From a15f314a4a54acfab448141d0efe73e94ae82770 Mon Sep 17 00:00:00 2001 From: rch <rostislav.chudoba@rwth-aachen.de> Date: Fri, 8 May 2020 15:05:49 +0200 Subject: [PATCH] plasticity --- bmcs_course/2_2_PO_LF_LM_EL.ipynb | 4338 ++++++++++++++-- bmcs_course/4_2_BS_EP_SH_IK_A.ipynb | 1207 +++++ bmcs_course/4_2_BS_elasto_plastic.ipynb | 694 --- bmcs_course/4_3_BS_EP_SH_IK.ipynb | 1123 ----- bmcs_course/4_3_BS_EP_SH_IK_N.ipynb | 6015 +++++++++++++++++++++++ index.ipynb | 11 +- 6 files changed, 11180 insertions(+), 2208 deletions(-) create mode 100644 bmcs_course/4_2_BS_EP_SH_IK_A.ipynb delete mode 100644 bmcs_course/4_2_BS_elasto_plastic.ipynb delete mode 100644 bmcs_course/4_3_BS_EP_SH_IK.ipynb create mode 100644 bmcs_course/4_3_BS_EP_SH_IK_N.ipynb diff --git a/bmcs_course/2_2_PO_LF_LM_EL.ipynb b/bmcs_course/2_2_PO_LF_LM_EL.ipynb index 03cccc8..fa57263 100644 --- a/bmcs_course/2_2_PO_LF_LM_EL.ipynb +++ b/bmcs_course/2_2_PO_LF_LM_EL.ipynb @@ -1796,7 +1796,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"600\">" + "<img src=\"\" width=\"599.5333333333333\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1831,13 +1831,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "slideshow": { "slide_type": "fragment" } }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGIAAAAyCAYAAACnKw75AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAF/ElEQVR4Ae2b7XHUMBCGL5kUkAkVcHQApAKgAz4qADqAyb/8Y5IOklQAoQOgggQ6gHQQ0kF4H59WsfXhs8/JZbC8MzrrYyVb73pX65Vu4/r6etZG+/v722rfU9pW/n0b79TWREB4zVVzRFL+a7O1WdpsFpsldX6umgull0oMOFEPBITfH7GfKp0o/02JlzpJGzmNUCfAZ5Bj5YvQBM3zneb7Qom5Q9+Vrqrc4oc3/Fzpo3jr9TWWOCte+n1zLU9SfZOCcB1/q+N35Xmwokhzxl7/0vVJOHHVAehTpYfK9xUGmH5Vv1fhuDnTdOAYow7hAGMrC6THbk5oQ4ow0ZgYtKczaVzM1LHSy9o9fP+cIFBN3ojOEvcj/v8Z1kXITMmidPOLmYEeLC69fm2dtXv4zjlBwIAES6TKFOslzGnErgMlJ6g2zAzTRyFTJAg9AGpXMvG2/koBIGzQBqwFDkxOUKmuYd1OWBEJImQoqSxws+uD2hAAWnCo/K17kVslAd1hrma75wLbHBa6YSXweJKuJwxDaRJEE0Fz1d9KEGt1VCbT1BQEGvFn3ULgESZBOEEI/Oz64Fju9DIJ4gZeWx8I66ydJkHcQP7GZYklrZ2KF4RMEiHqn0LeTBOR0g/rlkTxXpNAv/VvglWEWLxGrALaXfSZBHEXqGbGlPZlv01SgrA4iAWoMsNO1QMQiOJ5KUGYG7dKdHHAsxXTlYCiYewnnVqsP6qVr8vO0UXxztWHfqge0iYus6e0dBdLfeFl76OUTahPmu+p5vtOiY2iihoaoQYCXYBqMZcFV8uv+iBd3L8D5dnLxQvBJ+fUR9Ymqn2mdoSGKeSeRZDmzGkOEm6zn7ffs1YlQmD775XynbRBfADJKQ8E4KWrPDtRRDA7C1T8RZGw4Quel7jCe0sVgPlDicV5qSkRT50QHv2/1CuV5wa2LRg0rV6sPWufQYik+o0e5dsPcvUZucarcTdqxaVZ8SMA9jjQjCNbIwDzcmnvmOG1qjjpcWVNyjMWKtdJq6xfl6u7T3Syoktf49EYvQCzfnd09Z7pJpNTsj3UC+XtU7/13uIDcJJ/21wHtGGm9rDeNU8Xhw/WBEv0XlgdbhosKrDIYmJ+KO8XEWtvuZ4FbSzUlRA0DkdH+owVDDXOojBBCMSznilfWQ4vCKasSoSBiVr6DSFezBGDeKBVx2KPRpnK7arO8qpuktrwrP4q4XUVQZorFgMh4OB4q9EQhEPCPJ7KxCxBB98fsD+QlCeEbMdRKLcKVH0QJoLPCkttYyO+t2aa+2F9YrZY1+vwcVEdAG1dcB2QqQ+xVF39Hj6vMWx98nUjz/CCe02wuaY0gjcUYiGe6BYR0EtnmEYWIKURdmsL/ll5dFcBgx+f/ehUO2vmWqhNEGt5gPu8iYC2cMN9PkZ175RpuveHKvEBitUIaQNeHRFis9uh/HEvK89GVxZYTBiuOeaKPtRBu0qDD6QVqRECFq+QY/XPlPDaMFGETshXyYSgMvRCZQvz45IT0OQMLIJi4R18BKc4jRB4vNVnugJ+RcrzYRm5lDSqfq6LRQ/Is3fi+6rMfgraNYiK0wgArwOpPIK5akHxssYP7+eAFw2aiSdn4gL2dLE4QSRgIDaWjQAI4EpIutqaEH7kVoI0vsT4naomQSz+eHLeAS0W68YBZacFCIhg6SAqWhACci70WHiT60OALICH2vBadWhMFT8K+HsVi1usA3T4so7CDQGPFTFBFv6ZSXiU8b4IZbetMda/9RoJgkGVWjuNqJGFdumWrvBAGyAOSJiHRF/+QdRVkNUA7scL1CojQbgGJIzajpoEYtdYkq0PmKbQPPXByDCNNCi3RnCzx3pQ69jnZmPkRSOGCMAwMc0KXeDsP4Zs8cEGFk16GbcFAOtB1sXtApAbBzw5bBE5B0mNECN2D2Gw52w2scv9RsWjubOY2zbu3qpYqB/CZBxMUnLTzB8wE0NEGoA9aBYzPukHB7aiGxRQ4YR5oqnycmc9rFZBgJOTJiq1o3xSmvBNFCMgvFhjCQhyiMyfhIw5Z7N/oRXjN4TpT+8AAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left\\{ a : - \\frac{P}{\\bar{\\tau} p}\\right\\}$" + ], + "text/plain": [ + "⎧ -P ⎫\n", + "⎨a: ────────────⎬\n", + "⎩ \\bar{\\tau}â‹…pâŽ" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "a_subs" ] @@ -1874,7 +1891,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "slideshow": { "slide_type": "fragment" @@ -1903,263 +1920,2270 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "slide" - } - }, - "outputs": [], - "source": [ - "u_fa_x_range = get_u_fa_x(x_range, 1)\n", - "u_ma_x_range = get_u_ma_x(x_range, 1)\n", - "fig, (ax_u2) = plt.subplots(1,1, figsize=(6,3), tight_layout=True)\n", - "line_u_f, = ax_u2.plot(x_range, u_fa_x_range, color='black');\n", - "line_u_m, = ax_u2.plot(x_range, u_ma_x_range, color='green');\n", - "ax_u2.set_xlabel('x [mm]'); ax_u2.set_ylabel('$u$ [mm]')\n", - "def update(P):\n", - " line_u_f.set_ydata(get_u_fa_x(x_range, P))\n", - " line_u_m.set_ydata(get_u_ma_x(x_range, P))\n", - "ipw.interact(update, P=ipw.FloatSlider(min=0, max=1, step=0.05));" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### Evaluate strains and stresses\n", - "With the known displacements at hand, we can directly calculate the strains as\n", - "\\begin{align}\n", - "\\varepsilon_\\mathrm{f} &= \\frac{\\mathrm{d} u_\\mathrm{f}}{ \\mathrm{d} x} \\\\\n", - "\\varepsilon_\\mathrm{m} &= \\frac{\\mathrm{d} u_\\mathrm{m}}{ \\mathrm{d} x} \\\\\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "eps_f_x = sp.diff(u_fa_x,x)\n", - "eps_m_x = sp.diff(u_ma_x,x)\n", - "sp.simplify(eps_f_x), sp.simplify(eps_m_x)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "The stresses along the fiber are given as\n", - "\\begin{align}\n", - "\\sigma_\\mathrm{f} &= \\frac{\\varepsilon_\\mathrm{f}}{ E_\\mathrm{f} }, \\;\n", - "\\sigma_\\mathrm{m} = \\frac{\\varepsilon_\\mathrm{m}}{ E_\\mathrm{f} }\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "sig_f_x = E_f * eps_f_x\n", - "sig_m_x = E_m * eps_m_x\n", - "sig_f_x, sig_m_x" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "The profile of shear stress along the bond zone is obtained as\n", - "\\begin{align}\n", - " \\tau = \\frac{\\mathrm{d} \\sigma}{\\mathrm{d} x}\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "tau_x = sig_f_x.diff(x) * A_f / p\n", - "sp.simplify(tau_x)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### Plot the strains and stresses\n", - "Similarly to the callable function `get_u_fa_x` let us define the functions for the strains and stresses using the `sp.lambdify` generator " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_eps_f_x = sp.lambdify((x, P), eps_f_x.subs(data_f))\n", - "get_eps_m_x = sp.lambdify((x, P), eps_m_x.subs(data_f))\n", - "get_sig_f_x = sp.lambdify((x, P), sig_f_x.subs(data_f))\n", - "get_sig_m_x = sp.lambdify((x, P), sig_m_x.subs(data_f))\n", - "get_tau_x = sp.lambdify((x, P), tau_x.subs(data_f))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "To make the code for plotting shorter let us define a general procedure plotting and filling the curves and attaching the labels to a specified subplot in one call " - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "scrolled": false, "slideshow": { "slide_type": "slide" } }, - "outputs": [], - "source": [ - "fig, (ax_eps, ax_sig, ax_tau) = plt.subplots(1,3, figsize=(10,3), tight_layout=True)\n", - "poui.plot_filled_var(ax_eps, x_range, get_eps_f_x(x_range,1 ), \n", - " color='green',xlabel='x [mm]', ylabel=r'$\\varepsilon$ [-]')\n", - "poui.plot_filled_var(ax_eps, x_range, get_eps_m_x(x_range,1 ), \n", - " color='green',alpha=0.8)\n", - "poui.plot_filled_var(ax_sig, x_range, get_sig_f_x(x_range,1),\n", - " color='blue', xlabel='x [mm]', ylabel=r'$\\sigma$ [MPa]')\n", - "poui.plot_filled_var(ax_sig, x_range, get_sig_m_x(x_range,1),\n", - " color='blue', alpha=0.8)\n", - "poui.plot_filled_var(ax_tau, x_range, get_tau_x(x_range,1),\n", - " color='red', xlabel='x [mm]', ylabel=r'$\\tau$ [MPa]');" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Pull-out curve" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### Quick summary - direct derivation\n", - "\\begin{align}\n", - " \\varepsilon_\\mathrm{f}(0) &= \\frac{P}{E_\\mathrm{f} A_\\mathrm{f}}, \\;\\;\n", - " \\varepsilon_\\mathrm{m}(0) = \\frac{-P}{E_\\mathrm{m} A_\\mathrm{m}} \\\\\n", - " a &= - \\frac{P}{p\\tau}.\n", - "\\end{align}\n", - "Thus, the crack opening can be expressed as the area of the triangle\n", - "\\begin{align}\n", - " w &= \\frac{1}{2}\\left[\\varepsilon_\\mathrm{f}(0) - \\varepsilon_\\mathrm{m}(0)\\right]a \\nonumber \\\\\n", - " &= \\frac{1}{2}\\frac{P^2}{p\\tau} \\left[\\frac{1}{E_\\mathrm{f} A_\\mathrm{f}} + \\frac{1}{E_\\mathrm{m} A_\\mathrm{m}}\\right].\n", - "\\end{align}\n", - "By solving this equation for $P$ we obtain the pullout curve in the form\n", - "\\begin{align}\n", - " P(w) = \\sqrt{2wp\\tau \\frac{E_\\mathrm{f}A_\\mathrm{f}E_\\mathrm{m}A_\\mathrm{m}}{E_\\mathrm{f}A_\\mathrm{f}+E_\\mathrm{m}A_\\mathrm{m}}}.\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "outputs": [], - "source": [ - "eps_f_0 = P / E_f / A_f\n", - "eps_m_0 = -P / E_m / A_m\n", - "a_subs = sp.solve({P / (A_f) - p * tau * a}, a)\n", - "w_el = sp.Rational(1,2) * ( eps_f_0 - eps_m_0) * a\n", - "Pw_pull_elastic = sp.solve(w_el.subs(a_subs) - w, P)[1]\n", - "Pw_pull_elastic " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Pull-out curve derived from the displacement field solution " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"599.5333333333333\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1478b785b2114520b61d9227f1ec0640", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=0.0, description='P', max=1.0, step=0.05), Output()), _dom_classes=('w…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "u_fa_x_range = get_u_fa_x(x_range, 1)\n", + "u_ma_x_range = get_u_ma_x(x_range, 1)\n", + "fig, (ax_u2) = plt.subplots(1,1, figsize=(6,3), tight_layout=True)\n", + "line_u_f, = ax_u2.plot(x_range, u_fa_x_range, color='black');\n", + "line_u_m, = ax_u2.plot(x_range, u_ma_x_range, color='green');\n", + "ax_u2.set_xlabel('x [mm]'); ax_u2.set_ylabel('$u$ [mm]')\n", + "def update(P):\n", + " line_u_f.set_ydata(get_u_fa_x(x_range, P))\n", + " line_u_m.set_ydata(get_u_ma_x(x_range, P))\n", + "ipw.interact(update, P=ipw.FloatSlider(min=0, max=1, step=0.05));" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Evaluate strains and stresses\n", + "With the known displacements at hand, we can directly calculate the strains as\n", + "\\begin{align}\n", + "\\varepsilon_\\mathrm{f} &= \\frac{\\mathrm{d} u_\\mathrm{f}}{ \\mathrm{d} x} \\\\\n", + "\\varepsilon_\\mathrm{m} &= \\frac{\\mathrm{d} u_\\mathrm{m}}{ \\mathrm{d} x} \\\\\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAA/CAYAAABD79kXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAaR0lEQVR4Ae2d/7XdNBLHb955BTweFSzbASQVJHSwkAoSOoCTv+C/nKWDhQr40QFQQQIdLFtBQjrIfj96GiPbsi3/9r1v5hxf2foxGo00mhlJ9n3w/v37Uwl88803z5XvRuG3JfnJo7wfK/i3rv/o/mfiHJwDzoFtOeByuC2/vbbL5YBk6Yla95nCL0paeVWSScj+pXxfKRyjXL9Umd91vVM5V64ljPY8zoGFOSDZczlcmKeO7v5yQPL0q1r/UZSrQUZcD+UQoo+U53tdj4fyWrrK4LUi2N/q/iuL99A5cI4c0BjGamUcE2Is/qnrRhey8U7XM+UhPBS4HB6qO5yYHTmwsAx/pqb8Tzj/0IXC7YQHQ0vEQvBflWaJt8h7VT4moV90/ax7CHFwDpw9BzSW2SL5t8IP0sboGWPyXwr/mcbvfS96XA737gSv/1AckEwsJsNRvn5SAz/RPQZ3FnqXiFWQyYMl3lLlilVPpcCzu8B/nQMXwYFP1YqctfpG8XiyhwHJq8vhYXrDCTkQBxaTYckYc8GPukzfZZvZqWCFgEmDZd4xS7yfKz/C/Z3KH27JTHQ5OAemcoADe6zMNKFLaJv5tnx2OdyS217XuXBgaRlGN34sXccZpSx0Kljl/o+uX6OmzhbORNqScK9Wz5TzKOfAYTkgGcBoxOCsebCKxwAl3sa9bg8BRo/L4SG6w4nYmwNryLBw4kSyussZpSxc52JVEI3MHs7YfSUmG+DtXTD8q7pYhmaZDWKp7wfF/aHQYYAD4hN9xHHxV7o+1TPelMPyHHgYUX4hHjNWP4zPr/Q8VkaWp66NcbQctlF4jHPgojiwlgy/FJe+1DzA1dpKzSpYFXihC++1c/N2gPVFy8PCz2s8LxWG13gU4in8rhBlMbXuAdIuI1n8YbkDD+Ufuhg8HMB5oqvmZSn+bEFtwUPEgOC9sz2NLgwXTgyO2S45At+L5BBC1TY3dHfoMfHdjeRt+L6KDKv/7IwS829ra7SlYJWJiZur6EXaqbxRPZzo4n2i6h1Z3ds7syiOT6bivifl6J/X8EwhSvXBJbRb7cHIwsBjFYXT60fwEJGH17ouEsRjN3R36Fnx3Y3k7fi+pgyznYozwNmH79ImtRSsEpncTur8Wsa0UMF9yRIx+0Q5b4vlTtztG13FFngBTZeW5VYNuhgvX33Nsqa9a4o1eATFamMGL8P2NS3uHMJBORSf3dDdryfdSN6O96vJsGToT12ssNGfNb1ZU7DKhPeA51B5lbpfC2hwrh5Tql3pa9HjeHfggMYcipXlSUK2C1ZdORnbRNGD5QvsuUR9R8E6v27orsPXEqxuJJdwaWaejWT4B5GJY8CqbOX41BSsMuDiAri8q4EIQJEDfRY2E65DgwNxsKCEMEBOeiYgDIpJIbxlFYLDOAAHcn5RfFgtUEi5SqHpnsHwSBfx7HVWg0PPNYi48XgAyuBx0k8oIep5ozytjX7Ft0D5KAMdTDJ8hjO3mtEqt2WEaGLZ52msExoRoE7+bEnbgnXR727oLsjQ+4ZKMnFYI3lDGcZzZT5jHq7Oalw3BkNYBhNRa092TKqAeat3T3e/fUo3zXcv79U3YSlCYeChwsrj0z1Ki/3r2iExxaNgeV+LT1fSt3x95C+FLMOiMF7qQpkw2daWOPQcQPmD4lYYBo9CFC3vhYavfOmZL37Rn4MKVnntfVKU1mE9Q9FGWwbbozxnCWoffQr0yZwbunc8WuxXfEdOkVvk7aRnAsIgywqDrClqcSM51gP+2Yay6KQdRzeSN5Fh8YLzQ8xl8LVTwdLhaytXVVGBCXgVkdzYqxBJlN8OcADlyicqm14WHc7pbE6Gm0IjzxM9m4IeOiSFV4wiNkA5M/maQgZPs17L2wxRsOSnfvYv3jUz+PMmHAhGmmrK8b9P6W5C3KVWEmWQV74C/xWaDJ50j9JaxUiGn8LPnPtC4SxDWeXPwkimzRsCupPzQzgzYZ69tsoVEawpPdsEbElrhH3Ca0Jv1tsa9V8cTjpVjULhcUisBnS2LuKe6kr7N70nvQ/YH00nYupDYYc4hcWGmfIGq1Ih1h6KnyXKJv4+WlppwsHE8VsroT+Cj/SP4UE/tvNNhXdd4IZuF2fWiV/TSIbipQxlN5Lb/Q9PbCUwzCuVglWCfaTALJN28YViNKnhToPNlGmK2YS91BtKy97ne5QrEBTe3W3rF6WYwtv0oe+ePmukY5BVSyGNtKJH4cT75d0xDtb9pvC1wkn7nJG+T4oq7sgkHGV/jtxR3qKFZ2g1wLLuHfb1v8mmG7ob9ZLGDfK5ppFMS5qGLHWONpRF62GN5B3lmPkLQJeGraVUwTJhApbp7mm9XzweU6ZpLSbYxR5RWvge35tBkuOpscXy2HNTaVp8bxgnAvIs0kfChwfL0jZj8CeF0MlEsKl3qfrORTGKPfNB7XVDdz4bl8SwqpEMofR5g+BZhrLwHcpIjm3cRY6jPDF38eGfAFd2oxBLZsv9MJZCKkISOtjbY0mzORCSLH7b5ID4hTKCZ7YSUWVRGn0LwPNJIBz8JdtNLByMsVhniNJ9eHd5EvJYSDiwpPFC2evFk+Vwlhl+c1B72W4OuKHbzZutU8wANjnL1W95LG3yPCnZsnlhtqEsXBjIyC5zDEYyl+E3Wu9DyDzMNxyCsXRNi+1Bt83OI3kVUJ0sDXKKlIkbD+akkIHFvtxjnh16OZATQvjGUisne1Pv73vF2wliQ0r5HA5Lr0LhQskhOJwyp69qSlzpDCa8oXcKZ0OknZPQ4EXRvo1xs3GXIFBd7KNg6NVA8dVhlFrCeT/Qr5wEbYIbuk2OrPzMGNeFDCFfYU60KhVvymqykQwu4WE7xpaEs4ay0luf/KNsCQg/ypq3FKAX2aUY4WwlDqIxoDr3kONXohEew9vvriPB1nmbKdhYLxYPJ9qCttc971Y+1nOqHGJWD+BA5BUTogkHe+ZYiwgFAgpPMVxM2aFEeQ4DXCHl2DuF58/1TIhCrgm04lJ4rQfSeYmaQYuipSzvS/+u66R7O03M4yIgnIzH8OrYIggLkajesH9SmP2ss9FvutzQ3acXkc0mrGIkU4n6GdnfxFBWXczhuxnJsb17yLHNu8FAf/D+/XsYz6TJpI2gTSZKZXkXkgn7A91bRXp0cA44B7biwFg5VH4m+vTjJBi6m++Bb8WfvesRv5kjmW/xdACM32Ak8xDTMYJtDqV/SG8aycHIVhrxQ0YyeMHDahZeFoBRzIohymA1Q1m47w2Ix/QJTg9L5p9dx5YHbav7uR7sbcTngXPgLDkgoWDyQ0AIm4BFbpMcExOrBWFiUsjkdRTFNEoO1SYm8lknwlXeoZAD4nfvykxM79yOiGMwjMPCKkO22M/NFaHJDtWYurfOq7YOyrHyrCHDpkPD/GEK1gQSQZsDTDIOzoFODmhQM0Z4X3XMWNny7+pQNOyBvdX1vehtTkiKroDlNpQxe04sz7PVQpwZrLrdBcbwdhcCvVLnwMocKJXjRWVYcwAHhWlaTcGatW7ad07bFzvsMocIL3tMDmjwvRNleH6HA9HG6b/Kc+A5R6TikZcfdWEBsxRkZwZom8mSbncFl8Nd2X+5lUe5OKyRDH26euVY6WvKMPNAmDvMg7VJAat9EkSCKcuBGAfnwNlxQGMYwQig+ye6McUZY6u0YIgqD0vCtp9FIh5shYOIrcHlcGuO37/6opwc0kimNyJ9oWN0n5Vjxa8uw6rj5ioOj6BtU8Ji/JjALAZcbgfnwLlzgKVhDu31AcKb7oU91TOe7Z7gcrgn973uo3FgSI7XkGFzVG+vl+AGmlp4WC5j/Xnx1zWWoNFxOAdGcgDB4zWkLGics+rDuA8eq57xXrl2s+xdDsV9B+dAnQOdcryFDC+iYNUevFYmm8f1tvmTc+B8OSABzC4RxxahTEnnQylEcbCJw05B4RKxA7gc7sB0r/LYHOiR47Vk2OaAm9kKVsTbRw94haFvQjp2Lzh1zoGEAxrLQyeBOWnMF3EO8ZqDy2HSeX7rHIgcGJDjtWTYlohPVyIAzxMwrXv3VPCrsljMvCyN5Z7uRRWU9izOgbPmAEtPr47QApfDI/SC03CGHFhbhm/tkNNo3kTFjHLlO5PuuY7moBc4Vw5ovLM3yx7s0ygHuzXF5XA31nvFZ8yBrWT4wddff40H+xe8UqWj/uZH+ZlkeNEeBftMz6O9YJWrQOWxKHhBmJBv33KUGvqoB9yz6xAOB+fARXFgaTmcwxyX4Tnc87KXwAHJADoRHfbptR54IX1Su1SOU8OcmvyfLl48nnWCUrjY00KZPlRY+4KOntnr5bN0Q3tjypIH4djj3xXyxHisc2AhDmhcLyqHc8gSLavKMLS5HM/pIS+7AQduYx1vr+dWpsGOgkYZ8t+dfHDa3sObijpsPGcKv1EcyjcLqpePYdeUcjOj0g9xIKVJlz/fTw5oPNrqkf0L0mRGCNfScjiZFhWcJMNUqHa4HM/hvJc9FAeulqBGQsEBJ67nuu9UgoV1cXQaF7sJXUJr+ZisHJwDZ8MByQrbHmEbRPezx+/CcjiHj1NlmDpn82EO4V7WObAAB6oxbB4sgs73G7m4nwIc/GDdmaXcXk+yC3mcZFDQtRPJimdpl/jJS9DCQXkUd84AGP0vKcJHO/GqWbK2tj/Svf/Nl5jgUMYBjaN/6rK/LSsr1J/LxuJkOexH35+qtjC5rCLD1Cz8g3KsPEX/kqJ8LsP93emp8zjwzhQs7+1UWnciTlOKKNmp8DAW/EKDH+X1YXx+pefJe68RR+m/K5Cd149Qxtl/SREtKHwUKcty5OVfV8jLp/Vs/V23Ds6BIg480tjhUN8SsIQczqFjTRmGrlI5dhme04tedg4Hgg6QTP9pCpZlKixDrkmv3AgZymauJ8wyMPtRCNFiIHx45tXeMM855Iqn/SX/ksJBDtoKUAav4aS4uUYAaDYB0coy3gtd0E97FuX5Go0QjdDKQbevdH8Rn+RUOxiLGJOLgPAtIYdzaFlFhiEIXunqlWOluwzP6b2Vy8b+uSgZzrCs0i+pgiUfg3OSgo2VzPWEmfQH/41HnYR1Cq0pfKR4Oi4FDl19p8uU4Un3eNjZNiqt6B8WlC8tD83mNaR1H+aeNuuq0UgbdD0TkZwAb/LyMLQ3CGHgcp2NIdOgP/f4ufph6cN3c+UwR2dpXJEMg0ztXlyOhdNluLSn9sl3iTJccVLjj/YBYRyagrV/Dbm9S9vtF+U3uH+rRrTyKI5TzFjPQ0DZpiJuloGOl0nkU93j2dZA9TGZnBSaUH+s+1T51vLv8SB66HDaXFOw0KI0vJ1Bg4a8RwDRCm9Hvat9BLr7aFCbLsITT9pYJMPkV9vXlGOX4aRTjnJ7iTLc4K05K0EnXMXE8KD73TwDMT4oK9GwtoJC8DqViuiAQSild7pOkS5oC0uopOt6T5oAxZvSy/PR4POjEeT0XCYHoqzQuFQm1mpspxwjo6rUZXgtzjvePg7UFOx1zGkK1hL7ECyeJoHg0JApJ/bX+Pyi0bRGfX0TAMqU9K5/SXmrtJ9FHycVw+tEkX4OZKVerx73BdHF6VT2hy/CS1J7bOI86b6vD/dl/D2sXf2xqQzD4p4x4DJ80DGoPrt0GTYdGlZJg4JloOqiSyxx0+5R3exBLb0PlW2D6hry0llm5tBPlh7F49mmS1utpddsxQtHig4sdA4pvYmoUfAskwd6FNqrCiQ/0XM4iBXztE6sKp2+t9dFHumek9stHsR8ePMMIHhJOYwiviaEV8GrD8RhbGAkgYt4eEZIWdJJ4x6wMihNcMF/9uegB36Tj3bRBnBAf9UHysuESjw4b3XBm6eKr17r0n2gU/EtuhXnMJMD4u9mMgypqq9Pjl2G7+TOZXjmuJ5Q3MZlWCW9ThAwOTFR3XcwJXBYPmhyoZ9QQLy/S78F0D0Kln3gb3UFr1Uh7UFhVacvY/Y0QCGhhINCVYgy+q9CPPUUP7hQctX/niqduN8V/kMXSpA0vm3NQKMsihbvBvwcOPtR96RzAC0oeoWUIy4oV4UnxX2mixUCXtkyGmhvsAzJA+gZ2lnxqO2/67lqr+6H6EaJO1wOB+hvM94O2SqNSZfh2DPixSXJcHhNTW0KK2xXyegzz+dclWw1oSZtGnUrpqA8UC54P3T6UQHlWlN+kVAmFZTN2D7k28/VMrLuTaExUaVg9VYKSXnDuFEmPGYDyqNQoZGDVA90mcKnLIr1qWUmj+65mn3IyorRYtlZok+BAQ39N2mk7s1jJ7qU7gYKf9yBA80xMIoEjQOXYXEskRuX4VEjaHZm5t5qzrpO0OEtMEkyYZ3d/lYyoJImjbsVDoR7loCPq3F8btFIB2IEvGqWVpot9aO8xvRhNSAaOCulFevlmXcRU2VKEZQsCjKFvvqZBPG2OTDG0jJLwS91sVQcQHFMDGGPO0ZlA+XDO0fp/sV9LINiN28cfo2hO1vPpUaKT/CGP+oYA/yrVV//jsFVyyu8XWOxlq/rQeVdhuvMoX8DiDdjZaGvj12GjbF1/vJkTscpVbAWyVJb5c3EsqsF6nQ7kbtaHVsjVpvWfJUE5Qo0Fdpd7N0vgjQGUFBDYPWiGMPSblIgN146cao8ShH6mQzxuvmSEcvDL3RxuAz8LAeTVgLstb7QhVJGSePFsxwN/rF0q8j9AfGIfqj2qqe0XDhchscxzsaky/DffLsEGWb+ASrHoFKwCJourMexk3PAOPVHda6pjKaSdeRyZuHf9BBpeVpZxO8vdQXvrpXYH2E4bXLoz91vAFCWvViUKZ6rHdRCUaMUmwpcUXlQeeh5q7BSxrrHw2aPl6XhsXTnK/LYTg6Izy7DndzJJtiYdBkWezR+LkWGOdBJe6r5q1KwcRiQwAQclu5i3GED0dk8BFNEq8qxJInHgzFBm83butU9nU08H2E3QdDjMUA0sQyM5ctKQ9WRUKd4M45QLAbkpV0GdsrNnovCWC/8YPm5pqCVxkTxXGEtfgAxS0wowu91mXL8QfeMPw5FkV4C9Bf9WdWt8niv8IdxjLe8JN0lNHmeDAfUD5PkNYMqRAnfWcqx6HYZrnfqpcgwHqytBIcWXtXbWU1qDNxDgwYpkzMNonNGgcqimJjM8do5rcpJVS7uWaqASaZ0dXs4eCyK+MSeKVQjEGXFCeK0k18rbjSPDGEj5NUYTik3xwfLsukyMQqXqxOE4w8lovgqYy6J45BZn3HTxM3ScjOOZ+NDKd2d9HrCPA6ofybLa1fNwnnOcuwyXO/Ys5ZhjUV0EXNO6tycHrx/X98+UUZeg+Agy2hPR2X45CKT+Qe6f6dwFRBuGsKkjtCiGNPJvahOlYERtLP2egeFFccennlVRfi2ziT64DM0Gp9D5yrelEpFkuKs01FaLJ1ysAjljBdvypLJiuVa8LJMy4ABNx5g+s4p9aDIMUDo7w91vVQejBXKQBMhAC3UB+4WKB5PlXJV/+XiKKj4HL3PlPRQF30ILdAGzYzd6p1g3VO+k27SLwnU1k3ksJRnkfez5LWrLuE+WzkW7S7Dp9NFyHAch8ylNd2XU7AoLZbnwl+1dQ3sXLwq2USwVQ/CijLAGEABoBBGgcrw3iVLiUGRKmQCR/Ew4T/XVU36oxB7ZufAzhzQ2N1EDkubKXpmy2tXXcLtctzFHI/fjAMah3iqdrCyqvequos3ymiK5Wkz7QjPog9F+EYhnkpYYhxLl8rizXCxJ2SA1wrOk0LjgaV56BxwDkzggGRptrx2VSvcLsddzPH4zTigcYhTCrTOjVzfxbd+OTCCFxeW/lqpwxG3yhKU1XDW0TlYq7clSxSsLUdWiJTO0iPAQaWcd2tl2HMFF8/ZPb8CXNTj4Bw4IgfWlMPS9g7KaymiTL5iOc6U9SjnwFIcQMdwcI1zJTVoebCkKmNYNtUte3RjwJQqluXiILqwFH5IENtSWBWlPFjMvFeJkWB7j1V6vHmkkOVg9m9hDgebUm82ZCvEFfL6j3PgQBxYVQ5L2yn5GZTXUlwd+YrkuKOsRzsHZnNAYxwjD53DXnILsgo25kLJ8srEGGXJiVVg8eXlSAfKkA8QsJzLvg6HW04xjVsAqz14o4pvHfgJOe481mZaOIgDLl3m8pfgiig9cA4chgOryWFpC6NMlshrKcpcPia3EjnOlfU458ASHEAPsffa8l5Bft1VgwrYhi1erHm0XdktnspQTpymKi1jZYdCcD8WXWadn3TPKTzzYnHReUaoefUD46B6N1JxKWBxvLQI5QOn4aW9LI2X4jI0HjoHjsKBNeWwtI0l8orx/psuDGJbQWLLhrLIHytL/JFE15mIEjmeW4dIcHAOtDmgcYmeY5zyylUWrrKxf0fi9qKoQDIIyoeg4Ami4Kh8ERAuLFUEzZRgwBvr4/4hP/GZjebXus8qV8UjlEDL4lAaNOPBcpKYtvTiAomDc+BoHIhjd3E5LG2n6i+VV+QZQ5z5AoPeFCkyyD2KFoO5BUovlePJdbQq9QjnQJ0DvK7IJ15reinN0unBkkkF8QoZ4FiXRe/FKj8Hh/Aqf1I4+2tIwkHdCCxLQSaAJ8Wj9FGAAI0krkq/i67/Kh2BNcUfysQctwrBh9BiNTs4B86aAxrri8phKTNU7xR5DVs6SR32zLvWN0l8uJ0ox4bT0Nlztg7L5KFzIMcBjUHO9/CKaK/O6VWwIAaBLvY9+WBA1prMEMDeKATgdbKs2/IWM2WyUSob9lmbiYpHQLJpzbz2rDJYy0svXRt6D50DR+PAYnJY2rCJ8oqSK4aJcjyqjmJiPOO944DGH9ugfNFu0OkcWiIOzBMi9kX4z03z/nqZqnyc0MUTRLujZIvK9SItT8QIeLJQnUviKm+B53QOLMCBneVwsAWiD+/UZIwJi5Wqh7o4BwEQztpu2qKOQKn/3AsOaDyx0slKaJFz1/qSUxeX4kBlsI/yRiNBbxV2rlN31enxzgHnwDIccDlcho+O5X5zIMrRSaFtMfQy5P91kD5r5zJvRAAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\left( \\begin{cases} 0 & \\text{for}\\: x \\leq - \\frac{P}{\\bar{\\tau} p} \\\\\\frac{P + \\bar{\\tau} p x}{A_\\mathrm{f} E_\\mathrm{f}} & \\text{otherwise} \\end{cases}, \\ \\begin{cases} 0 & \\text{for}\\: x \\leq - \\frac{P}{\\bar{\\tau} p} \\\\- \\frac{P + \\bar{\\tau} p x}{A_\\mathrm{m} E_\\mathrm{m}} & \\text{otherwise} \\end{cases}\\right)$" + ], + "text/plain": [ + "⎛⎧ -P ⎧ \n", + "⎜⎪ 0 for x ≤ ──────────── ⎪ 0 \n", + "⎜⎪ \\bar{\\tau}â‹…p ⎪ \n", + "⎜⎨ , ⎨ \n", + "⎜⎪ P + \\bar{\\tau}â‹…pâ‹…x ⎪ -(P + \\bar{\\tau}â‹…pâ‹…x) \n", + "⎜⎪───────────────────────── otherwise ⎪───────────────────────── \n", + "âŽâŽ©A_\\mathrm{f}â‹…E_\\mathrm{f} ⎩A_\\mathrm{m}â‹…E_\\mathrm{m} \n", + "\n", + " -P ⎞\n", + " for x ≤ ────────────⎟\n", + " \\bar{\\tau}â‹…p⎟\n", + " ⎟\n", + " ⎟\n", + " otherwise ⎟\n", + " ⎠" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eps_f_x = sp.diff(u_fa_x,x)\n", + "eps_m_x = sp.diff(u_ma_x,x)\n", + "sp.simplify(eps_f_x), sp.simplify(eps_m_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The stresses along the fiber are given as\n", + "\\begin{align}\n", + "\\sigma_\\mathrm{f} &= \\frac{\\varepsilon_\\mathrm{f}}{ E_\\mathrm{f} }, \\;\n", + "\\sigma_\\mathrm{m} = \\frac{\\varepsilon_\\mathrm{m}}{ E_\\mathrm{f} }\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAA/CAYAAADExI+lAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d65XlNNaGD70qgPqKCGbIgGkioCcDoCNoyABW/+NfL8gAOgIuGTBE0EAGzERAUxn09z4qbZft46tsy/I5W2vpSJZ12Xotvdreln3ee/fu3WmK+/rrrz9XvluF307Jv2eeFFlV5kPJ/I38d4r/vKf83rYj4Aisi4Dm9DPV+KnCL9at+fpqE4ZJa4HKOcde33DxHjsCuyOwlP/nln8ypceq9BPl+0rhEZTq2bKqX1+qf7/L3yvuSvWUQeF5HIEDIaB5/R+J+8841w8keVmiCr/Z/EoPIu7OsWVdTpfGEbgKBMQ/i/h/bvmbMVRV4T+V57X8x2N59z6fIqvKYKVGsf5W8a/27oO37wg4Ao8IaE5iaWZeEnLT+1/5W3l46V7+hfIQTnGfKtP/lP8PeYjW3QwEhFnSWqByzrEzcPasjoAj8IiA+GOtNWAp/08uP8Vi/Yu6+Eqd++Oxq8XGZskaLxhK9c+Ku1Jd7GV1wa4VAc1LFOCf5HmaxFYOnpx9If9vpaFkYwWd5FQGBRxy/ElxlER38xCYxa9ULZxZFJ1j5+HsuR0BRyAiIA5ZZQ1QPYv4f075QcVaFWFpYEE7whaQWbKqT7fqGws27sVD4L+OgCNQIAIo0V0W5r+UPktB1rynnh/lbe4r6m4MgZS1wDl2DFU/7wg4AhMRWGUNWMr/U8v3KtaqgAULS0PxltxEWT9T31Cuv1d57mTcOQKOQJkI8NIb1tK26yPbdr72MZz2oeY9+4XdjSCQyK/U6hw7gq2fdgQcgUkIrLkGLOX/0fK9irW6+p38f0SqXZaiSUhkzJQiK4+EcW65esDBfx2B4hAQ/3Dzy01+g4eUzk0/6TaPFZ3mVJYbaZ7CvZ5W4upzpfAroNm1cY69+iHkADgCaQisvQYs5f8p5W+6uqqCWHLYG/dB1/mS0hbIyqKMe/sQjP+qLbab8PiZhRlsflDaEfaeS1R3ayKg68784NNtb+T/rWOsp+7WR+BprJJ91cy99+PxGx0v4adXqudL1YEvfqtb7HP2QNgsWQtmc2z2DnqDjoAjUDoCW6wBS/l/sHynYi2UX8pjrebloNLdUlknbQMRFrwkxUuc4XN8CrGk/a4QpeoIOJV+HQ8jn643j6Wwwv1Dnkn/jdKeyTesqko/rFNfsAhz48ALg3vePHLDwlc8Vt2Spvrs3RGunW8H6x+pS/mVmqdyrBsu+q+DnykIAXGGG1byXY/V14Cl/D9W/kyxVgGUBjyLatEul6xqhz9E4Bu41TeuFbdvXqNg/atooFy4tRFgbvzGGFCIMv3e2g3sUZ/6w80iihRWSv4oaYlFeK0uwEW/rVVZq57vdMwNBHuBv2+du/pDXf9sa4HacsPF1Y+4YwAQ58VFG1a4EupnKcaVrdaApfzfW/5MsRaeLKyAeoSFZg1Zp2wFYa9glzWSbQA8Sr6Vn2SVAVt3h0fgTj24mKcUGrs8sscijBUGC24JCrVECQ6ZbK9uTFonUD//K481nhulI/DdOh2fXssa/Eprgxyra+CGi+nXxHPuj8BFGlaAVXOxROPKJmuA+rqI/4fKP6mP0Qgq1qrKMls/X1I8s6xc2C5nynTf+a4ynuYIFIGA5hBPYbC84H9R/AP5YhRMyYKlArflVpQfVD9fCLH9wKHBa/8RHiywudaCIcMF1wZZ3DkCpSBwUYYVQIX/5LHA8uToT8VZC3Z/90QybL0GLOX/zvI3gFpzPBLFAXDpLousurBG6kNWF1+USx8tK8gXJznWinAjpeNQq0LSTgoZK1j5eMkOx4t2KKzhaYdCyrGPlPHySh6r90fypLOXedAKHuvHuoejHFZm6oJ8aOsv5RklQ+UhP3KwQPCHK11PY3RqPyeZeAz5PEqAjFjSB/FJlJYbCbDgGq66jztRnlKKZeHX2FnGf5cx537kfClYuRyOwCEREKeyflRrko7DWlZCZyRLjjVgKf93lr9pARgeuapDxS20LTk5zCUrygfOSP7h6OF3SNmu5/P4BSCgeYHllK9ThDGhsCIhxVFWsfw2XmZVOoo1Vrdv5ZlX/1L4t0K2W6AoomBDICgXvdZilQlKu8Kg/ClEwebbzuyFpu4/FWeMDirWymffg0ZZ3dISLFHSHX1S6cG+pNf+WFLt8K4EOICnK9aP0GThV2HPuMYNcakbLh4w8t8dEdBYhePhfLj6pGMCwrAOKAwcraSiDStRZvpSunFl8zVA12wR//eVfwLINceAOYJSjci5ZbUFoAZXFbVPgFUJHrk6BFCqf9ZEa1tVUdawtkJk5sjzTGnkZ2K/J9+rVMdCWMJRws2hmKNwWDnIPShDlqEnRLGmHO0Pjeme4heZDOfxnkT9Gl1kR2d0Khe/3kWZ7jtkG1K2O7J7kiOwHQLiB75OBM/CF3w1DSOLKdVwB9sozNCBsQPux4CB4eSkkDL2oQN7jwVOpyzzrdepXFDaFVIvCic8jg9GG4Vs23ouP+pUnnIo1ciGoecoOt9o3xIzLOX/s/I3JojAtQtbrBVrJ1mHyN0WBbtDNRE9vCIENHcgRpTVN+1u6xxkTDKkV59b9TjnxxyfeqwrH7QJUYc0hZPIUfmCFUAhFlo+F8kj+HbdY7I0zqsOSP/XRuL4wQuVm4vBeK1pOVho7KlBKTKl9WSFUroue6wFjKE+54aLPmQ8vRQEhgwr8CxcbdxihpWglKsDU74qNcWw0jbq9GED39E2xhVe4KuvK31lLjl9Kf+fla8Ua6Fmf3BBptJdNlkZdPLgYUp0HRtbDKYO6HpZj18OAijVuCGCQhGuu7f1g7F4B/mh/GARSXKqD0s332/G0vGrQj5pl7SPOcpmlpgkeSiket4lF64VVD1TFqpaiepzfvDK5ttP6g0XGs/Gr+r/0DwwznXDRaEDxcUKvAW3H8KwwvUSP65qXFF96EGLDSuq56j8z9qJq9aPumLNQo2zTA9HZf7mljWY+jugMOKfZC3sKO9Jl4GA3VjZjVZXryyPnRtSwi1PZygCMiV98bhTXVis2ZLCnPpJIXJiwTbrSqcMWySqzbkK8SpiqF1unun301UqPH4l2fg1Yg9ixqV19Gw+tedOPY/HHYG9ETicYQXANPdWMa4wh1XdGoaVQ/J/5LDG+vGkNiJZrI/yWCC3rDzm6Vp02SfFo/5kJamGv0cPioCuP0ooY8AsfVVPdM6UYMZQslM9n8ibohEUn9huqFPx8D311AZU3vb/secPyzUvXZqClVrtkcpxDdlnbYvkkWRfW9bc/OqGi7WvoNeXEwG78TN+7mrb8ti5ZJ1BHGVrymLDCsKoPgwrKMasURhX8NYGWa7BLeX/RvkbEBOItpi0L35xgO4hq9rkkTkb/VFusPCdFDKJ2Kf6McfurgqBLgJlHLClgpdXmGTmXitiXwSxNMp31WHnG6HqQ8GF9Hg5kfHXUOB1nvmL1fVe4SIXZefLJtSJgv02pi2qd05htcd+Z3u5pyqqdNuTWKWtGHmjutgWA9b2QuiK1R+jKmG8x1rA2OZlqrZzw0UbET8uDgH4UR7uhZeDfmBCKt0UVMZ4slM9cJO9UxMMHrRrFSoOZ6KnJK8BKouizsuMyAz3KwjhKgo8lU1xaveI/N9YP25iR+3iF69YS969ZOWO7qUuui08H+n4Yx1Xgzti6cGFIhCvPQqAERvvI3B3D6FBrowRbsCM3G7jcSAmpVOOfdGMoc91TIgi3iBjpbXdb0ogDx/xh3RQsCnP9+Z5E/2k+KrKoOqDC6Z8ZYTmV3Vqe499znbNzhT6VTtXfmXZ+ZWxK++Gi/LHhkv4gAC83nYXYVihU5qL6DS7GVfU/hH5v7F+mGJtyiLfwi3d7SKrLjbAJb8sVjqoLt84AhoDg8pmPN9rVdV5FOzZd/9x7LWV3D3IZxyk4+Ywo4Lxy3F7skxy63/utcANF8uum5feGAHxMHPjKgwrQKn+Dq53G8Odu/ql/N8ob4q1WWns5OROCXwsaDwCCVY8hSgOVs+d4jisIAxKs+qRluqSZW01aLK1kv3QEXAE9kIgLl48CTAFry4KVhQeh7IFC0UsWOsVYkHiCdKSly6Ns7raVdXbuh14tK9Da/Er9U/mWPXfDRd9V8TTi0BAYxSOaBs4KtnieTesVIjMjwhD+PeI/N9YP0yxNgI0c/ZkRASEfbqFT6WgODf2f1pFSmcx7B2Ulm9CmCxrq24WY3eOwNUgoDnImOezSHPGPn+1nnO7E0+F4JC38q/Vdh9nsGcRAmZPILzzoeKkmWKo6HSn8ry4TYG9FOvcPNoHzlr8Sv1zxlmfPJ7uCDgC14PAIfm/vX6YYm2LiWndsy6jKjVr9Q8DBX/UOaxMS90iWVuNr/LCV6tOP3QEikRA8/Regq0xBzfpn+TjqxyVxYfjdkNKY/7DJdyo8za7Kf30zbhB0SRHHWdtJtWUUEh9ycmjfRIahklrQUelzrEdoHiSI7AHApFTizSuIJv8kfm/Wj/aijVWohRnVuqx/aNr7Nsz4k+V9aSLZ3XwUpg7R8ARKAABzUuIKTjFUTJNaY6p1b4/5jBbP3gT2xwW66q8JaaEqhuCX6Wume3n5NE+0Ywbk/mVioWf1eMc24e0pzsCmRGIvFakcaXOuYoflv8l++2TeF1vCesdm3m9g6VF5RsLoY6rTyjFuvmywVK3VFbat7siHh27cwQcgfIQYAvI0I04nFO/kX+uYyzZS5wpk7YdYkldKWVz8miffGvwK3U7x/Yh7OmOgCMwhsAR+b9aP27GejfxPNai+iJ3kiLNo9rGwqi0tR4vThTrPJtkYOFANvZUrvqJsvPWPMURcAQSEUDJ5HOCZ07zFmso8/iekzqGf/BFWmKQcaI7DI8O9UfXwzl2CCA/5wg4AmMIHJr/FyvWIlEAwN0pzkJ4J08a5Nr5IlFcCF/qPBr+7zrOqeBipUa2j+XdOQKOQKEIiBcaT8BqYqKAco4/bCIZnuElxqBok5DorDz8kNVJ9tk8mlXAeY05x87Dy3M7Ao5AC4ED8n+1fty0+pJyaPsCX9SBUByFuc9CDfFiXeJvwlkkszjJY9+g5LNdfYt2Flm8EUfAEehHQPOz86Y8loBz+OweX9JY03Gjv5dL4dG9ZO1t1zm2Fxo/4Qg4AhMROCj/V+vHE3XArDOmbU/sepUtWFpUT1tRbW8NCQp0bI9/kONt8VmLYyxLw7NlVVmUef4WFMtWQzYqdOcIOAKHQQDOebOhtDx1y+1m8egWwi3hV+Rxjt3iqnidjoAj0EKgdP6/s5cXW3LPOkRh7lJUX1ktkbDDwhHTZivGVldKGNtHqf5G8fYNQEqVXsYRcAR2QEDzl+1m7LF+Huf1DlJs0mQKj24iSEqlzrEpqHkZR8ARmIPAUfj/ptYps1zXkoaj6qQpy/xRQ8PpXF15Zj81/4rG4sHb4nzOim0ZfylMeZw7S1ZkkefR8i8KeeTKtpW6fEpy5wg4AqUjoHkLf9gXJ0oXd5J86tNcHuXGgidwhLwrYuX5BOEL+c/kcbxZjzGhy/ARMvT8zOJX6lAbzrE9YHqyI+AIrIOAeOYQ/H8TCTG117YvsJe4VT/KdNj6oZB/SOOfdT6P4ax2l8iqsnwFhH3d/5PnA+lZvyCgtln86Dshnx1k/zkLGIsjSv7FKPvqK39zf7ZHVukXpRCpj+4uC4G72J1qr1ym7s3lUZRY+xwV3BqMEwr5i/efFIb6FNIPLPxnc7GrX8pPvV2nJqWp7K4cO0nImZnUp6vh7ZnQhOzCx7k+BTgvUyICS/m/Kn+zsHdsrzhpcnVur4ikhGUFq8ruTvLYgoTl+jv5bIqe2mI/OUr0U4UsipXTMdZ7FsVJC2BVsNCI+pPyFKLQ3rhYjsA5Ahrj3BT/LY+xYOlNegqPmvJfN2pws15/YZy4kb2i2zthsRvHbtE79edqeDsFP+HjXJ8CnJe5aARmK9aaSCwor+VREvEnpaE8G9FD5GaJ5TwLT6firXPZnWSBKFmMsJrzmLS+EG0tD5ak+kJo7f2lSMDSEjx0BByB7AjAW5OceAMFEu64VYi/n1QwZqKMoot5tKNduGRXJ5n25Ngt+u68vQWqXqcjUBYCk/m/R+yqvCnWLAqTFohI5A2La08jWyVPlnVAAB6P8ogPS3HOvnwY21TQcH3E3ch0hAOND24Q2HPfdaPAZw7DjYVC/qQHSx+WehyD8iN59uJXN2KKh734Sseab9ftLJ/OuXME1kIAjhl1GpsfyAdr82jmVgaVo42c3NOSoPdwDX6lcpuruTm2t2MLTlw8b6dgozE8yvXK4zyfAq6X2ROBSfw/IOC9KdZYm28HMpZ0ag1ZzWqMcp3FiWDAFyKytkO7SmePGulLHyeH+gr4YR85Nwpcp9fq35DywJMOlHA+gciTDRYw0sKWmIgNijbWQdKpj7z8oydPRtw5AmsiEMaUxtecp1gfKT/vTOR2U8f/XF5fg1/BwnguG8ducQF0ba+Ft1Pgm8r1zvMp6HqZ3Aik8H9dxqq8KdYsJCh3+D/qOdeMR5Li8edJcSZbwzo5sa3FsqptFLV7tTfJSj9RrrFsT2OGL9Q2j2vfj8dvdHwpe6vBs9q3rnjnoq50xtmP8lgzftaxjTmuCefM8UiZNBzpWMFOSjs0XpL/Q3XjpTx9oo8sUEU7yYisPF34SvGc/5SaE5fO8dongHAgf/atF7Fdmwu8rPipPHMJJfZDxeFI5hTW4pOO57xPsphfY5t7cCxNr+0unrdTANOYGuV65YEzrpbn+3AVLs7/feDsmz6L/ztErcrXFWvyMRFMyekotyxJA+peNQxZMKc0APHjlsr6VnVUQIQat/3BimtfRdm2pZ1qj9c3tK44i3znWNK5cA0VsqXjTU1cCIcxEpzO18tzzqxgMUf5ATjIN+SmX/IvJD1fqGEcH8ExV/CHvqnpA1rXw7jA+KUvaz39M5XL/vKW2mSOwCeVUxo3O+0bnkaeKvNwxPq/lF9pJTfHDvcs7ezF83YKLHEMhqKKd3K90q+G5/swBBt55/8+gApJ1zVK4f9K+nb5J/EMj9Zxdw9B0b9HkrUOJIrhb/WEPeMaCJ/Isw1lK8cNlF2rvjYg5DrpPNcxFo6Gk5xgd1JoRB2OG5kKPJC8TNbOG0mdQzkqZjyMwSd5uRl4T7546/pYX3rO2w2OKZY92R6ThUVbkX08edyYzdkjrAU5UC6Kt3N0OKGNMa6/aJ7vw0v84PzfB0556bP5v9WFRnlTrG0xOYI16kiy1rGHXNhPfC2O/vYqjiIdBiLEg4J50jELGD4obpyXf8c5ORTuuvWa4yO4z44gpMsYEGgQ4xVjclR+3eqSXRtvp+DYy/XwuCq8dJ7vw8z5vw+Z8tKX8n+j/E3sn5GpnSyv248SHUnWIHVUGonXlcPHHl1oTP0e6i9KNOexnIMAN3W8mBgUbcXfyrP/mr2j4YZEcSzs7E1/JV+0k6x8LYJ9sBdh1VR/bIE8KT50XYu+LgPCGffZV2oGsl70qcPx61ZXQ+McjsJd4nh/6NlKvwOccNE83wef8HD+7wOnzPSl/N8oHxRrJoU83bWTZXZdUh1JVkCUvCiDZmHlxa/c385GjOxO/Rx7+sHeRV7c69yjqnQU7Po2ivqWkez9qTco2bDA8PKhvbiGss+fDgUZFdonpij2TMfhRbOY5+wLEjrPvIOIcR/J80LrGS4xHxZ9lD/wpRxjin+8e6Y4L6uRxo0HChJ1kQ6OhJTlPOeI46wMygN1cU14sRh5uAbko1/0gTqQv7ouysvCSTp13smDzXOlV1+5UTzIqfQzuZVWirPx2vuUpRRBt5RD1+owa8HGOFwlb6dgqjFjc6er+GF5vqszpKm/zv8RHGHh/P+Ahc2BsH7cRHwIWBgB6QjuMLJq4KEgnSlJRwB5YxlN0du4mXWrj0SC4sk3uRmHwSmOYs0XGb6VD1ZqhfQRRbX6UkrMXg8gaZTvMEYUooT+qRBrfb1+6kK5raz6Ok/a7wr/IY/yyzn+DZBJTlkUbBQE6v9e/kfFOc9XIoKCr5BypAWlWuFJaXxlgqcEfMHGZKC/DWuujpGdG8XGS3I6rvqr+Jjc97RZgHuKDJLXrZPHWgs2GToaB87b6yDL/Leb+HVq3LEWjQt0JOd/gSAsnP8fx2Jj/XjymB6sUoB1BOXaLINHkLUGsUdBQGMMBREFEssmk/NIDlJtKL1ReBYPlMy5Y5K/uK+2iyhuiiwLUt1Zu5UiqrxhHigTFnJzlH+mc8jIJ8944dAUfcqiUD+3zORRHF8pw/EclkuTxbK/tUgMIRPkv22lm4We5Klyt6rIfsh1a/c3uxCFNOj8WsiFOLIY4oUj83wf9MZnba5w/n9E7Br5v7F+3DxiEfaxskCzWJZutcGadhRZaxDnj4rceNTfVtIQBGXoTucrJYvE6NhaUD3ut8S1QtWNEtdW5NaqfrN6JDeThxuCN+1GdM4eoYPnnPnTJmirulJWY7sc8+3YuhJNXpSgeyI1N9Q+pId1nZdDuc6f6PiVfPjmMXUojfEy+qKt8mGNR9n+m3gsg0Jv1nfwmiO3sud3khc5cXaj8nB0vb9Z+VX4M0Z+nQn3C5UbGuczqztG9iNhJVkPyfN9I0H9cf6vgSM8nP+FRxwXIFOtH3XF2hJ5rFtZ0MhdoMsuq8CzL1QUBYfkem9IIJ3nTvrMKR2FCuUqKEFnGUYSVO6QeIx0a+w0SjWurcg+pD78mpJWTxuKo5iOOWsXhThs4agV6JqrvXWqPGSI/Cx6jA3+OZBtIC/leZGU+tn20TludK7t2Ev9Uh5lHOUcqz3bTqh/rtwqsouzG8/Rm4ldpMvfaFZ+1VhhPFZ78lO7q3qK5KS5/VE/ejl9Lay6ZLoG/Lr6PSPN+Mz5/xE05/9Hw2W1flSKNRNWHuvZXMXgEeJMsT1kVZu9ZJep20U1c6V4mHX5duBiWJ6zLMLsS/mUGxmr04j9rO5WwhDxk/VHeZRoLNX2AiYKOspwW3FXUrdTeeR5q7BSwhXHos4ebh6ZzpW7u6HtU3nJ8ySZJ/d9e5H2a0E4HGYtqKMkuZ2j64DMjDt+o4AZnzn/CyqNF+f/hyFztn5UinUcUiwsLP7hMXFMKzUoSlZhxt1K/WWvSbipHJZjLH7c0NAnszbeKc7AJf0D5bNJrcPy3SXioT6x3QOllac6DSVM6XZDikJpjrxcR3P25rAdTwpju1z/5/INxVznIPnPFTbSRypmOwgK8Gt5U4p/UJy5z8uOnJ/iGJ+M36ptlcdaDT5wCNbxNeWeIlNKHizWZqVNKX+JZYri1zUA1lhM4ui+tlXfRXL3QH+vGj9db+f/5uBw/n/A42z9eNLEqVpQIYzSnS3+u8uqCYeSArgMtFlOZVnAUGqwEvE1BpRzPHEes7Dgm7KtaPlOcl8yHh/rCvBX1qZI2wVBSeWLIHUF7TelzR4TVmErZM87Xx1pj3e2X9S3g6Bo43ud6vhDJ1F4qxvoWhovlA7dxLXrZgtJO41jw2Gq3L3ybnlCsjNvkbd+Q7Rlk0epuxh+XQMwXedkTuprX3VeHHcP9NXxewDH+b85SK6a//vWj5s6RsrEy0wsujwSrqxQ9TylxEuRVXKwKNv+wFQlikcJKGFdzu6Su84Vl3bpeDA/5Lne7Eu+jxeAMcCxKZMhWcfcIP2EVwLKKkrwScco5S/lUeo45jzbMhg/zD0chMX+ZxRT8tDu/yn6WiEWYf56+n35IIfSqAvrM3V8rmNCtmSw+Hc5FCeT3853pZ1UR5e8L2IhlHpuNMCA+rDKV99qV/qg3Mq7tzO8f9xbkJLa13U7zFowhlscm0s5uq+Zi+Huvg46fo/IRD5z/j+dnP8fhkXn+tFQrOPwYXFlQcY6hpJdsitB1pcCCIUGxcbIey5mlK2sjmCvYxY2FBUUqCO5i8dD1wUl2SbU4LVR3qAY1zMpjXl1lq400vsU4ZPKMR66ynEOpb6h2Ou41yn/2Y1zVxoVKL1P3kltqnyv3L0C5jvBEwC2ryCjuyYCJfBrU6K0ozU4qa/lS+Luvj46fjVkxBXO/w94OP8/bIU8Wz+e1MZLiGrQmILHfs6i3d6yqn0U4L8Usigz2bASznIqe6sCePavmcPiFxZ6hXY97NxaIZNi1bol65HxWAtXr+cgCGi88ngbhwLproVAjXuKXwtaoleHa3BSVVkrorr34u6WJNsdOn7bYes174uAxvYi/h8q32WxprdYs3ic/Eo+KHj7QjDY+lJZ71R7ah95XG8WRBRrrBcNp/O8DIbjBcQuK6eVYU81dXFMXWduQl1nZfoSVFdqn/uqJP2weAx1ys9dLALMR7aqlP5kbs8LsJRfkX0Jxy7t+ygnLWhgMncvaGPvoo7f3lfA298KgaX831v+zGJND7TQsLUBxyOgot0CWU2xvE3poNrlboeXDs2xZaNhsVYeLLjsk2Vx6ns56iOdY9tHeGlRcbaT1K3XOgzXZEpdIe8eP47HHqh7m6kIaLyiFDGnbK9galUXXU44LVkLFnHsUmCncNLCNiZx98I2divu+O0GvTe8MQJL+X+sfKdiHfsEofL5rSTFc2Nc2tWnyGovCz5vVzZ2HDHhboU/0mDbBi+l8ULZKZ4jisNSE6zPSu/b/8oC3z4X9tlSl7w9rphSF21md7HPjkd25L3BBQiEr6lo7Lq1ehzEFH6l1mSOHRdpOMcMThquaPjsVO4erqXAs45fgRfFRVoTgaX8P1j+pk9STSz79zR7caEv6+7pibICDEorLy+xcMxxlP1Y7ZpF5qQ41mqzWvN4mWOUTT5pxg0KVusuh9XslZ1QPuq0esGe7ThT67JqcoeOR27Evb1kBDSfmPPMKT6d5W4EAeGVuhYs4dgRqUZPT+EkjEa/ymP8sKeEbMejLOODp4e/03+FXW4Kdy9to6vdHGmOXw6UvY3sCCzl/ynln4z0isekKIWQTOlulqzqE2SKZRjFt/1t4N6+Ki9WCsjWlEt2Px0AAAJxSURBVN+QN9ZH/Ck/8ZiXon5TvFOpVjrEjDuzmukcMmGxtn9BG6wr1LLDj+RzPHbA3ZtchADfHK9/LnFRZVdSeBa/gom4IYljl+I5g5PgcIwqrAHcPJgCDe8SR7nEOHLmdH4qdye3cdZopgT1bSqnJ/ftkvHLdJm8mXQElvL/aPleizUya/BjeYVYuJvn+7TFuhRZVYYXBrEy863h0X83VB5wgHQaX9RQOjceKL44FuyTvJH0Q2rrV+chbVPoQ5mY5U4h9UHcqZ/vi1VtG6gPjse2EHvtKyOgMcu7Dvwj5OD8XLnZw1cnvJLWApWbxbFLgVJ7KZwUtuvV2rbjt0q7raWHqNpI4W6r06qz4842LFPu0PHLjbi3lxMBje9F/D+1/KBiTYdVEXfy7CX+Tr7z7j0nMENtJcrK3mjAxgrN9o4z67G1qXPkPXNKhyQ7z51ljgkqg6Vk7haUvup2SXc8doHdG01EQOOVrV98n79oI0Fi9zYvJtxS14LJHLu0E4mchHI72amNFO6e1cZkYVbO6PitDKhXVwwCGtuL+H9O+bGtIAEUVci+s6cKzcJaDFhtQebKqvx8kQPLMBYslOs1+8iNyLOV6lyzrjZsuY7X7MOadeXqv7ezEwKagzwFwtI46wZ4J3GLbVY4zl4LVGZLjk3GSnJhjTYe4YaLp5FP5Xm3BUc4a6tgKFX7ydFGrbms0Rx9y9FGVtC8sV0Q0DhaxP9zy7/37t27SR2NAxyS6bXoTqooQ6ZUWSN4bxWyd8ydI+AIXAgCcW6fFNoj+AvpWf5uCEMU0qS1IF4H59j8l81bdASuFoHIOyeFSfw/t/z/A8qOQ995TVeQAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\left( E_\\mathrm{f} \\left(\\begin{cases} 0 & \\text{for}\\: x \\leq - \\frac{P}{\\bar{\\tau} p} \\\\\\frac{P}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f} E_\\mathrm{f}} & \\text{otherwise} \\end{cases}\\right), \\ E_\\mathrm{m} \\left(\\begin{cases} 0 & \\text{for}\\: x \\leq - \\frac{P}{\\bar{\\tau} p} \\\\- \\frac{P}{A_\\mathrm{m} E_\\mathrm{m}} - \\frac{\\bar{\\tau} p x}{A_\\mathrm{m} E_\\mathrm{m}} & \\text{otherwise} \\end{cases}\\right)\\right)$" + ], + "text/plain": [ + "⎛ ⎛⎧ \n", + "⎜ ⎜⎪ 0 for x ≤\n", + "⎜ ⎜⎪ \n", + "⎜E_\\mathrm{f}⋅⎜⎨ \n", + "⎜ ⎜⎪ P \\bar{\\tau}â‹…pâ‹…x \n", + "⎜ ⎜⎪───────────────────────── + ───────────────────────── ot\n", + "⎠âŽâŽ©A_\\mathrm{f}â‹…E_\\mathrm{f} A_\\mathrm{f}â‹…E_\\mathrm{f} \n", + "\n", + " -P ⎞ ⎛⎧ \n", + " ────────────⎟ ⎜⎪ 0 \n", + " \\bar{\\tau}â‹…p⎟ ⎜⎪ \n", + " ⎟, E_\\mathrm{m}⋅⎜⎨ \n", + " ⎟ ⎜⎪ P \\bar{\\tau}â‹…\n", + "herwise ⎟ ⎜⎪- ───────────────────────── - ─────────────────\n", + " ⎠âŽâŽ© A_\\mathrm{m}â‹…E_\\mathrm{m} A_\\mathrm{m}â‹…E_\\m\n", + "\n", + " -P ⎞⎞\n", + " for x ≤ ────────────⎟⎟\n", + " \\bar{\\tau}â‹…p⎟⎟\n", + " ⎟⎟\n", + "pâ‹…x ⎟⎟\n", + "──────── otherwise ⎟⎟\n", + "athrm{m} ⎠⎠" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sig_f_x = E_f * eps_f_x\n", + "sig_m_x = E_m * eps_m_x\n", + "sig_f_x, sig_m_x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The profile of shear stress along the bond zone is obtained as\n", + "\\begin{align}\n", + " \\tau = \\frac{\\mathrm{d} \\sigma}{\\mathrm{d} x}\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAA/CAYAAADzGWpJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAMC0lEQVR4Ae2dTXLUOBTHO5kcAMIJJtwAwp4qwg2AnCBwA5js2KXgBsBudnwsZwdUsQ9wA7gBIcvZMf+fWs/IsmXLbXdPJ61Xpej7SXr66+lJtjtbv379mvXR06dPb6jMM7kXCr/rK1/yiwRCCWyHkbawQPVY6V/kzgvA2iRU0voksNNVQKBCewGy5wo/6Spb8jZDAsLBgUYKFvDZ1b7LXZHbkzuXO1IZ/Iq2UtulZ/ZeJd8pfL+qUQIbLwHh4aGE8Ez+1VAYiqOU7sm/Hqa3bpcqBDLf+oJHYYUSLhKQBO7KfWiRxA+lodFq1AoylXggB9BeCnA11VerXSKbKgEOguxyMbWCL2WT2fZo2ixmVuIbKgG/y6GtappM6djupN+MRZMCmam8s7hCiW+8BPa9BB4JWGyP13z8VPGaLWaSSoHM8rO3SjWA0Uej1KGx10r7Kn8lpLY47TySO5W7qziqu9D0EkCuXyXf7NuGlE02qGtqkHs0kMxVx0uFT+TeKmwacRC/oYXVDjYCW/uRHMA+UBqguzSk8TyW++bH+n+OC1l/HtKBPk3Wu11q0Bxn9+RXTwIUtotbJr6xRw/pYGZZNNhn2pWPrbCVWW+ti2k8V9TBY7l7cjxtad2OVjwIFq/Z7FlN94EshwkN1oxAX4lti9V3xU9+Dq9Fy+yqIpeCl4IkL3YAu/DkPmodwDVTP9Bi0CAzaAqQgexKi7kuzP+YPZfKD4qWIBLQJAIubFv8E8XR0GtB6gunx0PfmSeKA/6shT0KZGoEdQ51basIbCmk9llZTARAnimOh+8mR75tNxxIIE5C75XuNK986lWTqjBCuyVH+n3lJ4XoeWMqQNRB8zBW+kQ7P1TmufxeUjnq0I9dOSawbWfo5bPMAn4sWeOJ+7ETJwyMIxTItNY8Nv/bBbyw3MJhDRy1zVHa9UN+tfIVZuKwCTlpVmBRGJDdkOOQwmTelP9TPlsS5U7kWLUAjUNMg1TegVe+O2HJB2xcTmI3wfebwsikd1JU1i41AdegbUj8LwSNBZkNEqGnyO5RUvnLSgdgPHetAOYbAhhflP4hmFTKcCI1kPYdHDDGAaMRAEWLGSjhE7drZWMfkFGe9r/LtS3YuM6Fio8FWZe2Mi1nW9XKBKOJQosx6Rw+aqQ87nhIw74INUcYJr+LsJdCMNAeoHVp8rO3O5VF26H90IaAH/s25q+kfBIPFv3H/BquJG9P1GSgeP/LhhmNjAKZOsFVBc0YoMImGSiUu6Lnpaf5C8CgEAjzlN9/AUZIXQsmLDdj3LWE+dbqts4oPTsqnmhBnhVzXfFRPndR2cZ12JDv3+irI/Hp0+hhs8nwdjInP4NVa4AKaxnwsld1WHlk2IDd1i9jbWUsHgPH0jt9TYSBdZJxih9bPABhu+dCG2dtdPZlXTNHaTI/KITBySgm7BS2poUmL2Y2JK42rV0egdSuV4IJo98LkXigbWx7PIAJbRozhTk4jHqDRTwALYcSAIZGk+f8ScAMs1zy42nc1SndbNhOVqNBpoYQJicjXlZzEyofDYKNcaez9eky2zQWbbPtcOKrAKC0V3J2srQeUL+Nh+VXvngBKgDKJTTjrT0jVT5bNWbEufzR5PvOCRm+gO3Mp43mnctA7fWekrt4tb4ZK6YcwRnUVYV7haUyTBAnLjPyuTfCeA0nV0nTkvg7wYsrmgVilbO9uFOez8dWsjHQT/KdNpAPYMjHh0jv/FhGdeABUE/lINpiQbHSeYY7Uxk7ZRLdeEqBjHsjhJkFso2X4iUWgBYMC5lrFvyY0LCYDSwy7Ei3yOSDnUrRpLZLChUqEkACaHpMAk7frwQozIQ2woQAjNiR2MTYkqRdT4FMedPZFTAr1JSAJoLFzH3WkEXN466lmiHWU/onVxn3vr+W7XyloeHeyKHNOBlb384Vd9qvATJfSfnD3hmiQqFhEpCsmYjR91nDWs0v7fvnKiiM3WoAqpgo3V0FyWd7NDuVfDQZ45tt8yciQy6qrlCRgEmAbZIDYYoAYXi9cqg4Gm5W02RCI2obtccztHJCQkKFTAKA6IVFQl9YYVsEO05zKY4WwzktXQOZEtFeFF7V/ZaaKnRRJCDwNLZL33cARR53pSRxncMBwIGuApkSuLUHrRxLU8yUXWgTJSBMAJwUcfrkKqP10tbZZMpEg3GhCfrCfTXFtKQXCYQSQDmFRn+YN/tDMbbHv+X+EsD+qeWWSJFAjwSEGew0QLb96dOn97dv3/43ruJu/FUQw42LNLZJ3itye2lcuMSLBBaRgG2X3HVwEgCRQ192W6TdUmeDJOBAxni99uIuhPffW4+qGySXMtQJJdB4QC6AsW2i0a4rHL/YN2HThdWmSKDSZMGATYu1vYgYFCvBIoE8CbSBzK4w0GaFigRGS6ABMm+bcbrkCTzXG4WKBEZJYCdR+0zpGwMwLSYeixzL7clxc807VGtN6iN95SVBXn1f6+fMDU221pKdoHOakIYZoDR3Pyj2TBzuIhBKANf1uGctxpHSZIM6p0nikVTtg4qQgfLt9aEweeVh9YNJ4ZrG7M6qD8rj4w++dbwQpL6yMCb5LnLZA54KZHy1475UWnaHR/J/MLJ+qb6ABCYB2QLtrryKVj7aluuZtbZfcgWj8bCtO7vZa7XcqisvNwnINEg+ZsVwdoNuGQXGaetrIC1lByeJN+3Svn2Sd03h8Cei7GsaeB+oPGCDKNPQwEpjAgEl5F4rVlqj/74chwQMcGwj6jFWXvo8UJi7RtJO5LjYhhfpbNn41CWfPDtsWB22Q3hxELG3ZM59ObZ7xgAP+g8/RyrLIYZ0eO7KIZtDpVeveSvs+qn0Rr+VNjk1bvxpQZ3I/u5SZe3S9rWqIgTiCJWwI5VZ2pMD8UaoTALvwVXtKMyTC0BUgUNhxsWktdqIvo6KNL7dpF7tCYjKMpFMdPVynk+jL38q7MYvn88L38jRH8BB/JHS+SgaABCvFmGQ5j43U54jpVOfeuEYAQmAdiDzdfmutGYfK85vzboDgvysfs9bnebv9hg26jATfCofIfEZFALgfs2Fifu0Mc301WVSUz8RxRfX9HEI7atOtaUG/WdyQrJ2w8VkBwo0pxEyQXvSRw4XW3KOP3HloYkOrbBPIz1eCCZfK4rPVVNI+4rQf8Abkmlu0nL7HdYfFd4ZU1uDQaXjHCnOhFZC98lL83x7qP7TuBH6JkcyE1j1kYQeqjRFVK6aON8ucRZUCCiqALRYBl3tAwA0Lj/uzKJkm2YnsB1ipjQAjibrJJVDS5+p0E/C8qkDuJ02l8/8DOm3io+nUSBraZ4J7RVGS71FkwAYFE/qPHX+d6gmY5L6yNpts+kqLRgwSfIEDHL0H82FXXZLcXaGYzn7fRG2TvJyCNvrWA5gAlS0OVsz/If2W1XG0/Z4FjUOrMLPtZTlRkzrsDpTZGUa+RI8B5ZFyHjapPXx6FoE1MVmA1CMww4vgDXeMpWUJtV3/ZEPSLEVuUeDx0OFAd3QfqcbG5AzGcg0CAaIyu/aGgZ0rb+ob4sJrBm61FSeaTBsECPK7lpE/kK35b5dJgzNXSPlsYUOBS9bJvJ7JWenXQ5S2HLwCm0qRZMEj9r2rfqAFZ42N1P2O9mRMGM7jIwMo8VspYxkNaj6HZV+IGEaqKwyExb/RBRalomYgjjR8YIn4w6JLSrcMtFOuCSJBwsT2Tm7jIJB2qHCXXKNebPNxmnE7VCS22+6MQmNvsKwXmhgrDaOytWVgeUt21ebAAeb5dy3hVCrn4jyac5TWdNsTBw/E4WxDUCxYwwwrPwTOfiy3bDVwBv7KbyToh3AjM3FNQf3c/xkFqdI6tAnfIhJTv4slcqjsahXAbQtDUZKb+vvkbL25dDq9IW+0We0NbajgYz6yX6r7OQ0Gcgm71lheGkk0LddhvbLpRl0GchqJZACGWoWQq0WKhIYJYEUyDCQocbpaZ5c/hYJ5EsgBTK7bTZDOJ9jKVkkEEmgFWQ6fXDysruVArRIaCU6TAKtp0tjIbBxFN6Tq72BYPnFLxLIkUCrJgsqcufCRSH/8ye+7AyKlWCRQFoCnZrMqglg2GhcFvKjuGyjhYoEsiXQp8kcIwGLm2tujqtb4+wWSsGNl8B/KwdvpjsY7UYAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\begin{cases} 0 & \\text{for}\\: x \\leq - \\frac{P}{\\bar{\\tau} p} \\\\\\bar{\\tau} & \\text{otherwise} \\end{cases}$" + ], + "text/plain": [ + "⎧ -P \n", + "⎪ 0 for x ≤ ────────────\n", + "⎨ \\bar{\\tau}â‹…p\n", + "⎪ \n", + "⎩\\bar{\\tau} otherwise " + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tau_x = sig_f_x.diff(x) * A_f / p\n", + "sp.simplify(tau_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Plot the strains and stresses\n", + "Similarly to the callable function `get_u_fa_x` let us define the functions for the strains and stresses using the `sp.lambdify` generator " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_eps_f_x = sp.lambdify((x, P), eps_f_x.subs(data_f))\n", + "get_eps_m_x = sp.lambdify((x, P), eps_m_x.subs(data_f))\n", + "get_sig_f_x = sp.lambdify((x, P), sig_f_x.subs(data_f))\n", + "get_sig_m_x = sp.lambdify((x, P), sig_m_x.subs(data_f))\n", + "get_tau_x = sp.lambdify((x, P), tau_x.subs(data_f))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "To make the code for plotting shorter let us define a general procedure plotting and filling the curves and attaching the labels to a specified subplot in one call " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"999.7333333333333\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax_eps, ax_sig, ax_tau) = plt.subplots(1,3, figsize=(10,3), tight_layout=True)\n", + "poui.plot_filled_var(ax_eps, x_range, get_eps_f_x(x_range,1 ), \n", + " color='green',xlabel='x [mm]', ylabel=r'$\\varepsilon$ [-]')\n", + "poui.plot_filled_var(ax_eps, x_range, get_eps_m_x(x_range,1 ), \n", + " color='green',alpha=0.8)\n", + "poui.plot_filled_var(ax_sig, x_range, get_sig_f_x(x_range,1),\n", + " color='blue', xlabel='x [mm]', ylabel=r'$\\sigma$ [MPa]')\n", + "poui.plot_filled_var(ax_sig, x_range, get_sig_m_x(x_range,1),\n", + " color='blue', alpha=0.8)\n", + "poui.plot_filled_var(ax_tau, x_range, get_tau_x(x_range,1),\n", + " color='red', xlabel='x [mm]', ylabel=r'$\\tau$ [MPa]');" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Pull-out curve" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Quick summary - direct derivation\n", + "\\begin{align}\n", + " \\varepsilon_\\mathrm{f}(0) &= \\frac{P}{E_\\mathrm{f} A_\\mathrm{f}}, \\;\\;\n", + " \\varepsilon_\\mathrm{m}(0) = \\frac{-P}{E_\\mathrm{m} A_\\mathrm{m}} \\\\\n", + " a &= - \\frac{P}{p\\tau}.\n", + "\\end{align}\n", + "Thus, the crack opening can be expressed as the area of the triangle\n", + "\\begin{align}\n", + " w &= \\frac{1}{2}\\left[\\varepsilon_\\mathrm{f}(0) - \\varepsilon_\\mathrm{m}(0)\\right]a \\nonumber \\\\\n", + " &= \\frac{1}{2}\\frac{P^2}{p\\tau} \\left[\\frac{1}{E_\\mathrm{f} A_\\mathrm{f}} + \\frac{1}{E_\\mathrm{m} A_\\mathrm{m}}\\right].\n", + "\\end{align}\n", + "By solving this equation for $P$ we obtain the pullout curve in the form\n", + "\\begin{align}\n", + " P(w) = \\sqrt{2wp\\tau \\frac{E_\\mathrm{f}A_\\mathrm{f}E_\\mathrm{m}A_\\mathrm{m}}{E_\\mathrm{f}A_\\mathrm{f}+E_\\mathrm{m}A_\\mathrm{m}}}.