOJX/poCX62/n10iMDOXJ2f7bzu0evzeJlOjRbJS1dDGCj06UUdPS5ZXnOx+JBLqXOmSp40xZI2v8vJ3bjQoMYO2ybM5XNLHvaq3R4wgP1dnTy9b9RcxLj2aBj7VzkED3Sva18wmRoTw1R9q53ROzkkmKGs2r0tLFLXx8qpzq5i7yV5hQygdPXmf0AOL2HSmq51TpTdYsyyIkKNDocTxGcFD/Wvq58kb2X5OWLr6ry9bL1n1FzEkbx/1ZvtfOQQLdK20sMJMQEcJTc1KMHsXjPDm7v6XLWroY6k+nKrje1Omz7Rwk0L3O0aJ6ThQ3sGZpFqGjpJ0PFRwUwJplWXxT1shBc53R4wgP0W3rY+u+ImalRrEoO9bocVxGAt3LbCy4Rnx4CE/PSzV6FI/18znJTIgMlZYu/umT0xVUNnaQvyLHZ9s5SKB7lePWeo5ZG1gt7fwHhQQF8vKyLE6X3uSwpd7ocYTBum19bNlrYWZKFEtMvtvOQQLdq2wsMBMXHsIv50s7H8lTc1MYHxEq7x4VfHrG3s59d+3cTgLdS5wsaeBIUT3/uiRT2rkDQoICWbMsi5MlNzlaJC3dX/X09rFln4UZyZEsy4kzehyXk0D3Ehv3mIkdG8yz89OMHsVr/GJuCgkRIbxaYDZ6FGGQz85UUt7QwYY832/nIIHuFU6XNnDIUseqJZmMDpZ27qjQUYGsXprFieIGael+qKe3j817LUxLiiR3UrzR47iFBLoXeHWPmZgxwfzqPmnnt+uZeanEhYewseCa0aMIN/v8m0rKGtr9pp2Dg4GulHpQKXVVKWVRSv3+FtssU0qdVUpdUkrtd+6Y/utM2U0Omut4aUkmYcFBRo/jdewt/Zi1geNWaen+wjbQzu9JjGDFZP9o5+BAoCulAoEtwEPAFOAZpdSUIdtEAa8DP9Va3wP83AWz+qWNe8xEjwnm19LO79iz81OJHRvCRllL9xt/OVtFab1/tXNwrKHPAyxaa6vWuhv4CHh0yDa/BD7VWpcBaK3lpNROcHbgnCQvLs5gTIi08zvV39IzOVJUz8mSBqPHES5mb+eTJ0TwwJQEo8dxK0cCPQkoH3S7YuC+wXKAcUqpfUqp00qplcM9kVJqlVLqlFLqVG2tnDxpJBv3XCMqbBQrF6QbPYrXe3Z+GrFjg9m4R1q6r/vyfBXFdW3k52X7VTsHxwJ9uO/I0HdqBAGzgR8DPwL+q1Iq53tfpPV2rfUcrfWcuDjfPyb0bpwrb2Tv1VpeWpzJWGnnd210cCCrlmRyyFLH6VJp6b6qt0/zWqGFSePDeWDKeKPHcTtHAr0CGHxav2SgaphtvtJat2mt64ADwAznjOifNhWYiRw9ipULZO3cWX51XxoxY4J5VVq6z/rr+SqstW1syDMREOBf7RwcC/STgEkplaGUCgaeBr4Yss1fgMVKqSClVBgwH7ji3FH9x4WKJgq+reHFRRmEh44yehyfERYcxEtLMjloruNM2U2jxxFO1tun2VRgZmJCOA/e43/tHBwIdK21DVgHfE1/SH+stb6klFqtlFo9sM0V4CvgPHAC2Km1vui6sX3bxgIzEaFB/GZhutGj+Jxf35dG9BhZS/dF/3HhOkW1bazPy/bLdg79a98j0lrvBnYPuW/bkNv/B/g/zhvNP12sbGLPlWr+04ocIqSdO92YkCBeXJzB//7qKmfLG5mZEmX0SMIJ+vo0rxWYMcWP5eGpE4wexzDyTlEPs6nATHhoEL+Vdu4yKxekExU2ik1yXLrP2H3xOuaaVtb76dq5nQS6B7lc1czfL1fz/MIMIkdLO3eVsSFBvLQ4k8Jvazhf0Wj0OOIu9Q2snWfFjeHH0/y3nYMEukfZVGAmPCSI5xdmGD2Kz1u5II3I0dLSfcFXl25wrbqV9bkmAv24nYMEuse4cr2Zry7d4LmF6USGSTt3tfDQUbywKIM9V2q4WNlk9DjiDtnbeWbsGB6ZkWj0OIaTQPcQrxWaGRsSxPOLpJ27y28XphMRGiTnePFif798g29vtLAuN9vv2zlIoHuEqzda2H3hBr+9P52osGCjx/EbEaGjeH5RBv+4XM2lKmnp3qavT7OxwEJ6TBg/lXYOSKB7hE2FZsYEB/KCtHO3e25hBuGhQbKW7oX+caWaK9ebWZdrIihQogwk0A1nrm5h94Xr/Ob+dMaNkXbubpGjR/Hcwgy+vtQfDsI7aN2/dp4WE8ZjM6Wd20mgG+y1QgujRwXy4uJMo0fxWy8szCA8RFq6Nym4UsOlqmbWLs+Wdj6IfCcMZKlp5cvzVaxckE60tHPDRIaN4rcL0/nbxRtcvdFi9DhiBFprNhaYSYkezeP3Dj2Tt3+TQDfQ5kIzoUGBvLRY1s6N9sKiDMaGBLGpUFq6p9t7tYYLlU2sW57NKGnn3yHfDYNYa1v54lwVKxekETM2xOhx/F5UWDC/uT+N3ReuY66Wlu6ptNZs3GMmedxonpiVbPQ4HkcC3SCbCy0EBwXI2rkHeXFRJmGjAtlUaDF6FHEL+67Vcq6iibXSzocl3xEDFNe18fnZSn41P424cGnnnmLcmGBW3p/OX89XYamRlu5p7O08KWo0P5N2PiwJdANsLrQwKjCAVUulnXualxZnMnpUIK9JS/c4B8x1nC1v5OXlWQQHSXQNR74rblZa39/On52fRnx4qNHjiCGixwTz6wVpfHmuiqLaVqPHEQP62/k1EiND+fnslJG/wE9JoLvZlr0WggIUq6Wde6xVizMJCQpks7R0j3HYUs+ZskbWLM+Wdv4D5DvjRuUN7Xx6ppJn5qUSHyHt3FPFjA3h1wvS+MvZSqzS0g3Xf9z5NSZEhvLUHFk7/yES6G60Za+FgADFmmVZRo8iRvDS4kyCgwLYvFdautGOFtVzsuQma5ZlERIUaPQ4Hk0C3U3KG9r55HQFz8xNIUHauceLCw/hV/PT+MvZKkrq2owex6+9WmAmISKEp+bI2vlIJNDd5PV9RQQoxWpp515j1dJMggKUtHQDHS2q50RxA2uWZhE6Str5SCTQ3aCysYNPTpfzi7kpTIgcbfQ4wkHx4aE8Oz+Nz76ppLReWroRNhZcIz48hKfnpRo9ileQQHeD1wcanrRz7/OvSzMJDFBskZbudset9RyzNvCv0s4dJoHuYlWNHXx8qpyfz0khKUraubdJiAjll/NS+fRMJeUN7UaP41c2FpiJHRvCs/OlnTtKAt3Ftu4rAuBlaedea/XSLAKUtHR3OlnSwJGielYvzZR2fhsk0F3oelMHfzxZzpOzk0keF2b0OOIOjY8M5el5KXxyukJaupts3GMmdmwwz85PM3oUryKB7kLb9hXRpzUvL8s2ehRxl9Ys62/prw/8xSVc53RpA4csdaxaksnoYGnnt0MC3UWqmzv58GQ5P5uVTEq0tHNvNyFyNE/NTeaT0+VUNnYYPY5Pe3WPmZgxwfzqPmnnt0sC3UW27iuit0+zdrm0c1+xZuAvrddlLd1lzpTd5KC5jpeWZBIWHGT0OF5HAt0Fapo7+fBEGU/cm0RqjLRzX5EUNZqfz0nh41PlVElLd4mNe8z9Z7yUdn5HJNBdYNt+K7Y+zbpcaee+xn600lZZS3e6s+WN7L9Wy4uLMxgTIu38TjgU6EqpB5VSV5VSFqXU739gu7lKqV6l1JPOG9G71LR08v7xUh6bmURazBijxxFOljwujCdnJ/PHk+XcaOo0ehyfsqnATFTYKFYuSDd6FK81YqArpQKBLcBDwBTgGaXUlFts97+Ar509pDfZvt9KT2+ftHMf9vKybPq0Ztt+aenOcr6ikcJva3hpcSZjpZ3fMUca+jzAorW2aq27gY+AR4fZbj3wZ6DGifN5ldqWLt4baOcZsdLOfVVKdBg/m5XMByfKqG6Wlu4MmwrMRI4excoFsnZ+NxwJ9CSgfNDtioH7/kkplQQ8Dmz7oSdSSq1SSp1SSp2qra293Vk93o6DVrpt0s79wdrl2fT2SUt3houVTey5UsOLizIIDx1l9DhezZFAV8Pcp4fcfhX4nda694eeSGu9XWs9R2s9Jy4uztEZvUJ9axd/OFrKT2ckkhk31uhxhIulxoTx+L1JfHC8jBpp6XdlY4GZiNAgfrMw3ehRvJ4jgV4BDD6zfDJQNWSbOcBHSqkS4EngdaXUY06Z0EvsOFhMp62Xdbkmo0cRbrJueTa2Ps0bB6xGj+K1LlU18Y/L1Ty/KIMIaed3zZFAPwmYlFIZSqlg4Gngi8EbaK0ztNbpWut04BPgZa31506f1kM1tHWz62gJj0xPJDte2rm/SI8dw6MzE3n/eCm1LV1Gj+OVNhWYCQ8N4rmFGUaP4hNGDHSttQ1YR//RK1eAj7XWl5RSq5VSq109oDfYedBKR08vG/Jk7dzfrM810W3rY8dBaem368r1Zr6+VM1zCzOIHC3t3BkcOj5Ia70b2D3kvmH/AVRr/du7H8t73Gzr5t0jJfx42gSy48ONHke4WUbsGB6dmcQfjpayakkmsWNDjB7Ja7xWaCY8JIgXpJ07jbxT9C69eaiY9p5eNuTJ2rm/WpebTZetV1r6bbh6o4XdF27w24XpRIZJO3cWCfS70NjezTtHSnh46gRyEqSd+6usuLE8MiORPxwtpaGt2+hxvMKmQjNjQ4J4YZG0c2eSQL8Lbx0qprXLxnpZO/d763Oz6eiRlu4Ic3ULuy9c5zf3pxEVFmz0OD5FAv0ONbX38PbhEh6aOp5J4yOMHkcYLDs+nJ9MT2TXkRJuSkv/QZsKLYSNCuTFRZlGj+JzJNDv0FuHi2npsrFejjsXAzbkZtPe08vOQ9LSb8VS08Jfz1ex8v50xo2Rdu5sEuh3oKmjh7cOF/PAlASmJEo7F/1MCeE8PG0C7x4ppbFdWvpwXiu0MHpUIC8tlnbuChLod+DdIyW0dNrkyBbxPRtyTbR22XjzULHRo3icotpWvjxXxa8XpBEt7dwlJNBvU0tnD28eKmbF5ASmJkUaPY7wMBPHh/PwtPG8c7iEpvYeo8fxKJsLLYQESTt3JQn02/TukRKaOnrIl3YubmF9romWLhtvHpaWbmetbeUvZyv51X2p8uYrF5JAvw2tXTZ2Hiomb1I805KlnYvhTZ4QwY/uSeDtw8U0dUhLB9i810JwUACrlmQZPYpPk0C/De8eKaGxvYf10s7FCDbkmWjptPG2tHRK6tr4y9kqnp2fRly4tHNXkkB3UFuXjZ0HrSybGMfMlCijxxEe7p7ESP5lSgJvHSqmudO/W/rmvRaCAhT/ulTWzl1NAt1Bu46WcrNd1s6F4/LzTDR32njncInRoximtL6Nz76p5JfzU4kPDzV6HJ8nge6Ati4bOw5aWZITx72p44weR3iJqUmRrJgcz5uHimnx05a+Za+FwADF6qWydu4OEugOeO9Y/0mXpJ2L25Wfl0NTRw/vHikxehS3K29o59MzlfxyXioJEdLO3UECfQTt3Ta2H7Cy2BTL7DRp5+L2TEuOJHdSPDsHTuTmT7bstRCgpJ27kwT6CN4/Vka9tHNxF/LzTDS297DraInRo7hNeUM7n5yu4Ol5KYyPlHbuLhLoP6Cju5c3DhSxMDuGOenRRo8jvNSMlCiWTYxjxwErbX7S0l/fV0SAUqxZJu3cnSTQf8D7x0upa+0mPy/H6FGEl9uQZ+Jmew9/OFZq9CguV9nYwSeny3lqbjITIkcbPY5fkUC/hc6eXt44YGVBZgzzMqSdi7szK3Uci02x7Dhgpb3bt1v663stAKxZJhd+cTcJ9Fv44HgZtS1d5K+QtXPhHK+sMFHf1s17PtzSqxo7+PhUOT+fk0JSlLRzd5NAH0ZnTy/b9hcxPyOa+zJjjB5H+IjZadEsyo5l+wErHd29Ro/jElv3FQHwsqydG0ICfRgfnSijRtq5cIH8FSbqWrt5/7jvtfTrTR388WQ5T85OJnlcmNHj+CUJ9CE6e3rZur+IeenRLJB2LpxsbmoWPO0AAA6lSURBVHo092fFsG2/77X0bfuK6NOal2Xt3DAS6EP86VQ51c397VwpZfQ4wgfl55moa+3igxNlRo/iNNXNnXx4spyfzUomJVrauVEk0AfpsvXy+r4i5qSN4/4saefCNeZnxnBfZjTb9hfR2eMbLX3b/iJ6+zRrl0s7N5IE+iB/OlXB9aZOaefC5fLzcqht6eJDH2jpNc2dfHC8jCfuTSI1Rtq5kSTQB3Tb+ti6r4hZqVEsyo41ehzh4xZk9b+/wRda+hsHrNj6NOtypZ0bTQJ9wCenK6hs7CB/RY60c+EWr+SZqG7u4o8ny40e5Y7VtnTx/vFSHpuZRFrMGKPH8XsS6PS38y17LcxIiWKJSdq5cI8FWTHMTR/H1n1FdNm8s6VvP1BEt61P2rmHcCjQlVIPKqWuKqUsSqnfD/P4s0qp8wMfR5RSM5w/qut89k1/O38lT9bOhfsopcjPy+FGcycfe2FLr2vt4r1jZTw6M4mMWGnnnmDEQFdKBQJbgIeAKcAzSqkpQzYrBpZqracD/w5sd/agrtLT28fmvRamJ0eybGKc0eMIP7MwO4bZad7Z0ncctNJl65V27kEcaejzAIvW2qq17gY+Ah4dvIHW+ojW+ubAzWNAsnPHdJ3PvqmkvKGDfGnnwgD9Ld1EVVMnn5yuMHochzW0dfOHo6U8MiORrLixRo8jBjgS6EnA4L8HKwbuu5UXgL8N94BSapVS6pRS6lRtba3jU7qIrbd/7XxaUv9VZYQwwmJTLPemRvH63v71aG+w46CVjp5e1ks79yiOBPpwtVUPu6FSy+kP9N8N97jWervWeo7Wek5cnPHLG5+fraK0vp0N0s6FgewtvbKxgz+f8fyWfrOtm11HSvjJ9ESy48ONHkcM4kigVwApg24nA1VDN1JKTQd2Ao9qreudM57r2Hr72Fxo5p7ECFZMlnYujLU0J44ZKVFs2Wuhp9ezW/rOQ1bae3rZIO3c4zgS6CcBk1IqQykVDDwNfDF4A6VUKvAp8Gut9TXnj+l8X5yrokTaufAQSileyTNRcbODTz24pTe2d/PukVIenjYBU4K0c08zYqBrrW3AOuBr4Arwsdb6klJqtVJq9cBm/wbEAK8rpc4qpU65bGIn6O3TbC60MHlCBA9MSTB6HCEAWDYxjunJkWz24Jb+5qFiWrtsbMiVU0t7IoeOQ9da79Za52its7TW/33gvm1a620Dn7+otR6ntZ458DHHlUPfrS/PVWGtayM/L1vaufAY9rX08oYOPvum0uhxvqepvYd3Dpfw8LTxTBwv7dwT+d07RXv7NJsKzUwaH84DU8YbPY4Q35E7KZ5pSZFs2WvB5mEt/c3DxbR02diQJ+3cU/ldoP/1fBXW2jY25JkICJB2LjyLUooNeSZK69v5/Oz3jj0wTFNHD28fLubBe8YzaXyE0eOIW/CrQO/t07xWaGFiQjgP3iPtXHimFZPjuScxgs2FZo9p6W8fLqalU9q5p/OrQN994TqWmlbW52VLOxcey97SS+rb+eKc8S29ubOHtw4V88CUBKYkSjv3ZH4T6H19mtcKzZjix/Lw1AlGjyPED/qXyQlMGh/O5kILvX3Dvo/Pbd45XEKztHOv4DeB/reLN7hW3cp6WTsXXiAgoP+IF2tdG18a2NJbOnt481AxKyYnMDUp0rA5hGP8ItD7+jSbCsxkxY3hx9OknQvv8KN7xjMxIZxNhWbDWvq7R0po6ughX9q5V/CLQP/60g2uVrewIc9EoLRz4SUCAvrX0q21bfz1vPtbemuXjZ2HismbFM+0ZGnn3sDnA72vT7OxwExm7Bh+Mj3R6HGEuC0PTR1PTsJYXiu00Ofmlv7ukRIa23tk7dyL+Hyg//1yNd/eaGFdbra0c+F1AgIU63NNWGpa2X3xuttet63Lxs6DVpZN7D9pmPAOPh3oWvevnafHhPHTGdLOhXd6eNoEsuPHsqnA7LaWvutoKTfbZe3c2/h0oP/jcjWXrzezLtdEUKBP76rwYYEBivW52VyrbuWrSzdc/nptXTZ2HLSyJCeOe1PHufz1hPP4bMpp3X/OlrSYMB6bKe1ceLefTE8kM26MW1r6e8dKaWjrlnbuhXw20Auu1HCxspm1y7OlnQuvZ2/p395o4e+XXdfS27ttbD9gZbEpltlp0s69jU8mndb9R7akRI/m8Xt/6PKnQniPR6YnkhE7ho0Frjvi5f1jZdRLO/daPhno+67WcqGyiXXLsxkl7Vz4iKDAANYtz+bK9Wb+caXa6c/f0d3LGwesLMyOYU56tNOfX7iez6Wd1ppXC8wkjxvNE7OSjR5HCKd6dGYi6TFhbCowo7VzW/oHJ8qoa+0iPy/Hqc8r3MfnAn3/tVrOlTeyVtq58EFBgQGsXZ7Npapm9lypcdrzdvb0sm1/EQsyY5iXIe3cW/lU4tnXzpOiRvMzaefCRz1+bxKp0WFsLLjmtJb+4Ykyalu6yF8ha+fezKcC/aC5jm/KGnl5eRbBQT61a0L8k30t/WJlM4Xf3n1Lt7fz+RnR3JcZ44QJhVF8JvXs7XxCZChPzpZ2Lnzb47OSSIkezUYnrKX/8WQ51c1dcmSLD/CZQD9sqed06U1eXpZFSFCg0eMI4VKjAgNYuyyb8xVN7Ltae8fP02XrZeu+Iuamj2NBlrRzb+cTgd7fzq8xPiKUp+amGD2OEG7xxKxkkqJG8+pdtPSPT5Zzo7mT/LwclJKT13k7nwj0o0X1nCy5yRpp58KPBAf1H/FyrryR/dduv6Xb2/nstHEszJZ27gt8ItBfLTCTEBHCL6SdCz/z5Oz+ln4na+l/OlVBVVMn+Xkmaec+wusD/WhRPSeKG1i9NIvQUdLOhX8JDgpgzbIsvilr5KC5zuGv67b1sXVfEfemRrHYFOvCCYU7eX2gbyy4Rlx4CM/MSzV6FCEM8fM5yUyIDL2tlv7nMxVUNnZIO/cxXh3ox631HLNKOxf+LSQokJeXZXG69CZHiupH3L6nt48tey3MSIliaU6cGyYU7uLVgb6p0Ezs2BCenS/tXPi3p+amMD4ilI17Rm7pn56poOJmB69IO/c5Xhvop0oaOGypZ/XSTGnnwu+FBAWyZlkWJ0oaOGq9dUvv6e1j814L05MjWTZR2rmv8dpA31hgJnZsMM/OTzN6FCE8wi/mppAQEcLGPeZbbvPZN5WUN8jaua9yKNCVUg8qpa4qpSxKqd8P87hSSm0aePy8UmqW80f9/06X3uSguY5VSzIZHSztXAiA0FGBrF6axfHiBo4N09JtA2vn05IiyZ0Ub8CEwtVGDHSlVCCwBXgImAI8o5SaMmSzhwDTwMcqYKuT5/yOjQVmoscE86v7pJ0LMdgz81KJCx++pX9+torS+nY2SDv3WUEObDMPsGitrQBKqY+AR4HLg7Z5FNil+/815phSKkopNUFrfd3ZA39TdpMD12r53YOTCAt2ZHwh/Ie9pf/7Xy+T93/3ETAouK83dXJPYgQrJks791WOJGISUD7odgUw34FtkoDvBLpSahX9DZ7U1Ds7MkUDS3LiWLlA2rkQw3l2fiqWmlaaOrq/c3/O+HCeX5gh7dyHORLow/30hx4X5cg2aK23A9sB5syZc0dnE5qVOo5dz8+7ky8Vwi+EjgrkfzwxzegxhAEc+UfRCmDwSVKSgao72EYIIYQLORLoJwGTUipDKRUMPA18MWSbL4CVA0e73Ac0uWL9XAghxK2NuOSitbYppdYBXwOBwFta60tKqdUDj28DdgMPAxagHXjOdSMLIYQYjkOHiWitd9Mf2oPv2zbocw2sde5oQgghbofXvlNUCCHEd0mgCyGEj5BAF0IIHyGBLoQQPkLd6dXC7/qFlaoFSu/wy2MBx6+35Rtkn/2D7LN/uJt9TtNaD3vuY8MC/W4opU5precYPYc7yT77B9ln/+CqfZYlFyGE8BES6EII4SO8NdC3Gz2AAWSf/YPss39wyT575Rq6EEKI7/PWhi6EEGIICXQhhPARHh3onnZxandwYJ+fHdjX80qpI0qpGUbM6Uwj7fOg7eYqpXqVUk+6cz5XcGSflVLLlFJnlVKXlFL73T2jsznw33akUupLpdS5gX326rO2KqXeUkrVKKUu3uJx5+eX1tojP+g/VW8RkAkEA+eAKUO2eRj4G/1XTLoPOG703G7Y5/uBcQOfP+QP+zxou0L6z/r5pNFzu+HnHEX/dXtTB27HGz23G/b5vwD/a+DzOKABCDZ69rvY5yXALODiLR53en55ckP/58WptdbdgP3i1IP98+LUWutjQJRSaoK7B3WiEfdZa31Ea31z4OYx+q8O5c0c+TkDrAf+DNS4czgXcWSffwl8qrUuA9Bae/t+O7LPGghX/Rc9HUt/oNvcO6bzaK0P0L8Pt+L0/PLkQL/Vhadvdxtvcrv78wL9/4f3ZiPus1IqCXgc2IZvcOTnnAOMU0rtU0qdVkqtdNt0ruHIPm8GJtN/+coLQL7Wus894xnC6fnl0AUuDOK0i1N7EYf3Rym1nP5AX+TSiVzPkX1+Ffid1rrXR65Y78g+BwGzgTxgNHBUKXVMa33N1cO5iCP7/CPgLJALZAH/UEod1Fo3u3o4gzg9vzw50P3x4tQO7Y9SajqwE3hIa13vptlcxZF9ngN8NBDmscDDSimb1vpz94zodI7+t12ntW4D2pRSB4AZgLcGuiP7/BzwP3X/ArNFKVUMTAJOuGdEt3N6fnnykos/Xpx6xH1WSqUCnwK/9uK2NtiI+6y1ztBap2ut04FPgJe9OMzBsf+2/wIsVkoFKaXCgPnAFTfP6UyO7HMZ/X+RoJRKACYCVrdO6V5Ozy+PbejaDy9O7eA+/xsQA7w+0Fht2ovPVOfgPvsUR/ZZa31FKfUVcB7oA3ZqrYc9/M0bOPhz/nfgHaXUBfqXI36ntfba0+oqpT4ElgGxSqkK4L8Bo8B1+SVv/RdCCB/hyUsuQgghboMEuhBC+AgJdCGE8BES6EII4SMk0IUQwkdIoAshhI+QQBdCCB/x/wD5TXvdHWcXTAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<Figure size 432x288 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "pm.loading_scenario.plot(plt.axes())" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\n", - " \\begin{array}{lrrl}\\hline\n", - " \\textrm{A_m} & A_\\mathrm{m} = 1540.