\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAAyCAYAAAAEJj8WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAASaUlEQVR4Ae2d25UdtRKGt2dNAGaI4EAGYEfgIQMwEWAyOCy/+c0LMjCOwEAGQAQ2ZAAZ4OMMfP5PVjV9UV+kvu2eXVqrp9VSqS5/Syrdes+99+/fnzw4Ao6AI3AOCDx79ux76fHfc9DFdThfBK7PVzXXzBFwBC4QgS/lvO5doN1ucgYCVxm0TuoIOAKOwGoIyGF9IuZ/rybAGd8ZBNxx3ZlX6YY4AodH4DNZ8OvhrXADVkfAHdfqELsAR8ARmIjAF6L7bSKtk10wAu64Lvjlu+mOwJkhcKvlwj/PTCdX5wwR8MMZZ/hSXCVH4NIQkMO6L5vfXZrdZm+0/4meP9X1l55/qOV9qfhTpX1Omu48v9T1H8UvEjOfcVETPDgCjsDeCNxKgUteJsQx4azY43vaehnf6rl+aAVnhaN/0KK7mEd3XBfzqt1QR+CsEXgo7S7yYIYc1iey/XV8O+zz1Z0UyTj1ChvR4+C52nRKuoxw6KVCvcDVvp4W70W/JRG/F6pSLAXsEpa0Z21bltQVsNfWd+iFLm3LkKyD59E5Pz+4DaXqv1U9+SUWflzHQemctCS0Z6N/K88d1wds8v4KOEYKf00tJfrFnEGU/ZvujFDOOkRdP1nS/r0MPpotR9N3r/d6DnL1ri5yv8bs1h3nzRKgOTFeC2nvlNd2UheJFYAQ5s64+HmWLwRqezQQmK/8B9lcRwhH0nUMz6PZcjR9G/irbWUNDimsMosNEBvKrPQgfemc36zE/khsv5KyfwqPupPqfCKgfOpEtXR4JAOX0rXYcUXwmEVs7rT2lJ0L/JF0HbPtaLYcTd8e/HG8ew0Oe1RaPNk/PP4AKQ6p7rRIJa0+AyONn8WqTh2ScGnhaobB36nsXmvSyOY6QjiSrmN4Hs2Wo+nbwP+OON6GTT0PnVlFD91dT2YWhaMKQe+fmeiNLtvnOimN+MV/63av5NfhBR7rsH/ozjcHm4Yo+3fdwzcNmwrPFHYkXcdMO5otR9M3hb9s4EDPr7q3R9wp8sOmyT6+W9q8LzlHwOI7RzU7O/Cj4i91cerwY9JFQ9pFh9KlQr4z2GvGg+y9Znq5leVIuo7ZdjRbjqZvA391TgwOb3XnG57NguQx4ucDV5YoJwWVKd5TU1mfQdRQ7nnf7H15qCGQ7bgELA2KNdaG44rpVtltuvud0heb1kYZNOaG7Jo9yajoaRwvdd9sllaqKwbsoW8SuJg4xRbR8D+UWPJheYNQ/87k5kNSWPKgbrABvdq7OJq+EZv2DcebVc/bDAqfacMvhGGxM8qUy0e0F33QIBMvJxcC2Y5LZWhQ5qACiLGjwDFUIwPFoWE5ccmNZWS/CELz/jDVxnltGUp1Rcc99B3CZtQWvWc2i3/QnW/rcEzJzxSUzrdsVT0ZEjoj72j6NkwVRsnBYYNohQfJZVCx9YEr6skeDnoFBJ3lVghkOa5ag2qvR+OkvqkrLVpmW3RSP+v6qJ43I85Mry17kF3UIdAofl/Xu8ECy2Vm64roHfUdsnySLdLdZluvBpj9pLzVZltR7tH0bcOF420MDiEQvizhJQcEMX/usiIOZOtl+M9kV/skHeZ4cAR6EchyXOKCI+o0KKXxtTedVtupsFxEJ8IoblblVHmWolKylZwOKsPI9a0uvhFhxsWS1eqOq0RX6XXaS19k94VMW6xTHftEwjae+8QWpx9N37ahsQ4kHa/yOKSxykGNKPdW97nOr21S77NkMcOb1S/0MveMO43AlVmnSkSltRGzJbfv34omdaKFyodzwlGkQl96irYvrU92Hz3pj6UTDd06ShrKFqFEV/TaS98hTHJsCfVHmDf2NfVcDTgUZ+CwSucbjTiavm3s+waHbbqln5nlbb1kR33x/a2l3+QF8LvGRnUmzGaouDig5DJOpHmh/E5QXrKMCG1fqXdUpbKjy3dDsjvKxASVoVGwLEUw+bMc11q6ouAa+sK3L6xkC++7MduSHDpiGzgEdZRm76NPvU760fTtGKAE2WCOvYFRixbH2165CCRKt3baNxBkeT77w1SVgR+zvIbj0jP6MovmvTITgy7YoPtDXd+IhoFIaaDfSPYppQy93GUgcK2KR2dus6jvqay6Ug2rt0GloIKP0uHNhn2nciuNPEZbjL4bDUbP7ZArmwZ2qsm1jjKkt5mLjoaJ42ZZkQMlhkcg1fNquiJA/LP0DUoV/lnLFvG1Du1GcTqjG12kYVtfRzyIu8qdzklf9CkNssOcDnUxOdCLNMmOXHk2a32k8u908cx+FPEQRGP13JKm3qn7xr9ehoNVOEP2qWmrlWOM+pBuy8P1clPj9DWbLU1OVcrpzh+Ba1WcUNl1p7Om8uJEGo5LeYyakw1K6X0B+l9UtuOUlGZODdnw7tAY0yg7d2npgcrVbbDGnexAJYsGSGfC0Vw60ypsoCuycvWt9MuJrGyLdWCMwqulQsUZCPR1qL24Y5fKrVlPSvTNgbuilR0MfGwwlD04VHnq5Gvdq3agOCsVFc6VsMwIfFSks6emdHR+HdkR56RoJV/PzKJxxkUhyrV2WcTDC10uAtdmuioSv0BM43qie/swBY4lOUq08vW7yuO0+OX25GhK6cGp6E6Hxi8DINMadp0V8VzZNHJmaPUj1zeRKQ2wEURHw8VeGhF61R3eSemr6Yoi4p+lL2VKw8q24GSwp92ZtvHkFBmd4CDukdea2GfpW4p5tGPW4DBiWuGqZ+rMUp1+357aW8kxR4U8Znf1EAaBvEddJbqAf6Nu1JkTF9/V/m1RW5Y/nz8Cqg/Vt4WV44pqM+OyGVBwOiLmmZnTpMopujAK0z3ptOrwiAbnRqPGOXUcl/I4/jtZduTNUlXdaYVkpf1PEXNgkbS6jdqm8mvoigIl+laKl0RWsoXOLdURVR2e5N4XDR2WdcKjuGPfGemLOsVBdiw1OPxaSoweapA8c86p92J2JJfh0RUC46Fom0dwnkZnzPTM4HDKbJA9skEbxKvqqIy/3x0BEGg4LlUU/jkZoyxmQKxnU3knz3hEj6P5VPfKaSkeZjm69y0XMTvrWz55qjzW9CcF5OuyUWK7zFslNGZcoqXxoSsNDaf9j+5Dm9uL6SpZJ8nK1Rf9WV7jDi6hY9I9bJTr/lgXAccNpu3OJmTGP4vZIjmmR6cjUl7dOfE+nystF3dU3lPfJXGfPTgUFrSzzuAMkCwI41l7asZHd5ZU6Req96j4faXxzjuDTaVRP1/pssGJoslwKz70LR4cgWwErhIlbIT8VBWLBsJMo6q0CfqQJBo6o4e6V04r0sJjKFjlb5SLst9MkQ1z0dG5DAVsoMFVQWVoXKHxKF5tPFcE3cgiusK2UF+cPx0WdrC8ycEXHG3oWBX/kUvPdPJcQ2ExWyTE9ot6HaX0on6EJVnFc3HHjj31XQx32Q4vGxxafaQOWrvD1t6g8rxrcOx1DJEGvODJ0qwNLNp8mW0NDdSgp2z7vTJAoj01HI940dZDP6C7B0dgNQQ6jkuVjwbBxRIhI+RG5dRzJ6hM6DjJUJyRPhe/d8boi8bRN9s6KY8GQCNj9gEfC8hmdDoaYrmxX9F+C6OWjFHedQKVna1rTYdSfYMd4lPvTMCXd2aB5xt7SN2XsiXyDoMT8azrUIlVOp3f77omdc5VwVrkDPRdBPdokuGQNTiMZcG6tz1BI6xshmTOvtOGRUP7HhvcwC4MOIgQVI5n2uUjxWkPISh+XxHqHLr1OUqjJf9NePA/jkABAtc9ZWhYOJ2pMx5bvgr7Wy2eg40s0tryybd6ZuZDxabxDZaNjQXZoaHo+Q/F2w2Khg7fQKM7DqP34Ijyx0KRrjBdUl/xqjqNqPA/Y4on8ufa8lI8wwwA3tKJd2EdPJ0YnZnlcyAj6dhEMzXsru8SuINDxALnQb2cvBwuWg5FTHE4J3TVhfN6ojuztHp7wpkNHrgSvbUZBqLWtpH/eYuXkk63SmPGD0/ksfzerqPQEXB+nWXlkON/HIEJCFynaFThOBDBiJ6OYjSIdrABjDFQeZwU8mjINCgunM1gUBkahi1TJWlFw7JM375XssxQYqmu8NxD35VtGdxnGZJdkrcA9pvqO2Jj7uAwsBMGo+2iJdecfdWmxIN2NuXQk+1v0TbrM/yWiFC3rY0xeCTg9CwtJNT+wHexdyF7cIQvdS/uh1QWx4xe5qyx1xw9gzACchiIMfAolgWjrcIS2AzpuhduSceFolJo0CEMGVOYRwNjNsSonZGiVZpCdqsW21NXa0RjBjLbmRL2tGWKfm2avfRdFHfV76zBYRuEqc+0I2SJnllQ7oErOvFBh5XQw+gfKq/PcYW9zkTZ0iRm/jiV4iBs2Os7l/9uUGxHouBsbBI8q6S9cLuqNNg5IgBshMPSHqPR1YNk0rnzYk+K/6xrUuUX3ea6Rh3RNywToW9Ms+Um9hJtn5DO/aTn0SUl0Wxui2QW4R5t2kvfRXGPtvDLFFsM0Kw9Td5Ti++I9pC1pFezx2YumFoF5cNz7pJxnR/1P4Sosz1m31XedH41UPgn5S32ziSTNmvLsANi87PEdzFshqTvgVvvjGtI0RXz6BxozItV7CFdJeed8kuXLDbVFTuivo2ZsNLYw7BNeMgIDZoPSYN/N7VlJu4Ysoe+DUwXwn3wpSyVKV2z9tREz+AxDH50x9kxQxo7fVhXl8GFOYF6OnHSs5xhm4E9SycGQOypvtGFQ7zRRZsuDfaO0X8oNH57c4hwr7wVsBkyZXPczmbGBSo0Dl0GwhBQu+cdSdcxsI5my9H0HcN/o3xmXXT0oweuhC/LmHyPeU8XBzFynBbmhIGnyuFM2oElxDHH0C7T97z0f1MIzlZ6NwbOejYnflIcx9i3BNqn5x7pS2MzZMPmuJ2V4xpCxvMcAUegHAF1uHS2OIyqEy7nNlrydaR4kKDku7LZS23iQWfJsh3B+HFwYk7A0TacquSw3NaYYS2h/xwlx8quhM2Q2M1xux7SxvMcAUfg7iCgDm2r1Qzr/JFXLWNLPo7FnEwxsOLDzPGkuy0LGs+Q3mYsOjrWp7pYVuz89wfoRRNmDYryE2wsRd/oIg2efALQCVP4dgqtnCCdsrCZq04JbnNlUt4d1xIoOg9HwBGoEFBnxqlgnAoOox5wBEvsbz0Qf3OO8EcWIelglM5BJo6vMwNs66SkEMypL/bfDYzxxvdcbOaqV4LbXJnuuGYj6AwcAUcghQCOhRNz9Q+RcR7MZoqD+OF4OEFbP1TF7IjQWSpEPum649zQqe7w9FiFMOMSXWN/S7kNeuWz1Mlhl6l8gwDRs0QbZFQSP0Tgwyzv61Y6j3zKULczQfJvkmizsPm35KxYFm6zJNUKX9fiHnUEHAFHYCkE2OfidCKzHOv8b9W55n5A3daHTr7TmStt1n9/kBA6fdOzLtM+JThJBk6GjtqcG85wUlBZPgDvBKWDUe6pzQ6fmFCCTR+vqekluE3l3UvnjqsXGs9wBByBGQiYEwgdW+z0bS+qiC2dvK6+E33sXzVmXKINMxClM+tjxpP87w/KC7MG5XeWMZVXd07skz2fyle0mwXplIsNWLGEyv2RLsOAU5/f6Hqsi8AgIfmfJgpwmy0zaKQ/7rgMCb87Ao7AYgioU2M5DX7sgXCcno7RZiqK5gXxajilRGkcTIMm6sBM54niyRlP5GP7NOZsO+xVHidoS47YNoVvh88aCdKlYXdCRgobW4bkxGQ14xMvfrKLH2MImOjOgIDl3dT+YS5u7H3iCOfIVPHT6Sr89T+OgCPgCCyPAI6KpUICI/nOjCbkjPxRZ0fHXPrfFEa4h2yW606Sk3SsSsfp/q6rWjaE/hzCTGxwSoS6w2ZWXMeB5xuIEqEEt7kygxo+40q8DU9yBByBRRAIv2gRO1f2t4ZmPR2Bor+vRJazcBwnPS/23x8i75dii1MMMxalIcs6Vjpr5Fu+/fqIkvYPUf9FsBEvZmT10PufJpbCLUdmXTGLu+MyJPzuCDgCSyNQ/6X4bN6xc7PlqGR50bDn1bfvlSxDYuTNstUhw5rYDAFyLri54xp6S57nCDgCcxCwJShmWhafw+8ult0Tl74lwDbOzDyXCovIvPf+/fulFHI+joAj4Ag0ENAI3TqYrxTPnhk1mGU+SB4dLsuB7MUgmxOB9f0bJeWHtfjma1JeItpgS438NiXvh5+34vQly6UMNsCKgxks1fJPQmd9yrCkTHdceiMeHAFHYB0E1FlxIIOO7yPF23sp6wh1rncegas7b6Eb6Ag4AnsiwKido9futPZ8C3dMtu9x3bEX6uY4AmeGQNER+DOzwdU5MwT+D/q8oWBFUWGOAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{f}} \\sqrt{E_\\mathrm{m}} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}$" + ], + "text/plain": [ + " \n", + " ______________ ______________ ______________ ______________ _____\n", + "√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ A_\\mathrm{m} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ E_\\mathrm{m} ⋅╲╱ \\bar\n", + " \n", + "\n", + " _______________________________________________________\n", + "_______ ╱ w \n", + "{\\tau} ⋅√pâ‹… ╱ ───────────────────────────────────────────────────── \n", + " ╲╱ A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eps_f_0 = P / E_f / A_f\n", + "eps_m_0 = -P / E_m / A_m\n", + "a_subs = sp.solve({P - p * tau * a}, a)\n", + "w_el = sp.Rational(1,2) * ( eps_f_0 - eps_m_0) * a\n", + "Pw_pull_elastic = sp.solve(w_el.subs(a_subs) - w, P)[1]\n", + "Pw_pull_elastic " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pull-out curve derived from the displacement field solution " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ "**`sympy` explanation:** In parallel let us use again the `subs` and `solve` provided in `sympy` to define the `P_push` and `P_pull` variables in the running `jupyter` kernel. As `solve` searches for zero point of the supplied equation we must transform the above equation into" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQQAAAAzCAYAAABxAHarAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKkklEQVR4Ae2d27ETORCGDXUCOHs2AiADLhGwZABsBEAGS/HG2ynIAIiAhQxgI2AhA8gAlgzY/1OppzRjja2x5bnY3VVjaSSN1Opf3WppLr7y69evldPyJPD8+fMX4vpcx3Ud33Q8VdpPhU4LlMBc8DxboOxOnuU4eF4pxBCsFL5T8I+OW5w7LUsCc8Lz6rJE59xGCdzvSOJS5zc1sPAWnJYngdng6QZheYPHOE6V35YKaZqV83AZEkixmwxPXzIsY7C0uJQncKOVIO8gnv/bSffTBUhgTni6QZh4wGgwPBYL93SY2/hRcZsh4I6ZA0XftGnIBuOmfGU7HVoClbCEzcnwvOJ3GQ49TMrq12Dids8XhWsbg0r7oLzbOq4pnhqLlc7D3QaFT8pa8lKHloCw2AlL+Joaz6uHFo7Xv10CGgTm8uMd5OiVEs914E00pOs4P1foxqCRyrSRXbGE6zng6QZh2vFjrf8RI3gCObINp98tU4OHa24oDMaAcx1mWKyYh+NLYDCWsAh+CibH82x8eXmLGQmwh8Cg6PMQ7sRrgsFQORSfpcKl4rb3gGF4EMt5MJ0EBmEJm3PC0w3CdAMnbZnZ4UuaYHENFrwDlP614mYweAiJJQQPJDWk/Nb+QpPhkTElMBRLeJsNnm4Qxhwqmbbi7ECOKXtTSnkYAjyBl4o/tQzFf7O4h/ORwC5Ywv2c8HSDMP14YkaBrmtgoPxGeABfddxSus/8JpV5h4vH0g3C9AMsrDnFxiNX/OnB2JODxWPpdxn2HAEVLmdW+ebGoIIkp69i8Vi6QZhwEMkI2G3Ctf2DCdnypneQwLFg6QZhB/ArXmJrztbdgor1e1XjSeAosHSDMN6AybX0Z0z0l5Jy0llW2lFg6e8yTDDo5F7yKDLvJtiS4b3in5T+cgJ2vMk9JHBsWLpB2GMw+KUugWOTgC8Zjg1R749LYA8JLMYgyDW7r+OvPfrqly5EAo71dEAtxiBMJyJv2SVwOhJwg3A6WHtPXQJbJXC2tcSWAnLveOaeD3Xwnb+vOm92ynH9lPZMYfgKUDx/o7S1L/8ozckl4BKYWAI1PAQUHiPAu/rPOv3hHf3w3wExnZd0MCDccnNyCbgEZiaBvQyCDMF19edT7BMvdqTKTzJPbzVfAVJ5HtHl6JZTkpNLwCUwtQTOpKTM2HygYQjxZh4f9PihkIdqoIc6LkNMP0q3h266z+nzIk+vQVAerwDbY6BWHSF8XijfnghL86hz49eClO//WZdKbIS4ZH5lUzPKd6w3CWjkPPCq8mCSKjJPgG/CBWVXyC1ClhOtj3no/IWO5mMfpX3WNexH8M2AZo+i9FovtywJONbT4bXXkiFhm9mZT4inMz9LiJZ3oHyWGM0SIrneoy4Bl8AMJFDLIKDoqTGga7k0Hi5qGYkZyMBZcAm4BKIEahkEZn0MQCApPUuICx22j7BSGvHsh0TDRf7jEnAJTC6BsxocSNn5CCj7B7zFx3cAoWs63iiNvQT+T4BnFF4rdHIJuARmKoEqBoG+SdnDH4Z0+rlx579TdpRT8cndCvuYqXk1/C/iIO9F5fF4MHhrf71WqyOqG2PKXgweF5TessUDg+CDfmT/Bo4Cp0qS36ywXgKe1QzCCINu772HOEBQ4sZQKY5x+Kzwno4hbbzRdSjjwUj8cEcF78v+K9A+4tlqU/k8Kdr0qZW5zJMhOGR7KJlgDGaF9RLwXIxBkDB/ZpEflojyP0ovUb14BygUnzFr3SJNy6XxWD4kKc5/K9bgLW2iiatu8w7eNonrkb+VtLenora4tZs1OjSp/JwXSFZVUjs15DlLrNW3aniqrup4LcYgVBpxPDwFILx3kRIzEndAeM6he7ckLbdSPjPPDx189gwPAde9xgBWNVkyBd02a9reTbaSkkT1jYfM7EGzkkvmXGauWFfD8xB41brLMOeBkfKGsqP0KHWO+tLTsg8jEKaAtg+RlqkZDzOK2mztceicGTCQ4hikY1Hk2Ku9g7liPWs8T8pDkOL0udW2F7DNOwBM3HPIyh7aIMBbyztQP1jimEGCl5XSjJ9wvsuP6mATkxfU+gwjyyv2NJADMx28sYygfBjoCu/omPxPZ8TjXLGuhmcpXsJjVYrZSRkEBNOlKCiUmoHOTJsl5QUlScqYAvYpT7aeIYmRNy7hHQ5u6V7oQPFos7vsUdLupPrN47irWpAD57ybQjyQylif2YDFOLDvwjMowVBQSGlcR7q5xiTPgsQbsquOtepFyTGkLCXZoM7eXo/tq0g5nn11K30IXrRZhNnJGwQJCkV7LwFve7/itsqkM7UpSlXFBLmETKmYcZslg+IMOlPOpPhuUdXFgOarz82yQ3E2S5s2rWaloVD2hitxbnc21+kczwVPY450KKwxgHgkvNaPLPtoFzzX6pa8i/GCkSGYnbRBkKAYIB8Vbtw9Vz4APFGY3tq7QNgilOJQxIy2UrtdxUwNE/k3M2WKeYrXNm1Qny42g9etJ33DlXJ4ESkFA6k6Dnr3JW2wJC5+DoI1/VT77EshL3BpYdPhbRCefXUrHaxK8YKFYsxO1iBIqGEWU7jRGERAcdlTYxCSlfafImYYYtGqAQqXG2CNEooHBiQDrRkgFTjgFfPsS2hqLxgKhWFwq1yXv2BMrFwFXvauQrwcGusgkwJGd8GzpO5evODJsFC4FbOTNAgSDPdvedS6MQaKh5leYcsVp6yO1CVOcf+hk5aHEOvBzSOd9biBEDbbdP5QB4SB4VXwrkKFTKXbdWuKqbx0kDzTBZe12g2N6xaswjUDGPMswP1t/UmteDhXGnxn19B24ZiheDok1ig4YwhviDX9d4XZ1/OVPhTP4rrVbgleKhb2dTZidkapUyIBg6DvKGyMQew/Qm0pvsq0lD0jJxSzVUbX2MdaWEs3329Q+medv1MY1pEKMSa4sX17ELbezBoMXbdSHfTF3NWfOkeJ92pXddAf6tzmcTDAu7xh7JDJtv0YFTk8RfkcEmv2T+jr4xhu6tRQPIvqVruleMHbVsxOyiBE4TF7s4lou7TMahc6WIc31j2W/aCwT2F1SdhVXlFWR+pZoOxQqjDkp2WI024fYaCoO6uYSgdc+oIXYlSr3ZRPq7sbYoysPfjkHJneVRyjMCmJBxRlDKxL+7kLniV1U28JXtS1FbOTMggSiLnyYU2JhBIKQtVAwkBQDoVb6ZyZvTXIlQYIeBihjEIMx9rmpNK6ivFdZXtJ5WmbdySC1aeg0uDFFA8DQhnLZxZZMxhKG9Su6ksJA4jn0kuq3/rNksdkyXW3dF46OHvrr5QxKtY5niWLKnjm6k7StuJFWfFShNlZUvHRRyWUvodVmr6rDMpk7l2TnkZUhqVFa3mR5u8aj21vW7vvWn3RdeKhu5TKXYd8WBrhAaVeUK7sJGnibXKsx8CzEC8wKMLs6iRoHX+jzOQlxAxSk8Zql9lmloagpjCPrK4izKp8ZPXIBLdXd2SxUXJbcrBX8UAHjxqzvsb1ZxMKNx+3HJBeD7DyKp6nsdqN7XC7lX5V95LyvZtnapQFSzyWkMiCuz1rS7hduK9Zd6yrCDM3CLugdaLXaGAx8DFs7GEw8N8qrdmI1bnTzCQwFLP/AVR52jA2nkYuAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle - w + \\frac{P^{2}}{2 A_\\mathrm{m} E_\\mathrm{m} \\bar{\\tau} p} + \\frac{P^{2}}{2 A_\\mathrm{f} E_\\mathrm{f} \\bar{\\tau} p}$" + ], + "text/plain": [ + " 2 2 \n", + " P P \n", + "-w + ──────────────────────────────────────── + ──────────────────────────────\n", + " 2â‹…A_\\mathrm{m}â‹…E_\\mathrm{m}â‹…\\bar{\\tau}â‹…p 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…\\b\n", + "\n", + " \n", + " \n", + "──────────\n", + "ar{\\tau}â‹…p" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "u_f_x.subs(x,0) - w" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "and then send it to `sp.solve`" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAAzCAYAAADl2TfEAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAcFklEQVR4Ae2d67UcRbKFW1rHAEbXgkEeDGABwgMGLJDwgFn8498sxgNJFvDwAMYCBB4gD2Dkge7+sivq1DPr3dV1euda1ZWVz4idWRkR+ah+9P79+9OQ+/bbb79Tmp91/2UoreONgBEwAkbACBgBI2AEjIARMAJG4HgIyN77QFS/1v2fQ9Q/GjIkCyPypPu/hgpzvBEwAkbgSAgU49vXR6LZtF4eAfWTR5ev1TUaASNgBNZHwHJvfUwfaImfia/v1F8+yvF3l4tUZhSsD3UftEhz5TjOCBgBI3ClCHyu8c1GwpU2jskyAkbACBiB1RGw3Fsd0odZoPSjl7p+09VrTD7uY12ZPlfcN7rbiOwDyeFGwAgcFgGNbR+K+LeHZcCEGwEjYASMgBGYgIDl3gSwnPSk/vJKMPylO0ccO12nIakMaW+sctiI7ITNgUbACDwABP4hHn5+AHyYBSNgBIyAETACYxCw3BuDktNUEcAWfCHb8Fk1MPydhqQif9T1gzL54zqBlO9GwAg8NATY/+8x7qG1qvkxAkbACBiBPgQs9/qQcXgnArIF3yniuS5sw5ZrGZLKwJZWrE5/XKcFlwOMgBF4QAg803j3+wPix6wYASNgBIyAEcghYLmXQ8dxnQhIV/pJEZ1bXLs+tsM+2FeFBdpZoAONgBEwAkdGQOMb2/eZZbtZV2DwQgA81fWHnv8TYMgfZ+TTAfvi+bXi/y7/TeMWGPluBIyAETgSAhq7LffOGFjuzeu4LDD+qH7EB3jK70vUViQVAbgf6uo9VDmvbucyAkbACFwVAuy6uPVtrXxMDeORc6LfNFrnKz2XgkJ+jEeUkI912RkBI2AEjMDxELDcO39E1HJvRt+VvsCqJHpBbcdqzZAsIn+pWpoz6nIWI2AEjMC1I/CJCLzZD+1ojGfC8NeikTgzUzUaCUbhKPFReoxurmY6BdkZASNgBIzAARCw3LPcW9pNWWjkwztMLCdXbm1VIF9yQrlgJtquAwFh9FLBrNpu4lT+qv9ntzW9QyCsyc/WvByJ1hzua/KRq+cBxGEo/fsB8DGXBc46MLuI+0JXiYXCkQW45ortW8XZkDxjczO/anPLvQmtLbxWk+NHwn5rWnNNsCbmuXoeQJzlnuXe0m78gwoImZCOw5SGpCIwIN/phWwqD0srXS2/aMPQ5ezO6K23aw0wRd0frlXeaqD0FHQ0envYSMFH4uVItOYwv4U4tRXbNW/SBe+6o1gwsxhGJXgQhixoGo03ixeg7OXUDpZ7I8EvsDqMnM6xdSRejkRrDvNbiFNb3ew4Hrzrbrk3s7ODoS4+UvilrpYhyaz01RqRBc8YkBzyXG3Gryh3zI26RxuwYwrcOM3R6M3BcSRejkRrC3O9Wyitf7QiMgE7vY8ZivJRohch8iaf6mZi+X+o34VJ1WhsfR6+6BflVtebQec6GGVMsdwb1xaHHn8bLB6JlyPR2oD5dCrGN8u9FjIPNsByb1nTfq/s3/He6Hp7R1nysJWJWemrVRQgWPRB9MWN3T3rFs+T3dHozTF4JF6ORGsGcxSCz8TLxd+zDE1rR/kPme8RZVytGpHEEFZdoSTsc/WJNPvIg91lENhzTNmz7jnoHo3eHI9H4uVItGYwt9zLgPMAoyz3ljUq+gHvDJPyrx4XZfGAu2blka8Eled4ErWX+6Hu2leKLlf1rJqORm+OySPxciRaW5g/EIWgxVdHQGvFrSPNrQQxeYhQTU59AFnwRFeckzwpDL//bzMhdPEfxhTLvXGwH3r8bbB4JF6ORGsD5nI1cpdFihYx2wZY7t3ja7l3j8Vkn3QCJp/ZIk2fOqUVyeKh60wMaXZ3IprV0me6c47zoq6o++M96p7D6NHozfF4JF6ORGsG8z2V1gxZq0ehNNzsOZEqmsLhP7qe6uLwfGzt+rv8rxX2te7/R7j8r3S3uyACwtxybyTeBVaHkdM5to7Ey5FozWBuuZcB5yFGqd9a7i1vWI4HpQnnMCT5b7BrPjP0jejjZd/DUfdeM8Jz+D0avTkej8TLkWhtYV4oBHtN1rAiFkZMi7ZmgGidfUZaeb261gBUmHRN0HGGxG5fBBhTLPfGtcGhx98Gi0fi5Ui0NmBOq5F7TtZY7rVa5HIBlnuLsWaXUtrNeicweZG4mudkFteyRgEFfZzPaQnUIo59urjYnvUvha+yDasoH+W6Vfe5yv5f5UFhZVb/o/5U68Ycjd4c92N4URpWTFhaT51Zd7ZmRz9+Ij+OdqBv8EGRTdriSLQCSI/bU2m95PkUJs2u9ix4T9s4+MYQKMYUy70R7T5m/O0rRnkvLqf7aCF8DC9KY7mXA3FanOXeNLyc2ggEAmnynzGUFckwwEavCEQpF7rzooexWFZZDLgYauXMufyk+033tT4WQt0vy0qneV4rOULqku5o9OawGeRF7czHP9ii8F53DMW0X7tZqML578+ynzTjV3g+Eq0tdoUPE0mdSmsr8coBqpvx55LnU+gjkyeGVmbbxRmBIQQYUyz3hlA6xw+Ov5li9pDTGXJOg7xozLTcyyE4Ms5ybyRQTmYEuhGIXazPqoZkrOR0Z9khtPKiP+2oHiH7vBqu9KxGYjT8qOtv1biZfpTrrrqzxRU0pDTyf6DrXTbDepFHozfH+ShehG2sRn6fKewHxW2yGlnUeSRau2DqU1r5z9ZO45xChH3Xlsiu8nNhGHWX3Dr+D9F9dWNdDiDH3RYC6p8xsdMleyz32t1h1PjbzCac0RWSA3Ndl5LTUW3XfRQvotVyrwu9aWGWe9PwcmojUEUg9KinGJKxBTACqwn39jPQt2ZlC6L430sG06awZXsjgzGrHLN5Ul62j/TVrahup3woAX/pioOo4Lu5gDoavd3onUMn8hKGztAXhzdZcT8SrV2YF/21U3lR3E/Kw7WJK+pm6/gaBukgjaqH1c/ZY8JgBU5gBNZBwHJvJI56pw8lp3NsTeTFci8H5kCcsO6drFGc5d4Afo42AnpP+EArQDx5rB9eKNzmxs65mvOvCECBjFm1alTV/5XS9H0tEIUQYzHor+bD3xfeTNf3nKu7Lw/hX4gmBqIwXFBeL+GORm8Okym8pD4kzGvnYvVcTgLIT9/eyiA6Eq1dmOeU1q70a4YxI3zJbab0FZ+PXLMFXdYkBDQWWe5NQmww8ZTxt1rYXnK6SkPTP4UXy70metOeLfem4eXURqAPgQ/uFMPn3XGsol3ESZgyi4gSiTHYueWwSPOyjyDFd+ZT+jiX2LnyoHyDW1iG6s7QxODONkpc1L/IkDwavWfWu3834oX2rq1Gqh6ERBjyiRiFRXt0E9cIPRKtDdLLR/EQykYNnzLB2YPy0lzVTzEKj/e0b1KGreSc15nslI8yWQktDUn5oZeZdtqUVUrSJB50/0TXc6VhUmCuY8zoHVPmFup8RmAMAuq78T5Z7g0AJqwOJadz7GzEi+VeD+jC23Kvjo3lXh0PP62HAPrYkzv9oKxdzOklx7CKVcbveOl1dSm6vQpuH7HFAEL5fIClpnDqmXBWI1iZKpVX+bvcnLoTjpV6w3DpxFfpEAQY0xjwfCAoMEn0XBu9iaiZP1vxonLDyHgiPwbCE12EgXmfcbQL7nNoFQ+znepbpLQqf6zofioieJd45iwj/uSUJvp4BE250/ejjsjHR7IwTjnjzLtaGqoFPYTHlq7IM+V+sW20U4hy2oePgPqv5Z6aWTjsMv5GD1P9SR7rHuNYjGEpPNKtcVcdm+gcKtdyr6eBhI3lXhsby702Jg5ZD4G0IonyfdILGAPresV3lKR60sCtO4YTiiRGXc2QVBwrSnNWDsjzk/LXDEU9M/AyqFM3Zdfi9Vy6ou452yA/Vt4qH4Fnp0GjClGKmSni7wgQrqW7UnpL+qZ4NuYljApWqsqtrfJjmIeC0CR3L9zn0NqkfdSzeF+ktCo//fFX3cv3QH5WCEqMRxHSk4iyFMVqZPluyA/NvxZZ8PMV3rJ+PbPCjJIwyxV1xjs5qwxnMgJzEVD/s9w7g7fX+BtNN1VOR75Jd7X3ljrHHFmyF+5zaJ2EdSQW5pZ7AUZxt9xrAOLHtRFgISytSE4quOiY/52U6bwlraaEqhwOamJMvtC9+WEcDL2+raudVasMjMhfdG99uENhycDTHWH+s+7UWVsBrBQ6p24Ub1Yxq38xkQx0hTO41ZzSoUjDM4ottFUN0JPCr4reGvETHzbmJc3Mqo5a3+rAky91YpjsifskWifCXEsuPhcprQWeJaZ6pn+vaYR1nU/5S/WE4Uh9rH5WXTI6lWZwy1s1U8UP/rX3rBJXelU+fyVjZwQSAuoPj9aEQuVZ7lnuNbvUVJ1jkixhzFSFe+kbk2htAjPlWXxa7rUBs9xrY+KQAQSmyr07lYdFeWKw0TWoLBZpJhl5GZpZkYwVwmQAqnyeWVUcpCXKVdq0UqF7y4iMNNwVj6HJYMPA3TIkFcffHUyqW+lxbK2sGpEpUGH/Iy49tH8G+VP+a6K3zcGEkI14weDoMg5KI0T1IkQZTMMw2gv3ObROQLidVLyvpbR+qdJHfaRGdYbi0NUuQWRr6zi0Ehn55W3mBz/4qbWfnpmoYeyK9tVjp+OM5SAPKmdVw6GTEgfeOgKWe5keoHfQci+Dj6LmyJLauNlV/Ea4z6G1i7zRYeLDcu8eLcu9eyzs2waBvzAkY4B5UvFvU12jVL3wb3WxCsEKIeehoGXS7JzyYPw91b00IuVPq4C6pxmqRrWsXPadzfxGcZwJG+2oX1espDTzYaTXViSVloEVWlF+USj+1D33wZK96YV+tsVwB5tkKOjOAPVc1xe6cBjS4No0AFJk8bMaL6on6GgZB4qLPk21tOm/FbYb7jNoXRPzNZRW3jHaN+vE56LzKUXhbIViXCjbUP4PFEZ7tyZ/FEbf/F7XkCH5TOUwttgZgV0RUD+03LPciz44SedQ37HcG6drWO6de5jlXrxpvm+BAHbj28f6+bMoHWVtDxerR99okERhZTayVCJzBCkdxsEnupdGZJGecvpcKKO1PEXdb8bWTeFKi8Kfc/BRw1V5UHiTQit/+TGRTCF704sxjhEBH2yP4UNGGL7J2JH/FZeeMRK5cm41XlRJnL3oNVxFF/0jbemRfzfcZ9C6Gubim7Jisib6Iv0v3jt5+53y085gmDXUinS0L+WylTgUnmbhrEbmJk7I12xTJit4l2qGoMrhPU9jgO52RuBICMT7Z7nX3WqryYpibOqu5RzK2BJjYwpRntXGYBW4Gi8qy3JvhK5RtJ/lXurN/jECmyKQDEkGURyW5cWdXngUVC62tDI7V1MW9dzpCuHAasRJflbCuF7qIgxlFUHQcgqHXwZ2VhKrhiB1M4s1yhV5OW/ZtxpJOX/x06iHoNFOea+B3sSHiK4q+OBLu4XjOduH1uKlqDBNFqjMKg1By0nhGCSc5Q2FrYwb47kCWlfBvOA1MJistCo/OHe+S1UchVesIobS1HqPlYZ3fGiyIRn/Ubby8Mx7+WnRJilKfhQ/+hu09RmtkZb4N+nBP0ZgBgL0N13vdf02I3sri8ph3OKy3Guhk2Sm5V4HLgqy3DuP+Vldo4DOcs9yr/stcuhaCKCHpa2tobCuVfCccnjhMQCnrAiSHkMwnY/UveqGFN/Y9vCVMrEqiKKJIjyU76Q0AEfdSXnVM4pFU8llsKfsUHAxOFlpJWyOuwp6RT/CvepiNbsaNuRfystrVZBWyahINNEW0YcRLrRPxPOBHZS1uW53WtfAHAwKHFBa6ZNTtm/zkZsh46/EF3p1YUy+0J2VzOo7hXHZe75aaeN9YVIo3mvq/6hRDvU9Uxir4ZRHXSj6zf5JOhzGaGsLdIrxjxEYgQB9Sxd9mX6W62sjSiuTWO6VUHR6lo6/q8jpjnHFcq+zuZI8Rv4ultFrYK4yLPcs93p6qoOXIoAcLMp4dydPKHoo37s4EcQHbljtQnCMckrfq5AOFaC8GI3Uh2KNcss1yshTPpTV2F4ib9spDauUuZXKdqZMyNHozbByWoGXwbN6ufqnxB2J1hF8zVFaaa9R70Wj/lAAy/dK5fCuDX3IKs5H8m5WV78bxSeFJd6vWCHCCI2wZnrKXbXfiB+M09e6LxmHMJahLQxoeI7xOGbcqYexGaVodl3KfzG3BjY5YlX+LripXs7ipxWhHH1j41SW5V4GLOFzKDmdYeW0Ai+rjl8PhdYcH0Wc5d4IkMYmUT+23OsBaw1seopOwSp/F7mXoSlsxj/vRBwKCml3VVJEQ9Y4yzAzNwpll5VCZi1jtnluWZfItye9odQO8RkzFEPp9uRliLZm/F60roq5+vlkpbUJxNhn1YUCiFHHSuGUj2hhUGUNyA4aIv0niuszJNM52Y68S4KYdUeoznbChrOinDnmL0cYhzvHQIVjhF9MkZzN0H3GxdjcF9X27YwbZ/L7+lmb2IGQvjYfyLYkeq/xbC7Ne9K76hgsAPbkZSr+e9G6Kua8q7qQEfCzqVM9lnsjEBZOlnsjcGomuULcwpBMZyShl1nwj5uEP+TnYnCBb2aYmbW6iFO9sfXjJP+PukYpo0oXqxV70Ju2NkIvIOkeWyQ5ixpnTdNArefBbZBKc3FeVOdhcC9oXRXzot0+U9mx4rV1f493atS5zIJn3oVJW1Ar/MSqXo0vxVPmku3NtfJ4UJn0/+TkHzt5Ellqd+UPur+vRdQfftDjau2mOnlnY+twvaaFTyp3NWxypOyEG209Z1tjjpWLxgm3i4+9MKh6DzP+VuhddQzeA/sj4V7QuirmRVta7gHEQqf2WW1sV1mWezPaYw/cMmQyeY/7/e58PyFcyk5ShN3CjUGLQWZVRTMHnOp6p/i5qwt70VtbKREPnIGLj6oEu7U0EZi5X5SXI+Fe0FrDcyXMM82xbpToHX0+RWmZHIkZYwxPVhBzX3ZtEsv4FYKpGUf4JOO0WUD1WXShEHMm940ujNQnunin57poZ3jIuT9ykdcQtwE2Obb2wO2Lif0yR/+ecRcde2FUuFnunVv8otgfCfeC1nivE1oKW0PXOCN/gV/Ra7k3DudoZ8u9cXhFqmvCLa1Iqs+XK5LpnJECUJJuxolftpVFw1w930ejNwfokXg5Eq05zHeIY1WSMeWNMOw1thTH9iPOnz3SxYd1phiRsJUmgpQPw67pmDUbElbNPLlnjAm2NoZhF9s7cnlycckAVpm1ySw9h2F9kh/sVttOmSNmYdza2OTIuThuaofm5FmOvquNEx+Wezu1zpGwPxKtOzVnX7WWe33I3IdffPy+r3p134OWexm0aMOkWz0uEjG7jkuNe/b61wgYASMwHwEpIhg/DDSlUTS/tGzOX4vYru35/KflKttCVQ7jI9tMcVHmUkMS47dm6KoedoeEoUpdp7V4SIVt8LMRNjlKHwRuOQYdZwSMwPEQ0FhouTfcbA9i/L5VuSe+0XtYJEi7ve5obwWyHM+s95e6jjDzDdl2RsAIXDkCGlcuseIfhhh1latGqpvBLgy+RUipLAbNk+6Mk7goN4Wfg+5/lQ5B+Y0utsH+pueSrkilsJi4eyI/W96e6CKMMvnbk5YbU24r08YBomkSNkvJmYPb0jqd3wgYASMwFgGNUZZ7lntju8uodFcm9ziOhEv2YjIkz89ppv0Wz0kW7PtmBIzAERHQAMtXlzHwMN6qDqNsrfORH6uOMFipg/pwnQafwvkwFV/CZpW0SZeCkgtl47nKLre2yo/hGYZqpI37mHIj7aXuU7FZStcc3JbW6fxGwAgYgatBQDLCcm/f1rhluYcM5ivFSU+pGpIoKC8U8UxXVWHat6lcuxEwAkZgGAHGLL5GWv2zeAw5VvoWOZWJIcgXiqsfyWL1ENfa2goNhOuOsQldfeMphu5J6Uojkme5WnrFsz2XXSNjy02FKD1bilMdKeD+h3JYBWUHStMhHKp8NuNrz0o7CZta5vkPk3CbX41zGgEjYASuGgHLvUbzWO6d9YUGLGs/IoP5n/Dk7sIj8H/RhXWJElFTZCKN70bACBiBK0WAc5Jst2AFMMYvJsW+WoFejK6WcaWw/6nsMCib1WBEDjmMsKC1mjb+OuWkOjD6GLTD2BxTbipLecuBvlq4wsFp6pdxq0VU/XOwqeaf45+D25x6nMcIGAEjcM0IWO41Wsdyr6YvNNBZ/ih846/DyuM6pSFZFM8M9ksaQtdohWU5aS7BCBgBI7AIgTDIkpGh8QsDrG976OiKVA6rnH3nxjn/WFuRVFrqx3hlZZTx9E/dW1+hVRjGIa619VZx1bGXc5b/VtioclOJF/oRTVOxASt2vnD/VFdg8In8z3V9oQuH0f6dyo82TYH8KCzyjMVtcZ1l5fYYASNgBK4LgRgjLfcu1C6We+nbD3xpv9RTHlexVwQWJpEoL3ZGwAgYgUMgoLErVuzi/BwGR4TN4kFlYoTkHGPlB9UEBR1pJVB+JuRaRmSRPugMRaBaTPIrL8pB2iI7odxWOVsEiJ452MSOFzBLK6IFPsnYk/8Vl+LYjty3JXkqbmvUuQWELtMIGAEjsAgBjZch42JctNxbhGg+s/C+abkn/tnNhPyu7XZ63AHbc4V9rQw1BakjnYOMgBEwAteEAEKVra04Vrlaq1YpZsRPITB+1r1vNZJS/uKnSIt3imNAJm8oArW8Ckch+K+ucptrLcGODwW/c7FJmIn8qgGNsVfFgecnPSzOwW1pnT2kONgIGAEjsDsCjJ2Wexs3g+VeAphFRiZ8kdGluyt9hUcJWLKkY7Ita43zRc0q/GwEjIAR2AKBNyqUD9Mwa8j5yNqs2ZgKlYcJNLZfYsid9Pybbp/q/o5nnPwYM4yNKY3uGFWcMc+Ol4qn7Ne6oI/rpDDqCkMH44k0Ec8HdhiLr8IV9K+Cjcoq8SyY+7OPyaLexbhNqbOPFocbASNgBK4MAcu9DRvEcu8MrnBA70E34VhKzbUMySKWMyp8gp7zklejyNQo94MRMAJGoI4ARh8uDLzz04RfjXcYOLFNqDOn0rBKmVup7MtH2Yyth3RbYpMDpKj3sLjleHOcETACRmAhApZ7CwHMZbfcSxPeTHAzmfvPAo8aZI9rT8WDErJsyRZXZp/tjIARMAJHQCC2S7ISySytXTcC4FR+ca07yWahfVtWmxUiuNZye9S5Fu0uxwgYASOQQ8ByL4fOfZzl3j0WVd8YWYsR+YNsw+hr1fynR+/fv68FVB+UiQ8edH7evZrOfiNgBIzANSCgMSsGNGbOJq8aLuVBdcbMHdtAqJ8vri7e1bFVuUv5nZK/4CG2xnKEgjZ6oTI4RsH2XiYAwAq5w6oyZzGy24WVJuv2qDNLkCONgBEwAisjoHHOcm9lTNcqbg8ZtGadKgsZjazu3amVNSQBUpkR/L/q3vf1QZLZGQEjYAR2R0Dj1M8iAiPkb/K/250gE2AEjIARMAJGYEMELPc2BPeGi1a/Qpfir7g+ysHQubW1mkEFcDblaVFgNcp+I2AEjMC1IcCK1luNVzYir61lTI8RMAJGwAhsgYDl3hao3nCZ0qHYXcWOoNbHdZqw3DUDup5V4KLtRV1lOswIGAEjsAECrEjaGQEjYASMgBG4FQQs926lpS/EZzEZP+ojd/8PigVarvwsB+4AAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left( - \\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{f}} \\sqrt{E_\\mathrm{m}} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}, \\ \\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{f}} \\sqrt{E_\\mathrm{m}} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}\\right)$" + ], + "text/plain": [ + "⎛ \n", + "⎜ ______________ ______________ ______________ ______________ ___\n", + "⎜-√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ A_\\mathrm{m} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ E_\\mathrm{m} ⋅╲╱ \\b\n", + "⎠\n", + "\n", + " _______________________________________________________ \n", + "_________ ╱ w \n", + "ar{\\tau} ⋅√pâ‹… ╱ ───────────────────────────────────────────────────── , √2⋅╲\n", + " ╲╱ A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} \n", + "\n", + " \n", + " ______________ ______________ ______________ ______________ _________\n", + "╱ A_\\mathrm{f} ⋅╲╱ A_\\mathrm{m} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ E_\\mathrm{m} ⋅╲╱ \\bar{\\ta\n", + " \n", + "\n", + " _______________________________________________________⎞\n", + "___ ╱ w ⎟\n", + "u} ⋅√pâ‹… ╱ ───────────────────────────────────────────────────── ⎟\n", + " ╲╱ A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} ⎠" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Pw_push_elastic, Pw_pull_elastic = sp.solve(u_f_x.subs({x:0})-w, P)\n", + "Pw_push_elastic, Pw_pull_elastic" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Note that the obtained $P(w)$ covers both the pull-out and push-in case. If we supply the parameters defined above with unit stiffness, area and perimeter we obtain" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAAaCAYAAAC5KgISAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEJElEQVRoBe2a/1HbMBTHSa4DUDpBwwbQTkDYANigsAE9/iL/9WADYIIWNgAmaMsGZIOmbJB+P0JPlR2fS2PLMnd5d/KTnyy/30+Sk7X5fL4Wt9PT0y21cUxb9Ys26toe8sdxFc8BRIPJZLKl/onwvtFyYskxEv/HJjLoHYMm85vObUMHybCrdlT2y5uScFe63ynRct6eifmuhL7LKURD3q3oIBtgh0O1S5MnZJ6IFyI+Cp/bYE4sOci6a+HtnHI04d22DnofVWhb+Am5hlw8k0N1g1ehZ4bP4v8lswxN2betAwlGJjtwzlPvSO3SPPo8lO8qOdbFfSx8k0+KZpwT6YA9SDIH5jwIt57WB3QiIYja1wyt66CAmMogU+E9DDNUZyRMpPdiU+Ajdk/4tWddKh3wE5XSrXlj4ScZyy2CEDMDERvqemZZlmWfUgc2LR8QjKMCuznSMTtEWbcZC+PplHbohR2xxighnE3drtTfc+R5r37nASmeVDGyLpUOD3r/OnxY8yibM7U+AA6qyjqcwxGGdZmojoESEgcfDsOALjrjBzvqp9bBfDXCeRtqySNUxmf3SImuA74iFI4ruie4vvtJfGmIHQWZd4bNlp5nTaCVnxOpGSA/7R9vSa2D+WqDskmUmjcX5JKwjN8vDNQTPmke6e1A/WN1yBgMWnno9s9cuAnFy0xjtnk50FA4+4nO5zygvNliR9aq87x8fdAh+ArnmSedFcoXCc14pcHLz1bdaz6ZY9l0pnuit2xsphKxhXUComhOPmEinkAyRzIMjc1W2VG1OjHxf0Dv75MOVEoHQ13xZCA8k9u7Ylg1jGkOXDi/aZx1oirrYkH4WP7A+yIiZbQQCBrH0KGMRs8u3YWnWl90IICBKc5DKCNATAKR8mQeBo4Bh5pzY3rcZ07sOMaqaOz0Cg6NX9Kk3xMdLNFmOI/NQFc7M9tJhuyTQci6G2+YOtuSTcHpep6SiSJbNkk0+mGthS4a2+q52k97riHuXIeSvNjAncsH/PCqGwzzVgqShUlBPK7FgLOZ46f7wpfyOuZ61korcwCy9UqNAHynxhlwIYM9Dw3//SLPzbKg93Wug8nqbTAS3nU/CanzW4P7wknKjTEGiwfZQRZwbsPo/E7lPveonwzEg4C5E24coLl0wDjije2+Cp9TNoFvaiz+yUFMKWs0yiVb71BC1U8JH8W7seMQMJcO4svehOB31cWcRznCmF0BZzUE+dGWQesE90r/qntmibFOdfDycc4N+wPnPB9JlBRKS3IQH85qlGhb/FPzPBDPVv8hkEEHbESVCh8p4r9BkAn3EmrpAzlvX0EaC8gvVMZN4bDMBOfBUgNkXicbCPit4GUWkF84HlwIF/Yltua5t2iQcnYrzPFhBf2xANm28HfMQub1R9aVJC+xwB9QGj9Qo8RIMwAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\left( - \\sqrt{w}, \\ \\sqrt{w}\\right)$" + ], + "text/plain": [ + "(-√w, √w)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Pw_push_elastic.subs(data_f), Pw_pull_elastic.subs({A_f:1, E_f:1, L_b:1, p:1, tau:1, A_m:1, E_m:1})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Plot the pull-out curve\n", + "The symbolic expression must be transformed into a quantifiable form using `sp.lambdify`" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAAyCAYAAAAEJj8WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAASaUlEQVR4Ae2d25UdtRKGt2dNAGaI4EAGYEfgIQMwEWAyOCy/+c0LMjCOwEAGQAQ2ZAAZ4OMMfP5PVjV9UV+kvu2eXVqrp9VSqS5/Syrdes+99+/fnzw4Ao6AI3AOCDx79ux76fHfc9DFdThfBK7PVzXXzBFwBC4QgS/lvO5doN1ucgYCVxm0TuoIOAKOwGoIyGF9IuZ/rybAGd8ZBNxx3ZlX6YY4AodH4DNZ8OvhrXADVkfAHdfqELsAR8ARmIjAF6L7bSKtk10wAu64Lvjlu+mOwJkhcKvlwj/PTCdX5wwR8MMZZ/hSXCVH4NIQkMO6L5vfXZrdZm+0/4meP9X1l55/qOV9qfhTpX1Omu48v9T1H8UvEjOfcVETPDgCjsDeCNxKgUteJsQx4azY43vaehnf6rl+aAVnhaN/0KK7mEd3XBfzqt1QR+CsEXgo7S7yYIYc1iey/XV8O+zz1Z0UyTj1ChvR4+C52nRKuoxw6KVCvcDVvp4W70W/JRG/F6pSLAXsEpa0Z21bltQVsNfWd+iFLm3LkKyD59E5Pz+4DaXqv1U9+SUWflzHQemctCS0Z6N/K88d1wds8v4KOEYKf00tJfrFnEGU/ZvujFDOOkRdP1nS/r0MPpotR9N3r/d6DnL1ri5yv8bs1h3nzRKgOTFeC2nvlNd2UheJFYAQ5s64+HmWLwRqezQQmK/8B9lcRwhH0nUMz6PZcjR9G/irbWUNDimsMosNEBvKrPQgfemc36zE/khsv5KyfwqPupPqfCKgfOpEtXR4JAOX0rXYcUXwmEVs7rT2lJ0L/JF0HbPtaLYcTd8e/HG8ew0Oe1RaPNk/PP4AKQ6p7rRIJa0+AyONn8WqTh2ScGnhaobB36nsXmvSyOY6QjiSrmN4Hs2Wo+nbwP+OON6GTT0PnVlFD91dT2YWhaMKQe+fmeiNLtvnOimN+MV/63av5NfhBR7rsH/ozjcHm4Yo+3fdwzcNmwrPFHYkXcdMO5otR9M3hb9s4EDPr7q3R9wp8sOmyT6+W9q8LzlHwOI7RzU7O/Cj4i91cerwY9JFQ9pFh9KlQr4z2GvGg+y9Znq5leVIuo7ZdjRbjqZvA391TgwOb3XnG57NguQx4ucDV5YoJwWVKd5TU1mfQdRQ7nnf7H15qCGQ7bgELA2KNdaG44rpVtltuvud0heb1kYZNOaG7Jo9yajoaRwvdd9sllaqKwbsoW8SuJg4xRbR8D+UWPJheYNQ/87k5kNSWPKgbrABvdq7OJq+EZv2DcebVc/bDAqfacMvhGGxM8qUy0e0F33QIBMvJxcC2Y5LZWhQ5qACiLGjwDFUIwPFoWE5ccmNZWS/CELz/jDVxnltGUp1Rcc99B3CZtQWvWc2i3/QnW/rcEzJzxSUzrdsVT0ZEjoj72j6NkwVRsnBYYNohQfJZVCx9YEr6skeDnoFBJ3lVghkOa5ag2qvR+OkvqkrLVpmW3RSP+v6qJ43I85Mry17kF3UIdAofl/Xu8ECy2Vm64roHfUdsnySLdLdZluvBpj9pLzVZltR7tH0bcOF420MDiEQvizhJQcEMX/usiIOZOtl+M9kV/skHeZ4cAR6EchyXOKCI+o0KKXxtTedVtupsFxEJ8IoblblVHmWolKylZwOKsPI9a0uvhFhxsWS1eqOq0RX6XXaS19k94VMW6xTHftEwjae+8QWpx9N37ahsQ4kHa/yOKSxykGNKPdW97nOr21S77NkMcOb1S/0MveMO43AlVmnSkSltRGzJbfv34omdaKFyodzwlGkQl96irYvrU92Hz3pj6UTDd06ShrKFqFEV/TaS98hTHJsCfVHmDf2NfVcDTgUZ+CwSucbjTiavm3s+waHbbqln5nlbb1kR33x/a2l3+QF8LvGRnUmzGaouDig5DJOpHmh/E5QXrKMCG1fqXdUpbKjy3dDsjvKxASVoVGwLEUw+bMc11q6ouAa+sK3L6xkC++7MduSHDpiGzgEdZRm76NPvU760fTtGKAE2WCOvYFRixbH2165CCRKt3baNxBkeT77w1SVgR+zvIbj0jP6MovmvTITgy7YoPtDXd+IhoFIaaDfSPYppQy93GUgcK2KR2dus6jvqay6Ug2rt0GloIKP0uHNhn2nciuNPEZbjL4bDUbP7ZArmwZ2qsm1jjKkt5mLjoaJ42ZZkQMlhkcg1fNquiJA/LP0DUoV/lnLFvG1Du1GcTqjG12kYVtfRzyIu8qdzklf9CkNssOcDnUxOdCLNMmOXHk2a32k8u908cx+FPEQRGP13JKm3qn7xr9ehoNVOEP2qWmrlWOM+pBuy8P1clPj9DWbLU1OVcrpzh+Ba1WcUNl1p7Om8uJEGo5LeYyakw1K6X0B+l9UtuOUlGZODdnw7tAY0yg7d2npgcrVbbDGnexAJYsGSGfC0Vw60ypsoCuycvWt9MuJrGyLdWCMwqulQsUZCPR1qL24Y5fKrVlPSvTNgbuilR0MfGwwlD04VHnq5Gvdq3agOCsVFc6VsMwIfFSks6emdHR+HdkR56RoJV/PzKJxxkUhyrV2WcTDC10uAtdmuioSv0BM43qie/swBY4lOUq08vW7yuO0+OX25GhK6cGp6E6Hxi8DINMadp0V8VzZNHJmaPUj1zeRKQ2wEURHw8VeGhF61R3eSemr6Yoi4p+lL2VKw8q24GSwp92ZtvHkFBmd4CDukdea2GfpW4p5tGPW4DBiWuGqZ+rMUp1+357aW8kxR4U8Znf1EAaBvEddJbqAf6Nu1JkTF9/V/m1RW5Y/nz8Cqg/Vt4WV44pqM+OyGVBwOiLmmZnTpMopujAK0z3ptOrwiAbnRqPGOXUcl/I4/jtZduTNUlXdaYVkpf1PEXNgkbS6jdqm8mvoigIl+laKl0RWsoXOLdURVR2e5N4XDR2WdcKjuGPfGemLOsVBdiw1OPxaSoweapA8c86p92J2JJfh0RUC46Fom0dwnkZnzPTM4HDKbJA9skEbxKvqqIy/3x0BEGg4LlUU/jkZoyxmQKxnU3knz3hEj6P5VPfKaSkeZjm69y0XMTvrWz55qjzW9CcF5OuyUWK7zFslNGZcoqXxoSsNDaf9j+5Dm9uL6SpZJ8nK1Rf9WV7jDi6hY9I9bJTr/lgXAccNpu3OJmTGP4vZIjmmR6cjUl7dOfE+nystF3dU3lPfJXGfPTgUFrSzzuAMkCwI41l7asZHd5ZU6Req96j4faXxzjuDTaVRP1/pssGJoslwKz70LR4cgWwErhIlbIT8VBWLBsJMo6q0CfqQJBo6o4e6V04r0sJjKFjlb5SLst9MkQ1z0dG5DAVsoMFVQWVoXKHxKF5tPFcE3cgiusK2UF+cPx0WdrC8ycEXHG3oWBX/kUvPdPJcQ2ExWyTE9ot6HaX0on6EJVnFc3HHjj31XQx32Q4vGxxafaQOWrvD1t6g8rxrcOx1DJEGvODJ0qwNLNp8mW0NDdSgp2z7vTJAoj01HI940dZDP6C7B0dgNQQ6jkuVjwbBxRIhI+RG5dRzJ6hM6DjJUJyRPhe/d8boi8bRN9s6KY8GQCNj9gEfC8hmdDoaYrmxX9F+C6OWjFHedQKVna1rTYdSfYMd4lPvTMCXd2aB5xt7SN2XsiXyDoMT8azrUIlVOp3f77omdc5VwVrkDPRdBPdokuGQNTiMZcG6tz1BI6xshmTOvtOGRUP7HhvcwC4MOIgQVI5n2uUjxWkPISh+XxHqHLr1OUqjJf9NePA/jkABAtc9ZWhYOJ2pMx5bvgr7Wy2eg40s0tryybd6ZuZDxabxDZaNjQXZoaHo+Q/F2w2Khg7fQKM7DqP34Ijyx0KRrjBdUl/xqjqNqPA/Y4on8ufa8lI8wwwA3tKJd2EdPJ0YnZnlcyAj6dhEMzXsru8SuINDxALnQb2cvBwuWg5FTHE4J3TVhfN6ojuztHp7wpkNHrgSvbUZBqLWtpH/eYuXkk63SmPGD0/ksfzerqPQEXB+nWXlkON/HIEJCFynaFThOBDBiJ6OYjSIdrABjDFQeZwU8mjINCgunM1gUBkahi1TJWlFw7JM375XssxQYqmu8NxD35VtGdxnGZJdkrcA9pvqO2Jj7uAwsBMGo+2iJdecfdWmxIN2NuXQk+1v0TbrM/yWiFC3rY0xeCTg9CwtJNT+wHexdyF7cIQvdS/uh1QWx4xe5qyx1xw9gzACchiIMfAolgWjrcIS2AzpuhduSceFolJo0CEMGVOYRwNjNsSonZGiVZpCdqsW21NXa0RjBjLbmRL2tGWKfm2avfRdFHfV76zBYRuEqc+0I2SJnllQ7oErOvFBh5XQw+gfKq/PcYW9zkTZ0iRm/jiV4iBs2Os7l/9uUGxHouBsbBI8q6S9cLuqNNg5IgBshMPSHqPR1YNk0rnzYk+K/6xrUuUX3ea6Rh3RNywToW9Ms+Um9hJtn5DO/aTn0SUl0Wxui2QW4R5t2kvfRXGPtvDLFFsM0Kw9Td5Ti++I9pC1pFezx2YumFoF5cNz7pJxnR/1P4Sosz1m31XedH41UPgn5S32ziSTNmvLsANi87PEdzFshqTvgVvvjGtI0RXz6BxozItV7CFdJeed8kuXLDbVFTuivo2ZsNLYw7BNeMgIDZoPSYN/N7VlJu4Ysoe+DUwXwn3wpSyVKV2z9tREz+AxDH50x9kxQxo7fVhXl8GFOYF6OnHSs5xhm4E9SycGQOypvtGFQ7zRRZsuDfaO0X8oNH57c4hwr7wVsBkyZXPczmbGBSo0Dl0GwhBQu+cdSdcxsI5my9H0HcN/o3xmXXT0oweuhC/LmHyPeU8XBzFynBbmhIGnyuFM2oElxDHH0C7T97z0f1MIzlZ6NwbOejYnflIcx9i3BNqn5x7pS2MzZMPmuJ2V4xpCxvMcAUegHAF1uHS2OIyqEy7nNlrydaR4kKDku7LZS23iQWfJsh3B+HFwYk7A0TacquSw3NaYYS2h/xwlx8quhM2Q2M1xux7SxvMcAUfg7iCgDm2r1Qzr/JFXLWNLPo7FnEwxsOLDzPGkuy0LGs+Q3mYsOjrWp7pYVuz89wfoRRNmDYryE2wsRd/oIg2efALQCVP4dgqtnCCdsrCZq04JbnNlUt4d1xIoOg9HwBGoEFBnxqlgnAoOox5wBEvsbz0Qf3OO8EcWIelglM5BJo6vMwNs66SkEMypL/bfDYzxxvdcbOaqV4LbXJnuuGYj6AwcAUcghQCOhRNz9Q+RcR7MZoqD+OF4OEFbP1TF7IjQWSpEPum649zQqe7w9FiFMOMSXWN/S7kNeuWz1Mlhl6l8gwDRs0QbZFQSP0Tgwyzv61Y6j3zKULczQfJvkmizsPm35KxYFm6zJNUKX9fiHnUEHAFHYCkE2OfidCKzHOv8b9W55n5A3daHTr7TmStt1n9/kBA6fdOzLtM+JThJBk6GjtqcG85wUlBZPgDvBKWDUe6pzQ6fmFCCTR+vqekluE3l3UvnjqsXGs9wBByBGQiYEwgdW+z0bS+qiC2dvK6+E33sXzVmXKINMxClM+tjxpP87w/KC7MG5XeWMZVXd07skz2fyle0mwXplIsNWLGEyv2RLsOAU5/f6Hqsi8AgIfmfJgpwmy0zaKQ/7rgMCb87Ao7AYgioU2M5DX7sgXCcno7RZiqK5gXxajilRGkcTIMm6sBM54niyRlP5GP7NOZsO+xVHidoS47YNoVvh88aCdKlYXdCRgobW4bkxGQ14xMvfrKLH2MImOjOgIDl3dT+YS5u7H3iCOfIVPHT6Sr89T+OgCPgCCyPAI6KpUICI/nOjCbkjPxRZ0fHXPrfFEa4h2yW606Sk3SsSsfp/q6rWjaE/hzCTGxwSoS6w2ZWXMeB5xuIEqEEt7kygxo+40q8DU9yBByBRRAIv2gRO1f2t4ZmPR2Bor+vRJazcBwnPS/23x8i75dii1MMMxalIcs6Vjpr5Fu+/fqIkvYPUf9FsBEvZmT10PufJpbCLUdmXTGLu+MyJPzuCDgCSyNQ/6X4bN6xc7PlqGR50bDn1bfvlSxDYuTNstUhw5rYDAFyLri54xp6S57nCDgCcxCwJShmWhafw+8ult0Tl74lwDbOzDyXCovIvPf+/fulFHI+joAj4Ag0ENAI3TqYrxTPnhk1mGU+SB4dLsuB7MUgmxOB9f0bJeWHtfjma1JeItpgS438NiXvh5+34vQly6UMNsCKgxks1fJPQmd9yrCkTHdceiMeHAFHYB0E1FlxIIOO7yPF23sp6wh1rncegas7b6Eb6Ag4AnsiwKido9futPZ8C3dMtu9x3bEX6uY4AmeGQNER+DOzwdU5MwT+D/q8oWBFUWGOAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{f}} \\sqrt{E_\\mathrm{m}} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}$" + ], + "text/plain": [ + " \n", + " ______________ ______________ ______________ ______________ _____\n", + "√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ A_\\mathrm{m} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ E_\\mathrm{m} ⋅╲╱ \\bar\n", + " \n", + "\n", + " _______________________________________________________\n", + "_______ ╱ w \n", + "{\\tau} ⋅√pâ‹… ╱ ───────────────────────────────────────────────────── \n", + " ╲╱ A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "py_vars = ('w', 'tau', 'p', 'L_b', 'A_f', 'A_m', 'E_f', 'E_m')\n", + "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", + "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)\n", + "sp_vars\n", + "Pw_pull_elastic" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "For plotting, let us also evaluate the for the displacement at the unloaded end\n", + "\\begin{align}\n", + "w = u_\\mathrm{f}(x = -L_\\mathrm{b})\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 36, "metadata": { "slideshow": { "slide_type": "fragment" } - }, - "outputs": [], + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAABTCAYAAADeFieXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2dW7bcxrGmi1x7ABL12v1wrBnI4ghEzUASR0CdGfgsPdlvXNYMaI1AlmdgawSkNAO5H7pfRXMG7P/LjQBxSQCJWxWq9h9roRJ5i4z8kQAyIgNZj96/f38yGQEjYASMgBEwAkbACBgBI3BcBP7yl7/8SdL9dUpClXs0Vcb5RsAI3BYCd7fVHffGCBgBI2AEjIARMAJGwAjcFgJS1J+pR5/sobCXGgtKEV0io+rsvsq4UK4iQ8pe2Gx9bYbkXIJNk5fq/0Hx35ppPj8vAlbqz4u3WzMCRsAIGAEjYASMgBEwAnMR+B9V+DoqSYlixf4jHShT/9bxP0p7p3AWqU6RsUDl/inG/62QtjalSobvFdLHLO3ZfrZBJVZytQwpSvtKWd/p+EzHP3S81QE90cG1IP1TlVuN06XbVz/mEOPxS8n8rzmVXHY7BKzUb4elORkBI2AEjIARMAJGwAgYgU0RqBTJfypMSrtCFKhXCpPiqPAnxX/W8ccFDbeMBbn64v+t0lH+w4CQK7YmbVSGM7Q/JHtPLsnyDx3g8AeFtZElGCgN40co+pG8NLx0+0VyN/C4KoVecmOgearjd51jVOK6YhzDeMU99lohhpuroMelUqpTPDx+KS3vckbACBgBI2AEjIARMAJGwAisRgAl4/sGF5SRJr1U5DOVQSkpJpWHT20syFVUGbwBwlgwi3+OXzdtSoa92+/KE/EJuVAE30TZTvir6s72mOjwOF26/a48E3GMD4zBaySMMJ9WgmO4ik8ISMf74mpoUqnXoMISRQe/0fHianpmQY2AETACRsAIGAEjYASMwBUjoDk4q+SsxHepqWCHEtlM65bPxbvGglwZXM1R2vAKCOU+V25p2pQMe7c/JPeYXCh/v0ZFXSMMKhg/oFAK72PLfy/dfpHkVb+fKbyaFe3oWCUz3hYo8NCXOurrqvOr8jwYVerVWR4ODE4sFX9UvNlRJZmMgBEwAkbACBgBI2AEjIAR2AmBrzX//luTt+J8s91UOPiOGxpaPb7Pbfyq/pCxoC6lMvDFNRmjAUr9XKNBzSt3MiXD3u3nZCJtTC7lobxzhCJIlb8qHYyo27pWpM0l8Ri8Nsrbvf2Z8obRZWa1wxT/XJLEvcR4j70QMNTE+WGEHRNk8Jv6atDEgOWBclUdG+u084yAETACRsAIGAEjYASMwKUR0PwaRRkForfSqTR2Xn9VICPf/87dKI+5PSuTY/SdysR34+gBrFBvSVMy7N3+UF/G5AoMKAM2xLfWkS7d/hAurXT1HwPDVwrx5LhW4rMBxhmL2NxreEj8rrB3Pyrt0DSo1EvqH3TwoPmXOhcWjEN3xsIZASNgBIyAETACRsAIGIFrQEDzaxRCFOs/6fxjHWm1F9l1jsLEbuKjirfyUeiZqze/uT8pvspYoPqsFv+oIwilh7QWqRyGBwjvgf++P73/XSNDafvN9krP18ilNvie/t/RV4Vcpx4uyKK8LDZKX3NtittHhp2JVXrG39WSrgXK+9Up8DnAs0q9OpgsL1WFq7G+SG48C7CwzLKYqTwbhTAwcbvgwsaulU90nm48hZv8PYX4mIyAETACRsAIGAEjYAQeOAKaf7JohkKOcs88tDnn7sZ7aKkeyuRHCrvK9CpjgfihB8Dzjc5RIiHmyCfydLyrzkl7qjgry7RZUxVfZLBQ3aL268ZmnKyRq2qGfnYXO5NSWMn9jcK/6chic672Z0CyqGjVV1bpY5O5Fh+lv28lOLIbAsL6EczvBlrgQQK9U8Gr+I5ecvJg40ZDCZ+r1J/z7ykknskIGAEjYASMgBEwAkbACCQEUObZhf6lDubezGXZqHpwDq485rz16ngVf0sdHauMBeLL6usX4pOUd52fdI5MrNYThlwsfqU5d9WmovdUxZcaLErbj+aKw5Vy0Q7KOi7bicQPjAIn9KfIy2JzxvbvBdzvF71rcJVe/UyKZrd5pbOQiiGoacDqFuvFVf6VEmmz6ZHCtXg21FaPSZWg8uyBUNy+yi6SeaT9zfrSbGNIqedBAXUtUfepB/sV2Fj0YkdOHjZLCEvkm4GKm/w9xQBvJxsBI2AEjIARMAJGwAg8UAQ0j0X5RVFGSWKFnHBQ6VBZlBnKYARA4YCo93U6+/Cz1Fjwi/iGopq4KY7LOeef62BezHybNjE+8PlAU9lSck2zZBAfdJCS9pn7/6wDo0K9B5jOwQXZ0AvgM7Rx3Sy5xOskXuAOhVHjPqZf5XEdkheDzkuw2bP9VdhI/qQHKhzTA/GMzq7S16B0TlQeubg+sxZfKzb8AwQKPLjVpHjunyHq/IET5CiilTIPtbFlX+o2Htdn7RMGI7QE9Pua5/3FMsZFRt5Q7udKwACub1JdxD3+nmKuTC5vBIyAETACRsAIGAEjcPsIMI/9VvPPUKjG5uAosyiYKAdxoPC8U7wmxVHKwlhA+pSxAOWYo2UcEB8U91Cc2ZAPOZGPFUdc9IcU+pPyimVQ2Tnt01cwQzbc3UN5R7HmnL5idMiSyhTLBQOVh18okGDwqjp+UvhLlQceJ8UnsVGZPdtfjI3kYh8A+kl/s1SVSX3NFhhODH0Nw9BcYrw39bTQVV/PZTSz/BqZh5rapS93A62FBYPd/w5NGlgAk/5uQ+fcRHGRi+VWPfrLEQ8s6uKakTYnURgPCtKzpDI8hJElfVtEIaUhCzc7fwcIf256zt8pNBkBI2AEjIARMAJGwAgYgZPmhrFaz1x0dAVUZT+eARmKL679SSFVOGgsUF52U76qTjavUI4iGRa23+1PxN9KNubeY1QkFwwkG2U5tqS92w8sQuaIZ7FRH9FbQudBD3qmA+NDl5as0qMnoYDDD8NL8mroMh6JM/6SnkZdneMZgTEp5NXptkT/xXGNzEMC7dKXIaV+SIgjpk/+3YUuSnb3yUZnuGgQG31gnSQeA5/0mkZ4sUMplrv3OmKgMuC4cU5Ke8ehU6xTuRuEYiYjYASMgBEwAkbACBiBh4nAC3UbRSo7B10CiXgVGwuW8C+ps7MMaZ5dIke3zM5ydZvrxc/Q/ixsJE8adwrD0wGjQ0tnUR7ftS9ZpUfHSp4TCrP6kNLH9DX0J3QpPAjQr5I3ScVL0aRrZetXdZoGHu6xZh8weuV2wJ+UOTU8/2eyL/NZDm+Ut4TX2evoAjCwfmw03Pu7DZWpV891Hsp7o0o6farfyb+nGOKldCxbfNeUjAEKGawQfJur/8i62YOaBkxGwAgYASNgBIyAEbgEAtW8h4k6q1mTf7+2lYxql/kfq11M7qFfdTC/+lF5uck5ZQ5Pkp1+cGxNmxsLKgG59nyuyi7oU7hvKoPaQ0mL9pnrP9GBsoS7NAofIa75U7JtKpfaDArZzt7+WmxUH+UZxf5bhWDY1F1Q9Gd96qz6yZU/QtXH2IDuVJPyBvU15VGWBdNQ5F/rPN0nClHQMVyN1W95WKgsn05wfQZJ+ZMyD1YeyRDfyb6MVB/NuhvNPXCmQImbefTvNtQFbvKwPLWsTY3uoYx389LDqWon/T3FEC+VCf4MtuZDDb5NS9AnUVbpJiNgBIyAETACRsAIXCUCms8wical+790oEyNuesqeztS2ygcfEfN32axadssJaNUEvFlrsmnk8wR8caMRZtSFocoJ7l3MRaIb1KySjq5tQzVtei2X3+WoHwUuZYyl5Nza7miDfHtyhZZrXCP9sWTcdptfy42KLUYz8AwKcDiS5x/DCu+D1SW58RvCms3eZ0rqWcYGNPX4FEbu1Q/dDRW5kPvGqtPe8VUIrPK8GxYslHjaF9W8D09Lu7h8Qoy2Pi7Db7r4EFbDzqlYwU5KY2QgYgVJ1wyyOoSANcr6iqLhSqsUlj6/l7ICyW++b0HF/yNjqDD71EQgjo0AkbACBgBI2AEjMAIAsyvWFhhzsRK2SPCkfKbZqkt5lzQbm2qDfrG9+3M7X7WOfskpTkmDZuMwK0ioHGOHoTCzGo9+gyErvUynRX8qB66F4ovK/OJqvuHe5cF0+RpU6Vl9bWqDLrYSecYDuPA2MY+Znhal+p7sBkl8SqVGcMGeBRv1Cje9HeqL7P5Rofu4uSaQoHCYCj5uwsuNCvlfBOR3ZlT6Sj0UG0Buo+mwQP4uHsAMA/2UV6U0REDN71sqronhcm6pXyTETACRsAIGAEjYASuHYF6ZexCHcH9HqoXZe6j2/9qDodywwolczsUexQePrvszR23b90cjcDFEECBT4qoxnraME4huk4RqSy6V0v/Uhr3TsuzhjQdWR1L6eneG2twrP5YvVyeeBXJ3Kgbi8CRFHH0wY8ikbCkL43ywSeSIt7jGwWuTqkXIDy8eahimW26cmClYUBArNwDXp1/n9z+VT6r/clKFHWqEryo4IfC3xp4Vf5QwHc5eA7wbT/gc45MKa7zuCBKMhkBI2AEjIARMAJGwAgsRIC54Elzq91W6rtyVW3xL0bMD1kxpAjh2WSgQZMROAcCGtd82oLhioVJ7rcvztHuGdoIfXGLplCy96DZfO/2kGJPnhpcYZltNaN0FOZsXqtgI6I6uE1wbELVwMd9xGQEjIARMAJGwAgYgZtDQHMdFNrkKkvnFCcgTPMfhaxOfacjPjn8ROfsLp0UX4UoByyqsHjCSiDzt6c6SMezsnQBBDlQOM5OkpF22RiQPiR3YIWs3LOqaDICt4QA9yh7Z6RPbW6hY9X9u6or4sFzjmceG0XyLHqi43MdPPvYz4CwZKNGFftAa/g+ev+ePUbaJIaRyIp3y22iXfL4McnPQARs+rLqYbslr+MjZwmNgBEwAkbACBgBI5BHoJoTnRTWG3LpnPkW8y4U3lo51zlelij29ZxS5/9R2t9J14HCTxwPx1EvS5U5qQwGAOp9r/PRxZmqLEYE6s3xvqRKEYkvyj1yIFer70UMXMgIHBgBjW/uNe7N+p7eWlzxXqWvra2/dX8uwe9uoNH/V6XvdvEG2t08WRe5ftmsZb4lr7WyuL4RMAJGwAgYASNgBA6GABNzvj3vzh9ReNkLKf4zHbEp80xpaYVf549ILKTwzETZGKWqTYwGre9bRyvNz0SZ56B/3b7P5+YaRuBACGhMx/22m1RqY5W+trb+bh07I+Mhpf5/VTJgeSwigRmr+0XlXWhfBHQ95rwc9xXG3I2AETACRsAIGIGbRkDzDlbpmTe+7nZUeXybS/JzHU2X+eY5+aWEAn0Sz+TSn6ukvNjomGzK40a8KakNdsrGKIEnKN/avyttQGU9by4Fy+WMgBGYRGBIqZ+s2C2gh5OVyC4ojhsBI2AEjIARMAJG4GEgEAtBY4otin+T3jYjM87hM6bQs7EX+SEL5ZcaEFT1A2m+y4o/38uy0fIrxfnLu9nkefNsyFzBCBiBEQQ2U+pH2khZengt+h5D9dJfKYgJD2QsofECeKJzXiCkf6pyZ3N3WtoXydmjI/avJ6QTjIARMAJGwAgYASMwjkDMw1B6hyjKRH4o3RGfDDVvSqv0Kjjmes+qefo2XyHzROgrnRM+1fFC57PaVnnmnPHdPJvjLVLmEcBkBEBAYwhPj7TfwxQiKuvF0ymQHnj+WZR6DcT4KwQeiN0H+uglUF2+zaIeOwj2vrdQGg/1UPRHeW2RqfYW9yXXvvgdqn85GZ1mBIyAETACRsAIGIExBDSfwcUeRZnvb1sbEys9FGu+uV9L8X1vdqVebaEo/dJoBCMAc8+/IV+VjyIV3/I3ivZPVZ45aL1bv+JF9fqcnGIEPiCgccS4/EShlfUPsPhsBQKPV9QtqqrBisU2dhvlwbiEsKq+GagYL5GB7Hyy5Jr9YtmoLzmBNu9frhGnGQEjYASMgBEwAkZgIwSY33E0if+x/kbzpVDiI+8HnbBTfVMRz9WP8mMhHpwn8eq50ysN5ZuDXfWDMALgJv+uSiDkr6cmSXWQ8RWHzln9bxkrJhm4gBEYRgCvj833eRhuzjm3jsA5Vur57ijclUK5n4sr1qz6L070UOVl8W+FPJh/m8usKs+Dei5t0Zdcm3v0L9eO04yAETACRsAIGAEjsBgBzb1i5Zq5y0lxPCZ/UshKOAstzPX4G2HmaBDzLeJJoVdIPeaF8PlWcUKU5kGFWXnwwDBAWY6T0licwVPziQ7SwpCAB2S0reSkwKPoByFfkddoxSc8A6K+QyOwCgGNKwxT/MVjPU51jodJ75MOpS/yDKn4Ncd9VmaVs6dAFpnrS7zbU2QNFB6wvyvE3YkHaHoQz2lT9XiQc/DSCOJbpvSQVVgr+5G5R6h2VvclJ9dR+peTzWlGwAgYASNgBIyAEWgioHkL87ne55BRpsofVESUj3LfXLGPqoOh6qD8DLY5WPE+gzlk09vzG8VfTNRxthHYEwH+871lLFL8+60aFC8MZ3bt3wrQK+Gzq1IvDL7TwIqHMC8BBlmLlI9lCmKzu9xLIOp8XfEinrWwFvBKDS38mezLQr7F/VvI39WMgBEwAkbACBgBI/BQEajnjJonsi/SG4WDXgEPFST3+zwIVGNw9ifAM6XDEyb0r5lVXfxaEbjbS/Bq0P7Y4I+bPA/TmlSG1e+nClHYQ7mt86uTpwpxtU8Kv0Isri0+lFN6CS+Kzibxpr3Rvsxm+qFCUf8+FPeZETACRsAIGAEjYASMQCECKDc/aC6XlHuFrRXSMR4qy5zzZx2EpcSctve9f2lll7t5BBgfrTGoOJ7MeCTnPJq/VH6xZ4vKtlz7FUeH4ZOT2DySsYzu8VJ5HqcC4lZoSql/t6SjGiQMGJRwrKEMHAil+0SejuD7REnxkB0asCj73bxkYYWX8tiQBRf8QV7KxyLWvVHYTT8GuLIT8U1Xy51f8dK+BI+5YWn/5vJ1eSNgBIyAETACRsAIPGgENI9DcUGxn02qy3x16X5Qs9tzhetHQGMGfeMzhT1vEKXhnczGi11iZR1Fnz0iMEAtGq8V055rv9LRgzAasNkj+16gk5HW+4ZfaaYrRaCn1OtCN5Xf2mVpZv/YmOEL8Qrl/VTxZbUe/gwoQhR/lOs/6Rj6loSB91JHIpWDZ/Bl4zosTaO8lN+7OZTGBhUtS9l9C73fkr58pFpYcsErvv2nTeoiW7KQqb2WwUDpUEn/1vC/b8W/RsAIGAEjYASMgBEwAkbACOyCgOb5LNShW6DXfKwj9JWTzpnLs+re0j1I15G8kRGKOOESUl1W5WvXfsXRQfgnCNLZQDJW5pGLPNMNIfA405fmRZ6t1GvAMKB/UVgPZNpQPHilvxGp4lirWM3PKvRKR+GFYhDex/SrPNxL0qq/zuE9yquuOONEfEv7Ql/TTq6qw+6vobwjH+co9/UNGyIor7R/i/hHOw6NgBEwAkbACBgBI2AEjIAR2A8Bzev/pQN9AL2FhccmESevRSpf60s6R+/o6TytCuMRXPtDBznpPP4p7KmqvW5URf+o222k+/SKEbjLyB4WJFbTQxHPFOsnqTyr1AxI3OWbgwpDAUo3xN+anHTU+ffJ7V/lowijuEOpzv1p669LdnOJUvtL+tLFK+JvJftHlfwpWNi/4BesIt7jHwUcGgEjYASMgBEwAkbACBgBI3A2BFDe8QjGm/idDvQgPJOnFHa8fLufBtdCV3zmuvZTH92s9nrW+XMdrOCbbgiBnFIfivSPc/upwRYGgVZVpaN8ZvNaBRsR1eGG6Fm0GkV2PV3YF5TrIlrYv2L+RUK4kBEwAkbACBgBI2AEjIARMAKbIaA5Piv2KPDhqUtYotOgfMciaEse8SMPXarYtR8GqodBgYXFtDKvOKv0HLstjIq36QIIPG62qQuNQs/Fx10j6xLfLL/BOS7pz6p217LbktcsWSQ/N0u0jwWNG+9zHeF6Q4iFLgwmipbT3vzLJXFJI2AEjIARMAJGwAgYASNgBCYQQIn/ttIJTgrDu3a0msplV/OVPtu1v2oIBR6eX4kHG/Whr7BhXlLydW66EQQevX//vu6KLnBsZJd2R6wzbvBEfUXJLrrBbrD77pIRMAJGwAgYASNgBIyAETACOyEgPQNXepTqT7fSOcSHhUM+EU4b8SnOYuxfFfY2BVf6Sems/PMJQImnAFVMV4pAvVJfXXQGBt+vZ61EV9rHrNjqoxX6LDJONAJGwAgYASNgBIyAETACRmAlAi9UH71qM51DvNi3LFz7EW/KtR8jQHOTPOqYbhCBtFKvAcKASC4ZOh/dwO4GMXCXjIARMAJGwAgYASNgBIyAETACh0dAulqs1vONPf9LP7ZKn/7OTuVeqJxd7g9/dZcL+OjPf/4z33nzn4Y373K/HCbXNAJGwAgYASNgBIyAETACRsAIXB4BKeibu/ZfvleWYA0CuN/jxoFbyA8aIGz4ZjICRsAIGAEjYASMgBEwAkbACBiBYyKwuWv/MbtpqUoRCPd7lHksPk90sGK/2bcfpYK4nBEwAkbACMxDQM/qDzudDlRVmUcDWU4+IAK6XnwKxydxk+RrOwmRCxgBI2AEjIAReBAI3NFLTQzYFZHvMtj9nh0VP9VhMgJGwAgYgYMioGc239R9r3DzHW3Fc9JYsBYWtTHb2KA6xQrvGvmWyLamvairdrmmn1yq/ZBjbSj52XSX+YTpQghc+xi6EGxu1ggYASNwtQgkpR7p9QLgv+mZHPK3CK908D+GJiNgBIyAETgmAjyv0+Y4el6zsovHFcoUnlbstrtoQxzVmzQWqAzGXzbnOZtXVyVXS+FVGnvCfKeDvwz6h463OiC8zsBi1V8JdfinHYeVtrkRBYErqq9pJFxpyHj8UliB2eGpus5PJejvOsdQxtjhHmKM05fXChlfJiNgBIyAETACh0SgVuor6dj5nhfYt3qBodjf/F/bHfKqWCgjYAROev6gkD2voOD8rErkkS+BsEGZ/adCvKx4ZvO8Tgq2QjY+/VnHH3UsoVHFUvzZSRfFPwwIS9pYUqcnl2T5hw7k+IPC3u6/SsP4EIr+7DYr/hgIMHbjzbYbiX99TaMRpeGZ0POcU/oio3vFj/EySio324siGKpuXI+rUOhDboWMlRhDjO/wNCCdPpmMgBEwAkbACBwWgZZSr5cxE0RexLzQWP2IF9xhO2DBjIARuFkEakVKzyWUeibXPQXnZns/3jEMHKFkogy+ahR/qfNflI+iO2slXeV7imWD70n5eAOEseBsis6EXKywvmnK2Tj/VXUXeSw0eIDzEP9GsdWnzWuamEn271dzrRiIF+/1lqfDVrw7fDC+MAavhoQNxiHuIZ4xENe8eU9dm4EidcI/RsAIGAEj8HAQeJzpKqs8EJM7kxEwAkbgUgiwQhqEcno2JTIaPWIo5YOV8nhOh4hNbEKJbaZFuakQxXJMkcTYi9LG9QjlfornFvljcqGs1l5lkv8zHRgfoFhtvY8t+4V/KHvLOEzUGrimE7VmZ++ubFe4P1N4ja7qnwvRUN4xIoZBjPEU57NBdwUjYASMgBEwAudA4C7TSL0ioRcZL+d4yWWKOskIGAEjsA8CevY0lUYUK0+s76H+WtjEKv1J513vBRQSqH6W30fHf8UnZyyoKykfvnxzjEcX12KJ0aDmV3oyJpfyUN45mkp308ODT8oWU4N/bTRYzGy8YuuaUlRtgy/9yuE863t18Wp5YCjOteb+4l9vIDDE4+Gl8tb0NYw+8Lw2wrvgO/UfQxCr9BiSfld4jQYKiW0yAkbACBiBh4RATqlvTpxjteMhYeK+GgEjsDMCmiyjZKAAoChiOMRNmpXEHimd5xBla0W2V+iGEtRflDhWB3vKhNL4xhqFY4z4ZnrJRnk9xbLTCApPfJLFewJDyzloTK6QgTLItrXxJ/EX70HjtvIog+fEFzrPKsRKX3JNuR8Y8291/CAegb2iswkFtXv/IDNGA/7GlvuPe5G0rpFISdOk+tynXynM3sfTHC5bQnJzv/XuuctK5daNgBEwAkbACJQhcNctphcbqzCRnFshiDyHRsAIGIFFCDCB1vFEletV1RwjlUFR+EEHCtO7bhmlbbqRWJf/uePqDwoiytefdP5xs886BwtWaLvKWS2m8lDo/6Ww50KvtCWKZeKtuqzs/lg3dO/WTtpqWiOXGmd1mX9uSRvHKQSjTeSqOgb/rKJe5Z/UJngTZsspffY1VZ2PdKQ+0Q7xaG9uqLrgUX+uoTjj4O86SOc+DLm5v9a88zG8TW7CpzImI2AEjIARMAJGYGME7jbmd1F2mpyw6sCKRNPbYFImlW+uGmKpZ2UEQulIE2GFn87lCwPTfggsvd5DEnkcDCGzWzrK6Zsh7roeKDIoCS8oozgGgNYqoOI95ZWy10rqDyvCKIkogihJzf52461uqg5KWksZjAIVv0XGAtXlOqBgvtE5Si7Equ6JPB0og4tIdWcrvJ2GqN9dRU+rrcimvG8UrnHBh39vjIon/X+ikGvFO2LwnUMZ5c+6pqpTY6pzZAjFW6ezqeXpIH5JVoVcy9cNbvSpbreRPnkqXmDNKn1vlV9p7ycZuMAmCAjrxf9asIkAZmIEjIARMAIXQ+DuYi1v3LBeZkxomfyMTrByzaouqxXU2+VvkXJtOm0dAmuu91DLHgdDyOyWzv3Kd6xDxPe+3Jfc2xDKSFPJTYk3+kM/+cs6vnHGeyqeT1nlTvlgieExVqyJv1U8lVc4W7Fs4IphpeUpIX7Iw7fHhLhuo9T9rINrhHEV+loHdSmTvt9WuZaCvVIusU3GhXoMiR9KaSimGEHAb5FsMBeh6Nb8U8r9T/NThDBwhNcIfy+Yu06zrmmjLXCMb98byfenagt8l3yu0b3/nosPK/hLiHs0u0ov+bKKptIxpj9VOPueVp1XqkubTaMe1+HZUHvKy5LK94yF2YJVosovlrvLd8t+dHk7bgSMgBEwAg8Lgbtb6K5ejEzaYlMtJjhLiFWL3opMxYhJa0wUl/B2nQ0R2Oh6D0nkcTCEzIbp1TXkvs0pP6kllemt+jVFUD73Ogpk7p6vNxJTOSb/e2wK1l5O7oIAABecSURBVBRn03PJzMou2KAooagTZpUflUOZIR8FFoUDog7KYJdmKZbih+LH3+O1nn+K4/IO7891pOej4vBGQUqKu0LaZyX/bzq4RriAt5R6xYNmyUUl8UzKtE57Y0h54FB7ESg+W7Yh/kpHeW8SHhAo8tFPFE7SWqT84mvaqnhvrIZnj8ST6zPbA0P1uB7cf+m6Kg6WHPEe1ek9VW2cFHY9IqIIIR5yo/drs7DK0jZjdtDDoVk+c85YQoHnutakeP2ZQZ04fYIsRbSB3N12tuxHl7fjRsAIGAEj8IAQuAmlXteLFRle7kxwepMSpZUQdesJp17eTHCYuDLp2eJvkUpkcJkyBLa43kMteRwMIbNtOjifdH+NKQpTLXLPo9C81TG1kRiTZwwAm2wKJj7nIPrHan1SVBQOKUCskKOYtBQalefZ1SLw1lFqLAAvrhPXqPlsRCEMJZMN+U46Ir8rY8S5RoPKk+oXyyU+tIdCGAaMJAPpoic6kC+noIYslIMi3pNtgD+84Qv/ptKOYQN5IPLHqPSatnhIHq5Zj5S+1AMDOeGJyzx8Uci5N1pjRnEMGDxvwSr7bq3KxHhQsSKKZ/gPRaX7hUL+lCMZ8LJDxtf9opumrJW7K8yl+tGVw3EjYASMgBG4cgTurlz+k17kvBRX/c2SeDDZ5GASG1Rv4KX8mLBGXi9UGSa/yII7YVohU8jk7yeFTJbgjwtlb+KkNFMhAsJx9fUeaqq6RqvGwQhvj482OHhEZBWVdrF8jGulg9XoRNW1i2gdKp17cI9Nweo29jqR7KHo8lwaXAVVuY9nylCkWIpvU3Gtm1A6ylM2T+koyEupSC6YSwbKcsyhYtnm8q8wQZbnOkLB78mmckXXtFlRdQavfaNcYFf0uYbqcf2Qpem+3mCXMObeiXcf78NnyN8qdB+Zu0rPsxDlG17cx7VHxT27ol/kT+9r6uscAw99CXl1ui3Rf3FcK3dXqLP3oyuA40bACBgBI3AbCNzdQDea3zYy2eTF2yK9jMNdsv7mtFXgQ53Jv0Ua4YW7LytG73XEJIWJRppIKu0dh+Ks6uQmRh2RHB1AYPJ6D9QrSY6xMzkOSph1ynh8tAEB697nLrpHMNrEBmSUYfWZ77lbBoDqXlJWUj4o18pPGfd5PBNOKo8RobmKRzvcj0enFxIQZSr1YwthxWu2YjnVrniiWGFk4dvudA11zrOOlU2MnISsprIynDayU7xFSt9cLhoQ39WytQTtR3juo8jzn+Y/0o9+kVbKntcUOUY/16gk4Z4ZNYqoH3HvoCjDl/KtvqkMn7a80jGHeL4mg5zC7DtR6VPvbMYW71Tk4j0bhvT6nh7iUdVhTARxfzX7gHdMboxOyh0MZ4ST/ZjB6+qKCmeeFenZoJD7f3RMHqGDkhFjFws03Pe7GZGO0FfLYASMwHUhcHdd4ral1QOVCcWPjVTc5EmrSWV4aTxVyAuZiUyOmPBP/i3SEC+l85BnhQT+4bJPO/Btrv4j62aTcxp4SCR8J6/3SjyKxsHcNjw+sohxX77M5NRGG+HGJO+kI6uwN+oyoR/cSKwqx73ZbO+54qzgH5qqvk/1f0kfNlUsJSfKFNehSbUHgfKZrJdM2DeVC2E2lK3Zt/pc/FF0W8punZk5UXmu5x7XFHwnP9dQ+yiwvLOeI7uOWhFWWo/I14Hy8q3CcHOPcrSZdcuPAs1Q9VHCTxHq9K0OZKlJeaPvbOVTHsN5Gm8KX+tIeCpEQadPgzyU1xqHirMfQjIy1EJ0TpQ/KrfyMRLM2ihSdUb7IX4YPWfx7Ih9qKj6m65NUyilsR8H9/z/0QEe10Bca44SD5pr6I9lNAJG4EYQuLvWfuhFwEOVF/HU3yw9UZlYcRiaeDHh7+YlS33VTvwtUpaXygR/JhlNCz98mysAn0RZpR+SJB+rHkzcBt0yLyG45Cm93mvEKx0Hs9qIa67wasaHZN1tHIg3E26opdgoPVbnUqbiTPJKjGDd+yzVj5+KD+PnHWmK0z5HsTJCvVsiYQD2LfyP0L+jynUEbKZkEHYos1zTqc81eG+OKrGZtlBqMaqiEKe6aos4/xyT7iudj5LKcc/9prBe3dQ5dbr34ROlxTu1+16mPHzqsSse8a7m+RHv3yke8CmiErlVBsMH2MzZKHK0Hwt5FvXp3IXUF56/vP9617Pq55tzy7S0PcnL2Mv+o8NSnq5nBIyAEdgCgbsJJv97Iv+S2Uwypv5mCaWACQhK6p90DCmqvFxf6kjES0YnMVHBNYxV+BJeKBcx4eElxtF8WeGeaVqGQMn1Bu81Kxsl42BNGw9+fOg+4jpiMIBwXyRkAg723GNf6ggi7aQyTNZZFWFFrZ7Mkxc0lF7lw4d6o5uCBS+HRuCKEdjc0wEsdH/hgYbCzGo99+07nRev0qs89zDvUuRLpDTud56JvJ+Ty3uVNvjOVj7PDvicdM6zJAg+yPi9jpJ3ddQbDcWrSO4Gk64RMuJvVYZ3RyLxnexHlFUYPCIp4i2ekXnQ8JuDymWxjIARMAI3g8DdRE/+70T+RbL1QuQFXvI3S7zkWSnH9T6r0Cs9KQ4q01MWlMeLFzc/JjBY4kd5UUYHL1oIGU9VXcK0qkGaaR4Cwq70ei9ZLUnCqI3SccC1nLsiEx1+8OOjwg78SggFH0V+6q/Cptwg4cMqZvYZUCKIyxiBa0BAY5z3WO9dtpHsGL6TMqp20oZxCnmmTVJ177XuP6WhnLZW6UnTMfieVR6GBY5BmuIxWDGTIV7IPCl3o2q8/xtJ/dOSfjRqFfFslD/UqfrKmOGa1h4ahxJwpjDqD0ajj6im873utZlSubgRMAJG4HSaUuoPh5EeorgWouThxlW/JKoHLS8OKK0AKq3Ov09u/yo/t2pIoSc6eHCj6LUmHYqPEasQ7AT8m0ImLJwjU4rrPCzsSjKVICDMllzvLs4RZ3KUXsbNttXGknEQPINVxLNtVIU8PgKtsvBzFYvVuDC6lNVsl+J5UWpIaNd0zAgYgYSAnpN8/4wSg4Gae+qLlHH9PzFvWNwT4cJ7BQ+DxRtFdhvfg2e3jbXxSsbvxCe8ED/ROV4Xyc1eIWMl5lDPFA+ss5sRKp95F0YA6KkO9ktoGVXIqMrxTGcvFYy61GPeh1GIscl7gzQMUbyb4UU6nwDE+4B88uLdEHUY4/DCEMxGrciD8Ypy9Is+wAPjEvwSqSzvKNLhyRySMfFc6dH/k86TnErvya00kxEwAkZgFQJ3q2pfoLIeiqy69UjpPEizeb3CVYLq8JCOB/pQseJ08eNlwIvdtBECC683inUxLRwHs9pAGI+P4ktSFxRm3NfQcx2h4KeEkh/VZwLGRIrJFZM0JmcmI2AEliGAkoSiw142N3EvqR+8t1dRhUWt4FXMlmwUWcuxB8+a+QYnkg8llrHAP7vEc/qkcxR2jBt8CpEWVhSi7PL8HZsfoQSj+CclXiHPbfZgYN+GJn948Vyv/x5Y+aThvflfOlC8yfuPQhR+6jJu+ZQC/nh+/V3n5OMJljw/FFKPtKTQKzwpDS9PFhZYoAkZ6C9KeU2KI3v9N8iRofS6vzqfkvsm7qfou0MjYATOj8Dj8zd59hZ5qPIgD+vvGgG25LVGDtfNIFC9WOMaMangJcpq73dVcUK+31w8Fs7RRiWrg/vJFRMlJmMlfxXWw0x1mYw90sHkzJOmHkJOMALlCOgeQgFC+ZltYCtvJRnG176z4z2w+Fk/Q96HWhSFvqVwV0CwUMJze6531eeqU3tX6jyUaN7jTYp26+e5yjImITwDgqjPOEqbOSrkPRBGBuoyljEWJ1IeaRyMnSbhoRKyRHrXqM88A/k/igJViPEhqFTuKO/QCBgBIzALgbtZpUcK62H2fiT7CFk/Scat5NiS11Yytfior6O7syqfSVn3ZQkPXkpPlF+/7EisCNe27mpE5KVQ+UcZB01LOhukNeXa6vqdo40WvnMj6vfNjAP1ZW73Z5cvwIv7g80Y59AL8Z1cDVSZ5hidw99ljcC5EWAFde82t3hOb8Fj737uxn/qeba0YfFFYf+DjtddHspDCSaZOcTkc4+CFXUV50ivFeWqXeLsddRU4CmLYv+OkwaNtY/CjVcBhn7mNhiAXuqoDVZKY47ESv0oqRxeCCj6/+FcIXUwJoTXAXjNkVvFTUbACBiBeQjczSs+XFoPr1HlYbimcy6BgK4X1vQeKZ0XGy+53ndsvcKZBI+DDCgHTvI4mHdxhBeTxvobyXm1x0v73hnHx7lGwAgcBgEUeqirRN+n3v/OXalHKZ6iaDf3TX69yt9gMshTz9v4HIuVeeZDT3kf6vhOBwsBrOTjap+dKzXaiFPeC3gDYgjAMIC3Aq7+8J8rt6qYjIARMALzENhMqZ9qVg+27ndJU1VSvuqhZPKg5AXBQzYe0k90zoOS9E9VbsjKq+xtaWlfclIcsX85ObdKW4rdEXFa2pchLI/YxyFZS9PVJyY3rFBwr3KPMmkamwiqSPqWcdHzoqp7uGdG6pR/jIARMAK3gUDMt3i2D1GU6eXrHTD2F8O98o2E4BlKciMrezr1ruHbehR4Vuh/rzhgHEARZ75ZRKqPPG8V1gYAneNJwDf7uN3PlbuoXRcyAkbACDQROItSXz3csF7GxL4pw+i56uLCRD1Wj3uu30pj8h+K/iivLTLVHg/qRX3JtS9+h+pfTsat0tZgdzSc1vRlCM+j9XFIztJ09QeFnklNmtAoZHKD6/roSrfKrbrHVP/B3FOl18LlLoeAxiN7QtQuvWslEb/ZXnFHkGFtv13/OAhoPOFij8LM5sQt5VfpsULP8z6IsizEBE39DWmUa4VVu7xPnutoeRMqDwPDtwpb6S0G/Qgu+LxvftARCvmPOsfowH1LfgkxR8WYXLet+qzSgw9zV7wCtpS7RCaXMQJG4IEhsLtSrwcZD9qYxPPgW0JPVenNQMV4uQxk55MlF9/a9YwE+dL3qRv1JdfE5v3LNXLJtI2w2xyng40DLtHmfbzgdWeS05wUsRrCDsXpG8acXBuNE1jfEo45qJx2BQhoPGMA/kThqCKu/MWeKVMw5GRQmr1ZpoBz/hQC/KXhzxpLGG5/bRRGQWbn+9i8jizmb59zsgF9LR68R8JFPlhiOAvFnDTmnhyDhNw6ULbrd1IjjX9MqZX0DJMub9z2UeTfNcpSJnAolbtR3adGwAgYgXIEhpT69JATm0XW1E7zuM7zoGVyE8p9p8hklLr191J6aGIJZmMTHp78B/wS6j6QS3hs0ZdcO3v0L9fOJdO2wG4PnI40Drg+e/Txkte96Z3D/Qo10+5TPvxuMU7gdms4fkDIZ9eEAO8+JvODpPfYKs+UQcYfMnoyqE17s3zAx2cLENAYQiFmTtf8pIr3KfFQZBNnxfkXEhZSwhU9ea4ozlyOZz7P61OVj/GXdwQu8BDKMt+7p/tIIe3yd4E/KGQlnDngJzqSHEqDF2MeHt8qTojhoeVRoLSgVzqJd9NY2kk8cvK+qCoxR/1GZcAAfsyf+a6e+TR1R+WmjMkIGAEjsAaBu4HKodTzMFxMeojxAPxd4TsdwXMWP9XjAcnBSkYQD0oe5ieFtbIfmXuEamd1X3Jyie8h+peTbau0LbA7Ck5b9GUI16P0cUi+uenqT9coyD0EZb1utsL21nC8h8y/14aAxiGr4WzoxQQ/S9VYDWP3qvdtroEJGZ6qTvZeVDoKyKDcubac9vAQ0BhhXhfK9ygAKtszbimNFf5eutJIH1LCT6rH2MzVIw+DQsuooPggqXxvNT6XBgOlD8lb1KbqD8o9KKAzjIARMAKFCAwp9VhTsXZyrCEsrPHg5eHf46d8vluC2Owu93KIOvzPNLyIw6tHBbx6dWYkTPZlBq9m0eL+NSvteF78MpwhwyR2BdeuGKcCXjNE7xWd7EuvRnlCcR/LWS4uucc4SO6Ruj5DysIktoXXthjHQn6LQXTFB40Aq5PJ+DyCwlaeKUNNjMnAfVIbxSUrRre1HnBDcjjdCBgBI2AEjIAR2BGBxzneernzok8Tb53jGjibqnpsOBKEi1RrJaKaROBWhaW0ualK1CF8qoOJBpMTlH5WNZqr9oomCyoTkileqezcH7ULBqN9mcuzUb6of43yu56qr3hVDClds9suwU5lSq5dEU6FvGb3gwolfVnE+EOloj5+KL7fmfq69ThAoWezoN6qCL0owVZlSsYJ7IpwnMEPniYjUIxANZ6H3mmJTzX+kiebEhZ5so0JNCaD8j5SXY7muxQPuHjv18r+WBvOMwJGwAgYASNgBI6BwN2IGC+Vl1bWFM56wVcTBhTwNzpngg0xIT+RpyOUxidKSqvuShtaGWQ1oZuX3LLgpTy+YUK+QV7KZ3LVMigQV/ovCpv0quJVpylOGyV9qevMPCnt30y2ly8+A7vBa9foRSlOg7wkz5HHAV0t7WMDluOfCneMYtz33Ec92nicwL8Ux8Gx0hPSCUZgHgJ4lk2u0qvM1xXbpZ5sY1KNycA9AlEGGYhfwgMOGUxGwAgYASNgBIzASgTuhurrRc/upSjk7DA69z9FMQZ8oXqhvJ90jlIdq/V8r0ecST7K9Rj/z1TmpY5EKgvP4Ivr4sspXsqPidM9E/0qjW8dpyZdlC/pC4r/zzqYFMXKB21Sl37iXcBurTnjSEn/1vBX0xejEuw8Dj5cnpsbCxrzKAv1pzVV/K3C5m7JW44T0CzBsXTcfbg6PjMCFQIav4yfzxT2vvtV2uRfYalMzvur5RWnMoxjvM9QvEMJr6+B0tbIwLs9ecDBULx4x7Tar9JHZaCMyQgYASNgBIyAEbg8Ao/HRNCLHsWUyTdueb0Xfq6uyjH5QIENxTsVUzxWAdLfmlRxdh1lNX/IJZcJBdRUAFKC6rAJUVr1L+GVKs38Ed/SvtDXtNuq6vCXJqG8Ix/nKC29VUrllfZvEf+Z3d20uPpWih3j4kGPA4C/xbFQ9Ymx/1rnGAe5Z7lP4llwUtpm40R84Vd6T02OO/iZjEAXgWrM8jxnN2+U4Zqq+JcKe8p+FKrKUJ9yvFu5R2Lj1ya/J0pP94rKtLzVFOe+WSyD6lK/xVPx2gNO/ON9PyiDypuMgBEwAkbACBiBgyBwNyWHXu5/1MGkA9d0VtyYlGdJeaxSx2QhFNuT0llRQHGD+NsR0ur8++T2r/JpEyUASnXuT5ObfVqhUDx2Da6ytgvU/pK+1MpKJUnE3yrenKzR/yX9C37R0Yj3+EeBS4QLscuKuhCnLK8liQv7Etclmox49jot7GPwLGojCp05xHuFcd/6tlj9fYccC7GlapYW4pjl5UQjMISAxhnKMPtD8K7DW6z5TuzGc2x49q/yZNtABoxfL0M48eOeTPelQvow6QEXdR0aASNgBIyAETACl0dgUqlHRL3wUapRckfd1VUmm690FJBsHvxzRJtKb06WcsV2S1vYF5S2IlrYv2L+RULsVGghdllpFuKU5bUkcWFfZl2nhX2c1caSvq+to37xX8KDtBDbMX4XfWYMCuaMW0WA8cZnXCjA73RgbOZzsl+HOqw8DAFZTzblUQ1PNj5PwzUeQziu91lPNgqLlshQ5M0i3vSpRIYkiH+MgBEwAkbACBiByyEw6n7fFEsvd1YmtlaycR98Jr6xIt9scu75lrxmtS35WY2M9vnOkokbkzNWPCBCJnuL+rk3/yThZX8Cu0X4dETfkleH9Xj0HNfpHG2M9/KiuVtf2635XRQcN35eBHQvsmKPAs/KO0Q4+I5UeQzjHK09XpTOu4F0CAN6uL7fp4z8quxcGZAxPGdoCw88Dj4lYONY8lDkTUbACBgBI2AEjMAVIfDo/fv3VyTudqJqAsNEquvCvF0D5nQVCHgcXMVlspBG4JAI6PmBATe82Pjb1ZbCvkboijcr9RifBukIMgwK5wwjYASMgBEwAkbgLAgUr9SfRZozNqKJkBX6M+J91KY8Do56ZSyXETg+Anp+xEo5iv3gKv3CnhR5khxBhoX9czUjYASMgBEwAkZgIwQe7Er9RviZjREwAkbACDxgBKRU8406n5GNffu+K0JHkGHXDpq5ETACRsAIGAEjMIrA/wd/LnK0MLE0YQAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\begin{cases} \\frac{A_\\mathrm{f} E_\\mathrm{f} w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}} & \\text{for}\\: L_{b} \\geq \\frac{\\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{f}} \\sqrt{E_\\mathrm{m}} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}}{\\sqrt{\\bar{\\tau}} \\sqrt{p}} \\\\\\frac{A_\\mathrm{f} E_\\mathrm{f} w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}} + \\frac{A_\\mathrm{m} E_\\mathrm{m} w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}} + \\frac{L_{b}^{2} \\bar{\\tau} p}{2 A_\\mathrm{f} E_\\mathrm{f}} - \\frac{\\sqrt{2} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{m}} L_{b} \\sqrt{\\bar{\\tau}} \\sqrt{p} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}}{\\sqrt{A_\\mathrm{f}} \\sqrt{E_\\mathrm{f}}} & \\text{otherwise} \\end{cases}$" + ], + "text/plain": [ + "⎧ \n", + "⎪ \n", + "⎪ \n", + "⎪ \n", + "⎪ \n", + "⎪ \n", + "⎪ \n", + "⎨ \n", + "⎪ \n", + "⎪ \n", + "⎪ \n", + "⎪ A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…w A_\\mathr\n", + "⎪───────────────────────────────────────────────────── + ─────────────────────\n", + "⎪A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} A_\\mathrm{f}â‹…E_\\mathr\n", + "⎩ \n", + "\n", + " \n", + " \n", + " \n", + " A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…w \n", + " ────────────────────────────────────────────────────\n", + " A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m\n", + " \n", + " \n", + " \n", + " ________\n", + " 2 √2⋅╲╱ A_\\math\n", + "m{m}â‹…E_\\mathrm{m}â‹…w L_b â‹…\\bar{\\tau}â‹…p \n", + "──────────────────────────────── + ─────────────────────────── - ─────────────\n", + "m{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} 2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f} \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + "─ \n", + "} \n", + " \n", + " \n", + " ____________________________\n", + "______ ______________ ____________ ╱ w\n", + "rm{m} ⋅╲╱ E_\\mathrm{m} â‹…L_b⋅╲╱ \\bar{\\tau} ⋅√pâ‹… ╱ ───────────────────────────\n", + " ╲╱ A_\\mathrm{f}â‹…E_\\mathrm{f} +\n", + "──────────────────────────────────────────────────────────────────────────────\n", + " ______________ ______________ \n", + " ╲╱ A_\\mathrm{f} ⋅╲╱ E_\\mathrm{f} \n", + "\n", + " \n", + " ______________ ______________ \n", + " √2⋅╲╱ A_\\mathrm{f} ⋅╲╱ A_\\mathrm{m} ⋅╲╱\n", + " \n", + " for L_b ≥ ───────────────────────────────────────\n", + " \n", + " \n", + " \n", + "___________________________ \n", + " \n", + "────────────────────────── \n", + " A_\\mathrm{m}â‹…E_\\mathrm{m} \n", + "─────────────────────────── \n", + " \n", + " \n", + "\n", + " __________________________________________\n", + "______________ ______________ ╱ w \n", + " E_\\mathrm{f} ⋅╲╱ E_\\mathrm{m} â‹… ╱ ─────────────────────────────────────────\n", + " ╲╱ A_\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…\n", + "──────────────────────────────────────────────────────────────────────────────\n", + " ____________ \n", + " ╲╱ \\bar{\\tau} ⋅√p \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " otherwise \n", + " \n", + " \n", + "\n", + "_____________\n", + " \n", + "──────────── \n", + "E_\\mathrm{m} \n", + "─────────────\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " " + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "u_f_x.subs(x,0) - w" + "w_L_b_elastic = u_fa_x.subs(x, -L_b).subs(P, Pw_pull_elastic)\n", + "w_L_b_elastic" ] }, { @@ -2170,45 +4194,77 @@ } }, "source": [ - "and then send it to `sp.solve`" + "and also the expression for the debonded length as a function of the control displacement $w$" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "slideshow": { "slide_type": "fragment" } }, - "outputs": [], - "source": [ - "Pw_push_elastic, Pw_pull_elastic = sp.solve(u_f_x.subs({x:0})-w, P)\n", - "Pw_push_elastic, Pw_pull_elastic" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAABECAYAAAAMY8fCAAAACXBIWXMAAA7EAAAOxAGVKw4bAAARR0lEQVR4Ae2d2xXUthaGBxYFcJIOoAMIFUA6IKECoINk8ZS8sUIHSSpIQgdJKgjQwUkH4dAB5/+EtiN7JI/l29gze6/lsazLvsn6vSV5Zm58/Pjx4OQecA+s74Hvv//+B0n9Zn3JLrHGA7dqKntd94B7YFYPPBZQ3piVozOb3QM3Z+foDN0D7oGTHhA4PlalP05W9Apn94CD5Nm7wBW4Ug88kd2/XantuzJ78nRbT8Q7spinIusrg8inGIPc5JUu2wP3NA48ktxBH08GSdkIOP64FvBFUP7vUr6dakfUr+qhMbctU2zYiX8X6/++vpji15Sv+DzStQNk6pQNpyeBZBxQd3Res8MB5S9XllnThas+NGoUG1h3D/7dcv8PcfNXquRT7SGe2kCdSSAp/b/V8XItO84EyoPN27p+pwzZuv5b1++Uf5PyR7LleXK9y6RsICK+p+OB0gD/QWeW337T+b6O20q/1UH6g867pNEgGR1w1Nkxn2gEwmHQt8p/9yk56bMKlCWTDvxZ5/uTpA5vXKUfbM+gY581Wf2lI+/yfamDQQExc/g7pA6Hz+IZX9Pf7xb099b1i64on2J/zzEWykLWKyGiZ2x/1HFbB0DIUtN7VOA65n2hyzVnm4ifjUaDpDR4oYObtiE5hCcHoBSeKhQoDWC+1XnSFEnt4X0EysjooZ9VxuBdnEbqh16r6djnhD79VfZKbV/pzDcPAEEA84iU/0yZTd8fVZiQId7F/lfZ2fWrMO2J6v5SUX+TVeVzHogvdebB+bfOACT0QMfvIfXpA1vtgZpk7yd5c4yqcgg3LC/Cvu60BxCfpnmqA5DiwKlrMEegnMrppiWXARso6muXS52r9EOJM+jYZ3uv/tLVosi+Af6rBCw1ILauX59v07LcuEnLd5HW/WDAyEMxxQHukzRS/py6uzCqoOQokBQvblgAsUtfK4M1iC4RahOO8/SpJrUrgXKWV6xPyP8mVrApYbb+1Mxa/ZC3to59Ng7U36LHU9Om2Xeet65fn2/TMtnB/b9rwEjtiWlAMUSOsZ8YqzbuqPIPH3umapBMbtifMoZzA7DbjaNyVMrP1U3zSqCc1knTX0sHnm42YEeBc8rwRLpWP9itrWOfCUP0D5Gk/JpGCQddNw9LpT9ISBpV9MmsKdu6fkNtYb1u6oxqqKy16tHnYQ1SZ7tHyOPeYDa3xP0A+9Xo1ghJGN4MjLS9nFLaILF1weqnqHgCrExR7qaySmnVo6OY9kEmbzGQrNUPpdbWEZklqtCfPmxFkWrLvWAPoiBCeebzksiq/K3rV2XM4cB65MPKNluvzvLac/UT9wF9T/pHncP13PeD+K5OLZCUQfYkaA2GjlY4YRBg0S7yBKRY+A9PmA6/U5dFUO42FH8AFZkmxwZsyM/UZ+ATpfAkZHMpFx13m3WvB+tHQ8mo0rErbIHrk/pL53BfSPZnSjMAWL4gD1uy94LqzeFbsT8soh+M16RMv68pfjFZsouZxe5fZ+pzUAOSMpbXPAAMgCUbEcY6DJIaov5rtW3thMNAeXOD8hfimQK8gWV2IEsFpj7YyisKDOoWLaAf/Gt1bOlUczGj/rYe+VQ8m+m20jxY7EHUVa3Xt1RW27n6f4x+XX2Xvma9vm/Ta2n5zn+kBwJI6mYl0rMo6gduXh0p2Bj72igSgPxDvI6eNMqbFZTFD5BDv/QVFCIe6Gi6rXpEQayfAqTY2rJX+bPqJ/4H8azSkTZjaWb9DcwagIx6dX3G95F5RajXt7Q9p35jfTqxHffl0TgwnvKH/7CrOWMDZ/VH8xN2BpIhGlABQMl6I1FfdwAw7RkcRcZBcND56MZQ3hKgzFQwBUipGwbj/3QysAx5yYdFmklWaLOEfsgYo2NLtyEXC/gXcG/dD1GPl6aPZAKMgKkBada31N+IfqiyCkXf0PelqBufNINyFaVcyGAPBJC02uoo3pAHKJ/pTJSVdirAmZ2GW3s7qx27eHd1bgASfpTrzPtVs4Ky+PW9e/ZeYluRpOqHiE75vJbEQ+EfnXkhOZDSs+oHU/Gs1RGdmbJyZrE/RHM6P9DBYjnTN4gHA9F/A2Jz6i9eJjd9QTgIVlkKhC+U+VJ5vb6loerM5l/xqtVvtF+D0eM+0LHpnzEsZCf+Z6aUjsmTrFSfsUjf0C/sNDMeoM904AvyGatVfNVmNI21pSRwaRtvZgTbznWzhigliCJZV0wHRaZpGAA4ne9yNgAZK9JZLYr8AOVHStNhKSHflgDS/FY6065Vrgt0vp1mqg3RTrBPab5W1QBkpx5tJ+kHP/Hv2paKIZ3TkZsWAER3HlhsfKEnvPhu7E8cShPdZyN8lc+hv633FQe55NDnYelC6UG+Vf3DmfSb7Fd0h6Q/wcTRff2ptPX5RFej1yORo/YA7an7qCWUC7UFGJFNAPSVDoA2LEvpTNBDvxpwKrksSeZoW0qaieeiNt7sCpZAbiKEcgMwQCEApZlahZzMh+qHAUyR0kQ3HPyMGhFR6Sk4GpTFF3m/64y+JQo3QKxbqtOXP1o/mE7U0W7eFKDoH4DIiGuighJN0l9MAwjIjlRmI0v5DN4/dZy8P5pG7cQ59Jvs12g3DycA8BSFtdpTlXLlksMYtBlcNUhGnsw+3uT4K481ZB6mVaQ2jOkqmsmWkszZbTRBtyzROXPDhzBdhv2lNJsvQxxp00M2PbrEYD4i8WX6baBMVIccQNlujFwbbhxkMUAPasO3fB7GtmSRh/5Es6GOzoBpdhNJZUVSm2r9YKZ2s+koXl3fD/4Wwxj9o+4/ywwGZRiYysPfBi6AMvZZOQMtC6Kq00vn1E+yR/lV7Rq7ZZzdX1k7VZf7sO8hnm2XZDJVZjwgpzgmkvq5JG2bWZl0IvK3rxW23nPNNS7k0f+1NIctJZlL2Bhk3cpJlBPtprfQmDWxk6R2YzuxCpQlh5vbpoFZvVSHG3PKzZnyrdKPhmfQMdW3m67SP+rOVH8t2rp+XT+wls1yB6+WfaNzX6RIpIl91QRfNWK9nKkyQUZ4YNUwUjvAjCNdU2aGF8aPzg141vCtrSs5k20pyVzaxixIRmXoWKKHN1ICUFqMxH8UKC+mUIfxGfUjYhtCDIIinVH/ok5pwRn0m+RX9I36/6IzsyaiGMuLRc2pD0CbSoXEC8myhxUgiZwWqdxmba2N0qSStWE9El5cl2Z1p3glbKuTJ22p5vhvg8E2/ttkeOpmqaocShTGWpitGZWqzpUPKDPY1wBl5DCdPMhONkF4yp2i1fRDEemEjmFDBh1jnkX2rO+yW05kEfpH6VCXegVaRX/pMca3qLymfrP4VbYCjB90ZNclVc7gTdeTdTmM1Ja+BoSNmBa3IknV4b5lk5QNvXCPWOXkzFodU+uwYaM0s700qgxVB/IKdWs/xPukLbU8O/UH2dhpM/jyxseP23mHVc6k80obPIONWqri1vU7ZffW9d+6fjn/SmfAiXXH/ygNYDaka8CYh3AVUKo+Dxo2w97oMJ4AIqDbyFE9rsMP3+qcJdVhvZ7A4zkVdIZ3eGczpvmhFZYOirxUho0tgI7X3YiUTdrW9F3Xg2wRv9EkGYNsHCvg1tiGS7STsb3rjEvIrOG5df1O2bJ1/beuX8G/RHuAJCDTXQN/JJsCOBXalrKZHXQ3IgEpiyZZnuIa3rx6xbpo9jU2lQOuROmBVA/QNeB9ofTLU7xUblP+T0z0qTw2QoeM1yG2GJACuhblIpO22En02/fbCkNsHC3jpoQ7uQfcA+M9YFFia8otAGHgltYpi9LUDrAFEAzIQl1dW9T2BRnxmkiVKDELkMpHB+hID5UB7GxA2aZQL6/ApfJDvIfagq3s4AP49v4v0sIGmc6AZfZho/pDbRwtY1ORJF5xcg/syQMRZAAhACElQPOXNONUWryIouAD8DbTVuUTTQFiEK/JHXQ05Z+y258qB1gAQii0+ZRsfdNm7NsokVX5JPljbLEHgTG26/fKIBJs0UgbjafxsuusDCo5SJqr/OweGO8BQK37KtAjDWKio8Gk+tnpq/IZyNmyEvMou0p+ideY/JG2AFSDaaSNVTJQxqfbg7vEK7oHih6wiJHo8aDBS+RXPRiL3MsFTEEBY4sYyzVPl8zJ67S0pIb0J0o0+bwyRTTNsgJrphBnpuKj7ZwiY1O728Ed/uEe2KEHNAj5tSleteE/pnnfkLW+3inxDs1sVJZtgJZNVZv8S0w4SF5ir7pNq3tAgNG8CiThvL7T2p1eXSEXOJsHfLo9myud0ZV7wKbcvDh9EGiym+p0AR5wkLyATnQTNuEBexWIXWUDzE0o5kpM84CD5DT/eWv3QPBAjBzfRXd0Xyp3L+3YA/4K0I47z1XfnAdCBCnAvIoNjc15fyGFHCQXcqyzvUoP2I/CXKXxl2q0725fas+6Xe4B98AsHvA1yVnc6EzcA+6BS/XAje+++247v5V2qV52u9wD7oHdesCn27vtOlfcPeAeWMMDPt1ew8suwz3gHtitBxwkd9t1rrh7wD2whgf8FaA1vHzFMvTO4B2Zz6+38E2UwaR2NwZX9orugQU94CC5oHOddfAA4Mh/nzjo+Q2xSw/4dHuX3bYPpWMUyU9q2fea96G4a+keSDzgkWTiDE/O7gF+Gfvl7FxPMIzgzJ9mDSKPcge56WorOUhebdcva7iAh1+b5lez+cXptYkpPn+16hHs2p6/QHkOkhfYqRsxiZ/cP/qPFQEXmzjF/2uZCqpqz0aRT/E3chNcghoOkpfQixuzQUBFFPlY5xxI8iMQS/6U2Fmm+BvrAldnRg/4xs2MznRWjQeIIqte+WlaTkhEcGaKvyQIT9DQm+7RAx5J7rHXNqxzEkXezampcv4kCxAl2swR/xH9KlcwIK81xRefR2rD1J4/sGdtNKyT6gw90PFUdT6EK/9wDxQ84JFkwTGePdoD/MdLNooUIJH/uY6HOgBRIr77Mc313bEAqXY2xU+jSDZvmH4DhL/rYK3yVZTBD+Py511O7oFeD3gk2eseL0w9IHAhMjvo3Ldr/FzlR1Gk8ojm/tK5ATGlb+uwvzxIRY1Jt6b44ssGzl+REel3qWxd84oQUa2Te6DXAw6Sve7xQvOAAMamyURgRH9HFOv8eFSgDJUBhg0g6hrQnGWqK14WRabg/F75BsjI6r6vGerSVscsekiG0wV6wKfbF9ipc5skECES+0kHQHNP1yGizMghihy6nvhE7ZkCz0FHU3wDvkTXbvQbQNrqzaGE87hMDzhIXma/zmqVgOTvCCYAJZR7tQegykaRocXxB+9LvjnObucAchzt3KMrwNl06xaycWP6hzLVJfKE568hwz/cAz0ecJDscY4XtT0gcGFaChgBXHfapQE4S0DVqhrbsonSTL9bFeKFypnis7mS3QiiWqzTB86AYTeK/Fp52HIE9spzcg+0POAg2XKHXwzwgAFWAzACKqLI1zoPXdsjiuz921XxAoQB3alTfKbVDaCLL9fY8LBCX1V3ulYPOEhea8+PtFvAArixIfJMaaatEIDZ3RgJBYUPNk36or8DcnRY5AqbBpSNp8p7p/gqt2n6D0p/w6G2z3XcV7o3ijUZfnYP+H/c+D1Q7QEBDNHYWx1s0vCaDe8jAj6LkHgDqAAi71E2EajSvMYD4GUjWOUTMfL1yHTXW1lO7oHhHvBIcrivvGb0gEDHXucBuF7oOIryZnbW2Cl+bj1yZtWc3aV7wEHy0nt4OfuYXjPdflOK5OYSLf7VU3y1QTci3rleM5rLHOezMw84SO6sw7airkCIdUl2jS3KW1o1W/N8Idls/Pyhc2maTTnLARD1WYt0cg+M8oCvSY5ymzc6hwcEdgDfHR1Elr47fY5OuEKZHkleYafv2OTVpvg79pGrPrMHHCRndqizW84DiiTXnuIvZ4xz3o0H/g+Av9S4m3jUsAAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\frac{\\sqrt{2} \\sqrt{A_\\mathrm{f}} \\sqrt{A_\\mathrm{m}} \\sqrt{E_\\mathrm{f}} \\sqrt{E_\\mathrm{m}} \\sqrt{\\frac{w}{A_\\mathrm{f} E_\\mathrm{f} + A_\\mathrm{m} E_\\mathrm{m}}}}{\\sqrt{\\bar{\\tau}} \\sqrt{p}}$" + ], + "text/plain": [ + " ___\n", + " ______________ ______________ ______________ ______________ ╱ \n", + "√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ A_\\mathrm{m} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ E_\\mathrm{m} â‹… ╱ ──\n", + " ╲╱ A_\n", + "──────────────────────────────────────────────────────────────────────────────\n", + " ____________ \n", + " ╲╱ \\bar{\\tau} ⋅√p \n", + "\n", + "____________________________________________________\n", + " w \n", + "─────────────────────────────────────────────────── \n", + "\\mathrm{f}â‹…E_\\mathrm{f} + A_\\mathrm{m}â‹…E_\\mathrm{m} \n", + "────────────────────────────────────────────────────\n", + " \n", + " " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" } - }, + ], "source": [ - "Note that the obtained $P(w)$ covers both the pull-out and push-in case. If we supply the parameters defined above with unit stiffness, area and perimeter we obtain" + "aw_pull_elastic = a_subs[a].subs(P, Pw_pull_elastic)\n", + "aw_pull_elastic" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "slideshow": { - "slide_type": "fragment" + "slide_type": "slide" } }, "outputs": [], "source": [ - "Pw_push_elastic.subs(data_f), Pw_pull_elastic.subs({A_f:1, E_f:1, L_b:1, p:1, tau:1, A_m:1, E_m:1})" + "import traits.api as tr\n", + "\n", + "class PO_LF_LM_EL(tr.HasTraits):\n", + "\n", + " get_Pw_pull = sp.lambdify(sp_vars, Pw_pull_elastic)\n", + " get_aw_pull = sp.lambdify(sp_vars, aw_pull_elastic)\n", + " get_w_L_b = sp.lambdify(sp_vars, w_L_b_elastic)\n", + " get_u_fa_x = sp.lambdify((x,) + sp_vars, u_fa_x.subs(P, Pw_pull_elastic))\n", + " get_u_ma_x = sp.lambdify((x,) + sp_vars, u_ma_x.subs(P, Pw_pull_elastic))\n", + " get_eps_f_x = sp.lambdify((x,) + sp_vars, eps_f_x.subs(P, Pw_pull_elastic))\n", + " get_eps_m_x = sp.lambdify((x,) + sp_vars, eps_m_x.subs(P, Pw_pull_elastic))\n", + " get_sig_f_x = sp.lambdify((x,) + sp_vars, sig_f_x.subs(P, Pw_pull_elastic))\n", + " get_sig_m_x = sp.lambdify((x,) + sp_vars, sig_m_x.subs(P, Pw_pull_elastic))\n", + " get_tau_x = sp.lambdify((x,) + sp_vars, tau_x.subs(P, Pw_pull_elastic))\n", + " " ] }, { @@ -2219,49 +4275,841 @@ } }, "source": [ - "### Plot the pull-out curve\n", - "The symbolic expression must be transformed into a quantifiable form using `sp.lambdify`" + "### Interactive exploration\n", + "Now that we have finished the construction of the model we can track the process and explore the correspondence between the internal state and externally observed response" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ - "py_vars = ('w', 'tau', 'p', 'L_b', 'A_f', 'A_m', 'E_f', 'E_m')\n", - "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", - "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)\n", - "sp_vars\n", - "Pw_pull_elastic" + "po = poui.ModelInteract(\n", + " models=[PO_LF_LM_EL],\n", + " py_vars=list(py_vars),\n", + " map_py2sp=map_py2sp,\n", + " E_f=1, A_f=1, p=1, tau=1,L_b=10, E_m=1, A_m=1\n", + ")" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 40, "metadata": { + "hide_input": false, + "scrolled": false, "slideshow": { "slide_type": "slide" } }, - "source": [ - "For plotting, let us also evaluate the for the displacement at the unloaded end\n", - "\\begin{align}\n", - "w = u_\\mathrm{f}(x = -L_\\mathrm{b})\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"899.3\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c51964df7934170b3808eb6ab042c7a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(HBox(children=(FloatSlider(value=1e-05, description='\\\\(t\\\\)', max=1.0, min=1e-05, step=0.05), …" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "w_L_b_elastic = u_fa_x.subs(x, -L_b).subs(P, Pw_pull_elastic)\n", - "w_L_b_elastic" + "po.interact_fields()" ] }, { @@ -2272,60 +5120,831 @@ } }, "source": [ - "and also the expression for the debonded length as a function of the control displacement $w$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "aw_pull_elastic = a_subs[a].subs(P, Pw_pull_elastic)\n", - "aw_pull_elastic" + "## Let's learn from the model\n", + "\n", + "Exercise the relation between $P$ and $\\tau(x)$ and between $w$ and $\\varepsilon(x)$.\n", + "\n", + " 1. Is the originally postulated assumption of rigid matrix relevant for the RILEM test?\n", + " 4. What is the role of debonded length $a$ in view of general non-linear simulation?\n", + " 5. When does the pull-out fail?\n", + " 6. What happens with $a$ upon unloading?" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": { "slideshow": { "slide_type": "slide" } }, - "outputs": [], - "source": [ - "import traits.api as tr\n", - "\n", - "class PO_LF_LM_EL(tr.HasTraits):\n", - "\n", - " get_Pw_pull = sp.lambdify(sp_vars, Pw_pull_elastic)\n", - " get_aw_pull = sp.lambdify(sp_vars, aw_pull_elastic)\n", - " get_w_L_b = sp.lambdify(sp_vars, w_L_b_elastic)\n", - " get_u_fa_x = sp.lambdify((x,) + sp_vars, u_fa_x.subs(P, Pw_pull_elastic))\n", - " get_u_ma_x = sp.lambdify((x,) + sp_vars, u_ma_x.subs(P, Pw_pull_elastic))\n", - " get_eps_f_x = sp.lambdify((x,) + sp_vars, eps_f_x.subs(P, Pw_pull_elastic))\n", - " get_eps_m_x = sp.lambdify((x,) + sp_vars, eps_m_x.subs(P, Pw_pull_elastic))\n", - " get_sig_f_x = sp.lambdify((x,) + sp_vars, sig_f_x.subs(P, Pw_pull_elastic))\n", - " get_sig_m_x = sp.lambdify((x,) + sp_vars, sig_m_x.subs(P, Pw_pull_elastic))\n", - " get_tau_x = sp.lambdify((x,) + sp_vars, tau_x.subs(P, Pw_pull_elastic))\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"799.6333333333333\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "44198f7f12eb47189edc39f04e7241d7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(HBox(children=(FloatSlider(value=1e-05, description='\\\\(t\\\\)', max=1.0, min=1e-05, step=0.05), …" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, + ], "source": [ - "### Interactive exploration\n", - "Now that we have finished the construction of the model we can track the process and explore the correspondence between the internal state and externally observed response" + "po.interact_geometry()" ] }, { @@ -2333,60 +5952,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "po = poui.ModelInteract(\n", - " models=[PO_LF_LM_EL],\n", - " py_vars=list(py_vars),\n", - " map_py2sp=map_py2sp,\n", - " E_f=1, A_f=1, p=1, tau=1,L_b=10, E_m=1, A_m=1\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "hide_input": false, - "scrolled": false, - "slideshow": { - "slide_type": "slide" - } - }, - "outputs": [], - "source": [ - "po.interact_fields()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Let's learn from the model\n", - "\n", - "Exercise the relation between $P$ and $\\tau(x)$ and between $w$ and $\\varepsilon(x)$.\n", - "\n", - " 1. Is the originally postulated assumption of rigid matrix relevant for the RILEM test?\n", - " 4. What is the role of debonded length $a$ in view of general non-linear simulation?\n", - " 5. When does the pull-out fail?\n", - " 6. What happens with $a$ upon unloading?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "outputs": [], - "source": [ - "po.interact_geometry()" - ] + "source": [] } ], "metadata": { diff --git a/bmcs_course/4_2_BS_EP_SH_IK_A.ipynb b/bmcs_course/4_2_BS_EP_SH_IK_A.ipynb new file mode 100644 index 0000000..a8fff79 --- /dev/null +++ b/bmcs_course/4_2_BS_EP_SH_IK_A.ipynb @@ -0,0 +1,1207 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# 4.2 Bond behavior governed by plasticity\n", + " \n", + "In the first part of this notebook, we rephrase the basic framework of\n", + "elasto-plastic models showing which conditions are used to find out how during yield \n", + "to describe the material behavior, once it crosses the elastic limit.\n", + "Perfect plasticity with constant level of yielding stress is considered first.\n", + "\n", + "In the second part, hardening variable is included which allows for to expand\n", + "the elastic range \n", + "\n", + "Define a bond-slip law governed yielding with hardening or softening." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import sympy as sp\n", + "sp.init_printing()" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASEAAAC+CAYAAAB6Wrk5AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tnQeYVFXyt4skOUoOjoOIIsGAZCNJ1jVnTKhgwr9rXkyrmHN2DaiYUQwoYgQTKiIImEWy5JyHNKSv3tN752uamaZnOt3bXfU8/cx097kn/E7fulV1KpTariRGhoAhYAikCYGya9esTtPQNqwhYAgYAiJly+22m+FgCBgChkDaEChl6ljasLeBDQFDQBEobSgYAoaAIZBOBIwJpRN9G9sQMARMErLfgCFgCKQXgbLpHd5GTxcC69atk1GjRsn69eulYcOGUrt2balXr57UqlVLypQps9O0Vq9eLTNmzJA5c+ZI165dpVq1aju1sQ8MgZIgYEyoJKhlwDXLly+XW2+9VSpWrCjNmzeXBQsWSKVKlaRmzZpSvXp1adCggVSpUkXy8vJk5cqV8vfff7tVt2zZUo444ogMQMCW4BcE7HTMLzuRhHmMHTtW9thjD2nUqNFOvW/cuFGef/55efjhh6V9+/bSr18/QTqaOnWq7KZuG/Pnz3fvq1atKjVq1JCOHTtKTk6O7L777u6zUqVK7dSnfWAIlAQBY0IlQS0g1/Tt21e2bdsmL774YpEznjVrljz99NPy7LPPOonooosukgsvvLDI9vaFIZBoBOx0LNGI+qQ/mM+WLVtk/PjxUWeUm5sr999/v/z555/OHoR6ZmQIpBIBY0KpRDuFY5UuXdqpVQcffHBMo6JmwYAwThsZAqlEwJhQKtFOw1jly5ePaVSkpqVLlzqDtJEhkEoE7HQslWinaCxUsTFjxsi4ceOkXLlyMY06d+5c186YUExwWaMEImBMKIFg+qUrTrgGDBgg06ZNk/z8fJk3b540btw46vQmT57sTsFQy4wMgVQiYOpYKtFO0VivvfaaVK5cWZo1a+aYyrvvvrvLkadPn17oUf4uL7QGhkCcCBgTihNAv12+aNEi+eyzz6Rnz56ydetWOfPMM2XIkCGCX1A0QmrCpwhCeho6dKjMnj072iX2nSGQEASMCSUERv908s4777gwDBgKDoV9+vQRvKO/+OKLqJNctmyZO6KH8Vx55ZVy9913OyZmZAgkGwFjQslGOMX943R43HHHOclnr732cipW//79nTPihg0bipwNR/offfSR9OrVy3lLf/7559K0adMi29sXhkCiEDAmlCgkfdDP999/L6hjxx57rAvFuOmmm1z8F57TSDXDhw+XolKKX3rppS527IYbbnDqW506dXywIptCNiBgp2MZssvYcQYPHuycDbHvYJj+/fff5ZNPPnHqGVLNlClTXBhHYVHy3bt3F15GhkCqETAmlGrEkzQe9h9SbCDNEJSK6oUHdLt27eSDDz5wKTiuvvrqQhlQkqZk3RoCMSFgAawxwRSMRng9w3zWrl3r4sZgQuT9Wbx4sVOxOCnzTsCCsSKbZTYgYEwoG3bZ1mgI+BgBM0z7eHNsaoZANiBgTCgbdtnWaAj4GAFjQj7eHJuaIZANCBgTyoZdtjUaAj5GwI7o07w5OA9yorVp0yapUKGCexU3f7PngFjc69K8dBveEHAIGBNK8w+BKhavvvqqELtFKo1WrVpJmzZtZO+9947Jp2fz5s3yww8/yJo1a+Swww5zSeiNDIEgIWBH9GneLSpi4L+DBFS/fn3n10PcV4sWLVxpndatWzuP5/Dcz3g9E57x66+/univP/74Q44++miXoJ5yPUaGQJAQMCaU5t2C4Xz99dcCM0IaOu+881w2xO+++06++uorIdkYKVoJRiU3EIGmhGUQZEooBsync+fOTnIiTsyjkSNHOhWP7wsL00jzsm14Q6AAAWNCPv8xUHwQSWfixImyZMkSF4BKAUIS2O+5556OKUUSbSjjA6O6+eabrYJGJED23lcImE3IV9ux82RQw1atWuWM1QMHDty5gX1iCAQcgZ0fowFfUKZNnwT0FC/8+OOPM21pth5DwCFgTMjHPwQM0FTMwCZEpkMjQyATETAm5ONdxR705ZdfOsMzdiAjQyATETAm5ONdxRCNH1HHjh0LNUD7eOo2NUMgZgSMCcUMVeobvvfee+4EDJ8hI0MgUxEwJuTTneWYfcSIEdKtWzdXU97IEMhUBIwJ+XRnZ86c6crvdOnSxacztGkZAolBwJhQYnBMeC/UCaOCKiV7jPyLwNat2zWd7lZ1Ig3N8eef87SgwHr/TtiHMzNnRR9uClMaP368dOjQocjZrVixwsWZlS1rW1gkSEn+AgY0ePBCef31JfrAqCj7719Z3nxzqcYC1pV99qmU5NEzp3uThHy6lzNmzHDxYIUR4Rj4DZHA3ih9CEyalKcZEJZI3bq7aZXbzVo6e6lmQiirD4eyWmjgf6JR+qYXmJGNCfl0q6iWUVjg6fr1613qD1J3rFy5UiZMmODKPBulFgH1I3VSUOvWleXII2vo3ypabqmMFo/cQ0aPXiWzZm1M7YQCPJrJ8j7dPBwU33zzTTnhhBOc2gVNnTpVnnvuORfMWrduXTnllFNk3bp1ctBBB8n999+vKsA+rt0333zjnBwxblMUkVQgVGSlXXhKkLQuXR0x5eWXRYYNE00PIJrLJK3TKe7gy7ZVl2kzestzNV+QyfObybdrOsim9ZXlwGeulZFzD5GZA4bJ3lUmF7fb1Lc/8ECRiy4SrZaZ+rH/N6IxobRBH33gW265RXr06OESnDVo0ECfrLMEKYiSztiKYDKNGzd2Cc1GjRolGLJhQldddZW88cYbLu1HrVq1ZPXq1a4SK9VZb7vtNjnppJOiD5zKb1Wt1FB/UW9MUU6bypHjHmtTXiXZNquMLNyrnbzwZ2s5udl8eX96WcnLbSGl1tWSbQ1LiTQJgKLRvLlo7pi48YinA2NC8aCXxGsp4wxjGT16tFO9cnJyXNZFPoexnHbaaXLyySfLfffdJ3fddZdTzYg1I+Ke/EQwqfBUHkXVoE/iEqJ3rfmOVKQTGTRI5NBDRdMERG/vs28bqlF6z/lT5JbJnaRHz5qy/zEHyLBb/5anSp8ka3O3Sssr9VRzj2BJd+mC2JhQupCPYVxUp169eu3UkuyJSD+oWBdccIFMnz7d5RnihcQDwYTCyVf5p5VJykMPiVxxhUinToFjQOC6dOlmB2/79lU1Gd1mdyq2cuUWDTYuLX361NNKt8aAdvgBRnljTCgKOH79igyMY8aMkf79+7uYMmxGMCz+h9n4TuoJB1IN6XL55aHXccelXRUoyR7n529XprNE1eHyykcbOya0efN2fRhskK5da2jGy4ol6TZrrzEmFMCtxz4EkX+aRPf4DJHq1VfSTmG4Mu9rrxU55xyR888PJANiWePHr9H83nlyzz1N1fZWzr2gJk3Ky4IF+YWt3D6LgkAALGdRZp+lX61du9blkyYXNadj8+bNc4GuviZ8mtR+pYYtUet5YBnQihVb1Fa3Uo49trbUrr2jQben2oZatUrfKZOv9z/K5EwSigKOX79q0qSJOykbPny4M1rDjPbbbz+/Tld0siEDtDJMufPOwDIgQjMmTVrrVK9OnaqpH9eOxvTu3Wv6dw98PDNjQj7enKKmlpubq64dF8m7774rW7duVbvEFVKnTp2imqf/c026rykiRX0E9MRoj/TPp4QzyM/fJiNHrpBDDqmuflrpPdYu4RJ8eZkxIV9uS/RJES921FFHSdu2bd2xfL169aJfkM5v1btbnn025JiIY1zAjuLDoRsxYrmTgg47rIYeAgTLpSCdP4FdjW1MaFcI+fR7TsLwmvY1ad00GTBAZMiQ0FG8rye768m1bVtFULmIDzNKHAKGZuKwtJ48BAis0uqw8sADIrffLlpKNiOwyc21o/dkbKSdjiUD1WzvU5OxyWOPhcIxevfOdjRs/btAwJjQLgCyr4uJgAbMyr33hgIi0xwYWcyZW/M0IWDqWJqAz8hhOcO+9NJQUOrzz4vUr5+Ry7RFJRYBY0KJxTN7e9P8R/L44yKff04uEdGYhsBhsXHjNnd4R/xXSQk+HOADwJIuO67rSo52XMPaxRmFACqY+iyp92QoP5BG/AeN5s7dJE8+OV8Df1eVeOoc3+NNTdpXo9gRMCYUO1bWsjAEOAn7/nvRiE6R//s/0cxphbXy9WeLF+fLI4/M1dJKpXT6VUo813Xrtsp//jPLRdMbxY6AMaHYsbKWhSGgFWLlwQdFC6SJHHNM4HQRIuKfemqBxuKVkfPOq6+OnyWv8UYf5JeeOXNDYUjZZ0UgYEyoCGDs4xgQ2Kh5lImGJyG/ZnzUfCIxXOSvJnhBwzRuuCHHMZB4qGzZUurFXkV++01j5IxiRsCYUMxQWcMdENAMjppRTdR9OBSUGkAGtGbNFvnjjzzVIhsp/0zMrdCuXVVXd8yrQ2a/ml0jkBjkdz2OtcgkBDR/kWbWD0XHExeWxiTp8cBKdYwLL2yodqCq8XSzw7X77x+yKZlxOnZI45M/Yx/HWmYKAhvU3vH66yLTpokmtw60LxDqU4MGJbcBFbalpHXFthSZ5qOwtvZZCAGThOyXEDsC6BiafF8+/FDksstEWrSI/dosaQlj22+/yuYrVIz9NiZUDLCyvumcOSI33ihy9tkihx8ums8i6yExAOJHwH5F8WOYHT1MmSJa+kOEgFRe5hacHfueglUaE0oByIEfAvvP9deLJlYWueYaEU2qZmQIJAoBY0KJQjJT+1m4MFQjjET6N98s6lacqStN2LrseL54UBoTKh5e2dV606bQSZgm03cVMgJWqjkdm0UUy6BBC2ThQiv9Eyv+xoRiRSrb2nE3vf++yIgRIldfHegE9ancOgpP/vrrOlm0yJhQrLgbE4oVqWxqhz7xySehmDCKFWpC/SDSkiX5GlurUlyKiUPDbdsskj5W2I0JxYpUtrSDAVHH/oYbQirY0UcH8iQMSeTFFxfpUlamdOc4NKxcuYysXbs1peMGeTBjQkHevWTM/aefROsbi/zrXyKnnirq+puMUZLaJ8nJPvwwVJ6nb98GSR1r585LOSa0fr0xoZ2xKfwTY0KF45Kdn3ISRkzYYYeF6sVrZdcgEvXg//prvZx4Yu2Eh2XEgke5cqVcfTKj2BAwh4/YcMr8Vnl5ofSsBKOSoL58+cCuuVGj3dSxO0dq1kz9zxt1rEWLSjp2MBl4OjY99buUjlXamNERIC/Qk0+K/P57qFJGwBPUkyM6njzR0cGK/i1M6Nhja5thOjpMO3xrTKgYYGVkU47in3lG5J13RKgZ37JlRi4zlYvidMzKRMeOuDGh2LHKvJachL31lgjleV55RYRa8UaGQIoRMCaUYsB9MxwMaOzYkBp2332BTFDvGyxtInEhYKdjccEX4IsJSiUr4skni3TtGuCF+G/qeXlbZcsWOx2LdWeMCcWKVCa1W7ZM5O67RUtLiPTpE8gE9X7dDgTMUPJ8NfYbxYSAMaGYYMqgRhzFEwtGcOqVV4rUqhW4xU2fvsEVKqTOl9+IcI2xY9fIqlWb/TY1387HbEK+3ZokTIxSzbfeKjJ5ssinn4rsvnsSBklelyEz1ho9zJsvnTtXF5wC/UirV28xP6FibIwxoWKAFeimlGp+6SWRH38MlWwOGAMC++XLN6sENE9OP72uHHVULU1t5E9BfsuWba6aq1FsCPiKCW3QSg5zNI9xLVURateurRlEbSNj28ZdtMIXiAT1pOUgMVnjxru4wJ9fExNGLFjXrjV9nV2WShuW2Cz235AvmNDatWvl448/1ojnL2Xx4sVy+eWXy5FHHmlMKPZ9jN7y119DvkAEpBIXFtAE9Y0bl1f+6e9wEh6cxx1XWx+kvri1ov8ufPJt2pDaunWr/PDDD3pK/KyaKCZL3bp15YgjjpB+/fppVeG99T7xp6jtk32LfRpz54pcconI8ceHouIrVIj9WmtZbAT42cKEgqiO5emhRb6q7WgiqaSUMaFNehozQtWB+fPna570shoh8LTMmjVLN+w4eeGFF6RNmzapXHdWjFVm3TopddZZooWwQonqA6befvrpChk3bo1061ZTOnaspr+bYKjnQWRAZIREG0ELOVUl5rO1rFP79u1TIgykjAlN0ZIxjz/+uEyYMEHdU+pJ1apVnRR0vD6h+d8osQjU0h9VnTfflN06dQqpYgFjQKAxdeoGDQQN/W3durJUr56yn2uJNwNb0OjRq1SaryiNGvlbdQxfJGrkwQcfrGmk/iULFizQlOJXCTbaRo0ayb777qulsg9yf9FYsNdWrFixxBhFXlhKOWDSXTtRvW7UonkzZ87U+MiWGqJ0oFaQuV6Nd9vlaM3cx+KqVAnV8I6coL0vPgIVFe+mmp51oR7Dr7zuOtmek1P8TnxwBT43eB779RTMg4jfcc2aNaVhw4Zqxyyth5BbZJ99yqkbQdJvraTt0jbl/lOnTnWaC39hTGU0wR0aTVtN93uRpntpnKADjpQ8WkLGuuOkadOm6pqyu6zR6g09evRwC4Ixvf32205FO1yrelavXj1pwGZLxy1/+UUqalzYx61by3a1CZVetChblp6WdS5TD/R58+a5327p0mVkxYp95bffyqkrlh4IZAixti3qZzZu3Di3zvXr1ydsZSmRhCJny5MDRgSxsJUrV8oTTzyhudU/kSuuuMJUtEjAivP++++lvHpEv6IS5wytFXaVJqpPpOhcnKlkS1t+w6gu/1+poDYbByvBDt3AUD1mzBj17vhCGeqnzn7773//20l81bT8E5JRIigtTKioiWMvQk1DQho2bJjUqVOnqKb2eSQCaNV//CHSs6dsHzhQntYbA1H6ZvULMiYUCZa9j0QABrpODzJmzJhR4C7zk+Ybx37bS8t/X3DBBc6UkgxKiToW68QxjGGh//PPP81YHStotIMB/fVXqDoGx/Hq5uASlcVB2GKmTdugUuoWtdeVUVW6gvubCYStiWoYQTB0pwJvHvqff/65DBkyRGbPni3Nmzd3rjKcjuWoPTHZ7jK+YkIAvpuWGT7ggANSgX3mjIEv0IMPhnICUaonzpOwrVu3y3vvLZNvvlnlYqCoHJGTU0GfhvVdJYkg0po1W2T69I1uLTCgmTM3yGWXNUrrUrj5x6rtbuLEidKuXTv1I1VH0jQQRucnNb3vMcccI7fccovstddezkabKkrdSKlaUbaNg4FQ7WkazRkq08PfOA88OWJ+++0lMmBAjuTmlldD6xZ1p1iow8zXz/aIl8elfIcIKL333jlqh0T6KeOO/gl+Pe+89DFVbEivaDbLdzStLqfDSCH3aKmlnqpOp5o4dn/00UelWbNmCbPzFGcNxoSKg5Yf25KaVW1p8txzohbDuGe4ZMlmGTp0qfTv30h9Q6o4hjNnziaXmuLbb1fJoYfWkC5dqsU9Tio7+OKLlc7f6O67c10C/MWL8zWLyXT5+++NaufQ6iJpIAy9gwcPVgH2QenQoYNu33POgbdz584pd1eprBVW9tlnnzSgEBrSYiPSBn2cA2/WfDXkh6ZKxl13iT7G4lbDmNGECWvUGa2c2gOqFkg8qGJ4LBOYOXz40ngFrTgXXvzLUcGI5apataxUqFDaqZY1apSTpUvTl/OHk+DevXsrUz/UmSDOUs/2SpUqaR37zDnWj3WnTBKKFSk/teOxPnJkyA700EOij8+EzC4/f7uejmwUvJPDS+ZQv+v88xsIaUvXr98m2IyCEkIBMG3aVNGj5gXODtSsWcjT99RT66gaVCkhuJWkkwYNGriTqKVLl7pTYKIG7rzzTncalW1kklDQdhx7jwb+uvI8ZEhUY2KiaPPmbS5b4e67l9upZA2Bmf36NVBmVD9QDAhsmjev5NSu115brE6FmlFS6eija0n9+vjzpIeQgpYvX662qnvdX3xucnNznTSUbWRMKGg7rkeorlRz9+6idY4TooJ5EBAeUbVqGXXR3+SknUjiZCydN27kfGJ9jwp22ml13cnejTfOVDeQFWlXKTkGJ5SJI3F8cDzn3VjXlEntjAkFaTc1JsylZ1VRXn+5CS/VzIkRqss336xW4+1mZ8zNFKpbt5wKjo015qmhngTNkwcemCskSUsX4XvTqlUrZ5wmtrJLly4upQ0xW9lGZQYqZduiA7leTfzmGNDff4tQJ0yPVaMR3ucki8P3pBzH9jFSw4bl9SRsi6ZXWej+YvvxyirH6X4U4wyS14yqqHvsUUFTw9bUtDIrhKP71q1DJ4DJGzV6z+XLl3cGaiSh+1XCXb16tcvng5c7ButsIGNCQdhldaeX//5X5LPPQj5BnITtgkrKhDgB23//Ki6DIVUtvv56lUyZst6paUFUxQqDCbWM9VAVg1M/L0p/2bLNejq41vlFVapU2p2kJYMwSGMHIpgbIsC7k6ZcIcB79OjRLk4LB0Zit4hUh1FlMhkT8vvuooKpI5u8/37oOF4j42OhkjKh0E0hLhdO27ZV3QkSTn7Dhi1zR9v16gXj6bxkSb588MFyjZ/bpPPf4taA0R27fsWKpd3x/B9/rJNDDqnuJD1OBjFco4r+8kueHpXnaVaHGrFAXaw2qFx9+/Z1ahe5egh+raDZLjFMw4RQy/BY3qwuGGSXIEKfXD7FkWaLNSEfNLYjeh9sQpFT4I75+uuQI+Ltt3PWXGTTeL5YtChfcFLEP6hevXLOHwjCRtS0aUVp0qSCU8vuuONveeON/Qq+j2fMZF+L6jVr1ga1uazWG367mzNBmvytU2c3x4hatKikjoGhWwBj/Pjxa+Saa5qoJLLCMa9E02+//eby8JDW+BdNt/Lwww+7uCwYDFIRzIcj+v00EyY5t2BE5F0/55xzMjoI2ZhQon9piexv+nRRX37Rc3HRx3Iiey7oC+Ps1VdPl4UL851EALPJza3gVDIYEkGe2E7wmkZ6QEVr0KC8kyK4catVIw9Udd8lHoOh3nhjjmZlEDd/wjUQKpGQJk3K09QbWzWnVS2X8x9bMDYw/KPy87dpLqA8Nb/lJhxvEvchBeGoiIpFTh78hFasWOEkHrKP8ho6dKgL4cB36Fa1A9avXz/hc/FTh8aE/LQb4XPR0keiuYCcI+IZZ4Riw5IwV+whLVrgtl9JLr20kbtJiZ7Hn2bixDznoIjUAOO5/vocF01PWAeljvEr2rhxuwt/OOSQak5qCndyTMJ0i90lTAZnS4j/UTMj067Onr3R2YLuuCPXqXDUNMvJSbwdBj8gotM9wvjs2YUiF4YURNJ5QioynYwJ+XGHNapZNC2rPgJFs7yJPhKTNktuTBwQX311kasQ0apVZffyCH8hVBvvZAwNsUkTTnTqOkno55/Xaf6nbTJo0EInQWHoPeCAKr6TjKIBOGnSWmeIx6OaFCbdu9dMu8qJipbJdqDw/UiO+T/ajtt30RHQI1p1ow05IaobfypKNXMDErDKiVEkYUMJP5rn/w4dqrkKGEg9GKopSIg3NadJd901R4u8qjtBgAiVFDX0p5/yHAaenShASwj0VI0J+Wn7CErV8kd6NCNamkTUgpqy2WH78QzSuxoURrR27Rbn0MiJ0+TJ2IfyNRndevc5KluQiGwBkyev1zQaNdUHtIE7no8kJMDhw5fJ3LmJN1hHjpVt700d88uO8yv/6CNRq2UoKj6FDKi4EOBH8/TTC5yfDfTQQ/nOboQaNnDgnhqhHqyfFTax/v0bOpUS+xF+RGSR5BQNu9eGDducQR7mS3YBo8QiEKxfS2LX7q/eNKG4c0jEcKlpNf2cOaxBg900d3WOCmvzHYbXXdfEX1iWYDannlpXHQaraSzXJucztHLlZpeBsWzZMk7N7NKlutblquqYrVFiETAmlFg8S9abesdq1blQuWataOCyJPqcsAdxzF2/fuJPkdKxdKQc/KF4GaUWAWPrqcV759HUhV/LXYqcfLLIuefizrtzG59+glpGsjAjQyAeBOwXFA968V6rDmpy222iZ+IiN90Ub28pv3758s16eGc/oZQDn2ED2i8oXRtKVPxTT4k62YSO5NM1jxKOiz8N5YAw3hoZAvEgYOpYPOiV9FpOwl5+WTR+QFxcAfmBAkaEN6CKBSWgNWDwZtV0jQmlY7uJin/11ZAtiKDUACbq4cSIMA5Tx9LxA8qsMU0dS/V+alS0hmqH0nNopQUX0BRAIpRjv/2yLx9yALfK91M2JpSqLUIF0/QN6s1HASyRrl1TNbKNYwj4GoFgPoZ9DWkRk5s1SzSBTIj5nH12EY3sY0Mg+xAwJpSKPdc0nfLII6Fo+IsvFg0xT8WoNoYhEAgETB1L9jahhqGCkR9I63279BxGhoAhUICAMaFk/xhgPK+/LjJunGiph2SPZv0bAoFDwJhQsrZMs+LJe++JZk8XTddnDChZOFu/gUfAbELJ2EKSGZOgHl8gwjHatUvGKNanIZARCBgTSsY2arJyF5Lxj39Q9DwZI1ifhkDGIGBMKNFbSSwYCepbtBDp00c0GU2iR7D+DIGMQqBkNiFKEY8aRY7PjAIjrsXg+XziiaFQDCpm3nijaHq+uLos7sUU1NukTJDXOq3aumHDBldemITpZcuWbKuLOwdrbwgUF4GS/TKXLBEtPCWagq6442Vue+K/tIaUlssUzRWa1AoZhYFI3fmv1Q71mZaKXrRokeZ7/tMxIUoOd+vWTY455hhX4dPIEPAbAqW0KqU6shgFHYGpU6dqdtj/atmdXE1P1Eq++OILrSG2RM1S/9DSxt+4qp6XXHJJ0Jdp889ABIwJZcimeqpX3bp13YqefvppLWU8X3NB3+zqneep13aDAKYMyZDtsWVEQaBk6liUDu2r9CBANU9eUKRwSxXPWRq7NnjwYMeYli9f7ip/Upa4du3aAuPaQx0p62iFjxo1arh66LtpaAn9wLywKVUwA3t6NjYLRjUmlAWb/Lp6bN9+++1aX35/adasmey5556aFXGlq4X+22+/uXroC7Tq68aNG7Uu+zYnOWHI5m9pNbjXqlVLnb5f11LR+2QBWrbEVCNgTCjViKd4PNS0W265RR588EHNpa/J9IsgpJ5ghqfBAAAP0ElEQVTVWv2Vk7VVq1Zpva3NTgIqryd90WqmF9GdfWwIxIyAMaGYoQpmQ6QbpB6M1dGolJ7uoYpBqGNGhkCqEDBnxVQhnaZxqlWrJgceeKCGr2n8mpEh4EMEjAn5cFMSOaUyZcpomeaHHBP68ccfE9m19WUIJAQBU8cSAqO/O0ES+vTTT+2Ey9/blLWzMyaUBVuPvYdjeiNDwI8ImDrmx12xORkCWYSAMaEs2mxbqiHgRwSMCflxV2xOhkAWIWBMKIs225ZqCPgRAWNCftwVm5MhkEUIGBPKos22pRoCfkTAmJAfd8XmZAhkEQLGhLJos5Ox1DvvvFMqVaokOTk5LqEar65du8rQoUPl0EMPlb9JBewjIuvk+eefrwVQ2rlUJniTE6ybKCILAcnjbqLKSpw0ZMgQeeuttwp6IbiYvu+99944e/bX5eas6K/9CORsDjjgALn77ruFODWI3EO8zjvvvIKg2EQvjJudNCPFpa1ajokAXTJNvkddOB/Tt99+67IYnHbaaW6WpFf55z//mTRM0wWFMaF0IZ9B48J82rRp4/IOeUQSNXIUeVIG6UGGDx8u48ePdzdRz549ZcKECdKrVy9p2bKlPPvss86r++yzzy7o4/7773fBtz169JCRI0e6/NnHH3+8fPjhhy5LJFIB6UaIifvoo49k2bJlLjkbffC3MGrYsKGTJMihxFxKQhQPIAzmu+++E5hap06dXA5vLwtBeJ9IXu+8845Mnz7dJYljrcwP6REiaRzMECzyNWc78zvzzDNl4sSJ8tVXXwmxfxdccIFj8KRjYY3hNHnyZBk2bJjMmzdPqlatKkceeaRL6RskKv6jJEirs7mmBAEvfSzJ9nmRPoSbBWbBTcb3qBZPaS22Jk2aOEnkuuuuc4nSYFTQ6NGj5YcffthhvtzoJOyH/tDCCjAq+ujcubN07NjRSQZjx47VugL9XboSJDLvPTd/YUQISzSCwZx77rly3333FdqMRHBPPvmkYwiNGzeWvffeW5577jn3IndTJJH7GwYB8yEp3Lvvvit9+/YtaMZ1rInvWJOHHWuhbz7v3bu3nHTSSY7hwfh++eUXd/1ff/3lpKSffvrJPQTIjElu8aCRSUJB2zEfzpcqHy2os/Y/Ouecc3a40WBEr2o1WiQX7DEQksqVV15ZrNUgKdxwww0uQ6RH//nPf6RLly7yyCOPOKnooosucu9hgP369StW/zRGWiH9Lcy0MOLGR3IhUyVSHEytefPmjimdcMIJstdee+1w2WGHHSYdOnRwEiF9w0Dbtm3rrqctEs/RWiCTucJUw1VMmBzqGJIghE0onK655hqXphdmTrugkjGhoO6cj+bNTXbPPfdI9erV3axQy8IlEaQHGNG+++5bMGtsMsVNvI+6xhPfI/pFCkAdoqKIR4xPqaOSEGtAtSuKWBfjLly4UL788kvXDElnxYoVhTIuJCGM33Pnzi2oCQczmj17tpN0YFIvvviiqw93kJaLIvkcn+8qpzcSE5IjTDjIDAj8jAkV9Wuzz2NGAFsEN0+4TSicCaGOITGEP+V5j73DI/7H2BxOkadWjBOuTtEv0tGvv/7qij16xAkd0kaiCebBmKTBRfrzbEB8jvSFVBJJt956q2NaMGnUUHBhbt7akBrJ+Y1E9Mknn8jLL7/s1EtsTNEI1QxC+gs6GRMK+g4GYP4chfNkx1iN1ATx/+LFiwtmX79+fSdRcEPDaJAM5syZE3V19ItEhQSBjSmcySXj5mReVCbBrgXzQAILJ8/YHP4Zktqll15aoEKGS2y0I383RnpULozlMC2YEcZlGDNMrzBiLOxM2IBQQZOx3sLGTcZnxoSSgar1uQMCMAvsHthtINQHku/DmDzJBsMrR/rcgNhYqJeGlBONYDq0wzYCHXHEEU7t+/nnn52R96ijjtrpcpjcxx9/7AzZqFQYvlG/sFHBzDzDNIbhgQMH7nQ9ti98jG7UMt+XXXaZk2LwhUK9uvDCCwVmGk7t27d3xugTtUQ441Gg0pP4mCuqWs2aNZ2aSbFK5n7KKac4hkrfZMTkZLBRo0auUopH4IbxHIkJWxtFDJDQqJ6CuwR9o6qxrquuumqndfjpA2NCftqNAM6FGwjbTqTPDoyGGwdjKzXMkAZQQTgeR5q44oor5M033yywfXBjw0zuuOMO1/7yyy9313p2Jv7iEBlJxx57rOvjmWeecQZj2nFMjV2lMIIBIDV5DA71iJM5bmaYEIR0UpRkQf+33XabU5s42eLGZ14wUdRFyKvfxv+PPvqoM6bjWsDxO2PDjJBkWCfGaXCgL/qmH4z3SEEc1cNUYCIwcvyGwA7MISQxmBSMbMCAAU4d9FwcvHJOkUzRXegzsgqsPtuQREyHp314BVavKGIi+i5pHxhuUTewo3CU/fbbb7vj5scff7xQ5lLScey6EAIYrWH4TzzxhFMf/UwmCfl5dzJkbjBFTonwr8GgylEztg7UF46hjRKPAEZwJMsgSELGhBK//9ZjBALYLzCiXn/99U4KQnVDdUBdCz8hM+ASh4AXx5e4HpPXkzGh5GFrPYch4B3jGyiGQCQCUcM2Nm7cJoMGLVSnqDWR19l7Q8AQMAQSgkBUJqRStAYVltYj1ajNEjIR6ySYCIwZM8YFlhZFHC8TA5YIwraEXwzxYRA+OISDJINwHuTUKl7iJAxnynAi4JagVj8TwcacGsZCHDhw0EC4S0koKneB+fTuXU8DA6uUpG+7JgsQwPkuWpjDa6+9ljBGwfE6eYrw84G4SfBETgYRkkE8WLwEA8YnKpzGjRuXEAYX79yiXY/LA/5NsRBByI899phzPSgJ7dImVIKULSWZh12TQAQwBOOkxglJUf4uiRqOEIOivHoTNUaQ+0FK4GQwnIjS93IEBXltiZp7VEkoUYNYP6lHAOc7vGhx+Esm4Z2L4yEEMxo8eLALVMUJD69i8gh5hCRDGgq8hzmaxzOa6702RK7j34QTHkfLeBvjYYz3bzTiCYyT36BBgwqaobrh8UyAaGFEjh7wwU0Az2Qi85HaCmOohJPgMEiICD43hFSgFnqez8yf3Ed4PcP4cXrE+fCVV15x0hRMiNNATqwmTZrkfHdOPfVUNy1cFshrhEc5feNkCZ6RcXO0JWj1rLPOcp7aeEnj/AhW5B1C7cVJk88uvvjiHUJimN9dd93l0oLwPWOhIoIRxFj4azG2tyfh3uqsExWSdXOiCQ6sgfkkgowJJQJF68MhgFp29dVXuwBMbmh+vNhWPPr999/dzcMPGbWKGxd15aWXXnJNuClgCHhNjxo1ynkBjxgxwqkFXsBmQWdh/8CwDj/8cJfcy2MiMA7sVeG5e8KvpT9uRFLRwhjxgoYBepHx4W3pkzCQF154wSVm6969uwsXYQwItZDUIcR9EdiKkyAhFjBbsIAhEx4Cs2nduvUOS8CpEM9obv433njDRdSTyC08UDdyLnhOE1bCemF8xI69//77zi8IT268rLGVeUwShkFbmDK4165d2yVKI9EaRApZ1Fq8uRkf9crLWcT3MCCkN4KUsf2gXtIuETYz+k/uYzIcPfs/4xEgcRmBmIRccBMhERELBsFgYCyEWHCTEoYAIcVw45BbiGN8/Im4yWBeRMbzlCaeCqmlKM9vxiIIlBuDm5qIduwuXNutW7dCcWc+SFqkSyVrIbmBMLDjxU0MWjih2iJNfP/99+4vL+bNHPkOJoW/E6ovEk94biXCM/gOCSmSYBLc1DDeBx54oEB1PuSQQyKbFrxn3kg8MAX65sW8YYyshe8x3CN9EboB3jB5mP8ZZ5zh9gXGRf5vGC7SD8niCH9BKuR7JCbPcE5/PASQXJFaWSM5kWBgOJ8S7xcvGROKF0G73iGAaI5kgJrhPcWJcWratKn7HobAE3bKlCmujRdrRuwWn0Fcj0TCD59YMp7YM2fOdPFZXF8UE+JaJAluDoI6kcKQTnhfWHoN2jM+qUe8vNgwCmLAGC8yQyLGd6QIVB/WQ58wUQJOIaQkTupQvWBIBx98sEtSFp77yDWMIFQeMEF9i9V2h3pNrJ4Xsc88kCyJVwN3sAO3adOmufg4XjBNHgjevhCjxjVgz1rJVtCnT5+C77neS86Gdzv7wh6RtM0jPou0dUWuL9b3xoRiRcraRUWAgFUCMiNvYN570gDfc4NSiSLcVsWNA8EAuCEefvhhZ3fgBiAZGBHqXpuiJgETIfATRsETHlULm1RRjAspBEkBpsFc6B9mV1jwKqdxMB8YJOOQgoRshp66g50FFYUbHlWIbAFkTsTOEo1gPLzC7WbR2vMdjCQyWJg5hX/mMSPWRCI4/obnW6If9oU9Q1JiDpH2HbCBwIYX0uW1115bML1d7UdBwxj+MZtQDCBZk10jwA+fHyo2E24qbm5SofKCuFGwdfD0hSlhM0HsRxXxktJzU9OP95o/f37MviqMgfSE9AOTI1AW1S4aYaNCpcLwDfNDFUNiiGRc2I88RsX/qHxeriNuRgzqpAaBkH6IZPcyLaJickPD4LjRPcZFWzBhvqip2IxII8ILCStRNzlMBrUTlY1+6Z91Mn+M8WCNyopNi+/YNxipJ+WwbuZIQn2kRi/vdfi+RcM4lu9MEooFJWsTEwLYFLBHkMcGSQaVwFMb6ID8Ptz42H9gENzsPKE5FcIIzekRagK2Hewq2B0in9C7mgjxaaeffrozvCKhFEUwAJgDY8EouPEYn5MjT23xrsXehKqFgZc5c0N6BnCYCidlGH4xkCNVwHhZK2uBMXPzIpXxHrUnnJgrmGBchkkjLTI+huJYVbSi1uh9jhEdyYwTPlRkmCjJ872TQwzS2IyQ9Hg4UFQgPPAVdwLWjJGdfUWCYt9Q2TiIiJcslUe8CGb59fyg+UF6BmByO/MZNhyemkgJ3Eze90gdnBLxJOYGxi7DqQs/fqQMGA/H2KgLPG2xedA/T2NuUIzWMAKkHlQubg5uZI9gCNwsGHyj2WRgUvTNDcZTnz6x7cCIIIzhrAWDOGoWJXmwi7AWbkTmz/r4H7sOEpXnMYwRF7WTGx6JhiN0Ep/BXDAeY09BzSTHEIQUBfNGSkTy4OZGrYxUu8CH0zdsUpyOQUgv9E/GShgH4yFV0RcMEEkIhsln4IWKC3PG+O3lP6IfGCdrZAweAF7aFfrwxmFfkU4h7Ebgix2NdbMvMLXwFL+uYQxkTCgGkKyJ/xHgRkDy4mSOHM6c3ITbnSJXABPCmFtUaZ/I9vY+eQiYTSh52FrPKUSAI2UcFlF98DOKxoCYFhLNrtqkcPpZPZRJQlm9/bZ4QyD9CJgklP49sBkYAlmNgDGhrN5+W7whkH4EjAmlfw9sBoZAViNgTCirt98WbwikHwFjQunfA5uBIZDVCBgTyurtt8UbAulHwJhQ+vfAZmAIZDUC/w9x+EmgUOnzMgAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "## Elastic, ideally plastic behavior\n", + "Assuming a constant yielding stress $\\bar{\\tau}$ and no hardening the possible paths along which the stress strain states can develop are depicted in Figure 1.\n", + "" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASQAAAA5CAYAAACfxlYdAAAABHNCSVQICAgIfAhkiAAAF2ZJREFUeF7t3QW0bMWxBuDGJbgGd3d31+AWHIIGlzzcX4K7Bkhw9wALdwjuwd2Duzsv+2sY3smcmS2zZ+ace8/utXrde2a29K7d/VfVX1U9Q/xf0kLVKglUEqgk0A8kMGQ/GEM1hEoClQQqCUQJVIBUTYRKApUE+o0EKkDqN6+iGkglgUoCFSBVc6CSQCWBfiOBCpD6zauoBlJJoH9L4KeffgqvvPJK+OSTTzo20AqQOiba6sKVBAYvCdx9991h3XXXDeutt1545JFHOvJwFSB1RKzVRQeSBC6++OKwxRZbhI8++miwfuzLL788LLbYYmGuueYKG2+8cXj44Yfb/rxD/W/S2n7V6oKVBAaABH788cdwzTXXhD//+c/h7bffDrPNNluYdNJJB9snH3roocNwww0Xdthhh/Ddd9+F4447Lkw33XRhwgknbNszD922K1UXqiQwwCTw5JNPhpNPPjlstNFG4b777gvjjTfeYC2BJZZY4tfn22yzzcI333wT9ttvv3D88ceHqaaaqi3PPkSVqd0WOVYXGWAS+Oqrr8LWW28dJppoorD99tuH9957L0w77bRhqKGGGjCSQG6fdNJJ4V//+lc4/PDDw8QTT1z62SsOqbQIqwsMNAmotjrjjDPCu+++G92XscceO8wwwwwDCoy889FGGy2C8ZhjjhmOPvro8MUXX5SeChUglRZhdYGBJoHHH388nHvuuWHfffcNY4011kB7/P963t/85jdh5513Do899lg4//zzg9SAMq0CpDLSq87tqATef//9mPeSpyGYWSzPPfdcjP7cf//94eOPP85zaqFjvv3223DeeeeFBRdcMJLYVQth8sknj+B81llnRS6tTL1+RWqXmFHff/99ePXVV2NkZZhhhul1pR9++CFGX15//fVgcX322WfRrPW5fI6Brl17CazuAxEs8ttjjz16HUr25Prss8+G1157Lf4feH3++edh5JFHjsdzJxZYYIFe55b5ANA9+uij4ZhjjgnDDz98mUsNVucuvPDCcU7jko466qgw2WSTtfR8FSC1JLafT/rnP/8ZF8suu+wSfv/730eg8ZmkMREYCwQAmbhjjDFGGGWUUcJII40U+xBDDFHizgPjVGDfc9EDIe7SP/7xjyjjd955J/z2t7+NZKooD/AB8qOOOmoQoh533HHbKihgJ6K0+uqrh2mmmaat1x7ULzbkkENGQHrooYciv7bPPvs0VNJZz9l5QKrttjSYrT+L484774yL4sQTTwyS42677baYnzHPPPOEueeeOyy33HJhvvnmi4sGAPUEoYEUjcmahM2+53JNP/30Eej/9re/hb///e/RIlpzzTXD2muvHeU7+uij/ypbi6KTTWLgBx98EDbZZJMIeFX7bwl4F9tss0344x//GFZbbbUw66yzFhZRZ6UKjM5M+iVJPy/poxceX788AY/wxBNP/ApAwImG3nzzzcMiiywSk8eqVk4CLMuXXnopvPnmm+Giiy4KZL7pppuGVVZZJYbau21hvvzyy+GSSy6JUbVhhx223MMNxmfPMcccEZBwSqeffnphWqI4IH2YSHPMnBJlFXEln0v60UnfLulj5zy3nx729ddfx4l5wgknhA8//DDsueeeEYhGGGGEfjriQXNYXLNnnnkmWpwHHHBAtIr6Usbe+TjjjBNwJVVrLgGKQqIo6uLMM88M2223XSEFnd/GFc27NembJ/3Z5gPq9c18ySf7JP3ipJ+d9G97HRE/4J9fccUV4fnnn298QM5PkaD33ntvnMidaHiNCy64INbyiC6wiPpyoXTiGfvDNfFsI444YgT8FVZYoU9ljDS/6qqrwoYbbhhdxKqlSwDvt+WWW4Ybb7wxuthFWn5Aeiy57C5JnzvpRQh03st6Sd856Zcl/d3Gw5PpKnKx7LLLhksvvTQI4xZp//73v6MmXWihhcKpp54aZNJ2ojHXXZs7gbOgNavWfglw2STccdP821dNXg0iGxeINO+2q9hXz132vjjUOeecM5xyyimFLpUPkCRgAqN1kv4/SS9KkYiIz5P0T5PeBJBERPAwIiY77bRTNNGZ7dwiAIDYlN9ggrB+WFT4BaFh7P68884bbr755sjuE4Is0k60KaaYItbvSJefYIIJKkDqhJCTa3q3448/fp/zNQ888EB0P/70pz9VRHaBd81Ksk2JNIkiVlI2h8RVQ0irG9wm6a3yeZTcREl/Kulz9X4yJvrvfve7GLXiup1zzjlxEgiXqybmHgmbAyYJcLUcFGa9qBbTXkSm05EWI1988cXDtddeGwGpipb1fpdlP6F4WLyTTDJJ2UuVOh9fKLK21FJLxUjpoNhEBa0VAEGeMqu71azHlVdeOfz1r38NRxxxRC4uKRuQPkiGf2PSt016Gd521OR88+uJ5uJAGB577LFx4EceeWR48cUXI7GJt7FLimiWcCIriknIp2dVqSXqZgOKxrXMMst087YD5l6AQA4Xk78v29NPPx0t4UMPPbQriq6dz8qTkIZy2mmnxYRcaQpAVQQM7dAN5c29tUb/8Ic/RG/HPkpZLRuQXksuIXw/Y9alMr4fMfl+8qTf0Pw4XAGAueGGG6LA/F9nMquk3n333aM1JPGtL0Prb731VixLmGmmmZo/TPVNyxLgjrOCWcV92ZRCmG/mYp6G95KioHzFvPXvYYcd1idgpoSjRn2stNJK0bOg7FEhggT4Vl5Jpxu3e/bZZw+33HJLzEtqVNHQcwzZHBILiXWTlSWfVVMnBWDmpL+Z9HcaiwGi8jsBEtet1rzkNdZYI6y44oqRs+lLMDImkUDuY1+Y8SbWlVdeGS1E7ipwtluhPBlaqEwdUeO30v1PaXR77TQqranxiIIeZFE0+JH3aYAJ/oOGz5N3pDRIZOnAAw+MhabC3ayrviDB7Vy52267xe1RUBkzzjhjBAPcqi1DyLZbjWUGABkVeWoL0y0klhEA4RGlcUcvJ9+fm3QlRwjsZm325Atc8x1JX6vxQTTSOuus8+tEI0BJiBZdf2gWxFNPPRV3yut2s/hUVIv6WCjGwL258MILw/LLLx/BSVkFrTQoN5wHTSqdgjXK8mA1icTiloCv9A5WlMjXXnvt1daFjxpQzS9iO+WUU2aK0tiMwdxAgvvXHFZ8221Acm8KnLKUH9ez4TsFf1Ae3azD4914n8jtrKh0OiB9nzyOpEbvpBnQOOb0pL+X9CwrSYQcsW1/8CaAROvzOWuNpvJS+wIAfh1Ej/8AANyC/KOezUSgmQAoV6MTE1G0kaZRNLr++uv/eg/uAYBiRQ7KYERzq1FTCwWUcDdkCoh1MgW6FtT8888fn3WWWWZpu6zxV2qy9t9//0ZToNd7B17AEu/JqmO5GaeF2O1mfrLQkMmN5qAsd/Ozm6UvwBEfKAqelViaDUg4pKWT3sy5ezr57pakn5z0rHQAbhte666kf5b0UZKe0aDqpJM2rqbPODV+zb2SKCkNYOqpp45FkWUicUxz7iQz+NNPP431bCbvCy+8ELW5iKCJmaUJ8oy9/hhEpUWLxO852Twb/q3dle319+/03ywh0cs77rgjWiczzzxzrBrnHlvgnlOUyN+NFls7xkex3HPPPdHCMF+ymsCL7Uhk7ksJ0bgm33wzclJgPXViyX2XbG2b5l5k3aHY9+YHpQh46huZbbvttl0PArkvisEe3OZw2vpLB6Svk0di+Uxa/2i//C0Z+vKkA5Zsy/bnk+QjXZr0t38575dLNfqHRWBvG0lprTSmtO0QuDkmsZcljYB1w3RVoV808xYYCaXa2N3EpZFcTyoAods5sFNkIRcGOJOJUHQt5QBA2eO4LzRyK++l2TlAVQb8TTfdFOVLk3c7rUKOm9w2NXO1bUyajdfnfhrIO2Gp1Rp3aO21VwqXXTZSOPvsdxI+aYKE7+vO1rb4VePuycH2HL/52RdNjRugllDMom/W0gGJ9SNTfoImp7+VfC4Rc7OkZ1lHtUugN75Meo7dLpnBzGe1Ma00wGBi0WIWrLAjvoXbw/LiHnJ98jYCtdUIt2LVVVeNJSTAMi/JzpSnIfKQpI3G5Lwll1wyEpYIflYabWPR2hKjEw3gWnSswawGUIrIo/56NCl3g5WJu2nVCkLuUxp+sqfoNZyHn+Ji5DmXxcyK63ksQNhgg9WSKOwX4eCDXw9vvPFtYpkLM/dutqkR8TK3uFGsQPOWotQpIZyWeaPAWG5eWi6R74Dj9ddfH+doq3Ot90jLfcKVlbeHD24dkF5KBgGMGsvyZyJbsa38orwKQKQR75Sj1AyaAg0P0kozSZC9ylEAkLCnmiR8FIAq+vMtFidCe6211opuWZGSBq6AhE+gJPSaZramPSvuBF9kYoqgcG06OelEvAAvazOrsRS4Oa3yWBadyJbARh4waDYeFjFQWHTRRQtfx0JmaeZNOeBKNqu/nHbaEcNWW42fWOXNCNhE3yegA8QpFWMm7y+//DIqAPl3QKgWKq9ttdLsuWuf25aFlacgGK+YV2FmXbfs95SMusC0lm4h2QG02ZbBwOq6pC+YdCkB+KE8DXfEpc5hUUnsYgUUWfiNhmDxP/jgg7HGzQSidWh97luRZsHgCeR3FD3Xizj44IOjb89qazXKAXzUdwE4OS4SNIWbO0VS4sLwI4A0qxlDmUJjVoKAQaMdIrPu3fN7FpJQc1HQ935vvfXWqMSy8mVq92N1qyqg8Opd5uGHHzIBxfQSJsrWlibNmvdcFJyBqX2ulTiJSkpBoNj7uvmZKCVBaS0dkMzBZuB+ZfIdw4ULVqQOlhvISsogtEVVgAYroOxi80JN0Ntvvz1qJJoIIOCVijRlBIhWiXJFJ4n7ADMmdVmLxthl3LL0hJstZG5c2es2koXnLAMyja7Z7DMWQW1vqWbHZH1OFtygDTbYIOvQXt+/8cYbMaWAZZW3SY5lkQBReT6NcqfyXqvRca3MM9fxDABJF6mWH9XXvxvHHQXcacR2s9jZz7LxbTOwWSH57vCkc9XkK+lZjXV0TNJVBHDzUhouwcCZ75r/c5lMOP8v2kwUpjEtRiuxuvJqQfcSueBycZdaIVq5M7Xs86Kau9GzAh8/3IcTk3eityKXRtdu9hkZiCgqR6B1lc7gK3AoolI4vzKNi84iK6PNWUfeTyvAAIwoqSIuJ2VJGYgQqtficvWHRgYCH7YAERwSdLn66qv7NHGWYhM0SEtmTbeQuGLNfrhBRLTJ3kYNXwje6KKk+/lzOwY0s7x+OZnpzqKw8ITUcQvyGJCOtjItMmkajqfghxYit6XViB/Tm3tl69V2NgWTtJ+QKn6pFnpu5z1cC9iJgElGFNWTPrH00kvHfatpPr1MqoOJKrNZRnGr7qxxej8sgaIutXOlbbTCV1IwfpeMm8Qt59K3AojtfmeuhyBXAnPZZZdFb4M7l7cUpt3jqVlGaVZfOiApDM4RDcs18BeTo0TkJET+nK6RehogYt7tuuuuEYRoTaFDJG63TU+Lhfsoz6dV95FlZ8KXnQw1S5F1p3u5oklqhXAZipA70dwHkS4pEQ/WipWYNi7kLcXj/Za5dm2rmlZ4R1vdtFqojev0axt4vb/85S9x3hYNmqTJp8x3ANP4KA8R5tocFCGUWU5mgJi1mxbBKzMG57KwreO095sOSHZceD/p3La0KFoed83mbPi9/0/CTn0+5qZcCsAkBR9DT+uloWvqBUt8CRCF+nfcccem92eyI64BD0ul3i0DRvgRGqpmsqa9mPrhIgNFTfBgJpLrA0eg5F+fNbNQRMiuu+66GGEkT7xT3ihSbRzknpVlWz/mIn9zdWRl9xwXeYlg4ZakfyBouYc22W/mbjvWomomi7QxWZhlFqSFTiHYTxo4HXLIIR3h9dKewbvGhdUSeIG8RFOytYZEnDU5eUqQKFrz0fG8DkqH5duq4k0bm/XsvaSt4XRAWii5vPB8MzBy9sRJl6KC1ml2nFHa6H/TpPdOIPVtr4Z8xlNoaQ/Q68Q2foAT8Wsi3EVROhwBs5yV4iVaRKwnLxcgaVwyCZL1BDOgAiJIRiY0t+Tss8/OlV3NeqB1kbVSDuRxcB+Fh/Fq/u/6cpTqGyCTo2Qy2LrFb4oBtaKAVH/ddv+tOp11wqrA1SnHEPEiV5FRBD4wapSB3HMseCAWtDkDFKRpADCuXL2SqH+GPPPM+5YQa6EbmzQHY8JNeue4QtaR3DkA2g05qxaQy0RpSheoReZq45KPhHjvadkCe+Atc/uuu+6KYES+giV+BNMv6bTi9tbLtOffyoGQ7WktHZBEw1ZOOR0AbZF0If80MMLz2VFWPWre9ACHJpOqL5uFbkF7eUL1eBJbORiXyQ1Ual3kjpsgE7Z+3CYJU5U/zw2VwwTgENJI+yxtJI9E6N1x9ddOkw8AU2DJ2lT5zTx3X65vf2tACIdkMZAlcJXOgFMqwsd4XxYaLc/awbF5dhHSLHDwLgF7s2YeqLP0Dr1rJK2cJ5aV77hE0gBEYllwQCvrns3uVeRz1g8lCHjdj1sN3NMA2HwEDtxU59sihMJi3ashBGKihpRfkTnXbNwUJ2VRX/Bbf3w6INUf3ejvrG1JnCN5Uu5RsSh7o7t19TNaA0lZprGmEJ5etqJR0Siumgkr6kHjZgGS+zdzUZqNDQiedNJJcWHLc5Hw5/7czrI8VrN7tvo5jc6yQMjj6biGRZP5WKwsSe61ReY5hf5ZLQCJFZEFDkBGlK5Z856UtAAeVpvm/XF3VANw2SkBFqjSpJ7lJM2u2Y7PFdLqRZo5SD6AVIS2lgJjfh500EFx3rPmKc92BJAoGwCZVbpSHpDySOGT5CB36vx+UHlG09VjaGyhV8mMtQiOSewzJnLRhZd38ELoLAX7S+29994xF0WuDIBK05x5r9/O42hgoXNau9WxAQWAC8xYhCyVmmxZDDi8rMaawlVZpI0UgHHWF9wCPO+19m6BK1favRtdI2sM3fze+NASZNOTO2P5AXEWKg6vLCCRCfebZZ5VH9gdQFK75k55rKluvpEu3MtLRzLSOkx5vIP0BfwTcrkIsV1kuGqGmOImlcUpd4gV0uqCL3LvVo4tW5AMBHA79iHynD0biymtfqp2LPfQ4uHWcl1aaUCr7LO0ct9Wz2FVeub6eQiUzdF6LrSV+3DVAJI1kNXSEyOzzs77fS0K17eUUN7RtvU4JjCuCM9gmwqWkcJNeSE0dyeaxSl6gsCWEMfsximIwOBIABWXLi1BrRPj6uQ1LRxg4Nl6NhYPNypPhJD2VrTM0mLFDoRGYbIu5bEBYla1QA45iG5TomUaysKWMqys+tKaRtftjoVU2097EOOQGgmslc/wIt3cq0hOEjBCVAIhe5FrFhmiXudiiLD09S97tCLPRucIOHgW5LV/8UEWmp9zFrnLmzDKxRXdFZ2zIAf3JtGVfACPxEkRYxHurbbaKu6EUSYNguwEAAAcPipPqdYQibmWJ4uo3Huxr9LzSQe2A9BKKie84mfjBWyhwVWh8TTWAyuixm2YHACrRs4Wv0v/OsM0RpwKf+NALDIkMyuQa2zB5YkW0egWEYuy1STJ/iWZ9NGwXhSds9jNGZQCqz4PeDS7MpCjEIT58ZY8AsovT01kdwCp2cirzysJtFECwARBa19xwQTZybLYuQv9lTtr4+O3dCnuqTy7k0+25Wt7mgAFK8tuHdw0SiKLzK7duTsuW3ues7pKJYFUCQAdlpE9x6uWTwKsaWkM7WwSKhHYXD5pEnnByBgqQGrnm6iuVUlgEJMA9yrPL6sUeSwWkiTNVlze7kTZijxNdWwlgUoCXZEA3i2tBrLMIFoBI/erAKmM1KtzKwkMwhKQiiL9A4ndX1oFSP3lTVTjqCTQZQlICRFV6/Z2PmmPWQFSmnSq7yoJDMYSAEhy0tpd1V9GZBUglZFedW4lgUFYAgApa8O0bj9eBUjdlnh1v0oC/UQCau78+EU76tXa9UhVYmS7JFldp5LAICYB7ppyIhnUebLYu/F4FSB1Q8rVPSoJVBLIJYH/ALBbOMJrFBlQAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Elastic behavior\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAC4AAAASCAYAAAAkAezhAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACoUlEQVRIDcWW702bQQyHQ8UANGwAG9CyQdmA0AmADaj6KflW0Q2gE1DYIHSCEjaADaDdIH2e0/nl3r8SoFBLln22z/b9zu8la8vlclTSbDY7Yb0Hf8r2a+R91sdZ7iC34FviP2Tb2wob7+LpdLqEF10+bfiO4Hmff9X2d10wgWKgfdHlz7afyLiJgbDVuDobp5SjIjkmQ3Q35Fylr6/xhDjI35bFWZ/GGv0v+lWs31qu9xT046uhTaNH2GoIY3v2qOTDP+S6Hv4GWw2g7BsUrcZJEvM9Rj9jty+Jtg14G65Rjk83gT74wuBfsPkQmRpFzlm757iWtLEgzto/4A30NMZdoxLzbYFjeAK/Z5NPXwthbN6MfAP3EnFbOHeQJbpfsMmDxB5vRhAD1FEL8XA2Cpi4OTplEyb8ZtAAPeoj7x+EL9Ilei2n/gGqAdOFeGu+c7KqMQp6ddXp0d1TIpm3PAn2iJq3aQN+L3NsjsqLqIY4iaKZVsJcOIp8RUkHwW7T0j66chd2zGw0EXqMia9QQhmbv9Cn+uA0gkgB8XvxEdiEH7B9R7aoiXjMd+8VkshGLRaNeVgLn+civ9GrZxNduoRrtmgIWX43v4hb6IOd/V3kPrJFzcZTEMGd147dJk1ejQ26hz3DFwdRfoRLcr4DlGQnXsSrD5O1gMjOf9AFyudYlHKdDV6PT43XKY+wiVD6mJBj2Jjw+7qUB7PJEk2ftxJFlum5i1HyYOa7J4+jExSHPcAethQXi1LauIkmpfGZusnLL/6A9WGZgxoepHNWi7iUg9jzwtarNkelN3DAUaFLUV8LfwlLJAe2PrnY4y1e5xyVo7kOx5p/P19DJHYufWXSAVhXc/uSvOyPsfNvwab5YG/VcfYbvGI9eXXjJPov9A/tvnYctBP/5wAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle E_{b} s_\\mathrm{el}$" + ], + "text/plain": [ + "E_bâ‹…s_\\mathrm{el}" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s_el = sp.symbols('s_\\mathrm{el}')\n", + "E_b = sp.symbols('E_b', positive=True)\n", + "tau_ = E_b * s_el # explain the naming - what is meant by underscore in the notebok\n", + "tau_" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAAVCAYAAABfXiAOAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEYElEQVRoBe2Z61FVMRCALwwFICVAB6AdYAegFQAdyPiPfwx0AFSg0IFYAUgHYgUiHeD3ZZI7OfecnMflwpXBnQmbs5tsNvsMsPDw8DCaJxwcHKxy/ib4dJ56zOts7r3F2Tfg26TDwqRTYH6C+Z6xGRddgtOGlUhbB2tMhW1E2mDE3mU2nYM979UC9z/n8vvgYOelSUvAOIZ2DDaFNHqjwaDvwt+e3D/w+/sMZAw88p9cvoNW2iIE+GKTihg8ZcmXJn6kfQWnDGpZ1syKTr0GTy2jWfLLo2KDe7S+BFulRrVMiVdK2WHpaoOfbcwO3j78dE7H0lfBPuSWvxjHjZkCI2QKnrvJzcH3UfqO3r1I30Mwe+1HI/Crz5Jkt2jPW/BmKVNs5JUsYbE9pJIZ0KY1qi+OivykXI6RbxD8jjRT3HJXCZR8/VPOn0kXbbJdcwqHhyyBucL8RMyQ5ktpjVGBuD5kEPO+LzHLli+OIiDrB8wdcHAC+Bvfyt8rbnoixix0QYb2O2NsMV8oqGrQ7zWVr1TnNcgeY5vxhsWVt3QSCk/vOq4TrQe2fN2V1iFT/jo4zwp7kONZYVa6IMdMN8jbqos2Wa5lCsSQKRMGgVwtN/Bzo7nHRtUXzD6VLEFwGGf8YYGvPH+X6VPujEaflkNgnI2FTVPpUpBlwLfdQ4etNjml1k/iAWOjYyAvryNSJLsnzePy6RHy7xlewMywl+3qlEgrCnYfzL4ltCgnZygznjtIl1xGNtdOrWXbtRWncLiGFqzfFYgXTrTPTIKToHuQYK0Uv2MYfV2ZoGNrwL5UunzZhaiC5vv9SB6jLf1r8h5D6KsL6wwcg8E+KHg37XAILw9W7dvWE1fg3072lNRPiinGITpB4ySje5CGOoXmXwOuGOOnM/MmcL0KNIGRVNkf5Y7Az+aQqNgQXVxrz/CFqB0MWmkBoGk3s67tDgbk/aRTfKqO2Jh7V1IA6DrAmj0uZcx15Am85CTxW0YbKL9UZu7gpeAIMpBtpjx7k+fMTl3QTUPa9zT6Bd/JdtpBXgJt1/UY0iaXSwhZZuJTTQFBCDQ9rEKCEe2axPcVlg6WrwPyyFZwWzS4x/JoVDWB6Z1KoRfzbH+pmuoX1aYDBtA6dUGvcFew5eoqkx0yI/s20GptIeM71ZY7OsWLP+YPixotj4APCmYUgTNt2iNGrUdA85Km/9xhoC5mQl5BPvJtBiXQ4P4lOH+1Jt4IunZcBt8sjqnTT8ZZgUAbnjW1T1SbXfMoSdPftLCT+1pFNKoBPuLbLHHk9wsGh6bzmsDHU6ges3CKWXaGIhp5DVzpB02nS2Od/9QyU7zQSwcdYEm37Nr/LHsbzIOTmAs+hLRRXvoDA7oO3QSHCrEUqI/4gSAPmbb8uc/+1cuRj1DzqbeqvyW5WHbh6agSaIOxDWeRKaWDOukoaiT5pxzL3ksGS1Le5HvfJd5dG4zbQO3fwb2l/V8YLIAx7QMGlX2065fmsKfrx1/Eh8Ich2jebgAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle E_{b} \\left(s - s_{pl}\\right)$" + ], + "text/plain": [ + "E_bâ‹…(s - sₚₗ)" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s, s_pl = sp.symbols('s, s_pl')\n", + "s_el_ = s - s_pl\n", + "tau_.subs(s_el, s_el_)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAABGCAYAAAA6qvMsAAAABHNCSVQICAgIfAhkiAAAFXlJREFUeF7tnQWUVtUWgDfjCGKLHSBiEgY2ICqKKBjPFsUAfIiCtcReStgFJnZidyCiDxUDu1DBQEBBUURBxUAUuG9/Z7zjP3du/nPvH8PZa+018984sc/ZZ8fZZ98GjoJYsBSwFCgaBSqKVrOt2FLAUsBQwDKhnQiWAkWmgGXCIg+Ard5SwDKhnQOWAkWmgGXCIg+Ard5SwDKhnQOWAkWmgGXCIg/A4lb9woUL5ddff13cuh3aX8uEoeSpnzcXLFhQNEYYPXq03HrrrSVFWBaGb775Rn777beitMsyYVHIXtxKP/jgAxk8eLD8+eefBW/Izz//LD/++GPB6w2r8LvvvpP99ttP+vTpI0888YT88ccfYY+nfs8yYeokLf0CX3zxRbn33ntl3rx51Y0lcOrrr7+WF154Qd56662iScpiUG+NNdaQli1bCjRAUh966KFy3333ycyZMwvSnMqC1GIrKSkKwGxdunSRRo0aVbfryy+/lGOOOUZWXnll+fvvv2XJJZc0kqFz584l1fYsGlNZWSmDBg2Sfv36yVFHHSVLL7203HXXXTJixAgjIXv16iUNGzbMouqqMokdtbD4UEDtH2f//fd33nnnnepOT5482VFmc1RCVl975ZVXnK5duzrHHnus8/rrrzuLFi1KhUh33323c/bZZ6dSVlAh3377rfP4448733//fdAjvtc///xzZ8iQIY7ahub+pEmTnJNOOslp0aKFc9555zlvvvmmo+q077t1uWglYXbrW0mWjD02f/58WXvttU37dPLI/fffLx06dJCdd965us0dO3aUjTfeWHQyi05Mc69Hjx6y5pprCpKj1IA+0Tdlcnnttddk3XXXle222y5RMzfccEM59dRTpXHjxuY9fnfq1MlIRBw3Q4cONbTbdNNNpX379kaFXX755aWiokKWWGIJadCggXkPR89ff/0lb7zxhmyyySaGjmFQetQMa629V2cKqNST5ZZbTrCDXJgwYYIceeSR1ZPIvb7aaqtJ3759pV27dnL00UfLmDFjZOuttzYqKhNwnXXWqdEemGDixImGoQvFqDhRXn31VXnsscdk6tSpsuuuu8oVV1wROfH9CAkToYq6gM388MMPyxFHHCEDBgyQpk2bCrTCZsZ2vOmmmwRPM++h2vOXRQ0mVM1BWrVqZegUBZYJoyhUz+5Pnz7dTCZ31eYvtuAqq6zi21Mm09ixY40NiW2kqqmZmDNmzDASY9VVVzV/8bRybccddxSkaJbAxMej+dJLL8moUaNMXw444AAj+ZDwSKY0ANuZheW6666TFVdc0RSJFARpA1saLAJIPexoaEVbsB+XWWYZY1/HaYtlwjRGq0zKYJWeNm2aNG/evEaLd9lll8AeINmY6DfffLN5b4MNNpDDDz9c2GpAqs6ePdswIIzYpk0bwwQugwcWmucNJrnabUY9HD9+vJF2arMa1TALx8m7775rpBmagxeQ9DCmy5ze+0l+WyZMQq0yf5YVG5XtkEMOidUTmPbqq6+Wgw8+uAbjsro3adJEtt1221jlBD00d+5ClSiOlhU+DdkqeP/99+Whhx4ykmmfffaR4447zqjUWTAf7aXvqN8HHXSQsfeyhPDeZ1mzLbvgFEBlQnLhXIkDODjUwyh77713nMcTPUM+h5Ejf1RVzlE191/7NLeQuXPnGqmHJF5ppZXM4oF9iq2aNcDs9H2zzTbLuiqxTJg5iUunAjx7MOKyyy4b2ShsLnXLy+WXXy6rr7565PNJH6hyYIhssUXttjz66KPG7pw1a5Zgw+KlxNmBFxcMAvqFsyQNyYWqjefT9SIH1ZnGdcuEaVCxTMrAdsOuyvUABjUdKcgEzEoSVFQ0kO7dV1OGqd2CbbbZptrzCrPGtTFhvjiOkNo11r4C01Mef3M9vThkWMxwyiCR47atdg3/XrFMGEadenYPqYLHLg4T4vbfa6+9UplkQWRs2LBqX817v1mzZgIWEzbffHMT1nfRRRcZryvMh/d3ypQp8tVXXxkH1cCBA2tEHeXbXsuE+VKuDN9jArG3t9RSS0W2ntX/l19+iXyuvj6AR/SSSy6RBx54wOxB4gDClmZ7omfPniYYIDfsDzpgR6JpsG2TREJaJqxns8gRR6bMmSKNKhtJ0+Wb1ugdKzgSJs4EIWaSkxbsKRI1UqjN91Iajo022shIuyhANX3wwQdN0DcqLMy75ZZbRr1Wfd8yYWxSlceDCxctlP9N+Z/cOf5OabtGW+m/bX9ptWorqayoNHuEcbcV8ELilNE4T3P+r3fv3sY+ZFsgDhPXlVqc5rjhhhuMTZYEsNNoM5KqUICaD62IJsKje8YZZ6jDaQu54IILaklLvzY1IPDU74a9Vr4UmL9wvrw9420Z8eEIGTd9nAxoN0B6tOxhjuhcfPHFsUKp3N6zpcHRp+eee84c7YERsZF23333WGqtl4r33HOPfPrpp3LhhRd6b9X4TTAAkzvp9ETVJqjAqyqGVlbHm3ic2bvEm7zeeuuZI2EsWs8//7yxwaPASsIoCpXh/UZLNJKOzTpKh6YdZMzUMTJw7EAZM2GMzJ4/O7GEYBKxYU1Y2Jw5c+TJJ5+UTz75xMSHxrEt8yVfWtEo+daf5D1sZxgRbzLOm+HDhxt6scURB9JlwkVa5X2KkxT7Kq6l6O8Ai9M2+0wdKVDRoEK6tOgizVZoJr0f7y0zW82URZUMUnLA9U98KYHcFmpSgJC933//3UTxoDmwaCEJOZMZB9Jlwr+0yjsV2ygyVqQSqRloH6dN9pkUKYD91nKVljKo9SDpO6WvDH5psJy/y/nSuLLquE6KVS22RRGsjQcVNZTAAqJ7kkA64eZujbD0fxXPVNxeMTi4IUkb7bMpUKB9m/Yy/IDhMnryaGMnWkiXAmxf4PRKyoC0In0m7K6lEgp4oCJjXZwEVulSuB6Uhn3Sdeuu0mfLPjJq0qh60KP604X8vKMk6ULd9Qk5qibNAv3vIEW2WdpmSzDCiNgkdU9EZ1tbeZc+7+95Mm/BPGnSuElROsIJdeJSCU2zUEWBeEyILf+l4teKsxXHKp6i2CKCjCfo/c6K/4l4rg63iXTnJDWeO3dzuQ7F2VctBQpOgXjq6FXaLhwtdym+qNhNsSpFSXiDYVKYN8OdSGL7iIXEIObgqQVLgXKjQLR39Cvt0guKNyhGp8uo2X+8pA8roprG89bWfD/iF3sy5PwgooON3dtuuy3iDXvbUqD0KBAuCZFgTyq2U0zKgPQVafmDIkyYAZAbco899jBRCuT6KBebkCNFHFTNTb6bAXmKUiQRLmxcW4hPgXAm/FkLelnRe7CaxM2zFL9R/F5xfkCFBAzwbAZjQpQCWa84bsPAf/bZZ+Z4STmAm6oBZ1IhgHjGQn1ngSBxNqsJ4eLUBkeALIRTIJwJyQKONGyeU8jH+j/RMEco4njBVkRV9YuzJUEVB6dh1pQB9ROJQrIfpCCZt3LzZqZcXarFPf3007LDDjuYjFyFAE6jP/LII4WoyhzjIXj6+uuvr45VJWFS0kDsgjS2RCoJtwnf0la2VszNQHCL/n5K8SzF3ooTFIcpHqfo3bJgjnGa5jPFVoopwkcffWSyexERgmQhtUFUktUUq8+7KNzztJ0sYV5AauQmkfXez/c3nyIrlIrIOOClxltNgqiffvpJLrvsMqOtkBWNzG4cj1phhRVSSUORL014D+2A+Ne0jmnRR83+bWJr0dIYazbvoUPr1q0D+xvOhG9rS3dTdJkL7YlznjBfP0UywU1VhNG8DKiXTNwoduEMfqQLnPwmFyYZxLANkwTMptuSZKWRQpCJ6ndy/PTTTzcp9sh0XS72rV/vmXg33nijmdycZtC0+/Lee++ZnKWcz2Ox0dTysv3225vJiRkRJ++NX135XHNzqd5xxx3mNEcax57QzJ599lmTA4exZbHhOBPOw1NOOcUca6K/fhDMhD/p49MVc88mwlQ9Fcl0R6Ji7MXHFIcqBpUEE36kmCKQAIizcZzfGjdunAmazSIjWIpNri6KNHocA/IDsjUjRW6//XYhvQJhUJyER2owmZk8rN5INo4Vkb6Q1ZePmWSV+s+vnXGu5araqKK07+STTzY5YDiBjvbC2KEmY7Nykh3mZeISCJ1FfwiyRkKxlYUGhTZS10ROzEOYGQ89UpUYUsbRDd5mfDgRwpgmZ8JpSmoYK3c/ECbspIidOFnxfMUzFDdRDAKOU7HBnyLox0rMSgoBOcWMcyYsYp1JANHTSgKUb1dgIpLWcq7PD/gikMt0TEykPRMVpkPi034khpvGfv311zerbhrZxfzak8Y12o70GzlypLHbaS/jBrJwsqiwiIL0GeZN+9AwkpekwRy8JboKOnNoua6Je1E3SZH/8ccfm4ARstJ5E2PRF843cj4yCILkV5Waua6+5n0CBkRNJUj7ZMVdg4r+5zoSEw9pSoBb/5lnnjETmRCoL774Qs4555zA0mFAVik+zLHTTjsFPue94X5gxP2QJsTkKE/cM2Le8vitX0IyUo20CX7A6q9fQjK3aDcLCxOXYzFsw5Qb0AfsQWhJUIVfJmsWFTANldBLH5iPD6Kyf8yn35B80DeNc5DMw3PPPddoIxxU3nPPPb3VV/+m/2GS3cti/xY0V/+tSr9fs3COK12piE3I1kW4f7Vqj9DPXqxZauxfhKmhiuGUwQPHapr7cRNvQUgfBiLsGfcdBoosz/pJLONYQPrwvnu6m+8snHbaaaFS11u/+5tykAa77bZbrGxn2FBIeSYy+UrKkQmhO3jttdcaaZC2hAuiNTRjcUZNREp1797dqOxxkx4HlZt7HebD3mO+RMXBIjGDvvVBmcFMSEKuIAkG472uyFePmyviQcU5g7rqhW/1QryEz943fX9/+OGHZkBhRtQ1Pm8cpmbiHEDysGcVBdgnTH4kD2oTXjx31XT39MLU3rDyaS/2yPHHHx/2mLnH4OIw4EtALABt22YcAR/ZouQP4I0lRwyHgAu5gKB2kjxYvyVoFjycXXFSTCTtIZ8922qrrUyqjzBzgPFj3PFfBEEwE3IqfqQi6mcuczXS36QHGavIRv2jitcrohFup+gF5n4L78X8ftMhEgDh6uZzz926dTPqXRiw+rJSsRqznxiWc5PPgPF12rraCn7tYXJQblQKd1QoskjTZiZR2AD71VMq1/AWYi646nWa7SI7NsmJCdCAyXDosDVAynwWZj6PBg2hdRb0Y0HGL8GHcaLKx+ZlS4ovXwVBMBPCONiSOFW8X83CPMk1UXjOL50GqitbGDsrpgB4RRkAXNpINj7oGEfFwctIvkhOPoftJdbF3ovqHoPGJ8PCpDZl0C9WWbxpUQMcVWeS+0xibOcffvjBqOAAUp9FDnqzHZQkHT6OCBa8NOyv3H6wEOPowbtKVI5bPh8zRd0n4RJq58svv5yk+2ZLIWqBdAtkccHDiwc7ClBX8ZbiSAyCYCbEKwrzjVfsHPT6P9f9bEduwcCoo6irKQCTkwny1FNPmWQ6cScF7v0zzzyzoJM6t7s4d3DKMGmigH0mJpL3A5xR79X1Pg4U6ASzucyPSoltjF2Fg4i9rrh2FTY4zgtsp7AJmLTdLLpoNUCumolXlUUO5g/zRAbVh8oflwnJPocXNOp5TCdykSKh83PMoILyQRqYEA+on70X1CP3+hz9B9syj3QmGNcwHBMC6cFvwp9Q05BYSewMHCwYx9h4QYDKQAJXPFl+QBtQf/GwxpG+uWXgnEAq4KGNAlZYBjhpHVHlht2HzmwZHHbYYb77ZkgfYnX9vJtB5cKsBx54oPTr188EUhDOBm1xqLFBnwuu84t6GO+ovvvZeGTFLgQwlxhPEiKHtZMF6NJLLzULatReZLAkpEd7KJ6kiPc1n1MUX+h7qK0Nk5EH+4nv4qF+ck6QTV4mMSsyHYszmXNrxNnCt8wpJ2h7gJUbIzsovAuCx81enVs3iwexokiYOFEweHv5NjrvET3DgsPAQwscNkzstIEFBq9vEND3pHYyZeLgYgJivxHKhaSFgeiXO4FRv/kSLuFt2E9sPZH9O0ptD2pr1tdZjPC84jQLAiSxG/3EIhQF4UzIdtbhihMV82HCT/Q9Fv+EWxSEoaFq4lnjU81nnXWW8Sq6n/ViA5iVBqnBqoTkwOYLAqQn+nuYfYJqwaqVNqDOIWWZkHEA2wSJQX5PIjvw7iIpcHET9F1OACPhmAlzzsB4hLixz8YChF3KVhCSMx/A+QYTuNtKUWVQT5iq6H2fxYLFxM8hSJ14wTE7KJM5G8ebHs6EHMTt6W1Ggt/T9Nk8vOswG0yGBECCYHATzkUHhwwZYoiMpGCQkZRsWYQBEzmtIN2wevzusfeIBIyzT8n7DBqLAcigMqkY0DiD6Vd/qV9jIe3cubPccsstxm5G8tfldAllXHPNNbGOUDF/hg0blsi0QUsjsMDbRuYssaP4KjBZTjzxxFrPBI1FOBMGvRXnOsmgvlMk6iYhnHDCCcaYxQAn3g8VAG9Yr169TDAwKg5RFhCCv6WqutBtYkXJVh22NRJEHlQ272AHPVuu1xlb7Ef29a666ioThZIPrdz+E46G3RkXkqrZaCVsI7mSFq0Fjz2LCOYCaj0OoiTSlcKygYla7D6Kf9S9eFXNHLXHHN1iqHthBSxBFxBH7RtHHUoFrLV2VRoz6eiCVvtGCVxR76mhkUa1OLoH7KiGUwKtCm6CHlp21GRwNCDA0bhep3///ua3Cg1HF5TgF0PuZCcJ2aRfRzEPz6h3FWNVwe6L8jJ53yv2bzaTWeXj7Cdl2VY2s0tVomJKEHiB1MfWCvM4ZkmjuGXjnCOc8MorrzRt3XfffY2J1KRJk7zbHi/lYdwW5j53q/7gHOGgfF6u+Q57Z3gYGaxyAlQtnEiF3vPz0gi7i4Usy2AEb531/Td7v5hBidTOAKJkIwnZantPMaV8o+7J+YA+lOxlPGh+XrRCNzgseLjQbakv9YV52pP2MeoMRNLyqp6fpX/wjLbK7/Xct1SVNi7+tdYimNWCpUD9o0A2TDhOCdVJkW9SpAAchI0bLpVCdbYIS4GCUiAbdbSb9oE9xoSRMn49Z2+QU9eWCf2oY6/VBwpkw4Thp4sS0Y0DtthV+UZQJKrMPmwpUAQKZKOOptgRmJAQtny++5ZiM2xRlgKZUaDkmZCjMAT9Wvd6ZnPAFlxkCpQ8E2IP4mJPGl5UZLra6i0FYlOgpJmQIG02u4lSSHNfJjZ17IOWAgWgQEkzIZHpRCaQELbUw5kKMFa2inpKgWy8oykRi5AgTk1wnMmCpUB9pUB2saP1lWK2X5YCKVOgpNXRlPtqi7MUKEkKWCYsyWGxjVqcKPB/8E/efOfvRHMAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Yield condition\n", + "Elastic domain is defined by the inequality equation\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADdUlEQVRoBe2a7U0cMRCGuYgCSNIBdAAlBDogSgWBDoL4dfcvIh2QFqADSAVBdBA6CEoHl/dxbMs762V9u75DF+1IZjz2eDwfHnv2xGy5XO5MUOaBxWKxL85fZdzlXLvlrBOnPHCldqJg3Nf0xpuawv5nWT4L9msHAJ9NmVB+ci7E+rWcvcmp4JFFe2pcaU9qFxr7IzwFASf0gZyF846Fz/t4c/M+ANfCOH9H+Eboh9oR9HQd4YV+uBQLmTAUTs1CMupQwSArpiAY57RIOYosOBW+bU2uNuAc7pe4a0h9Nza9Cf2OJAu4zweDAnhgFh96+gG8lUGQUaQ3lco3b8xakOSHLLBOHLsfQY0P8/QmvOzOM02PygIrXoFF3n16gLYyE6xhQ2g54Zh1wi99eJ1rvloWSBZB3RNuVFlVgiChXyScu5P0zQGpt9arI7dp11iiLyWjKxMtr+e5tuOBTmQU2Sx+gn4g7ALg6Wfhx9FBkJCQrh+0Ca8+NCUYfQfieVIjUO/VfoNFjyn5nNwhf7QvFcl3v/ZKNPV/Lhs6s0D8RTYH/cTPQ+z8on4oVwnGR3hGBcEL/ykcyzf1SbdHhAcQTRpGx4um5LtRc0oEvk1g7Rk+mAgEjuEwNIIgHvTNZoHmcGivzeJJgQ8zMoaPtAiS5Q7qbD6fMwnTKvBZAhqOZrFX8FK44VzR/PLIyYrGqs/Pt2+FY8YgIwXN4STS2AI6v1NzDjWTZF1jfzMfSfHhaBzONRFlqY++R8KdugUh4iEoLZvDfAne9Rtl78USAYbnk+i7dEzycRhXwHM6rj4G4uCYRWZ+R2uzV5bGa5WoBJkgsE+4q6FvtUdvAMQHtGz+N1z+t3aJinPcB0iiAgEArFEEhdP8aiBHc/o5BGfqc1gAAsKbVgo5m0vXOr5qQZAROJsPqNY15TWymcBwMNyzvAoKDudKwaHU8PbAZBUrsDm7zg5WC4IEY0C8V+1Gou2pt3RmyfqH/KHh4HANUWZnr8AOTfps7ljWHK4ZBD5qchVFCIw99dBdWdPUcv0U2YA+D6VZ4FXqsnkljUeVqOlOUt49bOkYfYxSIxC5k2/fD7t8I7T04yGmcuOhLgatydpcLMAzVgtCz8ZkCGWjK1GlPGm8SgVixcdS104MpaXTydC1Y9fNNvXfFjIyfDGjc+v3k7GGbPP6vwatLH7VrxGZAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle - \\tau_{0} + \\sqrt{\\tau^{2}}$" + ], + "text/plain": [ + " _______\n", + " ╱ 2 \n", + "-τ₀ + ╲╱ \\tau " + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tau = sp.symbols(r'\\tau')\n", + "tau_bar = sp.symbols(r'tau_0')\n", + "f_tau_ = sp.sqrt( tau * tau ) - tau_bar\n", + "f_tau_" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**An idea?...**: what about to get rid of the unknown $s_\\mathrm{pl}$ by substitute for the stress and then for the constitutive law and resolve the condition for $s_\\mathrm{pl}$?" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAAyCAYAAACprrLTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAF4klEQVR4Ae2c73UUNxTF1zkU4ON0YDowoQJMB4RUQOgADp/sbxzoAFxBgA4CFWDcQegAxx0k9zeeJyTteMazO9asNHrnyPqvHd25+/T0pPXeycnJv6vVal/Bl7enp6cv/YKargiMQUD8eaP2L6I+V/fagt8VX3iVl166JisCmyDwWp3eeR2PlD4zwn0XI797lTVZEdgKAfHpSgMQGlG+WUV/sYIaVwRSIFAJlwLl+hkOgUo4B0VNpECgEi4FyvUzHAK2aXAFuSVkjLL1fqUQu3ZsKi/V5q1lahwikBq/rAknsPD1II8U2BGRZzvu747YgUPKXxV+ECtffYwCYg78siWcwMKv81XxJ8WNKL2v4PsTV8r/qUpHMuWfKHxUwPe4WNH8Z8EvWxtOgF0o+GQDQKfZPCahzf62fNsH0t20BFvTouO58MuWcB1s+ENljljUt6Q6VDI+OYGYx7Sp4hBIgl9JhHsi6M4dfNcJyIbEmg8CHjQ19Y8hkAS/IggnTQaxDlkmDL0ojjUc1YteUn18UuJXBOEEHt/OvrPgWJvFeR//JaaT4VcK4e6LJf7NBCONkTDWZuRv0obWd0lxMvyydYv4bNCS8NzPW1rlVwqQrkujxfaedVtcnBK/UjRcH0nQfM7nJnBZPj5Bxr5Otc4hMCl+e+2N30d6AcUuMZqbnTSAIs7hTo3oIN7RhJ6bLwubo6RHdVPgpzGO9OxfilhSh/iR+gUNPU9u9VPit4QlNbf3W/Tz3lrDieUcjHP4jWD/nKus2GW4meWEfyp+12DeinAC65uaPzOCKeYI6YFClrbQ9dTT/a34/cR6kHAC61DNj4xsbVcOxM3H9XO0mlpDoOIXQjJIODVvjoUEHL9f/aDA1Z7P4TBhTvU4Vr+EpYM5p0H7Wmrs//rqt63T+HvbjhH13wQ/zJfjaByy4HqgZ+SgPRbu/Tn3T1xJXvWzY3crt4gelMmj1QyEzyp7zCSqDCMwFX4aZxa3yPAMh1vo2YfdImpkyyn3zhqtpjJ8Wm+oU6jLag/WFb91cIbcIh8hl99NIDZOx0o2H5Ub0xW/CJohGw77I7ALRDQ0HMtr8aK5YjNhu3K7mF35WFk0fl1gDREOtwfXsemL740XgHHqrnZTUaponnb4z3EYAQzGyKLx6wKql3ACGBst6bld10P2lekZ0bhsYI7bdtiaZlvaLREMVuzR0ZpK499XwFgfLbuO311j1wVYL+G6OuxamUDjC8G/F2PLD6E6d88q59dbgXkwYi4P1X8XtHqvO2rEfJqmmlMK7ILHyp5wzEbAmXb7K5hdmPmg7Gg7TGNjRtiRXjhi4pyeZeySPviEd4ld14cP7VK7+uximWm1IQ3wzwYP/1QvZafNig3m5He5S+z8z2nSpRCu0XAixoU/Q+WdS0dptMPoZVH93vtjFpi+M+y6sCqFcGwKAu0momCzBRpNZbaZ6MJiqWVJscvehhOJzH7jjJHr0OxMKcP24schgbTtG82n9GibLhgs88wc2GVPOL1zs0GCw3+B+U1hTaOpjHNgtCGEXLokx66EJbXRcCJRYL+JSfESy9JhQp/g30JYxcLi5NiVQLg1G6QlzWsjj8iINmvAbcvoExPUmi8pTo7dvZzRFZGMRGvaSnXsSk1eKdEQUOWm6ezI7qHqWI799tav2Hgu7HLXcGaDBMunz5KWYFylMkJBUmy79yrDv/ZVwblPlF6KzIJd1hpOzGjOOEWczuVR5ZCLK0L8h0wTgH7nERAi/maVC4pnwS47woko+yLFmcJhG1Yqg1SXCsiBAm2snvNVn5CQy9douEbWdrMqK052AbscCYdG2vQQHhJBxnMSrTxV/MwyJcci3OzY5W7DbcIPp830AjiN4Pe1o4+8NvngAvpsjV12Gm6Cl4Z2PBPJGvAUm/E8wdDFD7E1dosjnAiGPbfNklw8q26a4BTYGeF8twGfd6nBWe+rVAQ2QkD8wVZmA2fCJm5lhGOX5wv+qUX8UMafdE1PigDOdq7/+3L1P7VXjqETuXffAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\left[ s - \\frac{\\tau_{0}}{E_{b}}, \\ s + \\frac{\\tau_{0}}{E_{b}}\\right]$" + ], + "text/plain": [ + "⎡ τ₀ τ₀⎤\n", + "⎢s - ───, s + ───⎥\n", + "⎣ E_b E_b⎦" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f_s = f_tau_.subs(tau, tau_).subs(s_el, s_el_)\n", + "s_pl_f0 = sp.solve(f_s, s_pl)\n", + "s_pl_f0" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**... it's a dead end:** well, this is not of much help because once we substitute back into the constitutive equation $\\tau = E_\\mathrm{b}(s - s_\\mathrm{pl}$ we just recover the fact that in inelastic regime, the stress must be equal to $\\bar{\\tau}$. But what we need is a relation between a control slip $s$ and the stress in the plastic regime." + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAACAAAAAMCAYAAAADFL+5AAAACXBIWXMAAA7EAAAOxAGVKw4bAAABMklEQVQ4Eb2U4W3CQAyFLxUDBLoB3QBGaEeg6gSUDYr4lfxDdIPOQDcI3SDKBrBBERuE70U5ZB2JVJoIS8Z+73y2zxcuKsvSdZU0TT/IsULjllxLYj6b1gZN5C0ciTd1/DP2hAqvax/jHDEHVE0+or+y4CXWOU3gv5okyQSd2f3gzGL5cO/oxvPag26FIxyN7afq5u8/c05QhOFwE7gV9tWugffgBXbneXzd/XCAo7FN/UJH+8b+zOYgvw44Ro+Wx1fdl4eA7ApnJMiDJCouUUEramjUWwOcVIXG2KurqauGExAd99YAyXT6g7K2yCjgK9xnA08U+AqKCPqm9C1YES46vwM+I6NfeN9a+BOqJsIJKCzvcwK2buhrMpe/Jg3pur7VXKTH4B5CMf8SqlwMriZ2BgUdpaTGjykhAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle - \\tau_{0}$" + ], + "text/plain": [ + "-τ₀" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tau_.subs(s_el, s_el_).subs(s_pl, s_pl_f0[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Evolution equation:\n", + "Let us be more precise in defining the goal of the derivation: Inelastic behavior is path dependent. That means, during yielding, the value of stress does not depend only on the value of slip but also on the history of loading in a material point. Thus, we cannot get an explicit relation between the stress and slip. \n", + "\n", + "**But!**, we can try to find a mathematical compass that would tell us: \"in which direction would the yielding proceed once it went through a known history of loading?\". In other words, we want to establish the relation between stress and strain (or shear and slip) in a rate form, i.e. $\\dot{\\tau}$ and $\\dot{s}$. Which is a short form of $\\displaystyle{\\frac{\\partial \\tau}{\\partial t}}$ and $\\displaystyle{\\frac{\\partial s}{\\partial t}}$, respectively." + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAACpCAYAAACcRbKoAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tnQd8leX1x08WBEgYYciSIUtBRUHArTgR6t7bVitaLVJt62wF3FuLf8RtKRZFsVZcdVSGKMqUITKVDWEmECCT//k+1ze9hox7k7tzDp/7SXLv+z7j91ye33vOc0bSXhUxMQQMAUPAEDAE4giB5Dgaqw3VEDAEDAFDwBBwCBh52RfBEDAEDAFDIO4QMPKKuyWzARsChoAhYAgYedl3wBAwBAwBQyDuEDDyirsli/6Av1n7jUxZOUUKSwqjPxgbgSFgCNRKBIy8auWyV3/Suwp3yeNfPS5njjtTPln+SfUbsjsNAUPAEKgBAkZeNQCvNt6anZctm3Ztktz8XHlgygNSsrekNsJgczYEDIEoI2DkFeUFiLfut+7eKrsKdrlhf73ma/lsxWeyV/9t2b1F5m2c50jNxBAwBAyBcCNg5BVuhBOo/eK9xbJkyxLZvGuzm1VqcqqMmDxCNuVtknHzx8mAsQPk9fmv21lYAq25TcUQiFUEjLxidWVicFxLNi+RcQvGyerc1VInpY6c1PEkmbFuhrw852WZuGSirN+5Xr5a/ZVs3LkxBkdvQzIEDIFEQsDIK5FWM4xz2bBzg7w4+0X574//laKSIumS1UWGnzhcGtZtKM9++6zMWDtD0lPTZUH2Avlp+09hHIk1bQgYAoaAZdiw70AACOQX5cunyz91WldeYZ6744QOJ0inrE6SX5wv63ask8bpjeX0TqfL6pzVsnzbcsHEaGIIGAKGQLgQMM0rXMgmULsb8zY64sIc6OVxRtN6cOqDsiN/h5spZsSDmh8k+2XsJ7PXz5Ztu7clEAI2FUPAEIg1BFJjbUA2nthDoH5afTl0v0Nl8ZbFApHlFeTJ7A2zZX72/NLB/rj9R5m3YZ50aNzBBTBz/tWsfrPYm4yNyBAwBBICAdO8EmIZwzsJSOjhUx6W0b8aLR0bd5RBXQbJhIsmuDMuJC0lTYpLimXBpgVCHNiyLcuc27xl4AjvuljrhkBtRsDIqzavfhBzx1y4cvtKWZO7Rnq16iXTVk2TPUV7BK3s86s+l6FHDnV/f7fxO9lTvEdenfOqbM7zudQH0Y1daggYAoZAQAgYeQUEk12Uk58jizYvchpWgzoN5IOlHziyapPZRo5rd5zce+K9cttRt0ndlLrOG3HST5PciwBmE0PAEDAEQo2AkVeoEU3Q9lblrJJZ62ZJm4ZtnOchXoVI37Z93c/MOplyZrczXexXSlKK8zZ8ZNojsjZ3bYIiYtMyBAyBaCJg5BVN9OOkb7StpVuXyrzsebJ9z3YXmOy5zB/f7vjSWXRt2lWu7nm1c6FHA+P6+6fcX3ptnEzXhmkIGAJxgIB5G8bBIkV7iNvzt8uXq7507u9JSUnSNrOtIyfyHJ5ywCmlw0Pj4m8yzy/ctFDmbpgrY+aNkXaN28ntx9zuNDITQ8AQMARCgYCRVyhQTPA2iO/6cOmHbpY4aFx88MXy7g/vupiu9o3b/2L2ZNw4v/v5MrBwoGTvypYLxl8gI78ZKVnpWTL4iMGSpP9MDAFDwBCoKQJmNqwpggl+f2FxofMsXL51uSOeKw65QhoVNZKcvBw5o/MZ5WpT9VLrSVa9LOnWtJuMv2C8C2B+dNqjMnbe2Go7cODtuHbtWpk1a1aCI27TMwQMgUAQMPIKBKVafA0mQDLF44BxdLuj5dpe18qi1Ytky84tclqn0ypFBrLr3ry7iwnbVbRL7vnvPfLP+f+sFoGtWrVK+vbtK0OHDpV58+ZV2q99aAgYAomPgJFX4q9xjWa4YtsKmbpqqrTObC2/PuzXcnirw2VPxh5JSU6Rg1scHFDbxIWhgaUlp7kSKm8seMO52Qcjn332mWzYsEG2bNkiP/30UzC32rWGgCGQgAgYeSXgooZySqtyVznnjIFdBsqF3S+U9TvWy7aibdIwv6GkJaUF1FVyUrIc2fZIeeL0J1xbwycNlzcXvhmwFyImQ8irZcuWkpmZKXl5vuTAAXVuFxkChkBCImDklZDLGrpJ9WjeQ27oc4MM7j3YlT8hwwbu8pBX0t7AnS849xrQeYCM6D/CtQOBvTT7pYA0sD179sjs2bOlT58+bmLp6b60VKGbpbVkCBgC8YaAkVe8rViEx9s5q7M8dupjckTrI1zP1PUik3xGQYYk7w3u64PWNajrILnvpPuclyIxYBS2rErmz58v27Ztk0MOOUSKioqkcePGVd1inxsChkCCI2Cu8gm+wKGYnn98Fm7zufm50qygWbXc3jn3OqXjKdIkvYk7S2tUt1GVQ/z000+lXr160qRJE8nIyJAWLVpUeY9dYAgYAomNgJFXYq9vyGe3adcmycvPk/qF9YMyG/oPBGePPm36OIePemn1qhzj559/Ll27dpXt27dLo0aNpHnz5lXeYxcYAoZAYiMQnN0nsbGw2VWBAEl2c/bkSMGeAkkpqVm2DNzoCXiuKmgZ54zp06dL7969ZcGCBdKqVStp2rRpFSO1jw0BQyDRETDySvQVDuH88ovyfR6CBVJtrSvY4Xz77beCw8bhhx/uyIufKSk1I85gx2DXGwKGQOwhYOQVe2sSsyMiNmt30W5JKVTyKInMML/44gtp2LChI6zU1FTp1atXZDq2XgwBQyCmETDyiunlia3BQVx7CvdIclFyRDSvkpIS+fLLL6V///4ydepUF+fVvXv3sINSXFwsO3fudBqfiSFgCMQmAuawEZvrEpOjwmyYX5wvycX6zBOBGpObNm2SpUuXypAhQ2Ts2LFyxhlnOG/DcAhESV+rV692GTzI5tGgQQPp0KGD9OvXz521kVHfxBAwBGIDASOv2FiHuBjFzoKdkleQJwX1C2Tv9vCzFzkMd+/eLXXq1JGNGzfKoEGDwoITeRMnTpwoH3/8sfA7LvloeTiLrFixQo499lgZMWKE7LfffmHp3xo1BAyB4BEw8goes1p5B56GizYvkh+2/CB7k5W4IqCEkFUD1/jJkydL586dncdhKAXT4DvvvCPvvvuucLbGuRpEeeONNzqihDhnzJgh9913n4wbN84lBTYxBAyB2EDAzrxiYx1ifhQ/bvtRJnw/QdblrpMGWxpISkH4Pf7mzJnjnDWI8zrnnHOkfv36IcVp2rRp8txzz7msHbm5uTJ48GCXggrS2n///V1s2UUXXeQ0rzfeeCOkfVtjhoAhUDMETPOqGX614u6ikiL5es3X8tHSj9x8U3enSlJxeFUvzrt+/PFH+eGHH5xGdNlll4Uc66OPPlpeeeUV+eijj5zJ8IYbbpDk5GTBYcOTtLQ0R2JcU6koAcrbb4ucdZZW7AwtyVbar31oCNRSBEzzqqULH8y0C0sKZdvubZKZnilN6zeV5MLwextCWmTU4PzprbfektatWwcz5ICuJUP9QQcdJDNnzpTDDjvMaVtt2rSRdu3a/eJ+zr4qTQa8Zo3IgAEiV18tqrYF1LddZAgYAjVDwDSvmuFXK+6mMvLNfW+Wlhkt5dZPbpWiwqKwu8ovXLjQaVycOUEoVQkEA9lt3bpVsrOznbcg2tu6devkT3/6U4UppagPRiD0tddeW24XeCHOnTvXkds+UqDR2nqvdiCaOVj0cE40/cc+l9kbhoAhEHoEjLxCj2nCtpiTnyM783dKZkGmJKWGz2xI/S40r06dOlWu8fgh/cQTTwgvNDW0JBwvCGrGazA/P7/CNZk0aZI74zr77LPLvWb58uWydPFiGXrllaIuj75rdHwaBCai98rIkaKdiR6eifrV/++acluLwzeZG1n8LUwgDhcvsYds5JXY6xuy2ZXsLXF5DZH0JK2nFUZPeZwnVq5cKQceeKDUrVs3oDngOUi2+eHDh7szqqysLOfgQR5Ezq0qEpw20OzwZiwrkOiHH34orZTcfqWej3LXXf+7ZP16kW++EVUPRfTsTAPRyt6eGH936SLqySL6VJAY87FZJAwCRl4Js5TVnwhnWvM3zpfpa6YLGd8pFtmuUTs5sNmB0rSezwxWUFwgOwp2SGbdTMGMGM70UBAXJj88DAMlLzwFCSg+7bTTpFmzZgGBsWPHDsE8ecwxx5SbL5FgZRw1zjrxRGmG9oHGpWNT90dRphT1p0/8TR3ixzxqYgjEGAJGXjG2INEYDs4YY74bIy/PeVmo3dWgTgNpk9lGOmV1kmZ1mjkzYUp+iny5+UvZnacOCdt1H9cg5b///e+uzlZlcsEFFwRdPBLyIjXTAQcc4Ex/gQjXDhw4UMaMGePOtyAwkvhiNqxIyKjB2dhvf/vbfbJnYGqcMGGCcCbW+557JJUYM7SvBx4QrYop8rvfiTKlaCBaRc0nxvvqfenMoiaGQIwhENjOEGODtuHUHIHsvGx5ac5L8n3295JRJ0OocgxpUWySs611O9bJjHUzXLXkOsV6flSSKoXJhVKUrM4aPZIke1e2PPLDI5JWmCaNVzaW9Fw1JZYR0ikdeeSRQZMXWS5IA8X5VaApmSA7zrz++c9/urROmAIffPBBlxWjojY4V8Mho0ePHs5F3l++UZPg2+r6DiEeqmSVjKu8tqcDE3nySVFmVPvpvnMui4H9bQgYAuFBwMgrPLjGdKsbdm6Qq9+92pkJyVfYrVk3GXbiMLn6sKtl5rqZMj97vry3+D1ZnbNaSpJKZE9qmQS1ajEr2lsk6/auk1T9d9IJJ8ldR/qdB/08e0gjWBd3AobJL4jmhCt7oIJn4olq3jv99NOlbdu2jsCqykeIMwZaGoHQ/oLmR/wXxHehOnJkvvCCzzGDs62HHhJp316U7QIdml1nCBgCYUDAyCsMoMZ6k8MmDZPJP02Wq3peJY+f9rjUSakjaSlpkpyULD1b9hScM4b3Hy5vL3xblm1d5s7DSAu1fud6R3ZJe5MkvShd+nXuJ/079pfBvQfLfhmhyfuHmQ739o4dOwZFXngXnnvuuQ76slpUeetBIDIkBdH5x3Dhck9cGe7zD995p/R49VVJwhlDkwPL3XebCa08MO09QyAKCBh5RQH0aHY5Z8McmbxysnRv3l1G/2q0Iyx/4cyLV1Z6llzf+/rSj3Lzc+Wxrx6Tp6Y/JUkbkuSY7GNk/J/H76O11HRuJOBdr558OFEEo3nRbyCk5Y1vm8Zl8SJIGeJDcJnHVDjymWfkll/9SgZp1o0kLcnizIRXXCHqtljT6dn9hoAhECIEjLxCBGS8NLN9z3bp2rSr05bKEldlc8AD8aY+N7l7x4wcI2m7w7ORQ1yQCGdWlbm4VzbWQD7DIaOwsNC500N6uOejcT00TM2n6h5+o6amSlEtUP7v/3yOGUZcgcBq1xgCEUPAyCtiUMdGRyd2OFF4JVUjLTwZNq489EqZnTFblm9cXu0JYRqELHDIIGu851BBXBXkhSbEWVQ4hTMxzrq+//57mTJlioZsfSOvjR4t12m/f1Tnj3TPMeOoozSZo/03CedaWNuGQHUQsP+V1UEtju+pDmmFcrp4BY4fP16TU0xy503kEYTEIBJiur766ivZtWuXyzdInBXJc8k5GGqBNAdoPsKXXnrJeSUm5eTIHTqO3yqBpuBJqEl65eCDLbNEqIG39gyBECFg5BUiIK2ZwBBAy8JBYvr06UKQMLFYmO3wMoS08DTEmYJ4LbQjHDfCQV6Mg5RQEOiWWbOkvZ51HYGZ8KqrfK8A8ikGNmO7yhAwBMKBgJFXOFC1NitEAO3qvPPOk7Vr18qoUaNcqZOePXu6c64FCxbI888/L8cff7zzHITkSBEVLsEh5ETSHk2dKprRV7TqpC87fKIHHocLUGvXEIggAkZeEQTbuvIhgMmOasWfffaZ/Pvf//5FRne0Lcirf//+4YVLg5Plgw98cVsknX39dVEWNY/C8KJurRsCIUPAIi1DBqU1FAwCJMwlLdMXX3zhnCbIdEEpE34GG9gcTL/uWrLMv/aayC23iNokRdNyiJD+yTwKg4bSbjAEooWAkVe0kLd+XeJdtDByJGI2XLJkifMyDKR+V7XgI7Eu5sGnnxa5915R26QvcwYZM6zkR7UgtZsMgWghYOQVLeStX+eQQTonMrfjvAF5kUiXtEwhFy8jPMSlWTNk6FCRv/zFlx0+5J1Zg4aAIRBuBIy8wo2wtV8pAuQj/FEDgpctWyYk5G2vWpB/uqZKbw70Q863tCKz/PnPokwp8te/+siLMicmhoAhEJcImMNGXC5b4gz6iCOOcK7xX2oaJoKXyysKWaPZUvH4X/8Seeop0Wy/vszwJ53kKyJZo4btZkPAEIgmAkZe0UTf+nY1uxA8D8kMH1LyIm5Lz9NciqczzhC5XnM1HnqooW4IGAIJgICRVwIsYjxPgbgv4q3I4t63b99SMqvxnDQ7h/ztbz4zoXo1ym9+Y+dbNQbVGjAEYgcBI6/YWYtaOxLIa/v27S6TBt6HNZZ583wVj7XYpHPK0Azxmn+qxs1aA4aAIRA7CBh5xc5a1NqRoH3Vq1fPlScJpqzJPoDhmKFpp5wnoZog3TnXccdZ/NY+QNkbhkD8I2DehvG/hnE/A8qTZGgWd9JEVVsKCkS0/pbLTUhGeqof45hhgcfVhtRuNARiGQEjr1henVoytp07d7pzr4PJ4l4d0Yzw8vLLojmnRE44weegccgh1WnJ7jEEDIE4QcDMhnGyUIk6TNJBEaAMcbVq1Sq4aRJ4vFzrikFcY8f6nDIwGZJs18QQMAQSGgEjr4Re3tifXI5qTVQ07tWrV3DnXVpCxZ1vca6FZyGOGb/+tZkJY3/JbYSGQEgQMPIKCYzWSHUR2LBhg4vvoq5XwKJ1v1ymjJEjRciS8cgjIiefbPkJAwbQLjQE4h8BI6/4X8O4ngHVkvEwDDg4WV3qZdw40RLIIv36+Soec75liXXj+ntggzcEgkXAyCtYxOz6kCKwePFiR14BnXdt2iTyzDMib70lcuGFIoMHi6agN+IK6YpYY4ZAfCBg5BUf65Swo1yuDhcNNYC4SvLauNEXvzVzpsgf/iBy5ZWi/vVGXAn7zbCJGQKVI2DkVTk+9mmYEbhQNShenHuVK3gUbtsmMmiQSG6uyOOPi5x1lpFWuWBF/s1Nqg3/oJlMSK7sLx06dHBriln4OALFY1C26fdq/fr1gtPQXv2e8RDFuIk5DFQ26kMV1RB6azHTGgXYB9phkNdh2SjQGMhDahg6QtJsHjQPO+wwqVOnTpCjCM/lRl7hwdVaDRCB448/vuIrcczQbPMuoS41vqh4rFnoTWIHgSlTpsjVV1/tvEXr169fOrArrrhCnzVy5eGHH3abeyzKCxrITjUDwjWK1HsVAj5JA9uHariF/1wqGzsJpR944AGZqRaBQO+prL1Qf/bEE0/IunXr5P33369R07Nnz9ZKQn+V9957zxWMjQUx8oqFVbAx7ItAdrbvbIvikUceKfLooyLt2u17nb0TEwjcq5Wp0Vo8ycrKErSyFi1ahHV8EA4aT1I1HHaaaDzgtddeWzrujzVDy+jRox0RDxgwIKzjjpfG0Uh5EYf5Fw1HIZlArIiRV6yshI3DhwBmwqVLfd6E+lQrl1wi8qc/WWLdGP9+tNMHi06dOv1ilGhlr7zyilxwwQXufTSwv2uJmm+++UaaNm2qx5ZXakavj+Xoo4+W8847T8aPHy+TJ0/WCjZawuZnQbPhddNNN7nEzc+oww7FS6lA8O677zov1dtvv92Z/GbNmqVFsl+VFStWOO0AjZBipxWZpOmfnJqecM9YDXafoYVLgyUvTKfPPfecrF271qU5+41WMejSpYtrGs3u008/VcPBPyVbH8o6duzoSBOShHSZz/PPP++qivfv39/dg6nvjjvu0Oe2I+Wiiy5y9zO2W265xREs2hT3X3PNNaWVGCDyf2ntOnDk9zPPPFPIXuPJ7t27ZdKkSU57WrlypcPsBM1IQxseDv/5z3/k9ddfl9///veaYe0F4Z7falUG8o+++eabctRRR7lisaR0oy3eYyysP2vkpXjbpVaTDz74QCZOnCiEw/AwQ1/MO1RmR0sPVbq09kvUESDwmIrHI0aI7kQiv/ud6M5kxBX1hal6AGySnB3xImMKmycb+dSpU93NnJk8+eST8uGHH+rx5SDBXHzrrbe6DY7rkNWrV8ucOXN+0RlnSvO0SgCbIcIZDpv4f//7X/16/E4uvfRSt/HOnz/fbfJbt25177FZXq/mZkrtVCT+xMU1bLJsyp4GuUcLmTJmzmQhxIqE6yDCHj16yDnnnCNff/21PPTQQ25TRz7//HO57rrr3KbNGHmfn5whIXl5eW78aKqeQHjfffedrFmzxr0FDsx5yJAhjuhvu+02WbhwoYwaNUqPhPVMWOWLL75QX6Y/qIV9Pz0WPssR2VdffeU0J4Q1or1u3bo5EoHYIcK7777bfY54/dyoqdZYpz9r9fGuXbs6XCF1SJW1xQzJWBo0aCCYiMEA8oXEEdYV7OiL60499VTZvHmzuz9UYppXqJC0dmqGAF9q/c8paqPXRzuftkWeQr8n45p1YHeHEwGeqj0Np23btu6p3V/YaNG42Ch/RYkalQMPPNBt9sEKGhjalqfZcD8aCe299tprTkuATCizc//997uNtCrhWjSnZlpt+9xzz3WXoxVhkqzKEQNive++++Tyyy9391Fg9c4773TkghctGlSfPn2cdkVbZ599ttvoOStDUwxU2Pg5w+pHfKMKRPOPf/zDkSEmUM6keCj4m9axY+w4ygwcOLCUvNAsf61ZaBgvWW0gNbBkfGhi7du3d+1C4I899lipFsh7/g8VaGNPaWYbNDtIOk2TX1922WVOg2Z8rD1aNpo479NHamroqSb0LbrpmxgCQSCAxqWmDpcpA6+oP/5R1Mgu+qgaRCN2aTQRQBvCdISgYbARehsemyRP3Tg0eBsk11ECx7snmLGzCfsHtbOZTps2zWk3EKQnmCYDcVRAK3z22WdlyZIlbtNGm0AgQZw3eFUmbMxoKZ4wtpYtWzpPSzTRBQsWONObR4JohZgDMQUGI+DnX3kBsx+OJmg9kBEaKhh453+QKJoP1yBoeOCBuRUtj/u8F1qntzbM+5hjjqlwaGjWS9W0f7JmtUHL9IS+MN3Sf/fu3Z2WzcMDcz1UK5hjLg3lGaiRV4VLZB9EBAFqcOkX3JUw4Yl32DDRAxHR/+kR6d46CQ0CEJG/JuTfKuTF5opmVvb8yf/8g83dM3F592M+4+UJ10Au/g4atI0pC484/zMe2kLDqUzQuDyvwz/p2SpnacE6f0Be/tqZN080JcaGlD3n4W/vM/rj5T93DzP/sXPW5D82+gQb71p+lvV45G+8PpFFixY57e+0005zGi+FX9EOB2uwv0dwXEeoQGUYoJlBhJxpcl7nCWPBFIngtUk7nIvx4ryPFHBoeaEiMCOvUujtl4gjwH8qtb3r46CPtNC4Kor3ivjgrMNQIcAmixaEuQpTF0/lCGdd3rkQfzfWPJVstGyC3MOGioODPyGVNybIjKd+YplwzfcnkvKu996DPNC4cAjhXOaUU07Zh2Qqu9/7DO0FjcNztmBeaHOYy5gTP3GlxzGCsbHxQxpeCSCIDNMbGiQEBHGg3RCDFqhAUpzVeWdO3AdumO8YA8LZGO1z/oSJFXmLbDVBCqSHdgleN9xwwz7ETXNob5gtedHvdE2ijRPIGWec4foPhRh5hQJFayM4BHga1adA3TFEje2i7k2ip9DBtWFXxxUCHPpjlsLBAFJCO+F8hM3ce8pH62EDf/HFF52HIhs+nnGehlLRhGlr+PDh7qkeMoJEeG/ZsmWuPTbY8uRxDXh/SXNkooVAgJ5zR+vWrZ0WieaE5x7mOMiNs7zyhI2a86Y/6sMXJIJHJaZBCAJSwoniUQ31YMNH+8CjD1Mi53MIZlBMfJgRMbGhYXGW5DmplNdnee9BDjhgMH+cRzDlohkRWIxgZkRDxRGEseCAAdbBChoVZ4poU/zOurFGaHb0gUMJXqQ4h9A382EtwYkzxVCJkVeokLR2AkNAnyidYwaZMqhyrK62+u0P7F67Km4RYOPHQw7NCA2EMyHOZzgT8rz+MD2yyePIwOaNWzabvb82UREAEBCbJK70bMhoM5AHZ00VCW7eeDhCYB6RcC0u9rSDBsi5FWd3lREJxIdXHmPG8YEN+6677io9l8NtHsE8yZkaGhLt4+SCoMlwDXNHM2GDZ9x4VgYjV2kVcbwCIWs0LNo6QoP6PbMrmikOGzxAcBYFwRGfh/NLMAIh463IuAmFeETPqsGAc62bb77ZPZDQJ96OzJff0Yx5WOCaUEmSTtLnRxmqFq2dhEeAJ0ncfHmy40krYMEVGDMFhSOJgVGPLP1WW6qngAGM7ws9N2vOiNjQMLVx3jJSS9t4ZyXxPUMbfSQRMM0rkmjX1r54PiLmhfpbGoTqam+R8knPAtRmVFtRqVXzxlyFKQlTFQf2aAgfaU02PNY81+9aBYhNtsYIGHnVGEJroEoE1AVZbUFEmPocNPAqjJH8aFWO3S4ICQKYktpo+RqCcdHa0b4IhCWYtmywcEg6tEYSHgEjr4Rf4ihPUL2MXNyWPnmrgV3U0C9qII/yoKz7SCOAUwaZ13mZGAKhQMCCaUKBorVRPgJ6YCvnn+8LNtaDXQ0wMeIqHyl71xAwBIJEwMgrSMDs8gAQwBWewGP1flKXMdHDDdIpiNqKArjZLjEEDAFDoGoEjLyqxsiuCBQBMiGQSFQTrqq/smjgjS/tk8Z3mNReBAjYJQaKWCZc5smEUVZwCydfHtd6wvkY7t7EWkVacB/3T/lUk/5xTCFvor+8/PLLIY15om2ChvEEjrYQX0d+SOLdwilGXuFEtza1jbalwY+OsDSTtXPQ0LgeDfqoTSjYXMtBYO7cuc7TkHggMqN7GTb8LyWYls2OdE2JJpR5GTdu3C+mRRD0xRdfnGhTdfOh5heB0mVL5IR6skHZcUhZwhMSbq8mtRcB0taQ8oWoeYIT0/T70E5LRjTUGK41WhIoueoZAAAcs0lEQVRhs5ZI2EuSVsjMJKIIoN1EutIt6ZBI0Ir7OxkXSB5LRg2CWSkHQjwgGRh4IieQmEzr/PSEpLAk1EXropYU4yfLBXNBSKdEuQ+8FNkYydDufcbnEB6lP0g1hRcjwc4Ew1bmxcj3lzFzD+PkHoJ4y7uHAGXPS5KUS6RbIrUTgbderkbepyoz7RE6S5Z3sqx7ZV74P0NwMMHThAcQiEw9Lk9IMfX999+7LBXMl/hJgp29NE6lF/78C2PioYD9mPETjFxWwJPQBFJE0S9rQpte/kP+/xIAThJe0jeRs5DAZdaPtSIOj7mAJe/TD0JSX9ol1RfCWpEZhKBlhLUlg4eXTYNrSXrMutEn8X58zt9k3aiuBExeTAKghg0bVmm0eXUHYvfFDwJklOY/Gyl5Gqhmda7+x22gmQim6Zf/Xc0esEo3mr36Mok8AmRXoFZUpISMEpT/IAchmyM/yVxBklsyZLCpk68Q8oIw+L3swy/potiM+ck1eCZCggjvvfPOOy4jOXsQm+Ann3ziSpCwabJBky2CjRwC4nvJ9WSSwOxXNiEubZLhnntI+wQ5+N9DCZGy90A8pG6iL1z+mcO///1vl8mC3H0IJk8S1UJqEBqZQyBpCIEUVcyf+9ms2bwhWzAiUwX9kwYLzRNiJA6O+8CyPPKiLfIxEtzNtZA9mi1kAgEjEAylUegHkmUMlE8hrRP1zhgHWd8p/IkGCLakc+LhgTImZOnnwZQHE+ZKKRuPbMGN/iAz1pKxU7eNNWHtGDdpqkgTxfgpSUM/ZC5hrOCAKZiMKxB5dSVg8qIDviwMwD8DcXU7tvviF4ExY8a4L+jVGqPT6Omn5Rj9j9FQ/0Ns0zRPp+uTr6Vsid7asoFHUkgPxAbJBkccFxvoCC0mypkO5kHIgI2UDYu4Lq7xnuC9cbKvQAJsiKRFQquCJHhYZqP3UklxHQ9OFKGkT/IfQpRsjqR38vIRkoaJTRi3/PJKrrzxxhvuHsjCu4ds6949JNL1F/pn32PDh9ggP86w2LRJX4W2hlYFGXGdR3BoX3xGEDYZRfgcoQ2vSCd/U+iSMXMdKbMgMMimon0WYiSlFcRAWirGBZlB2px7IWiqVDH2anzRHrXDwAnNinEjaHloTWSB58GBasikcWI8YMPYeEhFM0MDQ7PlfjQnHjAgPdJnkfuRtF/+pWpcBz8LBI0pkZRYrCnEBYHRb2UZ7P3bKPt7wORFB3x5qCpqUrsRIIFpW30yvEhLHWRgQiZPoT7lHqlPVUfWbmhq1ezRACh3AUF5dabIHs8GxUbJMQMJaiErNnRv8y8LEp+xKbLHcI2/SZHP2ODQaLzr2IcwhfHUz6aNhsfL2wQpyMj7mDHLkpd3Dya9svdg4uSesuTFeNDsIAw0P7RJXpQWwWTJJs49ECk/6d+/bhmaGGP3n5eHAZs/pkXaoXwLGiYC8VUkaKmY9SA6b6xo215FZOaImZO5Q0ye+Y5s7mhbmF898oJceQiAUKnATP9oXBApa8LYycWIORQCYq7cA7lRG4yHFd7nYdZL+FveuDH3Mj/aRNAGwbsmEjB51aQTuzexEOip/3l6qcdYfTJEa2Zp5w5fA9t1YqFTe2bD0zwbF2TiCQSC5oDZq6x5sDrIsOGzmbL5I7QPGfL0Tv+QCGZEXp5ACPTtJaT179e7B3Ir7x7uLStoNByXkPiWnxDs22+/7TQOTztCC0PjxIQKuZx44oku6S2m1MqEMULyEEKgeUIhOnDgwcATSMFbBx4qGAOf+5tAOevibzDwhLXyrqFNfse05z0IQF685+Wl5D6qVnN2hVbnmSQhT7S4igTy8oiLa1hDvjvg7fVV0b0VvW/kVREy9v6+COAKr+ahq9QksUz/s5SomSdZS33rt2/fa+2dhEeAzZBDerQRbxOCNHDA4Am9rHmwMkDYwMojjsruYcNHQxkwYIAzdXkE592Dua+scA+bejD34NqPQ8T1mo+T/jjz8icA+qAvTIe8j/MJpjY0NciOcZVHpNzHZ7TJfWgvgWzmXA+hoCV6wsMCuCN8BilRM8wbJ+1CepAQRFITweQKMXOmhYBPKB5Ugh2T+TEHi1htvJ6nUbWz6/9OUcO9/Ef/EzyqnkK79LDYiKs2fiF8c+ZJGpMh5yuYkDBH4bSAVkONp0A1CVqD7CAwvO3YxANxmUcrOPPMM93ZGITBkzzCvTgasFGXFe8evOwCvYex0SZkQZtoHczRE7QczvwgC87D0Fww1bGhQxo4VXA/JM/5H0TjCXPuoGY54t8oDIlJHpMobZUXD8d9jIfzJ8xuOJOguaEJeuQFIXLex1gYF+uCkwXXQNxoS9UV5kMb4Eu/9DlhwgR3XhZpMc0r0ojHW38Ql9rktXCPL+BYvZU+0UPz7J9Li8fbdGy8oUUAzzTOQ9B80MIgEM5h8PYL5gmfDfXYY491HnS0g2u292Rf2YhJ7Aup4IhALBWEilmPMzLPqaDs/Weffba7B4cN7x7Mk/SJk4Ln6ejdB0FDkJgFGRvkwHmSp01BRjiBeCZE3kcrZfxoepyNUdsKJwU2fmpe+Qt48R7OL2g03MsccGLxd6f37uGhgPpfnDsRTI2WxRmX56rOdbi/swaYMzGPQqRoZDi7VORUURan8v6GbCn6iXMLgee0iVm3vPO88u4P5XtWzyuUaCZiW2rXV9cq0aAP0RNiUT9b+YOaRKpVzysR8bE5Oa0CrzTOPNh00SI4/PdioHg654X3oXe+Uh5sPM3jvAAZsBFDJHzPMMmhvSAQBFoTG7jnjIFpjCBnnv494uAexuB/zuLfZ1X3ePPB9ZyNn3FB0rSPVgUpoXlABJhHGSf9o5nxN/17npXcw5jxuGTzx0uQcynugbAR/qZ9NCnaoH1IrTzTJ9dzDWMCV+KxKGQJ/nhseiVmOA/8SUNYGBdrAR606a0Bn+Fw4V+SxjMBc1bHWMGb6/id+yEq1ofrMJ96603IBM4eXAO2zA2cGD/3o02jjXvC2NEMPccR/7UJ9Hcjr0CRqm3X4UWosS2irvB6Ku7LDK9nC/qI5VLQGHnVti+EzTdWEcAFnzgqCIZQAn8HmlCNGXK95JJLXLiD544fqrar246RV3WRS+T71IYvGsslzz4rakvBvUjU57Y01ZORVyIvvs3NEIgPBOzMKz7WKXKj1ANleeYZ0cMA0dB7X8VjPVA2MQQMAUMglhAw8oql1Yj2WPTcwiXU1cBTDVgRjUgXPXyI9qisf0PAEDAE9kHAyGsfSGrpG+pKq7lmRE9iRZOi+QpHqieRiSFgCBgCsYiAkVcsrkokx6QHsZoO21fKhEzfnHVp6hz1B47kKKwvQ8AQMASCQsB2qKDgSrCL8SLUaHnNxinq5yoaZCPqu2vElWDLbNMxBBIRAdO8EnFVA5mTxtQ4LYvgY61WqxGHooEzgdxp1xgChoAhEHUEjLyivgQRHgAZMygSqXEhohVeNeRetJYBaawjPBDrzhAwBAyB6iNg5FV97OLvTo2W14RoPld4zQ6gddlFk9NZRvj4W0kbsSFQ6xEw8qotXwECjzUxpzvX0vQ0mu5atA63JdatLetv8zQEEgwBI68EW9Byp0PGZy3P4F5aNLLUQUPTyZgYAoaAIRCPCBh5xeOqBTNmTYipaaBF/vMfkd//XmTwYNE01KZxBYOhXWsIGAIxh4CRV8wtSYgGhGMGHoWUX9ByCXL//aKlYEXTS4eoA2vGEDAEDIHoIWDkFT3sw9czRfgoYTJkiI+sSLBLRngzE4YPc2vZEDAEIoqABSlHFO4IdMb5Fo4ZV1whWlDIV4uLOC4jrgiAb10YAoZApBAwzStSSEeiHy0I5wKP33xTRCvMitb50eI+kejZ+jAEDAFDIKIIGHlFFO4wdaaVWmXBAl/g8dy5vorHWgLcMsKHCW9r1hAwBKKOgJFX1JeghgOg4vH06b5SJpx1oW1hJtRy3SaGgCFgCCQqAnbmFc8rS0b4jz7yucBTvuS++0TOPNOIK57X1MZuCBgCASFg5BUQTDF60T/+4at03KOHyFNPifTrZ6meYnSpbFiGgCEQWgSMvEKLZ2Ra27NH5MEHRf7wB5GLLhIZNcpX0sRqcEUGf+vFEDAEoo6AnXlFfQmCGADnWz/+KHL33SJTp4rcdZevlEktCTzeq4HXubm57tW0aVOpX79+EODZpYaAIZBICJjmFS+ruXu3yJQpIjfeKLJqlcjo0SK3316rMmZs0xi2kZpY+AqNYftIz/oKOfMzMQQMgVqJgJFXPCy7ahry7rsi997rq7v1t7/54rjiYewhGmOxap2zZ8+W8ePHy+rVq7UA9AeSTd5GE0PAEKiVCJjZMNaXfcMGX+DxxIk+hwwS63bqFOujDvn49ug53xTVPFu1aiU9e/aUOXPmyJYtWzSJiGYRMTEEDIFah4BpXrG65CTWJWPGsGG+dE+4wBPD1aWLSC10zMjLy5Nvv/1WDjnkEOnVq5fk5+fLzp07Y3X1bFyGgCEQZgRM8wozwNVufskSkWuvFcGz8I9/9FU8btiw2s3F+42bN29WX5Uf5corr5TMzEwp0qrQduYV76tq4zcEqo+AaV7Vxy58d+JJSJYM1S7k1VdFzj9fpBYTF0B/+eWXUq9ePTniiCMc7kmWaDh83z9r2RCIAwSMvGJpkVSbkNde82XJ6NhR5P33Re1kImlpsTTKiI8FF/lp06a5862uXbtKgabBSlbTaUotCRGIOODWoSEQBwgYecXCInG+tXGjyIgRIsOHi1x2mag7nch++8XC6GJiDAs08TDnXWhcOG9AXGm1nNRjYmFsEIZAlBCwM68oAV/aLbFKnG89/bSvgOQtt/hiuerWjfbIYqb/nJwc5x5/8MEHuzFt3bpV6mguRwtSjpklsoEYAhFHwMgr4pD7dYgzxtdf+0qZqNu33HOPzzHDiOsXq0J8F5rWQQcd5LwMN2j4QKNGjSQjIyNiq4dbPt6Oxx9/vCbst4z9EQPeOjIEKkDAzIYVABP2t3HGmDBB5P77fV3hEj9okEh6eti7jrcOZsyY4Zw1OnfuLJs2bXJehx31TLBJkyYRm8oozR85dOhQR2AmhoAhEH0ETPOKxhpQd+vJJ30Vj/v2Fd0VRbp1q1WpnoKBHfI64IAD1OGyoXz//feyZs0aOemkk5zLfCRk/vz58tJLL8natWvl2WefdQHSRx11lPN8tHO3SKyA9WEI7IuAaV77YhLedzAPXn+9LzfhJZf4HDS6dzfiqgR1tB2yauB1uGLFChfj1UWDtcPtbUguxVdeeUWX63pHXJgpMVm++eabcoueTU7UrCeMycQQMAQij4BpXpHEfOlSEdI76ZO8vPCCyIABovawSI4g7voiOBniwNOQc6fpWjUakyEmxHAJwc+TJ0+WRx55RGbNmuWy2Pfv31/+ofXTUlNTBVJ7Wh1s0MIYy+GHHx6uoVi7hoAhUAECpnlVAExI3+bpnIzwF1wguhP7fj/3XCOuAEBeop6YaDcHHnigrFu3zp05Ya4jx2G45NNPP5VLL73U9fv8889rKslOehw5SFq2bCnNmjVzWt/ll18uuzXTPyZNNEETQ8AQiCwCRl7hxBvSIv/e66+LDBkiuuOK1vIQdZsLZ68J1fYPP/zgApLRcCCykpIS6dOnT5VzJJAZ5w5e27dvl127dgVk4oOwuun549tvv60x4u+r/0y683DkjM1fCJbGdf+7775zmpiJIWAIRBYBMxuGC2+ISzdO+fvfRcaNEznuOJE//1lk//3D1WNCtrtw4UKnZeFtSFb5Dh06OJf5qmTZsmXy+OOPu+S9FK5s166d09i66/liZZnoCYJG0+KF4KyRlZWly/bLdcNVH29HnEcgNxNDwBCILAKmeYUDb4hLN0954gkfcV18sS+Gy4graLTnzZvnSAeCgJAgkUBc5Bs3buycPCAuzHvkRrxY1wGvwUAFcyCaH2RZ1qsQZxHOv7gGbdDEEDAEIouAaV7hwFudClzGDEqaYC7kfEuf1E2CQ4AyKMR0XXPNNY4gILBAs2q0bt3aeQRyHwSzUtfihBNOCPh+Rrp+/XqnWQ1Qx5qy5AUhYookYLnsZ8HN0q42BAyB6iBg5FUd1Cq6R6v9yltv+YgLsnroIdGAIAs8rgivKt6HcDD7HXbYYS7G69Zbbw06tovzMlJJESc2evTogM7LvGEtVe9QzrN69+69D0GRomqj5qPE6zFQQq1iuvaxIWAIBIGAkVcQYFV6qT6Fy8iRou5poo/4InfeKbqzxX3hyHkb58momaNkU94m6blfT7n8kMsrhSGUHy5fvtxlkD/00EPdmdcZWiamOiY68iLup0mOzzrrLDc8tCbaqSrNE+QJ8eFlCAn6C+77vE499dSIpqkKJb7WliEQzwgYeYVi9XDMuO8+n9Z11VW++C3KdcR5xeO1uWvlsgmXybKty6Rkb4l8vOxj+WTFJ7Jj7w4paVEiYxeOleaNmkurjFbSoUkHaZvZNhRolrYBeREY3Latr13OmYINTH7nnXfkjjvu0Eozr7mM9BM0JdcXX3whp59+utx+++0uR2JF8tNPP7nztfJIDnMm8WB4QQY7por6s/cNAUMgcASMvMpiVV7GBLQqSpZodgX3U5/k9UBENPBINOWDiHrEqT+2r6XHHhPhpdqCBiWJPrqX7SHm/+ashwDc97a+Jwtb6tx+lsKSQpm2apoIKQX1ddMnN5V+dlDjg+Se7vdI48LGzpxGG2g8ZMTAyeLFF18MuoAkZjvMfWW1nkAB5Izs4Ycfdo4exx57rLutefPmcvbZZ8s555zjTJEVCeZKNCu8FMuSFyZDgpf5DO9HE0PAEIg8AolJXhAQ508Ej/LTe/n/ze9qPnLu7AQOk7aJ37Ozfb/zt/ce16FJeS/1MhMyv2vAqqZfEHVp81U71rMZtTGJtGghGskad8RVvLdYdhfulidfeFJefP1FyeqSJan11KOuUZEkJyW7V3FJsSQVJElqUapklGRI0g9JWuVZZHPuZrntydskuchXJBJtBHMbbu5kYg+28nGxrhnkRXBydaWurhGkuWjRIv0KFDsNrl+/fi52qyqBuAiKLmsWJA4MrYtgaQgQAjMxBAyByCMQX+QFKRFTw4vktt5PfudFbSzKjKApaVohR0b6lFz6ImCYl3qxidaIcvejGXkvCIkXRSDJN6hP6aIu146cvBd/Q048tXO/FknUR3NfYt04Lk2PWZDzrbcWviUfZX4kO6/ZKTlJOY50mqQ3kQMaHSBqtJMFmxdI3dl1pfOWznLrzbdKnaN8miVaDC/McMRF8aquOY3zKLz8SA01cOBA52UIaeCajtBuoGSIuzyvYAXyIriZeC9/sqMQJlWdGePRRx9d7TkGOx673hAwBH6JQGyQF6QEqUA6aDm8vN8hGo+QeB9tCBMdLwiI+zxCQ8PiPuJu6tf3kQq5A3lBSjhQUEYDAuKsg5+8eI8M5RBUMLWaaFM90eJV0KK+XfetZKRlSIuMFvLBkg/kuZnPyY78HVKcpFiqqL4lrTNaS6/WvWRN7hrZu3mvpKelS4vmLRyxVGZ6CwYXTHEzZ850GTFwQcfcSBJcsshTjgSywGkD4sL7j1egBBbMOLxrIS+cNTAz+vezatUq4RwNM2R1SLE6Y7F7DAFDYF8EwkteaEOQz44dvp+Y2PgdwvH/CSmRYsf/PQgLUvMCQHF+wGwHyXgvDvIpSMiL9yAeNCLvc+93PsdUFMea0b5LV/N3NuZtlKEfD5XMupnSOauzbNy5UbLqqakwOVVy83OloLhAMCUu3LTQvZAk/ZfbMleKNqvZNUSC48PrmkILpwocNDD3QRKQGCY6SAzSQuuBwAg87tWrV9jIC02P8zoCnenLE+LF/vWvf+lXOk/OO+88NxYTQ8AQiA4C1SMvNB20HrQgCIffeXnaED8x1/GZp0VBRhAZpj3PPIe5Li3NpxmhAampSd23fNoQxMPmgAYF8UBM/O7/4j3uN6kWAump6XJC+xNk+prp8sb8NySvME/qptQtJQXMhRAbhNawbkNZsW2FNEhrIClr1IBYqA8SIRK0KjJZoOHco9WkOSsbqWEHC9QkO2LECEcgOG3gNk9AcAs121bXiSOQIRPb9ZN6GnKehfnTE8YzduxYza98gYs9MzEEDIHoIRA4eeFhR9Atzg0QFVoVhOSdN2Gyg4DQetB0IBZMc23a+Bwb+IwzJEjJIy9+lj1v4m/e//l8I3rQJH7PkNKdx94py7Ytk2e/fVbGfDfGOWTs1X/HtjtWHjjpAamXWk/qptZ17vLDJg+T3q16S97cPNlTqGsfIoGQiOGaOnWqO9si/yDaGNnb+b0yd/YQDeEXzUBeOGuQjBftC2E8d2rsHq7z1113nTMpmhgChkD0EAicvDDfoUnhYUdiVJwWePGfG4KCqCAcTHuV/Yzz2KfoLVV4em5Sr4kcXvdwufLQK6VTk07Sv2N/qZdWz8Vutc5s7cyEyLod62T9jvXS7eBusrr+auGfv0A6aG6YGjPqZEidlMA3d7Qo8gdCDLNnz3bZ2nG3xyEiGiSRow9nmCzR8DwnEYjr66+/dpnmK0vsG55VslYNAUOgLAKBk1f79r4M6bRQ9uyo7N9le7G/YxoBzrhOPuBkObnjyeWeI0FIK3NWOlf5do3aycYUjXX7WXLyc2T4pOEycclEWbl9pQtmhvQu6nGR/OX4v0ij9IqDgP1BwfEDzz7KnvCi8CSEFg3y4kwL13rPGeXBBx90TiMUoPTixWJ6QW1whkAtQCBw8gIM05oS9ivhNCyfkrXPHHHemL9xvuzfcH9p27CtzNB/yI6CHXL666e7s7CWGS3lmHbHuDOz9TvXy4LsBbKneI800n+BCIHAmAgnTZpUWuCR4ObqutsH0mdF13h9YjokCwcVlNG8rr/++opusfcNAUMgwggER14RHpx1FxsIQFJ4G+7faH/3QkqSSmTUjFGyePNiubnvzXLvCfdK4/Sfz4c0E0dKUorT1AIVPAwJIia2CtMhJsRMzk+jIJgFyZzx6KOPujOvoUOHanGAIVEYiXVpCBgCFSFg5FURMvZ+KQI5e3Jk6Zalct5B50nLBppBRKUwuVDGzhvrkvUO6TeklLj4LC05eA9QtB08+3I1nGLu3LnSt2/fiDtqeBMmUzxej3gXkuEDxxHv7Mu+FoaAIRAbCBh5xcY6xOwoiPNalbtKdhftlg6NOzhnDiRlb4rc1Pcm6dOxj3RsrOENIRAyWZBTkLyIV2mC40h7GXpTwGUfwuJlYggYArGJgJFXbK5LzIyqqLjInV/hldixyf9IKrUkVW7ofUPIMmwwYVzm8TzkRbZ2CwKOma+BDcQQiDkEAj+UiLmh24AigQCZ5BdtWiRZ6VnO0zCcgukQ70KS+YY7EDmc87C2DQFDIPwIGHmFH+O47oGgZVzgcXkn9iucgrkOAmuvYRnNiCc0MQQMAUOgAgTMbFgBMPa2DwFSSF1z2DXO7b1VZnjJi0BnUkVRwwvNy8QQMAQMgYoQMPKqCBl73yFAaqjfHP6bX6DBWRQBvKHO6k5gMOTFeZdpXvYFNAQMgcoQMPKqDB37rFwErrnmGpf5vWyF4XIvDuJN8gdCjAQnm2t6EMDZpYZALUTAyKsWLnpNp9y1a9eaNrHP/WhcJMTFdGha1z7w2BuGgCFQBgFz2LCvREwgQK2uZcuWOY0rWpk1YgIIG4QhYAgEhICRV0Aw2UXhRoAs7osXL3ZnaV4ZknD3ae0bAoZA/CJg5BW/a5dQI0fzomoyOQ39qxcn1CRtMoaAIRAyBIy8QgalNVQTBPK1OveaNWu0XmlzI6+aAGn3GgK1BIH/BwMaRwklcWb9AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUIAAABRCAYAAACnmK8dAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7t3QncNVP9APCR9n0vFV6VFIWQiHgr2siLJJVUZElpQaVFKaRoo0IpCqlkV5RCkiwpiQplzVaIFCrq/s/39M77v+aduXfmzr3Pc5/7nN/ncz7Pc2fOnDnnd878zm8/i3QCZAkSBsYQA5bm29/+9uxf//pX9rGPfSy7z33uky2yyCLZgQcemF166aXZ3nvvnT360Y/OHvKQh8TrveCAAw7Ivvvd72aHH3549ohHPCLW//e//x3LCSeckB1yyCHZfvvtlz384Q/PHvjABy5ot1ebg9z761//GsfxyEc+cpDH0zMjwsB9RtRuajZhoDUGEKt11103u/rqqyOxe9KTnpQ94QlPyC688MJsjTXWyJZYYonsoQ99aF8iqCOvfvWrM0TovPPOyx784AfHghg97nGPy379619na665ZrbyyitnSy+9dLb44ovH940CEO5EBEeB2XZtJkLYDn/p6RFjYMUVV8xuuumm7IYbbohvuvbaa+P/iFYTePzjH59tsMEG2RFHHJH9/e9/X/Ao4vjb3/42EsIEsxcDiRDO3rmfESN/ylOekt19993ZX/7yl9jfc845J3vAAx6QIZBNYdNNN82uvPLKSPhyuOyyy7I///nPiRA2ReaE1U+EcMImdNKGk+vTbr311kgQibbPfe5zo2jbFJ7+9Kdnz3/+87OjjjoqPkoHSddI3H7Uox7VtLlUf4IwkAjhBE3mJA6FnpAej3iMK6QfXGeddQYaKiMIrhBHCRhK6AdXXXXVgdpLD00OBu47OUNJIxk2Blhr6dDAYx/72Ox+97vfsF/Rtz2EECd3xRVXZFdddVV2yy23ZMsvv3zf56oqrLXWWpkC7rrrruyXv/xl9r73va+qero+SzCQCOEsmegmwyQyEkE///nPZ9dcc018lPj4nve8J3vhC1/YpKnWdRFCltzTTjst+9WvfpUttdRS0f2lDdx+++3Z3/72t9iE/+khE8xuDCRCOLvnf6HR4wD32GOP7Mc//nG24YYbZltttVXUx51yyinZ2972tvjbX2JmL0BMub0QP5/xjGf0qtr3HjeZG2+8MTv55JOzF7/4xdHXrw3wQ2Q0QdSf/OQnx5JgdmMgEcLZPf/3Gv1tt92W7brrrtlFF12U7bvvvtncuXMX+Oitvvrq2bLLLpt94hOfyF7wghdEo0MvYNzYcsstszvuuCM788wzs/vf//69qve8hxDj3BDD7bffPjokt4Ell1wy+/nPf5799Kc/jRwm374EsxsD7VbU7MbdRI0eEfzQhz4Uubhvf/vb9yKCBkpEnTdvXvbSl740+9rXvtZz7P/973+zL33pS5EI4jB///vf96zf7ybukyj7oAc9qJV+MH8P4nfddddlP/vZz7JVVlklu+99Ez/Qbw4m/X4ihJM+wzXHd+KJJ0YdHI5PBEdZyBprK87wN7/5Tfaf//