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area} \\\\\n", - " \\textrm{A_f} & A_\\mathrm{f} = 16.67 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area} \\\\\n", - " \\textrm{P_b} & p_\\mathrm{b} = 1.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface} \\\\\n", - " \\hline\n", - " \\hline\n", - " \\end{array}\n", - " " - ], - "text/plain": [ - "<bmcs.pullout.pullout_sim.CrossSection at 0x7f058b14fa70>" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pm.cross_section.trait_set(A_f=A_f, P_b=p, A_m=A_m)\n", - "pm.cross_section # display the cross section parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\n", - " \\begin{array}{lrrl}\\hline\n", - " \\textrm{L_x} & L = 45 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{embedded length} \\\\\n", - " \\hline\n", - " \\hline\n", - " \\end{array}\n", - " " - ], - "text/plain": [ - "<bmcs.pullout.pullout_sim.Geometry at 0x7f058b14f9b0>" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pm.geometry # geometry of the boundary value problem" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot the current bond-slip law" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\n", - " \\begin{array}{lrrl}\\hline\n", - " \\textrm{E_m} & E_\\mathrm{m} = 28000.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the matrix} \\\\\n", - " \\textrm{E_f} & E_\\mathrm{f} = 170000.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the reinforcement} \\\\\n", - " \\textrm{s_data} & s = & \\textrm{[mm]} & \\textrm{slip values} \\\\\n", - " \\textrm{tau_data} & \\tau = & \\textrm{[MPa]} & \\textrm{shear stress values} \\\\\n", - " \\hline\n", - " \\hline\n", - " \\end{array}\n", - " " - ], - "text/plain": [ - "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f058b08e8f0>" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pm.mats_eval # configuration of the material model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pm.mats_eval.bs_law.plot(plt, color='green')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "c='red'\n", - "pm.geometry.L_x = 200\n", - "pm.sim.run()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig, ax = plt.subplots(1,1,figsize=(7,4))\n", - "pm.hist.plot_Pw(ax,0.68)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ax = plt.axes()\n", - "for t in np.linspace(0.,0.62,4):\n", - " pm.plot_sf(ax,t)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ax = plt.axes()\n", - "for t in np.linspace(0.,.99,5):\n", - " pm.plot_s(ax,t)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ax = plt.axes()\n", - "for t in np.linspace(0.,.99,5):\n", - " pm.plot_eps_p(ax,t)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ax = plt.axes()\n", - "for t in np.linspace(0.,.99,5):\n", - " pm.plot_sig_p(ax,t)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Questions and Tasks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1 Define a symmetric loading scenario with increasing amplitude and 3 cycles" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": true, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/bmcs_course/4_2_BS_elastic_plastic_slip.ipynb b/bmcs_course/4_2_BS_elasto_plastic.ipynb similarity index 99% rename from bmcs_course/4_2_BS_elastic_plastic_slip.ipynb rename to bmcs_course/4_2_BS_elasto_plastic.ipynb index f12403d..4960758 100644 --- a/bmcs_course/4_2_BS_elastic_plastic_slip.ipynb +++ b/bmcs_course/4_2_BS_elasto_plastic.ipynb @@ -633,6 +633,13 @@ "\\end{align}" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, diff --git a/bmcs_course/4_3_BS_EP_SH_IK.ipynb b/bmcs_course/4_3_BS_EP_SH_IK.ipynb new file mode 100644 index 0000000..92ad5d5 --- /dev/null +++ b/bmcs_course/4_3_BS_EP_SH_IK.ipynb @@ -0,0 +1,1123 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Bond-slip elasto-plstic model with isotropic and kinematic hardening \n", + "This notebook is a work in progress on an abstract and general implementation of time integration algorithm for general damage-plasticity modes. It serves for the development of a package that can be configured by specifying the ingredients of thermodynamically based model\n", + "\n", + " - Vector of state variables $\\boldsymbol{\\mathcal{E}}$\n", + " - Vector of streses $\\boldsymbol{\\mathcal{S}}$\n", + " - Yield condition $f(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", + " - Flow potential $\\varphi(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", + "\n", + "as symbolic equations using the sympy package. The time-stepping algorithm gets generated automatically within the thermodynamically framework. The derived evolution equations and return-mapping to the yield surface is performed using Newton-Raphson scheme. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "%matplotlib notebook\n", + "import sympy as sp\n", + "sp.init_printing()\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Material parameters" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "E_b = sp.Symbol('E_b', real=True, nonnegative=True)\n", + "gamma = sp.Symbol('gamma', real=True, nonnegative=True)\n", + "K = sp.Symbol('K', real=True)\n", + "tau_bar = sp.Symbol(r'\\bar{\\tau}', real=True, nonnegative=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "py_vars = ('E_b', 'gamma', 'K', 'tau_bar')\n", + "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", + "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## State variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "s = sp.Symbol('s', real=True)\n", + "s_pi = sp.Symbol(r's_pi', real=True)\n", + "alpha = sp.Symbol('alpha', real=True)\n", + "z = sp.Symbol('z', real=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "Eps = sp.Matrix([s_pi, z, alpha])\n", + "Eps.T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Thermodynamic forces" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "tau = sp.Symbol('tau', real=True)\n", + "X = sp.Symbol('X', real=True)\n", + "Z = sp.Symbol('Z', real=True, nonnegative=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "Sig = sp.Matrix([tau, Z, X])\n", + "Sig.T" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Sig_Eps = sp.Matrix([[E_b * (s - s_pi), K * z, alpha * gamma]]).T\n", + "Sig_Eps" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable code for** $\\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "get_Sig = sp.lambdify(\n", + " (s, Eps) + sp_vars, Sig_Eps.T, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "To derive the time stepping procedure we will need also the matrix of derivatives of the generalized stresses $\\boldsymbol{\\mathcal{S}}$ with respect to the kinematic variables $\\boldsymbol{\\mathcal{E}}$ \n", + "\\begin{align}\n", + " \\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "dSig_dEps = sp.Matrix([Sig_Eps.T.diff(eps) for eps in Eps]).T\n", + "dSig_dEps" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable Python code generation** $\\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_dSig_dEps = sp.lambdify(\n", + " (s, Eps) + sp_vars, dSig_dEps, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Threshold function" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "To keep the framework general for different stress norms and hardening definitions let us first introduce a general function for effective stress. Note that the observable stress $\\tau$ is identical with the plastic stress $\\tau_\\pi$ due to the performed sign switch in the definition of the thermodynamic forces." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "f_Sig = sp.sqrt((tau - X)*(tau - X)) - (tau_bar + Z)\n", + "f_Sig" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable code generation** $f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S}})$\n", + "\n", + "Note that this is a function of both the forces and kinematic state variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_f_Sig = sp.lambdify(\n", + " (Eps, Sig) + sp_vars, f_Sig, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The derivative of $f$ required for time-stepping $\\partial_\\boldsymbol{\\mathcal{S}} f$ is obtained as" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "df_dSig = f_Sig.diff(Sig)\n", + "sp.simplify(df_dSig).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable code generation** $\\partial_\\boldsymbol{\\mathcal{S}}f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S})}$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_df_dSig = sp.lambdify(\n", + " (Eps, Sig) + sp_vars, df_dSig, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flow direction\n", + "Evolution equations have the form\n", + "\\begin{align}\n", + " \\dot{\\boldsymbol{\\mathcal{E}}} = \\lambda \\, \\boldsymbol{\\Phi}\n", + "\\end{align}\n", + "with the vector $\\Phi$ representing the flow direction within \n", + "the stress space. Assuming the normality condition, i.e. that \n", + "the flow direction coincides with the vector normal to the \n", + "yield condition we can write\n", + "\\begin{align}\n", + " \\boldsymbol{\\Phi} = \\boldsymbol{\\Upsilon} \\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", + "\\end{align}\n", + "The sign matrix $\\boldsymbol{\\Upsilon}$ is used to direct all the derivatives in the outward direction from the elastic range." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Sig_signs = sp.diag(-1,1,1)\n", + "Phi = -Sig_signs * df_dSig\n", + "Phi" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "get_Phi = sp.lambdify(\n", + " (Eps, Sig) + sp_vars, Phi, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Time integration scheme" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "## Summary of the backward Euler scheme\n", + "The derived expressions can be now plugged-in into a generic return mapping algorithm that efficiently identifies a state that satisfies the discrete consistency condition. The general structure of an implicit integration scheme reads\n", + "\\begin{align}\n", + "\\boldsymbol{\\mathcal{E}}_{n+1} &= \\boldsymbol{\\mathcal{E}}_{n} + \n", + "\\lambda_\\Delta \\, \\boldsymbol{\\Phi}_{n+1} \\\\\n", + "f(\\boldsymbol{\\mathcal{E}}_{n+1}; \\lambda_\\Delta) &= 0\n", + "\\end{align}\n", + "To reach an admissible state let us linearize the threshold function at an intermediate state $k$ as\n", + "\\begin{align}\n", + "f(\\boldsymbol{\\mathcal{E}}^{(k)}; \\lambda_\\Delta^{(k)} )\n", + "& \\approx\n", + "f^{(k)} \n", + " + \n", + "\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", + "\\Delta \\lambda\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Thus, by rewriting the linearized equation as a recurrence formula, the iteration algorithm is obtained\n", + "\\begin{align}\n", + "&\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", + "\\Delta \\lambda =\n", + "- f ^{(k)}\n", + "\\\\\n", + "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", + "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \n", + "\\boldsymbol{\\mathcal{E}}^{(k)} + \n", + " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", + " \\\\\n", + "&k = k + 1\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "To define a generic return mapping we need to construct the derivatives of the flow rule $f$ with respect to $\\lambda$. The dependency of $f$ on $\\lambda$ is intermediated via the stresses $\\boldsymbol{\\mathcal{S}}$ and state variables $\\boldsymbol{\\mathcal{E}}$\n", + "\\begin{align}\n", + "f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda))).\n", + "\\end{align}\n", + "To correctly resolve the dependencies in the derivative $\\frac{\\partial f}{\\partial_\\lambda}$, we need to apply rules for chaining of derivatives. Let us start with the derivative with respect to $\\boldsymbol{\\mathcal{E}}$ in the form\n", + "\\begin{align}\n", + "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}))}{\\partial \\boldsymbol{\\mathcal{E}}}\n", + " &=\n", + "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}})}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", + "\\frac{\\partial \\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}})}{\\partial \\boldsymbol{\\mathcal{E}}}.\n", + "\\end{align}\n", + "By expanding the derivatives of $\\boldsymbol{\\mathcal{E}}$ with respect to $\\lambda_\\Delta$ that will be abbreviate in index position as $\\lambda$ for brevity we obtain\n", + "\\begin{align}\n", + "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda)))}{\\partial \\lambda}\n", + " &=\n", + "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", + "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", + "\\frac{\\partial \\boldsymbol{\\mathcal{E}}}{\\partial \\lambda}.\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "The last term $\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{ \\partial \\lambda}$ can be obtained from the evolution equations\n", + "\\begin{align}\n", + "\\boldsymbol{\\mathcal{E}} = \\lambda \\, \\boldsymbol{\\Phi} \\; \\implies\n", + "\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{\\partial \\lambda} = \n", + " \\boldsymbol{\\Phi}\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "**Summarizing**: the algorithm can be written in a compact way as follows:\n", + "\\begin{align}\n", + "&\n", + "\\left(\n", + "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", + "^{(k)} \\, \n", + "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", + "^{(k)} \\, \n", + "\\boldsymbol{\\Phi}^{(k)}\n", + "\\right)\n", + "\\Delta \\lambda = -\n", + "f^{(k)}\\\\\n", + "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", + "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \\boldsymbol{\\mathcal{E}}^{(k)} + \n", + " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", + " \\\\\n", + "&k = k + 1\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Implementation concept\n", + "The gradient operators needed for the time-stepping scheme have been derived above and are now available for the implementation of the numerical algorithm both in `Python` and `C89` languages\n", + "\n", + "<table style=\"width:50%\">\n", + "<tr>\n", + "<th>Symbol</th>\n", + "<th>Python</th>\n", + "<th>C89</th>\n", + "</tr>\n", + "<tr>\n", + "<td>$\\mathcal{S}(\\boldsymbol{\\mathcal{E}}) $ \n", + "</td>\n", + "<td>get_Sig</td>\n", + "<td>get_Sig_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>$ f(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$</td>\n", + "<td>get_f</td>\n", + "<td>get_f_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>\n", + "$\\displaystyle{\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$\n", + " </td>\n", + "<td>get_df_dSig</td>\n", + "<td>get_df_dSig_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>\n", + "$\\displaystyle{\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}}(\\boldsymbol{\\mathcal{E}})$</td>\n", + "<td>get_dSig_dEps</td>\n", + "<td>get_dSig_dEps_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>$\\boldsymbol{\\Phi}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}}) $</td>\n", + "<td>get_Phi</td>\n", + "<td>get_Phi_C</td>\n", + "</tr>\n", + "</table>" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "To avoid repeated calculation of the same expressions, let us put the evaluation of $f$ and $\\frac{\\partial f}{\\partial \\lambda}$ into a single procedure. Indeed, the iteration loop can be constructed in such a way that the predictor $\\frac{\\partial f}{\\partial \\lambda}$ for the next step is calculated along with the residuum $f$. In case that the residuum is below the required tolerance, the overhead for an extra calculated derivative is negligible or, with some care, it can be even reused in the next time step. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "def get_f_df(s_n1, Eps_k, *margs):\n", + " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", + " f_k = np.array([get_f_Sig(Eps_k, Sig_k, *margs)])\n", + " df_dSig_k = get_df_dSig(Eps_k, Sig_k, *margs)\n", + " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", + " dSig_dEps_k = get_dSig_dEps(s_n1, Eps_k, *margs)\n", + " df_dSigEps_k = np.einsum(\n", + " 'ik,ji->jk', df_dSig_k, dSig_dEps_k)\n", + " dEps_dlambda_k = Phi_k\n", + " df_dlambda = np.einsum(\n", + " 'ki,kj->ij', df_dSigEps_k, dEps_dlambda_k)\n", + " df_k = df_dlambda\n", + " return f_k, df_k, Sig_k" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "The update of state variables $\\boldsymbol{\\mathcal{E}}^{(k+1)}$ for an newly obtained $\\lambda_\\Delta^{(k+1)}$ is performed using the evolution equations. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "def get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs):\n", + " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", + " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", + " Eps_k1 = Eps_n + lam_k * Phi_k[:,0]\n", + " return Eps_k1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "The double loop over the time increments and over the return mapping iteration. The inner loop represents the material point level in a standard finite element calculation. The input is the maximum slip value, the number of time steps, the maximum number of iterations and a load function which can define cyclic loading as shown below. The procedure returns the record of $\\boldsymbol{\\mathcal{E}}(t)$ and $\\boldsymbol{\\mathcal{S}}(t)$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "def get_response(margs, s_max=3, n_steps = 10, k_max=20, get_load_fn=lambda t: t):\n", + " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", + " Eps_k = np.copy(Eps_n)\n", + " Sig_record, Eps_record, iter_record = [], [], []\n", + " t_arr = np.linspace(0,1,n_steps+1)\n", + " s_t = s_max * get_load_fn(t_arr) + 1e-9\n", + " for s_n1 in s_t:\n", + " lam_k = 0\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " f_k_trial = f_k[-1]\n", + " k = 0\n", + " while k < k_max:\n", + " if f_k_trial < 0 or f_k_norm < 1e-8:\n", + " Eps_n[...] = Eps_k[...]\n", + " Sig_record.append(Sig_k)\n", + " Eps_record.append(np.copy(Eps_k))\n", + " iter_record.append(k+1)\n", + " break\n", + " dlam = np.linalg.solve(df_k, -f_k)\n", + " lam_k += dlam\n", + " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " k += 1\n", + " else:\n", + " print('no convergence')\n", + " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", + " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", + " iter_arr = np.array(iter_record,dtype=np.int_)\n", + " return t_arr, s_t, Eps_arr, Sig_arr, iter_arr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Support functions\n", + "To run some examples, let us define some infrastructure including a more complex loading history and postprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Loading history\n", + "This implementation uses the symbolic machinery which is not necessary a simpler data point based implementation with `numpy.interp1d` would be better ... later " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "t, theta = sp.symbols(r't, \\theta')\n", + "n_cycles = 5\n", + "A = 2\n", + "ups = np.array([((theta-2*cycle)*A+(1-A), theta-2*cycle<=1) \n", + " for cycle in range(n_cycles)])\n", + "downs = np.array([((1-(theta-(2*cycle+1)))*A+(1-A),(theta-(2*cycle+1))<=1) \n", + " for cycle in range(n_cycles)])\n", + "ups[0,0] = theta\n", + "updowns = np.einsum('ijk->jik',np.array([ups, downs])).reshape(-1,2)\n", + "load_fn = sp.Piecewise(*updowns).subs(theta,t*n_cycles)\n", + "get_load_fn = sp.lambdify(t, load_fn,'numpy')\n", + "t_arr = np.linspace(0,1,600)\n", + "plt.plot(t_arr, get_load_fn(t_arr));" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Plotting functions\n", + "To simplify postprocessing examples, here are two aggregate plotting functions, one for the state and force variables, the other one for the evaluation of energies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "def plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33):\n", + " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", + " s_pi_, z_, alpha_ = Eps_arr.T\n", + " sig_pi_, Z_, X_ = Sig_arr.T\n", + " n_step = len(s_pi_)\n", + " ax1.plot(s_t, sig_pi_, color='black', \n", + " label='n_steps = %g' % n_step)\n", + " ax1.set_xlabel('$s$'); ax1.set_ylabel(r'$\\tau$')\n", + " ax1.legend()\n", + " if ax11:\n", + " ax11.plot(s_t, iter_arr, '-.')\n", + " ax2.plot(t_arr, z_, color='green', \n", + " label='n_steps = %g' % n_step)\n", + " ax2.set_xlabel('$t$'); ax2.set_ylabel(r'$z$')\n", + " if ax22:\n", + " ax22.plot(t_arr, Z_, '-.', color='green')\n", + " ax22.set_ylabel(r'$Z$')\n", + " ax3.plot(t_arr, alpha_, color='blue', \n", + " label='n_steps = %g' % n_step)\n", + " ax3.set_xlabel('$t$'); ax3.set_ylabel(r'$\\alpha$')\n", + " if ax33:\n", + " ax33.plot(t_arr, X_, '-.', color='blue')\n", + " ax33.set_ylabel(r'$X$')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "from scipy.integrate import cumtrapz\n", + "def plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr):\n", + " W_arr = cumtrapz(Sig_arr[:,0], s_t, initial=0)\n", + " U_arr = Sig_arr[:,0] * (s_t-Eps_arr[:,0]) / 2.0\n", + " G_arr = W_arr - U_arr\n", + " ax.plot(t_arr, W_arr, lw=2, color='black', label=r'$W$')\n", + " ax.plot(t_arr, G_arr, color='black', label=r'$G$')\n", + " ax.fill_between(t_arr, W_arr, G_arr, color='green', alpha=0.2)\n", + " ax.set_xlabel('$s$'); ax3.set_ylabel(r'$E$')\n", + " ax.