ynsmVE5gc/+EHUKT71qU/N/vjHP1bWrXPDe3GU2hqGPu9hD3tY1H2yRCOECRIGEiFMayBigPj50Y9+NFtuueV6YuSJT3xids899ywwNhQr0w0SOf3FPS666KJRT9gGhLvRC77oRS9qLRbrB+u3fgnPW2aZZdp0LT07IRgYTCaQpuHyUDAFDG51wzI9d24oN4aybCjtdOihgQTDwoBY3DpAPKWju/POO0t1a1xS6AT5+nG/Ec6Gw2wDjBmMNK94xSvaNLPgWaIwrvA5z3lOK93lUDqTGhkLDDQnhHeHfh8WyldCuScUhHD3UJ5TYzwnhzo7h8IdbYlQDpj/fI1HU5XxwADujg6wyvhBl8fY8vGPfzy7/vrro99fW64LR7jNNtsMhRuExZwQrrTSSuOB1NSLacdAc9H4wtDnfUP5YChHhLKRlVVzHLeEek8I5Ueh4A73C+Wums+mamOBAXo1HGGVpZV+UCicDC4//OEPozO0hAdtoa2luPv9+v6GN7whiu4JEgZgoC4J+39sXRT+nRPK3FC4czURb/nmkpI8t+P8Mi/8XSOUBDMCA7g8IW9Vltbc6ZmB45hjjsne+973Do2TGxaC6EN32GGHsevXsMaX2mmOgeYc4VnhJc8LpXnMe5YJ8dwsFL64opw2DWWfUNrp0kMDCaYCA3R+XGHo1qqAf96zn/3s6PzMsMIXcRwBIR8mlzmOY5zUPjHW9fJaGGTczQnhFeE1c0Jpzktm2fbhufXnd9Pz9PPXhXLB/Gvpz1hjgK8h1xkuNGVAfyhiQ+LRI488MiZDHYZYXPaudG1mYYBemSGtbUJ8BPDYY4+NWcXbttWNwWaEEOd2UyiDGgFxkd0Z1ZcOv58dyvdDqXZLm1kzPsG95Q8owqPKxQYRtNj9xT2+9rWvLfVHnGAUpaEVMEBfLIfka17zmqiTtZG2AVw8ovrhD3845pEcFjQjhH8IryXeLj6k13v7eqH8MhSGlBEB5NNddWcmHtGrJrrZb33rW9lqq61WGZt7+eWXLyCEG2200UA5AycagbNscIjgl7/85WzbbbfNnva0p2VvfOMbYxajNsDR/+Uvf3nMSfmZz3wm++c//9mmuQXPNhNwLw7PCcscZoz6CqE9foUSELc3Li6EFKmbHAAk1EsGFYkE3vKWt0Q/snEDk0r8vPjii2M6er85/jI8LLbYYtFSK07WNU7Brg9Lz2WXxe2JCPnRj34U+8FtRcKE17/+9dES/Itf/CLbfffdY6hbGcA1Q8oKK6wQF2uC2YsBblSf+9znsu9///uRe1t//fUr101TLMk+JCZ+4403jjHv/rb9DpoRQpFS/AYHMZRUjVZi4IeGcn0oxOQhA+IBceJVZS7xEfvoxw3+8Y9/xJPaWFrzVFMU+vpK9yZu1+Lym9VTqFnOnQk9Y6Co8u3rN1ZirBPevvCFL8RoC1lZhJ4hhjI44+7gbc6cOTG6owzobuQM9Nxuu+1WViVdmyUYsFYRvwsuuCCeDmhtDhv4prL8I7aSgLR12m9GCJ2fs1jFkO4I108MxXEQorQ2CKUOwWRB5lx9aSgjcOsSmrXnnntmn/zkJ6MSf+uttw4vGj/A8uNSJT4QQYEg4fwohHFjdG9Ee5wtgoj7kqOPOIqQcQ7eeeede1p0y0aNCyRiHHfccRE3OObueF5c6UEHHRTbhsOq5KwWP9eaKkJZ9u50bfIwYC3KY3n++efHDEYyFo0KJAFhNJEEBIfYCsKHVg/+FaptGMpBhep3h9/HhbJ8KC8NZdtQXhDKpqFcU6hb9vOecHHPUN5cdnN41wIn1VHGGZr2T/3AiXWCk3Nnl1126QQjRifkEWw0xJAYoRN21E5IQlD6XCC6nUDcOkEM7wQjSGkdFz0fOMnOWWedVVkn3ZhsDATJpfORj3ykEzblTshiNCWDDYaY+L7gvB+/hUGhvrHk9kBvnYJY1A8eG659PBT+gUeGcmAoB4ciYmSvUITh9YJFw03Gl6t7VWp/D8dVllGlfcvDa6Fp/9SnG6GADgswiv5E3LqAu6QT/OAHP1ia1QUXSlzGgQqZq4om8T6ivfjj5C5TF/uTV08kEQ6NBCayaCrAeTOkGFJNftLhIO+tTwhvDc3fFsqcrtdcGf7/bCjbhSJSJM+gLtoEETx/ful6pPRfRhJHYwi7SzAQBujwnvWsZzVaDNwPPEffUiTCROZPfepTUWd56KGHZjvuuGPPzNAIIZ1mlSFloEGlh2YMBnhmSOFGbyfhRnE90W1LrEulI/6cU/QwwHve+ta3Rr05kZwaaRCoryNECO8MhbEkh5PCP9xpNp//N7/OV5CeUCjdZaGslt+o+IuAsl/gONtlYa94wey4jDuk06OnyU9q6zVyFl4ETJIEBpfc8iZemBJa4lI7LT1P98K22Jz+5iwReleAu2RlrvPeXn2arns2BeNFyOlIWcv7HUcwXX0dt/fSD3/xi1+MONtiiy1Kwy+tjze96U1xncCvzZdfIQ+DxzzmMa2GxKOCDtsREgwnr3rVqxYixP1eUJ8Q4gZ5TSB8OTwu/OMMHG418lt2O0sjzIhbHS5PFne8KZegIRFCO87NN98crZ4+dFZN7Dqrpt0D8ou7Vnj7jAXjJRo4vNx46yQcJVJLpy8P4SWXXBIPTec0/Z3vfCcaaw477LDo/1XEE5GZ+MPFh2jiTGAWYyL0N7/5zVgfByB9Fu5gJpwZfPTRR0eOgsFK//31kfJ9w2kPco7yjF1MDTvuJEDlK1/5SikR1FzQ3cX1wtXFGTRUMuLQeTogiK973eui5TfHf8MuRA+K7bbbLs7hM5/5zMbn5CwaXB12q/XSX4VanMK3CIVeDywTylWhOC977VByIob4HR/KT0J5Zyj9CP41oc4JoWwTSjehDT8HAQSQpZMF1i7P2iprijx5dF2yMdudqhIHDPLO6XwGETz88MOzT3/603EB2B3r+lU973nPi+46cHPqqadGsYXOhRXOzl0kgsZp8dpYpPRnrYZfp95x88Et4q6IQXzIEEOEZNzBeckIPB3r2muvHf0hxVWzfNpMbaJip6cTqCvMK2+CcQHSxwc+8IFsjTXWyDbZZJPKvuGubY5i0PfZZ59ss802yzbYYIO4SfJ+QIYEPeRriHcC7rxs/ZWNHV4QQD6wv/vd77JXvvKVZdWqr9WysjC27h/KJqGwEnfDjeHH0aHc3HXx4vD/qqEcGEodQ+3pod5yofy7q40W/4ZTyjrhA+9873vfi9bMIP51wiLvBPeOTiCAnSDCdYJiv8Ubyh/1rjARnUCIOyxobaxY5W9Y+KpxhPNBOsFXqxOSIUTr8SAQxJtO2LE7rMR1gFUwxBx3ArGL4wycZSf4jsXntQXfwbWnE7jUOs1Nex1r4/TTT+8EQr6gL4HAd84+++xOCA/rhEiGTuC0h97P3PLfr2H9ete73tUJRKNf1Sm9H7KRd1ZeeeVOkET6vjdIG50111yz84c//GFBXeMP50p3AtHrBA6x87KXvSyuY/WCI38nbO6dYIDpHHXUUZ2g9un5Dm3BTzj3uhOCEnrWLd6sJxoTca8NhSGoW/xFX+UX3LiL0MpXuEMoUmvRHRbrd1Vd8K+oEo7VQzo/3K6CxSYeiibJgS6BczAuse5OU9bdsmve6cAiux3HYzo3VlyZWvyPKxr2O3G+FNRS4++1117RebUqDrisz93XiH5NxD/iTVi0MbkC0YZYzsu/+6hN454pYG0o3UA9QOTCbZtbSvmvf/3rkfMYBjg35fjjj8+uvfbaKIL3cjy2dnD+OB4H1LfhCjnKU4EQ/av8QuuMjz46EKjIDdbxF6RmOeOMM+71HVDJGBM1zHrrrRf1sn/6058iF66IU2aNxpFTs/TSQcMRbv4lL3lJtvfee2cHHHBA7TVd32qMoNUhaj8O9ThHS99/ZijC5/rpCW8OddqFIN5r3jhaYsPpfYoQdpqoy2izAIpt+q09IiWx1Lm54is5GJuQ97///Y2suWXtF69ZLIH7i0YLimofkQ9KItSpAosu7O5RFHZ8Zy/3mqnq0yjeQxVA/8Q1SLz1oJbJvG+BG4k6Ncp9hIRTPPenXkkEfORUFVQX1nYbkCqNF0Db2HvqD47TdY950GcibM4QIOz00QwnQvBy41RO9ITGfuMb34h1uHGJEOsH2odXYrZQ1bpQjyNEABE2mWf6AW6QCkMWaoSQW4zUWx8LpYzjYyC5JJQhRuFApPNvWT7FvHZzJowkOLVhg8nFEXUfD4kg+2jo01hUhwE+Aq4K7373u6POCkdmTBa3RVDkaobxzqo2GEoQQLu6j2omGEWqxtLvOn2VU/kQEFbJIA4OxOHztcRdckliONhpp53iGll33XXjh9stwfTr06D3WW4RMeuyDdiMrUec3iBAB0uPzMBRxelZ003XFZ23b57emg68jiRWjyNECImudXz9WIDfHcr3QjkulPfN/3t1Baq45OAgV6q4P8BlA8dm20FxTayoUwHe222AwSUSN4npdY0Xvfpp4VIsO7+DyGYBsfx6709+8pMonrTN7tHr/cV7dnCE1wdsfN1icbHuJPym5mD8YRwYxHk3D1fE4QhXFI8LZ9YI4wxurwpwkQgPrrTXWrIhITDOp/ZMGTCoEfvbcpakEURw0HmXV3BOUCP1SvRb1v9+1+AHAbQu6/or1ucIqwghXCNmuD1EEOTXiMUyWnM1+39V3fxK8//wHSQaL3nvy21/WVz0dYoYWnoduqy5c+fGxTQqizHEs1DnbgCI4aDJELpx4COiT/IBbb755pH9z3V6rJ0htC5785vfXFsn0ha/nkeA4dXOa/GNKqMPaymx0YdLN+Zdijn0G37hYpjZeMrwY3w2GhtrHTGt2AbXooMPPjh6NJAccoIGjwhhL79FmyA1BEmgqB9E8BBRzu/SXrmvPn0xYovwdUOOv2L/mv4mFtt8B5F2qI3Et7MWD3vdGB+uMBi6ahP7eoQQhrjAIFi46W4R94bwe49QVg5lqVCE4l0eCnGXyw0XG6fVVWW9ktGG6N8yBRfxoqj3k7Jqv/32ix8qpFPI0jUQmx3e02tnDT1qDBYjHZLFHixX8QOl+1DavMsub4EfccQRkcOli+wWJfhkMdYQr+qIAY0H1uMBhJCOEoehDBt85ERJxIOIBI/GqPgfceTUzbkbnuGgSCiG1ScckFRk2ueI3otwFd+JmFt7uMmiuGYuqXHKxENJbnF3dNuIhnVVBLrhd77znTGNGl2m9vnsWe/Eebjrzs4Cp1XrpNe94nv1i8Gs6drGLNCjI9AMG1V9Kb6vyW9z45uo4oqLbdUnhLJSE6SvC6VbJUCsFd5KJ8jhmips6VCca7L1/P//F3wQfpTA2eEa/X4LYwkiGEzwUVzJ9QN0LRDtr8WjcPjlQyhawsdDfM4nEdJwXT4sE4OoQmaTSRaRgVgRFfKQN8aLNhOdpzQ699xzo4W4+KHbWSmU+U0NmorIguYQPYiohPh7fk4QcRgAWPp6AVzQrzXhqLyDxZB+zvM+JByPeTdnrKDwY8Oou/B79bHsnvcxsjFK5aJnEzUEHa51QSIprge/cYRlwOBHJGYpFjVRBASZv6z1xo8019dxjkcQOSoTQRkecjCWfENxDQ55HuBY6Q5tbkLlypzp8zbMge+pCQ7yZ7t1g4Nwk0UcFH9bAzwqrLEirot189/1CaHQOgkXfhZKNyGcG35fEYrQQQxBmUEkXC4FzyCE80KRjmtAMFiTzpHS5HDa9Jci34RZZPQQCCMlKhcaXu2MDZ4z+XkSSW35wLiHcPi0ALm+FLnNsq4ithb8sABREfVB9JVqqOgag3izSuecwCDvRfwEyg96BkTu5Gvh4Xj6Afz6cBGEOqA+bo+z95xAbKu4MJvaqMCHRS2R59ejo7XpIeh14bLLLovrralTtkgh4y/bkPWLvhHXaP6KRgVECp4Z17rDLq3vXMVgI/3sZz8bXVRsNtKoqb/pppvGNScTdBnk3FbT2PJ8vfkOGdtGAd7Bauybr6sCq08Iibbm/fRQ3hhKbmZhSKkSe/uN8ppQgbhdjut+Ty+4b7CyKOeAcPhAcQpEBDo7iOEPZnelT0IoXbeY6Fb4FtIn4sDswgigaAu+efQ5wZl1JL6AVYMUnE7MsZgt1KJlzq5uPIwnRNPiR1DVbvG6D2yrrbaKZ0oMAjYf/USk+W3VgaZchE0JV+gDJpri6s0bDhiXRAqw2dXd/ev0sbsOq7gEFO94xzsiR8hKb+00Ac9Yk0pd44IxIlRVmwYOmJGMFbtq/lmpbR7dBAERQwjhlJSBoydV2MjVg2ecJOLoWpmqISfMTaUIjIlNBcc5DN152Rz4NuhxEfayvpc9U58QIngcp7cMRSKFYfiUXhDa0YMVy7o2+DW7lEIs5qMEhP+YNJNM8W4S7M4WBc4L0iREpeNDDBke8p2fE63n7ZL8vcp258F7u/CTiDZjiP7Q8ZSJkTgMujMhYDJKtyECTZ2pu3ts0/GRE6eacjsLj7z8irnhswjvIfojisGcgYlzOCIfO0IFX8MGUgWuHEEQlunDQnRxwE2A/hLRoT9GUOtwKogtYlflmE6kRSiFq5WBdQxXiFo3QXAdLh27wJXGhtqdjJf0Yy7htUrVgLgSa5tuCPSswAbWZs2WjTe/hqOFmzJ9atVz9QmhFpYLBSfIT3EYhPCq0I5olSbitH4MAJBuMSiMKDmYdASTCAJMfD756uJG5OtjaaZb5Pc1bCtXcTiMDpTfiG+ZAl19kQH6yXdxVAuq2K+y3z4G+Bhl/jlzlKsmGLp4AXDbsbExFCBWRctoWV+bXrNJ4nJ97IhYTkxwdHRz3l93U7SZUcfQ49mknZvTjyMizeBuuolU9xjgnfinj9Y0FU7eR323qcMNvXI3uGYjpRKiFyy2b1wIFjz34qhw5PBvHdZdg7hPG2eVTrTpHBXr67txk+JICnWhGSFUe24oHKU5SbfQ68VMM6zL0xyPbyHjNk466aToGJyDyc0dT4kIEgwQl0eh3F3w0vn/+KjphaoWF/GCuwzH8CpCWWxzVL9Fk+CUqsS3Yb+3W6w2dzYqZdhAcvjqV78a1Sb+dqsm4NwcNCGE+sdTwabL+suwxPhTlgsyHwsiA/gulgGCKpIJx8qlCmFFYPy1UVCvcJ8pblIIO8OiDV7SjCJY79Y/S3XVGvQMHR+9qU2hLnPAeEg9xZFaaB5pxDzSYSKQ/TaHYl+Lv0lTpAaGrSZtNSOE3rpOKB8KhYqkTRJaab0QwuFLM0Xc9P2NqxIGZ2HRKxKdmff5IclKYvLo0ZzTW5cD6PvSPhV6LUCP4gSIh7127D6vWHCbGMHIY4HiDnAWPqR+fdAAEc8HPmlAP8xlibsSC2wRqkTGYr3u37ha4jvCRB8tdpnhiAtJ2UdL7EX4y+7l7Zov/eQihnASpXGDrtFri24qziOxHgGmFy6uZ2IztxsRWTnxp9c03qKKBgOB+2I4qht/nasY9I9qx0ZqfNYgw1+dmOUqHGuD1wZGok4auu52mhNCGwjJ8rBQdgklN5pU9a7quigVjvRcbaYZfMwUzsCC4rhqV7FofQgW7iiV8U2Hr790mMUF3rQd9Y0Vh8J9xkInNoGQWSZuDlQCwyC2g/Rtup4hvsm3iFDw2SwC7iXnZIr3ir9xZYgFPFpDPnycDzEZwUEM5YQ0B914RniIxkWxtdi+39ZD0bWGhJO7yRSf0XfGRf0oQm5gREBxjTZHEUy4PwaObkBMbRL7779/FPl7Eez8OWNEoL0f4UbsETAeAUobwJ2SlBgPm0JzQsjdCT52CmVuKKuHwpDSFK4MD8hfKGJljIDhwY5JCZ9HboxR9xZ0pY6yvU6/7cKAyxHfSgpyohHLHpcUGwFdZZFz6G4b8fTRNbUG1+nfVNch5oneof8iupa5h8gagwj0wknebxyWpAokC23DL48FXJvn6YOJiSJGugkTQmgDbqLw78YV4lKlNuHUbb7KXMKI7oyCOFY6cW1QwVgDRbBxImrEb6K+zbMOIJjE/SqRv04bxTqI9h577BGlNuGnTaE5IfSGNUMhIosnXiWUPLSuydvPCZWd9Jcnc23y7AjrWvg4rWFwWyPs5tCa5g4iOiBPuY/487MkrtGN4YzgJOeYiy8WZqWOjxx349k6nEGxnXH5jWiFk/iidbdsI6QXRPjrZvnhVkTNgjDlBTGkg0SMtGdTK7q/IJIIUhUx64cvInKV3q7b+FRsR19wqBgC/bS5McRUSQUINR/cMu6y2PaofsMl7poIz8Az0PoLO8/gUCfpalXr64YbxaNBq+pO4fVgResEV4eRJG6dwmEM7VUhu008LjFwNAu1GT7kTojf7gQLdycop2Ny2OAa0gmRA51gTFiofveFQAB63p+um0E07ASjWc+kukFcHOujYQMRjMlJJU2dDSA5sLUX9LoDD3dQDd//iPsgIrEnGUroBwfL3jOqjSW1W4IBueboqYjLOJgi4Fzov9QTiUBxTv+DS+SfabfuBmoHfplEclb5cQPiXj+xFz7GWWLI/WQnNT9k95rhAkQ/iXtuaiDpbmcw0bjt6j01NEAkXjh+vG3L6fkhYwCh44fGiES063Yfco/jNx87YgndGiLILYMVmu6LyOyDJHqrQ5fDaMDYU6Z/G3L3Z2VzQu44PI/KwX1ckCoyhg6bvyA3oqrwyzr9nXpCyH9Qgobnh7Kw0apOn1OdKcYA/RWCVsYRsqzTE3EyxiXx41Kfa4T6rKa4QPomuilEkO/apH+kUzxF93odayz9YK73nc6+jOrdQQaOUVXWF31u20116gkhn+XzQjlkVChq1y7uZTa6jJRhDSHjOEz8gJcySzXilrs9qI8TROQorFk9RxHxUdbX2X7NPHHrwbFzeWGRrTJwzHRcCevkMH3KKafEs3raut3Ax9QTQkkbRL6Mgf9g2YKQvJVv1ECWp7IGZ+A1VlGiMIswPR7Hcs6zZYSwe3jC/nB+/M6K0QwzEA0zpsu4dY7EfELpXulp6/gfzpgBdnXU+uLaIzEK9x7ZcoYBU0sInTnjvGOJYtqE5w1j5BVt0HvNVrGNb5sTxSSzxQUyGuAE+YhxtBVd08ttRLw2d4+ZcI5xxfTPqMu4QP6JCAK9oJyDuCWbl/RykwhULzhBxjjJOIYF7azGTXrB4HhMKHeEslYoU/fmJr2ctXV5+IsckF3HAhNZg8vAWcydOzdmQJH+qgrobPLceYP6vlW1na4vjAGWYRl3tthiixhrbQMTb8xZGyEchri48Fun/4r4ZNEj/FqHabmfOo7QuSYnhSJOeUzF4umf5unpAS6C9U1IFyNHntGGeCxFE499SSfooKpAGxTXbWJFq9pO1++NAW5JYpRZTSXDFV6XW0yJyazzw4zaGCf8I35tDSNl45k6Qih565dD8cZB/Q/LRpCutcKAj0bcqw9Ics483b9MPEQtmWXEmUqvjvuoAqIzQtidILeqbro+GAZw3dJjcT3i0pSf49Ldmvm0KY0qzdVgPR//p6aOEMLFFOQdHH+Uj1fSexf9AAADJklEQVQPZXyWvFOIUk4EfWyIIwdVIUvCrHbdddeeHc85kUlV0vcc/BTdZA12No9ErDapskzX5gHH1M+wNUVdnjGvSZq6GTNVo+moVO+C1KVc4u/noB8xw2KQWefqJlLwARJbyuJzR9Pz2dUqblBqMAatKiIII2KMzcGkus6MatanliMc1ShSuwNjgOPtGWecEf2xpDGihBctIotHk+M56at8gG28+wcexCx4ECGUVVoOyl6bjc2MQ3sihM0WRSKEzfA1cbXp9ITO8T1zah9/QS4yTT8kHymxmMUYd4ioOuWt10c7ccgc4YBw2yJF4FnGmjJALLk9CQiokyKsrI3Zei0Rwtk68/PHjXhxmWkLxDZRJETtQw89NCbclJC0+3yYtu+Yzc8jhHS2EltIHOsohzIQXie7eNONrKyt2XQt6Qhn02yPcKxcOiSzFfwuCF7W4kQEh4twZwxzlHa8a5UrExcoyVUTIWyG+8QRNsNXql2BAWF1ohs4uk5nks6K7k3EZTpbmX7gWKyt86S7s0wTjelqRQMN09l4IpDXZxCJI+yDoHS7HgboFvm3JSJYD1+D1iL2So9PRM6PoO1uy9EAU3HS4qD9H9fnEiEc15lJ/UoYqMCA80NwhdQQdLHdwFBVlaK/orl0OWAgEcK0DBIGZhgGOEw77AnBk3CB7yCgN5QKLVnqm09oIoTNcZaeSBiYdgxQQYj2Oe200+KJg/SDki3w40yEsPn0JELYHGfpiYSBscAA52r6QlyhXJCc4RHBJBo3n55ECJvjLD2RMDAWGOAiQ1/oqAThkM5b5tCeonuaT88igaXuNH8sPZEwkDAwLhjgOzhv3rwYTSJxBkf2lBOy2ewkjrAZvlLthIGxwwAH6t133z0mZNh4440TERxghhJHOADS0iMJA+OGAYIdQsjBOsUZN5+dRAib4yw9kTCQMDBhGEii8YRNaBpOwkDCQHMMJELYHGfpiYSBhIEJw0AihBM2oWk4CQMJA80xkAhhc5ylJxIGEgYmDAOJEE7YhKbhJAwkDDTHQCKEzXGWnkgYSBiYMAwkQjhhE5qGkzCQMNAcA/8HWTqTNe3oChEAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Regarding Figure 2 - what is the direction of flow/yielding when $\\tau = \\bar{\\tau}$ and when $\\tau = -\\bar{\\tau}$?\n", + "\n", + "**Compass:** Let us postulate, that the amount of yielding can be mathematically controlled by a new nonnegative variable $\\lambda$. The irreversible part of material response can be related to this scalar variable. The yielding is assumed to proceed in a normal direction with respect to the yield surface $f$\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAADMAAAAvCAYAAABOtfLKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADoklEQVRoBe2a31EbMRDG7UwKoAbTgVNCoAMYOjAdhPETvDGkAyghoQOggmTSQVICSQfk+8laje6sO584nZ5OM7L+rVb77bdaYyXLt7e3Rc1yc3Oz0nlnqnelz/1YWuEAfYC4F6jlANkskapgPCsrtc9ZVnph7cMRR6qw+0f1SnP/1LpSFYxOvFK93R2d9+mBwCggFmq/q3lR/cSY8mHX7D4lcKS6UQV50YJuKTxR+/hOxdyzuOCUdWxrGwyUvar+ltBJvLNAfysdMDOmxE628ApzDTCc4j3n4nHMqfFe6YSVM687Xhrc195j1fiurf3mn6ZkD4xfuFdLSGBEiQIrpVMx+hoJoAuMxfVmLBLvEFh5GKvL9ksXQJ7VfrU52iQYCRFmv1QvERpZcEgxVmQb+khUe7b1pWZCjVTI94JLh21QmndJQm0cy22xS60ftydtrLUv6hOGXSFNKDkG1HIed8cB8eNXtTh+0Qfmm9YBxMa9LCQFZgRAQ65XPxQvg45k0box9lkCZCfGt76vxiUk50jJcuHduvqWprHtHDlKH5jVTmQBrQ0wUsaa3YE7jUkWKXY6WZE8xv1Qa/dzoT7h47zsz44bviBhjy/LUCSPE1xZpv7QlIB5gY149lRze8ZqDuV/VbmMp2pD0dhiu3FJg0CrI3nO3KoNnm6JHBzuJQCvFBDn6uN9kLsYbWvTOmvIwAxsxQU2jb14vqt/oYWnrsUh8w0wMogLBp0wYfRxdyxGUzot7kMoai+sPEY6Uvvac5wRvgDbi0PGAYwHgmdgJM5e7gJrLgnIyxL3G/UJOwrAuMiDivbBKlmz674M0uPASAmMAIQL27gb/gDAJUPNn2KGE/OA5g4Zs16kt2FP7MBe4a5FYwZPks+7Ypz11L1wej1gvEp4bVVDyDmBwx98D3Wm8MPbdxLJbDZ0cyznGSFxPKjfx2K8rWjfmBmtVAC4N4SoJYTROnMVFGMm9+Ap5IsxM4VxuTpnMLkeqyU/M1PL07nnLK+vr+u+z+ZamCE/p+YMZ1UVnRNAVXdnHDYzk+GsqqIzM1XdnXHYzEyGs6qK9r1ojjJEvzzt+dZebNr6whtye+G940nACIj9dD74hvxew5P7eJ4tWfWH61r1LNap8VM8nqpfnBmxwpNTeMzTmDfknDe0pNOHTNbIZhcyZNQb8hAgyNQAM/oNeSiYSX/PKMRWMoR/hi/+X0tSAKdmpsgbcsrw1NzUYIq8IacMT839B/4RvLoTtUcqAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}$" + ], + "text/plain": [ + " _______\n", + " ╱ 2 \n", + "\\lambda⋅╲╱ \\tau \n", + "──────────────────\n", + " \\tau " + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lambda_ = sp.symbols(r'\\lambda', nonnegative=True)\n", + "dot_s_pl_ = lambda_ * f_tau_.diff(tau)\n", + "dot_s_pl_" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAABCCAYAAABza7tiAAAABHNCSVQICAgIfAhkiAAAE8FJREFUeF7tnQOwJkcQx/suF9u2beti27ZtJ5eKjYptJxXbtm3b9qR/k9pXe/sWs7pvv9vpqlfv3mLQM61/9+z1MUriyXPAc6AVHOjbiln6SXoOeA5YDniB9xvBc6BFHPAC36LF9lP1HPAC7/eA50CLOOAFvkWL7afqOeAF3u8Bz4EWccALfIsW20/Vc8ALvN8DngMt4oAX+BYttp+q54AXeL8HPAdaxAEv8C1abD9VzwEv8H4PeA60iANe4Fu02H6qngNe4LtsD/z666+yyiqryLbbbiu//fZbl42+HcPlAGpT18YLfJftwbvvvls+++wzeeqpp+TTTz/tstG3Y7ivvvqqbLDBBvLMM880bsJe4Bu3JMkD+uuvv+Tiiy+WHXfcUfr16ydYe0/N48Bll10mr7/+uhx//PGNG5wX+MYtSfKAfv75Z2s1FltsMenTp0/yg/5Oxzjw559/yiuvvCI77LCDPPbYY/Lvv/92bCxxHXuBj+NKQ6+9+OKLMsUUU0jfvn2thR966KEbOtL2DotwC89rttlmk6GGGkp++eWXRjHDC3yjliN9MI8++qjMM8888tVXX8lwww0nI488cvoL/u4g58DHH39s+5x00kmtQv79998H+RjSOvQCn8adBt3DVXzttddkpplmsmDd8MMPL6OMMkqDRuiHAge+/vprGXXUUS0zfvjhBxlhhBEaxZjBXuABus455xyZf/75ZbnllpPbb79duvG7nT/99JO8++671lUEEJpooom8S98oUfp/MF9++aWMPfbYdm0GDBggww47bKNG2S9rNMQgWJchhxzSToLf3UCAJbi+J510klx//fWy55572nQWizDmmGPK7LPP3g3T6Bkj6/Ddd9/JhBNOKE8++aQsueSSXTX+tgz2k08+kfHHH19GHHFE2XjjjRs37UyB32mnneTBBx+0FmX66ae3oNFUU00l00wzjYw33niNVQDXXXedHHLIIXZ8N910k0w++eSW+YBdxx13nJA66Sb64osvZLTRRrMx4dNPPy0HHXRQNw2/NWPFpccLayplCvwWW2whc845p91sL730knWJr7jiCvnnn38scDTvvPPKiiuuaCfZFOvPGI8++mhZfPHF7ZgCYWcRVlhhBUEZfP755zLOOOM0dV16jevNN9+0ipbCm2mnnVbGHXfcXs8M6gs//vij9f6wZj5j8D/38cKCGL7O9cAAvPDCC9K/f3+bDXClTIGfe+65hR9ojTXWsL9xld944w358MMPrXu5zjrryFZbbSU777xzxxcehh988MGyzTbbyHrrrdcLJcUlRtAZfzcJ/FtvvSWTTTaZ3HnnnTYPj7LtFP39999y5plnyj333CMIPePCfZ1vvvk6NaTEfm+99VaLeQCeYZxmmGGGWmsYBoXA4+VtueWW8sgjj8i1114rCy+8cOL8ozcKgXbEwAsssICsu+66cuyxx9qFv+GGG6yrDEjWScJVxxKihNB8I4000kDDQVCwSLhe3UKAjO+//75MMMEE8txzz1m0viyfafPZZ5+VI444wmIbrgR4uPXWW9v3GMsmm2xiLRoKFs+vSQSPTj31VBu+3XzzzbL55pvL6quvLqQ3UVp1EDn4OpUx2NQZZ5xh98Css84qV111lf23KxBdSODDjCImJud41lln2QV/++236+Cjc5toPDyRYYYZJvadbqxQ++OPP6wlBQxae+21ZYkllpAhhhgidn4uFwnHWCusMp5DHnec9+Dx6aefbsOKRRZZRA4//HA57LDDrGfVpLwz4dyyyy5rPaJrrrnGliXPPPPMQpjKv+FDlUR7/OThZ97+MVSXXnqpPZxD2u+BBx6w8yGD40T833JV0V577WUOPfTQqprL3c4333xjNF43ypTEd3VDGtXyRl3jxGeadkPxBrPUUksZPZRRemjffvut2WWXXYxufKN4gFGL4dymegJG8RyjgKF9h7Z0g9t/axbBqHCZ++67z/7dFFJFaRh3mLTk1cwxxxxGcZ5c88+aE30ttNBClaxTUl8KQNs12HTTTS3PWb8111zTqBJOemWg66UtfFirECM9/vjjFhDTXlIVzuWXX241Fc9WpWmJaQAP04odvv/+e+GHWL5bCOuO5RxrrLEKD5n1wPXTjSKc5sJSL7roorni2SCUwH2HcOUp84Xw9Kj8q+NADyEHa1aECN+iWA3VioSfV199tbWQVRFrBB/ygGh5+mYNwSQ23HBDOfnkk23ogMdKtoz8vwtVKvBM9qGHHrKxfdbC44Lsv//+opbL/r7tttvko48+KnzYAGaQriK/nuZSqVWy7vHEE0/swp9GPMN4UYpl0F9wFo5skrHAvSWtmie8of+LLrrIri2FJVEiJgawIptTJbGu4ET77LNP4b0RN54FF1zQxvRHHnlk3O1C19jzhFp1CTxKDyxnrrnmspWWARG+Eva5UCZK79IIz6DdqGgjbtptt90yK4zUrZTNNtvMAkcXXHCBqCtoFxSlMfXUU8uMM85ofxMnsonYZGlVS6SHSFNsv/32qUMmZkXjp7WV2kDoJugvANBGG21UKqbO6o+4DR4E1jTr+eA+a4JVvvDCC60l22677azQpynEpLZRpu+9954ceOCBsY9QGMR9FEmVRLsvv/yy/aGIqiphQtmttNJKct5558nzzz8vs8wyS+lhE1e7CDxzeuedd3qeZU4ILOtLxiNpnanT511A6TChFF2Vd2UCD5CD9cS9cNmcuCP8AKosvfTS8sEHH1i3hEolUmYgwFdeeaWQb8SykfIBFBpjjDFiF4bNTa4aUCaN7r//fpthKEsAJigXxqcxVGoYUbYvPJ8iIQj823333UWxDVs0RfiEgtX4NXfNBGgwfJtkkklip0OYwDpVXd/PmiIcKGgUCkagKiLbBOgIgs++cRWapP6x8C6nGFGepIxRDsgAFjrwDihyS9rjeMWjjz56Lx5zbDotjA2PtxKB5/wvmp9NQQlrXsah0UD6+YHQWGgyrDFVciDCpNfStDvPoyWTmEW7bHyOmIJ0lyG8CdJSbG42Y92HJOgjXDzkMna8JTYIcTqpKNpgoxG3wgc2OtfBXbKwARQxHgIufdzaBh/mYBNXSShxrDqYAbUfFEztvffesWMo0i/7buWVVxa8TRRjUmbHtW32AR5ulvdIOIEXTHk0gkrIhpHE80oLie69997YnDseYNq+D4+/lMAjmGwqigAovAniwjTBDHfO+2htNgwuO4U8aDgq+nBfAGtoC5efDZrWLs+TtkojhJ1Fnm666dIey7yHG0/FG6AjsSVA5WqrrZb5XtEHmFveck3myXfviL3xuiBcTrwF+IwHpRkVC7TxjTxSmUmC/8QTT1jLHijk6DzYA/B23333jd4q9Td7gbCJcWLpAdr42k84fi3Vgb4MlgMvUChFvKhw/xgd9mjaPuV51gbvECWMxWYMWW45ChxeoKDCBHaCwnD1rEoJPADdHnvsYbUOlh1QAQvgGiOyAckFI/RoV7QjsTv1+mhB3FBiqzirEl1o8v+8l/Ys1o0ctqv7E+2Dv3HhqdHnjAHuJSEJgCPlxXWUFrMR0OBJwhg3xuBaFFzD8hD/8UPZMfnbW265RciYMHYUdxzx/TzWIclyYflBvok/qyLCD3L7WPegOhIFhsKqCifA0JxwwgkWO2Jd4wSevYlQRgu44uYJaMlzaXsweA9vBf4TDlLJSrl0WqjJkWjGGR0jfELoXUutCwk8Lu2NN95o69VJEZDqgXBp0F6uGhghR2sHJ4zYoLg0vO/CtDDTsVppyDt9AOoFKaW4Bcu6BsNPOeUUC/qtuuqq9nGKOigzpf2k+Dar3bT7VLZhpV01eFpb0Xu0CeqO0iL2TCJCKzZmHKFoH374YTnmmGPibhe6xnz5HtyUU07Z0y8KCWXNyUet98i9P+IGgsFC4bGGKBKwjTCBiAPsEarQZxbhiVEN6UIYNCoAOffBbzzFNGJ/4TlEU4zgXayda7/Jq5zQO5ueuArkd7/99pO11lqrB1Uk1gOISItDws2iHDiYw0+YADDYZCCzuJEuNdoAhpzoSyJSUVjkKMKZ9HzcdWLgO+64wyK7gVJjfGjdu+66y2rsIoSGxmVlDkE+G2EkLsNqwKe6vm6DYs1K9wGoJilTKtawuFUeN4aXxKsIQrhMFaUDcEt2B8CtDGEZCRV23XVXG0LGlVqzxnhCKAQXIrTRwhuXR22Yxc/yyy/v9Dy4CwYyakzBuMBhkryvaOO5BB5rA2gCInvJJZfYr6+wGQNCIyLsFDu4EhOB4bgs/EaoUBxMgI1IGokJpVl83F4EIwmhR5BIGWKJXcON6PgRygEDBlhvJooB4GqSz8Wtj7rR0XaifzP2Aw44wCLFzBeFiquJFwUIibXD3cTKEIqgyXExAdzIx2YRaTkAKZQmtdcoRbCOLCEPt0voFd1o3AfxJ5yBt2VKfcN9oeg5hAVQi4UPE3PAypFpCQ5yZc0/7j58JSxDWcNXlEhc3QhK5aijjkr1foL2WSeUduDtxvVb5hpygmyF5YD+wJPAuFzJWeDZhFT3YHVZ4Ohi0CHgFeBSmnBGB4YQsrig0PygxbEYxKxs7riNFm0DYWTB4uIsBIj2OSXFhi9KWByUCuBcWMnRHu4ZvEHbUsyRlwBdcB05lMLGYS4IGQoWt5N2AXnYqLh2AGQoBBcitgPbYN3OPvtsayWw1igLBIixZ2EaCHP0sAl8JVPBceOoAnQZV9wzhIR87ZU9wLii+wjvhxAEsBTL6GrVon3hpQHUYbRQICjd6JoG77jgMvCCkAaDRduAcQgnQHPRMUbHDIAdjdPZ1/ApThaj7/f8rZN1Imp4VfiMpuBin9f42KjFN6r1Y+8nXVQk1iiAkXTb6boKgtHTcUZxhV7PUzetYJLRGL/XPdcL1N9TI502TuZBfbbGgq7N9jzHuNU7MJpP7fWuam+joUKv60UuqNI2uinN+eefb9tkTuo2ZzalSm4g3qpSMieeeKLRlJ/h/EIVpArOKPBrVIGk1rcrMGzUxS58FkIxB6OK32jsbofNXFTJmHPPPbfwNFQZ2v2n8bVRbMfOQT+nZtRbLdxm9MX111/fKLjac1kRe6OCnntfO1l4tDsxMC58Uj4YUANX3hU8CDQOyKTOIlEhudxAC4MQo2GxOAGhFakPIOeZd1zhfrHAAH5o7CTCYtKXK34RbocsB+XFcQg08XNVYCAWEk+HH0Il4laXo5x4XMwf3mLNqIrEWwCdLzLfKA9Zf0Bg0nBY76hlDz8PlkGcDNhGfJ32bLQfvCLWKByX0zfZpTIYCR4Q30vEK1PFYb0FZCZP2BQda/RvvAY8NQgvkNOphHVByjX6fOLfUU0S97custEPXRhFIeNu22uKXht1PxPv132D02/LLLNMj3XAYmjqzJ4kQgOXIXWxjeaYDW3WRVqeazRU6tW8CqbRgy69rg/KC/BWhcRgVTQEM6oAjGIOqZY4z/gU+zEaXvRY3ax3NU1oNJVl8FhcCUuuQmL0Y6YDeSV4b8xHQx7XpmKfO+200+x+Q1aqJtrUtKhRRN42rbiMUSNQyJvEulZCdUw0z8A0X2pdHI5C4lZrBsGo5czt8iT1mWdzJbWRdh13Dbcw2g9ut2Ijaa/Wfg9Fx9gUn7FuPO4wAlQVIcAamxu1wE5N8pxaPKdneYixwkPN0hiN3QcSSgWIjdZ7GI62FiXaV4zFKsM6iJAVgddSaWtUCf8UJC6kXCoT+DommqdNrLBWIVkhV/fa9O/f3+h/y5SniY4+CzaCFQ17USw0uACWtdOklWhG8+0GAamasLKa0qq62Z72NANk94QCq72EBGHFupdRYChpLZO1/KmLNBVuPREsuxZIGQU4C3U12Ag8s2fjAKzxYYc4AKwQhwbRS2warCfgX0AIgeIGhg3rqTgHEA7NspQS6rTe2Xd8eIUPldRFKCT64adMiOoE2iUCAA27QY6duvBupOBYMDUOpFogahNINWalzbpxvoNyzPAwDXAtOxZAP9avznUCCCxaQxKeX6UfwCjLuLa/Tz06B1UCArUPSo3bzpumzZ+vKwXfbyQ7RCbDJWff6Xl4ge/0CoT6J+1CGo4iJ4jzAaQTk4pCGjT0Vg0FAedMBpWlENWMlGx7gW/VNig/WQ5GINzBZ6ODE4DlW/YtVMkBcva48Jx1oC6BcmCq3fLUBFQ5njxteQufh1s1P0sdPqWvWHaIWukqv/BS8/Bb0zyHpSiF1mpDexad0Ktb1skLfIO2KVVvnJIDrINcPurRoOG3ZihYcioVcen5KAVnLKLHVpvKDC/wDVoZNhJxPK48J/yw9i6lrw2aQmuGQik3Qs63AEDpi3ygpBPM8gLfCa6n9InAUzeNOw9gV/Y7ayld+VslOcDZAk7c4dbHndQs2Xwtr3uBr4WtxRtF4IOPf/BvL/DFeVn3m3p2wx664Vt23ZJJ8QJf967I2T55d86FU4BDbrdbNlLOaQ4Wj7NWfPE27Vt0TZuoF/iGrQgxOykfPQeQ78MGDZtHW4aDW6/fF+ia6XqBb9hSUZ5JPKjHkSv7kkzDpjhYDYez8N0Sv8N4L/AN2358Eikop+2WVE/DWOiHk8IBL/ApzOnELb6xhsBTuVXVhyE7MQ/fZzM5MFidlmsmi/OPis8W8RmjbijVzD87/0YnOeAFvpPcT+ibsk2qt7zAJzDIXy7MgT4c2C/8tn+xNg6wLF7ga2Nvaxv2MXxDl94Le0MXpsuH5QW+yxfQD99zIA8HvMDn4ZZ/1nOgyznwH8MS4hjQvP1UAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**Relate increment of yielding to the increment of primary kinematic state variables:**\n", + "But how far do we go along the direction given by the gradient $\\partial f / \\partial \\tau$? The amount of yielding \n", + "is now controlled by a new unknown variable $\\lambda$? \n", + "\n", + "The idea that helps to sort thins out and to mathematically distinguish the loading process into elastic and inelastic is provided by the **Kuhn-Tucker condition**\n", + "\\begin{align}\n", + " \\lambda f = 0, \\; \\lambda > 0,\\; f \\le 0\n", + "\\end{align}\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Consistency condition\n", + "Now, if the process is yielding, then $f = 0$ and $\\lambda \\le 0$. Moreover, value of $f$ must remain zero during the whole yielding process. This means that the rate of the yield function, i.e. \n", + "\\begin{align}\n", + "\\frac{ \\mathrm{d} f}{\\mathrm{d} t} = \\dot{f} = 0\n", + "\\end{align}\n", + "must be zero during the yielding process as well. This is the sought equation that can be used to resolve for $\\lambda$ to determine the amount of yielding that corresponds to a prescribed rate of the control slip $\\dot{s}$. \n", + "\n", + "To construct the rate of the yield condition let us recall that it depends on stress, which in turn depends on the control slip and on the plastic slip\n", + "\\begin{align}\n", + " f:= f( \\tau (s, s_\\mathrm{pl}) )\n", + "\\end{align}\n", + "Thus, to obtain $\\dot{f}$ we can apply the chain rule \n", + "\\begin{align}\n", + "\\dot{f} &= \\frac{\\mathrm{d} f}{\\mathrm{d} t} =\n", + "\\frac{\\partial f}{\\partial \\tau} \\frac{\\mathrm{d} \\tau}{\\mathrm{d} t} \n", + "= \\frac{\\partial f}{\\partial \\tau} \n", + "\\left(\n", + "\\frac{\\partial \\tau}{\\partial s} \\frac{\\mathrm{d} s}{\\mathrm{d} t} +\n", + "\\frac{\\partial \\tau}{\\partial s_\\mathrm{pl}} \\frac{\\mathrm{d} s_\\mathrm{pl}}{\\mathrm{d} t}\n", + "\\right)\n", + "= \\frac{\\partial f}{\\partial \\tau} E_\\mathrm{b}\\left( \\dot{s} - \\dot{s}_\\mathrm{pl} \\right)\n", + "\\end{align}" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAGNCAYAAAArXVH1AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7s3QncfUP9B/CjRas2LVpIIqVUWpRCsmYXUrayRiKKorKGkrWFLGUvEvLLkqRC/ZItoUWWSkVatO+lf//zHkbXdZdz7j33ufd5nu+8XvN6nnvvOXNmPjNn5vv5fr/znXn+W6YiUiAQCAQCgUAgEAgEAoFAIBAIBAKBQPGgwCAQCAQCgUAgEAgEAoFAIBAIBAKBQOAeBIIgxUgIBAKBQCAQCAQCgUAgEAgEAoFA4F4EgiDFUAgEAoFAIBAIBAKBQCAQCAQCgUDgXgSCIMVQCAQCgUAgEAgEAoFAIBAIBAKBQOBeBIIgxVAIBAKBQCAQCAQCgUAgEAgEAoFA4F4EgiDFUAgEAoFAIBAIBAKBQCAQCAQCgUDgXgSCIMVQCAQCgUAgEAgEAoFAIBAIBAKBQOBeBB4SSAQCgUAgMNUI3H333cXNN99cXHHFFcUzn/nMYqWVVprqKsTzAoFAIBAIBAKBQCAQ6IhAEKSOsMSXgUAgMEoErrzyyuL4448vrrvuuuLpT3968ZKXvKR4/OMfP8pHRtmBQCAQCAQCgUAgEAhUQiBc7CrBFBcFAoFAUwjcdNNNxTnnnFP84he/KJZffvniBz/4QXHHHXcU//3vf5t6RJQTCAQCgUAgEAgEAoHAwAgEQRoYurgxEAgE6iLwz3/+s7j44ouTe92aa65ZrLjiisX//d//FX/5y1/qFhXXBwKBQCAQCAQCgUAgMBIEwsVuJLBGoYHA9EMAUbn++uuLW265pfjNb35TzDvvvMWznvWsYoklliie9rSnNdIg1qJrrrmmeMYznlGss846BWuS9KAHha6mEYCjkEAgEAgEAoFAIBAYGoEgSENDOLsL+Nvf/lb86Ec/Kn7+858XK6+8chKqIw2IAA+zq8s8T5kXKfP8A5ZT87Z///vfxdy5c4uvfe1rxfe///3iEY94RPHwhz+8+Mc//lFceOGFxVOe8pRilVVWSRafhz3sYTVL/9/lXOguu+yyZC1iOVLud77znUSOHvnIRw5cbtwYCAQCgUAgEAgEAoFAkwgEQWoSzVlYFgvAMccckwiSTfbLLLPMLEShoSb/vSzna2W+rsyvLfPaZW7GcNOxggjL7373u+L0008vLrjggmL++ecvXvaylxWLL7548YQnPKHI5JfF51Of+lT6vOmmmxbzzIPB1U/2HF177bXFAgssULziFa8ouNv9/ve/Lx7ykIcUT3rSkwYut35N4o5AIBAIBAKBQCAQCAS6IxAEqTs28UsfBIRq5jJlwz2rww033BAEqQ9mPX/mZfbSMv+szBeWmUVp4zI/tuddA/+o/xBb/ffyl7+8eP3rX18sueSS97Pm/P3vfy+WXnrp4pRTTklR55ZaaqnkcjcISbrqqquKP/3pT4kcLbzwwomc3XXXXcWjH/3oRMgiBQKBQCAQCAQCgUAgMAkIhOP/JPTCNK3DH//4x+JnP/tZ8ec//7l4zGMekzbbRxoCgYeX965S5p3LzMXuojJ/ucwjghXJYfXbfPPNi/e85z2JJLW7uiG+QnC/4Q1vSKTozDPPHCjaHDL29a9/vXjc4x5XvOAFL0iuen/4wx+KX/7yl8VCCy1UPPShDx0CuLg1EAgEAoFAIBAIBAKB5hAIgtQclrOupDvvvDMJuE984hOL+eabL1kCZn1CZgRk+/cQSCxe3styZA/SOWW+eYiyetzKtc0hrVtssUWy4HQLlGBf2aKLLlq8+tWvLr74xS8ORIRvv/32tL9pkUUWKZ7znOekWgkE8dOf/rR48Ytf3KOW8VMgEAgEAoFAIBAIBAJTi8DYXOzsR6CRplGmpY7UPAIsPLfeemsiMTbiE4CRmec973mNHMqJIHGZYgGwP2XWu0n9ruzDK8v8nTIjN5uUGWccZMvOS8r7WJNOK/O5ZX5umceYHvvYxxbPf/7z034z44rlqRuh6lRN7nX/+c9/Ejl68pOfnAJAIEe//vWvE/GKFAgEAoFAIBAIBAKBwKQgMBaC9Ne//rU47bTTkgZZ+OCnPvWpaWM415sHP/jBk4LNtK0HMiRc8ze/+c0UJYwLHBemf/3rXynKnH0m9pIsu+yyyfIzyH4S4CBeNtnrw+9973tJ8J216bdly7nDnVTmu8v8izKvXuZHlXkQguQ1QJKuLfM3yrxNmce4TUdUO8EVkBzKDYSpDkG64oorUmjvBRdcML3jP/nJT9L+NQoSLnyRAoFAIBAIBAKBQCAQmBQExkKQRK8iZH37299OQhZt9BprrJE2fwdBGm5o2Af01a9+NRFQm+CdY2OTvShhrD3cnBAnrlL2nqy33nqJ2NQRdtUQCcsEifsVAvb0pz99uMpP17v/WlZ8bpnPKPNCZd6yzF8tczfrkev/VGaEp1fUbGUtUeZvlVlkuxXLPKbEHQ8pMr6Q4jr7zShErrvuumK55Za77zylH/7whyk8vIANs97yOKY+jccGAoFAIBAIBAKBQGcExkKQCEQ2hd92221JI82yIcQwISzScAgQXo877rjiUY96VLHLLrukqHL+zwnWN998c4pI5jqucTbgIzd1SNJvf/vbRJCUx7rAEsDCMOuSSHM3lPm8MoszsHuZFy3zq7og8efye4Tn22XmQveyLtf5Gnl6RpmfeO/1YyRIxkYOpIAcCxFeNSFDxkt2r0PUWY+Mvde+VjzzSFURgLs5E0GNM8eqohbXBQKBQCAQCAQC9RAYGyMhTM9Kgbpe/9S6mvDkEE6kiEWO22I76SRUcWU85JBDio9+9KMpfLM9YBtssEEtFzkWQFHIlMdFT9jmOgSrVsMm+eJflZUTkvunZd6pzMhRtySAA0vQMWXmOocA9SJIymFlwjtv8mF8KQvmamBM1XHLZLGkFBEQAlm//PLLixtvvDHtXYsADdX7lCWOayIFh7TCCisk63udvqj+tLgyEAgEAoFAIBCYvQiMjSDNXshH13KCEiH03e9+d9+HEHJZmEQX+8IXvpCii6200koPIFTdCkKQhG5GrlgHkK5Zl/5TtviSMiM9ryjzqn0QuL38/Yv33vOU8m+VLVvzldc9vswsTmNMLBZcY40xfV5HKP/Wt75VPPe5z01WYtanq6++Ou2LW2211R4QVnyMTZzoRwtmgWied955aX+hfX+LLbZYstzW6YuJbuQUVo4iyRhE/JF2uV2ZNIXViUcFAoFAIBAITBgCQZAmrEOmsjr2e2233XbFW9/61rRHhDb/KU8hufdPd9xxx33udQiSyHiTmAhCXJII9Y27JAnEcGmZ7TXaoMzOMeqW7Dv6QpkvLTPS86QyL9Xt4pbvBXhUviAQY0zIMAsGYVw49ypCOeFTtDoCvTHG2iFy3Xe/+920n+lVr+rmhzjGhk7YoxFTh/meffbZxQUXXJD2Eu65556JHD372c+enVbbIfsIpueff37aj2luoFRC4CmJeDXEmVxDAhy3BwKBQCAwAxAIgjQDOnGYJhAMhG+2YZ77ThWCRKggtHGxs/+I8DyJrlKiJF5yySVpr8srX/nKJAQ1lmzBEYjhzjKvVOYX9SiZa91VZb6szCLcCbxgb5G//ZJodvY2/avMnjlIRLx+z6jwO8uP/s5BVaq4UxonXOmEBUegHSY8Z86c4q677ipe97rXJRe7SN0R8F5xp7NX8Morr0wudYimwCuRBkfAWP7kJz+Z9sEh+xQnxqZw8/ZjvvCFL4yjJwaHN+4MBAKBQGBGIBAEaUZ043CNoI0WDlzUuyrJdc5AYjkS3IGgO4lC25e+9KXigAMOKB72sIcV++yzT7MESRS6r5dZAIXlytzryOVflr9/uswIDlL0xzIvW+YqZIcbn0Nn5614fXnZKBL3OoQTIXaWVhWCRMDnXse1Tohv1jyfkXAR7SJ1R4AQf8MNN6S9gt61rbfeuthoo42SIB9pOATMB3vttVdy9UTcHTPBffHzn/98siq9853vTGS0cYvzcNWOuwOBQCAQCASmEIGxESSuN9x0uDNUEbamEJNZ9yhaVMKsiHRV0o9//OMUMrz1XKUqLldVym7yGkK5EOSrr756sfzyyzdZ9D0HwnKxW63MvbZfca07ucw/L/MaZf5NmX9f5qreZf8sr/17mR9b5jEmBAkhRm6qvq95vxGNvD0eX/va1xLJWnfddSfWJXOMEN/3aLhRWOy9997puz322KNYeeWVw/Wrwc5BgOScnMX1spe9LAWu2X///ZNlSbCbSZzXGoQhigoEAoFAIBDogsBYCBKXm7lz5yZBi/WCFcIekUjjQYArFEGgqjCAIElc12x0fvnLXz6eivd5qhDShB4a40a1wSxB3OXmL/Pzy8y60ylxpzunzHPKvGaZn1ZmAR14SC3W6YYO3yFYLE5jjqCur4V1t1+j6jgh6DvrbOONN07vNy29M7do7auSrA6IzOivKB3s2dp5552T5e39739/Oscszocbbbcb0/bEsZAeeOCBxW677VZ89rOfTZbPGKujxT5KDwQCgUBgEhHo5Rg0kvoSAD72sY+lc5De/OY3F+94xzuKiy66qPj736nJI40DAa5PIjghElWSfRE5ih13qxe9qNcGnColju6a+eabr1lypKr/KPN3yrxgmRftUXdR644s82vLvEmZGehkbnZV3OsUzeuRi97iPowvCdBg31nVYBxIN1fMm266Ke1xk9yPIM3aA4X7dB8rHXJkXhSM4aCDDgpy1Aezpn82l+2+++4pYuM222yT9t3VOfOr6fpEeYFAIBAIBALjQWBKCRJyZF/ICSecUOywww7FaaedllwZPvShDyVtnehCkaYeAWSHhr/K/gaueAI68NV/5CMfmYIziEg2q9LVZWu5yQnchyR1SwIxIEgOj2U1cpaR/URLdruh7Xv7jwSBuKPMVSLeVSy27mXeSwcQ6/elllqqkgWJC609NIi3EPAE/m233bZYc80105lIke6PQLYcIUcLL7xw8fGPf7xYYoklwnI0xQOFpQ5Jgj+y+ulPfzoFGYkUCAQCgUAgMLsQmDKCxN2GUE0rR0haa621kl/9VlttlQTzL3/5y8mFJ9LUIpAjZSE5hNh+iUVAP7E6sSa0+vH3u3fG/P69siWg4vYmwly3xIHVQbDOMWJN+lmZ3XePQaXbXf/7Hjn6fpm58DlnqcGE9HgnacpzJqQbD+0ac1r0H/7wh+n6qvsyWIQRJGOEFY+bkvf+Na95TQr3Hel/CMD1iiuuSBHqnGtEKF9wwQXDtWtMg4QlHTl9+9vfnoJkcCnWR5ECgUAgEAgEZg8CU0aQHHS44447FksuuWTx3ve+N+1lsGGb5UgoZi48VaOozZ7uGX1LnUmD8AhmUMX1CcklRCO3m222WWFz86xLPylbjOjUMZwJziDgAuNJ1fuuL6+9scwCOvTnruVF/RPyY9/Y17/+9bS/ZZNNNklBE9Zbb72078X7yKLIRS4TJWcXXXPNNUmzXmWMqAWC9L3vfa946Utf2ryLY/9mTpsrEFWR/fbbb79Eji688MJkYYt9L+PtQgoj0eyQedakn/2MdiNSIBAIBAKBwGxBYEoIkuhX5557bjp34ogjjkj7ECTf2cRNSCAcOB0+0tQicNZZZ6XIZIJlcJnrlwi9tNu77rprsfbaa/e7fGb+bl/Qo8pcJ66IYAvONHJfleR6AR2EE28IZu+Zd06/Oe+F1YLVEPERac75RCKmcaPbcsstU9Q534mo5iBh91RNXOycgaSsOHizO2oCV4icJkjApz71qTQPVg2C0b3U+GVYBPSB+fDII49MCjzvisidkQKBQCAQCARmBwJTEsWOpUggBgIWS0UWmBzeyWpk/4tQzOF60/ygE33s9ttvTxpQWn2aUYToOc95ThJgzz777OTmWPUQVRYkBIklIbTcNfrLfiSxLKpGo0OO7FkS7a4BIx3hzl4/BElkP+dDsf7pwyyQI1Asud7V008/PQUL4G7kvRRogVtslcTCiFixTCJeQZA6o8Z1y9k79rh88IMfLBZZZJHOF8a3Y0HAfiSHx7KWf+Yzn0l7w3yOFAgEAoFAIDDzERg5QbK/4bbbbksbXp1e3hpu2f6EZz/72UlA831oTpsbcLfeemtx8sknJ4H4jjvuSJvlCapIEpwd7EoAIJStssoqiTT1S6KQEXoJCQ5XnLWJm9xvy1wn8OLC5fU7lbmKzVaskm+W+Q9lxkl67XMqf+6XEB8R0b761a8my9Bb3vKWRHqMifYkzPGGG26YyNB5551XHHXUUUmAf8UrXlHZVc7+NJEOjTcutUGQ2lG+J0T+GWeckdwQN9100/vI6gOvnLnffOUrX0kKMhbMxRcfc5jGLjCbI1nLt9hii+Kyyy5L82Z4OnQBK74OBAKBQGAGIfBACanhxhGo+dgvsMACxXLLLXc/ocziM67zj4499th05oU62Q81U84ZQUg/8pGPpAiBrEWEXecB5Tb6neWIoGzzPRcSv1WxBhHmCNssSOOMXEcAR7r91W/2bCy00EJTJ4gL031Gme+q8bJwr6vqkndNea3MoLBKjWd0uZSVgnDnPCL7xoRm76aM8D2rkX1Il19+edqL9MY3vjEFZ6ia7HFC0LPbZrdnVS2v6etYVQWdkO2N/NWvfpVCkPvLNZAVbd99903vjQATo0jnn39+OhcK8dxggw06ktVRPHeSyjznHIeElZHyS6+CSU6s7SuttFLah8dlNAjSJPdW1C0QCAQCgWYQmBKCZO+R6FVVz9lppmm9S0EUTjnllAJR2n777Yv1118/hRyfrglxoennLveTn/wk/WUZ4grHl54W36Z7bj3aTWhddtlli0c96n+bYuwPY3GyLwXpaNX8i+LECoiYHHroockayBrlua5zzzrrrFNsvvnmI4FQ3Qn56k5QEXbas7UjkyQhx7nDEDqzhWwklVm3LNU2uueOoHSH0H6xzEJ8L1fmxw33DBiJiiYql3ewFznyJDgL4GBjOrc8kbwEcaiyPy3X1H3GGcvAOMlRPouJQoAV9corryyuvvrqRIr8hvywnBq7MkWBdtoHxP2wTpvr9BJ3VwTJs5HPUZGwOnUax7W8BzIpHcfzqz7T/EK54PBY48fB2N6jSONHgPLVmkDRevjhhw9doVtuuSVF33RAsHUkJ0qTE088MT2L8hGp73ZtnUqIHGofNtd1MkjTRyBYK5WN4GtTTpSdxx9/fAqUZX2YpMSyzvtlu+22S2tP08lxFWQZSnuHQ+dEOaaPPdtRNNbMYZI1R3mOtrn00ktnpRJsGPwm4d6REiTClr0IBHYLzLDpzjvvTBtmCetCBg+zSNGkmzSOOeaYNFHQenOjaCUMw9Z3Ku9X/8MOOywJpvYz0Piz8mTLGK35N77xjeLggw9OAuJJJ52U9h1xtcrEcOmll06TtZDrvvM5W4q4Y7HYmFSca8Mf36LE8mTPCWtc1X1MdXFBZrmHiX7IZWvrrbdOf/W/BYabjskoT/q0/+qJLCFs6lrFQla5XqJUO/x1SNe3js+7uPyWex2DzfJlrnqgbMfCymOUynfG+7faaqslHLoRFkSKxchiaVE1fhziTGPeT4BHlFmKjSvjUECHq666KhEA7mPmAePP+PG/MUcYEEGvScut8o0BG+oRee8CVz/jh6LAgkdpAAcCjmAxyH3O6mKc+Gv8N1m31u5h0WO9ff3rX59cy7r1SZcu7fk14Y6ihIKgVSDqedOYfjTfmsv7ja8xVe9+jzW32U/H6miO9D5FGj8Cee5pSplBmXLqqacmwbmVIGmp97T1Xe11bVVkrF+EZ6SLN0vTBCnP6ZQRrfOBOdF8bX2YtGQNsW/a31Ek77A9hda2VoKU+7gpWYFcJECZKLA5Iuwo2hNljg6BkRIkQhENIW2tTd7DJC+yaE+f+9znUlmEHBrxQZOJiKaYVlC5F1xwQRLcCG3TMdFw2VjPdQ6x0RaTuRfT2UXCN3/xi19Mk6QN+iYHFr3WCZ/WfM8990wBHGhxJKQkC4oEZ1anN73pTQn//L1nKKepRaodf5odpA1ZY9Gwdw2RRdo8m5BloSG0IEssljvttFNq95lnnpmEYm5M2twIAUZa+gf8a29G/8+3lJccW2bbu1Yt8/z9b+l3hTPGCPv2e7CSWPSN+2xdoQVFZgRmoMxAPN/znvek65DMXlZf443FERFBTvSDvYT6xMKASCNJMEegszutvpp//vkbWTQsQpQmxgfB1cLq+QQCZ3Q5nJZLlGfDwd9cl057sPrhOezvrEfIPmLkXWrdkzls2e6nUZ8zZ06x6qqrpjDVk5yaFgZH2VYk2vzCJZkVafnllx+be/go2znby7bWUF6QXVqTeYO111rCxVxCMjpdWwdDc5W129xrTm46aYc10Zwb6R4Ecr/BvTVZ62xJoDjPfRyYzW4ERkqQaABoKUwu3FcGTcqxWdyZPYRjAnwT7nA0BV4EpMLCR9hDvrgGTbdkojUZmrBNtv5HEJh3CU3wQv5Y3miXOwmH+sm+ERYaBIsmTYhnmm4EVT/QpNK+T2XEQROX/SD2LLD2ITraR7hn6WAlooWWBY/QPguC+nIVE66a8EwwVnfCqXYYk6wISASCZ98NNz6LpAiLBPwpSz8sn7RXmf9Y5k3LLHJdlYAOfSqInOy1116pLwVqME4ysbQg+9/7JFMWwMY74b5elg3lUFYgRoRx7yUsaXSRFaSFJTMTWe9aHnOeqy+asNDoXxYZ1kThy2l1ET4WKmc76VvPmpTknCPt56Y1zJzYrT3ebyR3OpGPbm2ZtO8pDbhGmletRRRRkeohQDiFH+UKDM0f5m1ztnnc3M4C/IUvfCFZfXfZZZf7PYByj4WUB0jrOq0ccw4XOBZzSiCRcc0BOQARgRi5pUBgWc5RXa15zmg0bwi1b82j9Ln44ouTAoPr9oEHHpiC1jgWgyxy7bXXJjfzTtfuv//+yZuDsmafffa5n+WGosoYYo00Xx133HHJpQuJYW2nZITH2972tuReZg2zdpnj8mHdlD/WcnNIN+ur9VH9uHjxruANQMFoPnavOUKyTnLB40mjX8gJK664Yqpb6/ykPNZ5ilbXu8/vCIWgTVXkAesrJS2LGY8DddEG0Y17BWnR35Sz7rW3FSYUbM7Yo6y1XuW1RB/rG3hpjz62BuhjmOZgYTD1O3fyHEzI1gHPoFTVf9ZEibJv7ty56Yw6Y4u3BTkDkVL3OophfeEZxjg8pKzst0Uhl6Wdxs4aa6yRxrH53HcU1+qu3RtttFG6n2y2++67J4OBfsvH6KQfIw2FwEgJksFq4vJiDiqkeDEJWgYyKwBhzEs8jHtdK2IENy+ncrkXcT3jojXOIASD9KhJ4F3velcy1XuZJQIuq4GXhjbdC98PNxONl18UM4QpC9MWM8mk2G1SHqTeVe5BkNT/Ax/4QHITJIAbT6xhrZNjbrOJ1+JCEEUOM+Fh4bCgmWRMssqQ816rHOGPkJmtHVXqN9Q1ItYJ9vCOMs9b5h3LvEKZG7JQGd8mTv1mIqWwsEdIPxMiCA8WN+1laWm3KnZrm7Fl0TEuLFQ0q+4leBAqEFC5F8nqVnad71lj7EcjXBGGCF4WEs+etIXC+DN2CTgIZdPWI7gRKln+Ro17nT6aKdea9wi2BGeujEGQ6vcsodRxAwRkay5MrfFcYs3JLMLIAjLQyepBKUZgbT2TyjyvPxAXCk6KLfO8z2QQlh/vBeUXAuR6cyJhlHxivlAH9yLBiI33k/Bv/jRHusf3CJZrEYxu12qDesrWntZkzw8Ph+zazopM+EcaEBdrmnlBXSg7kTJEh8zDBc8ca02j9BJdkRu5tb89WdNcr74IhrlRmb43NyKqBH24W1fNSZSQSJD9N7C3LYIsoF/UD4EgD+T95IjIhz/84aRgpkTtRZJgR0GnnygpkTD9TK7TV1z/1aFTUn/EQt3h5S9sKH+NJ4q97KEk8I195eqvnmSB1j7Wr/pNUB7PQzT0MTkJHuqpP7J1yTglE+oHshMyaNxYc5CtuvtzkSLjl9zC5du4QsYpfo0X/SoZc1zzuEhSGiBI+oqyF0FV30yQECaEC6baG6k5BEZKkEwOMkFskGTAcn+jGTIYZBNd04u/CYkA7uVgRfIy0FBNp+TFEL6ZsGoyoeGnZTHBwczLXVVjb8IwUSOk+kBZJgPlKLOT9WmUWOlvhJVVgFBiwlYH35koOo2HTOJoZ+Bh0aQJpJExuZkAsx+28rRRWfAygU9ZpKrsrsez055QueFYIciPhYEiwMIhw8y47+VC169PCRAmZ25jhH9j0KJnEbBgdeqXfmXW/d1ZTd5ZC4h2WnAy+atb1qivJxxYDI1B43IUCeZT/X6Ooh2TWibBmFBHSLG2Dar4m9T2jbJe5lhzMcGal0I+Z818ROC1Rg2iNMh7YLk9EtQJsJRcFJ2sReZ+SgOki8ArgBFtPUHbGmDOIrCaC82T1jgkAqmQzCeua00sXq5V5/ZrEagqydgxnigukR4WCWXmdxihY7HSHq7vjuRQF8oo5IiVjeLLmt+eslVE3ZSNWOQtCX6znsPNs+BmTvIcwjsXa/c4L896iITYswMD1jGKMXMMywaMuWerGxmqW6K4JezDlFwBNwpJxIuMx8OBxaTTmuFa2GhD3hvq3bOeIdv2vMJB/SnoyHH62Fho72OY536De+5jMg9Zpz1RhrD4kAm49xsn2q7uiFddQqIc7VGGungnkDXeMcYqGc4ztBOBsrZSbKqzd4diwJjRf3n+QY6QU/fVsWa1tzU+PxCBiSVIBC5ub7T9NEBeqlGQowwJAcsL7gVjYjXB9tKIPBDK8X7jBacxpwXy4njxTPhVSVF77U0suf2ETpNkdr1qv3aqPiM9Joo6idCcJz74tFoVtMtiljWVrjVpwXLKUiZIG5RPZDUSDnxESbuy1ayJR5ioTfg0osYHzZwF1oRucZqK9LrXvS4tlBYdfUnYsUgQiCYtEQaQcJg14SI8ae2bDfXJLqiEbWsFi1Kk6gjkNYk7G+JiPqe1p3OLAAAgAElEQVSMy25w1Uv635XWOgqtLCP4BcnhBcFqQSlhM7753RzBqkKg15fZ4ppLI7haM61/rV4E7QTJda4xp7ZfW5UgIQPulf1vbs7PtGYZYwRkblzm1ryWm+tYhxATQnMngqQ9ylXPrAxrbY/ffW+Np+jK+PtLMCeAs3apB7cyngJkIhaU1nogLQR7VjjyU6eEiCEa5j5kTJ/nNZbCE4ljWd977707EiS4WKt5xiDXFJxkHGSBlUX9WJmQFW30mz5mIVK28dW6HsBFG2DTignS05o8UznqT65CGIeVDVj7rJXaIpoe5SxlrX6ENyuS+noOy5F+sJ7aNsGCRE5ltfrYxz6W1l3XiM5qPBsXnQhmpz6J76ohMFKCZKIw6OoKKwY4Uyn/XORoVJajVogMLJoRLzmNBn/T6RiwQTvaJ8JqQ6H3VV5mk+F001CYfEyGnTSTvp9qd8GOKONjozlup+PjmvrSOLNgnn322WmytvCxHiGcU7V/y4KT9yIQKCyUFv1J3IPD8gAj8+GwC21TfRjl1EPAeCN4EXJoroMgVcfP2kRgpYm3vnLZQpgo3qwt3MUGsdxnQbf98HL9RBgmXNL2s6BQoJAt7CmylrE8sE549kSsBffCmS1bhGIeLfZWtibjz5qsXYMm6x8vjHZXZGMcMVIHczlCwsrBvWuLMvJka0I+CfWtLo/t9bEGc+02Nx9yyCHJnSwn9bd29CKV2s51Gqk211PM6XPlIhBIRvaKMI4QDXMt65I1Sh9zP9PHdbZOkF2NF3hk0tLetrqfjXv75IxLijIyJ6y10drJkpoT4suyBmNuiDA0pgXTMtaRLIoAvxvbCFKkZhEYKUEy+A3i9hewVxNYjrz4ND8WH36wBrgXYtTJhEmrJE9XgtQ0Rl5eVgEvYd0NiU3XpW552XxtghvUzbPuM2fb9QgSFzfkhNuRhRQ5WXhELmS98LW4WNTH4Qbaq17GIQGCUCMS2iSSt171n+rfCCaEIW5MBOapmPvrtNHYZgE03iPVQ4CFgtLT2k5rnq0T9tkQklmeCe4UCJ1cnrzf7d/7TMvvb6vigSzh3TN+ZMIoFyaBfbhhWdO4vdpH45ndLCD1WnjP1QTg9nr6RT2zx0KvcpFJbWEVMd5yUIV8DwWUtg1D0LP1q93q4Htly/6XEVlyWLd6WAe6Jdh6BgGeW1s7kRUQCZFpr0cuTx8hA4iBqKTmT/iyWiEQ6pmxRiDsR2WZMr5yHyPjykeGq6Y8DvWZsdRE4jJpLaB8N97MI2RkgTvsqWK1yinvo9UG4951SBNLHBd2LpjeJ98jjtPJ46kJLKeijJGyDsxebn8hejUMS8awaQFsHjQ5mNyU4zfaDBNMfnENHH7FTKFemoUWWihpqZiJDaS6ycvHXMkn1IvX7aWtW+50vR7J5epIC4foDrNnZaox4J4g85WmAYrUPALeNxpg7yu/deOEZmwclsZ86CgFxyQlizctq4WMkFZHi1mlHbBHKpSbffSr3Dcp1xgzXHhoUc3n5nvuiNwnbaKeJM0+zIx5JJyARtjptEl+UrCdtHoQOrOLmLpRalCIijDGVYgrmbmDxR+2raTHWkTL3k6YXUMuQFhbI9vZH0mwJX8YQ+QD64BMEKX44yZpH4q5i7uS+ln3WwXVbhh2u9b3ZA9tI6tkOcLYNtZZJXIiX2gPIdx1OWk/S7O6q689Ne3tdm2/edY92tJadrf2dPoeZtpijicbdatHL68Vv5Gp4M3FjrWjlch6Lhy6yVruM7/pnxxZzj0sT+1ucdrLbVLWblh7T7lf6mMkq1u/tbefrAN78xLlFgsUPAZN+oBFMBNe84hk7KpjezKvWC8EzvC7upBrKXsRVa6NrkGS9E+vPmgvOz5XQ2BkBMngNEFwl9N5VZIJ0YYz/qjCe2LL2TXKRjk+t8iQycRAJQyYAGmtabCzuw1/V4PGIOJ7XEfLYsJxrxcLKTOxdntxq7Rpul9jUhcpzERPKOjkqtZ0G40dwqS+9cxBE1cKEzGtUmhXBkWx933ZVcB7S0lhEajzvvUuvd6v5gHzTbdoSPVKa+5q4xlBMj8RDod9h2BsbiJQ2vjMD1+7zVXmTNpTAsmkC+7mFHsKnEFn/iaQGE+Irrbpx6Y0t831ZpEEV8KKutPuCv4SqT8C1hKExFxB0DO3W1u9t34zfgl5/hIeCbSIsr0fxjvtu2uzYJmfaI5nLRChjnXKO0Z45vpLWUKoJjMYU94VnwmZxhYFGoKVrRL+2vPCsoVgUQp227dpTel0rfeOq5fw3dZOcop2eT7XL+9qa90J8+pn/iTgsxqpH2He+2wdc6SCkNiUICxt9qWov2t6Kf+MVfMFd1BkS93qzAv6h8LZHhwhyvMhuuqnHVkppT8pxjolhMQ2CVEFeRuYDwn+3nVudxQ85kTW9U6ylme5FlFwLRmNQsVe8VayiSx5JxFufax/PEsfw9dnz1Ge/jAWRKwj75l72hUxxhXXPM/l5qhf4O1ezyWL1ol4q236Csk3b5ijjWtjhPtip8RSaNyoA8z0hXqSbcnX+gTpNC46YdepzPiuOgIjI0jIjsHs5WCarZIMbJFZvGgYfytbN7gNUIKzsrlfGCwWV4OVppGw4EU22C24JmKTE3OkelRJBr8XxoTt5Xf/bB54JlfZZJEnqlYcLS40e1mLnTdPmqz0lYlJf+qrqhOzBcBCYsHgcjGIAKLOJg/aGuOvav9XGSNxzf0RMNFbxPlJE2q9m1OdLDQWQgJGq5ZxquvR6XneEXXLC3Gna6p+RyhCtkSFojEnoFl0zY2eQWjwPddkriuTmmiFs1sJfJA6xFp7aGwJQO1a5klpS1aiEbZodgeZnyalLVNZD/3MC4T7usi0+tf7aj0n8GVLv7matp4gefTRRycFa1YqsGa0ezEoI5MV+1uyV4n1RjRaa49n094T0N3v2dZ1ArpjMLheKQOh8t44TsIeFmue+7fbbrsHQNXtWsdtcDkjw+SwzOrimXKri612CbiABCJBlMOeiVB4J7zH2udd4VJFJlIGjJCSfkGLtAWxojRGBpQNZ6SsarJ+qgcM1Q9xVQ91kAnu/WQ8Id1hrQ2OUyFn5fvJWL3mKqRE/5AHnIPlXn1snueKmxMyhPS09jGsEAltNqZg7z7P0ze2csBEG5wV1Z70AZc9cqn+oaQ3R6k7DEUUrGO5gaO52zlN5FX1U29jybvRnrwX5ptMrqwhxgOya601Txo77eSuvZz4PBgCjRMkQpJO4+PLb1SnE1QN8F4vJdOzAWPBEe6xvcNXKP01DQjMmzBEs2NgYfbbbLNNmlA8z4A1iXpRTIh1LRAmTy8MAZvQT/gbJNGOIgsGtheqlewNUt5U3YPQIDdIStZUITpeSn1Lc+UzUsQ0LOf/TaCtQo32E9r0Hd/vqgTJswiC+o9pexABhJBlA6exgSRFGh0C8DW+9Zd3tJsmcXQ1KNKzKTRoj73zxp3xa2z6a67I7i7qYYG1qA8ytuq2w1xC2GvCekRTbnE1pxLACGIWfEKGNps7ac/NXZOaCMTOWiEkm19FZSKIZNdDY8gBl0jfpCqnrBHqy6IRqRoCyABB0IGo+eBxgiahlWscImIcS/YJWS+sOd5heBNqCcve5SyQGz/K8513mQxg7CMFymSB0U/WNWNMHcgk5gTrjHfStQRkvxE8yRLGoDpa03xHLshnJ2XXfd+zWLVfaw00B/GCoaQ1Lylb+8gnys1eNVmhI7Q2pa53w7XaTjDWZvvwkBvvvnnL9+QfBKlfACx122mnnZLSxFqdyaQyRa8jS7UnFgn1y54A5BdYajdCYp5RD9/DT7v6ESR9jBywiFibKbXNi9pJLvSs/K7rM4E8srukvkF0rSuwc517uGNSxhlT2fKHLBhTMM99rC98rxx1hpm2W7fMy8ZO3uuo7a7J20LUD7nyHHuh8rxqPFK89yJHxp17WxW0LFJkW/0Be+NdvZSnPfBpnfO0WUh85fhd/0na5HBY8nA+T6y9H+Pz8AjMUw7S/zm+Dl9eOtSM9sXAyxpdZw4QVHsJTu5xmrPBc8QRR/QceKqJUDG5izhHE2DQN7WYmoxMfOphYNYlNyYRWpb8MntRMH/ZC6E8L562mmh8X5U8dOoiL7hFhADohTXBmqRN7oiG7z1HRloQIP/7DdnxmZZFVo7vTC6ZKNE++Y4JXD2VK1l0JN/lCcrztctfdTARmADc24sgt7fLIoYsK7tuRDRD2sFzNj2KVmSRaSVu7c+Kz8MhQDPogDvvL+HCQX11z4cYrgZFOuHdvkHPJTQRJoxvYyFPca1TnTFqTHKRGHXy7pj/zAN77LHHUISdZdXY9k7st99+D9CmH3744cn1Qz8QCiYxcX0Sppbm3Fk45ofWuZsgZyxxjyYUEFgmLbGYInEERFroSIFAIBAIBAIzC4HGLUi0Gtg4/12kx+JH09krfCcBAjsnFG9RhpHsxcoz/HnznfIz22+qaxAY5nZaiLr8kQbopPLkZRptLB/j979yaH4I6oQBfz0HueEeSIhvdx2o2h5YMP96jmcohxZF2YTETIyQI2TJb0iOOrnGX9chPOoFf5lApzyJRikfHIfkETBpPeCEHGV/8vY6c6VB2Notgu3XtX9uP7Oo/fden7UFOaIZNDYmjRwhnkgFXFrdLXq1aZJ/07fGAQ0jvKeaHBnDfLS9awg+NxtWFf1vrKqP37LiwHinUKlLvAftA88j9HOFyxrAQcvyDsvmvU7zBUu9931Qy/eg9ap6n76yj4GyDInr5A5JKUJrinxM2rub24m0yd7jYVJWTlk3aJSN36zA0r+s757TlPJvmLrGvYFAIBAIzCYEGidIOdwjckH4Y7IkqPRKtL32H7meGbxKsjC5j5mz6USQIuxxE8zWkqrPIAAwa9NOi7qiLGZZZbF65cg2iINFMZOmus9prY97La4IJpKDIGR3t0zEEB6EjMCI2PhsASbcEiBhLyNFBJQsWCozR3/Zcsst+5r023Gq6+LYfn/dz9pvI7DxxKc4u0PULafK9QRf+OhLz5UJMrBHQuELW1jrE31Pu69+rKuEWJaF6Z6MMeMFiW5aWVEFG9Zq1kaWWPMBssY6wS1jEpJxQvD1rhsXw6RsraVQouwwv7Sm1ihewzxnVPd6N4x/LrcIUKcEozpHQ3QqY9TfwT3P7f2epZ+MUdZ05NUageRSDOa9uiz25og8d7sGPqxok2hB69fm+D0QCAQCgemOQOMECSAWBO5lBMYqmkzXWihcm/3Q+wFrcUE8+HQ2nQi2BD37mOoSF8KZTZqtGj/a6vbzA9TZIpgtSsO0gTDxzne+My242Z0O9rTVyrfAIkLaVVcTSahj4WIZrGsFGqZNg96r/dyQEBO+yaO0ZiDo9sCJEJStcvAlEMMd/kipOqgXEoskZa1zdlEctK2TdJ+xhQyPwyLGWk3rzhohqEdVJctU4kcwzhasYZ4rgheh+TOf+UzauE0R4x2t+17XqQPhXf3NI1Ws+73K9p6wHtlvQYlhvhy2zF7PG9Vv3mvZuOuXkCHkSJ9ZT8z7MjLkvaFcgAOCT3llnoV1xmaUfduv7vF7IBAIBAKzFYGRECTEBekx8VchSMiRBaOO1tBCIw/rstKp4y3i6k7rN0iyoMFAJgRbSFsXuWzVsQhmoYmQMKimUNkWWrnpBIedd955Yl1dOrUXHjAXcYcQhqD4TCNLwGyKNBnjXLtYkQjn+i+TI+OZYMlqyHqYn583BCPg7dr/Tm2p8p1nCEvLkiUZv5l4+9uJ5Ktna/I5X+f//Dm/Z62ftS1/ztfatwcHZEVb1SELkf4iTguXm2Kz22mVdlW9xjMpVridsRiO0mpYtU7t18FRXwybKFucD2TcOZWepZ7rK2WAd3WYZ+hLQrt+5LZrXvaXIgC5t3EeORvGCqZ+9h0JgYwwsKRSHnkvkYPpkswx3d6t9jYY/6yr+g35sWYZr96J7KIcbnTtqMXnQCAQCATGi8BICJLIPhZUQmA3N4rWZtOwEbrqCK5cTQhCosSIXuN+5VhwRA0hLAyasqAwDPkSu97ZTaw66tROkJSNFGUXO+54BJ2qFrTWtiFhBBmCDWGZtcLibdGFv36A16CayGGErkH7YND7kA7hPDP+SGN2bbLhe/311681znrVgyslNy7YdnP11DfZekBQyqmVkPR6RpXfvG/C3XO7yoJbkwSplQxlDXhr/X1H0OVGRsAWxTITJPXxbsJIBCpRnFgj67zrvTAgxCMLrBJVlDG9yur0W7byac+g749y3QuzYZN+1VZRrwSoEQ2OxZQrs0hQfhuEhKobhY4zOeDJyimbV/SvdwjB9f8wBEn7HcypHcLxCq5hr6r9YIiSaFHIxDBYD4txlfuN6az86ne9eV7fjOt8sH71i98DgUAgEAgEHojASAgSy4sFt1dghtaquFausyja8CzsJi2kA8gsVtwdaDi52QxDkJRFOKDhq1On1jYRFBEVAoUysnbeNQTmvDnX/7JnEkDqECSLNEIkFKoD0uAuI4qEGEIotw3aZdp1ggcBZBSWpgcOrfF8g3hq6yc+8YkUIhx5IPjB2/fDjIv2FhkftOr6QV+3khP9nfcU+M0mfWSZ4kD2PzLn3K5W4tT+jCqfvWdIIQHTc40lOdcBJu3j2OfW7wismQRkcpVdBH2fc/7ONf73V2atY2nQHuNY2/MeC+SJS5VrYGGMd9qcX6Wt7dcIaQ1bZLXXgYnt91X97Mwh5Xt3cmjeqve2Xge/bHkb5P7We/IYP/TQQ9O5HHAVpEXobxZKcyDCUcfdMZNch22ycjhfRaZs0lewJei3j6NB2qL+FBUO06TgEoU0n4lkD5Ww30L9DkvEBqlb1XuMY7nOfGKN8154/2Hg/c/vvvc1jw/X+X5Qj4KqbYjrAoFAIBAIBLojMBKCRCi14FYVWGgnLRi0wVUTVxN7Y2hLCV/KIBAQEKpYrbo9x+JEEy6+vPMVCH+DJCRNiHACRS9CkomS9tOyV00WWm5VDjATNtdCLRKeIBn+R5Lsd2FVIDz5zMpBMHHdVAdPqNqupq4zHljl5FEn/cBqYuzoa32ZCQJhCNk2tvUHQouwGWMsHgjWsAQph5AfdTt7lY+keee5yXYTogX7YOXs9nuv8rv9RjngvUFeRiFQEtxZaJybIbDAIEl7jUeKkFZFySBl5XuUibCwxiAU2WLKAuT/NdZYI+WqofWzZUrIauRqKvYFGSuOgLCPSpANRC8faLnnnnumeWrYd2MYjHvdqy8RpDr7MvNepEsvvTSNBy6FlFj60jrg92yx1G9c8iIFAoFAIBAIjAeBxgmSheO2Mtw0IbGqy4vFmLaQMFknIUTOK2oyqT8rjH0jrQdzDfKMKgKbttcVRgji9tY4h4PWGBHbcccdO0aYc61gE8JeE/b233//RCwd2sZFcVACOAgeM/UeAil3J8INvAnB2eJCwJMJg4R4BN5fygNCUB0Ba5Lxq7LvBxlsOrEgUZZUeX7dZ+tLcwHLGOF10EQA1v/2iCHOTSflIxOyw5HNCyzriLgDF6tYpZVBYO8XcbTpuiuPUoHyJh+kaY4SdEY7fDeJJImCQ66qBNROFtWrr746KbWydTcTojxf6Af/c8dDHJtUJoyi76LMQCAQCARmKgKNEyTChFDGhL+FS1ebKgnRQSaye1gVYlGl3EGu4XPPGmDfkEVqEgkEImmRvfzyywuht9/2trd1dUexwOqH7bffPhGpk8ozmmQWjR122CFZ3VrbKLAASweBkAsI4WqmCPGDjIcq93Bvo3WnFMiCT45OBT8WPb9Fah4B1juuhb02+Gd3Q++CfqgqdGaXKAqMYd4B75cgBKwkFDCDJhYLbTE/dpuXuKg5YZ2rHGsM9zhW427XD1qXuvfB0tzi/WA16VQfxIBbnwNwtyjPwzvyyCOLAw44YCTkt279W6/XFmSX62VVJaD7eTaYh4X2Nw6sNTBRXlaUGZ8Iofmj6jgdpi1xbyAQCAQCgUBnBBqX2vjsW8hp1noJLa3VsS+GEH/hhRcmDZszTMaVRIVCkCb5/Al++3DiPsbtp6qvvv0ENLO0ss4Isrhzz8nCH1cwJ8Rz0+EKhjwJgAELblzDRskaV5+O+rmT4OLW3kZCFyEMmfY++kzw4tqTg1a03zPdPhO2jVPj19hknSFw0tRzWdJuGCD8/hI+cxhl13PNg0UnYR0WBFSuqPY36eNBk/K9a1yrBrVE6T/nB9lXJ8gFi5T2KFvOwrTr4GF/puspQ1YoDxsdxu140Ha33qc/tJ+LpXkL9kgAsidTxmiPuYxyDUHad999i9122y3VvbV95ikRJPVvJq+uqUN+h2mTMcbDwDire9iwdmSrcp39S8PUN+4NBAKBQCAQqI9A4wSJ65dFq6rvuyoTWrizEfo//vGPJ7I0zIbo+jDcc4cFl0b6xhtvLPbZZ59Bixn5fUgoC5c9BnU12wQTrhtc7GhonRljobZwc8M7/vjjkzAt4hiyaE8CIVFo3pVWWikRX8JMaDdH3s0DPYCFgWabexVXV+G3WXVtACdEEq5p6e0Z0q/jtNYO1MCWmzIJ0mZWa++uCGz23dlDmPd7Gaut41VUR8Sfyx+XMoqDTjgo335KJMo1gyZCv0ApyEE+0qCqUiM/U/9RjBx++OFJwaHerJPm2rzZ33ubo6shhH5z/g5MkKRxJu5oZ511VopYZ763PphLzPOwZWHjJok8IB4SwotQZpdV32kfV+G99torkX/KNXMYV2v/I46jnp8EHTHWPKupYCPj7Jt4diAQCAQCgcADEWicIBHKCBt1Na5CXBPa+Z/vuuuuKfxrN83uA5vRzDfqbiM5y8mqq67aTKEjKIWAi0QOeiAmF5etttqqOPXUU5PbD0GFEIgY+rv11lun9sOfMGAvwMEHH5yiTXHp48YDI4JIpMlBgDBpT44zZs4555xUMUQAMdKv9qJxu0KefM/dR3jo6arJJjhTEBiXorkh9OYe+1lE02O1sT9J+5EFRIrmH4FiKUX+EUbCdqeDnFmSYYVIEeAHTciQd4aFQ0AZz6wTYc5z3UuxweqCZFBmcPPKbmvIkYQI5nlTm1njRYQbd9IHou5pvz7IJIPXgM+Z0FH8IJHateaaa6Z1pJVMIkh+0zbzoLZSyiFIlGws48hjVvo03e5syUO+uWD3CsDT9LOjvEAgEAgEAoGpQ6BRgmTxsvDRrBFM6iQL3lprrZUWnUsuuSRpD6dy8VF3gpNsr04njXKd9ozy2hVXXHGo4mlpCReEEQQJOSVAcyXiXkfAJtAQDGll3/3udycBBEkiVPuea18WRFqJUuum47AyDdVNtW6mdUcSHB5KwLQ5/61vfWuyMrQqGmjy7V1zfs573/veYtttty222267idwI3w8A5Mg+OkoN8w0ygOj0igZpjHM/22mnnZJgzl2LRaY9EYRFrzMPsBIMowzwHrDWKYeLnL0ndQmS+rG2bL755im3JkSR9dtzkAl50t49YxAGomy2J31AOSVzhzRm9Qm82pVk1gSR+8xXp512WnKldN6cLFCKYDUIr7WkrnW9vV6dPnueyImsV5QLkQKBQCAQCARmJgKNEiSuPNx7+GUPElWKlpTWt87G16a6hdvaZZddloQLUd5mQyJIWvCRQ2mTTTZJBNXeBYIIIZGW2r4lwgaNO/J67LHHJpc7e5NsOPYX6SKkcekhvNDiTzLJnGn9SxPP/Yo1kKa+m0sYzTrroH4W6YxLq/+Ri05CNeEb6TVGWq0U2VKR98E0gWd2D6vjIoW4DxrJElbdopAhmSw1LLWUCTm4AoF90KhqLByizHmnHOjaVFKn6fyuIUQsbHKVRAEHSxa+PFc5VsEhxALWnH766Wn9ETyl6cQNnJVW/6lDpEAgEAgEAoGZiUCjBImLFmHK/gbWiemSCIG00PzKaR6rHnA7XdrXXk+CLjJjT4R+ytrx7AqUBRVCIovSmWeembJrN9tss2KDDTZI1opPfvKTSZudrU+0qlxo7N9ieZrOQls7ZpP+Gck57LDDkjtVFWsHi4tzVvK+P4d2diJILMJCydvLlAkSa699JPqYkGg/CdJAUM9ZWZ3Ky2X4K3v3ECMWY4Kn95CCoq4Fuun+yS57rKSUJywU6siywcIMg7qJ5ZXrowAD5knkMtJgCORxxuKUk3nIeVX2VoqI2nQyTrlzIsv2dFV5z5quQ5QXCAQCgUAgMDUINLpC0+hxoxi3cFMXOlpdezNo17lvzPRkgc8RtZChbueksAh+5CMfSdYibn0EEIlwmA+oJIjYPE64lewbIKyH8De1o2iQzeLeU3t1PvCBD6TN8Pq1ndRwJzrllFPS77TmCI29TNddd12yhOSw0yxWyJKzeFgPWV4Qp3YXKaRbQAX7hSgknCE1d+7cNH4QJm6B2U1zahG8/9O0jwsesm/PHksTws9CjjyxotZNSKg5RtkiuXWz8tUtd7Zdb3zAUB8Y95l0X3XVVSm8OSI7iAtjPxyR92uvvTaN72HdnPs9K34PBAKBQCAQGC8CjRIk0ZK4P4gSNV0Sgc+ZQvzg7auZTnUfFGP7UD7xiU+kvRisZZ3IDM0sqwEhkctKJ405Ydr93FsysSQQtwvZg9Yz7hstAgR/7qzID6LLItQeXW3ttddOwiChk9XI+2JMeFeQBmUgDaK9sbJwU0V+aNuNA2OLK6f7PAc597/vvWsIuuAD9rmxzCDrncbjaJG4J2Ia4oY0soa9613vSmMaKdJOLqba+fnPfz65MsJL/euMdVhxR+UWhhwGQRq8V5Ei44nXguiaAjUIqMGy4xwlRL3pdO6556bxwB211z63pp8b5QUCgUAgEAhMPQKVCRLXKcIAIaqTawGtHs0yLel0cq+zd4NmUEQ41o86As/Ud1f9J9oQTuvJukfI4yJEECTIWvC7nY/C/Q5BEu6bINduCcg1gddMw6w+ytPzDv2WCZH3N2viW1uTCY7vcj+zDomiln5S3ZUAACAASURBVL9zHyXDnDlzEuFhBUIgkCZkiNXI+PGsrECh4WeRzN/761njGktIHVIkYInADyzh5rE8vv31/qg/8kfJMEiyL8bhp9z2kKVOc+kg5c6me4wT85i9Z+ZuhIXbLxdGhF8/tRP9YfFh6ZSRsVGQr2HrF/cHAoFAIBAINItAZYKESHDLolV1iF+7ICMyFg0rl4fp4mJHEy6EtVCy9h5lF7JmIR5PaYTSz33uc8k9irBK4GMFsKeEACHMN2Gw2z4h7lNIMYGuGzkaT8viqU0hwJpD665/vbPdhMr2d931rCGtyZhiZSTwI90IkHDWea+Ra5XjXjkTj6baMmw5hG4WMlYw81snIRuJFC1Q3TtZVKvUgTAvGh3lg/ePq12kwRDQBzDcfffd05jK++Dax+tgpf/vLmPY+XDGNVI7Cve9YesY9wcCgUAgEAg0i8CDqhbH1cbCbgOscM/OgWhNzhWhWZanMjx31fq3X8eyIswxAXGdddZJlpKmF9b2Z07VZ/75XKBs2ieAnXTSSUnDbz+FxV2Ahj322KPrWSEEAi6HiJXzciLNTARYQYR5t1cIIRhm/AvR7HwaFmblIFsEVoTJfCD7HxHJBGmSUGUtcsaXKIx77713UiS0J4fPUhLZi8W1dBC8CPWirbGusUiwsEWqjwCiag5nMaLYougx5gbpk35Pt7axwtuvN5PWiX7tjt8DgUAgEJjNCFQmSIiPEKqI0nnnnZeEbYJ2TixIrhFedRSLVFOdRPjnCsg9w54pbbIHYtDQvU3Vq4lyCFssfc62IfA6F8SZIDbPc6vjUsd1Turl2sOyYA+S8gjPkWYmAgRM7wCXoWGshN4n54cJQDDo4cXjRtj7QJnA6sq6s+mmm6Z9evYKeR8EkWCNhdcuu+zS1drWrx3mRq68LHbcwwSIiVQfAREzzWnOtRp14mWA+IsQycoYKRAIBAKBQGDmI1CZINH8Lr744umgUOfliBgk/C8hmtaVOxZ3h0kPkU1AIZxsvfXWKUw1YQWZmO7Jvghab5YhQiohThAGbiEE2M9+9rNpIzOh7+ijj04LfTehmCuR85H8PhOwme59O4r6c7fkYurdpSAYJpkHWJRp1yf9/e/WTvMC6449lMccc0yKxGh+EDhCu7gWsyI4VNd7NUzyTjqLihsry65gA5GqI4CwUvRwI3bm3qiStc06x4IkJL71r9ucOao6RLmBQCAQCAQC40Gg8h4k1UOS7Nehcab9PO644wrnhJx88slJMHKgIi3ypCfuPvYcccvQppmQuEshPtrGVYjgQCsuyhNBD4El3LEAckWZKe2eCX03FW1gOWUNce4RKwj3SZ+lV7/61QNbfZWBIAleYAP7dB9X2ZJkPkP6uMIhMqLrLbbYYimi3aD7j3I/E7KRUu8ka5V9T+uvv/5UDIMZ8QzWbf1irkNaRpUoERykbF9tWI9GhXKUGwgEAoHAZCJQmx3QtFow3vCGNyT3La5qhPA999yzZ7SzSWv+dCBydTDjcsJKxGWQXz5B75JLLknngrAG2XhOC1ql3QQPYWxZkmhq7T2LND0RQIwI4tzDKDUoBQj/3JPsgTEeDjrooOKQQw6p7Tam7NNOOy3tV2NpsTdnJiQkj2upLFoaQdl33oum3IfteWK9ZsX79Kc/nd7Z2O9XbfSwHIk6yC16VIF1uI+zGCL/RxxxRHKxC+tRtf6JqwKBQCAQmAkI1CZIGi2C1fLLL5+CNTgZfo011kiBDqZTeO+Z0Hm5DVxBkCBCL40qgY7fvPOL7AljUeIWVPXsDsKg+/Qn4Y0QbQP+nXfemcITs0BwQdLncZbLZI4kY0JUyQMPPDAJekjuZpttlg65FJjkjDPOSBaRDTfcsDjhhBPSGGEBrmMBQrCQcJG9zAe99rVNJkr9a5UDTPS/sv4VrLzOEHO2kn2dQZCqYWjvHOseoj8q0oKEmUMRZF4S4WpcrW/iqkAgEAgEZgoCAxEkWlR7WET1oTXmfkKY7hYmeKaANant0B9IK4FL5Lqjjjoq7WtwwCdXQuGWq1iOcvuUh2htvvnmKbwttywCt2cgTiLhLbTQQqnfI00eArTfiOz73//+5EqHGHGj866yICHOhEyRDoWd1sc33XRTIkxVCRKXTuPMe79CeTgn17NI9RDIe55YJ1jjIlVDgIudKHbmtVEkyiZBR5z1xbrKrXxURGwU9Y8yA4FAIBAIBIZHYCCClB9LYzwVUYSGb+bMLgGhcc4RcmRDMWGLNYDmk5a1qtDbipKN5PZFcP3hZkeYo0VFjGV7TqpapGY2+pPVOsRYZLQPfOADyfXtfe97XyJB+dBTUQ7PP//8RHC5yXLNFOCjbjr77LOLm2++udhxxx3T/oxBxljdZ87E6ykZQtFQr2fNTSyWggKNIlEqcEmlcKJkGpUb3yjqHmUGAoFAIBAINIPAUASpmSpEKU0gwBWI0IAYZQvfMC5PrIE0p6Jtcdnj79/U/osm2htlPBAB/UTzzfWVFvyAAw4olllmmfvOJROK3z41ZNeeNCRXhEPXsgBV0ZJn1z1727jWKT8E/Af2RXwzOgRYOs1No3DpFpDDWVei1x166KEpCmiV92J0rY2SA4FAIBAIBMaBQBCkcaA+omdayAkOTSakaBii1WRdoqzeCLDonHrqqSnq2r777pv2nWVSax8SVzrud874YfXhpsQVT/8KvFLFCuT+s846K1mnuG+Ga13vPolfm0eA5XoU1uusYLCvlrJJDrfx5vsvSgwEAoFAYDogEARpOvRS1DEQ6IMAN0gRt7773e+mcO6EO+SIuyWNuA3nXOm41eWACja6cyeyr6zXuVitj+bCd9JJJ6V9Rzaw29MUKRCYCQg4E8xBwYjSDjvsUGvf5kxof7QhEAgEAoFA4H8IVD4oNkALBAKByUVAZMFvf/vbKbqg8NHIEQsRqxFXIWnjjTdOZxVllzh7K2x05yZXxX2Se53gDEiYoA8R2Wtyx0PUrB4CQuFzP/3xj3+cDhEf5QG09WoWVwcCgUAgEAiMA4GwII0D9XhmINAwArfddltyreP2huzMnTs3BWNgPVp66aXTeWXCSLdGM0Rwll122XTeTxWC5BqZK6fgDghTpEBguiJg7x1XUaSIW90PfvCDdJA2BUPsO5quvRr1DgQCgUCgGQSCIDWDY5QSCIwVAfuInFUlSt0111xT3HHHHYnMIEbrrbdeOgdJoI3WZH+FTehylaQ8pMq5Z3PmzEmuefY5cc/rlLj00cyLpGjPSOzn6IRSfDcOBJD7Cy64IB2WbO+e92fddddNZ7s5ziBSIBAIBAKBwOxGYJ5yj0IcwDG7x0C0fgYgcOONNxbnnntuCvGNxDjHauWVV04udFWCL1SF4O67704Hzwop/89//rNYaqmlUoAHEcVo3X0nkANXvF/96lcpqt7OO+9cLLnkkrFfqSrIcd3IEWAt2nXXXdNYFrBkq622ShE7RxH8YeSNiQcEAoFAIBAINI5AEKTGIY0CA4GpR4Ce4/e//30iJcjKAgssMNJKCIOMkN16662JGAkzL6mHzHqETImquP3226fz0iIa4ki7JAqvgQDL0ZFHHplIOyurkPVx3lENAOPSQCAQCARmOAJBkGZ4B0fzAoFRIWAPBxc6+5+QM25LzlhClgSC4Fq36KKLJmJUZY/TqOoZ5QYC7QgIYCKwyVOf+tSU291P26+Pz4FAIBAIBAKzC4EgSLOrv6O1gUAgEAgEAoFAIBAIBAKBQCDQA4EI890DnPgpEAgEAoFAIBAIBAKBQCAQCARmFwJBkGZXf0drA4FAIBAIBAKBQCAQCAQCgUCgBwJBkHqAEz8FAoFAIBAIBAKBQCAQCAQCgcDsQiAI0uzq72htIBAIBAKBQCAQCAQCgUAgEAj0QCAIUg9w4qdAIBAIBAKBQCAQCAQCgUAgEJhdCARBml39Ha0NBAKBQCAQCAQCgUAgEAgEAoEeCARB6gFO/BQIBAKBQCAQCAQCgUAgEAgEArMLgSBIs6u/o7WBQCAQCAQCgUAgEAgEAoFAINADgSBIPcCJnwKBQCAQCAQCgUAgEAgEAoFAYHYhEARpdvV3tDYQCAQCgUAgEAgEAoFAIBAIBHogEASpBzjxUyAQCAQCgUAgEAgEAoFAIBAIzC4EgiDNrv6O1gYCgUAgEAgEAoFAIBAIBAKBQA8EgiD1ACd+CgQCgUAgEAgEAoFAIBAIBAKB2YVAEKTZ1d/R2klD4E9lhbYr88ZlvqXM/zdpFYz6BAKBQCAQCAQCgUAgMLsQeMjsam60NhCYIATuLutyR5lPLvOjyuxtfF+ZnzdBdYyqBAKBwEgR+Ne//lXcdNNNxbzzzlssuuiixYMf/OCRPi8KDwQCgUAgEOiPQFiQ+mMUVwQCo0GAHPTkMm9a5mPL/O0yX1rm347mcVFqIBAITB4Cp59+erHDDjsUxx13XPHLX/5y8ioYNQoEAoFAYBYiEBakWdjp0eQJQWCesh6PL/OhZX5Ema8s87llXrTMq0xIHaMagUAgMFIE5ptvvuJhD3tY8YhHPKLwf6RAIBAIBAKB8SMQFqTx90HUYLoh8O+ywueUec8y73Tv/4O2wRuIJD28zG8ts7IvLvOPBi0w7gsEAoHphMBKK61ULLPMMsU3vvGN4tRTTy3+7/9iI+J06r+oayAQCMxMBMKCNDP7NVo1KgTuKgtGjK4v89PL/MIyL9DQw55VlrNameeWmbvdsxsqN4oJBAKBiUXgMY95TLH11lsXf/vb34rzzjuvWGihhYq11157YusbFQsEAoFAYDYgEARpNvRytLEZBCh2BVH4bpm3LfMyZWb9eUwzxacgDeuU+fIyf6fMy5e5KfLVUBWjmNmLwPXXX1+cddZZxV//+tdiu+22KxZffPHZC0aDLZ9nnnmKBRdcsNhwww2L3//+98XJJ59cvOAFLyie9Swak0iBQCAQCAQC40AgXOzGgXo8c/oh8I+yytzqLinz28u8bpmfW2YE5pENNodMtESZRbdDxCIFAmNG4L///W8xZ86cYq+99iouuuii4nGPe1zx+MfTDERqCgGR61784hcXq6++erIkHXvssQXcIwUCgUAgEAiMB4EgSOPBPZ463RD4a1nhI8u83L35CeVfQRaaTvOWBb68zJ53XZlDRmoa4SivBgL/+c9/itNOO604+uijEzHac889iy233LKYf/75a5QSl1ZBQJCG5ZdfvlhttdWKr33ta8W554rYEikQCAQCgUBgHAgEQRoH6vHM6YXAv8rqCppwdZnfWOYnlXkU5Cij8qLyH257Py5zhPzOqMTfMSBwxhlnpMABz3ve84odd9yxWGWVVZI7WJzVM5rOeNKTnlSssMIKyZp01FFHFXfddVdYkkYDdZQaCAQCgUBPBIIg9YQnfgwESgT+UuZvlfmJZX5+mYXkHmUS/OGpZf59mX86ygdF2YFAdwQuvvji4sQTTyye+9znFptvvnkS2lk5Io0OgQc96EHFYostVmywwQZpP9Lxxx9fOEg2UiAQCAQCgcDUIhAEaWrxjqdNRwT+XFb6m2V+TZkdUzJK6xF8uNkhSJ7zM19ECgSmDgFhpm+++ebi8MMPLxZZZJHiTW96UwoaMO+8BubMT+Pe+/PIRz6yWGqppYo3vOENxQknnFD88Ic/DJI084ddtDAQCAQmDIEgSBPWIVGdCUTAfqDvlfnVZa4iI/6nvI5L3gllPrjM55X512Wuk1irPOs3dW6KawOB4RBAjn7zm98UBx54YCG6GnL0whe+MB1kOpMTUnTLLbcUH/3oR4sddtih+PCHP5yi9Y2LLD3hCU9Iob79FbDhD3/4w0yGP9oWCAQCgcDEIRAEaeK6JCo0UQg4uPV39+YXlH/7Bca/u7yG1Wf3Ml9Q5hvKfHSZLy0zS1TVxFL14DL/qeoNcd2wCBCG//73vye3pq985SvJxWm2pT/+8Y/FJz/5yeLaa68tttlmm+KlL31pwaIxkxMiJCjCIYcckiw2X//614uTTjqp+NGPfjQ2gvSQhzwknYf01re+tfjiF79YfPe7301jM1IgEAgEAoHA1CAQBGlqcI6nTFcEyCS3l5m7m2NfkJZeyVlJCNX5ZV6zzFuX+aFldrbRbWWumijsPVN48Ug9Efj1r3+d3JD8HTaxmnz/+99PloTZRpL+/Oc/J3Lwmc98pthiiy2K1772tcV882Hqg6W//OUvxTe/+c3i4IMPLs4555zC53FZZHq14M4770wR4y644IJkqRG5z+GtovaNM9nvtcYaa6SgGEhSE+N7nO2JZwcCgUAgMJ0QCII0nXor6jr1CCBIvyyzY1+E9u73xiBQgizsV+YNy7xCmV9Z5rvK/PMyV02egyBx14vUFYGbbrqpOOaYY4p99903CffDCODIEVcyez8IyA5F/c53vpME5pme7r777uRixnKy5JJLFptttlnx2Mc+NrnZDZoQjy984QvJMnPEEUcUc+fOLbjwTVp69KMfnfr7oQ99aPGPf/yj+NOf/pTcCllwBE0YV/LsJz7xicWb3/zmNLYpAdQvUiAQCAQCgcDoEejnMDT6GsQTAoFJRoA8wiLkQNgqsiKC5Npdy5zfrgXL/79T5j+WuWri2keWnNlbP6qi0fE65OVTn/pU8bOf/Sxp+x/1qEd1vK7OlwjBMsssk27Ze++9i69+9avFs571rJRHlZAGbl72/nDr40rF2uI7Eczkf//734lcZMLCsrPmmmsOZeFpbc8dd9yRrBS/+MUvkvVMuOlhyQGyqRyZZQbxGIbAjgr/BRZYoFh//fVTEArBKez7WWuttUb1uFrl6gN1EWr98ssvL57znOeMdCzWqlxcHAgEAoHADEYgCNIM7txoWgMIiLBrH9CTa5bV+maR2+1NqhOtF5liuBivl0/NRk/N5Sw6OcoaEvHGN76xWHrppYunPe1pQ1k8Wmv/8pe/PLmYXXHFFclN7BnPeEayMDSRnG1z++23Fz//+c8TIfnd735XcG/zPQsBIuRZyETOnpvJBZJEqF999dXTd8NYeZQLwyuvvDLtw0EUXvGKVwxdpnKf+tSnFq9//evTXwTvVa961cSen/SiF70oWYxYvey5GiUhrjOG9C38Xve61xXf+MY3imWXXTbVM86hqoNiXBsIBAKBQH0EgiDVxyzumE0IIDWCK3CxGzSxBLE+VbFA5Wf8qvznn2VmjYp0HwLIEWuHENTIxbve9a5i+eWXb8ySkh9kk7yzaOxHQpIQpsUXtwlt8MQydMkllyQywlrkM3LCvY07G8sFkmfvCasLKxGrBkuMv6wJmRBxC/P7sORIa2688cZkKfP8TTfdtJEylYvkLbrooilPeoLt/PPPn/IkpnXWWaf40pe+VNxwww3J/e8pT3nKJFZz5HX69re/nVwNX/nKVxbPfvazh3qeucQcYm/XEksscb8zvhBlFmrKCha8XtfWqQRFiLIl1sBJThQ4MKAwWHnllae8qhRHv/zlL9M8Zx9eTpQt5uRbb701RXrkhjrqpC4/+MEPCi7d5uxWV2H9SKk0qXNHXWyMdUF6rr/++oTvbJ1r4BYEqe7oietnFwJc3YT5HkYeYQ1ifKh6xqZ9T3eU2faHhcscKSFgUSLM2CdDm37AAQcUyy23XOPkKMONEL361a9O5MHzLITDEJJrrrmmOOigg9LCziKwyiqrJMuUhfXJT35yWuiHKX+QYWLht7/lJz/5SYqYpj6RJg+B5z3veYkYEVqQ9dkqtLByCiKyzz77DE2QuK5SWDgQ+UMf+tD9xj4L79lnn50snwhS67Uf/OAH7yew1xkt3IEFBKHoeN/73lfn1im/1pzw2c9+NilrxkGQEOHzzz8/HVRtH15O+uK8884rzjzzzOJlL3vZyAmSMfCtb32rOOWUUwpRPu1XzATp0ksvTfP4M5/5zBlDkLTXmvfxj388ncc2W+ca4y0I0pRPO/HAaYUANzf7kB49RK1/XN6LHAnyUCX9tLyIkpFibOEqN8yOawjzFszPfe5zxbbbbptIBkvKKNNrXvOagtYauSEocW0bNAkbTUCSaKxXWmmlsS8+2iYTwC30kSYTAS51xvtRRx1VfO9730uC4UwPvz7qnmC5ZRFAkN7//vff73He81VXXfW+AC35WpEthyE25jDv2yTuxWvHm7JEFMVRz7Htz82fWdpYiqZaadReH3sn1ePHP/5xscsuu6Q9qnl/poA+vA0mNWUX7WH3k05q+0Zdr8nt2VG3PMoPBKogwD3O/qFBt5/Yv/T9MvMGqaqcv768lhXpZWWOPUglCP/bJ0OLt+KKK6bDPB/+8Ien30aZWJFe8IIXJAuSTfL26AyaaEK5zz396U9PGkgBGcapnfvtb3+brEdc/dZdd93k5hdpchEgmLGeEOoRbeNp0tM///nP4qc//WnKOUiH95ZVwhlbhMvrrruuMBaf//zn308B4TsWMwK6PYatSRAT98GBxluQFi53Cy+88H2XGdciM3LJ5RZF0BbIxfvnOm5EXGjt+xPinTsZV9YXv/jF6V1AELynf/vb3x5wrWfna7WH8kPZ2tSauNMqnwKC5UN7uK4RXE8//fRUJ3MC8suVVrtYblyjzp6BrLFeP/7xvf28ue2yuiDT9vu1Jm2DP4y0C+Gz59FeTjirm+drtyiW3G21x363PM/Ck5sZzPWHenqmNqijsvVrTtkdWp08W/lw972gLe7pNoZZ2Z39xWPAM2GlXazs3NlyghfCqY+V6/nqYd9ea/J87w2XPf2hTdz2FllkkWQR6pb0q3mfggxG6qPvuQ3DSZvaCZx+03/w4VJpjPMSML71oXa4hqJDPyhHHZTvedxolW/MUIKor2uNQ9d2GwcInOx37bvttttS+TD3bDjBQd+1zvWspd4TdWSl7pbUA86ewZKm3Z6lbP0yE/dFBkHqNhri+0AAAv+9N/c7/6gbWteUP/y2zGuUuQpB+lt53VVldvzMUt0KnV3fm+QJMp///OfTxL7bbrulBaB9YRoFKhY3G/gtitws7AUZVGOovjR5O++8c7Heeusl4WecSXsILxbddoFqnPWKZ3dGgACjrwiMBJpuwmXnu8fzLRLCVc37S4CVCJVIivoTDAm/xuKee+55P4KkjQceeGAS8FoJknIoLAh8BGlCn/1urnnb296WhHrpsssuS25Y9hm5x/tn3mB923zzzYurr746CeEEvzlz5iRCYL+Lv+r1sY99LJGv44477r5rkQSh6/O1BFhlH3vssame7QTJ94Tqd7/73el9R1SQRenkk09O84F+FRDGs+wzE00SCcl4ET5ZdwWj6aXEQADszdTG9vcZsTZushstQdfZZF/+8pfTc2T10y77OmFEKBfRkvsvbJGaE088MfWX9ijjV7/6VSJ1SKygMRRI6mjO9vuRRx6ZrC/a6XuExD2sQyzy3cYw4gYr18FcVj+W90yQ1JlFD76IhXHgGauttlrqX8I7Iup7RzbAlgUvu8dxixMJVL27WcmMQc+AHYICM8SOZY3irD3BQnvzmDfm8jplP89GG22U9pkiSCJTIlKsl/BFOuALc5YpLuTGFAIDR+PUd90IEnc/h3wjh3BFkLwXFIqLLbZYcfTRRyeSKPJr6zi66qqr0m/q0I0gwR/Z59qIwOlfSfm8LLhAeu6ga2M7jpPyOQjSpPRE1GMyEZinrJa9QIMchSPIwtlldi7SEmWuEoWa9eiWMr+8zA+cf8svZ1+y0F544YVJmCdEZQGoFQnaUNpBGjsLKU2iCbuJyHMWG4uaYAYWY/8PkiyA6kb4Gjc5IjRYUNVjhRVWmBJr3CCYxT33R4AAQ3AkEBL0Jtl1hnDKHZb2nUBJyDfeCMgIwKB1J6wR6jbccMMUJZHmnfBrbw9rzF577ZVAs4eCBQuxIPCrD2GTcIeUbLLJJunzaaedlvYG0tqrE2EZxjmxpuRrkQP7lQic+Vr7Naqkl7zkJanO5hB9d8IJJyThOZeDrDgvzPM23njjRAZcSyglILM2s/QOm+CgfQgaQrf11lsnCxwChMh2E8A9173mWOR0++23T3VE+Aj1SCYCRGA2vyAJhHHWfu6KLAzayGqtz3olhNGczrql79773vcmrFrnTYTFHEbZJKAOrBBiZEj/ID6ec9FFFyWijTRut912ab8QYp3rZ60wB3ZK2gJ3gj/CYf+ZNhpnncYvUqlfrVXOkmP1hdenP/3pdGC2uR+J9Ezkx3XIF3KiPRQFyqdYsF7AG6nRNpaaTmtfa72RKG2DmbWy1aLXqX1Vv9Mu5Iv1yDtnb673iHuqvjdmvGczJVBFxiUIUtUREtfNTgS8ITy5/jJA868t77m8zFuWebF776d4EfRBechXq6yNUH2hzPYrca/r7VFRXjDzE00bAcTCQTjgitKeaIjtTRKO24JKQ03YEcDBImRRGSbiG42hRYtQwZI0KEGy4OfIdO1tmOrPhFbaUQKSxXQ2JhpoAkUWvAhwU2GVHAZrAikhkVBKgOolzA7znCbuzW6khG+uqt5DAmI3LXXVZ7K00PzTWmeBkUUK8RJUgAWEFYX7F7zMBXkOQFJaE4tJtuJ0c3f1e7Ys9bu2VxvMS8iXvwTf1uf5jLBom/2VCCWh3PcUPdy1uBc3RZAI4wTcLHSzKFAE5TPgurVDffSrvTjmDW1RP4SJZY11AakwDyMFAorsuuuuifRJxgErDqtMr4SA6Btj3d9WrKwJEvLzlre8JVn1jbH8Hasd6yCCpJ1IJyvce97znmT10YcIibp/4hOfSMS6G0FSD9j4qy4IQDfSARvueBRprGMw8ix4cdu0dsAIbsqxNhmnrtfv2eVxjz32SISdYhBerGnK4DrYT7HmOlFdvRutAXfgMGjSLsTWeoHcvfOd77xP8Wj90PeIKVIbBGlQlOO+QGA6IoAgPbLMItHVSfYuHVlmVqNnlpmb3c/L7NBZHhb+56799jIjStJ3y8y9buUyv/je72bxHxMzUiLS1w7kIAAAIABJREFUFJJi0u8kwNLqckuhNSRAEIy4A9Bu0RZarETj4XNuIa1rVbLIWWws8jRphJdBEiLn+RbbcSaCEdJJ8CDAEP6aSMqlhaYxhZm2Eog79VkTzxu0DMIC1xbuOywIiFEOsW689NqTMOgzm7rPGCaQIgOE5kkmSHAlQHFL4k5EE04Ip2zwPncjJP2wUi7i0yoAEoAJnt551imCJaGX0oRGHzHynf717EkT5BB1lgTtQCAI+DkZq8akuaeJ5N1EGPUDK4r50n4X86exBR/koVPyLnMrRDpbr1E/hC5bPZAYFheuYq1CPXLhjLFMmDo9o+p3yAWX00yO3IfMqEt2pct71SjW1CeTK9e6BhYsLk0khM2cAhdKAGVL/nJTzCQJRhIcvL+swcgQ6521ibXS++KzflE/ba1yXII+MEdQGDSVtMtcg8RJlGs5+Y3CkAV3GBLWVF2bLicsSE0jGuXNLASsE/auO5eoarJviaXoujJzhz+/zH8o8+1ldqYSi9TCZV6pzK5FkFiUTiwzq9Gry3z/PablF7MvEba51llQ+M5buNtT1trZxPz2t7/9Pr9wLh5z585NGsIPf/jDSVvHF5v/OuHAopq1ue1ldvpMcLGYWWQHTQQ3gtm4o48hBVw4CK/DavMzFgQD7hc0qP5aqJUvPPCkhA63mGs7jSfBkMBO42rh58JCiOaexfI4qYkABU8EiVDVbhGZtHrT8HvfKDBk7myEWBEcadi9h70ItP5pTwRuufU+pMl7ZT7IQjpNPI290OBnnHFGEo4JcywO9qj0em77M3t9Vk63slgp1alf4jZIwSCIg3eJQNyalNPPct2rHnBsrQcyue+++yYXSGSMFYUgb37khtZtXsgEqb29mQxog7pqj7/m2Pxbbg8C0Y2A9cOp9XcKnvY9L8aB56mH9mZceSAgIq3X+x0ulERNJPOLucTY7KQEg4Xf4SJZk5Ake+WsVfbD2e+KPOoHliNkxJyFuFY598tzu+3PhUunsZhx6IYBN1Vtgx+XSWOmNcHQutbPutWt/En+PgjSJPdO1G38CLAAkcu/VWbzWpVgDQiP/feObqBs4RFgD5IAaAuX+VllbpX1lXthmeeW+R1l7h5IpvxxahJtkEWw22Q76lqYdLlh5JDGBKpuyYLCCtK6EPtMeCQIEIa4JPFFt1mZppSLBasSrRzi00+jaXGz+NDmDppoAmk8u20IHrTcuvdxl7Ao0mgOq2kkiNAucmtRLu0tKwGcLPpIIV/4diGpbp2HuV5bCceskfalcANiadxiiy2SIMiyd9hhhyUXl3HWs2obaeHVE6mb9GQ8wFqmtIA9dxzhyik17MnJgQ6MpZz0GatK1ra3tpPQS/vvb1Y2+F8/EryNafh4p7fccsuU9S2rMjc1eykIpoiwOc6zOgmO7djma9u/R1oJ3oRI5WTyQBBW/6x5d1/+rf155gRzlnpRBnEFaych/aKEqQMhlUDbXg/Yq19O5nXzn6ye3mEEljIJbv3mw3YMWj+rh35HYMy7rf0KC9E71adf6oZVv/vy78YATNWFcmzHHXdMRKM9tZPR9t+rfrY+6Edj0bvZ2gfaTaGhLvl52c2ONf/Sci+V8WtMqreDkJ33pz/hZf/UMIomWOoPYyATNO2yzlrrWdq6Je2CozFpLRUEo31surcfge9W/iR/f48NcJJrGHULBMaJgAigi5aZ9efOMtcJ1rB7ef2ZZT6tzPuVeeMyL1PmVnJEJvhBmT9Y5uXL/Joyj3nvkYndhJ1D1JY1mvJEAGK2p23mHtFJI6dSJmqRq970pjfdz8JEuKKRs4GURcM1BPhDDjkkTfaIEouTTDDolyxUBKFWF41+97T+Tmjhw22Ra8qlrc7z87UWahp12sgqLhu9nqEsbkGwF1WMAGKDNC0jvPUd7XSvxbdX+U39ps+0eZtttknaeX2///77p3FlUUeQCTb+59Iy6SlbXVhYJzkRxBATLlw53DFCyuXVe0sgNNfQpOsjQVaMFePKPSx8+qs9uZel0p4O5SIhNrsbg5QfOYy+8uyFUSYiZWM5AZTAToBVjn4nNBLYCYre01YBMj+79VrPa70WmSD4ao95S/nKUX9zj7koJ3OI7H7l+M21vrN3RL1k9UWEuWZlBVA/xYo6uEc94K4dWfNP+5/fQ0Ix3GCrDp5v7HuPPU8bhnWXUlcWZB4AlCWe5/kUXlzHOhHf9n5GJJAFY8P9sGolee3Xt3/OfeY991zPN/dqo+y997kpiz5iaPwhspRD8PVM7ymrNQWN8c8bISfrAaJk7CKpxqh6syAhRuYt5bLC1nUNb8UDjhQS3gfWZyTOe6aOLFXet27JcynTrIHGs7/awEXWXxjK/Qh8t/In+fuwIE1y70Tdxo+Ac0jJTLaNfK3MG5W5ihWpSs2Ro5+U+a1lnr/MO5R5kSo31rvGgmjSlbPm0v/dkoXIZmcLCD/1vBG62/Wj+N65JBZ6EYr6BRHo5GZkEUCwkABaL4ugCdxiKROIWHQsQha1fim7brRqg/vdk38nqFhYLEqEwXESJIKSBZEbDW31MMmi6tBMWvvjjz8+4ZhdWAggfOEJNgQcwts4kvGOKLNw0YDaON5OtvVpFpaG0ZxPVfuye1kdYXGq6tb6HMKYsNMERIIhjH1H6MuRw4wXm7vtI+TmRSg25yDW3OI6uWK5BkHyTpobCPO08MYjtzHf09bblE/wJxgS2LnHerb5zH0EPxZd44HrH609YbUTSW69Vl0Js65lLTXHKI9lSrQ5LnzmlWOOOSa1vXVMabd9UDkqmPvNTcsuu2yKCmeeYF0jUJvXtBXZ0R7vlDZ1S4RtlgaW8kMPPTRFwkNEBH9AUtwveR8FtaHMcD2rCgGaUsz7qi3cmc2hgybtFL2Oi6U6C6ph3OonRIHypJ+1VnvUg9VRG4wLmHcKr92tnrBlwWYtFk6bJQnmno0cIIP6m5WxiSRABbLuSArHURjb+oA1SF30if7PCZk3Rq132qXPM5nRdn1iv13rPYPU0/jVB8YoLK3xsPQ+WCf7ucdRahjzIiqyCq5Q7u+jqLGOUvx5h4zfYaxcg7Rr1PcEQRo1wlH+9EYAj7AHieVnTpnXKrN9Sd35RbX2IkfCeb+vzNYhZbNUNWTTJZSbBAkPFgECgmwBNFlaLLuRJAKjidvC38kloV8DCaVZe2ni7PacbuUgEqw6BGz+4f0W0vZyPJtrl8k/n8/Qrt0isHciVu1l5c/Zt76TwNbtnvw9gkogIuxYDP2FUd4XkP96BuxHqY0TYtc4QGZaz8Lo14b239XZuOI/T7hE/Fr9+wkdhIEs2LXfP1WfaXARJAIiwaCdHKmHzfvCCHeyHExVPes8J78P+mCSUx5nhHHnrOiL/N7ZG5j3fnjP99577xRMwTkv5guEQdhgAmKrQoGQaU7imodsIeYEUOPN/rF8kLPniNBmvBPqkEnablYa4zIL2dyFWBbNNwgDNyR1MSaUkRUi3vt8LWE2X+uZFDAUOfoDAdcObWJFVV9lZAGUUkIdKX8QKGSFJt5chQCweHNBhBmLt6S9SAtMeiU42fNn/mTFZSlVD+TAnIO0qYe2EGS1jyIMsfTusiojmBRIsLJOuCbjb9zpU4J1+5ysfPNJtsb4i4xk0shyjyhqu/sJ1f0sYvqIVQueiDYcuUYLYKCflNM+r2ufOuey/W5saKdy4GwPjbYhyjDlZtgrKQMG2tf+PCShdb42D/JKULZnslTDxli35w4h9zkn6yzrjPtYjXK94euzeYtyoYqSUrndggApz/gS0Y+ySGRBc6G+FrYbaYWp5P3Tf/orz+nGoHvUVbs+8pGP3Eey9JN3dVxKsF59N+xv85QLdf8dhMM+Je4PBKYzAtxzLyrzJvf+dZD3oIHIuOgJ531DmT9UZoGJ7Hm07+ihZW4gcZnIGyot5LSYJk+LLPcNZnznOeQJsdMje1maCJJ+t1h0Ij+ImdClhA6HonpOp+s6Pdd37lM/Czvhoy4psamVMEwDTWNpsa/z/E714hZigSXY0CDXSQQWWkzuaNpFSCLUEVj0jb/IBsuOQwYJN65pJRx1ntfrWhpdeO60005psR406X/1pTHdb7/9kiAzDOEatB797iNgEKKzn3+7gNPv/kn8ndsSIY9m2YGdkQKBSUTAHGEt8s4R0BFIpBYJZr0Xjt35SJECgUlFICxIk9ozUa/JQYCb3Yplfm2ZeTgcX2ZBFwZxtbuyvO+YMl9WZq7Iny3zS8vcUCKMC2276aabJmsFDSdLCdJhgzItEnN5L3KkKp0IhQXOgsf3n4BPm4R8tAvyFkGhfWmJHeDHEtV+Ta/mCtVLo0aLW5ccKRc55KLDpaDbmRW9nt/pN+1lfctuKp2u6fYdzadQ5bTYQrhy7cg+/gQH2CAX2ou80iqOQpBXD647SFKrH3y3evf63vhQhsMQjTFuTFyUOlloepUz6t/gSvuZ9wHQQE/3ZOwQPicN6+mOa9S/OQSsFZRx+YBW86Z1geuZyGzCf3PvixQITDICQZAmuXeibpODADe7E8pM4WUfEpI0yPzuYFhlCMagnGaOoCkLuifZmMwHnQsVdwKuBIRZ5nKkgVA7iJ8wAZNrCb9qvumEegI9c337QudaftjcWfKm1fsq2OcfJIIVhel/EL9rwqNnc7GzP6apZLFn6UEK6yTWNCG1WaC4SiBtytA2fWFfRjtZ7URO6zyz07Wsftz8tIHrURN7bbi4cMmxGR1Rsu/BGVFNWpIIWnlzdrZqcqNBDtrdfDq1m9sHyyn3od13372YM2dOcgUZBcadnj+K77hE6c+myP8o6hhlzm4EvF/eT9Z84daNWWuRuceeJC6J/VzsZjeC0fpJQCAI0iT0QtRh8hGwN0iE0G+W+ZwyP6XMtgDU3TNkf+aC9zZ3EAvUvbd2+2MfCysSKwQSkwVBArlT0gm1dUM725TJTUnmvy9aGaF1o402SoK/RS8Lxb7neoUU8LHPQixfe9agfpakbJ1SZqdzj7q1O39vQ6/oe+7vF9yhX1n5d4I54olc2OBbJxHw7b1QBne0rbfeOln29EvOdcob9FoCNeuR/Q4sKoNY5lqfnYmL7/ikO12dJQlGxsUwFqrsirP66qsnVxykOZMjz2NdQ3hg+Y53iIvfO3ElVD97A+zRcAbSqKx0vWvSzK8UFDAa5P1opgZRSiDQGwFzGwLPzdlY9f7m+c77OwoLee8axa+BQH0EgiDVxyzumK0ICMwgGJe9SN6cuuQIbsoYATHKXWKTJsuOvUciPXEponFHVPh8W6Ro8toTYkW4ZdFoJTEiKBEoRZiyf4bwS7hGGDpp4W3KZ6kihLMgEW732WeftFBy7yNEr1BGwOmWHJSYw7D2i6zTqQzWI3UQlaiKhaFTGe3f2XfEbY/G00F+dRK3NpGp4GHTNsF8kHpx8RMK1l4lgSfqJkKKfWFcF/NG6rpl5OuRYMEZRIVCULgN2lzOpRIppjUWJW8QC2B+hvFoHOhHLpqtwT4839irGqbcOGLl9E54B7gC2jANx+lGMrgpUViwOnqfIgUCk4qAd3SQOXxS2xP1mn0IBEGafX0eLR4GAQRn3mEKuOdee3kI3jTkBGgbrp0bMazwykLEjYsVRcQgAiaLD8G8m9XA3hoadtaF1sP0aP2464moxCVCpJocgYfLGeGfq1ZrnW2KJ4iLYESo93zBCUTKsbdIRDERfdrdyjKirE/qOkhEHHt7ECTCtPCqTaV8TgTiWdc1jTWP5YZQrk2DkCPtEGXIHjIEeFCCxBWOy+Mwe1cQLWProIMOSq6a+pU2GKlGAPWrIBaegTwN4m4HI2NRFC7jrZPV0djs9H23PqcU0HYYKteBsUj7tttumw4xHSRaY7dnjfJ77xJFhrmCJTJSIBAIBAKBwGgQCII0Glyj1BmOAMuIwAe0uQR6GVFoF4C5V9GoI0LIA19s1hfCPJLkelp9YWu5hQ1LkJRHc28/iBC5wnHS9tt/wb2o/QweAq89Q6xETlFvFZ65qwkuQFhlEWgNT0pQU1arxQkm9v4gftpDYM7nfdB2c59zbgLS0I0guRfJG0SIhy8Li5CoTe7PQLr0o31RnaxmvYa6++ypQjxb8et1T6ff4IpwDhp5Tj8rw0GZ3Yhyp+e2f4fgcqlDTg4++OAHhGC2F8kYN+a42RkDgyTj2NhqMiFyxhbXPDiISogonVSeUUIBIKBIlTOxmqxT3bKuuuqq1H+CYoSbUl304vpAIBAIBKojEASpOlZxZSBwHwKEE3sBWEWy8NpJeM6+2M6jIDDaO+F8Axpr33HxIfDkcxaagFjdkBoHFrLWOPsA+aF5JgS2avUFNSDAswbZI9NKoBAkAr7vldeakC9CGoEztxvpc74FwuX8EVYPwic3vxzulea/dT9Je3s9j2WijnUgl8GqhaQRcjNR9SxtJNgjoO0Esf357Z/1MTKIuLIC1UmIIOsgwsCtcBiChFiqQ6dDLKvUCUHieog4DuP2QiHgwEDjqpOLFzdEFi59IUiIsV7nvKkqbRnmGmNVHQXM4PrpDByRtbjfUWII7NGpXcM8s6l7vRuskd65OodlNvX8KCcQCAQCgdmEQBCk2dTb0dbGEEBCWElYZeyJkJEMgmhrItQiQIRjginBn7uP73zutB+oiUoSBD2bsGevCJcoB+ypt0ALWUgmeDuQ0IF57QfvIX7ag1i0Eg5kh4WAe1IrcbJfiQBNEBdq3HkXAkN4lnuqJHtP1LET2ex3PzKUXRcRNNp25A9Jgbfzhbgy1imbQIrgEEjrRv/jusjdECEd5lwjxBYpMYbq7oGCGVyQNWNUXQYhnxl71k5jyoGYzhYyNuw1Q5iQf3WEEzLJNZM73rgIErJsTCLuxrkMA0QDadav9pYJKAJj+5TqEuh+Y7LJ3ykltMU7Nakkrsn2RlmBQCAQCIwTgSBI40Q/nj2tEUAoZClbRtqtI4hFHYG8aUA8m7XKHiMhmefOnZuEfXsYJEIjMrPDDjs8wK0tRw9rdcnSPsKk+5CjVlc4xAbhI0R73tprr32fOxcBHfnpRwrh1Y5hVUxYBQSIsAcGgeP2yJrEeuO0dPWq0xcIr8AIEgJQl1iwpLHCsaLAsM6zW9tsDxRLFovjIIEPkFyEwF+ujcO4ZrEaCttrfxvywzIn1DsrJXJkX4zxRpDnEgjDqU7Gpv1FQnoj63ncURgYn8asutrPxaJmn5x3gvtivz1mFADajXTbUyZku2iJw1jlquCj77THmEaSh7FGVnleXBMIBAKBwGxHIAjSbB8B0f5GECD81hGACW0ESFm0LoJrnfvrVtq+HGTBfhrCq0SQFDVOHZCZdqGLQM4Cw1KAfORIYlyUnIAuaEHrPcq314mGnoa79ZwLBEmoaYIk1zvkgUDaHomM0CkkOHJWNxHOWbVWWWWVJBQjr4RgVgHl1iUGLAssQOqJINVN2ohAbLXVVg/Ym9ZaFuEXNt2siQgS0girQQXxbNkclrDrb2MJCTImMlnW1ttuuy25m/oOeRYoQ6juqU4sQ4ipPUwCiyCVsEVwtd9fYwFplREnY6R9/LfXW5mi9NlXpz88x7hCWPbbb7+EyajeYUoMz7fHi9UuUiAQCAQCgcBoEQiCNFp8o/RZhABtOUGR8NTqrkZYZwFATkQSI0jKviNQifgm/PAwB+cRooUAps3uJGgLkJD3L2RXMYKs71kFOp0Lg2jQwH/pS19KguXOO++cSBIyt+eeeyZrQavA7ntldUrwIEyKICYgBHemTqQDKaOdR5LqJu12v/bpg+wWWLecfL12K5O1rW7AANgSpJFFbpgsD8iDQBJc7xDAvPcMYSVsc0nsRID0rXHSTiartsu92QrIBbHdDbRqOa3XwSWHY/c9gqfPtA0Zhj93vn4WmUGe3e8e+/pYRPW/sYAANUFcuLjld8weKziypHFR3WKLLYrDDjssnZPV6f3rV+dev8P2xBNPTBZQ73fdsdir7PgtEAgEAoFAoDMCQZA64xLfBgK1EUB+nBVE2CWQZm014sTFiXBKaCTE0wJz/RK4geDb6sZW+8HlDfbbcC2zl4gQRUgkbCNsLDbnnXdeImBrrbXWfZG6aNHVpVtELMKlM26044ILLkiC36677po+1432hRyJaMYFjrZePQnY7Yk7GouVaHYsFIMIm3Wtee118JllzTlS9tIgSHUEbOQAEeKeZw8MMokME3T1ASz0DZKEQCHQXLU6ufAZNwgUYqqvBknqjiQo3/PUo+lkLGmXPO6EqA8azKJX3fWDsWuvVXYdfMtb3pIsjB/60IdSP4sayWI1LDnP9UDCvA/XXHNNsdtuu6U9dE2V3aut8VsgEAgEArMdgSBIs30ERPsbQ4DwZEM61zWCPcGXsIz80KQjQzn77HqC7yAkoL3SBCfP5hZm/w3hm2BMmCIw+n211VZL5CmH2FaX7FrXiQAQernKcVOyuf3MM89M4ZAJiHWTeiCEiABywPWtU7tzsAiRxVio8l6pus8b5np9ls/gyREHq5bnXsToyCOPTMQU+URs/p+9+wC3pirvhj+iBvNFTSzYIkryamKLigUbCIqoSFFQEEWK0pQiRQGlF0FQQQSRLhCaFKkRpAkiFopdYwEBu0bFllhifN9v/dZhkXGYvffscs7Z55x7Xddcz3P2nr1mrf8qc//vtlgJ4Y1AGHNkxfyAK2yaB8gi09z7uKpx/TKmMqy5jysXoVyq6i5JBYwtrJFzhHk+4oK64jet9xlX5NLasZ6RTHgaU0kq4Lv11lvnrJYyRZbYxHH645ncXx3Cy42PxXWUc6XGaUP8NhAIBAKBpYpAEKSlOvLR74kjQHCV4pjWl9DrX0IOYZgGn6A7bBxM10aySBHWuO6xWrA8EMAJ44Q1RAfhqMdZ+P8gq4T2ysBGwHcmEuFfXW2EalBbCZeFnPW6V9A8S5MzpvSDIDpbmPVqA2ucfspSKLlDm2Wn12+NuXOvZJ1D7gjN8CsJLbrihuieeuqpOYHAJptski12LBiEdLEoCNPFF1+crRbm3SCMzEft0DakLMpwCCAqzi8zDtZUiXFTi3UksxwC89nPfjbHXk2CIHFZPPPMMysulkceeWSO/eo6f4brXdwdCAQCgUAg0EQgCFITkfg7EBgRAZaRNrexEasb6me02gQol4KYEdYHCc5dHkI7jriwXoijUvdsCmpidrj3IRWz+Zxm3/WL5UZWNqRDnNSw44mIsDoJ2ufmyGI2iksUgZw7orOsWP7EtvhMjI84GPFNhGYWwY022mhg/Jp54N5yWK+xjNIdgWL15EaLpJon9fgqY+xvrqGTsNCJ42KBNBeNb93y273VcWcgEAgEAoHAqAgEQRoVufhdIDDFCCAWkyBHpYusKKw/hMPZLp4zH651BNsLLrggx3vsuuuuOUvfsBjCnQviKG6IdVwF5CO4BG7WQK5Vxb1KAggJH1gYEOMuJNL4iT/bbrvt8sG3LIfjJAWZ7TkwbfWzAG+wwQY5WcJVV12Vx4JFFonhUot4OnvLPdxHxynGXVKPE044IRN0VulIzDAOovHbQCAQCASGRyAI0vCYxS8CgSWLQBdhfCGCgxzJnifInouU+J75FEpZAlmNPvGJT2QSxLWLaxwXOcI4N7u11lorx3UNSk9tPBC9lVZaKcdEOU9H/WLWhiWAC3FsJ9VmcwLRPOqoo3JSlHIekng/OJo366233tjudcZYvB9r7QEHHDDWIcOT6nvUEwgEAoHAUkMgCNJSG/HobyDQB4E777wzHxxLgK6fcyQWiNsPt7HFVrjWyTzojBv/F/Mzm2fadMGPxcL5SeXAUyQIOTUO3L2kYOd+xxWxC2l1j4QO0l9LR80SYjxZ6gbFhXVp71K4R+yROCPEVVZCZzwhRlxQxXdxp7Q+holZa+Im7k7acBfXutVXX32s+pr1x9+BQCAQCAQC3RAIgtQNp7grEFj0CCBGzv5hnSiJAUqnxVxw7RJf00UgX0hgEUq51hFK99lnn5zxb9y065PoP4uErHfijcQeIUZiwaSFl8a6i+Wo2Q4Ct3G8/PLLq9NOOy3Hy/gsSjcEnH9EiSApimQik3RTRFillpdSX5ZCh8K2ZXrs1tK4KxAIBAKBQGAcBIIgjYNe/DYQWAQIID/OWjn++OMz+XH2DwGwCOBiIsQeEQ5lsFtMRcIDpJBLk/TMr3zlK0ciHrOBCUsEQuqaVCFwb7jhhtniIVNe28G0k3rWYqxH7JeYMOtgkuQIUeW2h6gbk2222WboBCGLEe/oUyAQCAQC84VAEKT5Qj6eGwhMAQKEPcHlBx10UHar23LLLbNAXhf+aLalmPYv68pisSBxq7vsssuq8847L/drhx12yORosfSv1/TiFoYEu6IMh4DkCdwwJdGYVFEfsiqlt4QPUrs79yhKIBAIBAKBwPwhEARp/rCPJwcC84qAeBYacYkJpCh+xzvekV23mlYFLlnOV3JPSSM+rw2fwMORPWcd0djLRoYcDZvSewLNiCoWEAIsqdYBAs0CN6kidfjpp5+e45rEHUnrHiUQCAQCgUBgfhEIgjS/+MfTA4F5QwBJkClLVjQHs7KitMU8cEOTWUsGtFHiXuatg30e7KBPRWY3mccE3kcJBPohwOLIgiTZxbhp3MtzpHF3IPD3v//97N4pFXvbGuzXrvguEAgEAoFAYPIIBEGaPKZRYyCwIBBAkH74wx9WMqb1O9BUEgMEadVVV10Q/erSSELu+uuv3+XWuCcQqBBqbnAO66VIkOVw3CLZA7c6Cgop29dZZ52JxjWN2774fSAQCAQCSxmBZZZy56PvgcBSRkAsCosQ4U8skliIZnHGCy03K5Jzc6IEAksRAWceXXTRRZVU3wjSOKm84eeQX4lBnEnlfCXk6KEPfehShDb6HAgEAoHAVCIQBGkqhyUaFQjMPgIsR4997GMzQfryl7+cUz43i8x1DlAlGD71qU9tfh1/BwJLAoFTTjlm31/+AAAgAElEQVQlJ/RYfvnlc4bHcYp1JnPiCSeckBNlvOY1r8nrMEogEAgEAoHA9CAQLnbTMxbRkkBgThFgPRJLIf7mjDPOyIJfM0GDJA7iI8QfSdIQJRBYigiwnlovEiiMk6gEOXKu1bvf/e58SK+zlCYVz7QUxyX6HAgEAoHAbCEQFqTZQjbqDQQWAAIPetCDsgb7kksuqb7zne9UXOpKkbWL9UgM0rOf/ewF0JtoYiAwOwg4l+jII4+sHN67zDKjvza5sjqkl5ve7rvvPtF04bPT86g1EAgEAoGlicDoO/3SxCt6HQgsKgQe+MAHVuuuu271kIc8pDr22GPzeUclFulXv/pVdcstt2QXvEkeVrqoAIzOLAkEkKJJnI/lfDHnHFlrUoWLA4wSCAQCgUAgMH0IBEGavjGJFgUCc4YAwW+55Zar9t133+qaa66pBKM7rBJJ4gp0++23V49//OMjDfacjUg8aDEjgBA9/OEPz5kjJ0G4FjNW0bdAIBAIBOYTgSBI84l+PDsQmAIEll122WxFeuELX5hjI6644orKmS833XRTzm7HehTC3BQMVDQhEAgEAoFAIBAIBOYEgXslTfE9c/vOyaPjIYFAIDBNCPznf/5nteWWW2ar0YorrpjjjwSQ77333tWjHvWoaWpqtCUQCAQCgVlBgEvxH/7wh1y37J3hBjkrMEelgcDUIxAEaeqHKBoYCMwdAmKQ3vve91aXXnppJknbbbddtfLKK89dA+JJgUAgEAjMIwJf/epXc0p3SWocJv24xz1urMQc89iVeHQgEAiMgUAQpDHAi58GAosVAVpUbnWhPV2sIxz9CgQCgTYEDj300Oqkk07K7sXOfpO9kCU93Izb0IrPAoHFi0AQpMU7ttGzQCAQCAQCgUAgEBgCgaOPPrribvzoRz86H+b7gAc8oHJQsEyfUQKBQGDpIBAEaemMdfQ0EAgEAoFAIBAIBPogUMKyudhdd9111dve9rbqiU98Yj5MO0ogEAgsHQQii93SGevo6bQh8OfUoDvT9adpa1i0JxAIBAKBpYkAV7riXrzSSitV+++/f3XttddmK1JJ3rA0kYleBwJLC4EgSEtrvKO304LAbakhu6TrcelaIV0Hputn09K4aEcgEAgEAoGA86qe9axnVZtttlm1xx57VN///verP/+ZZitKIBAILHYEgiAt9hGO/k0nAr9LzfpNujZN117pOjVdb0vXN6azudGqQCAQCASWGgIsSQ723WqrraoHP/jBOcPnT3/606UGQ/Q3EFiSCEQM0pIc9uj0vCPw36kFv0qXU8j+Jl2fTtce6VopXdul6ynpihIIBAKBQCAw7whwrbv66qurbbbZJiduWHXVVSvWpSiBQCCweBEIC9LiHdvo2Xwg8H/TQ3+bru+kq58nxl+l7x9213X/9O+q6donXV9N14Xp+mG6ogQCU4iAIHYB7FECgaWCwLLLLlutttpq1b/8y79U5557bna1ixIIBAKLG4EgSIt7fKN3c4nAf6SHnZSuF6drnXT9IF2D5Mh73dXA+6V/10jXeum6Ll0fTxcrU5RAYEoQQIy++MUvVjvvvHM+PHiTTTapbrvttqpk/ZqSZkYzAoGJI8DVjsXIwdk33nhj9aUvfSmnAo8SCAQCixeBIEiLd2yjZ3OJwB3pYSek69h0vfSuf1mICgHq0hYeG29I12PThSTd3OVHcU8gMPsIIEGXX3559a53vav62te+lrXpzof5+c9/HgRp9uGPJ0wBAkiSee/QWOm/b7/99iloVTQhEAgEZguB+8xWxVFvILBkEPhJ6ukF6boiXW9K1/rpeni6RlE/IFVrpuu0dF2Trmema9l0RQkE5gkB5Oj888+vTjvttOpBD3pQ9da3vrX6p3/6p5zy2OGZBMcogcBCQOBnP/tZ5frnf/7n6t73vvfQTb7//e9frb/++tWHP/zh6hvf+Eb1hCc8obrvfe87dD3xg0AgEJh+BEYR4aa/V9HCQGCuEHCG0SfSdVW6XpiujdL1yHSNurLImuKR/iFdX0+XmKQogcA8IYAcnXPOOdVJJ51ULb/88pkcPe95z6se+chHVv/wD/9QPfCBDwyCNE9jE48dDoE//vGP1TXXXJMz0d1xxx3D/bh295prrln9zd/8TXazi1ikkWGMHwYCU4/AqGLc1HcsGhgIzAkCX0xPuTpdD03XG9P1kAk89cGpjqen63/SdcME6osqAoEREWA5oi1HhjbddNMcpP5XfyXDSJRAYGEhcJ/73KdaZpllqltuuaU666yzRnYNXW655apnPvOZ1Xe/+91cV5RAIBBYnAgEQVqc4xq9mgsEJFHgBveLdHGLY/VpK5I1XJauU9J1VrpuStcf22686zNWpKem60Hp+lK6/qvPvfFVIDBLCFx00UXVcccdVz35yU+uNt988+qpT31qRciMEggsRAS41Dn09WUve1l16aWXVldcwSd6+MKl9AUveEH1q1/9KhOk//7vyKYzPIrxi0Bg+hGIt930j1G0cFoR+FZqGBe4R6drtXQ1QzGccXR2ui5Nl0Nh/zpdhRg9P/1/q3T9bbrayuPSh5I1fDZdt6XrX9puis9mG4E///nP2YWM5nmpFH3+whe+UB1xxBGZHG288cZhOVoqg7/I+/noRz+6WmuttXL2xSOPPLJ6znOeU/3t3/7t0G6iiJbf3XrrrdnNTuKGKIFAILC4EFg6b/3FNW7Rm2lAAHn5Q7pWTJekDM1ybfrgX9P1gHRJ3LB5ujZLF/IjZon1qVdxNtKj0iWO+NZeN8XndQSczfOtb32rOvnkk6v3v//91ZVXXjkWQIjC6aefXp1xxhk5sHu+i/b84he/mNXU2n/605+yVnz//ffPcUZveMMbMkka1a0uzkya71kTz68jwAIqQcMGG2xQ/eAHP8hrW2zSsEVyEvXceeed4WY3LHhxfyCwQBAIC9ICGaho5pQhwO3t8+kSL/SMdDWtR5orycId6UJ2/ildK91139+kf7mufyVdr0pXr8LFzr0/6nVDfF4QIOQ46f6CCy7IZOZ+97tf9clPfjJnW3vMYx4ztIZYvSxHhCjB2M5AefWrXz2ngP/P//xP9Zvf/CZrqBG/b37zmznuQQzEbrvtVj34wSbf5AoC5lmHHHJITt/99re/PbvVwXKUwgVJSvD/+I//yJm/ogQC04CABAtPf/rTq5e+9KXZhdTcfMQjHjHUHmFvoDj493//92xFihIIBAKLD4EgSItvTKNHc4EAgvPjdD0nXSxCbeV56UNueKxM3O2UP6frt+n6fboecddnvf5Bjsimv+x1Q3wOAUTisssuy9YeKXdf+9rX5hS+V1111ciB2OrlVkeIIgCp/4lPfGL1pCc9aWjQWVF+//vfZ8vPr3/96xyz4G/X7373u/wv65fiXqQIuUD6HEbpb5Ydgt3DH/7wLJjNRizQT37yk+rUU0+tPv/5z1f77bdftdJKK2ViOGr5r//6r+qGG26oPvvZz1brrrvurLR51LbF7+YfAXOdK6fLvObu5t+5KCxA6623XnXCCSfk57/oRS8aeq7bD6xDSgvrVArwKIFAILB4EAiCtHjGMnoylwjIXmf1SMzAha6tcL1DcGSjE0/EyiRmiXudz6Xz7lccr8EJdngPkH61Lrrvrr/++urMM8/MAsob3/jGauWVV64I51xgHvWoRw2lGW6Cw4JCeGKZcsnm9td/LZisW0F8WGMOO+yw6kc/+lFuS/1q1lLOFELOkD2kaIUVVqjETjzucY/LsQ6Eu0kTpF/+8pc5BTIi+OY3v7laZ511RnarK31CXBFCbkhRAoE6Asg/C++JJ56YFQYUEc94BlP83JRll102ryeWJAcgy0o3rDLgsY99bLbmspCyNDsTKUogEAgsHgSCIC2esYyezCUCCBIPJ8SnV0Funlz78t/T/8UkyUy3VrpkS/5Nuh5Yu6f+X0YFlqfhzzPsUeHi+1i8DKsH0rLJJpvk7FKsR87nedrTnjZ2hwlSL37xi7MV6XOf+1z1xS9+sXr+82XY6FYQJCThgx/8YM6gRRAkVHFb02aX/5ckEAgSovd3f/d3d3//gAc8YGyy0q+1XOu4Cl144YU5GcNmm202kefpFwFULNOkCV2//sR3040A5YW1xJWTaxvrIuvRQx/qrIS5KwjR2muvnZUrLLasV0VB0aUV1inFBYLEOhwEqQtqcU8gsHAQCIK0cMYqWjotCPxnagi3cxYiGey6FjFHn07Xz9OFLL0vXQ9L14vTxVWvebyM7LGsT90NFunmpVO4piFHP/3pT7PlyAGmsyGI//3f/3313Oc+t/r6179e/du//dtQBAlZQ3AKCRLHNG2C1I9//OPqU5/61N1xR5NyFXrQgx5Urb766vOeAfAPf/hDJrhc/WQeIwgbU8LtqPFVS2eVTbanXEq5tB199NFZCbDrrrtmt1WKiLkunml+vuc978mxdyxCw1iHtdc8+spXvhIHxs714MXzAoE5QCAI0hyAHI9YZAh8L/Xn1+n6+3QtN0TfxCptkC5JF1iHEKDr0iXZw6npahIkiSC41002Fj9VuDgKFx2JGZAOVp1hXWS6okCrLN4AsbnpppuyRYig3aX4LaGLMPaNb3wjxxxNUykpvcUKvfCFL6ye/exnT6x5Mt+Nmv1uYo1IFf32t7+trrvuuupd73pXjqvitoi0EszFcz3lKU+pHvawhw1lPZhk+3rVxfVMcg7tRLQXekFUJTxx8DAXu4MOOihbLEvfxNpJsMIlU9+tm0JmZ6PvJaMdhQBLNGvnsATJvFGP+L0ogUAgsLgQCIK0uMYzejMXCPwwPUQ80UPSNYx151npflcpDpg9MV1HpOtPtc/9F4HyPZKEiEW5GwHB3dJdH3PMMTnOyMGPNLmKuBfuMuJ+CMJc1wjptNUEmWFcaOqQcwV6/OMfnwmZbHJcgrqUkqCBQEgQmzZBl/UI6YMbojlt7euC8aB76uNPADaOt99+e3YpdFgo10dulOLNzJNpKFwzuW6xbhx88ME5lm4hj411gIScffbZOanBXnvtlQmJwj2Ni6d1JU6PCx7ibu2Kt1tttdXyZRxHXb9tY6ouFkRxhT/84Q9HUl7IJGlc7DdRAoFAYHEhEARpcY1n9GYuEGA9QowkWmhL792lDQiQ+KNvpsshsBIy1ItMdyxNYpBYnqLcjQBN9Lnnnlvdcccd1ZZbbpkFnFJkk/r0pz9dXXLJJdnKI9EBIUgcDGHLv8gUzfQw2mL3+q3YJq52XQkSTbh2cgfkpoe0TVNBjgimSAKCsBiLecDCKPGEvr773e/O1kZWM5Ylrnese6uuumq2orHYzPfBwCWb4cUXX1xttNFGee7OloV0LsachUUCkK9+9avVFltskQmpPpp/1vK3v/3tjLl1yfXRekM6fM7qxAVuzTXXzDFLwxBF1ijECna9xtRRAJIsIGbDFnNL/axf1vo0WEyH7UPcHwgEAu0IBEFqxyU+DQR6IyAuiMeLJAyDigResr/W3ef8nhXqknTdlK5901UsUdKAI13fTReCJBV4v0QQ6eulVAghhNmjjjqqes1rXpNdwuoxM4QuFiRB4DTTEjXQvvub8CIQ3N//+I//mK1PMll1da9CjiRYoAHvWliOvvzlL+fn7rvvvvlMpmkpXAWl9IaZ5BGT1M5PSx9LO5Dit771rdUpp5ySBVl/I0yE7htvvLE6//zz8yUJh2QfCNVsxLN1xQUJIHyzULBusPAt1AJv7rAUF3At54lJXY+sIjHOImIJlrGxxIXpM0sflzwHP3/ve9/Lax6h6RI7Zp1eeumlmfivuOKKrQTTnLcHsCSO4v7KVRP54hrIlRORjRIIBAKLA4EgSItjHKMXc4mAeGIucYNkFgTnwnS9LF3kYmcf/Sxdt6VL7NEV6Vo7XQ6LZUFCjj6TrkelSxIHVqRnpmvu45fTQ6evEORplQlMLDFveMMb7pH5SmKAl7/85TnGQQIHFoF3vvOdWQgjMDm4lBB88803ZwGU4MTVB2lyEXB6EQVabSSJ61PXwnIkKF0KY5auadIw0+azbkkdXtyduvZrod3HkogQE8jrBQkitPuOkHzGGWfk7GrmjHTxvebCXPTfs81RVlEuZwu1fOc738mWOqSGNcy/1rI+IT0bbrhhvlhom2PDHXKPPfbIlqOPfOQjdx86LC03d8imNUmdkrZ4JiuytYdk9pvfyLL9wZ4xbLEnuPw2CNKw6MX9gcB0IxAEabrHJ1o3jQgsnxrlXcrt3CGwXO3aCgvRoen6VbqemC5xvLLfcavzewkbtktXca/7afr/welaM13fTxeZCEGa40KzS8iQWKD42M9xE1ofh2wgOB//+MezNYYrTpuWn5sOTTPt7sc+9rF8jwxVtNPcqGimBb9z+XH2D0GKgPyqV70qp/3tJRTDAzHj7tO1lKxdtObzkamrVzsJqKxHsEASh3E37FVn83NCo7k0qax4zfon+TdibM6w8B1++OHVgQceWB155JHZWtHLNWuc58OFcN+vbvPQnIGj8VqIhTus9Sq2iMVOUgyl9G377bfPRAeBbSsID6wk10DkWQBPOumkHLMkwYNxo3RwHxc5lhwWwWuvvTbXKbsld75+rq0syFzkCs691n9b+5A9lzaOYoFqqzM+CwQCgelAIAjSdIxDtGIhIeA8QEd2sPLcni7kp62IVZIG/KPp4jbHEiRcxhlIq6TrKXd9nv7J5eZ0sTL9IF1kcHkHZuKY89dzVSRAOP300zPBeOUrX5mJyHwXAqI4gY9+9KNZiEVm+gn1iN3rXve6LPSylCBXtNE+R5gIarLS0WhLcc0NjitQv+J3hDF1dSmEJgIbNyEC3jQRJO51yCbyMonzopp4IF6EWFY7pJRlb9oLgVos1s4771ztueeeOevdBz7wgdz2fkSmS7/gwcLgQoxgz83TXO43L/zO/cMI7V3aM1f36CfCoq+veMUr/qIfMEVg+hXz9LzzzssJWax96cGRJKSL+xzXVeTHWmNdtkfYt4yjWCcEd5DV1vjCGcHxby+y1tZOe4LL/jRo/2j7fXwWCAQC04tAEKTpHZto2bQiIKboRen6XLq+la5eBOlN6TuHw4tVkqqbBwkX9V6rDtkSw39jupyP9Nx0TSipFtLj5V985lPNPQutr5idX/7yl1mAG5YgERY8i+AwKcGO8ELY0i7CK6FoUN3awIWMEEbIlFZ4lVVWudui4TN9Q6Rcg4p+uboKy4Rh5IwALA5iGMFrUFvG/R4h5Cro7CgxGJMstPniZrhEIZ9I2Ete8pJJPmLW6jJWLGrveMc78ryRwIEFYtQECawarLGIotg5/5p3J554YrXPPvtkgt6LIMHRuiXAN13JZg2ACVZsH7ngggsqGfle9KIX3cOFbtCjWHSsHxY91iPrByHafffd89hI3iBhCvc4VhzPWH755bM7K9fEQfuD57vHnmhNj0KQ1FEIrP0mSiAQCCweBHqJaounh9GTQGA2EBA3xOulX1IyVqZh5EIkinGC9WiNdCFhEyqXX355dnORLpd2tV/hokaoFW/DLW3YghiIAeD+QmDpIqgMeob69AFhW3fddTuRFMLpJz7xiUwEuEuJNennajOoDcXdp0uAuLokiyDEFYGtK7Ea1I5JfC8Gi9BPwz5J4kbINFbFfRGhZAVYSMUcEeOCTJ988sn5/8MSJP1GbsTesIAgpARxlhREiVAvE2KvtOJ+zyoCO2twUmNkDnMnM07DZoQbdgyRG/F+SLi1N2xBsh3MjCAi2/akspdwi5NYxDVuga16ERxkbthS2jTKb4d9VtwfCAQCc4dAEKS5wzqetJgQkFlupwl3iOudeCUZ71ZP1zCH0PZpCqFIoPdnPvOZLBQR+PqRFoI8IZE7Go3tsEWMzqGHHpqFPy4x42q/aZJpilmQdthhh04ZrLSZIEhQX2ONNarVV1+98+GuvfrLhYZ7HUG3S2GB02aZ0qaJHJkP3N8InvUU6V361O8e4yRb2Yc+9KFMAFhGCOJwWGjF/F9vvfXyfNMXSoOuY0hQpoz413/91yzgUxRI+iC+jbuX85e22mqrTID6CdXu5Z7okOJBbmJd8PUs6badRYS8sKjq17jrs+3Z5hjrERwpZIbN7oYgIkiSLIjf67rm2toy6DPjaj+Ej+dGCQQCgUAAAkGQYh4EAtOCAAvSDpNrjJc9KwbCgizQ7N966605mLlf4DxhDKkYRJAIQbSuhAvudEWA9H9WFprySRTtFsegPeIYuhTtIgwihYK6h7UAtD0DAYAdkjmoEH6LaxXteT9COqiuSX/PoiZW4wUveEG28E2iEC5ZpaRjNk5ve9vbshAulk12wIVWSmIPbmLSxbPidLU+wna//fbLJHTjjTeuNt1007vJOeuqNWltIo/WUFsxX2RXQ6a6FnWaowhPm3ur777yla/kTH7m8VprrZXJe71f1o37KAPUV9bysATN2pPWm9vbU54i2HK4og0Iknpm2z1TP12FKA3X0uRIcBep6kqgh60/7g8EAoH5QSAI0vzgHk8NBGYVAS9tmvv3vOc9+XwXBIlQhCA5fJHbV69CcJMqmwWg6dqjXsITi9SPf/zjHOPjPgIkgQ4RYTkS+C9+owgPvZ416HO/Zz0ipCJt3P66FFp/5Ijwx62wV5xHl7rKPaxHcJQ9a1DhXuVQUs+HtX7Av1gN/E0IJlSVGAb/nwSRG9Q2WnntMGbDavZ71a2/Ymq4Pu200045totLpLnAArKQirExfyRogBM3MedtdSFICMb73ve+vM523HHHbP2okwt1F5dDY93LelPWzSBi7T7PRLzMTW01psbWmV0UFaUOZEcsj8OVzznnnJzUoMTNILjmp3Umu6H2+44ywFpGckqCk0FtMtbcCrUNbsPGMPq95CbaYL07uHe2ShkP/Tcezf2uy3P91gXfxVrMBXu+vd8aH7dQDJSkFs1kO94/RYnnu373jtuOYX5vjLW5zJX6b7XZpb1d9olhnjtt95a5YG+0xwxbYOi33sn1NaNe4+77Ueodth1d7l+8K7pL7+OeQGCRIuBltvfee2chddddd82B5rT5tPqDCNJxxx2XNyouQQLWS/FioP0WV+GgVhryIvCLDXrLW96SM0fZ9AgbXhjjFkIfSxRNvj50LQT2G264If/GS6uLUDeobkIowVnK8EHF8wXkSx9OCEOWLrroovxvSSlMeOXC6GLR4+5UEkoMqn+c78VFeZZzZyaBi7ZwJzM3kCMunLBnqdJ/wvpCKtYOci/9u5e2uKGmENerP6ydLCebb755ts40LS+FiBAyjUHze/Wa6yXxAFLSq6hLW43nBz/4weqqq67KhJtAiZQYC1koi5ss4V/MmQNzL7744rvTWruf1Yul9dxzz819lrjDGrbWueIhuZQtyP6gGDzWH0oZMVYyR44yx8wlawj2bRj1wmSUz1l64Saxw7DPMgbw0sfFTJAQZ27T1rV3yChjWh8bXg3XX399nqubbbbZXwzbWWedld8vu+22W/X6178+e0BYU3Bu3jvKeI/6G/NE0hn7mvT09aLNzud77Wtfm9fXYi633HJLdcQRR+S5YO8Ztki0xCOEfCGTbCkUImKFfU+JNw1Ffq0ogUAgsIgQIJAT5m3YMj7ZtAkqNu7999+/eu5zpcfrXWyAyE89dsSLDLEi+DmglaDljCGCFY0zwYmA5ndengQOwkMpRQvoJVe0471b8L/fIEdezgSlcoZKl99pu7Zw8ZmE64t2E9rg2iVux/PFobCqFczFY7FCwU7gOqETRgQO57YI5J9EWwfhg6TR0E1CE1yeJdZGnJc+ERRZHgg3W2+99djC1KD+TPJ742w8uMhJJa8vNMK9LD3NZ7N8mN/632btRC64jBEAEaS2QjhAlM2bXsUzHLJKUIGzNSf1NZc0ro7mF3dHRAVhqRf3InyImHXJ6rTNNtvk9WyPIPiI3ZNWmxBLYNF/z5Kyvl8xnyVGYV0WP9VFmdBWHyUCS9ukXEDbnlE+s4exug0ifm11FHdE5LMriW6rZ6l9xn0SSRen1iwIPathUQ64l3LJXJ7PYm1bF6eddtp8NmPBPxs5ksXTe71erD+K1mnyOAgL0oKfbtGBQOCeCBTNZv20eULAIJcqghfXG9aFeqwNNzepj21qXNe8wIrGFGHghkOQImwgBQSvIlSqkwaQEC3dNVe5XsJhsyc08kzuBL6uWkvWL8IjMuP8oa6/az67/jdMWIRo1RGcQQVBcj9iR7vv2nDDDefd/YLFD6ZcKAfNhUF9LN8ba3g7c6pkZePK5VpIxTwVo3PYYYdlSwKywIpEUOvqeuXlTlC2Rsx1c6U+/wgBXD77FdYj60z8Uq+CqCDcV155ZY4p2mSTTe6+Fe4ImPb73hxsxvFokz2C8MnCrM3vfe97s0Kh3l5r3O+NLcI0yCqsziuuuCK7obIcjurayjJm/T796bN7EJwxhyVlwSgEB8l0mR9z4R7baz70+tx46GNRShlbF0WMz4oSq6kAKL8r99brL78rdaqr1Fvua97j83pd6i/PoJQoxXxzoDDrQr2NpQ/Ne0sdpQ3N5/u73rdSTxOT5u/vbtBd/yn9KXjV29ELO7+p492ss21sBrWjXkcT47Zn9cJHPW1j3FZnlzb1ek6pr4x9vc/eGwVHz6BMYTX0m2Y/Sz0+L/1szrl6f0r/yv1d+vAXD73rj7AgtaESnwUCCxgBG4esTy972cuy1pcQ1Nx0enWP8Ez7i/QU7S3SQ9sn3oiQRPipu5Oom7bXZiczmr9d5R5Zs2jEpeo94YQTsptC10J4oaUdRqukLcgJDT5XIXiMWxAkF9elQRm1CEzuRexgRXhyqCXtfv3FOmybvADUPUhI7VevucCKhQBzKZpEISBwESyug5Oocz7qMPfPPPPMHPvC+sKlpljDurpeIZ0y1Mnmx12EtW7YYr4StntZT8wBa4omVjIMFt1mQUy4+Pl11BEAACAASURBVJlvMinWi7WpDn3bbrvtspuseprkqPzG/axMlBqDSIR7ueUhh+McDlziUCZp5WxiVP7WN2Ru0Lpu+32JPTE/Rvl9W52T+IzwaQ/k9kyZZV7au174whdmV0rjT+nF+oiMNN8P3Cm5ZzatJeaKeSfBhz0Ebp7Bi6AUdd900035jC/fmwf+9T7i8s1qJF6RRYgCwpxipUXsrTmp9WU+5LbGqule7x0Ktua9LL0UbvbXeuH6Zf5z+YZFKTBxADQ3YFZ05F9MnjnQr3hn7bXXXhkPfdMOl/dkfX1xv+OiLvYOPiuvvHLGuxCr8gzvVDGOFH/aYa3z9GC9bY5FW7u8E7XDbxALShxeHPYcLomKZ+grN2eeGM16Ke24oIuZVCj17CuON1BfSaVvvHhP9CuULDwIWJzrBW4SK1HWmBeyeR588MEVLxVZQmHoOfvuu2/1rW99K7suUmrWi37yRPAuZ12kjDUnjGW9mLPGFa7aw33PnEe4R7U+hgWp36jHd4HAHCFQEh/YxAibo2peS3O9rL1ovCTe/OY3501JTEBT29XsHoGOtsXmXjLdeWmxEJSUw03C4Tc2Ny9hREZfXOrh5mZTtJHbCFmSaIa7FBu2Z3t5epF1LSxINnQvHW2YREF4EK8uVhHt9nJC0ODvpWPj9yKCBTeCUQoXDy9oVgGEdZQ54uVJYDAW/TIZDts+c4trl5ckC+KwBb6EJ0KQFyCMWKNYXAifCIOXNmFiNoKg4cIl1fy0ViQlOOaYY/JL2Uu8Oef79Q9h8RtWHJYdygGCaFfCYM4i1dZQWxEfRQAkSDjguFfbzFXfwda+Uu7zfwLWqaeemmOduLsQ5NrqQbAoRgiqYpH6ZXA0rxBwSg2Wn15nPLX1qfkZQVz/JzlHm88oOBRhehSFgb2MwsH8nI152Wxz17/tVSyQ9sJtt902WzIJqIR5a8q46j/BvU4gSv3l87pQ7TNKHnP6TW96UxZaYYe8eN7OO++c3zGeIf5NIbTaa+yJSJT3DwHcXLN/GWfrxN8Iu3eIZ2qT53nnlIB+84FQX7+3tLNJQOp1lD5RfGiX+en8LK7mxX3PGhWja923rQOEzW+tS4oUyj7F3/YqpFH77M8wQLr0lUuePZ+gTgEBe+uJgI8MrZasybvsskt+XxHiWWoREntgL6WMMeWSbQwQT8QNxj479thjM0EyFtaqDKr2NUlT9thjj7uVlsaLK29JIoTYeU9x69X+448/PveHDKHfCIf4rza3YTgYL1d9vvi8Pg7GW1/h61nc/xF2ONnb7VPGsa5EZIl31IKiv/ZjnirIs/mEfJYsqZ6lX9puDzZGcKX0OvDAA7OCxz43TAmCNAxacW8gMCICNnkbM00VbQ4NCjcaGxPNu8XtIljRXst+NY5w77e0LTZ9WmIb5tvf/vas+evnCiLOyGbrRVVeFIQUGynhEVGyKdcLbbmNzWZMyPDS8UL0wrOp0eTYXJEoG17zZdYLUuTIBqctCFvXQvgjtIwjoDWfZZwIkzb0QUWbbdReUDZ+WjpCrZdjP+y71AuTQhoG3d/2vbGBi/FsEwTaftPlM0IYbe0111yTiekw41Xq96IUmI9IGkNttG6KAKe95iLNNKGjXwKDLm0u98AUGWL5MF8JT0Wgk6Rk2NgU8552lJCDhBx++OH5JY0ka/sg3PWXcNKLAIuRghXtcy8hSt/KOmtzL4EvQY32X2xfr2cRWsQnWcMEvH4kz1hRlugfhcY4c70IyHVL9TBj2uVeGNu7YEH7Psp+Ye+Gs98OGtcubZrEPd4j9j9CO8GQa29J1MG11nzoN296taHMJ25QBHnrkwLIni+5B8UNDb590j7DKuA9Zq76rXcPQmFMKToo8YxBPVC/+c6z3su9xqnfvb3aXT63xlkdCPww8a41z5B5fUK+nOHWpkR0r3boq/+3tUP7CODetYVoWaOwQlAQD3uJdzISuXmK56W8hGN5fyKf9gtt6eUCbd36Xntko/S+1mYWOnixuFx99dX5nYuYUaQgX/pY1pN3OaKnfea+PQXp0G7t0ybzyDvdHkFBQvnZdNUdhHn9e+ujyBbmn7YVHH1nr2kW/UQIKa30z/zRBkQJTvZX74JSzCfvIUcrIE76YF8ic7EyBkFqIhx/BwJzhAChyuZE4CIg2YBo1b2EESMbgE2PyZvWycuEwGFTs2HYlAh9hIvmi2KULth0JGegVWJql4XIy8vmYZNvKwiSNtYFoRKDQOPEXG4TX3/99bN7gXb7u7xwPJOm0ouo+PZ7Pm22F7YNWj+7lKLl9Ju2l1avOmyKXjhd40Z61VM+9+LzwrdRd0kUIX6CgOIFBg/tGOXA3Wa7jB2BbIVEUEcVxvTD2PYa/+Yzu/7txUoY4jKj3ywbwzzDvOfS44UsyJ9Lhhe1+WvsuTJZP8VVwktvEoUFgAYbsdN+Wnfj5Xk0vDS9wxIk7bIutN3Le911180aU8KqvYACRJ1tY2jOWz/mby9trbnlt4PWEVdZ2DUFf3Wby/aYDTbYoCeZpRSgQSbMsVgSaNraXMZB2ylB7G3IUb97u4yddTxuHf2eA2fB/0gw7fIoZAyh1+9JrO9+bR3mO5ghvKxG1pDCEsPVrtec6lq/ekusYRkbQjbrBeWZdyDi4+JqZgwJ6NpSJ8x+W65+77r6ff7f795+fbBfsDx4l9mr4FDaT6GDJCEN2ttW6u3wfVs7rDUYU4yUd4+9Vt+RGmTMXCELmC/mXZ1Ym4MUcM4+885pK9YuTwKxkvZYJKA8y56jTjIHa5mCkCAW4gIpJ519Zwwpg/QBFsaKZdDF8tV895NT7Mn6MG5pjnsbjuUZMCBz6JO9tOx33i9c13kqGNN60TfvaN+VumEMb14dw5awIA2LWNwfCPRAALmgpSGEEqxshjYwGzAXGy8SpMIitpkVwd9CLpu//w9DBupNQcj4ldsEi/ZJXcgJDQxTPEGQJqiXJUQf/L6unbcB86lGdGisvHTFEtFQcU0gENWFNS8CQpyNl0bOS0N/EUf/dvXVhxM8aIW84LoSHvf5LQFxEsV4ejnYaLvEQhG8tNnLaZKFMMYyNc65MMgbQcU4DFuMAUyNLZJfL+YybSj3DtYS8wFpLkLIoGcZZ4SKEI6oeCnSLmqnOggG1g78CTGjuEM122B9FsuRjHU0j7DRPxZelkBrYRiiV3+GtUcQ455DMLPmJFRwPhI/+bZ6ERcCkDncy52NwEWYsxZZ6ggLbXsG9yefI9TNYixptO1NbXPBHCbIlUyYBKm2++r1wpMQYgwH3dtsT/Nv40txRLNNwKuXSRAn88l64h5mr26SyGZ7ev1trOx3vcaq1+9m+3P40a4jKci5ea6PqyWXLu+iZpxHl/aU+azu+rr2rjBWlA0IEgFVohNzhzXYnCb8iwUh1BN257pQLNn7zCfkoq70sBYon7q+X3q13XqGQ72esq+p35yDkYtHActsnTSaR+6zx7u3rWirvniXGl8uyfWx0McyBn5vzMkdxoiVDxE0Z+0N9lPr2rr1O/U0Lf/aj1wUpUpbm2bjM2tcP+3F3qP1vVI7vV/MQ2u4XtxnbOvEy7x1qWvYEgRpWMTi/kCgBwIEF2cPeSHRhDNde3HaBC1o17iCQ49HZ4GcxpuViEChLT6zKdDsIU60uwJye2WQs+nacGhfmq402q1O/sBesDRQCJMNyd+EolL8n78ztyvEqryMaLVg0Ov5zb4VlwYbPsG8a+yONiFhkyJIyJHNuq7Fara1/reXmJfdKJaHfvWWl+cw8VjN+lhGjGWbQN28t/k3CyD/eC8sioBmMWcI/8g4/28kfViXDC82Y+fFXW+jz13NedlswzB/I3LcLrgJIfulbgIMIYpyw1wexbJQbweBCWaEU/OIPz93V+PYrJtwZB0SbHoRbJjSrjp7qqw9+w3MPMN+g0CJ6SII0wCXUlxOECC/6WWF4pLClx8h5XbYxSJEiEIqkcK6gDLMmJR7EXCJHrSB5bDEU8GGkoewzfpV4g+GfYY9hXCpzdzOuiptms/RHnU0BcvmfXP9tznHknHAAQdk4dceJoCeG5w5Zo80Ru6zVzWL+eX9US/6af/wOQVUEcx95v5CamHJYmU+IkeUDSwQBHR7o/k0qVLISNPyo0/1ZDbmr7XmfcS7o7mH+r26RtkXS1/g0aYQ8llpH9y1g1JDO5oeCeW+Xu512ue9AmOWaYqdZpvVUZQiheCQCcx3+455YN7yBrHOtEedMLM/NUshT8a8V/FOMT+a44B8jUJMPMfepG/2Y/OmXops09y/2vD3u/oY9OpD2+dBkNpQic8CgREQ8IIgbBFKbGAWr82n16Id4RE9f1JeiAiQ83QIeDYXzydsCUilsULaemXHcr820xi1Cfe+p4lyIX4Il0BJ/a0TJC8jVo7y0imNtqkx83tBb578r8V69CsELRl6EB2av64EiaBLO8ZFiEVs1MMqS9u84L0kvPC7jCWc3Nfc1Et9+q9PyKiXhxeLFwzce8Vu+A3tPEyb1pt+GDa/G4cgaS88uU8684qAXdeA6jPfcJYYGmsaZC/6+mHDzfb0+rv50u9136ifs45wHysCU520ExKsIRYW49JvzI0d4sr1z5zrRTrUQbuMcHjhOyPLfG4SJIK7+tq+K321t4jnoA0W84O4cmd1DhJXWutbfKN/Car1pBnmD0FIe+wJbVYsJIebjjq5Hw5jXUG8iuV31LHxO/0XaK2v9rJyIKV9iVBp3MaJQStB6QimsR9lvlnfBE2lvv+N0+9J/tbcKpYteCJMyCZlGcJkLtor4WtOlLlor7PX2HPqxdyxXyFZ9u4iMBsb7lksvvYwc8s4lXnn2Ui659hLYTZoj6w/t9+9lAj2NETMWkQIvGdYSVizi7VKe+zfno/MUiQ0Sbx291vrRUnTa1/vMnYwgxMLknVlfbbNvV5kxL0w9g7QPxbu+h5c2lDfV6whVvlTTjklu/jaq+CmHeW36tQeik+xkqVN9nwutvaufsoIa8i+ZizMEzgizcbaXmfulUJWQZyMV6/i9/Ym/bQXe19qr889w95kjiKZs1mCIM0mulH3kkLABmrDaduwChBFoGJNscHZgLysLXobghiIoi0dBjwbB+GUhYeQVYQgbSLkaRPCUTSHbXXbILnOeYH02qDL72y6shERzrS/XrSlKfj5HilihSJI0g4PKtpuYyWslQDLLq5VNnNYEKCkPfUyFEMhWQIC29WCpX2wRApgWNfE92t7iSkzxl4QBA3Z/JA8fSnjDaeiiS0v3aI1r7tpeBYroBeCsRn18E31mGeEhbbx6dcn33EVIwhx7RIj5CVrPAlChFbfe4kizF6WXDHF23BhMh7TULy8ERCWXsIjDSxSWheMCkFiAR2Ek3VmjGWrsp7NE4JnibtQN5zgYa0gjbCwxptjDB/7gWuQK6f1R3gwFxA5AiJiQ0ssK514Lu5M1k+9D9aUOcR6xuWvjSCZIwRpOFCC2Bc8z9zVT9a2tmDnYmGAa1P4HHbsYVPItn4RtoydvmgL4t2mxOnyHH0jCBq3pptTl9+Xe6wFaxnJGCVz4zDPGuZewicC5FwrAjiCYp9BjAi7hGHk2b9IMmsvbwBxpciFYH1j3RTcjan5zkvBHDU+CLrMbfZa7wPfU4JxXTRH7Ad+Z+7bv+xvPAM8x/P9XhyYfcSYr9DiDmrP9xtWzea9FBLmMuWAflpv2i67mbaUYn2zXMnSVpI1lAQs5oP91XziMt5r7trXzW336x+BHa69FI5tY6YdMroS8LnImT/GgGLSu6YcnmqNeV6z+L01r5377bdfTghBKYqge4fYg6wXFqriRq9f9gHt9X63pkva7LLvwZ9FidKIhVud5hGrnzggygrK1V7FO5ZF23vWuBp388A7oD4Ofq/9MLYG7S3Gtk3ZUcZMPx1XQjFnjEvmxBLr2qtNk/g8CNIkUIw6AoG7ELAZECz8a4MpGmHCMg2aOCHaLd8V320v/KKpLtqXUQC1WdvAR/WHJ3w0Tf792mET9KKra+/63U+QI/jZsPW5SyFoeol6idskuXa1CXX1umy+NIfOo+GD78XqBeIl0PW5pT4vB9orwkDby7utDwgg7T5yQAA3F7z8vaCQLMKUMdKWoh01H4r2vSmYeIYXJyHbi28QeW1rU/mMBhhRbntGv9/5DrEkRNHeexGbzwSxa1OAtixNSLi+FdLkBUZTSiARi1AnIYOeNVvfEyK4ABJMECDjZO2VQrigsfQvwtdLWCr3WzNe+F7i1j2LKkLNvY3gaFzV71+XOQQP4982Btrl6qIZhae1UNaDvYOwhiQhZYSJtvlunCgKrMO2MSnCrnVzxhln/EVmr2Z8YnOcSn3aMm6xZswh16SKdllLkok4P8dcbRuHLs+zpyNu5vy4yQ+6PK/rPcbAvDQfCbzFRcp423+5Zum3fYQQLUsZpYc1TGAtBxxTJNSLtYCYIhqymiE89ix7o+yM5kZZLwgH66N3g7aYo6ye3CLtxfZEbl8w5AZoDNRdkkrUn2t9sVix/jTvpSRAcs15bt3mtvv1D4GtF+8S97hX+7nCw8rY2bO5Wrath1KHNavN3gn2EPdqswObhynIinPHtMPeiVQo1qq5VDIN9qrTGFGAGD+/9V4sbo/aY9+qkyvtVLd3UWmrPbxO6v1fsiV7Fe8AlqbSJu9Rv+0nV/AYYXlCVBEs44CsGgd7ab0gzsgYN2Cul8gh0ihLZrMYd+8s6xWJt4fqt3lsLo0Tj9t8VtvfQZDaUInPAoERELBJsRIQ4os/rheoTccmQBPm5eBFYuPw4vedF5cXhP9Pmy/7IBiKINTvxVLqqAtzg+ot38PMy4BW2wsc4aT9skH2eyatrk0dKTEWtFpenIPIVb1d+kbAtynTnnUlJl5ghBDCqgQPnukFVDRlXl5eIHXNvmdpZ3ETqbfD82n9CBtdLG/9sDUfCZ6jCIV+A0cXIk3g8PJzEcZo+AglyBMtn75bE65+Y9WvvZP8ThtpbWlFrVFCQtOHnVAIa2SQ8DWIIOmX8ST0GEO40K7DxL/cS/zfc6x9c9Cc7GWZIsiY28MoKgpG2qLd1ox51NTc1u/rtw7sR7TrhEnKHBpzfTCHWb7qglV9fGClXkLzJAjSJMe+1GVOimEyNrIKtlnxuj4XETaOiOgo66nrc4a9zzgQZvfcc89svS7jYVzND++Y4uVgLBEkQjlB1B7nM7/xd3kf+Yy1ghcAJY3LevIs+5q9DtEw78xdCYF8rx7zsihPPL/so8iZ31lzRfC1lrTFGkBaFL/tda+6EC/7ojE17xB8a4AA7fuyhs1NwjnBnfXQfqrAxZ5N4ddvn3Kf98AhhxyS10RRfugT4sSFr0kiEBbrCA4lxlE99h7zhvINgYWbtsLQPuGeXsVcowChrNIe+FH8+Nw+YzyaXhJkC8S2nHcGr/r7zPeILrKpL4VUa4926kfZs4wZD4K6CyZsufEhZ97RcPSeMHbaV99n1eX3+u697l77Ivx5wCBqpZT3v37CXD/LPNaOeh+QLPOk6YLub14M/ca2F9b3ShNqfFVPr9rj80BgCSFAILkjadRpOlZImmKbDoHHZeO32bgsetc4L+dpgJX2i6uS7GVcA2ereHnYTJ3tQEPlxc0yZAMeJMCO0yYaUoK059D42cSHKV6g2lo0qMP8ttyL0BDYWaPUA28vCe4y3DQIIV4AtOFdEhggm7Ru4oQm6fbmNeKlysrlhehlpu/muBffbGv6BmFbMCM0seI59NQabQq2+sDKq/1cMkd5qZa22A8IRsbQ2DVJcVubERKCnrb1E5Lafusz48BSS3jiFjOJ2BjzWB8IQf3WG8GIYEz4pNWexLN79XOUz/WDq67Mmsi9ttqjRyn2JHsCIVFqZK5eUQKBQGBxIRAWpMU1ntGbeUSAsEUooAWhkfI3DYd/xxG05rFLfR9NEB7FKtS30pYvCWWEbG5HBG1kiUZqtjH91Kc+lbWMfOs9f9hCKG5zcepaD3wdlMeKRWimxUWUCPDmFYEbARE0zUrDbYp2rl8h2MFt0tiprygDRsGqX5sn8Z32wYvlVqY967RJjjyHIoN2FbkZF6Oi0W1aqfr1Z1yXMgI70kyLXqwE/Z7X5TvzuJfFq/5799DOiz0wH6etcBmkZEE8nQU3KjnSL5YoFlPKCVa1KIFAILD4EAiCtPjGNHo0jwgQXJmkl0JhYWERawsmnXT/iwDOhD8XhSWBLzZXBu5G82Ht4+vOV17GNUSU0Il4C7zmpsUKab7x+RYPJNh3EEFCNlkZlprjQFFe7LvvvjnuqN94mmtdCMFczMNhnmFMWbDNE65RwxCzYZ7T616EA7nkVojQ2wenBUeWTa51Yl4cdDouqRGnBmeWvkFrrhde8XkgEAhMNwJBkKZ7fKJ1gcC8IsA1iTBw00035UDZumBB2ODWRWhfbIX7IEsNYWpQRrHZ6rtYHsSIXzW/fj7u5VTxEmeijSwGLA9dLAYIlTFlSVpKpViQuFYt1mJMZUs0Nwjt41hIRsEI6TRPYa0dEqVMy97ACisoHKFhaR3XOshKBmcWs2khgaOMWfwmEAgEeiMQBKk3NvFNILCkEaCRFmwvNTEhXDBsKfz5BSmL52hL0bmQgRNDIZsSMiiegyA0H0WMEELDZa1kj0OCjAtXqs997nM5taoYKTEQXTTZxRJl/KIsLgTMC5ZEsXLcHcclAcOiwzppLiLx9g3EfhoIEiVCyRRmHTUD6YftJxdf1l1ku5yzM2wdcX8gEAhMPwJBkKZ/jKKFgcC8ICCtqsxxUrY6d6GevYp7HUGBRnaSaXjnpaONh3Kt42InoJ8r23wVmdGkPqWtPiUd8kcDTvAV+M+6JP05C56Yt67pv5E9mYNYkaIsPASkAJeCVzIH7qZ1i1hRaLDijBP7Ng4qrCnbbbddzmZYzzA1Tp3j/tY6QRZZwLmhjlvgL2mFeMiFlnV03L7H7wOBpYRAEKSlNNrR10CgIwIsFM5pIFw4s8BVD2p33gsBiLZ6LmKQOjZ7Irex2MjMJxXrfAmaOiK+y2GfEgrQyHNpJAQT9rgzrb766vkS99HVnUpMlbpkmIuycBBAaq+//vp8bogMhqyL9YOLzQtjar1Kbz9fa5IVCRGR0a5LVsW5GAFKnNe//vV5rxo3LgsxciYL/MtZQnPRh2GfIT6KWyErs9TczbTPw9Y3iftZ8rhqlzg5CiBZNaelUBoVzKSang3yK7mHGD0pquuWTGn0PdtBvrvssktrAplJ4yQ7qvlhbkit7p1PGacNUrpPm+uozKIUs/a2SWZg7YdrEKR+6MR3gcASRYC14oYbbsjxNwSuZnyL7wgcXGrasoEtZNjaDqybr/7AWLC7sym8XAWbI6asdr7rl3a5rc3OFnGIqXoK2Wq7Lz6bDgRK4oWPfvSjlbg4Ar75KQV5PXW6rHuEB4IW4WFcIjBO75H1aRDISx9GOVOqrf/Ggmud+CpW23JOT9u98/0ZYV8WToe1Um7N93gg7w4dRpDMTa6Xwx6bMNuYcjumhICZYxNmgyBRLCLYG2644V8QJB4LyAlX0J122mlO3qk8RIwJBRuCpA1I2oUXXpjPKZo2goTQaRvX9yBIs70aov5AIBBoRYAm6bLLLsuCuLij5sGQBIUbb7wxH3g7LVri1o4skg9ZjMZN/1ygkOhB6nLukYSWJvFdJJAtim4Q2GjbP/CBD2ShnMWIsoJA07QQEYgJEMaTYDct7m2LYiDu6gSMubrS/suEOA3xVQsFX3GdUqxLarHZZptNlMTP1tEFs4EtJReSKD6vXngLUHrwFhhW6TWpdvKW0AYeFLNNjkYZMxYk3g9zmWAoLEiTml1RTyCwSBC47bbbctwRFzMB1/Vic7JRucfJ3EGQFtag07yx+kmwgSSNm+54YfV+4bSWEoI1yKGmN998c7X11ltX6667bs9EHIR35/wUl9f5ErIWDsLDtZTLGu2/+KO3v/3tGee5ToIxXIvveXc5BJmrm7mFgBPM9eUZz3hGdtPVJ9+xpBCY7f/u8duvfvWrOQkI1zhknZsvZQtMnC3l3rb3AUsWcuSdok5WCoQJyXS/uSum0nEG0sMrEs5Q5mhbOTCZ4s4YcFFz1AFrnlg81jHxeG0WH3UjJNyT9RFBcXmPuZ91kQtmr6Lf3nUw4zZaMGPVh0HBzO/FhnoORYV7WXUpLLjSIUSywVIsen+Kc9UfGDpLq+BJsVGfV5IjqU8b3G9dS4rkN/0so+YrnIwXjOAAR7g+73nPa02s5LmIUV25os2ej7jBDA7cTLXB8wdleDWexlWfPddeVs70Ez8JH32DW8HXHIGv8dJm7aIg4rVinmiH8wF5rnAZf/WrX52Hz+/11zzjkiwhkfcbS3vbvOw15vXPgyB1QSnuCQSWEAIOKLW5C+hvWhi8IGhxbFo2n6YmewnBtCC7yr1FoLoXDhcLbkIhTE/fULLuEQbPOeec6tBDD83kqF88HIFI7ICkImE9mux4IquEr6OPPjpbQAjnowpck23ZcLVJnHHddddlIZUAaY+39gnpLJPigQikBODTTjstC5isZAiR35500knV2WefnZPXOLDa+4HAfOSRR+Z5JyarDRcCMHLFrZfw6nkEf5YK5ETcnLoJ4+UAcO0jgHNFk0nUnJaghEsY74ZtttkmC/4IGrLg2W0EybrglnXmmWdW66yzTu6fuj0faUDSHBrc6+xCRK5g5lkFM0SiYAYnBRHjCkvYL2uQEG/dIkAOFibgq4eCStu0Bx72Yb8999xzc7wc4oWocrm74oorcl/V6bneuerrR5C0wd6BkJX2GWvt0de2zKzm+Pnnn5/HWOyre5FfY0OxZu4jjC59gDdXPNj3UhYgo6eeempOMMRyCE97m7a7zAkEWjvr+Gprwdec8Dv4IYmK+mBBBpGZUttlntVe9Ws7WcV8fMlLXpJJVFufB62gIEiDEIrvA4ElhkBx0bEh0ULRgGmflAAAIABJREFUHpVi0+ErbUNniZhtU/wSg35Ourv22mtnIYkm10uKy1CU6UKgaPFpSI1XP3Kk5bTXFBesukGQJjuWBDcCmRgwxMD+uBCVCoRuGn+EwrzSBy6cBPN99tknW2EQFt/5VzIQBAhBojRDwAnJsCCEsizR2CMc7u8V5+QsOe+Q22+/PcdSIiQwJLgjXkgPYkDYXm211XK7rrzyypxBFYnhXlwsFawHyA0CIJEOAbmQkH6jbgyRExkWWS5YMTyXZQvh2HHHHVt/jrwgf9K5659nFcz222+/bOXQBm2W1IhVi1u6mB54e477vSedv4Ug6rMkEMgfYmG9FstZvRHm27HHHpv7v9FGG+VMpZ6DLCCxvQpCj6xpDzK/8cYb5z7CjZUZaehFaNrqtLfwNtAvfTAGH//4x6tjjjmmOv7446t3v/vdfZMEIZWIjRhJY1bIqPmD9JqPMCz4wsjYH3jggZnAImCsT3BDuFiEDjjggNxU40MmcaA6q5L+2i+909RjbiNOrHhi8YYtQZCGRSzuDwQWOQK0RbR2iJBNljapaF+8sLhf2LjCerQwJ4KX+iqrrJIJkoDh1772tT1dtxZmDxd+qwk5BAtrbJAwTkAgwBLECFHFJWnhozD/PYAtkuAsOGuGNno+E2CMgwih0dwgOBJ4CdmIDmUXixGrMkFS/witCDfrTxGQzTEC7h577JHJBjcrliFzlNBLWG0r6vP+8D2PBG5eLFPmuHoIt0jLrrvuerfCDSEiDBe3tEKQ/Aah4OZIUO71zGY7rCVEQdwswVwbCMyIFjK25ZZbtiZGgBkiR1lIQIcFzBBFgjfMWML0CwnTNoI+bFzavfLKK9/dHPchSxQeFIylNAkSEvKRj3wkC/+yELJ+dVVGwkg7/attsPYsRAMJHrZoi3mPIBUS7G+EGbHdfffdc/299intgLnMeMhm/T7EuYmvtpNBEFiEzhjAC3bG2/117Fi0uCL7bNttt82E3jO4fCK0LJzkmCBIw4583B8IBAL3QIDmi3aLpkrGMxosm2Mx+/MptmkHQboHdAviAy9aGkl+4YQDAgwXrjb3mAXRoUXYSGNCAHQQMCFRPGAvyxBBFzmiFSYEWadRJoMADTcXJwLyySefnAW1YbTvk2nFZGopZIQFiDUBaaDwYgEixCJN/laKq6Z5hSRxx0UquD1JGsICzQokPoXFaRQrNOGfaxRy4H1CmC2FQG0us8jwYiiF4GttsHx3JQx+S7BWX90SS9jXbiRJ3+ueEuV5rB4IHKVgHTMkCXEomGkXkmeesFpwoStuaaxrw8asqR8xVwfyOUxftUVf/fbSSy/N+JXMb9qhPb32kruBrv2nuOUZ51LgaAxOPPHETHKRsF77jvYYT2SxuXaQYC6T3BhZmcqcRJIKvlwRexX3IKasnaxMZBN1lmLemtOwHKWEBWkU1OI3gcAiR8AmyrJw3HHHZR9i2jB+z7RGBDIWpIWqSV3kQ9epe7TGW2yxRXXWWWdlLZ2XexCkTtDNyU0ECu4ihJBDDjkka2mtv2ZMoMYQJlgFCLDWaV3QnJPGLtKHIA5iI8SBsKKPon2fJmhYi8WXID/WPnJAYLX+KUgIkoiSwqVM9lLCJnKAKEmaQEvPIoIgsU6wqrBIj0KQCLeeqQ0lTqaOV0mAgEiVQtimmGsK2oNwRjCav1GXtUIoR0jaCssDSw48uK/qp98gQKw6dczEwsBEAgbvSS5y7rVud9ttt54uiG3PVS98EJmuVrJ6PciCPQS54wbpvCNEwxhuv/32+d+uBXZ1q4/f+bu0C0Ep86atThiQFZr4uxc5YinyPuLmiAy6H6Fpzsm2uou1zBiax+Kl6uTP965RkxEFQWpDPT4LBAKBLDQTEvgaH3HEEdm9gsBAM0X7NoxWK+CcPgRYKN75znfmF0ib4D19LV46LSKAWGMHHXRQPnPnsMMOy/ETEmw045EoLGiyKTWCHE1mjhBOuU8RMCkO7H0LvRDaCc0E+XLWmyB52cGapZyzRgNP0CcE8yIgFK+W4oTExiAqhG7Cp/uHLerSHkSIQGwfKkI0gsCDQZlEOnXvMWuEFaOQMS6DPtOPXvFTLBOEe5hJga1w6RLj0yzq4XrmgheB/aKLLsoWN66vrPb6V4T25u/rf3umeYeAsrDVsen3u/IdV0rEzAVL8V/irfbee+9MQurWoEH1UcCwpLKgFVd7eBozZASRHnXfsca0Fb4OPVdgxxLUJF1lbtQ/t0/aDymGyCuFZDXJ2DAWszoeywwCJ74PBAKBpYsAbaEUwzZZvudeljTbvczpSxephdlzxKiXdm9h9mjxtNoao513cCUNNyUFdy9uSfVCgOEKVILFpxYBloDk1pnSllVJ8pvaZmoYoZTbD4LA2kIAW8iFUEmhhfgRbpFq84bgzLLUFEb1VZwNEiMWFZkoqai9ExALlhJWS652owjIRQnAmsHVFxnh9gt7GRxd6mfxGrd4FmsQkqh+7WdV4SKINNVjWsqzYKL/dcyKOyuros9L8X7kasbSpg+sXhQW3pWeDT/3I1HqtYZdyEBbwgXPlRqcBY9LJDdAdfiNttfdyJrYsKYgNH4j+53xRogkjkAmSga/5u96/a39sDIP9E2drFLXXHNNJn6jnptU5qR/7W9wcLGGyzyoH/WC2Jpn2q8dBTvvMOTdWuVOiBzpJ/I9KjEqzw0LUq9ZEZ8HAoFAfqkKTrYJHXzwwXnjlTKzzSUi4AoEAoHJIkA44dole9q+++5bHX744XkN0rjS2vu+ECSaa39PVUnCT5JkHFJSJcmnSv5aVZK2qtSBKqXymqqmlsYQdpEjF6004WuhF0KjODZaf2SkCOqEb+5ibQXhZr0hdCIxLM7eBxI4SOaAbDz/+c/vaX1pq7P5GWvGG9/4xmqvvfbK2v+XvvSlWcBl7SAEI6cSBo1bvL9YfQjY+oVkSFKDgJWU1s1naAdSCB+YlfgzmCFWdVIpfoZ7F5KE0LG0EORZ5xCl1ZLVjbAuNgh20lH7PXKJiLZZdGT7Q7jENEmFLukA4oTgqYvCsq2wcLF8yjQnYQHyh5whOXDgfqffXYtnIR9cDSXlsN/AznP2S5n8RlWWwpcCiKWN4gdm9i9ETH/rBFRbuTeKoXL/CSeckHHVN5ant73tbTkLImud3xtjYw0rVlKuypunOLdhSxCkYRGL+wOBJYaADZBrj42aBquXO8ISgyW6GwjMGQKEUy9/KXUFRnM/2mqrrbL2lkBPEJiq9NO0v84sSVrvJJlWSQKqktq5SlJmVa23XpVy8c4ZdsM+CIkgoBOwnN2yEF2JCZqEYO7QRYuOVPu/fXzPPffMAj/y8b73vS9n/0KG6pYgAiiCIPEAobooxdQtXbd7vRe6vA+4URFuCbT1ZxCKZRfzbJkCpXdGHJAwLqUsMCwBivdQIRRNF6pBY6zt3IlZpS644ILsGkg4F2fLUqOos2BWMkFKSgEz7ULiEEukmaICZtzg9Ef9LFGwYqlCHtxLMCe4U3Ko37+IDwuJ2F5YirWxlpEk41X6Bn/prN2LoDnLCUFCssQ/9SraXo7h+MQnPpEtT7Dzmf0DWYOp9iEdhZypu7ShrmjRf6nakSt9IwMgdTL/OTurX/FbY2aPaiv64R5nNnH/8wxEnrUcvvWYSv2WPErMkjmsTsR9jTXWyDFiUo6LqaXYEDdn3XL/M17m8SjlXmkyzkTljfLr+E0gEAgEAoFAIBAIzAkCtKFS2jrQkavTLrvskt3rCA4SqtCmEnTmrXA7SprzKmm+k2RXpTSYgjaqlF+5SkEYVZKoqxR0MG/NG/Rgrj6EX0IW4VlgfpSFiwA3rP333z8THPFAXMKidEdAimyZNHfaaafqDW94Q/cfLpI7w4K0SAYyuhEIBAKBQCCwuBGg9Ze0QdwYjalYBBp42tR5tSCxGCFCKT4hmQKqpBKukoq6Sv5LVbXBBlVSX1PRT/Xg0BXTuHMfkqVzPZauKIFAILBkEQiCtGSHPjoeCAQCgcCUIkDgTr7uyf+iSj4sUy9czyWK3FC22WabHMsgBTjXFC4+znGZ8xgkFiMpkp0zkk6yTydHVslPqEoBElXyHaqST9VcQjPWs7giibPg9sV1KNLejwXnVPyYu5r1Ykzrrn1T0bgF0Ajub5NIdrAAutraxHCxa4UlPgwEAoFAIBCYFwRkO+OilQKAU2RtlYIFqmQycfjGDFnyb5QcRyEg+YOJmIhF4g4zZ4VnvnES4J9iAlKARJWc/qvk81elqPsqMbY5a8okHsR6JBGGGAtxR9yJQqCeBLJRRyCwcBEIgrRwxy5aHggEAoHA4kOA8C3rWUovn2NYBGmnoO0UsV2l6PAqBRLMCOBctqbcbWvxDU7qkfFxRs1pp1UpndTMWOy8c5VYxQxJWoCdlpVMNjVZ1ATMC+6OEggEAksbgSBIS3v8o/eBQCAQCEwnAtzsuG7JguZKmcWyZSlld0rZCGauNddcsEL5dII+oFUpSUSK2v5fYvSWt8yk7E5uTNnCt0ALq5HUzzKdyfI1bJa0BdrtaHYgEAj0QSAIUh9w4qtAIBAIBAKBeURAjIsLWZIqNp2BkQ75qNIhH1WVTmFPgThVCsipUrqxKgUaLGghfR5RHvxo7nQpLXGOM0rnMOUzjLg/pvNGUtq8wb+f0ju41l122WU5S9fuu++ez3iTcjpKIBAIBAJBkGIOBAKBQCDQAwEH4zkxXAC8rFahWe4B1Fx9jCil09ZzYoB0KGMKGqnSoRhVSuc2k0p6++2rdLjLTAa1uWrTYn6OzHQppXg6LKeqfvKTKh3AUqUDUKrqqU+dca1bwFYj5EjadOfgOBNnt912y+fvxBpfzBM6+hYIdEcgsth1xyruDAQCgSWGgAP2/j1ZKpAkWa1e9KIXLTEEpqy7Mtpx53LR9LNgsB45iBRZYk1Khxim3NczVzpcMMoICEjXfcklVXXMMVX1ve9VFVfGdHBjxltM2BxZjX6W2iGz3I9+9KN85pODPCeVqe8PKUviJamPSNIWW2yRD78McjTCXImfBAKLFIGwIC3SgY1uBQKBwPgIOF/mqquuqk455ZScVvmwww7LJ3RHmTIE0oGQ+RweMUssHmnM0vHxVYq6n4mRWXHFSOjQZch+/vOquvTSqjr55CqxkiqZV6rqzW+uquWXr9Kx9nMe7/XlL3+5WmONNfI5Tw5u3S9lNrQOJ1H+nKyRP0lWMUSJhVhK4yiBQCAQCBQE7p02nP0CjkAgEAgEAoF7IiDV78Mf/vAsSDlAknD2OOe8RJkuBJAhB5MSnp/5zCpJ1VUyN1TVddfNxM6kscuppx1YOmVuYRdddFF14IEHZkslK4YzW+a8cFE866yqeve7q3RaapVOSq1SxoKZQ15ZjdIBtfOB269+9atsvV0+EbRPfepT1T8li+BjHvOY6n73u9/YELFEOXD3wYn4hdJjbDijgkBg0SEQBGnRDWl0KBAIBCaJADc78QpSAX8jJQlYJ8VhTMLNR51/TPE0NNieEWUCCHDBc2bScstVSZquqlVWmYmXkf3upJOqFJE/k/QhWQySlD0VViXE6JZbbslzy5xYaaWVJgBExyrSc6vjjpuJMfrKV6rqWc+aSa+ekhXk1OrznPjC2vjud7+b8YELsvT0RN6c+zSJNaiOcKvrOFfitkBgiSEQBGmJDXh0NxBYbAgQoBANLjKzcbgjAYpW/ze/+U3KNH11MkL8Q9b0j1uuv/766uyzz67uvPPO6slPfnLP6gjNLiWEuZ4w/eUXzkdCgLiFPfaxMyRJYoFf/KKqzjuvqpLVJuV1niEASMA8uk2yUD7xiU9M3oHfqW677bbq2c9+9uxakdIBs9XNN1fJX7SqjjpqJiud2LpNN52J20ptSQF3M4fydoR7tm6znu+b4p1OSuR2r732ygTpf1JGPeuP5SdKIBAIBAKzhUA4088WslFvIBAIzDoCF154YXX66adXL3/5y6v1119/1oSmB6bA9Kc97WlJ1n5sOgbmX6sXv/jFY2mwETouewjXwx72sJSU7fcpFv57+fp+ys72gx/8IF9c+373u9+lTNf/NwuK7l0lWUXelBIThFtQh+mFKHGtQ2gd/umQ2dtvr6prr62Sz9ZMunCfpflTPe95VfXQh3aotP8t/5lioZB149WlEPQfkFzY/iW1w3y44YYbskvZRAuCLT23fktmkayhmTg63DVlcMv4IBwd2zzRtvWp7K/T2D0vjcuJJ56Ys83dkSyBF1xwQbYiOcx1WFc7WSn/LfV/uWRhlJghFA59wI+vAoEljkAQpCU+AaL7gcBCRYAweVTSgNO+Iy/3F4MyS4UgJf7hJS95SU7U8MUvfjGnBh5VwLouxcZo/6233lqdc845yahxXiZCBD7nsLhkzWNdIGxzwaM5R6Q8c9Tn9oLnF8mygpghgJ676EqxKIlBQgye8ISqWmutqvr852esKR/4wMwBqM9//oxbnjgmvxmyGNcPf/jD1eMf//hqgw02yHOmS0GmWBFvSgfisiw6j2ciY+z8Im50svx98pNVMldWqXFVteOOVfWkJ80cuisrHdfEKSxc4KyFtddeO6+BjTbaKIWVXZfCpD6RYwGtwa7F+kGQPvShD2VyRdlACSFZA1LLnY/iwjp0L2L2hkQgJzIOXRsZ9wUCgcDUIBAEaWqGIhoSCAQCXRAg0IhJOOSQQ7JAv/HGG2ft+2zH8RDUnprctAhXH01n7yBlo1hxCHfHH398deONN2YCxGWvuO1x5WNNEDyO8BVLBFcj/SbA+f8k4i/qWIt/ef/735/yGzwzk8AnJALh+ZN+TpfxnfV7JGlIMSz5KnFKSASyhEgkq2RiK1WSyqtq9dWrNAgDm8TCJ5bo0EMPzWMnHfWw89EZPOYzkvTDlDRBZrWRi7OiSn++8IWZuKunPKWqnvvcmdiiFVaYmhgs7qPWAksay1nTKoSglAxz1gvyyIrrN09KJK95fxtmnnF7shx+PmEidbjU3ieccEJeS9ab+staNm6SsbiGIUdcZa1tFi7zwTxgqZJUAmHWVnUuyjXVBnp8FggscASCIC3wAYzmBwJLCYGSmvedKcPW/5fOwtlss80yUekiJI2LE8GGAIdAnHbaadUOO+yQCc6wAg/BDiEhRD0nHWr61re+NdfDcjMbMVRd+k04JchdeeWV1ec+97msOV8rWVgIeYu6sJa5JCSQoOCb36ySmWHG2rL//lU6hGcmLgdR4n7XYlWSgho52mOPPTIx2jTF8rAGDWuJe2iq//+kjHFcLwnyIxGkFCeXLUXJOll9+9szmf24DrKIIYPcDKfIjY6lhvscV1kHMbsGreWXptTtn0x9vDnFUXG1ey7SN6CIXTr33HPzujM2FBHbpnOdPAs5KvGL1jJrnnlPITJM+XlKkX5FItgsXNaPvQoZY21mleKma41RPjwrzTWxZl3dMIdpR9wbCAQCk0EgkjRMBseoJRAIBOYAAULIkUcemd2Q9t577ywczaUQT7tMmCJssSRxoRrWUoAYCcgXb0Rw+vWvf53JEi3zfBEk1iJ9YcXgsujigjRf7ZmDqfSXj+BiJlkDFzyuZwiTOCCJHD7zmZl04VJhi2eqJXUgBBvHPffcM7tl7Zhc15DeUVJHw1pa628nYiMhCCLeqXCjc2ZRslxUxx47Q44knZDB75WvnEl5Ls5qShIvlD6xhh5++OHZkgO7l73sZdnKMog0UIxwh6NosG642Q36jThF98t+5/cspdukQ4VZbik9fM66Q1HB6oNAFatVpzFIN+kDy9R/pTO5dt1115x1j8VZn8o+IabwS1/6UgoFuzbvAUjYIx/5yK6PiPsCgUBgDhEIC9Icgh2PCgQCgdER+OUvf1ldfvnl2YVll112qV7wghfcgxwRmLi6/DgJtlxnuCwN4yYzqHXIkDpXXnnl6swzz6zWXHPNe7RhUB0EJ1rkn/70p5mE+NeBmBI/DEu2Bj2r6/eC4QlxXWNmuta74O7jfodIpLmVJNyqEpP09a9XKXPCzPlAiZjnRA+rrZbPCvphmmvi4LhviU1jFRhkAemHCUGd5ch8YJnqK/hzo0sxbGlRVEn6/9/4onSgapLMZ2KNxBe1WL36tWEuvqMUYDmyhtZdd92s6BDzg7x0KauuumpWknzta19Lw/P1bJHpV2BqXL6ZLIT+ndRhs/Vnsh7qC0KEeNXXMvJEuVOSr2gHK+G+++6bLbWbbLLJ0PtIv/7Gd4FAIDA+AkGQxscwaggEAoFZRqC4MRGoZHHbcMMN7yFQlFgG1h2pvwlCtMNPSbEXCElJzY0MNIVYxIrWnjWAcMoVhutem5sNVxlnIW211VY5sQFXqr6CbAMbgtN/p1TL2vOa17wmC2ssEcNqrGcZ8qieK5pYJBYlZInrnfTYCFM6M+iPSei+I1l9vpTcEnfebbdMmsWxEISRcgR9WMLLgmFeUAQgXa2EFTHSBge6ak9SHGSLV5qTiaHNWMFa3OisIVab2Uxm0mXSUHRQcpxyyinV6173ukwOWFFKDJB1/B8p4x5Fh3XbpuCgWEBGHbLrANlBBIk1Tr1nnHFGJlXONPN3W91d+tB2j/aX2KXm9/XvWK9WSwRbrNll6VwuSSPMFXuKvSVKIBAITAcCQZCmYxyiFYFAINAHAZpX/v1IjNgfLjBN4aYESUuTzLJDa4vwiD+Q2pfbE6GIaxxBBqlBjLi5cX2RyU0dipThSEtbQbAIZFz7CDm0xcOcyVIsXIgV9yDtiTI6AsaJwCt+Z1ZIJguMpAay3yFKScD+f8li8/sUK3TfNP7bp6avmVy+7pvmzw3pHKMLL7kku8qVRBvmC8uIy/8Jwwg6S6SrTtaRF+TcfV9IyRX+giAhRimeJacnR4ySFSalcqtS1oKZdmlfn+KMJetgjTXWyK5f81G4oH3605+uTj755Gw52XLLLVNo10P/Io7PGpfsQMY5Zx/1sipxZbTWxfiwGPdzVaMokSactcn6Y4Gar2Lfonh5UTp7SiY++8+xyTXSWFPKDEuq56sf8dxAYLEjEARpsY9w9C8QWOAIsLaw6hCsuLDIWNckR7pIKEV0uNPsvPPOude08M5O+UrS+B933HE5Tbb4GqSkKYggLAQUsUAIEEG2rQjkRoi4BUloIHZiGILE6iStMO24eIcooyNgPAnTLIvbbbddteKKK2ZyMSsFUUoWHtediRRfn8bwW2levi0JuvdOqdpTcEm1TCLdn00k5JZEBJ6USAiyU0o57Lf8y6WsmZTA3OKqRaAn+EtrnXztqsTEZ+KgUjKIZH6cIWxpjv5nmkPfTMTp6ymmRQyTOj2zzaLJciOBgPid+SBIiCzXMlYcZEZykiY5ghWlhkQVLHH9EqAgl9aQxCLii14p3qpPQbz0nQWH5Xa+C6uScbZXSerAmkRxM/EzsOa7o/H8QGCBIhAEaYEOXDQ7EJg0AggIjSYBbZT01ZNuT6mP9Yi/PgGQa10bOXIv7TtSgxBx0Vkhaf1lrHIRyKTmJkA+P8WVuE89BDACNZcdwklXokMApYWmCacVH6ZI4VwE4SZJG6aeuLfK2neWRfOD8FvIx2xjc0uaXxcnMn4vlojkXpezxiVL5TOSFWm7FKR/c5pbD+Om+apXVQ9JhB2R01b/mi/aShBus3ixjj42fXcrUiTtuHTdKftaJkbc/cRHJSL/i/QM2dzMa/Uh3dzH3v72t2fi0SzqRZ4oC+ajWJeXJOsaJcaBBx6YEyM0C4uuTHM/SkknrNOmK2z9fmsHQWJFKsqTXnuD38koJ4GCPW5ain2W5YjF+mMf+1jeU+CyZJKjTMtARDsCgRYEgiC1gBIfBQJLEYGTTjopa1dptduEl/nChNAnjbIYD+5svQpiJ0CasCwN9+abb363NlbMA6HxtSmAXXKHfoJUr/rrnxNgWJmce0PwYuXqSnYIfwS/rmSsS3vGuYfQSGuvXTBkRRsXn3HaU/8tXLWNuyQC24wJ004uWCWjYC93rFJnEcC5b5lP5nk/K0VbP8TxEOIRd3Fo90ZakqCeKqzukyw5Gyar0tOS0P7TZF1cPlkIV0jWil8nYnJnsgSVOLi2evNniSA8OPV1FQQqtfH/ffCD1b3SXMtpupOlKieISHEqiNank+WENUafxa+IvXPo8NZbb91KkMxPSgTxeXNdWG+QOZYhB+hag22F1UiWN0RX0pJBhVulsTeeEj8050f99+o211mepqmYw852YgXlKspCPi17wzThFG0JBOYagSBIc414PC8QmCUECBW009zKCAusJAQy/w4SAv2W8HTWWWdlAZnFZRqEZIIVckQgdP5Jv0Iby0IkHoFLHqGJux3N/VVXXVW9/OUvzxr0SfQLQaL5hStB2TO6EiQadJaDQefkcIkiMCF2vawN/fDo8p14DG5XkgIgeqwM+6fzfwidk8CpSxva7jEfxYSJmSEwE2zFnIifqQu4xlxiA8Iv8jOouEdsz3ve855Mblgkh81oZvyk4kZy7xb0Zb9L7n35SgTkH5NF6f8kMnBvyQBSEP6vU8zJrSlm7R932mnmPKVmQ1N/k9kzJ4J4YIoxWjFZj/46EbGfpPn78HTW1zJpTaYH3v0r8URi67it7ZYsWDAxX4xZr3lofRO+u7ggSuhgD2GVQpr9dpz5IPbnMylduvXYzwpsrBE4liHKjkHF2Ok7C5K02RQ8bQXBli0SuW0jqeaX8Zwvyw2rln44ANs6DILUNorxWSAwtwgEQZpbvONpgcCsIECgISBcnQQzQgZBkEDjXBsWIS/ftriE0hj3brzxxllQJkior5eg1asDtP23prTD2kE7P4gA9Kqn/rn6ED4Cu2x0gwrhR1YsyQ8QQwIkskSoZfGZVMwPvGir9ZE7H4LUT3tdb3exIPltOQeJixQSSFATS2UMuCQhSOKuCIJt7liD8Oj3vTFGjpwRQ3AkCF966aWZiNJoz5ebJXKEGLNoissgPLIiGseS3KC3YEHHAAAgAElEQVT0i0CLzBsD889v+wnyvnM/Ykiolk1sWIJkThpDQnxrYgBr7U1vmjlgNsXG/EbShnQQas5PlohxYnozFicuZs4rSuRO4ofUoBzHdN80Z3+b4uCOTXNgqxRXs1wS+pdxX60gHFw1tR/psd7NewShl3CNaL/iFa/IxLNX8R3rGKWEPlK46KM9hHLBc8yLYYiEOY0cmdNvSri0uf9pD5LLyqQN1q+4IqTPPLUG2uaj+WBN+7cfQVKn/mg3JYB1pV36Z64hnJIm2C+7rDOEy3zTpmH3yTbsKVooXLSx3/i0/TY+CwQCgdlBIAjS7OAatQYCc4YAoYXAxEXD6fIsQFzRWDak0iWEv/GNb/yLgPG2xtESEyDU14zl8Dey4fteAiihwdkkH/7wh/Nhrs77GbcQ1BAGvvldD4RlUXAp+s63f4UUj8Qdp4v2vGub4UA4I2AhGIMKjTyiRhgj0ElPLMmDz5Aj+CJKBDdCknsITdru/5MuXNcQYmMrUJzlTYwI60hz/Cf97H71sVpwiUSQHOYpgF2sl3mFLJufxSJKOJVUg6BL806I7yew+h2iTQh2bzPlNaFXXcZCXFpbKQf8Dkx0kEhtkuyrbyUXuKuT4PtM6bidV5QsWKnR+RylNKln4ovEBUnGILtcSvrxx7TO7kgJDb6bxqjNMoY4+NycVvQL8ZCprVnMTWtTn5H4NiJv/llrCDMLm/qlnEYAkFTzctttt81ZG9Ujrq+rsgEZQbq4M7a1T9KSci6Q+ai9CLHLmtGOtddeu9mtu//2vT4hF23F+uTap3/6JWbLXDfHjXeJD0OOKFi6ECQkmSLKPvv0NI5dftPWtvpn2qPekklz0P3xfSAQCMwuAkGQZhffqD0QmHUECIYXX3xxJkfS5sp8RWAqQi6BAGki0PQjCMgPUtMUMhEUwgXXF9p2Qk6bBpmwQbjxXd2lj4DiKlYXMRO9SFYdLEIZ4YogSKM8StEmWc5oh2mOJ12QtiKA9qqbcCqQnOAJR8IggYrGnABaBDwCOVc6bkisJoRfVp1+lr9ez+zyOYKGnLFCOFMGkTRnaOznqxhzSQTe+973ZqF4s+ReRvA3d41f01UUfjDzOaHXWPQiSOaReQdn48YyUmKW9Ns6Er/m+er1bPjX56r5RBA3pq1nFDWAQ3a/kITeq1O7niyzonOV0npMmosqMcAqNbZKja6qdE5PSsOX45hYlf4qEQqWIOPTRpDMCe0i3PcrfsvyhpRbQ21tRhrMhbPPPjtb4igjYM9CZjwOOeSQbFlEVJFU80MGOvNmUPF8SgBER1pveDaL57JiWuvGhhXM2Bhz+w1Xu15jqi5jiOgav2ZhtZLlTnwWkmbcrUXYmjf2Os+S2bKZcr1ZV/1v43Leeedl5YX16/fjFAoR48QKRqkTJRAIBOYfgSBI8z8G0YIlhEARQAketNQuAgfBi9DlZc/1ahiLAaHbi5WQKwlBESIJUAQCQg8NKo133f++EKgiANKg7r333tn6Uj5DbMQ60OZz6fH5hcldiMtbkyQVlzBCB7cfL3pCCeJWtLuEEBpXWv9eabTLdPAbFwFZ24YtJe6AdU2cxqDnDVu/+2EwyNpirPfdd9+ctpkAqF1SgxMY4UFQ6+V2NEqbuvxGm4wLwVIcTXEVMne6Wuq6PGfYewi5Dv/UBmNW3MWQRYK7eVMnSbBEjMxLfWm6YRmbEstlHahXenZkC3kpbnmsGOY1RYP7zXsEwTjV66TdL/UQjgcVaxPpekRaUys7xNU5W0kgT2asmXOMEtHJ2en86yBa/6Z6753abb4iFm2FNcYewcoiA1qz3+U3+n9tShzBMigNepMgWaP6LNkDK8xOKUbKoarFImJvQlKKhRMZoChh5bN3+dwzeq0teBH8jY34wLZijcNbPTA1HyVosE/UyWnbb32mrS51NAsydPTRR2ec7H/ciKX47mUdbP6+199ciJEaxHNci485jMCZ+/4/aD/p1ab4PBAIBCaLQBCkyeIZtQUCd2vhCREuQghhjDDh8iL3ciWk0ni7fE5YYz0QJ0AQ7Fq8oAkSBO0maSGUawN3u7oA4TeFfJQYDHUUlx3P9qJm9aApJYDssssu+eBGZEtMQNMapX59IeRwU5IYQdIHQh5tMGGLlYJ1hKCy+uqr9zwE0vO1GUbqGyWeyW/1n7YdYRuU4awr3vX7jJv6m5aN+j2+M67uhQPLkYNsX5VSQM9XQQLMQdpzbkIEbOTBmCLRXQTT2Wg7ayXi5kwb5KjgSrjWzqbiAKbi7gi85m79e98h7SyIkj3Q+luLH0yZ4dRbFBOUCwgC9zIWVM+SxIHw27TeGDtz23zsFetTcLHmr0+WmZ8lC9LGKWX1g5OiIfk0Vqnimax0e+45c55RctVKJpoqMcOZ71Os3LKJAD06tX8Z5Cmtw2ZB3igikC8ukb0SGhhH44qAt7nW+T33RS5z3BmbboMwQvI8yx5gHcFVvdwdxQmx7tiz2tYX5YR55nyq+t5S78+OO+6YXcvUb83aIxRtae5nTRz8rS3GE2FrFvPBHFe/PVWSj3HJkWdYL+L0xi32fBhySYZRce8ct974fSAQCIyPQBCk8TGMGpYoAoQlgiYi4YVJ+4cgFAJEgODi4T4XUkJocr8Xv98QrmlXCS+EU3W0aUL7QVy0vepuFm4x2sgCQ/tbCq0uwYgrjaxSbYVGk9BIaN11112zkE/YYElqCo5+r+0+J0DRWDvrROa497///XfHP6nvmGOOyS41hLZeWmX1wQxObW45be1tfqYd3KUIj/rej8Q0f9v1b9gQDPu5ABnXD3zgA9k96aijjsr9aZLLrs+b1H3a6yoxGAR+RJkAycLSRTCdVFvq9WiPdcKyVidp5rjPmgX5F7cisYQxLr+xDgn/pyRXNnOAVYRrqLTsLCbmqXu4O3LBkvGQwLvFFlvkTGL63zbHjbf1C69BGH07Eb2fpaQDL0h7wDqJZDgnKccYHX54lUCeSdCgQ7Izcldz1lGK90mLrvq7ZNFaMxGxO1O/753amAJ4qsTIZixM6Sew0B+WkRNOOKHab7/9Wl1IEcISb9OWIv/888/P6/D1r399KzliWXPOFMuSfQoJgTHSwzWOdYbCwxprI2nIlbFDuntZuUCAGLDssICXpAuD8C1zwXgYqzZXVOMuZoyyhdUb0eta1Onq1+6udbXdZ/6ZmyylyJu9kpthlEAgEJgOBIIgTcc4RCsWIAKyYBHOCCG0tARyZITW2ouVwMb64aXMrx7BoL0kXLmfW0ozSHwUGFiOaEppkpGrOhGSfcozvYBL4gLPIFQgVISnXkVcAguM2AUuJVxrCEd+2+YGQtsMA5YpcQe0yshRXXDhOqONLEsE034EieXJ8+r96dXWts9po2mwaaLbhCe/KaSuH8Fpq1v/CTglJW/TslH/jT5w6dp+++2rj3/849kSQlibz8L6QchGEJBl5EicGlfKOjEZtY0E6aI4GKYO42S8WXva5li9LvPN/KWBf8tb3vIXroHWwqmnnprn7Dve8Y6chc1YcU0zLzwH0Tc/rVUWTSTBOHquutvmRIkP6euGSAmSiMXv0llcayXr0IqJEN9PwocUt5NYDb/Me0IiFkkqb1fK9PanRD5+v8ce1TqJAN0nWbPyAbFIlXPAUl33SmSFSy0Fx/HHH5/dEsUeNtsMH/1GguxFzYLo2BeaLnLGD3YUGbCylu1V1iR8kCZ7XckU2eZm5j7jQBnQ9uzSFhY+a8n8YxlDSMr6sld4DtJEidQ2N5Fqv2+zMlOKuDyfBasok5o4NP+2L5gflDT2v7bnNn8zzN/moHWHsCsHHXRQVgx0JYXDPCvuDQQCgdEQCII0Gm7xq0Dg7uBeWlYvPEImv/miUW1zeZsN2JAfggWrDe04TWwR2L1w2zJH+Z6Q1xbYrI2ERvFDfo/UEFp8hgD1SrJAUKGppYGHwT777NNKTAjmhB1CcL/COkC46SuM9qlAe1jxWBfqBInwS/AikBAQfdfr/JRe1cOCtpfATPhqCphtvzNPxK+UlMlt9/T7jJadwKa9455TROAzLxAk8Q+IAwtAVwFSOwmx+m+czH94w5ZwTZBWl7nZ5trVq59w5O4l3bMDT/W1l3Bq/LhxIp/PTy5sdauczGvm16abbppjdBRjpl3WqXlFuUHwRqBYj4qLGOFYn9TbfLb5r9+tFkDucMlaJF33b5Nl5TGJnN83JQdZZocdZohRemaX8qekQPlKwuCt6fkXJmvT06zD5CKY0lTOEKhkaZAB78Gp7asn0mS9SWqBeHMRRJJKu0viCvOlbWztV8iOdVJSXOu/uSq5iz1F/Jw5bg+wblhkkAf7ArcwY9VWzA31UBD1UwiY08ZdvdwrjYM2sL5z8aWkcWaV57UpOih6jJexbBbESeY95M686lqQMllBKXpY2SZJXLRJBjxudfqOhNoTKdwKoevazrgvEAgEZg+BIEizh23UvMgRIIxMIpX1uDARKGRpI7DTJnODW2WVVe6hTW57Ti+3M8IN8lRiUvy2CL712JB6nQRkgoXfvO51r+vp6+8egqZ29isEWsJoU0jt95v6d35LcCdsEZYJiP6PxElHTrgmMBOghyVI6hGLRWtN+OtnQSptIgBpA032sBn1jIfYDONL4DzuuONaBd6u2LjPnDEW3KT2TPEwu+++ez4rqishha0+sQSyGsIY4SSwwofmXVzLoAN+623mfrhacjfbIZEK7lnqaFpF3G9sCdASEBi/unudeUMwNzYE+FLKPJAEAIbaKXGBeLp6n92HjLZZLMxx5e42pXakzlap41UyV1bJj7L67yTkfzLh+tUUy/ScJNiv3iHbWx0DQjNScP9kSXtCIgXLpGQeCZAqMZHqD4nM/vHgg6v7JMXF/cRlJZfIrZMC4LZEJLZNWJ+Qnq/PhQwh5AoC3FZgJ4bL3II9vP1GTNZHPvKR7HLITbcUpJRbmKxt4ujg1IsgGR8Yq7efmyzXMmPNeok0KNa8vUm7xaNx+2xzdTMPrGGuj20umFwQWcJYwIfJNGcum9PmRa89sg3PQZ8hRyxHrJvmKAtmSZwDK/OqjQQOqje+DwQCgckjEARp8phGjYHAQAS82AlyLsJA28t/YCW1G7inSPH9vve9L/u0i3lB3npp4Am3RXhpe05xkfKdNpZ/CYiErzbSUvoiUxaC1Fb0W7wHQVqShn4FEdOONvedfr8r3yGOBD6CFzce1g3Cn/oIz7Kiib96joM7hyxwUCdi1dUFUPwVSx+Xxzb8+jWBxpk2nza8WG3aLAL96vAd4Z823PP9WzJ6HXHEETnOTMA8gRU+gwRDwh4Nf3FjRGz0jTUAuUAc626dg9pm/ugTksYtUpvM5zZrGYsBCycLmMyL9fVTX08lcN+/yGBJaGB+En6NXR1H9xVrWDPFt/YXTPKaSPMpSeZVqrRKAX1VYtxVymJQfTuRrg+ec061aiJizxhyblkfrDPcBs3PuxMfOAcrZdT7WiIbNyUL2AMS7k9N1o3lknXjEcn6cEQiADsmC8zBKZX4EWm+r5BiDpdJ44s8GPNeFk6WIYlXuHgdnqxVYoCQA4TJoa4Ss9SLOWNskRbtcx+8yx5Rv9cYWXP60Gpxu+tmiR/EQ1qbno10Kdb/oHOJrEOKHGuimQRCm1gSPdvZV13XqWezqCGqyOawa7WOQf3/1gsLmVhE1jJWP3O9FM/T1lHWda9nxueBQCAwOgJBkEbHLn4ZCGQEvIgJVv4l4BTy0/zO9+XysiyaTy9u7h9dNYeEAs9wf12IJayzBHBto/mVDMELmHtJU9glNBFeegku2kQwJVCyEhQhlYaTtaRNaPBiR460oy0eoEwXml7pk7lF9SuEI23kQqTPbZaEfr9noWJpOScJq7TBBDWxGISlZtKKfvU0vyukjeb8gAMOGGgNMlbI6Gc+85k8LoNIg/rND2Omz/4l4HKJUxfh6m7Budm4Hn/7HcFTNi+CZLG4GEeCrjbJ7kZYZpVBsrmi9dOgE5S5p7nGKfoLHxYHGeUIyQ6uLSmZzZWmgE/7jnBaN815pE8sD8ZcfZQH+o7MWTMUB/rbXBP6YL65Vx11q1TpHzzuk7D8g9i9lEI6u72luLKUQrJK5o98ntHnk5Vn2STcs1IZP0RBH0ud/bAy7sYI8SvxKc37b0v3XM1alwjfE9La3jRZY1dJMX3HJgyvTL/9QbIyPjQpSx6YXO7+b+oPZUSxJDXr8rc4QHvGYYcdlucz7Lizsa41izgnLqIwRSCteRfy2Szw1eeyH7bhXf8Ncj1shjlzxlwwVtx660WbHFFgPxrGvU57zR2ky14xiWK/tf7tyazncGYVqxeE3745rHV5Eu2LOgKBQOCeCARBuicm8UkgMBABRIcw46L548ZBECFcFetM0W76vggp/i2aVQ+h+Sa0IyFtPvRtDXGvWAAxIwQKdZSLIEATTMCVRpp2XfA5slAXULTfS5sw0FYINgKzCWuyZBV3pW233TYLVG1khaDq+f2EHPV2TW8tPkJcBYsTMsIlbBhLm2cRNsQvTLIYY0HxJT5rUIwNoVuqdPMBRnV8ivDonkJauQBy/xPDxlWSME/LjszSbHMn6kVse/XTsxEgGn9jiGyVg1fNC6R1//33z2POkvT/t3cn8NZO9R7AFw1oRJM0lwylclG4iAYyRBIyhoqUcCNEki6XUErKkHnIFJFCogwhQrikIkOmaJJSt3Jv7vqut/W2bXvvs6dzzj7n/Nfnsxzvs5/nWWv91nqe5//7T4tgyJpESK4bsba796DHjenQQw8tFR609ty7zHd1QbIWGtevdaDP7TYQJnzS1ls3LGKeOWSf1dJ8tRPWERkCrGI+HlfyM7NAXk+L598XzH39R3ZDmzMnXknZ5S0HMc3OMEchQbgWD4igeR/UlPpISKfieUP8zLnxNxcKD9V6QSSN8YrsLnpmdntbKOO4Xn4fvSG7b82VE6yktdZKL8kEbf5MCv/8z+x7nolWBWlEyLhb2g9K7BjMmq0Zshw2FiQJnlwCYQtXa7OSQe8J5BcevVhwWvWx1bGaSAHpb3YNFVvlPenZ8czph9LqneeYPlP+eFYQL2uhVea/Vv3odMx9kHPrGz5iuhotR66FD4s0DDvFa3VqJ34LBAKB4SIQBGm4eMbdZggCNLJcJAQy10QHBANCp7+EJMIBYoL4vDy7sviA+1ATOAkWtOL1byvC0Q5K8TPH5fTFArDdi/AoroLQyzLiA8tlRfA9ixKCQehFqGqwMUEASXIvcSKtCsGCkEywRrTsDeM+7QqiN8wNT+FlM1UWJCnD9Ze1owq37dwH2/VvGMcJUgivGALadHPbTtiu7RGQDz/88CL8EHwbLY7VVUwcj5imum8V64PMbISrWgjE1l0/m+YiFDKeEcJk0yMEshARAGsWs7omZEejlefiZn1xu+pEegfFlSuV+BDWR9YxxOSoo44qCRaklz7hhBPKs9K4N5hzrUVYtioIEjc1iRhqhjdrmIKiU7wYIRlW/opf4RI5J1JhHrIS5PWZ6C6aFRR/YKHKRPPFOZFEc1Y67mfWib2XEDTr2DMK/07FNawIiBzXz2Zy0nittW9uVBadx5VMynIO7lJXy3iult1MH8vP/hyZ8GTT4xP6W6/1jtprr73Ke4KLLiULi0end5M5cT7h3/pFWpFaY7auvA+9p9TxIEgUUxQGrdx1PUuUGeKaxFRV11JrBtZIZi1IsTlnSfPsIV6e7Wa3vU7z1+o37Xj/wtV3wfu0mRy5jkIAmfMeN6dRAoFAYPIRmCM/wK1VyJPft+hBIDCyCBBs7WnDmsMFaLPNNuspW9egA/ORpz3mY08IEwcitgY5svcHKw/XEsL59jm9MKHPR5oGmCDgY0y48DuBuFMRlM0qpQ0B3eMh6HRqn6BL6BKDQ3jg3kN4dGyszTo73bef3wjYiCdh2z478O6U4QrBuSunfWdZs0ZYPGiLJdQQrI38cbU0DkK9OB5JDQjmzS6XJ+a00eoWW2xRrIL9FiSL1UbbNkNl3dCHKiQSiOGLtIjVITCORQL77UvjdRWX8/KmqdwirTdrVX/EkUko0ElYb+6DeC2CO8JFodBpnhqv9UywIJSgf5/HjFOWYFNmamVj169npcdp2X3rjdm6J7HFsAqhnAVHv/V3YEtCtiaVjWkzycmakJSl/VnJHsQHZmE9g9uy64iDdPS75zTjMGdZ7FQQd+8Flk/ZAJHuivW+2brm/YFkP4HIdbppF79ZryxyXNf0sfk9Zm1zF0X2WfqrssFaruuqNoO8UGZ5b3o2ERYue96ZgxTYbLnlloXI77TTTi0TluiXd5rnXnKSYVitBulzXBsIBAKzEAiCFCshEOgTAR+26prRrfDVZ1MtL9N21YayCBDEuecgFFfn+AgCsEKo9DsXGjEwleBU3QhhoVMxTpYH2k9a5c0337wIGBNV9JMwROCpKYkJQxIM9BqLM2ifucrAAdGRQKCZxLS6P8FfnE51jWTB4LJIAONOhhgRkKrgVv823gupoQmnFefy2C4rWav2m4/Vefe31uZz/Nsct+pLq3OHdayuaWsOYWD9YVVhTapJR7pti1CMWNnQFKGlOOi2PJbbnyNbCrMEPpsYpY9/PGVTRbo3WyW+nInMZdmNjRWZ1n8YBTGU8lnsHYvpUJ4xFjaWEokkkLxsASsZ91izttmmpAvPJrUndJ9gry8IpvdJq4QV9aLGddS8XqTJ/uxnP1vGJL5tmAoNCiJKKtYqz0az++1Y67t50KxMsul5b3pnrr/++rNTxDef282/te8erGfGjgC1+06w1LGWj6Vw6abdOCcQCASGg0C42A0Hx7jLDESg3cduoqAgQNU+EA5YHQjdCAytOZ972luaXaRItrbGYPduBTBtsNzQrnIFI6x2e+0wsNAWIsSVh2sVUqhPzQLRMNrqdA/uX9ymWJG4fnXbPu0098RKqLVRyYdx1NqqbUIzawZXJe3SlrNYEv7dg+sblx2pmFmpOrmP1fvXuZvIOWw1tlbH6pqGCQuOeCnzjYj2+rzVpCHIJEtCVwQJocgWtTlYi7JbZJa+UzZPpCy9puyTWNzTXpRjbtbJbm13ZQusvZrEabGyWaOekV7jw+DgeeXSx12Mq+zQ5iZbS7I5MOXFkbL/WMqdTVnbkTL7STlP96x9laTxzrFn2YQy26pkXekH11DWIdafdtY7fW3XX2tTim17CjkHUeiUwKXVmmh3DHGm+GmXArxTv1rdEyn0jLuvLIrelWIBudR61mHiHdrJ9bHeFzni3kmhIhsgd+VO65fiajJchlvhEMcCgUBgFgJBkGIlBALTBAHa20YhRhyUQG8CJmGhxlb0M1wCOnJCq1wtEP3cZ5Brmsc3yL16vZYAy3rDpREBJby3Ewqb7+28bohL83VcvcTfcP3hpuOvmAj3Us2DTF3cofRLTA5Bdpha+uY+TeS/hzHfL88ucSq3NXPYkdRmt8PsPzkrM50EDfYe4sqY3R+LlSXPo+K/BH8uaGKlxOu4tzT7LIL9ECTJGcQemePmrHxDwbwSJSQoWzWKBSlnyks5+102g6U8iJQ3hEo5sK6QKdh75sW7STFvr6h+CryRSO8lWCEfYh7FEo6V3KRTe54N/aJ0aJeoo9P1rX4zXnPA/RRZoozgbqif5pcLMyWEzJjehZ0Ij2ceyeJWx615LItvO/LZqp9xLBAIBCYGgSBIE4NztBIITDgCPtLduIB10zHa8RfnjF2Eh49nVyPaVUkExtrstZt7T4VzaIJl95LYgEaYADnehbDGPYcLF4FMmzTRjZpx5Bdh22effdI38p44XHRkbYsyCwGJArh30eazDtRNOR+HT3ZNLa5nOeFKloRT9t1MOUuC3VVnWZD+SYwaryH4s2hK11zTnFNIqP0UJG6b7PJGEG/OxtbP/dpeYywsSqo9eLLVOedUT9lMNMsFT3IHezdlQj5XJuOeb66O1lm/xbvCM4NUit/bb7/9CmG1Zvst3P643JoDRGQYxTOG3CJFnjPPFbc482H8SJPkGVKHS0YzVtZR7wrxgpQZE/G+GAYGcY9AIBD4FwJBkGI1BAKBQFsExP7Yk4VrmSQJXLu43IgrmOhkDW07Oc4/cLHhWiiZgRisYWbq69R17kM05ITxWltpmgnlMurttttuhcAS8IZFjDv1bxR/E2DPEiBmBgaEW/NVY5oeR5Cy62mxoGTiWwo3s5waO5ucUl7cdoXtOERzwrowiCWkNsBtqwr63VomO3aumx9z/3PnUwYs5SwKKZubZ7nf5QQZ2bcxPS1bSV+Tyc0VmVQNYjU2HmsUQUJCJLjpx6Jah4REcj1FOsSlDXKvRpjcS3p7zzl3ZW6TVclEUSFFPisS0tiNlVD/xpXsdjPHcU4gEAj0jUAQpL6hiwsDgemLgLglWnekSOAyYZMPvg++7HGEiYlOkDAZaNMcE8a427DkcH+aKAGWOx1BX5ZCwnO7tgmMMuJVwbOT689kYDhRbcrwJ4EFFy4uYdZsFVKReUJuyUqXLQ85D37KGT9muc4hRhI42GgUYchxRhNdrKlW5He8+8HlTUIXa2vhnLK7EKWcnS8Hz6T5s7Vnoxy7tXwmN3OzMMFITFafxfiGsRUAZc0PcoIMm9mKPxrW8+h9xiVOvCWFCMsgZYPnyXvAu4/VC1Yz4d3X5zTHZYHAtEEgCNK0mcoYSCAwOAIy4RE0WYloffn3b7LJJkWbKohc0gdaYALCsASTwXs9fnewt4sYH0ITl5tuNMfD6g1LiAQAhH5JIaT/5YpFUIO9OAwabfusSOAgq5+A+JnmzoMgynYnoxliRGhuFGAJ5vNla8ncUl1nwTenZZuVcIEbXcarpL9GjDKhmimFRUgadXFr4mPs01RirLLFKG84lbKvZvpNPn5atp4uk13LMluY5Y6HQOVMftm/bNKgsvcSIuM9NExrrmfKM2ZjaenNJczwfEl2w02QiyEd2PAAACAASURBVLGKbM+0Z2zSJjsaDgQmEYEgSJMIfjQdCIwSAixGNoXlRmezyxWzJllMC0GdJlUgOW0ql6KZICAQIrnVwEMK3onewBHGCA+XHumSuY/Zv0rKb31jISH8yzbGukXIFXMzkwrNPjyqZp9gK4HGbCtathq9Ju9XtUsmA6/JWedKfI2Ym5xWPU/oLGLE1WwGFeuZ1YhLpoQe9tRq3IS3uBZm5cifcgzNZVkR8liOw/m37H735JzRrSRz4IInaUNOPoBITXSRqdMcW/vDtpa6n9gi1dry3vPX8cmw8E00ttFeIBAI/AuBmfVliJkPBAKBJyBACJCEwGaLgp5t9mifIcJTJUKEUFYK5IgVZSZYj4yRNYJLzWRZZlhCZM5CzmzmSrhlMVHMjTgY80GTToCbCfPSuIC5FUpOQdvP0skt8clc5LJbaPYPTdk/MeUdkdMjWet/Q05e8dYcW1OIEVexMWKMnvCgTIMDf8p7ONnTzLNu7y3WEsS6lcvYX/NauyNbj9bIlsk5kKGcoa+4J+a91sqeShI6cLuTFS9bmCeqiNfqJtX2oP3xfE1EO4P2M64PBAKB8UEgCNL44Bp3DQSmDAJcSGxMSSsrVTHBqdmVjDuXZAWsGTPBelQnTzpi2uN+s5MNYxHAe1jJAIbRn1G6hyQisoqZp1flbHVz5dTPmTGlnAN6VnxRJvq353pSjjdaK//NGoBR6v6E9oUiRMyRzW2lI99xxx2L5aiVZQQRF7PFxUz825MyUc8pAFN+ScxytbM5bo5Pyv6nswgTopStzhNJlCYUvGgsEAgEZhwCQZBm3JTHgAOBfyEgUxrXuUuysCMFL2GomRw5+y9/+UvJ7kRDP5MK98Ioo4sAa9qv7rknvStb2Z6eXcZyTupZWdmyW5g01o/l9fq7a69NP82B/e+zB9AMLqxsLMWswUcffXTZVLqdi5pzuXSKd1tsscX+dR7rXI7Dyb6cKf+QcgBcyv6fKWcySTmrS8qZE1LejGuWlW6GuS7O4KUVQw8EpiUCQZCm5bTGoAKB7hCgVbbPCY0xQagVOXInsS+IlCD4mebG1R2ScdaEI5BJ+7w5tminnFhkmSz0z503NS2pulmK/H92Ef1bVgD8IbvhSfM91madE97/CW6Qte03v/lNcZ2V4KDTc4wg3X777eWdIEHBE4qEFtzqcpxS1qrMiu3KcU0lM2C26JVYL5vRmofsAholEAgEAoGphkAQpKk2Y9HfQGCICNAgy8ok6B8JqvvuNDbBvY71iHAlvXeUQGBSERCDJRYmZ657arZaLD7ffOkrmeRvlzcgXeAd70hzykj3z/gia9oGn4i/DGQzucBA8oGanQ1RakeSnCOjpb2LOpYc91ZiuljncsbLtNxyJUV4zjuf8r4As2oQpI4Qxo+BQCAwmggEQRrNeYleBQITgoD4A6mjxdjckOM2xCE1u5WJPbJZLCJlh/l2QtWEdDgamdkI3HbbrFTd3LqyVWjObDGaKwviX99117RgJvAb5mPPa0i+8NBDDxViL7vfTNnYuN0C8VxLwiKxh+yMNhduFX/EbZEbHsvy1ltv3e52jz/OnS6nBS+V9QhBysRVNrwogUAgEAhMRQSCIE3FWYs+BwJDQkACAJpkqaIJTVJ7NxMk1iMESWB3829D6kbcJhDojEC2YpbsaRIw3HnnLNet7O45Z84wmO0Uaf3sandaTj+9cHbpsoZrVjZJBpAkSoCZlFykFZjIkH1+3pJTdh9++OF5O6O3tUy6Ai/udfDyzPdc8ubGJRYpSiAQCAQCUxiBvOFBlEAgEJjJCHC9kb1OAPf111+fpAKuRYwSV5tf5lTJBKsogcCEI5DXZN4FNqWvfjWlHFOUN+5JabvtSorpOXJ2Net3m222yR5dz0+nnHJK2Ti3pkLnKiY9OoIUJZV08DYUZh06//zzkzTpzYVC5I7swijD3QJijKIEAoFAIDADEQiCNAMnPYYcCDQiYMNR5Md+O/aUIRyJSVLuvffe9N///d9p7rnnLpuRRgkEJgwBZOicc1L6/OdnBf5L0b3ttilveJSy9D67G1w+uYZul0mT1NQnn3xy+km2KImn4yrGIiJjWxT5EuYpmSptBH3cccele3IGQDg1FuTJ8aWWWmrGW91izQQCgcDMRSAI0syd+xh5IFAQIGDKVPWRvIkmcnROFkpZjFiPrs0pkgmb3JZmehawWC4ThACB/e67UzrssJQOPjhltp7Sppum9OEPpyy1pxxE07Ij9kLaNJ93S94k9qSTTkpXXHFFvs3dZX2LnYsyCwHxhh/4wAdKbNb3vve9sgF0LTLdefZZ3SIhS6yYQCAQmMkItP7SzGREYuyBwAxFgBWJi92FF15YtMr2PLI/EuuR9N5RAoFxR4DLVybl6ayzUvrRj1JaYYVZLnX23MnrsFMRM7PuuusW4f68vC+POBqWUO51Mz2DXSNuLMasxeuss046++yzS5zRfDmhguMsxpQk4hIXX3zxTnDHb4FAIBAITGsEgiBN6+mNwQUC3SNAQHr/+99f4jduzFmorrnmmpL9a/311y8CVZRAYNwQ+Mc/Zm3yah+diy6a1UxeizlgJiVpu7MVqJtiY9NNsgue9PXfzpvDcilbeeWV226I2s09p+M58Nlyyy2LAkR9ad7TiJuiZCzc67jhzQv3KIFAIBAIzFAEgiDN0ImPYQcCrRCwT8qHsyvT1XnTxwcffLCkBV5iiSUitXcrsOLYcBDImxSnn/40pTPPTOnSS2dt9Lr99rP212lI2d1tY6whG220USH19vDqKxNbt41N0fO4HS666KIlFunivLGr55ylWLwhN7sVWO6iBAKBQCAwgxGYI7sgzIrGnsEgxNADgUAgEAgEJgGBvJFrNlWmdNppKZsvUsr7GqWttkpJqugo444Aa9HHPvaxsoHsK1/5ynTdddeVzHWf+cxnIqX/uKMfDQQCgcAoIxBJGkZ5dqJvgUAgEAhMZwSyQJ6OPz6lBx6YlaFu552DHE3gfL/kJS9Jm222WYb/gXTiiSeWTWRXX331IEcTOAfRVCAQCIwmAuFiN5rzEr0KBAKBQGD6I5D3Kcr+XbOSMYRb16TMN0L0l7/8pewf9e95493Y72xSpiEaDQQCgRFDIFzsRmxCojuBQCAQCAQCgcCURiB7TqZHc31GrnNN6ZFE5wOBQGCGIhAWpBk68THsQCAQ6A6Bf+QMa3/+85+Tv89+9rO7uyjOCgRmMgLfz4O/M9flcn19rk+byWDE2AOBQGAqIhAEaSrOWvQ5EAgEJgwBG2peeeWVZUPNVVZZpaRElgUsSiAQCLRB4Px8/Lxcl8/1I7kiSk9pc24cDgQCgUBgBBEIgjSCkxJdCgQCgcEQ+FtOHY3Y2PD2RS96UQk+77dIfXzUUUelH//4x+nyyy9Pe+21V9l8NEogEAi0QeA9+bhtlBClM3J9Qa6LtDk3DgcCgUAgMIIIRBa7EZyU6FIgEAj0j8Df//73dMMNN5T0xVvllNF33313IUr9lmc+85lln5jFF1883XbbbWnPPfdMDz/8cL+3i+smGQHukjZDjh0uxnEiVs333j/XvJ1Vytnb07dyzdtdRQkEAoFAYKog8KSsDd1rqnQ2+hkIBAKBQCcExAmx+Bx66KHF2mPTS+TGHi9PeUp/Pj4LLrhgWmaZZdKqq65aLEcnnXRScbGzAemTnvSkCXe3M0YboMo89sgjj6Q//elPicXM+PQnSnsEEKNvfvOb6alPfWp61rOeNZBlsX0rU/iXv+e+/zlXfy2lRhWqY4/881i3y+wV+fybcr0911fm+qJcowQCgUAgMAUQ6N/vZAoMLroYCAQCMwuBhx56KF1yySXpxhtvTAcddFB6+tOfnlZeeeU011z9p9Kac84507zzzlvq3HPPnTbffPN0wAEHlJTISy65ZBG2x7Owfj366KOJZcxfsVDX5M1VEUHWMa6Er371q9NHP/rR9NrXvnZcuqIPLC6TQQiHOSAE6ZBDDklvfOMb07bbbpvsA6TUmDJzXesw2x35ezGwIkbX5np5rvPkunaujW5xP8r/PjfXdXN9Y67dlPnySSvkys1O4oalc43wvW6Qi3MCgUBgkhEIgjTJExDNBwKBwHAQYFn5wQ9+kL7zne+k5ZZbLr373e8uwu4wywILLJA23XTT0s6nP/3pdNxxxyXHhpm0ARFBhJASAv0vfvGLEv+EFP3oRz8q/xZT9fznPz8tv/zy6e1vf3t63etel17wAoEe41N+/vOfl0x+L3vZy0q7U61UTFnczNXtt99e1slzn/vcQvrgiUTLUvic5zynHPdv56qtiJPjg8S2jQyGyNFtuX4x1+/k+sxcX5XrY7nu0tDLM/P/35zrKg3HuvnfN+WTLsn1v3N9KNf5u7kozgkEAoFAYHIRCII0ufhH64FAIDAkBH72s5+l888/v1h0xB8NmxzVbiIIyJENNVmr1lxzzeKuNWhB8BCjX/3qV+m73/1usYJdfPHF6Z577imJJpC+97///WmRRRZJSyyxRHre8543aJNdX3/OOecUMrj22munfffdd0oRA+SIle2MM85IX/3qV9NPfvKTMu4rrriijAMRrdY556qOc61ElJCmV73qVcW9shInxBUxltVwmOS46wkZ1olI0DW57pHr73PdM9eNc527qYG/5n9fmuuSufbKw1+er3l1rhflekOub801SiAQCAQCI45AEKQRn6DoXiAQCIyNgFijU045pSRR+PCHP5wWWmihsS/q8wwEjCvb+uuvn44++ugSizQoQRJTJLEE8sGywTXwrW99a9puu+1K7NMrXvGKcSN83cCw8cYbp3vvvbdYzk499dRiRZsqhduluKNPfvKTabPNNkvPeMYzimvkjjvuWEhPLUiPc42TG+N9992X7rzzzvTb3/62kNarr746/frXvy7xX1wt3/GOd5T7IE1Ttkig8B+5sup8IdeVWozkH/kY9zh5SdbPtddsdFzqXpqrrHY/zzUIUgYhSiAQCIw6AkGQRn2Gon+BQCAwJgLf/va3ixvam9/85rTOOuuMef6gJxCQd9hhh7TWWmulm2++Ob34xS8ugnc/hSB+/PHHpwMPPLC4zJ199tnl79Oe9rTZrl2TbaUQqyNmR/IL1iTui0jcVCg1IQM8V1tttXTVVVcVUtMcO8Zq5DgXO6Vak2q2u/rvOmYWyintYifhwra52vv4E7mKFWpVKkES3vbCXPuRGhg7LZe7WzUQxwKBQCAQGD0E+nnVjd4ookeBQCAwYxGg8T/rrLOKYMsFrN9sdb0AKG7l9a9/fVp22WXTueeeW9zexAH1U1glkKw3vOENxQWM69xEjKGXviJoxsjCxdKCbEyVgsgtvfTSxRK3xRZblMyGW265ZcvEHTXmaKqMre9+/m++8oBcf5cry5GNXNuF64lRkpyB612zsez+fOybuUrg8Plc28UX0R3IkzLk7PjcI1n7HnjggUJ4X/jCFxaXyCiBQCAQCAyKQLtX4qD3jesDgUAgEJgQBGziygVKtjqkpVWh/R/23jdIEtez66+/vrhiuX8/Rd+4bUm+8P3vf39SXek69Z/FxJ5QsvlNtkWrUz+bf9NXrnT2r1pjjTVKvJFkE/PMI1Xb5Bdzz4K48847p69//etF4B/XYplKu310rlvlite3y4Bv7yJZ7R7IlfvdLONa/p9chHLtl+thubIudeIlVLGkDanCh1B+//vfl5g4FkGKCe6oK664YonTO+2000ra+yiBQCAQCAyCQBCkQdCLawOBQGBSEbjuuuvSpZdeWoQjFoJ2Lk//9V//VdJyb7PNNunaa68daOPYxgHLICf+SD9YsvopLBoPPvhg2c9I0gfJGkax/OEPfyjC+1QiRxVHZFZyDQk1ZKdDkLhJjkKxn5XshEceeWSJn7OO//M//7MklhiX8sd8V1Yjmeps6NpIepob5IZ3Yq7L5vqyXGtG+1/n/z81VyRJprsP5dppbyTEiCWq/2z7+eKciTxnUvzSl75U5tFf+5u9853vLL/JUOjZ2X777UtyE7hGCQQCgUCgXwSCIPWLXFwXCAQCk44ALfJ8881XCBL3mnaF1YOV6eSTT05bb711Wm+99dI+++xTMsUNUlhU7Knzy1/+si+CxEWIe5C+6ZP4qfHKvjfIOGXSEyP15S9/ucTmTMUCa/FeL33pS0u82KjgzCVM8gjWECTZerDJ8dve9ra0++67lz7r+1AK6xG3uG/kunmuC+TaTgpghJFU4Zxc5eRApCRcMP2OXZarbrEwnZBrp/Kn/KP7dSJjHa6X3fHggw8umSNPOOGEQpC+8pWvlCQZLLiUDP7/8MMPL+dYq1xXowQCgUAg0C8CEYPUL3JxXSAwwgjQpBKsWDa4fr3pTW8qqaJp0jsVggYXJO5HzUHsna6bjN+kaSZIfvCDHyzCUaexcYWDCfcblh4Cv719jNc4F1100b4sI6wpSy21VHGRItj2WmRIk3mPdYMwLHV0p3H0ev9Bz0eGkL8rr7yyJMHoF6dB+zGM67ld2Vx38cUXbxl/NIw2+rmH+ZYJkQugzHjIAFcx7pbcRyXF2HDDDcsGxZKBDGTBYz1CaFiCVsu1XV4RJOjuXFmaFs6VC90PckWYfpzrVbla7i/J1b2c06k8mH9EkmSz66FYfyxpn/jEJ8qz7jleffXVS5ZK1tbTTz89Se8v7f1nP/vZEmsmPk4sorkWzzdVkon0AEucGggEAhOAQBCkCQA5mggEJgoBAgVB/YgjjijZ0Aj/UhcTuGRdI8x3KgQRLmjOl8qZ4NFvQUjGU0t/2GGHlfTXLDisSJ3K/PPPX8YjFuWLX/xisSAgI+edd16SAc//G6tsbZI96Lf9ciQmoJG2J067IrkCoRbx4ubTSzY7RO3uu+9Or3nNayY9lXfz+H76058WLT33LzEfDz/8cCFIU7UgSKwNG2ywwci411Usuf0tvPDChQB5hq0h/y8ro729VITJPlgIQs201/NcICnX52rzVmm3W1mPbsnHT8r1vFzvyJXVaLN/nrtQ/suT1GayG+UqYaTEDZ0eP1are3Ll8bZYrj0U5HyvvfZKl112Wdpvv/2KpZgy4Yc//GFJ6y9+i1ui9xUlkPedmCTPubmmOAmC1APgcWogEAjMRiAIUiyGQGCaIMANh9ZUvI2YFsIUAUHczQUXXFC0qmMRJEIFDfU111xTNO2EjVYWDUSAZpeLGReh5qxrBJuddtqp7D3jPs2/DwK5cRLeCUm77bZb2cSzGyKGJN1yyy0lZkia6pVWWqm44cAKGdJn8UzcnJA7pEvSh7GC+bXv3ggSctrLHkysfPqgL92MYRDcur0WvvZk2nXXXUtChg984ANJ/JHNa8fCots2Jvo8VlTrVTIN1hqEZNSK+LnG/bSsP/gjStztWCkpBVgckf1Xv9ruqz0WG76yDCFI7YzJiBMi9IZcN8gVGWJpekWuYokOzBXR2SRXXUCgOpW78o935irDHUtUl+WOO+4o4/VssqQhQMgOhc/Xvva18rzYEBo58h6qc4okUVqYa89ylEAgEAgE+kEgCFI/qMU1gcAIIkDAZzUi8O+9995FSEBeXvCCFxThv5vMTtxTaLJlhUKmGoV2pIFwcswxx5QgaEIzoUT2OPEzNk+tRYA0F7iLLrqoCHLDJEjGQUAiOHKpIUR2U2SJs9EpAVmfBeqrrD+ELxYS/XZ/WnzCmLimsTaBFezvPn/84x8L9t0SJK6MLEiu06d2xe8EPeQEERvvol/2OzL+D33oQ8VChxyxsqlTsSD0N91002wLwygSpFa4UlZwE2MxYjnhbmcjYYSP4oPFs6fyaD7797maxnbExp5Fa+cqa92zciUlqPYxOj1XuS2WzBVhaneP/NPscl3+P4n5kLJOme4aLvEsela50f3Hf/xHsaTVBCwsvqyu4pC4JCJHjQVmiy22WMHKvEcJBAKBQKAfBIIg9YNaXBMIDAEB8S/iYGiEZQcjmHJhYvWxYWWvhRDNGkGIXWGFFWYLFO7VamPMVvcnhBOMCRiNwheB7Pbbb0/7779/+Uujzb3t/vvvL0KMgkjUa2hxuaUhZv2mv27VPySNu5dYIsK7NlpZuFpdS7BUkBHxWAphSl+RSLXfYtxidHpJ0YxMwQfeyCXLjTkk/NkXiUUKqYMxbNddd91CRMe7mC9zSgBHshFQ65LblzmfigXJZB2t4xkVa123WOov7MXgKBQUZ555ZsnYNvSxSPnt9dPqFXRJPv78XBfJtV1qcB2sBRkTr8Rgh3B1Q6jyaSy9XApZcGWpq+QI4UGQKCRkpWwmR5r1TLN821MM0fJcdfuOqN2Ov4FAIBAIBEGKNRAIDAkBFhUubgRfAi3B28eaRQIZ8rEWlM/VhyCNzDjGasMyQNDx/+JR+ik0zdy9xIxwkeN6ohBuCeGVFDTemzDMLYy2VgY1KYbdg7a6sdx1110ldgeh22OPPUq8DhcgAr3xcYMRyP/e9763XGbs7kOgGWbWMxYe7RB4V1lllTFjj+oY9PHCCy8s1ix4tEsH/rhB9/APliZtsLB1WxAhFiQkiDui9YMkG1u1XrEcvDzHU8BykHiwbvvkPGvWOmRZqynH4Sal8rAsL+5tLq1/hNezAAukEEnnOjVMqyNMPZuNloheMOnn3JpgwDPWKYatl3t7xt/znvcUEs3FVJp5LqxdFwkVPNq/yLXXbPKyjkvS8PZcpfweq0j0cHaut+b6lly7fK15p1A2WA9cdBs3fuUCyy2V5Yilu1Wxfv2GGMkOaZ21IlKtro1jgUAgEAhUBIIgxVoIBIaEABIka5w0tI3Wl6rhJfBxxyL8IhcEXymHkSOEqu7V0q8bFSsRAZCmnIvd5z73uSIobLTRRkXwbuWOQ3A844wz0tFHH12sQu9617uKpaAx0QCBReIGLnOSOCBRVSNrPJIY0PiyerBw+E11D4JwLQKqWZ+QLATRmAl3ja55Y02F/oqnQv6Mp1sh+tZbby3WGuOD+bALQokgEfi7LUgnIdB6IATql/93L3NJGK5rA1YTtW+PuWOBZEVaa621imVtkNgjSoFvfetb6eqrry5B9QgD4dXa8G8kDGFFvoyXpYSQO6xiXgjVSIXnwxrSrorAI6aq4/6tX9bu+973voEyOSJ9p556atm7RyKBsRKJdDteZIslzHgoQ3oiSFzmuMedletOubLstErU0Kozd+WDf87V49PKutR8zZn5wCm5Ikar58pFr4viufC8Ujpwfa0F4bSRrvemMXtW2hVrFsmnrDKnQZDaIRXHA4FAoB0CQZDaIRPHA4EeESDkittBUAjide8Swh+SRMCt5MO5hF5C07BcZFhtkA3JGWR8Yuk54IADSkxMO4uJtv2G4LTTdBP0kB+uewTmZncVlgUCiPOQqRoT1CjkSsVLuKHFVwjcNLs0wrTEraxbzfDDE7Fi7dp5552LANRtQfDgzTWnlyxz3d7fPBL0CcPdZO9zDnJkDKxuYqKq1RGWzRh3249hnGcd2ZdHcobvfe97hagNEnuEoBgryynyY80httZAfQ4Iu8bPYgbLYY6fVYp7pbVz7LHHFmWBighVF0v9UT0L/iLfg/bB3JpnGdgQXvtvDaNUdzvPGcttT0W2OWTl5Fyl8P5IrsKYupEEpOpmgUKy/O1UWKeuyBU5YlRubexpeQfEj1URCarEBjmSmIVliesni2qnYg0jWOY84pA6IRW/BQKBQDsEunkttrs2jgcCgUADAgQiSQNowXvS6g4RRYLmsssuW1yUPvWpT5WMdrvssktxLWtFkgiB+qvv7bT2NOsEjUqEmrtLYHMtYbC6ZBFoKlFgORAzRFDhJia+ieDDIsXtTQxWNwQJ+UDk9Ie1qxeLCoJH6DXWduNsHlcv/0a64MAqQfAeyxUNnqwahDgbhEo40UvRBtfIgffFadGoNYHoy3rI8oNUshp20ti3uM3sQwgP901uUYiWdagNQqx1B6vxmBMdgDNLmHTuLHPWDMyQCwRN1QfV/+uLflWLbqdxjfWbNS4lN4JIeeCZGMY4PUfcMmUaZE1CPJHYrgqLEY881qPjcl06V6Spmzwn8h3Mk+tY5CifUmKNpADnzidsrZt4JdflghzBzLqrBXYS0FhLrGfdWONczzIYBGk2jPE/gUAg0AMCQZB6ACtODQTGQoCgNVnkqPaNICs2gZCBIB155JHFxYclqVlAY5UhRNQYqFbjI9CqhLxW1hFCKGtQ46aMBBouh44fdNBBReBkKeGOR5vud+3S7FdLW6u2G4/VGC/jIOT2ouHnXldd2Fq1o58sf7TUXBJ7JQPV+oC4dEOQpDA2HsSw1+QQ8OKGJGHGPvvsUwT/YVghWVUIp9aIe9qAF3mVDMCcCYrvBfOKs2dCsP1kFDFhSLW/NltlfTAW5AUR6mc8vYyDYkJiBe03P3u93Keey4UTaT3rrLMKwe703La9P880uR6QIpadbgiPm0ntvWau3XB5BElShj6Kdw1FA0uS8Xp3UIp885vfLETdc9zNvLFGsly6V5RAIBAIBHpFIAhSr4jF+YHAEBAg5CIwPvRjWRu6bY6LHOG8asLt9cPlTTYnQuEmm2zyOK2s+1ZLBEG9ndBBgBfLRBMv3TNLQBX2ECbua6w74gXqWBxHABAO1pVtt922kCPCjkJgJLwQUrtNi01IEpugnXZ9bYcVstYsEDumD9z+aONp5Ws2uXb3aXe8WtGq5azdefW4OCwYcRXqNo6qXmvdwOH0009P22233eyNbcdqs9Pv+iI+TCwadz+WD8I9QnHwwQcX7T1hvJd4sU7tTdRv9Zmw/q2/fhOg9Ntf65RAP4y4N+vfnCNISCcrn/XWmMSgq34iLx7DDbs6+18ncZdjqOoyVXePd599ugx0N954Y9kiQAyRdxPy7l2CILE8K4iP496lqmewPuMshdYzK6tn2zuoWg2rxbDf/sV1gUAgMDMQCII0M+Y5ehmRLQAAIABJREFURjnBCPhgC6Cmka9uV4S1ms2OsOODLuW0eKVBC8Ihq1VNZczVjzvTBhtsUIQMrmzccZCmRoGKsM0aQVBvRzoIxoL2ucqxBrHGsODUuCNpd7mKOacWxEt6alYn+5j4rZIj52gTIeG21417GUGQNtnmj/DqVRsvsFsclJgafyUOoKHWDxYwApT9fsRYEaB6LfpXXajG6pu1gSDRlC+yyCK9NlXGjlRpj+XL30GLPiGLXCHFCdV72g/LcQTp/PPPL/NsPUyVYm6tG6TaMzFVizgqCR+k92ahtlYRBWt4GNbDrnDhJrdgV2cOdBJlDGufdUYRYJzepSxCnhvrUakuvcbfCgPnei9a0+IWWYU92/4izN493FvH08VzICBG/GIWTFkCkf/mrKetus7N2TeEkoUbONdH69o3sdM+cPVeznO+b6rneaz3bKs+xLFAoBcEgiD1glacGwh0gYAPNwH885//fHEN8aFvtKz4HRnxwR/WS949WXF8hGhfEQEaZlm7uIyxktSMV42CIoLE3WuNNdZoa8kgyEuNbc8VG7SyIiFHhJJqIULEqnWBcI0U0t7S2vutOWYAMUGeWCtgUd3G7H2iLwTxRqGHphimhF3t9Iqb1MjHHXdc2Vulxi6ZEyTSx1YV29BK0Opiykv/zYHr2xHNeh+CBaKn7Xapiju1SUtOwFOQ7mEQJP1mKSS4sBRaI4QWbSGktPFSx7MqDYPQdxrfsH5D0pFwCgLugq2yOPbSFkuEZ4XFc6JcBs0tEnTEEUcU4dLzwlWVdZaFxZz1u2Z7GftEnmvNiVX0zjF/CI6x7rnnnsWN1++s5P7WpBr+wqpalLx/zDvFB6uh9493nfexdyFFkmfeeifc9/o+mUg8RrUtngPnnntu+b50Q5CQXRlTvbPg7v1vM1+kpxuCZM2LJZQploIg5mxUV8b06VcQpOkzlzGSEULAx5qlhgCscu+ombt8rJEmmkwkaRjFfbhF0f5XS9LJJ59cPiaIkvYIGwTdRoJEoPCBIqx3ErQIJO7j/gQ1ZIWwQdCnQRQQ3egq6F4E0o9+9KMtXcBoAd3DR+6qq64qVinkhQDq44kgNRaWEgIPQYg1qNeP40orrVSIEQzMjfsT9lmvenVxazVfhC8kqWZDa3VOPUY4ow1ltes6uL7NDZGxXrFodSv3Ifh/5CMfKenhVYK4ZBjWliQLX/7ylws5Fos0aL9b9WHYx1gwEXiCdN0TrN82aLs9T8YvS+REECTrybNp/zHCqBT6KpczMUjcZz2T07V4n3jvsARRtMiq6N3ZzXr3jB9//PGFHCHHyBbCzKJ0+eWXl9+8Bz2v3dxvumI8yLisTe9uVuZuiuQ84vH8VaxfWRgRp26KbwDrP4viMJRC3bQ57HMo0ay3WHPDRnZ87hcEaXxwjbvOYASQA4RDFjmCJLeOiXgh0pZWzT/yQdtG8/qNb3yjWF5qhq46NQQwH6lKVry8OxVCtPHY2b4WAgcNt/s0FhpFrnWISasYK5pvpJHLkNS9tIME2S222KIQq2ayRiOMkNXU0J362eo3fSfYq+NR4Oujba6RuHbFOSwx5gohGcva1Hgf88OlRdKBmkxhmGsLYUckdt999xK3Jh4JYTWH+sq1ixWSBh5xGvXCmop4swwOulFrzRpH6dGYXW28MKBl50qGlEqF/6EPfahsEMtyiIxTdBAYja3fUq3OFAfDUBL024921xnfTTfdVMjhYYcdVqzW3b5HPScwsk5h5jrvF+8lVjjudSzRjs2U4h0KE4TEe9v8e3/4VnGBrmTRexYp9ex7r8OIIklsWFWMeA+YF+8h7tvu53pEtNHVuhFb70XvGPejvECu9IXiy/wq+sPNudmNV6ZG59cspiyq5tT3wIbhlAbewZLKeFZrvz33lAi+Nc3flNo330HeDqxZrYprPWfINpKtv7w0/HWt370bvReqe7bvr3PgwtrlGwcr/fRvSif91Vd9rv2luNNfioB2/W3Vxzg2Pgi0/5KPT3tx10BgxiDA0jEZhdCNgGy55ZYlm92VV15ZXO8IBVxXavGB9LFaZpllyoevnxcygd+HqvFa//YBsJdOu4LIsV4RtvWBZYog7mPdijT4EDkf2eqnn+36Mazj3OYICGNpuH1UjZkgwYKlEHgRRFYK/084NlbYmjPCAky1geyyEFbiiQDTqlbBUfs+5N3EdbUaO2EZiWTdkv2QxcSHntAjnsc8IB2jXgiDtNMEGgJxt4J1u3HVdbrpppsWS+14lkqETzzxxKLk2HHHHYs1r8bwIU4EXWSN0NpP0Ya4HG6DhEz3JrzWOB3HrGfzbT366xoCJ5IxEcQCydFHgidX4U6Kh0YM9NNm0vrPWtHo3lvfTcOy3PeD/WRdQzEjIyWhvGLpr/fLkksuWdYToR1R8NwjJd7F5t66WHHFFcvmyc7nOaB6Z3nOqvLKu7kdQUKovvSlL5W1jNRYw+bYPXgPKOaKRaqZICEQ+u0dyPpOsaboM8Khf/osgYlzfCesA32X2GPzzTdv+41zXiV6jXMDC2PzTdppp52KkgihEwuIIMLOevKu5iXClZzbpmeHde2YY44p3hYwQwi5wLM8W5NwRSxh3dhfz5okSK4ZVnbSyVpv06HdIEjTYRZjDIFAGwRYY3yQ1OZCgCCkf+Yznykv9m4FkHofL3MfUR9FH4VeCk0ZjbjaTfFBIZQReH2QJkJA66Zf9RwfUhh0slQgPBId8L1HEAm6iKt/+0gSAozPR91fx7faaqtChmBMKODzz8pDM65NBMm8uXcVCLhhcWXpd0NcH31CwSc+8YmizdSmSpCxnvw26oX2m0CF+BP+Bi0EI/fiTgrv6lJpHfb63HTqi3mkzeZCR5iVRZCwVK2wfiecee6sg25iP1q1Z60g2yeccEKZT/OKJCHIqvaMy3mec39V8YHIyngTDG15Juqm292+X1yHyHOHRPQpqYY5P62wnArHrBuJVlgyeAAgDdZuTVZTlVKslaw53mOUARQ58JSIh8DvOCLgHjwHvKO4nEr+471R4zvHwgSh4LbrHojSoYceWi7Rj1ZZGT132hC76j3IsuqdqFq3Ym7FmHouKeYoDvTN5uS2umC5YZlqTBRU+2h96I971kLBIq28vwgNa6P1KB4OQYINImNdIp6s7caP2FWlhfc4xZf3vG02qtLK+C7JcZ76i+y5F+Lkma79hbP+tsJiLGzj9+EhEARpeFjGnQKBKYcAzVs/bmc0btXdygekWwGmX4AI+z4ahHQfcVpKH+NBLQP99qfxOm4UXIF8hFnC2pWaJY7AQfDjWsGiRAClOVWrJt/Y/FZJkw8tbT+hBmnSliQgrDs+snBAqr7whS8U1xcEql+CVPuPQBOIl19++eLeIp6HNn/QeJ52+AzrOGGQ1dS80FQ3WhBatUGzW11cmjXX9XxWMzjXPZVol+GNoLDKDsvtjlBHMCOEwV5MWKP7G4GWBdH6aKepbzXG5mMES2vEuGBEQCQMur/1ab1xcatxQNYd4RWWE0E4tE0Y9gx0G+NijMZAK+/aj3/840+IZWzGYab82zPh3ckFzHuU26G13pj2HrlELP1lcbH+KnFyPre7k046Ka2//vqzLY3WgndWrzGJ1rRvTyXiY12vHedb9/qkP7Vv+os0eXb0W7W+ERQKQEok6fF951oRJO9O/ajKLdchXJRZFAcIjGecVdIxysTddtttttKC+x2iJ7bN+7gSJJhzv7Npu29k/Vbpr28YRQjlxxbZrbz2V1ZTbSNK3rNBkCb3CQ2CNLn4R+uBwJRBwAuf9YbGz0ucOwNiwMowqDA+Fgju78PjQ7PvvvuWgG1uhFzQkIVuNZdjtdPP7wRWgiV3RhrrdgVWPuo+ujTwhFIWNFpa1zWOAdbcNAikxk7Y9xH1kSXo1I+6j3UtCBchAlltFffVrl9jHfeRpi1Vp0IxF0iimBXZsWhmCdyIEFKjIqWEaRpn7i8IDy1uszBuHhAG5JYGmUsQYc1xgpS/iAYrrPkZpNQsXTJ9cXvdddddnxAbRLAi/COtgySK0Ne11167CMisudbNKBXrHebWv+ejm+LdRIjnxiXTormvMSHdXD+dzzHf3hUwJXzDCXnw/qz7dHkeHPfcWGNcwGqx7pFkCoJRK/UZtlaMqT6H3rW+EdaBd6N3QDeF8oryyXhZxzxrnvVq6UeWqotfvR/svGecU4t+IGSN5Mhvjf31DWjsb1W49NLfbsYU5/SHQBCk/nCLqwKBGYMAIdDHhduSD6i4CP9P80y4pM1rpZkbJkAIgY8fzZ29mGT2IvzQFnJFmCyCRCijseY+wQ2jkyUNwZMAgbWBW1MnTbzxNqaldn/Z/bjkHXLIISVon2CLPPl407QfddRRRfO/5pprzljNOSsPTS+crBdudtxZWDxhZL4QJEIKoqkSpMxd8ya4NL3iu2igXU+YhK2YB/PnmeCmJiMaa4VnoB+LJgKmPzTQni1C0y677FK0z43FeX6nbV85x1V1WmvdPnvdbtLc7f2GdZ55EdcC527cac0VhQJXJ/9PgdLOGjisPk61+3CN8x5BfGQ3FbMDW+8V69f7iOKAOyn3r2bSDNd+9m0bb5yqWzKrVPNa8Tz6TtSYzk598R5lUd17772Ltdgm3MiR+yJA7kGRQknRnHnPN5IiqW6/oJ1q9Wp+J1QFjfs2K7KcC3dtwTvK5CIQBGly8Y/WA4GRRsCHgvaQO90pp5xSiJGPhixnBEQuB6wh402QgIQE0YIKXudu5mNFuzyWC9V4Aix4n7DB751g26lUTW2nc9r95mPKguOjiSCJDxILQmj38Zb6lnZX/JH4gup+0u5+0/U4DJAWaxap4fJCcKkb3JoDQgwtuXWLhDjWShAnyOy///7FHVIcE1cb66+udbg77lngLtNLlrVG/FljETrxIfoq7qg5zb2+sNiKO9tkk00el2xl0LmsLoaEMgJatVRWzTbhz7qr1b8bEzc47pjab9KI5jEQVrXRDQnUPvy9iwive+21V3kuOikgmtubCf+2PqslGAH1rIh1O/zww4tyQIyP54FiZuutty5rrFm4916px/yt894Pfq6v9+jm+np+M3FAgIyNdYwVR5/qfX2/kB6WmUZX1eb2rDcWYvFKlCqf/vSnS1KKShJd67lHMFlebV/RjI17Nis1mtvxb/11L1Y6Fqd2/W0me63uFcfGF4EgSOOLb9w9EJiSCNDe0rhzC6ORF4gqs5kYFy5FPg6O+2AiKBNpwfGxosWfzOKjRrA8+OCDi4vfROwNRAgQF8CCIMMcVxlCJEGWUEMLzLIwk/3WqzAkKYnYAATauu3HBdQc182OxRG8vMl9Eu7V3a4bDXW79Ypks0LRziNHrVJ3i3Gg1SccskAO+ry5j/XLKkX5Ib6MwsGYPF/GVQVKa0xtdk9EEKubIguY35tdj9qNeazj2iYgEuSrANnqGr8RMpFiFlQkdt11120pvLa6fqYcMzfe5+bds2B+PRfeFwg+t1TH7DflvY5sIEgEeWvC9ea6kma4uQ/8uUPWbRrco1vB3hxbxxRt5hAZ8V1xrLGdOkfVIoP0ON/70HmsMIg5pZnYQ0oMRMV9ZZHzDRPL1+69WAm2JBQII4KNHLmvMeuTtj3/0nlTmIhZpMQwVuTKef626nfzGnMv96FY01/utLW/vrPeB94D7frbfL/49/ghEARp/LCNOwcCUw4BH0JCITcMWbRouXx87GK/2mqrPU4wI7R5sU+E9WjUgIQTQcIHjtZxLOvRsPpPKCHEEGwIAIgsjaTjM9Vq1Igt4VgdRoEnQUkGP8RLEHej8EcoorEm6LFKdSMcNfeLgGkOuYPR4HvGWhWurQQ5FoBmV8BW53c6hsyxWHFJE5Tv/xFs8Rr6U90Qa/KPSlYIjLUaL4G2xvhwtfVMDKt4p1C80OrDuZUlCR7wF7MleQDLqXTMrTT7w+rXVL0PAmPvIJZVMTHe246Jn2RB9U6xtsXceOfDk6Du3W/OkSBYewZgrHjnUdYgxciB3ySp6TZrpPmtSQm+8pWvFGWGNSVrZyty4B0nZs5zyYpuHNaJZAaeG5YfFkR91QckivuzNlj422Ve9B6lJLA5NlJoTGIYa9Eui6T2EPB99tknbb/99mW9eQ4oB6xTz78tALpJnuI5FmcEO/Ogv/CVoAWu+jtW4oqpuhanUr+DIE2l2Yq+BgLjiAAtMa3WgQceWLRuNHH2YCEkttIKEhpnGkGCEU07bazAfB9JLocTTRIJgYSJ5jiBcVweM+7WNL0f/OAHC0GS3pdmm+aXsE4YonWv+6Rw0etHMCfkEy4JTCyz2mxV/IaMiBlisRykcD0Uw0aopAkX16f9xviJfu6PXA2rEJ5p7Amv4sAE2jcWuBH2jz322DI/BNM99tgjlARtJoCQT8D3zmYlYZljgUGAdthhh5JoR4E5t1KCuhglVkvzan2bg0bh3/dhi5yBzf1YtBEXyol2BEl7XNSqGxpCXtOFi62TudEa1M9WBMmasGYpC7ilsho6xqtBHJWNyT0fNSW5MUucw3rUyeWSQsBzgOAhVdzrGgtM7Cm40UYblXWGUMIF+XKdcbHGicl1roJUGp/vRavi/NpfrrOsV/rrOddfv7d7F7S6XxwbHwTmyIt/eG+18elj3DUQCAQmAAGkiO+5F/622247ZqposRC0XAKihxV7MAHDHKgJVjMuKdwsaOAJzj7K8TEbCNaRvpgALnCb8CbFMWEMIeYOY+8UQiMLa7+FxRbpaiUU9nvPTtchZLTV4jKQfYJZdafrdN1E/3bZZZeVpCYyPUqH7L2knyxVXMDsnSOxhYx1hM3IWDfRMxTtBQLTG4HW6qrpPeYYXSAQCDQhQCP7qU99qmjRCHut4iAaLyFk2Umd+8JECXajMGniNmgwuVUEORqFGRn/Pshch0wIZmc1pBVGkKwB1hxuN4OUid54l6a/tjmZCU7GwozbH+usjJViSShvuFhR5LBys4Kwfog3C/fSsdCM3wOBQKBXBMKC1CticX4gMM0QQI64FnChsP8Dt4exXMZovbmXyeZDQJlJJGmaTX8MpwcE7AEmoYHkBp4Rz0x1q+nhNnFqlwiIJ5Gdzkaf4ksQUtYvbr8SZ0iO0o9rY5fNx2mBQCAwgxEIC9IMnvwYeiAAgUqQWIVk5ukmQ5ZAXq4uNNFcdKIEAjMBAbEBapSJQYCFa+ONNy7xH+IjWZIkqRBM301K5YnpZbQSCAQC0xGBIEjTcVZjTIFADwhwT5F9iH8/tznCR6ukDI23RJBo0MUFhHtLD2DHqYFAINAzAqxESy+9dKlRAoFAIBCYCATmnIhGoo1AIBAYXQQIH4gOdyFaWu52YxUbxob1aCyU4vdAIBAIBAKBQCAQmIoIBEGairMWfQ4ExgEBGbouueSSkoRA6tNORSyGNKaROaoTSvFbIBAIBAKBQCAQCExFBIIgTcVZiz4HAuOAgD0sWIXOPvvsdMstt3RsgYudzF6xD09HmOLHQCAQCAQCgUAgEJiCCARBmoKTFl0OBMYDAckWdtlll3TrrbemCy+8sGSLalUkc7DhYFiQWqETxwKBQCAQCAQCgUBgqiMQBGmqz2D0PxAYEgJikVZaaaWyI/gFF1xQdiRvdrWrO9jbD0jK3XCxGxL4cZtAIBAIBAKBQCAQGBkEgiCNzFRERwKByUdAiu+tttoqLbTQQumMM85I5557bnrsscdmd4z1SIIGx6QEn2eeeSa/09GDQCAQCAQCgUAgEAgEhohAEKQhghm3CgSmAwKIz0c+8pG04IILppNPPjldfPHFs4eFIEkF/tznPrfsfxQpvqfDjMcYAoFAIBAIBAKBQKARgSBIsR4CgUDgcQhwtVtsscXShhtuWPZDOvroo9PNN99czuFix4LEva6bDWUD2kAgEAgEAoFAIBAIBKYaAkGQptqMRX8DgQlAwKaxyy67bFpvvfXS3/72t3TQQQelu+++uxCk+++/v2Swc06UQCAQCAQCgUAgEAgEphsCQZCm24zGeAKBISEghfdb3vKW9O53vztJ6/3Zz342PfTQQ2Uj2fnnnz89+clPHlJLcZtAIBAIBAKBQCAQCARGB4EgSKMzF9GTQGDkEJh33nnTqquumjbeeON07bXXFpJ03333FYIUFqSRm67oUCAQCAQCgUAgEAgMAYFQAQ8BxLhFIDCdEZCQ4Z3vfGeS2vvAAw9MjzzySNkDSXxSlEAgEAgEAoFAIBAIBKYbAkGQptuMxngCgSEjIGmDmCOudqxHV111VVp66aVjD6Qh4xy3CwQCgUAgEAgEAoHRQGCOvJ/JvzY5GY0+RS8CgUBgBBF49NFHS4IGWeyWWWaZsgcS8hQlEAgEAoFAIBAIBAKB6YRAEKTpNJsxlkAgEAgEAoFAIBAIBAKBQCAQGAiBSNIwEHxxcSAQCAQCgUAgEAgEAoFAIBAITCcEgiBNp9mMsQQCgUAgEAgEAoFAIBAIBAKBwEAIBEEaCL64OBAIBAKBQCAQCAQCgUAgEAgEphMCQZCm02zGWAKBQCAQCAQCgUAgEAgEAoFAYCAEgiANBF9cHAgEAoFAIBAIBAKBQCAQCAQC0wmBIEjTaTZjLIFAIBAIBAKBQCAQCAQCgUAgMBACQZAGgi8uDgQCgUAgEAgEAoFAIBAIBAKB6YRAEKTpNJsxlkAgEAgEAoFAIBAIBAKBQCAQGAiBIEgDwRcXBwKBQCAQCAQCgUAgEAgEAoHAdEIgCNJ0ms0YSyAQCAQCgUAgEAgEAoFAIBAIDIRAEKSB4IuLA4FAIBAIBAKBQCAQCAQCgUBgOiEQBGk6zWaMJRAIBAKBQCAQCAQCgUAgEAgEBkIgCNJA8MXFgUAgEAgEAoFAIBAIBAKBQCAwnRAIgjSdZjPGEggEAoFAIBAIBAKBQCAQCAQCAyEQBGkg+OLiQCAQCAQCgUAgEAgEAoFAIBCYTggEQZpOsxljCQQCgUAgEAgEAoFAIBAIBAKBgRAIgjQQfHFxIBAIBAKBQCAQCAQCgUAgEAhMJwSCIE2n2YyxBAKBQCAQCAQCgUAgEAgEAoHAQAgEQRoIvrg4EAgEAoFAIBAIBAKBQCAQCASmEwJBkKbTbMZYAoFAIBAIBAKBKYDAP/7xj3TwwQenRRddNF1++eUT3uP/+Z//SSeeeGJadtll0/Oe97z0ghe8IJ111lnj3o+bb745ffjDH05vectbxr2tdg1cf/316f3vf39affXV253S1fFPfepTaZ111klnn312V+fHSYHAVELgyVOps9HXQCAQCAQCgUAgEJgeCPzv//5v+utf/5qQpYks2r3jjjvS9ttvXwT8nXfeOT33uc9Niy222Lh3w1j//ve/p7/97W/j3la7BvRB+4P24dFHHy33+L//+792TcXxQGDKIhAEacpOXXQ8EAgEAoFAIBDoDwFC+lOe8pQ0xxxz9HeDKXwVof7OO+9Mf/rTn9J6662XVlxxxTTPPPOkJz3pSQOP6rHHHkuIw0zFdmAA4waBwIggEARpRCYiuhEIBAKBQCAQCAwbgSuuuCKdcMIJxWrxzne+Mx177LGFHKy99tppp512KpaT+++/v7hJnXvuuenuu+8uZGGZZZZJH/zgB9Mb3vCG2V367W9/m04//fT0ne98J/3yl79MyMALX/jCQjB23HHH9LSnPa2ce91115U2r7766vTII4+kF7/4xWmNNdYoZGTBBRdsOURuX4ccckh6/vOfn3bYYYdy31pYPFh79G3vvfcufXrwwQfTBRdckL7xjW+k22+/PT35yU9OSyyxRNp2223LX/9uVX72s5+lAw88sIyV5cMY55577rTaaquVaxdffPF07733lt/d+5577inj+rd/+7e03XbbFZfApz71qeXWF110Ufra175Wfv/3f//3dNJJJ6UHHnigYLvLLrukpz/96a268IRj+u9aeN13333l/tpZa621SjUftXBL/Na3vpW23nrrdOuttxYMuAtyFdx8883TQgstlM4888ziPvjQQw+lRRZZJH30ox9Nb3rTmx53H/dzHffGz3/+8+m2225Lz3jGM4rb3cYbb5xe/epXz27TvJ933nnpuOOOK2vlRS96UWnL8cbyxz/+MV1zzTXptNNOS1wJf//73xf3RWvJ+caEOEYJBKYCAq3fIFOh59HHQCAQCAQCgUAgEOiIABc2Aj8CwmJC+EVYCN0EYqRjn332ST/+8Y8LCVhzzTWLYH3JJZekbbbZJh199NFFyGZd+eIXv5guu+yy9PrXv764pjlGYNYGAuaeBOSPfexjpU9ve9vb0gILLFAI01FHHZVuuummtO+++xahubkQ7J/5zGeWfjgfmVOQo9/85jfp29/+djn2rGc9q7SJKFx44YXpNa95TemnPiAsm2yySRHkl1xyyTTXXHM1N1PGvtVWW6WXvOQlhWxxr+Na5/jLXvayQh6/+tWvFoL0ute9Lr3rXe8qeJxyyinpRz/6UTr88MNn3/svf/lLwQ+5+MMf/lBIAPIAh1ZtP6Ez/zyAhClvf/vb0/zzz1+Iy7XXXpsOPfTQQv5222238jtCqh3HDjjggLTccsulddddt/QBEb7xxhsL5v6uv/76BZNTTz017b///mn33XdPK6ywwuwuIIfus8cee6RVV121EDHYI8CIDowQGiRIbJZ7II/Wz5///OdCwJBkhLYWx82V+YUFgljn7uc//3nB+s1vfvPs8+N/AoFRRiAI0ijPTvQtEAgEAoFAIBAYEAHCMKLyvve9ryQHYDEhbNPmn3zyyUUwRng23XTTNN988xUXsaWWWirtuuuuRUgnjBP4Ce0vf/nL04YbbjjbssRdTUwPcqMdVqBf//rXhQgRhl23yiqrpOOPPz6dc845Rdhm/WguyBrLDxLFkoKocf8j5CMriAErD4GccP6DH/wgrbTSSsU6wgqmbZYsgjkyhvQ1WqFqe4R2gj/hXkGCWDhYgRC+r3/964WTJnSRAAAIsElEQVQcsrggD/AwRhYa5IDFCJaveMUryvXGDpPNNtusEBDjRep6cdeDNZJmPlTXL7/88sUKd/HFFxfS99KXvnQ2ZAiUeXQcqXv44YcLsfrc5z6Xnv3sZ5f5Yqkzx/pzxBFHJJYz7VRrlDZYqhCp9773veU81iPHrrzyyoLLwgsvnH76058WS5oxfuELX0jPec5zCtYsTJI0IIm1mId3vOMds9cYDKwl99pzzz3L+vH/MI0SCIw6AkGQRn2Gon+BQCAQCAQCgcCACCALhGpEphbCPcsDoRchIGzXmCQCO4GalYaQS7BmGbjlllvS+eefX4RvRKNag/ybBYGFiWWDlUlmOEWb7v/9738//fCHP2xJkLSrPeTkJz/5SbHKENAJ4Fy2WIpYsgjwLEyIhHYQlTnnnJWQ1/krr7xyIRVc+1oV7RDcqwue+7inf8MDkUAekJ2Kh7FxoePaR8j/3e9+N5sguR9rlPORvH4KbBG+733veyV5BAuOcXPXQ3zuuuuuxxEk40WgYKLvSBELnLnw17xUTKolDWmFSSVIxuQ6bo+ITZ0nVixWwNoPfWDhQsYqKXQunLVVrV+OwVC/EVque6xH/o3QsSAhmdzugiD1s0rimolGIAjSRCMe7QUCgUAgEAgEAhOIACGa8N5IjjRPYOY+Jpblk5/8ZInNqYXVhJWFQIswIALigFhYrrrqqvTd73633JNFQMzNW9/61iLYc+NDGGo8kvshJPPOO29xjyOotyusEq997WtLjA0Bm9WCoK49MT3V/Uyfxbjst99+6cgjj5x9OwRHn3/1q18VUtdrIcjrv74jd5Us+svCwoqDyDRmf3Mc0eiXHOkjl0AWNgQQ8YAVK82ll16abrjhhieQPVYw55hXBRmq/dDvSo78pl+IS3WDrJiYE/PR7O7I8mT8MEZwWKfMP7LYWCpGyGIt1tExxxxT+s1qyMKnj4gzyyJ8B82c97hOxD8CgXFEIAjSOIIbtw4EAoFAIBAIBCYbAQJzq6QFhFe/ISJcoxotBPrMyuD3SnZYULi4sSqIa0JSxOUgVgRxFhxkgiDcnPoZeUFaCOXtCuuGOBcCNiKiTyxYBHQud651H8K9mCHWjubU3PqstHKva9duPc6aVC1JrQR51pCKWb0GPr240zX3QX+57SEqG220UbG8cYFETMUWiR2rY6rX6mMlb/VYtYw196We13wPmNYU3Y2ECpEyTwiXea8krBXhdKxxnn/xi1+UeWPZ40ZpvvQHyUUAm/vQjEX8OxAYJQSCII3SbERfAoFAIBAIBAKBCUKAIM5qw/2J9UKgfrOArStVSPaXJUGV0IHbGcIk5kViAMfcT0wTy0J1UUMsuIkJ+HdNp8KChCQRtLnkcecTW+ReiIH+IXJcu1h03vOe97Tsc6MFq1N7jb8ZHwsKt0OuhCxjyAMywZpijK985SufYInr9v6tzkMaECHEyLiqRYc1BuEYr6Jd1iHxXo3JG2oyD3FWXC9Z7VjIuD02FgTOHLAO1cIiyQLHxY8VsRZxZWLIogQCUwmBIEhTabair4FAIBAIBAKBwJAQIPxvsMEG6aCDDirZyxCZasEg0LISISRICEHYOdy7XvWqV83OUIZIIBYEYgRGkgTJAmR7k3WOwM9NTOppsS5IR6fC8sNtT/pq2eRklZNwAeFhDVGlDEceJH1QxC7pFxe/mnwB2SPY91LggcCJM+Lmx43NvWFh7NwDZehrl6q8l7bqucaDnLLGibtCSrgIytrHtbAfotdNP4wVQZINEKlBiCRkEO/FOofssiIhvCxC4qP0iSul87kF6m+j2ya8Vf2GP3IFyzPOOKOMKUogMJUQCII0lWYr+hoIBAKBQCAQCAwRAYQAMUJI7IUkyxzhmXWJsF7TMrM4IB+EaG5u/k245xZnLyFJGFwn7TSiwgL0pS99qRzjhiX9tZTZjfsqtRoGssVVj2DOeoR4yV7XuH8O0iINtb15nCMpgHYI9Ny6WJz6dedCDLbYYouCA1Lkr3txJ7NvFLe/XolXq3HWYzAU22V/KoSQu51xSGSgL6x741EQX+RVG9zfzJnqmGx9kjvoG8udTHcI8mGHHVbShptzGCBSjTiz/MlwiFzCyhoyFtkJmy1Q4zGmuGcgMEwE5siLe5bD7jDvGvcKBAKBQCAQCAQCgUlHwMajrDwIxso5AUCrgiDZE0esCGsJsYDlgrCMrLDqIDmEXG5VLA9IEgGY5YEFpDHmxyau2rRfEWIhPolrmnvVZAbaYDVRZddzn1r0QVvIASsEYlVjaeo54pzqHkTcvfSP4I7UaYeVp5FUNY5bn1jHWEXENnETbHQtZCGBBQuJ/2cZk/wAmdCfem4ljEjZWK6DtX19NWZjrNY0cT9c24zH/7PKvDzHhXHt08Yb3/jG2VnsuC+aK25xjZhzYWSpgzMrYGN7yCqCKl6LpY2rI7c3hGjppZcuVh5JGeDlei5yjZnmYA0Pc8KNztqAsXUgjsn8cw80B1wR9YO1zRxbQ7LtcU80N1woI4tdq6cwjo0aAkGQRm1Goj+BQCAQCAQCgUAgEAgEAoFAIDBpCMzaPGDSmo+GA4FAIBAIBAKBQCAQCAQCgUAgEBgdBIIgjc5cRE8CgUAgEAgEAoFAIBAIBAKBQGCSEQiCNMkTEM0HAoFAIBAIBAKBQCAQCAQCgcDoIBAEaXTmInoSCAQCgUAgEAgEAoFAIBAIBAKTjEAQpEmegGg+EAgEAoFAIBAIBAKBQCAQCARGB4EgSKMzF9GTQCAQCAQCgUAgEAgEAoFAIBCYZASCIE3yBETzgUAgEAgEAoFAIBAIBAKBQCAwOggEQRqduYieBAKBQCAQCAQCgUAgEAgEAoHAJCMQBGmSJyCaDwQCgUAgEAgEAoFAIBAIBAKB0UEgCNLozEX0JBAIBAKBQCAQCAQCgUAgEAgEJhmBIEiTPAHRfCAQCAQCgUAgEAgEAoFAIBAIjA4C/w/NoB5yrmBbuQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To