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "def plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr): \n", + " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", + " E_i = cumtrapz(Sig_arr, Eps_arr, initial=0, axis=0)\n", + " c = 'black'\n", + " ax.plot(t_arr, E_i[:,0], '-.', lw=1, color=c)\n", + " ax.fill_between(t_arr, E_i[:,0], 0, color=c, alpha=0.1)\n", + " c = 'black'\n", + " ax.plot(t_arr, E_i[:,0], color=c, lw=1)\n", + " ax.fill_between(t_arr, E_i[:,0], E_i[:,0], \n", + " color=c, alpha=0.2);\n", + " c = 'blue'\n", + " ax.plot(t_arr, E_i[:,1], '-.', lw=1, color='black')\n", + " ax.fill_between(t_arr, E_i[:,1], 0, color=c, alpha=0.1)\n", + " c = 'blue'\n", + " ax.plot(t_arr, E_i[:,1] + E_i[:,2], color='black', lw=1)\n", + " ax.fill_between(t_arr, E_i[:,1] + E_i[:,2], E_i[:,1], \n", + " color=c, alpha=0.3);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Examples" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "material_params = {\n", + " E_b:1, gamma: 0.0, K:0.1, tau_bar:1, \n", + "}\n", + "margs = [material_params[map_py2sp[name]] for name in py_vars]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Monotonic load \n", + "Let's first run the example with different size of the time step to see if there is any difference" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", + "ax11, ax22, ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", + "for n_steps in [20, 40, 200, 2000]: \n", + " t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", + " margs=margs, s_max=8, n_steps=n_steps, k_max=10\n", + " )\n", + " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", + "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", + "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Cyclic loading" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", + "ax11,ax22,ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", + "t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", + " margs, s_max=2, n_steps=20000, k_max=20, get_load_fn=get_load_fn\n", + ")\n", + "plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", + "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", + "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hide_input": false, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Interactive application" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hide_input": true, + "scrolled": false, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "def init():\n", + " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", + " s0 = 0\n", + " t0 = 0\n", + " Sig_record = []\n", + " Eps_record = []\n", + " iter_record = []\n", + " t_arr = []\n", + " s_t = []\n", + " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", + " \n", + "def get_response_i(s1, margs, n_steps = 60, k_max=20):\n", + " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", + " Eps_k = np.copy(Eps_n)\n", + " t1 = t0+n_steps+1\n", + " ti_arr = np.linspace(t0, t1, n_steps+1 )\n", + " si_t = np.linspace(s0,s1,n_steps+1)\n", + " for s_n1 in si_t:\n", + " lam_k = 0\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " f_k_trial = f_k[-1]\n", + " k = 0\n", + " while k < k_max:\n", + " if f_k_trial < 0 or f_k_norm < 1e-6:\n", + " Eps_n[...] = Eps_k[...]\n", + " Sig_record.append(Sig_k)\n", + " Eps_record.append(np.copy(Eps_k))\n", + " iter_record.append(k+1)\n", + " break\n", + " dlam = np.linalg.solve(df_k, -f_k)\n", + " lam_k += dlam\n", + " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " k += 1\n", + " else:\n", + " print('no convergence')\n", + " t_arr = np.hstack([t_arr, ti_arr])\n", + " s_t = np.hstack([s_t, si_t])\n", + " t0 = t1\n", + " s0 = s1\n", + " return\n", + "\n", + "import ipywidgets as ipw\n", + "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", + "ax11 = ax1.twinx()\n", + "ax22 = ax2.twinx()\n", + "ax33 = ax3.twinx()\n", + "axes = ax1, ax11, ax2, ax22, ax3, ax33\n", + "axes = ax1, None, ax2, ax22, ax3, ax33\n", + "def update(s1):\n", + " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n, axes\n", + " global margs\n", + " get_response_i(s1, margs)\n", + " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", + " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", + " iter_arr = np.array(iter_record,dtype=np.int_)\n", + " for ax in axes:\n", + " if ax:\n", + " ax.clear()\n", + " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, *axes)\n", + " \n", + "init()\n", + "\n", + "s1_slider = ipw.FloatSlider(value=0,min=-4, max=+4, step=0.1,\n", + " continuous_update=False)\n", + "\n", + "ipw.interact(update, s1 = s1_slider);\n", + "\n", + "def reset(**material_params):\n", + " global margs\n", + " init()\n", + " s1_slider.value = 0\n", + " margs = [material_params[name] for name in py_vars]\n", + "\n", + "n_steps = 20\n", + "margs_sliders = {\n", + " name : ipw.FloatSlider(description=name, value=val, \n", + " min=minval, max=maxval, step=(maxval-minval) / n_steps,\n", + " continuous_update=False)\n", + " for name, val, minval, maxval in [('E_b', 50, 0.5, 100),\n", + " ('gamma', 1, -20, 20),\n", + " ('K', 1, -20, 20),\n", + " ('tau_bar', 1, 0.5, 20)]\n", + "}\n", + "\n", + "ipw.interact(reset, **margs_sliders);" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "165px" + }, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb b/bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb deleted file mode 100644 index 525881f..0000000 --- a/bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb +++ /dev/null @@ -1,6022 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Plasticity model isotropic and kinematic hardening \n", - "This notebook is a work in progress on an abstract and general implementation of time integration algorithm for general damage-plasticity modes. It serves for the development of a package that can be configured by specifying the ingredients of thermodynamically based model\n", - "\n", - " - Vector of state variables $\\boldsymbol{\\mathcal{E}}$\n", - " - Vector of streses $\\boldsymbol{\\mathcal{S}}$\n", - " - Yield condition $f(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", - " - Flow potential $\\varphi(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", - "\n", - "as symbolic equations using the sympy package. The time-stepping algorithm gets generated automatically within the thermodynamically framework. The derived evolution equations and return-mapping to the yield surface is performed using Newton-Raphson scheme. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "outputs": [], - "source": [ - "%matplotlib notebook\n", - "import sympy as sp\n", - "sp.init_printing()\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Material parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "E_b = sp.Symbol('E_b', real=True, nonnegative=True)\n", - "gamma = sp.Symbol('gamma', real=True, nonnegative=True)\n", - "K = sp.Symbol('K', real=True)\n", - "tau_bar = sp.Symbol(r'\\bar{\\tau}', real=True, nonnegative=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "py_vars = ('E_b', 'gamma', 'K', 'tau_bar')\n", - "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", - "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## State variables" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "s = sp.Symbol('s', real=True)\n", - "s_pi = sp.Symbol(r's_pi', real=True)\n", - "alpha = sp.Symbol('alpha', real=True)\n", - "z = sp.Symbol('z', real=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGAAAAAZCAYAAADOtSsxAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADDUlEQVRoBe2a7VHbQBCGRSYFeJIOnA6AEkwHECogdBAmv+x/GacDpwTsDpwOQugAUkEIHTjPo5E0Z418CJA0nsztzM7e5+7q3bu9k+yD6XS6zLLsEC7pZDab3ZeVJLtDAFwnaFsEGlcHBOCOjg9BYyoOgACYjzEzfzOArWQigkAKQAScIbpSAIZAOWIjBSACzhBdKQBDoByxkQIQAWeIrrdtjHBlmjPuTzH2EXlD222buUOMwZfyfv0Oe2fUf8C+2xwjvw/kQ4iR1/qlfjxl+8kAoOQXSi6QOeDINfUj+PIp5UP0488IO1ewAFg2AGfIMfIE2SthY4wBMbmknAOO1I/fyCP4vqhPkKu6M9EAMEHlh8hwtfuwe/WmjH8V0IXPi7Ct/tAd1wV/hb1qtVN+hG9oFysX6ie4cSdGA8CkBzhD2V/ENdxqWzlnKPJhS1uUTTvuBHdA74Q9Pyu4SL82GHORHhft70M/w7HRQ7iY5OoymkZxTZsR3zvCL8+BL0i/ZVVB6dnRj+j3vGmyZ5tp0AXRFKDctZ07gIll+jFvlbntM+W5ffDepCF8OcWvc+QgK1/ksDVCyGF6tisk+38y1mA00s4AMNqvpCqoDg4UfYMNQAU+ZQNV/6JKU0UeRDEnq4EvKaBb8F31W+BTN11utb1E/6456DbP2323awztjqnwaxoXC4D5f+sBUOYO8GAJyfpF0TBBeti47fJxOlr0dS7QXeZ8F4U2BcNFcw7X/aSpc/JZTdFbByy+mK4lfcn0E25chLEAeHqfMlEdgqgyr1RVRCmPYMdlSIPjbSBfGUrbeyavfvmndKQPbRDcnVfUq1tJXz5gQ/th8HNTtOUBQYqPPvkO1RiAzN8DNptN9lpGz1odyDG8eK2+/31+gdMyegtqu3KIsudASZZ9I03UAoFOAoAd860HseTZ4VmQqAUCXQVAwH1Ry9gN5roHZH4A2ZZoNwKxQ3j3rFoPYG/9plyv14anaoBAVzsgUJmKz0EgBeA5aPUwNv9bSk1v+l9QDZCuqqRmz8rwf0G3/wARrh6V0tmKEwAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}s_{\\pi} & z & \\alpha\\end{matrix}\\right]$" - ], - "text/plain": [ - "[sₚᵢ z α]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Eps = sp.Matrix([s_pi, z, alpha])\n", - "Eps.T" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Thermodynamic forces" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "tau = sp.Symbol('tau', real=True)\n", - "X = sp.Symbol('X', real=True)\n", - "Z = sp.Symbol('Z', real=True, nonnegative=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAZCAYAAAAhd0APAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADJ0lEQVRoBe2a7U0bQRBATZQCkNMBdAAlAB0EpYJAB0H8sv9FTgeQDsAdkFQQ4g5CCQkl5L3LrXV3Xtt31nodSzfSaPb29uZ7Z2cxB6PR6HEwGJyAAS7G4/FLeOhpWg/g23M43lW4Tg8Iwi9eHFcm+2EmD+D3I0RN3mSS14tZ4YG3K979V6/Imj8odAi+gs8l/Q0VzCi3+Yx1p05sE5BxBf9LUJmC5XvC/L0PUPX8DoYy/43xHfNT6ALsRRBQXmM17LJpSGnwT94ZnDNw64BMnX0P9Tx9D95U9WL8Clr3L8CPPkOXwl4EAe3NuoUAlFaZcUPwdJ2x5fqU5DPMDMItOM9y9HAH2OCo91rYlzNhiEFzI4NVzD0x1uAzxtk7OmTOkC2eMC5KD9TSeAttFQDWDvYlCGZcDTDS7W6ZMuN0xK4g6KbjDYBnQ+sAqPTKcgSzT6xxq1mPY2At/BJ7kXIOGTUn8zyBv4fjNWMPvZ0B8qegNd+ypJ86BUDFl+6E0tB3rPGw8x5hObDzcFwga7YeAGTVAJk63+QwAYpupLZgNw9Bjyd0WnkIx9SL7gQYWd9+QOd1mPEhWMvIGMNtziHfbLMM2ZlkT4AVtlmGBKtGZ72iO0Fng9UAGJTOEVarVIA+1n9bQrf/dZUvz8EJ1eksY2SbFDeg/jJRTZROEA1ChMMH5uxEdgIYZhIo3+SI1VydkB3KAHgJszMLB3QtQdoo1TYIRve5DcPUazDQLPcu8MJ44TbMnDvEy1pWQK7NwSO0KNElNRjnjNW5NawNQsnwKAhrzTnBQmTabYQduBCAUoTl4CGBuNYs0MvGwEO42ZkZGKHTzlwbBBi6C7JfhLQEWHobxgFekNwB7pBs5xWyPJeOoc0ADJgLXdIVYxOoFUS7o8aXtqNmW1bAiPA7hwngBUj5GjYE3e7ByM41mG87AbI9k76CUqH42xDz826xsubfCkqk78HYGRbWFLT/PaHmjrwPBMhk6n9PyOv2uLQ2Z0L8y342mQf6ICRz5eaM+iBs7rtkX/ZBSObKzRn1Qdjcd8m+LFrUBrf+/44aDkn5SFvqn1mq967ZXy34CSrx3MmyAAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}\\tau & Z & X\\end{matrix}\\right]$" - ], - "text/plain": [ - "[τ Z X]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Sig = sp.Matrix([tau, Z, X])\n", - "Sig.T" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABLCAYAAABDargmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAI20lEQVR4Ae2dW44UNxSGa0Z5jgYiRXkedgDDDpodcFnBMDsI4ml4Q7ADYAVcdhCyAgg7AF6jSJBRNpD8n2OXXNV2tatrqtqe9pGM7/bx+X2OL+VpDs7Pz282TfOHXIjePXny5F4oo6YtLwFh8Vm9Hod6Vt7BD17GS4Up7NMXP1LDO5fAM3Fw1OPituJ3SfPBfCZ0swNPPDETV/KZbFeeNE6A+RTCIiQDW34NzCRBqfKvKnhHbmUrvJfvJsF1m4bpBgSYumXTRnuqyyx8IZ/+9oI0Vpa2t3KP5Jxck8bua2ZSBXXwXAWfy/9XPmAFBa30h8qfut7+fgltqIni6FQcM/ZRinC4zTAFlNPK1wP13yhv1Mzy27KT4aP8rdvw2ysprDFfiN/38rGCyTRaM23LThsxsUPU31ANle3nPVKC66eftw/xpxrkVzksYRJtpZlq2WimZs4nvxfF2W0ZsrPrnYuP8VWX9baRv3da6eRk5fdFvrOCLivqb6uZbHA6WqlOWSM7mjgBDHZnnfZDI1D7TJ5vNg/ThFnuTLBQvTnSZuIFGbDv2CgLxjQaTDHtZsp1hV+oDXawpLHzvCF3GYR5fTvUkPrmouNUvgFP/m+Ks2E4G6o3R96MvKAcyeMZDaYad+tYK0gExIDk1syi0gDamF+FU3dnmNnvtBsitUP+Tfm+FrLGrvUfqn+ZaTPzggxQkiTaBkzAaXqCJKljCpRvhC2fXRl5yUypLNqO2YyRAVrt/q0C7Jo5l3X671dUPv2z3R9DnQkbqTial0g7oWQmp9k/hDL7aduAubZe2kbZfRmyggN0pzmE2/z/S23/r9q/kMNCoI2s1Q8VZ9I4q7HWOHWUmGoZ1urHEmjX9pvMS6ytqemjwBTTgAKxPnXICsulPVbAB48J4IB1ZYZ8ZntQk9WPM7HslI02Ko3zGNeRx3KLmdoFeMFCJY9nFJhq2M38qEnTAAEOoRozaeNKau4qjM/FMObL5JMQIAbAQELExgig22OP2uJGahd3y0m8iDcmIGWRTYhuqUxoslNvSE6dtg47sc0Rc6Eb6bhROprLuuRrJWmA81L5HIA/yLXnUYVDxMBiJhGtdZPK1FW7aCZmbmlK5QXeTuUYE+Frcnw4wL8m/kNAKsuUjyoOBXzaqJnqCC14JccswTVKY5YxEAgNoozL577WZw7Bc1nuZhj+idwQYcY59oToTIlOy2mLvjlct5oaqjRT2kZexNeRHOUa+Uw6LtJZZ4k7mcTYQ05MgiRKAZMOp1yYw5CviczOwXVAg2Qzw2DX1kClUTf5iktlZ6MUXlTGB+yO4iwJRimGGFMZJikTwVeMoSrN4WDu5WTC1EevqfsKv/bisSATYBemM8bPpPQegIAZ2xO4fthExqyTK9PxlwCz1UINiGMEV24bTaLKsKagmRtncWdE+UaYmCxPEEvUyoQC/2jMKMBK/igLtASYmOhXYgxNuyG/s3kJjMVPou6o2elXziwMeFxwNJIBpvO7fEALEaCPXtoOvAddCLrVolAPu0gTT2gms3Rfno1gvdgzJGGhcpwwuAE72LgB2gWAfp92UHsBJOPWeLce6xJm1semhmeUQAVzRuEu3XQFc2mJz9hfBXNG4S7ddAVzaYnP2F/2u9mhsWvnx13nbTm25xDnN+5pO2c0xTm3+WVSPjrTXlFUOpjmhkRguQfZsS8tXB9yQD9T2aTzW1EoWmaLBpMxCJyVHUvwU5HyOYRz2zLm5sk2WZZXPJgStwOp8/pB4KGJ5rJa4Surjf50uwpgGs0UYK1mKswX/Qfyr8xXFx+0WPgqgAlw7Tc/AYhZ5RmG+SAcG7ifrrJMCC70+Sx1T3HuRmn3RP7W12uqvygVDaYFAYEZrVSc3S1fZ5LNqupgjtFg6hEGTHbDfH5zJlzR/Kn0c6YT9jeAlGN3iyYBhDuKbEQB0OTcGyVALQ5IBlk6mGa91Dh4U+M+5AIGxOZnI6nehSukMKYVc9s5p7r83H3A/FHuL+vnzm+fP4TP+tauawpjYjG7vKgnP4lUlonxWD5a2gKcVHm3hX5R9+BnNPMf+T/L4RdDVvjw2zmS2AGM1U5MMhcKJWrkn+Id/Io2s269bI8kDAgSKKShoTzJZFMTJeUDJNrYAVJx914nWje3jJJ3s2aDI6G3x5KecFn70FDWzuB5U3Uxw5ThNTw+f0IH+A/kgnWUni0VBaYEjqAR+oncMVJVGhr0Qb7bAJHGEcWdM9nlAlroXpY08zel8jmf0jYazS99rGm80rOm7B90ZS29DJjTpMNCmQddpR9NMhBnPixUMPPBYjInFczJIsyngQpmPlhM5qSCOVmE+TRQwcwHi8mcVDAnizCfBiqY+WAxmZMK5mQR5tNABTMfLCZzUsGcLMJ8Gqhg5oPFZE4qmJNFmE8DFcx8sJjMSQVzsgjzaaCoj9MxsembHh+V3S9C87E5+pOl9vsf5Y/l+ADNO9n2AZfN55FYm6YyRVDRYErgAMKDLl4MmJcB8nmN8FU+r9r58z7iK/n8zJl7TUBZfovIfNiV794TKWjezBYHJIyXbmYBEpDaJx4KAwS/CObe8AAgmgbwPNzihwfRRp6GoMW8ueVZSSMfcDf+4BRlc6RiwZTgebAFQE8DguUdD++EoJ9UFoBXcqck9Ig0HnBBvGSnbpFUspm9L4nH1jbAAxjWRgO2wu1DaR8pgJZr5NDOVsP9MqWEi9RMCf5IAsbFnlkif/J5tQewKcSfAA61l9LGTsuUCqYDiHeuMULjxqx/Q23F+sgqvUgwrQQxm/4u1CQLQDY8EJrZKG42N4QHiLJvBvKLyCp2zRRIHEf8l+hG4Eoza6P8I/KVyPlzo/lUWaftRQAXYrJYMBmMAHDHj7WxKc+9aF/Lu6oJJZvZS8FEoK/UEP8VVfG092AKQdbdoo8kbhZWMCUJaWexFwUOSPy9B1NARtddX1AlhPcezBJASuXR381+1izt1+MSu/MXxf0CNb6cBIQFFxvHsR4B0/xxaaTAxvNZpF5NnkcCnJvNZUio+f8A92/+mZ/dmfwAAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}E_{b} \\left(s - s_{\\pi}\\right)\\\\K z\\\\\\alpha \\gamma\\end{matrix}\\right]$" - ], - "text/plain": [ - "⎡E_b⋅(s - sₚᵢ)⎤\n", - "⎢ ⎥\n", - "⎢ K⋅z ⎥\n", - "⎢ ⎥\n", - "⎣ α⋅γ ⎦" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Sig_Eps = sp.Matrix([[E_b * (s - s_pi), K * z, alpha * gamma]]).T\n", - "Sig_Eps" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable code for** $\\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "get_Sig = sp.lambdify(\n", - " (s, Eps) + sp_vars, Sig_Eps.T, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "To derive the time stepping procedure we will need also the matrix of derivatives of the generalized stresses $\\boldsymbol{\\mathcal{S}}$ with respect to the kinematic variables $\\boldsymbol{\\mathcal{E}}$ \n", - "\\begin{align}\n", - " \\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAABLCAYAAAC4EY+8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIKklEQVR4Ae2dX27VRhTGb1CeKwpS1efLDkK7gpIdQFkBZQdFPCVvCHYArCCQHZSuAMgO4LmqBIq6gfb7+fqYsa/t2vH8czQj+c5fe74555szM/ZMcnBycnK02Ww+6upz56enpw/6MkraOiQg/X0S0m0fWuUdHDoZrxSmsOs+u5ESXqUEngv1zQ7ynxW/T5pLgOdiRFF4R1Jrj0qndOyWUxrK3yNAq1CoiCr/Xc8+1nWvruOdfCPerTqNYQmzdaHyd+u0LDzhoUd90XWp646uM6VdyE/iluJxLUCUBgjwC1X0Qv6/8lEwZNhzSv9NiVnNP4SJudIz+ecAlo9p/Sj/WJeRmKwoTnUuxnMjCtJOJQJuvf+sk+VG3ygSXaguADcszBByK79SPnkKYwWIvyUe0/nCk4QAEpT1esz/mOtOSsfKhs7DGvXhfa/0IymkO9FaBZ5UBKgsgITWGjsVZ3ytnMLWuywptW9Wq4sDnLih/F2u/9+h+mbhSUUAJnmt3iSFY2JbPV5pWQwBwmG9++uIHrcjeV6zfOI59IpswsME3ph7S+GXuoWZP2kImVl1js5WJ9a7XIxjpHDL+Qx7wxOdAJKCjf+PRIBmCFCY2fRej1ca5KiGBoVTLwnNEvQp83ZfYuC0xXgmEUCCp6I/ZzampWDnXhS60TMb5dd53SGBiRXLxHdcKjPW2PoRwbyxXm69kXcDsZw3PFMJcKmW+ep9R3pWS9m11J6Z9KRwlA1RjCSEm3wrF8sXnktdVGfKdqs2Yu5ZL7eQz7BPPFEngQKOInF/7LxvvzTqW2zzVGH3FSakMTI4xaIGh6yQkaKP1CEBesFzGBJhz7Nt/B8UloiAsnnhUhGijvOo+wrj8yGD4cUlDOmhHS97mmWqUxkTV4aqVeKJagEkqOoDhITV25uVjoVgruGae9Iwr6+Uz2tkXrz0KULJ4ZzqxiJ9lV+1gZoUvimP5esj4jGdLzzBLUAtpNcSDuvkaq2sNHqTTWQwoQjS8ulNLkGwGi+VZj0M/yddKRzzoKfCUrVDYazRLx28MXEtxhODAChsyUcdlO32eBodbcLlarMm4RM3LWXYB54bKRswsW6swwen7K8KnznxElwggTUQoOntYjzj7Qf5zRe5BW0vt0oCwYcAD1Jm+HgtpVdEkG8rCQ+PLo/IngBSOBPCJXOIouURCaxhCBiBX7KWSqAQYKkEV35/IcDKFbgUfiHAUgmu/P5CgJUrcCn8QoClElz5/dGWgVrO8To3mwMVU/Um3Bxk4Z2/fQRiWfpZ6a2lqeJ833DLDG2IUTF/bqlcoxBAIBcfYPAnsnlPEna+QG7k20GWoY0xvJ7mtfVjlW3eXnJvKKd6Fss1+BAgkFkdqLiKMtSGe/V9vfsY6jZu5B/riqV8L3INTgAJDlPZJzi+66c4UFHrcpZnr59bO5mk7Ju6GNrYtxj7+4QXucYYAug9fcLhMzFuKH+Xm8dvZQGk5IbICrNz6aH8VJ+Hh+Q2S66HIeUr4TAm4mzzxy7W/t22o1nGUHazSUXtwvzelf84BVqfcg1KAAmH3T44Y+UutvsdI4VbLmlYwq56v0BUvV9xVgWY/Shj/UDjvck1xhyANpgl6GvP7b7EjNJs/P+C8nWxKmB/IBtXbdmXCu5iuYYmwFgvNxbHPFBxFUWZBeBsQLUk1EOwADi2r6dw3uQKAb7T9Xfte22MBGam35TtPt/Ym9KUuniGwkfKYJbfnFNQGMwMCaxiyI/qPMj1RwFG5xsI8I+uH2pfnneHoEzZ7sONFM3M2s3MISxBW+9vLf9qbKmtwBK5/qU2oPOKAHV7gnm8ImVnb9elOlDRxTEWt/F/j6QiB2lYAg6s9BF87Lk+8rzINfQcYCPhZHWgYqbkq0me2nAxcB/H23HR5wK+5Bp6GbgTz+5gaU4HKgzXni/B0psx71itLQWURm97L98mgaSxHLT3AKwOmAtE+w6gunCLD4YcOH8p9I4akfuEbNfs8rtIAtIzlu2t/IPgQ8AipOXm4BIoBAgu4rwrKATIWz/B0RUCBBdx3hUUAuStn+DoCgGCizjvCgoB8tZPcHSFAMFFnHcFhQB56yc4ukKA4CLOu4JY3wI2eu3I+/XVHQzpqu+6tMPaFcUCSGgcYKg+pijM10H+DBzvorcGZA3+dWmHK+vgBJDQvBxgcEGnCF+XdnRlF5wAqtDLAYYu8ATx69KOluhiEMC2VbUqVuSyThjK75ZPHR/CubZ2tOQYdBIos2lbpcZ2sWY/D8ixHcLEN30m1siP7WkPlGZk3NT5bGZt0lRmz4W2ALbxsw/EGCn2gCZOyKodUirzKv78LlvV2KUECdi15LrmD267id1wUAvgVGaWwElqgrkfDGmAKpC8HVI+yuYU8vcOsCeKs6qyf7KBdeg7j+ncsguGtgBjvdx6Ve4HQ5BUTu1gLvJop77WL2kP6xR6/6TtfUEJIBBm+k3ZLmLrTZOAujfGDufUDmHhz+abXBtRWJr8IyXubWNvCnYCQQlQ1wUYU7ZbvZFiMlj35gThtbSDI+vMDSa5GATwcoBhUmvCFlpLO1r/e/H/RBKcAGLjmg+GNPJbSTuwtG8a0BMCsVYBiw8wTGhLjCLZt0NE3ZsfjAkmCgFqUKn+lMpY+2flXZd2uI0OPgS4lZVwOAmInCwP+eo6yxUCzBJX1oU5yTx7RVUIkLVO54GTFZj9TqUQYJ6Msy0t5V9pjlUIkK1K4wBzVwGfxKJuredKYyNEcSuVgPTHi6HtEHwIwLgxZD4mv1IcqqCkJ5cAewb6XsVXwP4DpDjQ0VAkiCUAAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}- E_{b} & 0 & 0\\\\0 & K & 0\\\\0 & 0 & \\gamma\\end{matrix}\\right]$" - ], - "text/plain": [ - "⎡-E_b 0 0⎤\n", - "⎢ ⎥\n", - "⎢ 0 K 0⎥\n", - "⎢ ⎥\n", - "⎣ 0 0 γ⎦" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dSig_dEps = sp.Matrix([Sig_Eps.T.diff(eps) for eps in Eps]).T\n", - "dSig_dEps" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable Python code generation** $\\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_dSig_dEps = sp.lambdify(\n", - " (s, Eps) + sp_vars, dSig_dEps, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Threshold function" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "To keep the framework general for different stress norms and hardening definitions let us first introduce a general function for effective stress. Note that the observable stress $\\tau$ is identical with the plastic stress $\\tau_\\pi$ due to the performed sign switch in the definition of the thermodynamic forces." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAVCAYAAAC38ldgAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADs0lEQVRoBe2a7VHcMBCGSYYCGEqADiAdBDqASQXhOgjDP/5lSAeQDgIdQCoIoQQ6CKED8jyO7fh8Pse+ky178M4s+rR29Wq1Wul48/LysjFRHATOz8/3kPxI+hxHg/6lZnN+27/oSWIBgQ/k3xXKryGbzHkz9Eyx6N+MuQW7i+/T9IlU2oEP4Af67Vsx0XIEwOiE1mNYzKRH+IL6Kwuk4vwd1nNKd/Al9TdJacB/ghoeExYgwTguTz4F6SdtGuR7eKL/IABmGtgV6TXpEXxaxJX8M3xJ/SH80TLpKCio4TFjd+eC0aVIuDO34f0YACHThXOBKon2WWVDTWU65g7pl5puIZo+M4j6n8G5N0Ounu6QVNxHRaENbxsQcmAyJKi7JS9IGp3HRe+U6rWgW++KrCAQ3Q1NHvh0j1S2bNhyRjo6oxOC0JcLd+YcAYxHgUewO1PwJloNgQxbjU2jM9YbpdE5/aAer2xYlC+QYYA8I2/gG42Q/wnhHlXGoFVk/NT1kVklt1Edut3AxnAeuc5hMEa3CrZBDa+IIMpocC62C5rcwortfeaR7waQvNS4eJb1IOYTok+UECCT3zAVRzG9Rd9c94bfdtJtVWw7MTyUcVd6xHoji+pFkG9s+YM0j+/Ib8FjPPY9YiU9d1RcVQIMV8Z200VgDG+cbcire+XCUW885/Xfo2FWHJSyN8Baz0J7aH3UM9eV8QWrlbfgGz2k8yqTunqh8lG0TP4iEew4ZCw38mkq5IiynG+msvCqMv0Hg62G5yIEecxlLBfVG6y3rirQBW7OGCnPUUh95gb+V9BI1LExoVO24HPfUK9n7/w5BTkanQ/DGrMhgnLFsa3hBVtrZFdRY2yD3WoBxGNAzyk4C4ZMnR7DB+TY5KLdx1aiqXxw09tekyZeO009NQ7IZ0dv0+G67tcY2yCGBwC68MyLLBhdOlt37beuZ143frpQeqj86K3rH7sNPbOLRPlFILssVXriGHq3xTaI4THRpb9KoJAPnnq6IfwXhjuyNsaMsWhVMsHMOHmXtGx0G9RlrwQn5N30Q6BW2K59q2XiAmRs54L6qEmyIRjbsEdBBkxtbEe/PmgXIXreQRLYieNX2FRKfoulPvfQhT5/exC+2A5XxdRZnz7SVtiGMLzYE24MKoszBONfqq8GROOyUCX5rkmfpQI6bGiL7dqG1+FcxjD0wjE4BqWHoONkeGusArv8eY3PX/WnoS4XrxrEafLtEZgMrz1mIb/4xWBPIQccwVjJnP8AH7ZnRmtTxKsAAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle - Z - \\bar{\\tau} + \\left|{X - \\tau}\\right|$" - ], - "text/plain": [ - "-Z - \\bar{\\tau} + │X - τ│" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "f_Sig = sp.sqrt((tau - X)*(tau - X)) - (tau_bar + Z)\n", - "f_Sig" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable code generation** $f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S}})$\n", - "\n", - "Note that this is a function of both the forces and kinematic state variables" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_f_Sig = sp.lambdify(\n", - " (Eps, Sig) + sp_vars, f_Sig, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "The derivative of $f$ required for time-stepping $\\partial_\\boldsymbol{\\mathcal{S}} f$ is obtained as" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAAZCAYAAABHJCk0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAG5klEQVR4Ae2c65HUOhCFvVs3gAUiuJABjwhYMoBLBAsZQPFr9x81ZABkAJsBEMGFzQAy4BEC59NaLo/HsuUZyaOZaVUJWbIldR+3z7RaWo7Oz88/VlV1V9mnRxcXFz98xUpDwBAwBHYdAXHaqXR429Lj8kjk91037rQa7dIQMAQMgb1FQHx3W8otjvdWww0UAxzlZxsMsTNdpefj2hh2RmYTNB4Bs+UwVkV4fvXH901ivtT1u7C4+e9o/hPN8lHlo77Z1A4pPlHGjSYRIlh4uev+X9TmQwmfdf1W7Zcqi0ySjdAH2Fu4Y8M3JAzxKsyWN8Rx3e4xtly/o8U/606SuB+EQy5h+Q1xQW69ScBBzu9qkB/rGtJoiE3Xf5SJLUCeZ9RVlp7OJCB63ytd0K58wpd38F7530KwNlvuvqR569G2XAT5yWivhM/RvBitziY58Oq+qozxgF7rWT68V8pt8sPjY9MoSKC6X1SSrBD2Z+UXym+KEq5HGMkIwUB4vCc8LepFJMlmtrzFNyH8o23ZYn7LL+qlqovlpv5abeQY+l1duyWuSj7EVyp3hvha2kHmEHnxSfhi4E+UeV+fihd4OwKaLY/gXgT5yYjZYGhIZETmLLeRgYFVxnh9XgYIgwTh0Z/Y3y4SH3qzPP+h0scy0cvSRASEn9nyRMxSPx5ry7MseyUMnhEfFcRyU5llylO138NYdE2MjPssH5fIQ/dpf65MX/oRTPbLHOJq/MKxBGKcD8p+LF1WD5T/1xgxSzmWsGxORCeNe6kMadAXmZZkjx4ow4OS64WGxZPzWHVnIVbZxQX90WESDt2B97kuzMyWZ37BuWw5O/lJcD4+PCKIqkmqQ2iVSkiNGBmktpTUBvGxrLmha0imUvldhdtd1TV1lp6QKO0Q4Kmu3UetkjrnGCGpMY8O+dj1nJrYAIFoPmkOJ+PUAVI/Lzn80v2hxkYm6nipjXwBPMDQvReVljoICLMTNZktd3DJWc1py9nJT8DcJ2M4ys3HpzY8tHb61a7U187j6/SD7PD22HFtey6QG/M0JKtrlnFqdl7l2BEaiLJPBvoPJfqR8LLa8rjGuf+RvngmeLvtTRiwB7exhP584Jb6ETBb7sclS2tuWw6SnybmI+D4w5TE0Y6lj0x1dhH5qH5zrRJPDk8shijoxzI5NoW8u5gPmnna5Dw6p3SAwCFiEoeFyQ3pXDcP/6vnk+DsZ9F44N+8A9Uhw1i9wM+TuR8yeZla5+QCBgaU3GbLAWxoTv1eNV5WWx4iPz6YVOe+GAfP6FSZJZhfto4tsXj2mUBgM+SqBpcxzpT7EmQ5S5IsEB+Hl/EuWVIS90OfqeSXEmdNv5KeqqWoHVHhlVvnFRASNpgtB8Cc4b0mteXjgB7JmgWI8yRUEmAnNsd5PkgCUoPIxhKeFZsjPoDPGJMIZmyC+j7EeRLzrOaHlPkrEOdh1SVeE/HG7J5TjIytZyDlr6360CXeb8h7Hup3EPf8u1VptrydN57UloOeX0LdIAOEbpa5Mh7idcTmxoiCJRse3xy7j3z0fPyDSbL4zY2uTBCiXwaPebSDc6S6KVnBl6MXjqQjxuV5vDJL/QiYLffjkr01hy0fZ5f6egLOwXW9KupdAuk+w4fIEhmPyp0DrEHIITYEMbjM19zsBt9R2ZW7UpvfUMGj7eqRQ96YMfnRmeLJof+KbjETbfGZubE2W97Oy05uy3N4fkAFMfxXkwKExt/wQmrEy/DufDywUh2CcX8Tq2sCzKoux6zUxhgfVD5X7utPDI5fae+BYbAPlIfO4REXw3NbSvX479XIPCT+uoBYX+NNtZ65fkJnEbmvPDSffzZnCc4rOg1MeF/3QvHUgW7z3xK26IWn7kMnX9TG8h7s/Q9RDsHMlnOgOj5mclsu4n91CektI3aEpNLF+FTyK4/BQ0Rumam2ZjkdGie2XWNxzo0zh1O8pdjhi36uxhbiwMgsJUZAuJotJ8Y0NNyYLes+jlEx/6vLih4SEDe3Utlsbugaj4+MxwgJ4lklIz+NBaGyweI9Rl0eTML7nuIlHgwwmyoqWzVb3hTEaf2jbHmumN800a+fJvbk/k4y0BniS/qxykhZ0jAnvwwHk6QvHjVx1ZQ/JAeDX4SiZssRIKV4ZIotzxXzm6yXlCC25s5UqeR8z896kFsq+Vg5btDE3ep7KQpIlbhj85ciKQYtfAz03XZ8snCI1hfPbHl97NboGW3LRcf81lA8SRcZK54fnlDOwHkSWTcdRDryfxiysXRwcc5NsduF/mbLq2+pxmRh5LeKjbUYAobAHiPgye94j3U01QwBQ8AQCCLgPL/O3YM86tHBwKqGgCGwRwjI2+M8aHuD9OovsCr4xBzdBfIAAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}- \\operatorname{sign}{\\left(X - \\tau \\right)} & -1 & \\operatorname{sign}{\\left(X - \\tau \\right)}\\end{matrix}\\right]$" - ], - "text/plain": [ - "[-sign(X - τ) -1 sign(X - τ)]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_dSig = f_Sig.diff(Sig)\n", - "sp.simplify(df_dSig).T" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable code generation** $\\partial_\\boldsymbol{\\mathcal{S}}f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S})}$" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_df_dSig = sp.lambdify(\n", - " (Eps, Sig) + sp_vars, df_dSig, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Flow direction\n", - "Evolution equations have the form\n", - "\\begin{align}\n", - " \\dot{\\boldsymbol{\\mathcal{E}}} = \\lambda \\, \\boldsymbol{\\Phi}\n", - "\\end{align}\n", - "with the vector $\\Phi$ representing the flow direction within \n", - "the stress space. Assuming the normality condition, i.e. that \n", - "the flow direction coincides with the vector normal to the \n", - "yield condition we can write\n", - "\\begin{align}\n", - " \\boldsymbol{\\Phi} = \\boldsymbol{\\Upsilon} \\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", - "\\end{align}\n", - "The sign matrix $\\boldsymbol{\\Upsilon}$ is used to direct all the derivatives in the outward direction from the elastic range." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJMAAABLCAYAAAB0iLVXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJcElEQVR4Ae2dX3LVNhTGbzJ97qTtTKevhR3wZwWkO6BlBcAOYHgKbwzdAbADYAfACkrZQXjudKaU6Qr6/RTJ8XUs69jX9rWToxlFtv4effp0dCzfWAcnJyc3NpvNn/Jt7u3Tp09/bUvwuKuHgLhwql5fa+u50g6+qSW81DWZ6+5z/cavrzwCz4XAUQOF27q/S1ydTM/FLidPAylhwkw8Vshku9ROfYQUn3I8aMMglrlApkUAJeEYPJbdx23Czymk2mcWvlD4S1u7in+geMyA45jOZGRSBuLF8h8UhymBey9PfW/D3cL+IJf8G3mw761YDhfWH8RhAPHXudmzgwgPczII8JfyEC2RY2sCKO2r0l7E9O/IK5/y5qrdd/x9CfBmiBD1ZW5I+dHLCOxPqvRg9Ip7Vig50DofFVpm6DPlRdU/ka/IorJoJAi0mocYyfpV/r38I/nfJb/ZLVEzmYWfOONj1Y/BWXQCnQmAv6HrsKQpZLl+onA1RKp1lMnBxOjlFkcmBoEBwffqyYiZkYHqFFq0UmqZAcBBIMpjO62RSPSb5fmzwmQL0q+im32Zk4CQBCEZqO/lsY/uKf6mPIOAjUE6y8XWYMTOYcNQlnIY6oQ4bBe0ySt56nktn+rS5ea2/B+qw6K6WbIwls1O9WK8MgiURaYt2c0VTZBRcj1StWiahFWzFWy9Ji70nz6YcZiVTBKYzjBjt56OdA9BNgohCTbGhU1UxUGwd/IYsgzaRiH7YuHpSdfcs9RASuIh1LGuA0gKuT9VyKCXNA7yDTFCeYpj4N6pjSCjrvfqJEdaqu9IEGTiHi1ayZfBAwzDuCg0uVnJJIlu4SX8UQNsNEjdfanfxOugkRrlIA/aiKeq+syCLLRTkVbXqG1FB61X2jOCeG0yUL7LUQ6HFqjLEyLn/qP+sgqgjesPBWAPbiVH/49KmerpJjKpcSrlMbmPu98UWvc8JSDkv1wrRNOgKSzAU45l0epy2scCEO1UM9fSoPrAhIDYuLu6x1eDeBbd/Vf5R8E5taL6IA0+ON1DLmu/wC9NjrMKCn+tZEKAm4W6rMnUw8w9lkflpmWqpFLJ+wBAAEke4Knjvnybg3yzOMkCkdiMRPuxhGA30Z++ZBoTZzV/wd1TDBN4Enc4Sa2ZSgV0YLpCDD5sG/aTAB2SQIySY+ZjrCeDkjp6DVipgZgOESFr0al9SM6ucdAAMWRWY6/1mtnFxnbPAMk/GqtBO+e0e2sVJs3UWnJYJODSoWpZE+BpF7kEPCoajWR+uhgmYigFiIDZ6SRLMrabMkGwtOyVNG5nG2MlRmKz7VIte4W6GQ80pdkdmnOOl5F9mOas5745IM08dIwlkRkf9qEUlgg4VGoA71zW1TZPe9cVNuXeKC4Z+GjcZj+GyrRrOSZxH01D/y/0rUuIuTUTsgD0bxFkCMI7OEiCvYH2SfbURvcMGIZ82uLX7faaT5riXit8KN9WHhsG0iUNAZlvy3ftA2FXoFm2XKz/lSJpB4dc2ErVbK/lOcuhvTDS5bvaS3mnDMH5Qp86GryltJw92lrsoPbjOGZZH+a2VjhVpGQLA6ww2EgKmfEsRQxsWFYUVy2fu8qhuthnYc9rsZjs2sdc+Ygtk6D4sl150HjYjAf70Ey5PmTjo8AbhZWxrWs0Eh6NBqmY+aORSXVBUAz+pNF0eWUcq0MfLRaA2YfNNGREWLvDO7tMYYjUu/OZukK0CMpyTJtT2WVdze8tTf1F41dvDvoIshbNhG0S9qcUslfyT+zkDwrpPFsNld0S08YIICl2W7WTPkalC6+D/g6y71ZBJsAXWVjSWHZmc7Qpj2HPU1l6Qput/bkbop9qk/4OshNXQ6a5gU3tRWAvPZHor/q6Uz/XYjOlsfVwwQg4mRY8OGsTzcm0thFbsLxOpgUPztpEczKtbcQWLK+TacGDszbRfGugMGJ6XObdEy93f9Y1e13uMgg4mVqAEWnYVYdAbN5dk+feXQEBJ1MLQFEDhVcKumZXGO3kroCA20wFgDzZjoCTyY6V5ywg4GQqAOTJdgScTHasPGcBASdTASBPtiMAmb6V/zuG9pKe0xE4Q+AnBfBnA5n+k/8xhgrcOQK9EPhLueFPIFOvkp7ZEcgh4DZTDpnzeN/9Psei88p3wDPwaOeb/3bhX6iOY5YPiuP/9Pl/sp1+3hrru3SBkykzpCLMVfx/uQwatmhf5mw4eS4DAk4mA0iexYaAk8mGk+cyIOBkMoDkWWwIOJlsOHkuAwJOJgNInsWGgJPJhpPnMiDgZDKA5FlsCDiZbDh5LgMCTqYCSNoJ54Nf/FPBpXfqJx/Cvza0o4t7nRI74ydhDh3RHcoJe06L4PuUfDyt9zealqiZeEuPL36ccwfcrEU54iP7jk6Ap2+Yp29tMgjVS2Bdf1V5XhiT7idhCoRZnQaAzwn6SZizon7eGBNA3k/CPIdklCs+ecgXd4suTgAmQXXoouKwPfjm+KDvQxYbnTbDM2Tv28TiljkGQb4alL4dGiN/JMJGYR+7gQHAQSCIxIfy10gk+s3yzCex02+56FfRzW6AS0A+Ao+QDBQ/PsM+4nAdPwlTQEzhhG06uAis2xy2XvMb6nwum8lgPvJiVjJJYDrDjN36FLLug5GrEIJxKoCfhCkgxnDCMi3Vd1QfGod7tCjXwUXc020K/STMiASk9JMwz1YBPwkzTY9a+EXXLItWl7N3cqq+Xi/tVDO3npC71uxmCyB9p9xPwuwACmA7j8zKlW2JDycNKB67CZXLssd+TVjqWvKnKPI+UD4/CTMh0j/kdAcONJrEzfo0JyLwlLNRiMHnJ2FOMqSdlfKdKf7DxuLQzjnt3lp+VgNcEkAmOlQ9OYhUaRc5EK1VyrPIGwr8JMwOgLqShDP4su3CfpjFkb/XUn9oqXXkPOzDNO0W7puPoM08dIwlkROH/CTM/oPCJO6jaTBHmmPS2ercmglheHflJ2F2DsskiX4SZoJV2shPwkxgTBzGlcNPwhwRZ54eedQvPWWO2ORiquK9HFsdvdw+bKZeAsbMrN3hnV2mMNv+vTufqStEa3ayHNMmhuiVcVErYZdWD0nWzu/DZrLKVuVTx/wkzAqNyS/8JMwpII4k9pMwjeCuQjMZ+zJJNhGKx+nq15OTNLKQStXXnfpZJ9OpKmt2i98Er/I3Oc2O+P3uCIgL/JIga0NCJmZeekHZbNG6W9os5/eXEwGecJubyVVP/wcXjB6Obd/+AQAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle \\left[\\begin{matrix}- \\operatorname{sign}{\\left(X - \\tau \\right)}\\\\1\\\\- \\operatorname{sign}{\\left(X - \\tau \\right)}\\end{matrix}\\right]$" - ], - "text/plain": [ - "⎡-sign(X - τ)⎤\n", - "⎢ ⎥\n", - "⎢ 1 ⎥\n", - "⎢ ⎥\n", - "⎣-sign(X - τ)⎦" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Sig_signs = sp.diag(-1,1,1)\n", - "Phi = -Sig_signs * df_dSig\n", - "Phi" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "get_Phi = sp.lambdify(\n", - " (Eps, Sig) + sp_vars, Phi, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Time integration scheme" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "## Summary of the backward Euler scheme\n", - "The derived expressions can be now plugged-in into a generic return mapping algorithm that efficiently identifies a state that satisfies the discrete consistency condition. The general structure of an implicit integration scheme reads\n", - "\\begin{align}\n", - "\\boldsymbol{\\mathcal{E}}_{n+1} &= \\boldsymbol{\\mathcal{E}}_{n} + \n", - "\\lambda_\\Delta \\, \\boldsymbol{\\Phi}_{n+1} \\\\\n", - "f(\\boldsymbol{\\mathcal{E}}_{n+1}; \\lambda_\\Delta) &= 0\n", - "\\end{align}\n", - "To reach an admissible state let us linearize the threshold function at an intermediate state $k$ as\n", - "\\begin{align}\n", - "f(\\boldsymbol{\\mathcal{E}}^{(k)}; \\lambda_\\Delta^{(k)} )\n", - "& \\approx\n", - "f^{(k)} \n", - " + \n", - "\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", - "\\Delta \\lambda\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "Thus, by rewriting the linearized equation as a recurrence formula, the iteration algorithm is obtained\n", - "\\begin{align}\n", - "&\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", - "\\Delta \\lambda =\n", - "- f ^{(k)}\n", - "\\\\\n", - "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", - "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \n", - "\\boldsymbol{\\mathcal{E}}^{(k)} + \n", - " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", - " \\\\\n", - "&k = k + 1\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "To define a generic return mapping we need to construct the derivatives of the flow rule $f$ with respect to $\\lambda$. The dependency of $f$ on $\\lambda$ is intermediated via the stresses $\\boldsymbol{\\mathcal{S}}$ and state variables $\\boldsymbol{\\mathcal{E}}$\n", - "\\begin{align}\n", - "f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda))).\n", - "\\end{align}\n", - "To correctly resolve the dependencies in the derivative $\\frac{\\partial f}{\\partial_\\lambda}$, we need to apply rules for chaining of derivatives. Let us start with the derivative with respect to $\\boldsymbol{\\mathcal{E}}$ in the form\n", - "\\begin{align}\n", - "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}))}{\\partial \\boldsymbol{\\mathcal{E}}}\n", - " &=\n", - "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}})}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", - "\\frac{\\partial \\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}})}{\\partial \\boldsymbol{\\mathcal{E}}}.\n", - "\\end{align}\n", - "By expanding the derivatives of $\\boldsymbol{\\mathcal{E}}$ with respect to $\\lambda_\\Delta$ that will be abbreviate in index position as $\\lambda$ for brevity we obtain\n", - "\\begin{align}\n", - "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda)))}{\\partial \\lambda}\n", - " &=\n", - "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", - "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", - "\\frac{\\partial \\boldsymbol{\\mathcal{E}}}{\\partial \\lambda}.\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "The last term $\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{ \\partial \\lambda}$ can be obtained from the evolution equations\n", - "\\begin{align}\n", - "\\boldsymbol{\\mathcal{E}} = \\lambda \\, \\boldsymbol{\\Phi} \\; \\implies\n", - "\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{\\partial \\lambda} = \n", - " \\boldsymbol{\\Phi}\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "**Summarizing**: the algorithm can be written in a compact way as follows:\n", - "\\begin{align}\n", - "&\n", - "\\left(\n", - "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", - "^{(k)} \\, \n", - "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", - "^{(k)} \\, \n", - "\\boldsymbol{\\Phi}^{(k)}\n", - "\\right)\n", - "\\Delta \\lambda = -\n", - "f^{(k)}\\\\\n", - "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", - "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \\boldsymbol{\\mathcal{E}}^{(k)} + \n", - " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", - " \\\\\n", - "&k = k + 1\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Implementation concept\n", - "The gradient operators needed for the time-stepping scheme have been derived above and are now available for the implementation of the numerical algorithm both in `Python` and `C89` languages\n", - "\n", - "<table style=\"width:50%\">\n", - "<tr>\n", - "<th>Symbol</th>\n", - "<th>Python</th>\n", - "<th>C89</th>\n", - "</tr>\n", - "<tr>\n", - "<td>$\\mathcal{S}(\\boldsymbol{\\mathcal{E}}) $ \n", - "</td>\n", - "<td>get_Sig</td>\n", - "<td>get_Sig_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>$ f(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$</td>\n", - "<td>get_f</td>\n", - "<td>get_f_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>\n", - "$\\displaystyle{\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$\n", - " </td>\n", - "<td>get_df_dSig</td>\n", - "<td>get_df_dSig_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>\n", - "$\\displaystyle{\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}}(\\boldsymbol{\\mathcal{E}})$</td>\n", - "<td>get_dSig_dEps</td>\n", - "<td>get_dSig_dEps_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>$\\boldsymbol{\\Phi}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}}) $</td>\n", - "<td>get_Phi</td>\n", - "<td>get_Phi_C</td>\n", - "</tr>\n", - "</table>" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "To avoid repeated calculation of the same expressions, let us put the evaluation of $f$ and $\\frac{\\partial f}{\\partial \\lambda}$ into a single procedure. Indeed, the iteration loop can be constructed in such a way that the predictor $\\frac{\\partial f}{\\partial \\lambda}$ for the next step is calculated along with the residuum $f$. In case that the residuum is below the required tolerance, the overhead for an extra calculated derivative is negligible or, with some care, it can be even reused in the next time step. " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "def get_f_df(s_n1, Eps_k, *margs):\n", - " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", - " f_k = np.array([get_f_Sig(Eps_k, Sig_k, *margs)])\n", - " df_dSig_k = get_df_dSig(Eps_k, Sig_k, *margs)\n", - " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", - " dSig_dEps_k = get_dSig_dEps(s_n1, Eps_k, *margs)\n", - " df_dSigEps_k = np.einsum(\n", - " 'ik,ji->jk', df_dSig_k, dSig_dEps_k)\n", - " dEps_dlambda_k = Phi_k\n", - " df_dlambda = np.einsum(\n", - " 'ki,kj->ij', df_dSigEps_k, dEps_dlambda_k)\n", - " df_k = df_dlambda\n", - " return f_k, df_k, Sig_k" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "The update of state variables $\\boldsymbol{\\mathcal{E}}^{(k+1)}$ for an newly obtained $\\lambda_\\Delta^{(k+1)}$ is performed using the evolution equations. " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "def get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs):\n", - " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", - " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", - " Eps_k1 = Eps_n + lam_k * Phi_k[:,0]\n", - " return Eps_k1" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "The double loop over the time increments and over the return mapping iteration. The inner loop represents the material point level in a standard finite element calculation. The input is the maximum slip value, the number of time steps, the maximum number of iterations and a load function which can define cyclic loading as shown below. The procedure returns the record of $\\boldsymbol{\\mathcal{E}}(t)$ and $\\boldsymbol{\\mathcal{S}}(t)$" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "def get_response(margs, s_max=3, n_steps = 10, k_max=20, get_load_fn=lambda t: t):\n", - " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", - " Eps_k = np.copy(Eps_n)\n", - " Sig_record, Eps_record, iter_record = [], [], []\n", - " t_arr = np.linspace(0,1,n_steps+1)\n", - " s_t = s_max * get_load_fn(t_arr) + 1e-9\n", - " for s_n1 in s_t:\n", - " lam_k = 0\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " f_k_trial = f_k[-1]\n", - " k = 0\n", - " while k < k_max:\n", - " if f_k_trial < 0 or f_k_norm < 1e-8:\n", - " Eps_n[...] = Eps_k[...]\n", - " Sig_record.append(Sig_k)\n", - " Eps_record.append(np.copy(Eps_k))\n", - " iter_record.append(k+1)\n", - " break\n", - " dlam = np.linalg.solve(df_k, -f_k)\n", - " lam_k += dlam\n", - " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " k += 1\n", - " else:\n", - " print('no convergence')\n", - " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", - " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", - " iter_arr = np.array(iter_record,dtype=np.int_)\n", - " return t_arr, s_t, Eps_arr, Sig_arr, iter_arr" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Support functions\n", - "To run some examples, let us define some infrastructure including a more complex loading history and postprocessing" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Loading history\n", - "This implementation uses the symbolic machinery which is not necessary a simpler data point based implementation with `numpy.interp1d` would be better ... later " - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"640\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t, theta = sp.symbols(r't, \\theta')\n", - "n_cycles = 5\n", - "A = 2\n", - "ups = np.array([((theta-2*cycle)*A+(1-A), theta-2*cycle<=1) \n", - " for cycle in range(n_cycles)])\n", - "downs = np.array([((1-(theta-(2*cycle+1)))*A+(1-A),(theta-(2*cycle+1))<=1) \n", - " for cycle in range(n_cycles)])\n", - "ups[0,0] = theta\n", - "updowns = np.einsum('ijk->jik',np.array([ups, downs])).reshape(-1,2)\n", - "load_fn = sp.Piecewise(*updowns).subs(theta,t*n_cycles)\n", - "get_load_fn = sp.lambdify(t, load_fn,'numpy')\n", - "t_arr = np.linspace(0,1,600)\n", - "plt.plot(t_arr, get_load_fn(t_arr));" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Plotting functions\n", - "To simplify postprocessing examples, here are two aggregate plotting functions, one for the state and force variables, the other one for the evaluation of energies" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "def plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33):\n", - " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", - " s_pi_, z_, alpha_ = Eps_arr.T\n", - " sig_pi_, Z_, X_ = Sig_arr.T\n", - " n_step = len(s_pi_)\n", - " ax1.plot(s_t, sig_pi_, color='black', \n", - " label='n_steps = %g' % n_step)\n", - " ax1.set_xlabel('$s$'); ax1.set_ylabel(r'$\\tau$')\n", - " ax1.legend()\n", - " if ax11:\n", - " ax11.plot(s_t, iter_arr, '-.')\n", - " ax2.plot(t_arr, z_, color='green', \n", - " label='n_steps = %g' % n_step)\n", - " ax2.set_xlabel('$t$'); ax2.set_ylabel(r'$z$')\n", - " if ax22:\n", - " ax22.plot(t_arr, Z_, '-.', color='green')\n", - " ax22.set_ylabel(r'$Z$')\n", - " ax3.plot(t_arr, alpha_, color='blue', \n", - " label='n_steps = %g' % n_step)\n", - " ax3.set_xlabel('$t$'); ax3.set_ylabel(r'$\\alpha$')\n", - " if ax33:\n", - " ax33.plot(t_arr, X_, '-.', color='blue')\n", - " ax33.set_ylabel(r'$X$')\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "from scipy.integrate import cumtrapz\n", - "def plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr):\n", - " W_arr = cumtrapz(Sig_arr[:,0], s_t, initial=0)\n", - " U_arr = Sig_arr[:,0] * (s_t-Eps_arr[:,0]) / 2.0\n", - " G_arr = W_arr - U_arr\n", - " ax.plot(t_arr, W_arr, lw=2, color='black', label=r'$W$')\n", - " ax.plot(t_arr, G_arr, color='black', label=r'$G$')\n", - " ax.fill_between(t_arr, W_arr, G_arr, color='green', alpha=0.2)\n", - " ax.set_xlabel('$s$'); ax3.set_ylabel(r'$E$')\n", - " ax.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "def plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr): \n", - " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", - " E_i = cumtrapz(Sig_arr, Eps_arr, initial=0, axis=0)\n", - " c = 'black'\n", - " ax.plot(t_arr, E_i[:,0], '-.', lw=1, color=c)\n", - " ax.fill_between(t_arr, E_i[:,0], 0, color=c, alpha=0.1)\n", - " c = 'black'\n", - " ax.plot(t_arr, E_i[:,0], color=c, lw=1)\n", - " ax.fill_between(t_arr, E_i[:,0], E_i[:,0], \n", - " color=c, alpha=0.2);\n", - " c = 'blue'\n", - " ax.plot(t_arr, E_i[:,1], '-.', lw=1, color='black')\n", - " ax.fill_between(t_arr, E_i[:,1], 0, color=c, alpha=0.1)\n", - " c = 'blue'\n", - " ax.plot(t_arr, E_i[:,1] + E_i[:,2], color='black', lw=1)\n", - " ax.fill_between(t_arr, E_i[:,1] + E_i[:,2], E_i[:,1], \n", - " color=c, alpha=0.3);" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Examples" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "material_params = {\n", - " E_b:1, gamma: 0.0, K:0.1, tau_bar:1, \n", - "}\n", - "margs = [material_params[map_py2sp[name]] for name in py_vars]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Monotonic load \n", - "Let's first run the example with different size of the time step to see if there is any difference" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"1400\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", - "ax11, ax22, ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", - "for n_steps in [20, 40, 200, 2000]: \n", - " t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", - " margs=margs, s_max=8, n_steps=n_steps, k_max=10\n", - " )\n", - " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", - "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", - "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Cyclic loading" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"1400\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", - "ax11,ax22,ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", - "t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", - " margs, s_max=2, n_steps=20000, k_max=20, get_load_fn=get_load_fn\n", - ")\n", - "plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33);" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"900\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", - "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", - "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "hide_input": false, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Interactive application" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "hide_input": true, - "scrolled": false, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('<div/>');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", - " 'ui-helper-clearfix\"/>');\n", - " var titletext = $(\n", - " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", - " 'text-align: center; padding: 3px;\"/>');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('<div/>');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('<canvas/>');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('<canvas/>');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('<button/>');\n", - " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", - " 'ui-button-icon-only');\n", - " button.attr('role', 'button');\n", - " button.attr('aria-disabled', 'false');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - "\n", - " var icon_img = $('<span/>');\n", - " icon_img.addClass('ui-button-icon-primary ui-icon');\n", - " icon_img.addClass(image);\n", - " icon_img.addClass('ui-corner-all');\n", - "\n", - " var tooltip_span = $('<span/>');\n", - " tooltip_span.addClass('ui-button-text');\n", - " tooltip_span.html(tooltip);\n", - "\n", - " button.append(icon_img);\n", - " button.append(tooltip_span);\n", - "\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " var fmt_picker_span = $('<span/>');\n", - "\n", - " var fmt_picker = $('<select/>');\n", - " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", - " fmt_picker_span.append(fmt_picker);\n", - " nav_element.append(fmt_picker_span);\n", - " this.format_dropdown = fmt_picker[0];\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = $(\n", - " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", - " fmt_picker.append(option);\n", - " }\n", - "\n", - " // Add hover states to the ui-buttons\n", - " $( \".ui-button\" ).hover(\n", - " function() { $(this).addClass(\"ui-state-hover\");},\n", - " function() { $(this).removeClass(\"ui-state-hover\");}\n", - " );\n", - "\n", - " var status_bar = $('<span class=\"mpl-message\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "}\n", - "\n", - "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", - "}\n", - "\n", - "mpl.figure.prototype.send_message = function(type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "}\n", - "\n", - "mpl.figure.prototype.send_draw_message = function() {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", - " }\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1]);\n", - " fig.send_message(\"refresh\", {});\n", - " };\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", - " var x0 = msg['x0'] / mpl.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", - " var x1 = msg['x1'] / mpl.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch(cursor)\n", - " {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_message = function(fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message(\"ack\", {});\n", - "}\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function(fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = \"image/png\";\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src);\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data);\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig[\"handle_\" + msg_type];\n", - " } catch (e) {\n", - " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", - " }\n", - " }\n", - " };\n", - "}\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function(e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e)\n", - " e = window.event;\n", - " if (e.target)\n", - " targ = e.target;\n", - " else if (e.srcElement)\n", - " targ = e.srcElement;\n", - " if (targ.nodeType == 3) // defeat Safari bug\n", - " targ = targ.parentNode;\n", - "\n", - " // jQuery normalizes the pageX and pageY\n", - " // pageX,Y are the mouse positions relative to the document\n", - " // offset() returns the position of the element relative to the document\n", - " var x = e.pageX - $(targ).offset().left;\n", - " var y = e.pageY - $(targ).offset().top;\n", - "\n", - " return {\"x\": x, \"y\": y};\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys (original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object')\n", - " obj[key] = original[key]\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function(event, name) {\n", - " var canvas_pos = mpl.findpos(event)\n", - "\n", - " if (name === 'button_press')\n", - " {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * mpl.ratio;\n", - " var y = canvas_pos.y * mpl.ratio;\n", - "\n", - " this.send_message(name, {x: x, y: y, button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event)});\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "}\n", - "\n", - "mpl.figure.prototype.key_event = function(event, name) {\n", - "\n", - " // Prevent repeat events\n", - " if (name == 'key_press')\n", - " {\n", - " if (event.which === this._key)\n", - " return;\n", - " else\n", - " this._key = event.which;\n", - " }\n", - " if (name == 'key_release')\n", - " this._key = null;\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which != 17)\n", - " value += \"ctrl+\";\n", - " if (event.altKey && event.which != 18)\n", - " value += \"alt+\";\n", - " if (event.shiftKey && event.which != 16)\n", - " value += \"shift+\";\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, {key: value,\n", - " guiEvent: simpleKeys(event)});\n", - " return false;\n", - "}\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", - " if (name == 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message(\"toolbar_button\", {name: name});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", - "\n", - "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function() {\n", - " comm.close()\n", - " };\n", - " ws.send = function(m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function(msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data'])\n", - " });\n", - " return ws;\n", - "}\n", - "\n", - "mpl.mpl_figure_comm = function(comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = $(\"#\" + id);\n", - " var ws_proxy = comm_websocket_adapter(comm)\n", - "\n", - " function ondownload(figure, format) {\n", - " window.open(figure.imageObj.src);\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy,\n", - " ondownload,\n", - " element.get(0));\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element.get(0);\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error(\"Failed to find cell for figure\", id, fig);\n", - " return;\n", - " }\n", - "\n", - " var output_index = fig.cell_info[2]\n", - " var cell = fig.cell_info[0];\n", - "\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function(fig, msg) {\n", - " var width = fig.canvas.width/mpl.ratio\n", - " fig.root.unbind('remove')\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable()\n", - " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", - " fig.close_ws(fig, msg);\n", - "}\n", - "\n", - "mpl.figure.prototype.close_ws = function(fig, msg){\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "}\n", - "\n", - "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width/mpl.ratio\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "}\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function() {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message(\"ack\", {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () { fig.push_to_output() }, 1000);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('<div/>');\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items){\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) { continue; };\n", - "\n", - " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", - " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i<ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code'){\n", - " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"1400\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3a62cf0387304a1ead559bc095e64dcc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='s1', max=4.0, min=-4.0), Ou…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "aa6037de0b35435e9aea0559417df4d6", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=50.0, continuous_update=False, description='E_b', min=0.5, step=4.975)…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def init():\n", - " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", - " s0 = 0\n", - " t0 = 0\n", - " Sig_record = []\n", - " Eps_record = []\n", - " iter_record = []\n", - " t_arr = []\n", - " s_t = []\n", - " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", - " \n", - "def get_response_i(s1, margs, n_steps = 60, k_max=20):\n", - " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", - " Eps_k = np.copy(Eps_n)\n", - " t1 = t0+n_steps+1\n", - " ti_arr = np.linspace(t0, t1, n_steps+1 )\n", - " si_t = np.linspace(s0,s1,n_steps+1)\n", - " for s_n1 in si_t:\n", - " lam_k = 0\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " f_k_trial = f_k[-1]\n", - " k = 0\n", - " while k < k_max:\n", - " if f_k_trial < 0 or f_k_norm < 1e-6:\n", - " Eps_n[...] = Eps_k[...]\n", - " Sig_record.append(Sig_k)\n", - " Eps_record.append(np.copy(Eps_k))\n", - " iter_record.append(k+1)\n", - " break\n", - " dlam = np.linalg.solve(df_k, -f_k)\n", - " lam_k += dlam\n", - " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " k += 1\n", - " else:\n", - " print('no convergence')\n", - " t_arr = np.hstack([t_arr, ti_arr])\n", - " s_t = np.hstack([s_t, si_t])\n", - " t0 = t1\n", - " s0 = s1\n", - " return\n", - "\n", - "import ipywidgets as ipw\n", - "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", - "ax11 = ax1.twinx()\n", - "ax22 = ax2.twinx()\n", - "ax33 = ax3.twinx()\n", - "axes = ax1, ax11, ax2, ax22, ax3, ax33\n", - "axes = ax1, None, ax2, ax22, ax3, ax33\n", - "def update(s1):\n", - " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n, axes\n", - " global margs\n", - " get_response_i(s1, margs)\n", - " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", - " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", - " iter_arr = np.array(iter_record,dtype=np.int_)\n", - " for ax in axes:\n", - " if ax:\n", - " ax.clear()\n", - " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, *axes)\n", - " \n", - "init()\n", - "\n", - "s1_slider = ipw.FloatSlider(value=0,min=-4, max=+4, step=0.1,\n", - " continuous_update=False)\n", - "\n", - "ipw.interact(update, s1 = s1_slider);\n", - "\n", - "def reset(**material_params):\n", - " global margs\n", - " init()\n", - " s1_slider.value = 0\n", - " margs = [material_params[name] for name in py_vars]\n", - "\n", - "n_steps = 20\n", - "margs_sliders = {\n", - " name : ipw.FloatSlider(description=name, value=val, \n", - " min=minval, max=maxval, step=(maxval-minval) / n_steps,\n", - " continuous_update=False)\n", - " for name, val, minval, maxval in [('E_b', 50, 0.5, 100),\n", - " ('gamma', 1, -20, 20),\n", - " ('K', 1, -20, 20),\n", - " ('tau_bar', 1, 0.5, 20)]\n", - "}\n", - "\n", - "ipw.interact(reset, **margs_sliders);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Slideshow", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": { - "height": "calc(100% - 180px)", - "left": "10px", - "top": "150px", - "width": "165px" - }, - "toc_section_display": true, - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/index.ipynb b/index.ipynb index a09134c..b65e85b 100644 --- a/index.ipynb +++ b/index.ipynb @@ -22,8 +22,26 @@ "## Nonlinear bond-slip law\n", "- [J0301 - Pull-out with softening and hardening](bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb) \n", "- [J0302 - EXTRA - Newton iterative scheme](extras/newton_method.ipynb)\n", - "- [J0303 - EXTRA - Nonlinear finite-element solver for 1d pullout](extras/pullout1d.ipynb)" + "- [J0303 - EXTRA - Nonlinear finite-element solver for 1d pullout](extras/pullout1d.ipynb)\n", + "\n", + "## Unloading, reloading and inelasticity\n", + "\n", + "- [J0401 - Unloading with multi-linear bond-slip law](bmcs_course/4_1_PO_multilinear_unloading.ipynb) (PO_BS_ML)\n", + "\n", + "### Plasticity\n", + "- [J0402 - Plasticity framework](bmcs_course/4_2_BS_EP_SH_IK_analytical.ipynb) (BS_EP_SH_IK_A)\n", + "- [J0403 - Iterative numerical simulation](bmcs_course/4_3_BS_EP_SH_IK_numerical.ipynb) (BS_EP_SH_IK_N)\n", + "\n", + "### Damage\n", + "- [J0404 - Damage framework](bmcs_course)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { -- GitLab