realize this derivation in `sympy` let us transform the elastic relation from absolute values into the rate form\n", + "\\begin{align}\n", + "\\dot{\\tau} = E_\\mathrm{b}(\\dot{s} - \\dot{s}_\\mathrm{pl})\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAAWCAYAAADZylKgAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAETElEQVRoBe2Z21FUQRBAF4sAkBAwA9QMMAMwg4UMpPzjz4IMwAgUMhAiEMlAjEDcDPCccWbrPubufeyLKuyqYR7d093TPd09d9l4fHwcrRNOTk52kL9Hf7FOPdYlm3PvI/uO/j7psFF1CsgPIN/R9iLRNX3asB3Xduk1psxex7XeHXu32HRJr7xnC5z/ksMf0wc7b1YtAeKMtTN6Q0ijZw3G+iH4g+r+nvObWTyQodN+0e4ZD3Z+T52y5EvWZYxQbRHO+CKnAQqkKPmSw8e1r/QpgmaQ5VHI0Km39I08wE2geaA10uS5L351mbpE3tf0ZqlRLVLicVJ0mLpmwc9ZyBbcMfgkp5EURV81IleMWLIunziOWeEsGykgQqSgxF3x3MxP05yxt/gqzfv07LUejejXHgF99F4mbbSnaXqvKVIs5KUogdh0U4oM1oYa1RdHiX/uwPD3EvyOOC+B6a50UXL7lrG2Il20yUHNKQgPUQJym/G5Pc01i24tlUT6EEGMuxZj05YvjkaA1w+QY/rgBPpvzOV/1LhpSYh5dWG/tvtM22I8K2V76Y9y6Stt0iBHtAPaS4hLb2nmAcDpXdvtv5VOf01fFvAswFP8Ln0xKqxBtpXCInSBh1HuBU8XvukM2mSrFilpY8UgMimlG/BFoynMQtUVjD4VbYLgMGT8gcBXnt8yJfm5jdB4I31a9oFpNDZsGqRLhleXS2s52Mk5pVZPooCp0ePhdUS6ye5J40g+vIP/hGbEGhnWskPmPhlTFGeZuw9E1xSa5VFdlGeU20uXKp8+85JTEK6hBfN3CeKB09pHBsFJrOsQYZ+x/Vuat68tErzVNWBfSl2+7EJ0sOb7/VQcbejjoiarbaGLLpHG+uh5rK3WXcdmgzY7QFIC99xXa0q6iY2pAiV0gsZJRteRGuqCNX8N+E6bPp0Z50B6FciBByztj3xH9CtzSFSsVZeo0xh6L5OvQ38u8TGiHfqmUnlMqk7xqTqCaTYVsa4DFDRNZYx15Dm45CT7N7RZIP+mNPMALl2OwAPeRsrKizwye+lStBtjL6h1N2WfcJaWP9rkepNNhprPNb1kG7HmDVEhwRstTcL7CtOoCXRA8WbLuO1Gmx59jeTAW5ZSoQ5Wth9Vgz5UcwJ6rM2ri/oHm3aUqS3HOsWN8/ywqNGKL4v3MqY1AjIt2iNarUawpkO9ZWuHBegSLlSXgyBLWr9j7l502dBCM40KGKYfGbvcaqNrHSmp5TjD0Zx/GhWMTblmlcb6XJHk4ylkj9r/UyqErVOEWvhlGJzDvLOhoTWN+YE6dWyrwCdIEG3gLxCmOyG8wFgPc3qjwBJhzb5iXspMEX9DH+rsJkRzAYysLyUhPRi6z/pVKuw99j8pUmyR/e8p6xMUnWUjbTDFLyJ9DTZMVNZIMe09S4hnL2WLudPXs7Rk4dAY1TpiLfDp67daSmEFqn7D/07pZ6+VUP8F3BjMBF33k7AAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle E_{b} \\left(\\dot{s} - \\dot{s}_\\mathrm{pl}\\right)$" + ], + "text/plain": [ + "E_bâ‹…(\\dot{s} - \\dot{s}_\\mathrm{pl})" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_s, dot_s_pl = sp.symbols(r'\\dot{s}, \\dot{s}_\\mathrm{pl}')\n", + "dot_tau_ = E_b * (dot_s - dot_s_pl)\n", + "dot_tau_" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAA8CAYAAAAQYOqYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKnklEQVR4Ae2d63XVOBSFb7JSAGQqmNABM1MBoQMeFQAdwOIX/GNBB0AFA3QAUwGPDmAqmEAHzP6EjuOHfC3b8r1yIq3l2JaPjo62to6OZCc5+Pnz5ybH9PTp0/vYpfOrHO1bk03C8Irsfa3z7TXZPWTr4ZDAPp4L5Ieq90Ehbhr0heMPaXqp8+c0GvPQcpCb5xXAp4LmrY7fPeh5ILVDK9TuJNOh9BzUzdY9TuEvnS+EB86KvAKV6e1fHTd0/aUO/GW5VrsZvDd1frREm6UX74sXXn04drQEQDN0vlbZDwL2UhLX4wZpozyjcLou2bu+HNeEWt/8fd8J3Z8l90YH4cRqUzbk9R1xS0heWxOaspvZgjDnh66jSNfXPpWn/e91jiXVc8neRJ/OkPe9jq34Se6bjg+Sw1HMslflo5LqO5Hg1yjhEULZkFc2A+Y7wB1h/95FZa+R9ruuT3VAjKkJz+nIGKnguCYHbpAkJj2TEN73io7YgRKjt0/muR4QCs3BpqM7C/KqUYCO59iJJ+igMDMDAuh4JzUPdEzqIJVnaxAPHp1U5o+a8Kmuowa+yn3hkDx1vqjpSH6peujbE52n4gLxmd3QQ/seSZcbcIe6ySER5wFoFPg5GByw4aXybqkNAD0l3VbZSYsoX+djVTrGa2MvZZZO9C2efnRSuyAui0ubkZhp/jFFWXheGXNHx6QGWkP2fRbALDQZfEFvpmdudtEZD91IymMLCzJVycsTw1KunaopWHIMFkIudmicR2oL99zjCQkb5oY6PepdHI5t6GdGmpJYA9RxgSOEO3jybx3yKhMgGcFMQyQaaR7RYiymeEDFW9anLmWNSxiiEjRy0rQyrrbFpS10aEzFaiNYgulDXV/VUZFM17QdMra9Jh6LvDMdwbdjvize6Z6Oje5ZwFFuMEmOhRt2UMdS2OPZo+zZYjD8MP4Zbi4vRF6Af6GGsVEOOdugunqUj4dJEaO6QSJ9UdtjkqOz2QsG/FkDxzUk0Q/ZAqDu0PV1HVV7dA058My0td2h7fuN5PCIlbfivsdM9mypk74g0cljyIJdDn8Kp0zeZsKoMfY0TFDZ9s4JTpP0iR8d8pKpQtagv7nvSW+Un4I86LCR1VPVebZsY3GEN4ouc156mSvZA6hu20rXLLogZGhg05FshT3TQTuM7BXR9XzDM84kXdMXjefuwa9n7c61R7HnjxJkal4igQGzQsqEvsEFm3nboekkxd4dnTOKiOrQazpC5EgJVJQu2QFxIazZ81LXQUJIFjwhonWq6wzdb0voTYFzqA6Hu+xiECVL0sdMgdedtAANGSJdYMXsVYVkhyFB5TnPK8HGiPcKXBFd4x06i48efduyAW4Uebcp2+UzYQBxWf2yU+C8pc4QlJDGpvK2SXjf+3puGA+1HTk3TbYVJbi3um06TqDSqaDtNkBn6/RYNkIplB71aKYxDa/rFTQ8gPKs8T1qorMbereVUp2A8p+XgTCflNcYZNvKJ37m3lIF6jeP2vE8krXX3+wkRE37Af2pmmH9dxyrULbYoGvwo1Wera1g25TPhgAhBd45lAgLKu/q62OmdWsAf3+m85cOef1DlB7rmimQhmEwlXUM8vJulOl6VAwseWsAJBxMkmeBck9nR1adIQB1VoubQSUJBVR/sL3Kh7Qd4taqZnfgVHJGntqj5qVkOpg3JabfSTdxNwqsH7Yqk6wRD7v72t7Z9jOlKm/e+Iby6HPu2f6q+l8yFSa6xok6GV1bKEZfuxCtQ149sHi3IonyNirM/lqlmDyS8vAkjMIoAFyh8x9jRjzhRWMVr3um4I5N5+rzvBJeDL59zRYhUH4LZdbzZDP424BkccrgC3nfoNeVLET8qHMVauqaUGAbDoRk8Krx5lFlHNlD5MXLbgJKG4bqeZ1IlGEEjU1G+LOIgk5G9X6XLDsdb3XdsKmtQ8/RDwBjUmPQ9hWU7iTf3PbpT5EvGxvf827Raf3QKyJdzknoDIHxhjiOBv56RqzLbN1JegZJK6LqHjI7EnaEfYZkrvY9Iz9EXpQ2jPIKKnJKKY2FsGYMZezai6c9qU6mOGYFt+DR+b7u8fo2U3QqpIwyg9NbR3hkhnTHEmOk5rzFwVQHBAZ/96arZjF9E4v3XckS9k1ODfLKGAhJ6ijF6F+P3E8Cbkdm5UNcElsjnP/Sgfeqy5MfSiZzHHpoedJlIQNTjhtYyiO2YvpqA2jFynkAAWF3xYtYPwyUqB7jefGykJUYdCNd3PNVYKwuYljbXkTF6HTYKmFeLOR5naiMg6wQxoyE8Ewpr5THKpGNbxoXk868kIHYV4aYp6HT17XReXUxb18j95BvTiN6twcbPeY4Eryv9R1ErmZn5PqSyuCM4NCs2bpNXrei61OqfIhKDFk3EsLz5Y+RmfOfOgZTrczQggGS28ByelUWzwtgJU1HwIhnTmSMJuPAY/UFvCGEMw4M6UF+ttM5UoU04LUONxqoVXl4OmsQoxMZe873DvURA1HrXpGYZ4xhNBjd2xJTk4UlyGMPLwKqleu2wuVZLwLmecF0VIIDngeECzg1tr9iE9t/wYVdrALkIC+Gz4k9INInHZbu6OKe3UScKbuVvLKRwVBtXEfozF5EbaLNrC1Cbb+p572hW8LGWd31/hujHu+Lo+NFUfQAkCzOaHY6mq2h5mVlFKOQhozxiHhxyl22RMhDKMQMF/zkcQeA4AHZPYgmXt0m+lkHg6w+89ZFFr1OQV68NuC7UEHnRmwaYT0LPL5zZcN6EogRdWQl4ttaeR/u92Qg0/0sDy/bx/Z3sqbOJq+Mx3POCTsMPMINe4OTrIE5KhJm1SDVNQSqryF2YrLqZcCwczQ79tyJwYFKDgN5O83yHQmB9zaCd9rgbmUM/FFbVV0Vk3IYNCRzHr/uVvRz7+T1WBH0G5grgi+JqbR76oJpjgE4C3YMxuwMzakvedlcyMu3CsS87P9duqR27zxsEMiEaewWrDZlQV4fOrD65rXzpUpqOyv+nSbVyQuejc5jdoV2amNMZVmQ1wPJPi6vDFlElLQsAjiJ1b+dzIa8vq8AlLd9JS2EgPe6vJ1c/c5OVuT1gPIrHm5aW6j/Lq1a4XqixuN152xtZoNfVuT1qAAsX+OX8CEhTYQn+7q8juZz1dXuMNQhyY68ApYNfLZx+E0JPEVJaRBgO5Lvn1e9SKtDkR15MU4A4xkgMN6ipJkICE9whLirj3PrUGT1Z/3rhpXrgsAQAll63iGjy/OCAAgcPHnyJPvfgi1dVRAIIVDChhAqJW8VCJSwYRXdVIwMIVDIG0Kl5K0CgULeVXRTMTKEQCFvCJWStwoECnlX0U3FyBAChbwhVEreKhAo5F1FNxUjQwgU8oZQKXmrQKCQdxXdVIwMIXAUyix50xHQl1t8SM8H331fxDX+58L0mkrJQt6EHBBx7c8e8Ufn+C6Ze35Dl2uXJHMhPgS39uzzXMibCH2Rkt/8GPs/FxLVfjnVFPIm6neRl7+9UP39BU/myuMmqqaoqSFQFmw1MBJf3pU+fmespIUQKORdCFip5a//7OPPOC3Xosw0l+95F+gQhQwnUvtV50v5H4MWgDSosnjeICyzM5P8z4XZVlxwBYW8y3Rwkv+5sIxpF0fr/zQuf7Z8sVemAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{E_{b} \\left(\\dot{s} - \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}\\right) \\sqrt{\\tau^{2}}}{\\tau}$" + ], + "text/plain": [ + " ⎛ _______⎞ \n", + " ⎜ ╱ 2 ⎟ _______\n", + " ⎜ \\lambda⋅╲╱ \\tau ⎟ ╱ 2 \n", + "E_b⋅⎜\\dot{s} - ──────────────────⎟⋅╲╱ \\tau \n", + " ⎠\\tau ⎠\n", + "─────────────────────────────────────────────\n", + " \\tau " + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_f_ = f_tau_.diff(tau) * dot_tau_.subs(dot_s_pl, dot_s_pl_)\n", + "dot_f_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By setting this expression to zero and resolving for $\\lambda$ we obtain " + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAABoCAYAAABsQY4WAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7t3QfU7ET5P/Bg771XQERREXsvqKiIWFCwgCIWRFHpiBxFgZ8iKpaDigUEVCyAFLsIih3sBXsFUey91/9/PuGOxtxkN5vNlve9z5wz5753dzOZeTLzfJ+e9f5fakW0oEBQICgQFAgKrEIKXGQVrimWFBQICgQFggJBgZICAXKxEYICQYGgQFBg1VIgQG7VPtpYWFAgKBAUCAoEyMUeCAoEBYICQYFVS4EAuVX7aGNhQYGgQFAgKBAgF3sgKBAUCAoEBVYtBQLkVu2jjYUFBYICQYGgQIBc7IGgQFAgKBAUWLUUCJBbtY82FhYUCAoEBYICywdy6q/8LfWzUv9T6lGPJXZpUCAoEBQICvSkwPKB3B/TSt6R+otSf3XqP++5srgsKBAUCAoEBdZ5Clxs6SjwlzSjz6b+xTX9Lunfq6R+8aWbaUwoKBAUCAoEBZacAsunyV0mUWzz1LdP/XepA7xfLzkVY3pBgaBAUCAosJQUWG8p30LAD/fL1O+d+nVTf0Hqt11K+sWkggJBgaBAUGCJKbB8mhxirZf61VO/a+rfTP381P+xxFSMqQUFggJBgaDAUlJgOUEuk2rL9MdFU2ey/PFS0i8mFRQICgQFggJLTIHlBjnmyqum/oXUf7TEVIypBQWCAkGBoMBSUmD2ICfX7dOpvzX1SU2Ol0/X3CJ1APfTpaRfTCooEBQICgQFlpgCs00h4Et7e+pvTp3Z8fapb5B617vyzd0y9U+mfkHqAPOyqUcLCgQFggJBgaBABwrMTpPL+W40uMulvnvqgkkmvePN1lx/Xvo3EsM7PNL4SVAgKBAUCApkCkwKOd0p9+300/emDuyelvp2qV8p9UnvuMma64BcmCwTEaIFBYICQYGgQFcKTAo53caVxP2p1D+fuoolW6Xe18x4rXTtNVOnxQXIJSJECwoEBYICQYGuFOjqHes63oUFlb+cfn5G6gJHHpn6lbtfvtYvlfO6YerfSP1na30bHwQF5kKBf//738Uf/vCH4te//nVx3etet7jEJS4xs/v+61//Kn77298Wf/zjH4u//e1vxV//+tfyXpe+9KWLK13pSsXVrna1Yr31OKyjBQWCAuMoMDzI/SLd8gOpS+J+eOr3GTeFDt8DuX+lrgrK31OfHX/pMJn4ybpIAUBz5plnFp/5zGeKBzzgAcVtbnOb4rKX7WueWJuCf//734uf/OQnxc9//vPiF7/4RfH973+/+P3vf18A1z//+c9FqkxUXOYylymufvWrF49+9KOLK1zhCgF0a5MxPgkKrEWBYUHu32n8j6XOVHmT1B+c+hB3uE4aR01LNSx/m/o1Uo8WFJgjBf70pz8VJ598cvG+972v+MIXvlAceOCBJdBNo9HR2AAZ7fD8888vzjrrrOIrX/lKCXC+u/a1r13c4AY3KK54xSsW//znP4sf/OAHxac+9aliiy22KAH2Yhcb4nDNkYhxq6DAAigw7CkBQrQ42hwtbqh6k/xyV0jd+LS5ALlEhGjzpMDlLne5Yvvtty8ueclLFp/85CeLd7zjHcWVr3zlYuONN55YowJgf/nLX0rN7WMf+1jx/ve/vzj99NOLhz3sYcWDH/zgYtNNNy3WX3/9wj2jBQWCAtNRYFiQe3+ajGCTu6dOixvKbQDUnHcBLb+ZbsFxdVCgDwX4w7bccsuyM1nuuuuuxY1vfONS22I6nKTR2o477rji6KOPLk2QO+20U3GRi1ykOOCAA4ob3vCGxUUvKqk0WlAgKDAEBYaLrpQqQItjsrxj6tcbYnprxhC4wlz5h9R/P+C4MdSqp8DXvva14lvf+lYZNDJUu/Wtb11ss802pRZ29tlnTzTs17/+9eLwww8v/XsHH3xw8e53v7vUDk877bTiggsuKM2S0YICQYHhKDAcyMmJ+1rqd079TqkPKYyK0uTj/3PqAXLDPf1VPtJXv/rVYv/99y/e9ra3lQEdQ7WLX/zipelS5ONnP/vZ4mc/6x72S4v73e9+V9z1rnctttpqqzJi8kMf+lDpXxNUYuxoQYGgwHAUGMZcSfg8NXX/Ajilu4ZsoPhSqXvP3IXR1EOOHmOtMgqIRAQkhxxySBms8chHPrK45jUlWw7Xrn/96xd3uMMdiu9973vFl7/85eJ+97tfp8E33HDDMpiE5kbLNK/Pfe5zxaGHHlpc5zrXKc2W0YICQYHhKDDMifpMmtA5qd8m9c1SB0hDtyzgSiWIFhQYQQEmvyOOOKIEkQc+8IElGA0dxEHzuu9971sI/f/85z/f2RwKHB/+8IcXu+yyS3GTm9ykjKS81rWuVTzoQQ8aNCVhBHniq6DAOkWBYTS5dyaa/TH1e6TepsXRwgSOMDn6+9KpM0MCL/9nhpQeICeuqWU45vOLFhRooYB8tk984hPFu971ruIRj3hE8ZCHPKQALLlJsv7hD39Y5p4xD4pi7BvocdOb3rSgmTFBAtQ73YkZY3S71KUuVdziFrcoozKZOnVmy6tc5SqhxY0mXXwbFOhFgelADjgBt4+mLpdNMeUrNsyD9iWt4OjUAR2gEkgianLD1AHe11P3loE9Um9yS+RIzQC5RKBoTRSgwZ133nmlFieHbccddyyrk2QT4C9/+csyWOTjH/94+RltjOkQ0KkkAmhofHLfhPnzuQkKYUZsavxpd77znYsTTzyxzF+jMXY1N+YKKsyqD33oQyPnrYnA8VlQoEIBbogvfelL5RlzZuWPdmnTgRzA+WrqP0x9h9SvnXpT2oDf/Sr1I1NXf/JvqQNImtzNUzdXb/7eNHWA2ARyfq83jZ8+jjY8BWwqGg9z3C1vecsyVL4rEx9+NqNHNFeVQk499dTixz/+cXHQQQeVZsDqfIHcRz/60RKQaE+iGb/xjW+UIEbDuvzlL/8fkANCgE6aABBqK6O12WablYEjIjiNf41rdEviFKzyxS9+sfy9MZaVrqOpHt8GBeZHAedb6o381Ec96lFzAjmBJtIG/OtdcVdrWbBISwnd26YOFFVEobXhB9lUCeAkkLf587IGN4wXMd0oWp0CGLvKHsLt//GPf5RMXuDGi1/84uLlL3956TMaghkDJPfqayasz9v/zVnFEEnae+yxR+nvqkcq0taYLkmBgOtmN7tZGfQBbJgxf/SjHxXf+c53Sg3OtWpEAkDzbQM5Js8b3ehGZWL3OeecU9znPuPr2Fn7ueeeW1ZOkfw9JB2aaBOfBQVmRQHWk1/96lelgGlfM9/jE23nZZp5EAx/+tOflsJ2/WyPGre/Jgec5Ma9L3VgddPUaWZNDTBdNfWXpP6j1LdO/QepM00CtkumLkXAv22NhkeLGzI1oe1e69jnWWOzgfiWaDfMaJi9vC7MXhRgvYwUENR93hX8qqWsgMMQzUEzbwB3u9vdrgzvbzpkNLt73OMepUnz7W9/e7HvvvuWWqrfPv3pTy9Nln3aRhttVAIcU0oXkAPIND+MgUZZbWhO0KBBM532nVOfdcQ1QYFJKQDg3vzmN5dVgPCR5z//+Y0C5qTjNv2eD/xpT3taeSYUYeja+oPcP9Itvpc6zewpqQOxLs175oAjP9xVUhfZ3UU7cz+t/4zXDBD/1CmAoarJeNRRR5UAsMkmm5Sg5m8h8rQ4G6sOHCQrm5zfiz+rS2PSe+c731ma+I4//vj/XAL8NGBZv8+4cZkdjWc+r3zlK0dez2/msIhqFKDyvOc9rzjmmGOmqkG5wQYblKZOeXmjtL68DkIEQDQXdAZspGCRmsDyjDPOKJmGKMynPMXhihYUWD4K2OuCuF70oheVQiLrCR/3JFrWJKsy7l3u4t1tk7X+kAGomB3xps1T7+YDLIq3pd8KPnlh6g9KvQvAMVXKj/Nb4BhtMAowS5K+PvzhD5e5Xqpx2KiAJvul2syUmPoHP/jB4ra3vW1ZGb9LA2ZAVc/NfeSa0R75wK53ve7lcsyfn01XaqsL2FpPXvfuu+9epgIIIunbSJW0RMDFbNkWqGJ866d1MgPvvPPOxVvf+tZSq/v2t79dgi5hgra51157dYrW7DvnuC4oMC0F8AjCnQpArDlbb731UqbB9Ac5r7z5VuqAh9VpHI8AhnLpPpz63VO/depd68/ih4JVmDPH3Sf9ZNIm7BzT4Z/BgPhmmMCuetWrlq9Vuec971k+zNXYPvCBD5RrpjHYpJy6dbNk27qBE7DQuzbXoK2ajRrT3N57712CnL8dmMc//vHF5ptv3mnIj3zkI6XmI5pSXckuWiDpU4oBQHzGM55RzqXLdW0TImEKIGFe/O53v9sKctZNKGBWVQ6MkGBfERJEae62227ltXwOPhfZGS0osMwUsF+f8IQnFM9+9rPLczvtWZrFWqcDue+kKYmuVp92nK8MKL45dVrcw1LfMPWukZLSFFwP4AYEOWYutQNVgOcnwagAm4AEYeSk8pe+9KXFe97znlId93lX31Oa6Ypo8rSY20RPTvIyTqYK4Aa0mpixKvtMboQH5sFb3epWJeN2DaHC37Saww47rAzCYGtHf5oNrdJ8xmllxgYa5iJdoMv73dwboNKaaHGe97QNQNLArImA1NT4No899tjSLMwsKfnbWwdoga4VDu1ftJwGcJvuPevP+DWzFl7NSZz1fWP8xVOAYCc/VMAJd4dzPMSZGnJl/UGOZgXkNk59nMAp+vK81JX+osHdMvWuWlz6afmKHdGYlKnJCr67urHJl8JQvX0ZA85+KFK0ByfizXck7De+8Y3lbzFSDHs1NZIXxozxdmWuXg3jHWiuFThRp4l3pAEv/jxN1CMtEVMHckyVzIM+J0DQIu9///uXGoyIQ/OhEfFZtTUASTgRLOP9asycXRrToBQCc+6qLXYZF8DqgkmaGuGIQGDttNU999yznENfMynfJmCclf+jaQ1tn3kHnmdtLgFybVRanZ/b1/zKzrCC40z/rCpNgu+iKNDFI7b23FinvNfNed4k9XFv6lYAXlUUuXCPTJ32N8md1dalzQl+u3LqAzTagnwqIPaYxzymDOW+293uVmoQpBKvPLn5zW9efv64xz2uNOlhyiTW1dREA9JiAQZg6dIEbfA/2cgcwXx4Go0q14z85je/WX637bbblmZI4EW7A6ZAkKb8mte8pswRMwfSn/GE9zs4qoiMakx9zMvu7fouLy8V4IEhW6egjiEjF+XZ6W37g1kHM1DthO/TPusLcOj8spe9rHyTQdv9RtFu6O88T3so3qAwNGWHGY+w/ulPf7p47WtfW549+2fI5twSGAk43B9DFkMfYp6TQM1/7ycI5Iep87NRbJqSt/OvASItTiCd394jdYEkrocXXehdBbluQXxp4NEN0xENJOQcY22TiDFP2opwd4y1KxCMvvvyfAtk+LLkh6nWL7qPxjGq0eJoUoCJNpHzvJgCaXn8ZGgmYZOQwCSHGQM7v6F90Xj4pQgY1aRtwGM8eWttjTbI7IepquYvurNLI9TQOPgd73hH74MarpkzcG7zT2Is1kyAEljSNzfOOJgWvx5a0+gW3fgUATezd7TlpIAzx5zo7A4Ncva9M8Unp5qQ6GHnfFaNoJwjkrvcox/IiayU5+Zq5spRIIdXfTR1r+HZaM3fR6d/j0j9qNTPSp2WNqpdkL7kk6PFTWLmHDEmJkz64Ica15jl7n3ve5dMioaymhoQV6VfcI21yR+jpbUdhN/85jdl+D2TbjUK0u8doNe97nWlyUJhZCCImes5UtPmBzR8VLQapg0aUG7mw2zaBhZ+J3CEX01+GiGlq5mVD88cAfvQgURA3xrbhCUJ5yRcZlXz7tvQmTmX2dOYUjgW3VhDmJuzRr/o+cT9/5cC+XzQtrtYPPrQD9ARdJwrLxUWzzCLZv8TjlnVCM1dWn+Qo4nx6BHeRnn2CJofTJ3WBxhflPrrUn/Pmr9fm/79fuptjaZHEwSk8GjUvdrGaPgcg+Yn6pqQzG+HkWEwpIjV1ABWNtkKZX/LW95SBoM0tRwFSfulgeUGlGhKzJIKI2dTIG3Ld4DOAWOyZIokWT7pSU/6H4AzFinNRm4DC7/hU2MiYfLrWkbLdUDG+F2f+X8W1+EP4G1tTfX0rJ852He0nlFrG3crQErrxkzQNucXjrtult97tpMUBJjlXGLstSlAOCcQESpZsKrBc6wCufDD2ldO9ok9yQ3gXvboLPYm4Y4VgyWnKx/uB3J4/E9TFwUumXtUZKU7CBghvPp789SfmvreqSvoDCz1tkbrPTd1eXjdk9zbRuv9uc2BcZOcl83m3HtRlQtpUwJDbFIAJ9Cm6W3aJCjgRiOpmtwweBoa4YFtPjNyZkcAICgDMPEJkMBI/cykdcnSgcS8R2nY/GpMlJNqDg40wJlF9Jd1YhZNOX7An+ZKMODnnaYBOSbzTTfdtBRM+I6jBQXaKABoFHUgfHojR27OmHPOtQAwANMQ/l1n2jljFWL1GbpRMvAQkdddz3E/vYifjRny6qmvN2YZzJlvSF1Mg/Od7/jx9DfQE0wyKor73PQ9bXD91P+rOKT/zLeRfjBWPhBayEqNIqMl0Waaop8Ak9B2m5TZEiPlU8vNtcLFRQdi2NXm0DgkgiuqkqJN6TqgRfJCO8KC+9Q1GgzcwfPvKP+OMYDFpIEjGZSbJEBzxBDMvTr/LrvMfIEzoGuK8pTHR8oVTTmtmTRrcrRRJuFRiedd5h6/Wd0UIJSzvgAGZ06zzwlKikCIMyB02rcC7Jz3vgFRxmZZYb5mEdJHCatdKG+/096cWWZXAiO+AeS6uin6aXJATtBIF5ADgupSeplqFVL59YwjvUBva99IX7jX+qkvUJMzPQEUmOEyOPvbyDXuc9qZHDHraGo0Lr5KkZHKXVWbazFzmlzdTAgYAKcDUx2b/86mxIxdTwsmgdEa643kR+rkAx1lUnQvm1+fpNGyHIxcZy9fm4GfttVH+sRImGCtUypKvXHGEwpGral+Tdv/rRlNCVxVX2bb7+PzdZsC/Ov2n4LkgkPsdUKiIBFn+RWveEVp/pfrxp/uLR7TNtHO/ObSddr4TJd7AGNzfPWrX11ss802ZewA4ZvVqEtObL5HP00OKKlC0i2orXk9qp7cM3UJ4oemzgS6RcNP5eIBRJWexseINAww3EekB0xmVOTfcHebzUiYsRwtG8fGrmtT7moD8R+R/qrN54JKmkxkGC7tloRI6rK5AQrQ8h2QoyH6TrBJE8OX2E0jpEHmiihNVHAtsHRY6xpl0+/zZ9ZrfsBbAIpgIs+TdnrKKaeUQSx9EsRJrIBOQEudniRP92TGaaLbqPk2fYeuaEpjbtLGm66Z5WfmQ1unoU6qWc9yXjF2UQpeAIzlRtk9zwpAPPnJTy6FpGc+85lljjB/6k477VSeV2kGznnVgjMpLZ0jGhy/HLDrs+9ZhUQPqy2LdwBpVp7TTjutfNnxJNpmP5AjQAMlPrlx5so2Cgmo2zl1uuSJqR+Z+vVTv0ntAiAnopLW2G+2tQH7/1eyso3S5KvqP+p8rwTUoqAkb4ow5YyWSiH4BHgL/5Uoj5HWNzpznwMCgOq+NAwX+PhX/hpt0O8wf5oHiQy4qdfoMNVLh9nUzHo0RFrkKFOESL4XvvCFZZ6Ye9r0XZo1ZonWYQH07uNAWpfQ/ibwHTU2kOQjtM5sDqr+HoBiMvKH5CphPLTFLOG6vwPLSkDD5TMEGjvssENpjqzSyTVMNyLXqpocwQB9XaeJ3iS1z6Px9Uj8lw9JOx/13OYxn5V4D4IQAdDeq5+LvuuxV/jPCWD2pT3ujD3nOc8pBUml9ARu5XMMSLy9w/9pd37TZG3pMh9CLZeGe9PmJgU5e1kR9yOPPLKsNKXYgzMOoNHKOiYR8PrDBmtXX4BDKSApylQAiyjon6VejwhlzhSRyWcnP26a+6XLp22kVUyta+jqtPebxfUY6S677FKWKLMJAcvJJ59c2ultcNI47cjBaKr4XTdT5jkyIdL+mCqMKYoQyDERAgGal41p7CZGqMAyugJcEhsAMycRsPVgDsBs49P8AITaeQSQcc0caUBAkk8PYzEX8wQyBIBJmYxDnF9HBMTrDfMwXwKC+6jiAmzzfTAjIGjtumcgh49Psu4bBIAkY9oiWorYJFBkJ7/PjUujftaznjW4v87zAOaATUm8bDplEutaN7ROn2X4P4ZuPbQeZwLdFYa4/e1v38kshg7MfJ5b15zN6rqBkeeoopJzOUSzLwlVzrP6u9ZobSoMEe4AXNXcbd8I5GIW9FtvHhGMorYrgKzvxVFzdKaMzxdIwJ2k2V8CYVhW8CmCHp5jTGfFuSDMTXJO+4EcsBHSPyrfT14bs+aFdXgvXKc0gvNS/3TqZ6XO3yaA5fapb5V6PVDs3PSZoJPbpj5QEngaqXfLmhzmuFIbJkrSt3Foa15PwyxpY2eQw/Ax5y7AUaUDwBHBRcuiGbkH8yanNj+ejdl2WGgoJDiFkyWku7cD3ySxMae4DwkxV0rp+jyADTAbVxezy3hZQyNZ0hCbzHUbb7xx8dSnPrUEBOBGUAJ2mQ4OLtoDOJKqw2zt1lWnlfsxAfm9oAH09Vt+QJIuZuSZYm5yifpK4k1rZxomVHilETDNPhH3Ma9JzEdN4y/qM2ZrEYbvfe97yymgo2hgFWUUMyAQjYviQxtpN/ncNAlxxs7P2jmo/oYAyIJi/w/RCCOERuMBOPPymeeGd7EmNOWh+t7etL8ILp4rUzutjKBGQLXH8IkscBFgmTz9ptoEWTlr7uWe9n6XJhCGgGtMZ6p6TtHMOFUhscuY/UAOwEkLoIU1xS/kBHAgtmnqfGqqlqjURHv7eupMnr7bOnXCi8jLepTll9JnSoIxYXox64KbDWCjYkYrudkstC7S1pDN5if9oo/NCiiZYLqYAGl+rnMwbWwSMamtzexGW8lScx0MhlzTqLGACWZgfW0mViA0qgbnqPHr31mnA45WtDjRcJgw7RfzATQ0AkAI7IZqGBXpGvMhWGBAObqNFksQacoPHOr+sxrHfrMmWgMgu/vd714ycn5jflsvAyVIqKozCsRpTTQQQNLUCJGCPwgExua7JfxlqwhQySBUvR6v4ULIVoCu2guNzb4Ebkzw9o0zzyIiN5UpkFAFRDzPPC56EDCZ8tFBOhHAtzbWGfPMzd++I7Q1WTDsR1YTpnmaV72+bROd0EAaEsGbBtkkiBrHuZ9EY+4HcrQzWheNTPFkuXLVOE3pEWemrpSXYDNaHfOkYBW/BWq0t3ulvlHqbbUvP5u+A6I3Sn0+LoZ0o/aWgwqqD7v9192/sblsfiABSFdaszlFnGKwDryNKIKTdNdVG6TtAQuHsU0SrtNlUeBmHhi/pFTPi4m2mhhfn+dQ/7c/MEiv5HFvewYTsS+ZnmiLpOacRzTEfd0Dc1br1fNkUqumLdBggNw4bWeIuQw9BrO4tZk/bbvKiIELfxDzMCFlFMjRwgAIhl/du0AKwyYg0IA9H/fy7DyzXLMVPwE0mYbOk/uKAs7CiudOgAQco5pradyem1D+DAbmBTSs6Q1veEPh7SO0se222+4/Qih60ACdWS4ApksaO4HVGs2J5kvDM19rNqemCj6AmSBqf7quC8ihl/mjU1vksDVpXf3wftsP5OS2KRD/vtQ/l/oWqV/acGuavzdMHZj5Lb6tKPMNUpc3R4MbV72E0GBsGpzUgUumvuCWHwAJposK7mHlvDp/a/61uYwF3ASx5I1DQmbX78rkF0yO8vbmzyfkcNBsrE1Ai2RyZpgm31LbvBcJWm1zavrcMz3xxBNLCVXARZMk23TdtJ9hLBiHTig44ogjSh9LlpTRzzPIbzqY9n6ux6SZpDCdJz7xif/DXDA7z5gG1OarHWIOsxoDgKCV51dnws4mBg8YCBf15hy7lmZNm/VM6iY5GhDAURMWUBIQmLS9SRvw8YGxVAA593AvNKWJOT+KwgNX9+HfwjP4PptM+Hl++b2YzOT1+qyABzDx19LmzDu7XpxjgE9I9bqcahCVaEldy3ysizAKkN3THurS7G+aJTrwcaI/jbLaJg1icW0/kFN95E6pA553pQ5cqyAnaXvb1LOmJpJyvdS7NnjArCmy8j6p182YXccZ8HekDNK7Q4347PBNEkz1ljYQCVhkHSZhw9qopCxgwJfjIBjb5jeuw7BSQI7GgKmSTB1M9S/54hxYbxjgzCcQrETttL51PKPM1D1PJh0+L9L4ItbHX3nAAQeUr4FiStIzMxbZyocyRAOgmGz2+1XHBAT2dDaXDnG/eY5B86JROYNVodUZFb6eBYq6VuH84gVMggIjgAWNqJro73yLrMWsacCeVR5HpRrh+zQnLgP7Chhg8oD36KOPLgFnn332Kc2a5rbvvvuW2hdTdT0QK9MMAPFpG4uGxVzZ1ICk0nv2dOY11mB8mp+grrY2iSCaTdqE+K6NoC+1Rz4cuqCroub2WV++2A/kgNsGqd8qdf7aJ6cuuK0q8NDc9D6NFqciisAWQScLBjmbQdj2CSecUBYftQm62MezCQ8Q2HQkN9cxB9hopF8mOpsWwPV9iH1IPO01GIF1OZDWRKuoJkJjEBgks88iQGDa9dWvd+BEm5GAaU/MW3wai9RgSMqYJUZAAsdYCV60kqH2kuesAQNMtMrkMPVdd921jFQd+hnTboBJFgjNIzNlc8H06ppT/ZmN+z9BARAwreuYq7H5qz6SglGkcTQ9X8Kb/X788ceX59oex4ir83H2gZxnAqCqQEkAQUf+ZwBAEHRfwgQBilUEkzcmwEJnmrt5uaYN5MzDvPkQu/jb8x6xtwEcsBfROMo0O46m1e/xOfeYpFwYevMFWrMXVrMiOGsEqawIdOG91Xn0AzkjMEM+KXW5bpK5/y91psiLpj6J1pZ+vlaTOvChNZ8K2llgZKWD7SG94AUvKCU3hLb56mr0WmtIH/idLH0b1KbL9uSm3077GSbgsMyrORC0Gfc85JBDSgCvplbwLzjA+koMSqj3dBp8AAAVQElEQVTTEWB7lg6fXCPaEqZWXXP9mnn9H2OoMmPMMjdMZhopGAhgKjkNhC8E49Uw6lFSf9f1Ay/nLHd7GZAw0fEH0W74drLvigDlLNFG8ly63qv6O6ZCDBUg2cOCJfi+7G1Akl8TVb3G3EQcsl4AK7+jpdX9doJ/mOlYN+r+Ixo3AHB28JYM4GjMx6lYQ7U8HLrQ5tB7lKmSNu+3eE3VbzqONsL8CUmetfkO1ZwP+y+bRMeNm60l6MNKQuiQnM4/aE3cIKJFs7LQVZDrD3JKdYmMvF/qp6cuovKZqd8tdd9N0wSqCFzh05Pne+GZmmbE3tdKPmSC00jM/E9NNvq2G7D3U8EnUfPbxmr7nCQmKkqCt40yj8aGj/E4dMwv9Q2X87lOOumkVifyPOY51D3QlbaCiRx66KHFS17ykrXWPNS9hhrHM8HIRQmOC1houydBDaDLmxLNCQyYzIZsmKD9i9kCEMzavxg135I5qIJjr9nrIvAwP5/RWieV7KtzN7Z1ARy+KOZf92SudL86iOIHAqyA0Otf//rye/4r/1bPAI2LObcKVtX7GtteygKJ82LdGDhhqtoAvjXzi40qSk7oRBN+8EkaYYLGCajr651knPpvPRc06RqoR2CkHbOUiAIFavyHgmVYjOT3+XePPfYorShdg9r6gxxtTRrBq1OnyZ2a+oFr+v3ry53g/5SRL6QuPeFRqfP/LaB56OziiExqlDNj09pso6Sp+lRtGgzSpgeQpETSG83A36Q4UjgJBfPoA4ZMHQ6Thz+vxvZv/qStJmcwxsoEi3ZtvoF5zXVdvQ8GA9ym0aTtR9I9qVxY/WMf+9gybYGZ1L4dgikCOW4ATN58aWiEQyBHsLC/M8PM0j4z5hD3tz6mMGY6+5WgKKioKU/RPnJugTFfXDYbNoEs0MTc21JggLV7+42/+bTxlb322qtcb7UxXaI/Ydkcm5qzyDy63377tZozm67zGZ5mLgByUQ1PBGDcAXiKPWf/UijQEOiJ9vT9cccdVwpBnlmXVIL+IIcagI7fbZ/Ut0xdFCXta5omz/q01LkCBJ0sAOQQXBUQkhrtjURBOuKDQvhJbdbADYNQKcLBtFE9OKZPm8v9+Pz6BmmYk0NgnvNoJFACANMdc0+T30IeFyZgw04qWc5jDevCPewLDHMSoayJLoCGFuE5M6mRtGnvz33uc0uf1LT+OIAiSlUQj7k6F4AZg6tqR01zG+IzNKK90aDOTcEgfGjKXtnfQLd63gWc0eaY0EYBvO+cbWBcbwRbwG59fsMqAuwIi/xp1ZaTo5XiQ+smegB+vAXNmHIneR7mx6yK7qO0xPoauvzf2OZWD9ypX0uDwx/lLBKgCFJV/6Y15z3BT+p5AHRBfX47rk0Hcnl0qQHZrDjqLeHjZsPS5o0DXrIqOXyj1OecOsBs8KY3valk4qQHRM/VOmxMBG+TptqWRyJlYyad5MNrDBvLeMCtLVS5bcz65w5Lm9RY/+20/7cpHVTmgrZDRTq1Mfk55jWvadcV17dTAGMBBCRnwgugEwovrYAgM80zxuyN2RZQ0T6r/t9kvx8thjmQpQWz97fQfX8ziamsk0EOGOU3Xje9baI6GwBpXU3vnjS2M48X4AGsRs4ROlYjNI1HawG0hIxRuYjMvbl4Al7QtfGZs1DhcdNo/E33wy+B3KgAIRqoGpWCuu51r3uVfLJtH+CVaCHB3TOSu9elDQNy7lRNIehy56bfqF351dTPS32X1Glx3Z9X04idP6Od0LjkpwinZTKhHmfnqYGEzGetqfPA6YcAjITmgTdJYpOMtQy/xSDQy2FqMtWYI6ZBopxWi1iG9cYcLqRA3vvyr2h1Rx11VBkF6BkT4OoMepnpxirD7wbUnHGARPsCJs6pYBTMtirQ+gwoML+PAwSAZP83VZ7BZ9DKb9zbv0yRmHe1MYuqa7nTTjuVkctV8DJHzTPxN/MdAWQSLc71OfLROkdppn2eZS5EPkoA4kdkpuYPFOjT5Pqo35twTfvuGmg3HMjVZ9Ln/0q3fSB12qCgljkV/6B1cL5KEbBZgJtXU9Rt40J0baq+h3k1AJzHiqmhDQkU7eqBOIQBEprDO6nW22fbxDXzpQBmK/VFQJaoY9U8AAJGPUmjQZDGFUbOTLvr9UxgNK0239m4cWhYwuaBTLbWZEbPvy3K0b/Vs45pCxQBJuPOMiEAM6YpZoEwz4lpkXXHb0RecjMwV1YjItGDNcmcpGhkoDAW8MOvmBeZMLWctzvONFini2fpXsYduqFxjjloG9sewEuYgIGdf1kMRlUQyrEMrERd2vKAnIhKBas/lrq0AX0a02eX1aff2FxSA0ikpC4AJ8ikDnCGI8nZFE011TreblX8DKg5TA4802XVHOHAOIToxLQwqWS5Kgi0gheBKQknZ5rD4GktzM5NTJ15zOtZFDMGVgIXJtEGMFamO0Enk4Ic5g8cJr0uPxrAAZRpZoDGuwbta+u3txUZZ26rApT9TrBr8kHXH3kumA2oMOWcRsBPRYukMWYTITNlU1O9BCNH0yw4EsLl9AEDfCo3Gplz2GZZaRrfZ8DT+OhgjLqGiucpL4Y+k0TooiN+6vmM8vWxAPgtHkzY8S+BCX3kMTLj1htNOOeE1r9r+v/ygBwt7qzU1b0UyDJplZSm1Y35jBbCkQ7gHDbOdDb4Jpu2h0UyYZ/vKkGMuf2K/RrDw2QceoevuvnRiZRpo+bAmqEX6h5MFQDWHHL3WU4expx0uUwYdZPQMvS8VsN4aCkhGYMioIg8BAYArc4ArZeZCZNyNtB+EqHGHlLYev3115+YdBgzzacJfLsMRktjHhMFfOyxx5ZrkIvlbAMka7GfqiDnb8y1i9ZDQDA/8xQ8wt+kyZ9TLUXAxDjQAA58VQIsMH/amrHMjRZbBUe8DMA18a5R9CCwoz8XDZAxprNCyAGkH0nJ5bkE2bj5Vu8D2O0hwDsq8EzxAh0fwTeUQSME8LnZdzRVaSI5kjZHkZqjnMYubTlATiSlEl5npC6IhalyDr44TmQRlMyQgkyU0Gk7NDa835F81nVNzsZCh+yjqG40AEQyt3G75rFUr2/6m7ZNqmUmBWxMHIQSh94cMNhcPcIz8r1rdG8WFpkWINdE2bU/wywBFcGAxEwTUUE/p7jQPqrRhhirnum99oijPwGcTeA5+qphvpXeAjD4FlXXAHq5gok12m9V0LCfMW0M2T5v4xV5dmhIE3EeNk+5hjRDdSydDYx/lGnR2N6liNlL1wGuTMSECr47KRbV+9vfnkEXAK5SDwib27kpqpS7xjjWyRpj3rQ4VW1GaWNNT4NJlsAEqLooBe6pBqrYBWebr07OnDmxFlgzwQEQm6s5M2t2acsBcrQ3xZiZK5+YukjNOTTSC8JJ5sQIRzX2eAfCJg8/U6qvnSRe/gZAk5uDj0kyp+y+++6DMK+sQZN8Je7m924xLZGUMQvOahoBpkLadGCySdU86z7DUc95Xf+Oj0uumIb28rdoO95fh/4YHo0HTX3vDDkXtJ+Vdi6ABA2LVqeCiXqrfIxAm3nOmqogR6vlzpArNw7g0I9AYG/mt8PTxtxHikLV/9a25wiSCg/QMs1j1D09NwKe8zdpE0jkOuuXGA/48DlxCYCGVWYSMyiwJRg5h121rTxn63SOzQOtRbp7a4IUA2sk1Eo3IZB0FVyXA+S+nJb4/tSvm/qOkz6i/r/ncKa9dVHxSWEePglv1GbrP5uVdSUGgA45pNrsSZvMK+z7bOqjoqq6rtbhI7kxYdAsMFmHjxQXkZtdqdjvd54vxn7ggQeWguBhhx1WMhfMG2PEzFT/8BZtPq5J/HH9ZjSbqzBxQplAGhYDDfDVhSNn377WuzQmNiAnYpt1AZ2YHn3elUG7Txe6ek7Mg/jUpM1zpinRbPnlmCrrGvskY6IhNxABoksNzaaxzYmG771yO++8cxllSsOjBTv7k1iJFg9y8uK8N07awKNTZ66cUwNuXQDOdJgrdU55dvW2cj1zmvrCb8OOj3bokf0WDrIyXpzJTLpdaTtqMaRYBy9ver/Nmtqo6+K74ShAimceY9onSWNgBA7PVwI1E18XzWS4GQ0/kv0FxICF1gVYxs2COTIH7qAZIAEeQ4xdvbe5s2TQ+lic+jbA69wSTvueXdo9zQuQq+A0yiTbdZ6EWWZMfAbtJtEq3WPxIPeJNAsVTjZI/RGpL7BO5Siie/BMYQ7CpHbvUeOu1O9IqOz0bORs9zY0Oz5zjLqCQ/ktHTwmRxub34RPAuMIbXq+O8dzcAYIGBg1/4nmPPDhDc2457u6C+9mT03KQNvmiUcw5wuk4C/OIDcLOpk38ypLirPIhD9JkEh1DX3BLY8hnURqhiA+rxga4pwao65Vt9G96fPFgtyP05Q+nDrhQzTsjZumuByfkUyozjZpW0b+csx0PrMgXTFZ0eQOP/zwUkp1oEVnDSXBWYlDh4na6Lm6+lCMaD6UWl13sf/5sfvmiq4uaqy9Gv5JJlwVYQRfCJQiDPJdzrKJZBYZLhqSlUmJtGmAYdK50uCAuSLKzj/QXZY9sjiQk3vo7QU0uZum/qDUpQ0sacPU5W1E+y8F+GH4aoQYc64L9WW+GspU6U7MlfwMNAk2+llIwvFMgwJDUEBpLZGQAlNYH4T5C+DgK/OOuFk2wqAqTVwpfIA0yc1TBOI8goEAHD8en60mEnf95M4YQosbgmaLAznBJl64yjx5/9S7RYMOseYYYyAKAB22cgdaGD9/Rtew3q5TEHhibJFV7PvLcnC6zj9+t/opAFBUx6dF+Zv/kpVDyD8hTTi8Cipd0g6moZboV1HIIiKlKvDPeVvCEAFgbfOyJvfxBgEarOAdaQPVNJO2a+f1+WJA7ntpeW9J/dupi9yXJzmH6ibzIuq6dB9mEgd6Vk2wj6LZGEZocbOicozblwKYPNOkghKCb7yVg7kua1DMlywbcusEZs06OlvQF6sT14GzA2Rn1bKJ8pRTTik1WMWVpWLNElT7rGX+IKcI89tS96YB2tsDU1+/z9TjmnWBAhJK5WrxxzHJyAUSbcnX4RBztmMe2Zy8qMTideFZxBr/lwL2ntw3+WUq69BihLhXrQ05uRogSK2ZpkpLF/q7t1QArgStWnKvy/VdfyN9hFlWdZxTTz21TMXy+qFl8cNV1zF/kBNkImVApK6c07t0JWv8bl2jANMPU0h+DYdcGaWGmC99zlcH4IAe5uHNzgFy69ouWcx67U15W2pcyhn19moBJnVzOsGMmZ0QZs+KTJ02grHLiifJI+syXvU3hEuRo7Q3GiMf3D777DOXdU06V7+fP8h5fc5uqQs28cLV9fpMO65ZFyjAxENSFqUmwpJfg+mHtKxckihXoMZkmiufrAt0iTUungIsCSr7CNnH6Ee9mSADHXCg0a3kxvyq1Jj33DmbKpPodXBfpjXOH+Qun5bvjd/RggJjKKBg6yGHHFImlsq74dAHcPMMjR4zxfh6HaWAQsFyQtW8pcGNS2sBdEx8K70pAiBNQLqAUm/1N5kv4/rmD3LLSIWY01JSIL9dYLvttitTEwSezMPUs5TEiEktFQWYydVRlTvbReiiwa2GvUvgzHVpm16Ds1QPac1kAuSW8anEnEp/h0Rz+TZ77bXXRLX+quSTgqC+Jof4UFVY4vEEBfjkmCy7lMACcH5P21tms16XpwrkpPMQOFdKtPMcXmjThXTxm6DA/1LAyyFViVBEe5q6iGeeeWax3377FaeffvqK94fEHlkeCmDwAO6CCy4YW+YPwLFKSCtY6SBn3TTXlQJwdkyA3PKcm5jJGgrQvoCc1/iI3JrGzIPBiL5kXlrpDCY2yPJQQCCUtAGvlBn1ehv7T8CJ3wiSij04/2cYIDd/mscdx1BA/o3X6zCNbLLJJmN+PfprQCnyTeh2tKDAUBQAWOpDSgSXGgDMmppcOkIWzUcUcIBcE5Vm+1mA3GzpG6P3oAAtTvSWKuYk5r4N4xHiDeAmfbNx33vGdesGBZgeFSEWUu9NHPxzTc33QBAoRlm6JgrN/rMIPJk9jeMOE1KAJifRW9UGTnvmHiHbisDmBHASspBsQKaqBG2trvXRBr3+R5mleHPEhA8hfj6SAoJI7CllvE488cRSIAN8ddM6M7l38I3Koxt5o/hyagoEyE1NwhhgSAoALloch77qJhJtlUMCfJz3uQYgHwegA3LMQF71k0EOMDILMSWp/KBwLXCkIQJMZlCf1RnSkOuIsVY/BWhmO+64Y7H99tuXxYntK3ux2mh4onvVXo22GAoEyC2G7nHXFgoAIeAD6LxhGDgBMy+BBGIiLUW1kZoVuyVRYyxACwief/755UtVNTX1JJDTAlVm9zJH49LslCHy9oRoQYG+FLD3vHlDpX8lrrzHzX6rRh6yPtiTKvNHWwwFAuQWQ/e4awsFFJTddttty4LMmAVw8xbycbX4VFsHYupXvupVryojM73HCxCeccYZZY7clltuWfpOvKXZ+++kJ0QLCkxLAQnhKvCfffbZpe83v5WbRUHQiX1I44u2GAoEyC2G7nHXERRQh1KfpGEmKlBgLKRpvhJAJ3H1oIMOKrbYYotS+zvppJPK/Dt+vGhBgSEooEAzEPOyUgC3zTbblPtL0Ik9yNy+2WabDXGrGKMHBQLkehAtLlk+CtDYMBuRbHx5/r///vuXYMeUKYHVe+m80YAfT6BAtKDAUBTgl2MdOOGEE0rzufeqMVMqZgzglu0da0OteyWMEyC3Ep5SzHEsBQQBKN5Mi9t7772LPffcs3xLOb8b34koy2OOOaYsFbbDDjvEK3nGUjR+MAkFWAl222238tU7Rx55ZClI6UBu6623jiCnSYg58G/XS+adlf3uh4EJEsOtXAoIPOGXO/zww8soTIBHgs7J5SRsFVS22mqrkKxX7mNe2pkLkGIp8Jbwc845pwQ5tVcPPvjgMoUg2mIoECC3GLrHXWdEAXlJwrm9YFUkpYCUnEcnmEXuHbNmtKDALCggBYbPl7AlUphZXNJ4pKvMgtrdxgyQ60an+NUKogDjBGe/ZHCMRmSm14LUc5hW0JJiqiuMAqwKAE+0cADcYh9egNxi6R93DwoEBYICQYEZUiBqV86QuDF0UCAoEBQICiyWAgFyi6V/3D0oEBQICgQFZkiBALkZEjeGDgoEBYICQYHFUiBAbrH0j7sHBYICQYGgwAwpECA3Q+LG0EGBoEBQICiwWAoEyC2W/nH3oEBQICgQFJghBQLkZkjcGDooEBQICgQFFkuB/w8ETkVo+rEyyAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAACcAAAAvCAYAAABg8NNYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADZElEQVRYCe2Y0U0cMRCGuSgFUAN0QEoI6YCICgIdBPEEb4h0ACUEOoBUEEgJpIKQdEC+z2dbu4fvdu07IYRuJK+99njm399jr+3J09PTxmuV9y3ATk9PN+n3m/RA+UOLjTF93o1RmtUB0D/qHkkPs22rfJ+85mFtYm6V7Cyy1Rpz5xj9Ew07xHcM9a/kiPJXysckY7MkR+h8KzV066rBYfQeA18SGPIb3p0UhxrmXeDKR5LAfT+LZbKgMypWq8DheAvbO+SZJd6PSMEZ9TuUf5JfkwehvDmjn5oG8ypwWHOGbuDsL9l30hXlW+sUyoLOwHkXrOw1SdWEwJmOPpHuSAekG+oc1nmyT8Oi9nn9Qv1o5gCRhtQhC2xRZ+Cf20YqxdEe7Z+Dp4ZHDXNXAun6AFCYcSVgAkZX0HmYu33HlGvAGW8OaRYcy5wToiSyVmKzpFusGz2s9Hap2AOQhoy9TZL/1jwzbejINuWLznt1cf37qqYsdqiJuVYfzf3W4FqpWzP3JpmbnJycvNrj13oRfpMxV/PjLxLAj3+LBncgve1UUbmycmlwEdQFICeVvgfVlwIXWXNDmc8Rgx47CvSTbbdesu/ezyOj27EgS4HDghtNj33VEoHJeDq5udP+Qcp3L82/L4z6xbvk8zabQ4CN0674kR47ZTFIMzh6e6Kft0WfWh9+ZiCopuHMdU3DGllzy94Mjr5u47viGVfx2BmklTlZW/XSob3ehKj+fUXW7gtfPv3chie2wqwl9xCVpYU5T/orYw1A2vM+pQdMhL2YQ2HXSvJF69Yh7bPxYrcgtI2+/kJXf9vkAVh8fyQPB/EMjopk1HUnrzVTl9Nn1Jl7FqU9MTp4/YWuE0D9M8ppWRFkvr4I4Gh0+l6SFO8+XL9K7M1lDf3a6y8XXNdKF98s2ElLykZvQtCgstdbt5Rnrx5SbAzeSOqJ/oI9Js9MWF8jvQmBIVHLoMzJZldc0xK73fp55X0amq+/NNoDF72kuMkLLEBl7TqCj2qDmXGUF9RB7YLCM3AAcEL4vzyg7DArAj0LpREP+sn6UtdfunkGLvpOQIwZGTAGc6BGnUWZfcJuY5HSUFsRHEBcZ0wOZ8sPfunrL4H3ZqsVSSJjTvNLymGRTG0vlReZ0zmAjDvXujRBrH5R+Q9l3C+DDXMFigAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\frac{\\dot{s} \\tau}{\\sqrt{\\tau^{2}}}$" + ], + "text/plain": [ + "\\dot{s}â‹…\\tau\n", + "────────────\n", + " _______ \n", + " ╱ 2 \n", + " ╲╱ \\tau " + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lambda_solved = sp.solve( dot_f_, lambda_)[0]\n", + "lambda_solved" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAocAAACGCAYAAACv1yBuAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7t3QnYLEV1N/D2MxiXxCXEXeN1BVFRUJS4AgoYQBSQRXEBBJRNRVxAFEFBQUURXABBwAVEQBbZEbmgbIJRlrgLiBsmcUmiJjHRfPUrKWya7pmemZ7lnal6nnrufWd6uqtOVZ3zr/85dfpO/xdKkUuWQJZAlkCWQJZAlkCWQJZAlkCQwP/LUsgSyBLIEsgSyBLIEsgSyBLIEkgS+IssiiyBLIEsgSyBLIEsgSyBLIHZl8C//Mu/xEbe8573LP7yL/9ybA3O4HBsos03zhLIEsgSyBLIEsgSyBLoRgKiAM8999ziX//1X4v73e9+xQMe8IDi/ve/f/z3b/7mb4r/9/+6cwZncNjNmOW7ZAlkCWQJZAlkCWQJZAmMTQJ/+MMfin/8x38sLr/88uK3v/1tBIUrrbRSseqqqxaPe9zjihVXXDGCxPve977Fne50p5Hacad8IGUk+eUfZwlkCWQJZAlkCWQJZAlMTAI33nhj8cMf/rC46aabiiuvvLK44oorit/97nfFYx7zmOLZz352semmm0Zm8R73uMfQbGIGhxMbzvygLIEsgSyBLIEsgSyBLIFuJfDLX/6yuPTSS4vjjz++OO+884q73e1uxb777ltssskmQ7ubMzjsdozy3bIEsgSyBLIEsgSyBLIEJiYBsYhczv/zP/9T/Pu//3tx1llnFfvtt1+xxhprFPvvv3+x8sorD9yW7qIXB350/kGWQJZAlkCWQJZAlkCWQJbAKBIQX/gXf/EXkTEUb/jiF7+4OOaYY4rvf//78d8f/OAHA98+g8OBRZZ/kCWQJZAlkCWQJZAlMC0J/PGPfyx+/OMfF9ddd11ky3L5swScWJbm5u///u+LrbfeuvjGN74RYxMHLRkcDiqxfH2WQJZAlkCWQJZAlsBUJAAMnnHGGcXuu+9eHHjggcWXvvSlqbSj7UP/93//N7p81d///vfx30kULKITzL/5zW/iyeZBS05lM6jE8vVZAlkCWQJZAlkCU5QAgIQ5+8pXvlI873nPi7nuusxxN8Wu9X20VC5nnnlm8a1vfat48IMfXHzzm98s1l9//b6/m8YF2nrZZZcVP/vZz+JpYozeOuusUzznOc+ZSHN+9KMfFX/9138d3c2DlgwOB5VYvj5LIEsgSyBLIEtgShLARH3ve98rjjjiiJjCBDCU226cb8uYUlfv8FjJnwFDbJiULQ5fzHL5t3/7twgOnSZ+0IMeVNznPveZ2Dj96le/Ki644ILi0Y9+dHz2oCWDw0Ellq/PEsgSyBLIEsgSGLMExNVdddVVMdHxAx/4wOIud7lLfKLXpzH6Z599dsxrd9e73nXkhMdj7kont3ci95JLLolMoVO4QPE555wTgfGsFuOz4YYbFiussEKxyiqrxDYDiOMuNhCnnXZazIXocMpDHvKQgR+ZweHAIss/yBLIEsgSyBLIEhivBP75n/+5+MhHPlJsttlmxd/+7d9GcCheDTgSZ8c96cDBmmuuGcHHvJef//znMdaQLNZee+3oVsYgDgN8JiUrbm9jNMny3//933FTceSRR0b3tYMp97rXvQZuQj6QMrDI8g+yBLIEsgSyBLIExisB8YTf/va3I/BLLuP/+I//KP7pn/4psoc77bRTdK0CjaO+Km28PRn97ljDL37xi8VPf/rTCIYf8YhHFLfccksEy/6fy58k8J//+Z/F17/+9ZjjUEqb7bfffmjwnJnDPKuyBLIEsgSyBOZeAgAG4wlMyQlXLYCG2LA73/nOkWnx7zQL17HTppix1F4HDG644YYIiJ70pCdNs3kTfbbTtqeeemp0o6+++urxgAeXKTftQx/60Im2ZVYfZm47AOPNKGIxP/7xj0fZDDuPM3M4qyOd25UlkCWQJZAl0JkEAIzzzz+/uPnmm2vv+Ytf/KLYbbfdin322Scyc8DktIpnf+1rXyse+9jHRjdqKk4oa+cTn/jEaTVtKs8FlOXq4yYVu4dRddhD7GEd0J9KI6f4UKfXr7766ggMscunnHJK8Xd/93dDA0NdyeBwigOaH50lkCWQJZAlMBkJcNMecsghMWavWgTwc1lipz796U/HYH4s4jQKYOhUrhi7ZcuWxVQkis+xZWIRV1tttWk0bSrPxOgeffTRxZOf/OT4GjhAiGv9v/7rv2I83aIXcxd4tqkRXnDsscfG08mjpja6I7e+6JLO/c8SyBLIEsgSmDsJ/PrXv44xanXxeYCXBMWK14095SlPiTnpplEYe0D27ne/e/Hwhz+8uMc97hGbgTHEHPp81VVXnUbTJv5M4+XwjdfA7bDDDsUjH/nI6Dr1t/8//vGPn3ibZumB5ooNjcMnTrW/5S1vKR71qEeNDAz1MYPDWRrp3JYsgSyBLIEsgbFIwAEGaV9SSpjyQ6SNAQ6xLSuttFJxv/vdb2ruSszYpZdeGt2n9773vW8z9IBhypc3y+lbuhw84Of444+PYFi+Pi5kYNGJ3Gc84xlxPBe1mLOA4XHHHRfjUnfdddc4Z7pys2e38qLOrNzvLIEsgSyBBZKAwxxO/dYliwbIMHMM64orrjjVE8DYsssvv7x4whOecJtL2TCJlfSWDcxQVwBglocfMDRmF110UbHBBhvEXI9f/epX42lcjOrTnva0WW7+2Nvm9PZJJ50UNzJOJQPQdRufYRuSweGwksu/yxLIEridBJyWk4ds2sH8eViyBOokIF4P01THNmENxfg5/MFtW+d6rrtn158BhuINv/Od78RDJ8ml7DnajzFzYncRCn1y4YUXRhlw8yemDACSwsdJ5UUtN954Yzx04rV4W221VZRP17kus1t5UWdX7vdAEpA6geLuFeib4plGDQQeqGEzcjHm5eSTTy4++9nPxl19+YTljDQxN2OBJYCF4pZ1urUulhDociDlYQ97WCfxWsOKWjskd6ZLuLfTO3GdQMUcAgA+X4Siz9ymTigDgtzJ119/fXyXNNZwKehZelF8JDAnYTeWT5zkKPpRfKwDUw4mbbLJJsXTn/70WjZ81DmSweGoEsy/n3sJUNQCxAW0exVR3euPXGOXCzza2XdJ78+6gBk0rh4nQRmvaaYAmXVZ5fZNXgLmI5exeD15AyUHrhbuWqlSAK9pgg4ncK0leQy1s5zfEKPoM2/dmLeSdEZibDG5wDBZSC9En0pDJO7Qm2GArFkv2u9NJRdffHEEtfpoXL3dxVtThmWnbWLIAlv4zGc+s/irv/qrsYgiu5XHItb5uqn8YHYpaP1FLPJpffnLX47V7q+uWLDAkfgYCn5Rip3xD37wg+Kwww4rrr322mLdddeNBmxYxbcocsv9nJwEGGXsjTkJXNS9SoyOc424rWGTBnfRI7rjuuuuiwxneYNpjWE/5a5LbGIXz5uFe+iXPosnBIAVSZz9LY0PljAxpi996UtjLOasF/351Kc+FU++SzPz3e9+N/aBLREnSG8OW5zWtpmRzkiqo3GVzByOS7Jzcl+MGDfHN77xjUhhC9ZetCLWB/MgVUBTnAuXB8VGcXcd+zGr8qbU7Y5POOGE6P7R7+c+97m1zOqs9iG3a/4lABzKi2fT4vRv9TCHefyrX/2q+MlPfhLfOjItcKidjL48jLvsssvtwOH3vve92C4hG/NQ9JW+JHcbbhtrzC6WcP3114+fX3HFFcVaa60VmTFxom984xtnvusIFPPo3e9+d2SiX/CCF8R5BxRiPPWRFwo4HNa75B7iMB2sGqeXJoPDmZ9u022gSQ34CH61q15EcEgxA8nikeoWNIWwfPnyyEpwW83bzr5uBlJK2OTTTz+9+OhHPxpTKdjlk0FdwH/dPfJnWQKjSgDTBuwBTk1stbnKPemUb50LDjgRE+Ye1u+03Mp0TMplCKSmTWZi54GBeXiPcNIdmDVACSD2SkDucgyu78nBmL3zne+8A5gfdc6M8/fm0vvf//7Y9g984AMxzOjtb397ZDvVz3/+8zHesHzQaND22CCwy1zV3qAjrZG5m+ZteR34TLVGBp3XGRzeOjLJZUqwTUpm0EGch+uxhldeeWXccZuIi1bMCzQ+I9S0a6fIMKvbbrttBEeLUMiDC937OzfffPOoqOzynfTMJUtgEhKwNsVzSYZscwI81elu1zHWWJz0tpFy+7BUwIn1Tc9NqwAWXgunH0BqAofSuTgQB1wsdXAI+AE2r371qyMz+MIXvjACQqez9dthIXLAujmt7LDFKEyusS+za+bHoCCp7XxIh57oxCOOOCLGA2KBtYHHCVOKVRz1rS7yOzqk460x5557bgxBkOYnvQ8cEDR39NV89zn3MxDp87b9z+Dw1pEHgMSNpWSbbSfEPF9nUosjs3A33HDD2l33PPdf37ijVDs9C7CuXHLJJXHBebXTIiWntdOn5LEclDxXSgaHdTMkfzYOCUiZtOeee0a9/bKXvSzmeqtuYOkwbjjsv/VZBw4dNBM6Mu33FTudq52AYRno0r8K/bPUvRLGbLvttosnx4Wi6Ks+izGkOxw0MV76DKzrcx3gbzOfgH7vGwY0HXBxf0mixerVeYDa3LPXNRhQB1DYChtlc82mxbPEIAKK2rHRRhv1uk3f74BlbOR6660XPVbue9lll0UZYp/VFNNoTnkmGQr5kShb29qUDA6DlOw+3/Wud8UJScGo83girM2EKF8jCPqaa66JNLg4kGEX6aDPnaXrMWJ2e3awYg7rioBjSs73bXdldfdZSp9RgE996lPjOjnrrLOiEsdsjEPpLiW55LYOJgHAjEEVu/qqV71qoB8LccGSYE4YPC68amEYMf8YE6x+nTsPiOBWZmynWRh3BxdWX3312+kR4Ik7XP+Wsg4G+gBCLC6XMjAO7KrGEZDCcBkL4FHKl2H0qQ0B5u7EE0+M80p2CTaMt0MojGeZC6985SvjmHcFuI2NeZbetGMuYQzpxjPPPDP+u+WWW3bC/mrzmmuuGXWufgGDZZY0saU+893Xvva1mH92EP280OCQAFG9Bx988G0xU9wLUH4Gh0WUA5cGZogCXsRiHmADBRVXc1OZP9K4cI+8/OUvr02RMa8yo7QTS2h3/qxnPWuqyYPnVc7z3i8bL7kxxakOCg4ZeRsyhh7LVMcKWp+8QtVX0SW5cmFiDbE+UoNMq9AlwKET09JllUGgTXo6gABMD+P6TvkTgTPMFVAx6dhgScad1N1ss82KJz/5yRGU6Scdu8UWW0QQBwRzO2ODhQEMUyTi9xwssoM9D33oQyMTm2I6ER4yT7ztbW+L8fS77757jCcfFXiTJ7kaS+5e/TRWL3nJS2IbAEXZHLo6sNiU0L0qM+0hY3O8Lua2en36e6HBIVTtoEWiuhl/O41FPHRRnSAmkjg6ChgdXad4q7+Zx78pFHEwAGL1tVu+Q+ljHiiFuvyH8yiT1Cf9t3awq3vttddIsUHzLKfct2YJJDZnWGBmg8JIYkTqWCagiMvN/esYIkwStyN3JoAwrULfptfjYQ4TUCEfG3RMmhg88XmbbrrpQM3EHIllBIYAUODIoQnxi3UyG+jmLS/WbqwoWb/3ve+NICX1kW2R2DodKgIO6ZVhk31jDI0llo53oxzqQhZCx8TtYTA/+clPRjAHRA77vCQCtlKqIa5bKWz0CzNpPG1e2I9pYAtyBlIH3VQsLDhMsSif+cxnYuCoOAS076IlMG5a2wy+XawTfov8DstbbrklGh/gsLqzFIB86aWXRnePnVkVPDbJdl4+Z2iEYlC4owaOz4tMlko/6D/gvisWY9h+M8wASl3uwTb31A/rsro2/Vb/eIZ4QF7zmtfUxsM66AF8TYNJK/cvubaBVCxT6g/9gtmkh4CMYTxa2Nnjjz8+ulRf+9rXFu94xztiDkFkyKCAoc2Y1F0D/GoHgC4Ep3zIxPgnrwwAzP1Mtw4D1oFpcfI77bRTZIurMdDmOzuPcea2BuiOPfbY+H/AreodqutL02fGDOgVlmbuJbe2FHCAeN0cbbrXLHw+V0mwKRq7DvEGdloGqKnYUTpGj75+/vOfH3eOdp/+ndSCaWrbtD8XM+Gl3lwuXMpLIRv9uGTGcFBodTs+oIh7wk7ULnGpLf5RZcbYMLx23IzWovV/VPlN6/fWNTbNxriXjhxX+wTJq4o5AygAA6lwndJB9Hm/4nfARd3cSzkDAUjxbVU3qs/ZCcBrWOayX/vafg8Q0TXICbZJjNinP/3pmCZK++TIE7qCxAB4HZLT/n7FBo5bXVw9t70k0u5Bb1m/kyrGMs01gMyzxYKmeZDagWGU/cFYNeWUdS0ZAYHnnXdevF7xDPPGPWzm03ibT64py8t8sSFxkAmIFPcq1nHUYi4Dgg7qcWuLRzeGQL52LaUyV8yhCSOGwOESuw4TpLpzSINDcXgXLPBjEOtcDktpILtsK8XjBC5GjHwWtVA2du3mUPWVW75jZCmVt7zlLQPFcsySPNMJSW4cmwBMcZsQAv0XQ8RVJOxgUu6pWZLdUm0Ltkw4DePM9TZJ3WeeASYMs3nDmGJzMD6pOIGJgQHoquuuKnO/8/u6dCeAkXhgmzdMUfWalMIGaAGYuiiJTQdIPDMlcE7xddaJtQOo2FyyWUCDuF0bLf098sgj44sH3MP6si7FIWLnXXv55ZdH5u/Nb35z37Uqhl7KKWwZ1y2Q6PCO+5cBeRd973UP/Qf2yNzhDH2lZ8iorG+S69z1dYeH0jPIhesWyOTKTZt3wFMpA0EgEmvJlezacjE+XmeH5XNNV7H1ACJXNYAPkwD/5G8Ml4VDN3WbmV7ym8Z3cwUOGToLy6RntCmFOnBo4piklNS+++67ZA37OCaMxQk0A0WU91LPqzWKjMgCs8DlVGVP7VDtNCknRqyXIhulDeP8bXKLU9ZYC6cFjbnaz82XYqEYewovl6UjAXOacW2zCei6V9bM5z73uciQJXAoHMNmPRWxYMIVGNcqODRnASRGHciix629KiuYvsPAybSQQEN6BkAINADIgEVTDtNB+w/QYYuAUmw6L5SYZfHIgCGAyv6o+kzH2GRqi/hlORsdZtDvDTbY4DZwmVK6OJwi8TzQRwf1KuQkvtBYYwy9+929uVyx/b2YuV73HfQ7Y5Eq8LzPPvtE4oarv7oxMS5qdTzLz2TnvVv4tNNOi+7gdMgC4DKX2H33TxtW88l4kGEVHLovN34CpYP2zfX6plQBn+e97nWviwemHJAR32j8AH1plWZ9Qz034NCEQrcDfIRPCZmIdekNGDbxdBSLhJR1AHKYSTIPv0lUPYVmAi9F0NPVOABMFBElWo1Fodjt4CmWFGzc1XMndR/rxe4bgwHgMk4f/vCHI5tBwTIgVaOa2oY1lGKD8QOe2xRrlHFflNhMRoMszSHGhzGwrqYZgpAYX8BBsHwvI9xmTAe9pmpIzS8AoexeFAMOxAj5KRdtBhrNU6ddsU4+A+4YZuyMuWyO+ZcHhDHm/WALXOtzY2Hue1sFxk5MWJVVHLRf6Xp6Qoy2TZN7e77/G/MUS5hAhPngczUx907OSnCsb67jNmXDbNaSzqF3HLSoC3Upt5sNBIxcB0Q5PSuEir7CXjWt7WH7Xvc7Y6FvXNtSXtGlgO2BBx4YGcwqOEz36OUyZ6MwoMaT149cUzGOe++9d/wcaKRzAHb3a8pBCw8k4F7Xh16f6R+XNZIAoDdu5SJU7UUvelHUr14zes4558R5bZxtkKqAstezJv3d3IBDC57ioHz233//uKCakDlFZEfJ9Wx3N4lFMumBHeZ5DJms606UbbXVVgvzto8mWVFilI1FX1ViFBN2WgqXSRvYpvYO+jnDQXEa62222SayKMAhxWX9cEcBM3UKDPsEPFN6/TZX1iTDxp0pfgo7kozfoG3udX3yCCQQ1pXB7/XMpu/MD5tP4MA8MZfME7nJuJcYKnJxHX3EgHOPkrXPGbVkIPVnEB3FYIm9BiiqvwOOAHsAXWL7urFNfdKO1IauZOl++pk2CNpn/gBrSmLUPK/8TPpd3JbDFGSJrT700EPjXAICzGWnfRlp8iRXIFIfEAF+4/+e4//mOvBkPBjvroq+YETFCFofDoI48GCj7VVwPBDJDe5a4MEm6xOf+ER09UrpkuyW9lovwK1r9RFjZm70i5H0W/ezTgFp//rMieXEnpkj5uS4NmvGkqtWTkOsmc3mfvvtVxxwwAExrEGsH2BXttPakzYL5nF1/uo7YGj8yJRLuFrSAUrXppPe7ovJqxYysYmwVgbNNuH+gJ5UTNjcrbfeuth5552rj4h/A+TeDU1feq0eAHv44YffgXSo/fGUPpybAykodgMF7FEWTcCQnO0igUOLeNqn9aY07rWPxbpyiXBzpOP3tRcuyIcMOyNepzRSvOGzn/3sgRKLzpLoKE5MB/ALJFDeWBtKz66ewmwCD35rvWEw+hXA8Atf+EJcb/J8UeiMN8XcZTEmTgoKFWFUp1H0iS4Sa6S/ABiGSn8ZIeCGgSRjIMbhOXFOWCa/8zl5AS50FCPILei7XmxK6qvfm7de5eh3wGC5AAk2f8CoU6O9ivYJL2Hguyp0rzmVNhSAiXkG1CXw9qEPfSgyW8nVq990k00/lodbFOCm5+Xtw65JaEyuQAdZyraQ4uoOO+ywwj1tfNzHesaiYejIYBxhEfoIhL3hDW+I4MhYvP71r4+sJp2CcU8JifXdRgKTVLZb5G9Ou5ZshH/oq/WK2e9V/BY4Nu+Eixx11FExrpJcgW4bNSllHMrUpnEUTK5XyWHMHKYRrkTuQBGXsDi/6qEYY2puWgN1847ekWINW0cG9G9dIS+bBbrA87Gzdcyh52CpEUVkM0ghw4997GMR2Fvr/fJ0Gm/M7Vvf+ta4vh1UmeUyN8xh2i0zdk0GLQ2EhSMg1kml6s5klgdrnG1jVLz+jFGlRCjmQbKpj7Nt07o3hqEOHFK4lL2dN+ZwXDvvcfebodb2xHz6N8VHYbeaSgrkZ7T7BXBjfChnscAYGkaCQeq3Rpue3etzhpXhZHCqoKjX77r6jkGyfqQLcajCKwV32GGHyMBbS4AN0AgoA36Mkc1YcrvRYVxvKuBdZg654zAuG2+8cV+dBUg6jcwwe81W2Si6L4PIGAIJntG0kcYwGjcA5SMf+UjjdYPIj1H33LThMv/8n6EFRLHYdBGGK4UrkBGARwYMKgbNvCJv8wj7x23JTS6OjQ2QbcHBRP0vz2V99XzjYK5jcsZpA4y7ZwCxgJHDa0BuOcbR+GPwMXzlguU0j7VT+Id5o63Yx37gEDAGjtzDqXRjqM9p3VknQCdvkXmZ4vYGGct+13J/A0HGFGuW7IkNpfEUe0jnOBSV4h+FMWH4jFHy7pWf4570sg0meTZ5LYBIshZzCaSTWZmJdk/zB1CjLzC9g8bXk6s4Thux3XbbrZW91AaMp1yVGEcymNUyd+CQIuxleCgVCtKCsGirE2ZWB2qc7SILyotyJg8Gf9qvaqIsuRemCby4e+qSWwOFWCAuraTIxjk+47p3Mq7l9UKBG/terBLlbFfPwPXKuwZ4MGjYHHOKsma4yc3YpucyYFxFAAJ3GWPfVLgIxe0AP4CGtjpw4G0KnudejEGTR0CfgVvuOboAcDCGowIEgEaiYUaQfIAqfWH0klFk+MgMUyYEhkuNHP0Wu4jdYcQYPScrtUt7zTdrk7uM0Qd8gFDrFnAQN60CWdav+zNAZOHe5eJ5+s0Q+v7ss8+O92YkqzJwL+AhxWw1gcimsar73L1SG31vfdPZxhWY1gdsj/lCblhAmwvjSbbmm419uZCXPmBZHTzATvvbHMMOVlOTkZvNnXvaCJMxQG1eVGPG6vow6Gf6Ydyxlw7ZOJyAmEjx8AkcyhRQLpi3tIYAdQygtWN+9ztMRHeZY+YJ+R500EG3i83TJu84Jv8mgDVoP6vXpwMz5n05LMczvaUFcASQjLmxTyEs+snlzCVf3gwZHyd/tR24oifqbL05L6bRZss88m/ZpWy8bYzNM/PfqW+AtUlnVPuV/tZOz+cyT14UILPOfV2+B3kYQ+NLRimcpOk50/p8bsChRYTRaYqRSgK2g7KrsLgMbhcKL92b0rUYMQJ1k3Zag9zruclYit9hUEzYlBA8/c41DIkdu3/9becJOPm3alR6Pa/Nd3aMhxxySAwqFoNTVZpt7jHqNRS2seQGqAZ+M9aAgJ1+130ftd2D/J6SpjiTW4nRBkqwSr0UHLclGbi2V/8BOK4wBnfHHXeM97QuEliixLmWgEfA0PoF+Cjq6rq0vrEnQJR1Zk4wlIndEo+2xx57RFdaUxwooGNuifkB7rEyywPDh5GjC4Yt5MfNyQBbG+J2bTyxMWU94P+MJLaE90KfGCmHBcwnDAsjaR2ac65zP4YHeN4mxIW6Xr8ZFWuRYcGmAB9inoQD+J21AxyUXYbuRfeRnzEmKy4xhrqqr1wrXQoDLsSkq000cGhsy+DGs8wF8sKqpVerYb4ABPMCO0OmgB3mE6BJbQb+6Anzkix8BxylU6vVcSUXMjWHuHIBbswo2Xzwgx+MsqzOv+o9Bv3bOAHwXOLGRD8U8qBnrKOqniNzsgGIsGtA3k0hJMD492qfOZJeYgBAWRdkWh5DsqvqtUH71O9689r6wuoC7uZRKsbffE5j7G/zkBzI32YPqyZUwOf6jcCwDqwRoQDVOPB0bxsD69xr68iWjqB7jLnPsYlStZlXmGWMc53LuV///M46okusX7qJy1x4Dnc3oEj3VXUkvWP9a7/vqmuv33Mn9f3cgEPKhdKoKuSqIIFDhsigdslKUbgWgbgW7jOKvjopTAgGivIa126t2t9+f1MkWBSKEdNhAQG36ZSyNjO80k/4LrmD/I6Rt8Ozu6OImxZrvzak7xlLijDFBlnkdn5Vpdn2ftXr9AMTQTmTPyOqn+aM/5sPaf6Ia9F3YIVbS98VMjKumAcurGEWtvnHkHk2WdfFNFbbPo6/U2yPNaGQiz5rm/6b09YVxU0uKiVKwZqjVg/+AAAgAElEQVTHvXJgctUI0gZigBZgJcmKwcMC2AAAVZQpJiuNTVWmrneteCsbFwwaA6JdjKs4MvNTWIR5DFzVzUX9Ev/lPhS0PhhzemOUYi6IpyJH7lCGq8l4k0fSAWSr/YCCPgEA5ldy8+u3NgNwjKx+AQbmMfBjrLisjYNnA8/GKLGTVf3jWeYxoEL+QLk5SF9V20uXpZQqTvNWx2RYedl8ehZAp/1CDDCmNvU2G/pi7PQHY4iFZYQZ2wSqtR3DWm5zkoMNrHlnc0cH14Fap131h5wAZGAe6DAO5M02VOUxbH/T7zyPzgFi9TulxgJc6BiMejVdFt1A9vSsTSqwDiTVZeDwHPNF/81FMiATYRw2W13aurayIMd/+Id/iOzge97znsj2mWtpbeoHHWrdOvxmbiMcrGtAGrPJS2AuWjfmKjnayPXavCb7KjyDHjKuGPM0f8iaXRFf7Tnm3jDjjRihu61L68pY2kyZQ4CsuEp98j39Zzy1AXAHTrVhmOfWyZ8uYT8HZT/r7pU+mytwaNH1W9iuEZQ96nsUq0KlhEzcdELMpLBTSouS0cKi2EFZrCZ+neKq3reLvxlCbhs7HIuE4qVI0iJlLAXUAnzAnsWjbSabnbhYFSwFN5h+AWuYI4uAotW3xFqUlZDfU3xcPXZw7m03WZdDT3s8H4NJOVAcDAOQQo5d7HLtFC3MFLPERZXcSJ6vJjecPmk74GHBW8SMie+BO/03jsacAtJ2CiuB6uq4uTewZXfJuBsD8rELdmih6XfV+3T5NyVLJgy2fjE8AAPGLx1S0T/tBBz1gZLm1iMP8TaAFWBHNglAuI5SB2CweIx+YgvNReMqdgyDwwXItQuIMI7WZbqPvnqunT4Dw32MDWD0khL0LGOoXXbtFL3v64yhzYa+celQ1vpqnqW2DSNb+sT8JhNrQH+bFD45Amh+Y+4BieRP9q94xSviBisBQ20xx7QXcMGe6Kf/W7eMrL/1BfsF5JhbNnoMrv7rV1mW1qB70gE2POZsysNW7jtdQd6MKsDaK8RgEJkZI3MNgNUHchO3Rdcw1J5rjVh3GGXzy+fy/SXXsPnDCFfDXvQXKPdbhpeOMe+qRRusf+uN7LkEsVeYKgbdmIyz0BFlYJMYc7q1OmcBD/OCvOhk68B6SDoqtdMaIDvhBuaHcXWNOQaYVO87zv6V720uA1/aR7Y2OfpgnMxbY0QW2mj9YN+AQ3NWOIbcjK4D9K1385muTZvVpn7YwHLfA4fkYu7QdWyI+9FV7BCsUF4fTffr9bkNmLFRk45nL/SHnmNHjIt1SR76QQeYx9o4ajFf2RPPtFa6xDVzAw4tGooHGm8acIOXgukZZEyFYqKUlXIaMPc0kJQppUq5m9AmV3W3YeKa6AyTSWHQPC8Vk4XS8nzsQPm7USdI3e+1lRK1I6P8/J8y1CffKf7GevhebA6wJ0dkUsQUNZaIEjfp9BFzw0gr7kkZYSzSzi+xfEADJXzGGWdE+bmXSWxBGKNqIS/PATYBB3I34SkMCrQLcAgQMKoUsX5RFFxVic2xYBOLBMS73ljpE+Bi50cZJPDkb7/Vf4YUOKhjOckbuD7uuOMia0VRMbjiXfQZyJwGOAT0janNEqNK5kCGtlLMjArDTSbArD6awwxPcnFRfhQe4A/oWRvGzUaIcbLpSC6bBAxtAMy75Eal/G1crJ/qe7z9hpywAVgUQKjMiFnrQJJ7aZ91xbDUbbyAMm3XN+0FDjFSjO+wxdrRdmAawKh7bro3+ZK1NtMT1p/2Jja07Gr1mzQfgQTuYgdM3MMatV7Ji+zdz7/mtM1PKtW2WK/0mE2A+YZVSms5/cY1GDtrFmPnOV2xEQy79jOkNgY2EIpTvPrqJDevAT3ue65QY86Ip0JPkLkNSbV/1hTdS4dYm9Z3tei7a4BTa9zcE7NoPDBudYxz9R5d/U0vYJzoEO2tK2VjTw7mPtBjHpsv1iZ56BPZWgs2EnSUsfRdL3Bv/tk0aAMd13X/zV2HR9ybTrDu2UAbKNW69hldU7bB+mkDgGlNha6xabHJs+aMb507mE6z6QaSyZcOdx9rVO1qPlfHyzrUH/JW6Rv6lA3TZnrVPKfDrPmmk9bV+/b62/y10bNebUy7LHMDDk1uyseEsnAoXgbNv4wGcGKwgBiT0cQCOgwUxVCemBaVQbXgDKj7+r1nKEADgANUlienCW1xmugmR5mRYBQsPAqXG7aq2LoaVItdP7nrGHJKwoQFBBhewIQxTIYeZc8AmLzAISWVjKV7AcN+bxJW3xTCCFt0gK/JSREBR+QOeNspkrH7WxQCsfW9DhxScpQH2XqO6xOzMqrbL8kWKFQBFowk5ep5VabHsy04LhEGtByPxgADP2mHC/wCs1ifpnxpDDLDw32FBcEaM+yUBgORwHpXc6B6H/2hkBkP8z0Vc9W8MDcZY2NvF28sjZHvysV8cC9KECtjrBlibIDYMEwhkAbMWXeUH/mmYg4BZMuDi1TON/K1Do4NeeDMGX9Xn2ktW4vabYNQdZW6t3sYV4Hl5kovoM1YYS6seXPRM6ug7Had7vMH2QEzdAHQ06tYX9YZOafxN/fohLpYae0yDoycTYV1Jv0I2Vc3s3SNz+gp88m/9E2a28YOiwIcMZAARNWdbMwwPDZx2mQDXWd8e/Wx13eebU2TGYBjTopF9Sz/T3OJ8TYuDHyZkXZv42s+0FHVdWNTS/fSWTZ9dSDAZox+dx9gCzgGtlN8Zt386tWnYb+zjrQFO8qu1AHZ6r3pGDqWbuI2ppfdx/wzn2xOEhAzz7GyXJvmgTH3r/55Hv1PBta69WucjXd1/VXbMMzf2mke0wWeZZytBfrIuFs31mS/E9j6AOgZfzqGLm2an8behpdc3Nt8mHSxftlclR4jb/PfOPTSUYO0ky6mh+lHeqXLsiTBIUXHmJhYgJCJbicBiFBAJo5BSO6+BA7tkLh9KZW0oAi2rETsNPye0Xe9HY+Fa2Ji3SgRChT44nIRdJrcpBS0yWqHY2KUQYcF6W8LoQsWrG4SaB/Fx/hSDIwKIGT3zegng2KiYhjID8gR88ElJaDeQk4KkgJm9FxDRuKpqiwLWZqgDLT+WQAYQ7Fd7i+gGDNmxwdMVo1a6gf5+B2jQMH72zhTcgxnl0Ubmk7Ept08pQlAlE86ao85xbgxrBSdoGkyZ7CrMUPabO65zulVykwAtPlik0J5kW1K49BlH9O9EjPAbQswlMGhceb2AdopbAqcImOwsEd77rnn7cCYNQdgaD+Dbk6JhSIT9xB+YMzFRnH/uldyaRlPaw84TIyh5zOQ4kwTe1YF6uaW9WItJuBTvUZfXWdcm+aXayhk65KeAFzf//731zJQg4xDYiurJ2Kr97A26SibTfNAe60VfcGQ1bXbZwyq9kqa++pXvzq2uw700IPWuzloDvu7rIMAd5tFY+WkLHdl2UBpnznJnWttAI9NsW3VvrX925oiLzrUvNcO84gs6E1rg+GnI+nb8ubaM5J3CLDwf8CoXPwNPJkn7l8t1oIwGdfoOzccFtl8NhfpPvc2b+kz7RpX0Vaytmkk6zaGHdDhndA+utIYazt2Efgpu4/pXBsRIFK4hbE0H8iUbSQj69lG19/0V1eb8CaZsR2ek9z9xkMftLvc9qbfWw/Gy0ZJqdMD6bf0DRKIfGwcp13MJ/IfZSNa1wfeGQQGWVbXS931g3y2pMAhpYd9oOCwLhQJhUPhWvAYGq47k4YChdApHYqGgQEy/G33YcFUJyTDZrHabVlMXKAmchkQGQRsmwBbgMq9KRnFM90fWHBduSRFVqfYBxmwpmsBPrJgfDFUjAqWgQGv7obJD1jgVpGk1e6cfMiNwqB4UyFbhcGoAkOf+x5goLiAaMqV0gPSnQqltNzTggbEmwyOZxpDStK4ADF+B7BMcnFrB8DCUHBdlQ0ohUrGQB0jLFcXo6tPXKp14JBhl86FYts3pE5wPwoZq2o+6l9Xu8i6ucEY28gApxIFVwtwmFipFItrQwHMA3jmRlLCxtb645JNxsx3GEinMI0vVpQcsMVld6C1hfmyDuQEoyzNHevQ/GzKM0bhYTTMU2y0e9swDGO4ky7QDkYG+B+1JHbOZpN+ajJY5oFNgn5z/5hnwJx+aEeTYjcmwLr1JcF3nf6w9q0dAJrc/a09xkh7bHgl6+VFMKcB8fJa1habA5tEegNo60I2dbLVHu0yt6oHXfStF8MDvNh4kzNdU9Vr+qyvxqS8CUrtIBffkzWQZXOfNurAPUBlU6t9aS3T7+ZN0/jU9bHNZ/RLOlhBf7RhDt3X7zBsbVg2oIEHi/seIAcCgSZ6R7UpNdb6rc9d97GfHMz9QTf+dI/aryRP1lohHGOUTAT9njML349r3JYMODSxLWzxXXZDFAEFkNIVJGMDGEHnFnV590mhAHPuIQC+CgwpSKAQuGKwxcHUTSoTGlBC4Ttp536pUG52KsCD55ULYKHUMQRdTDDPxN6IS3IqDGNXN2kALqwot46FQ0HbvTFclCdFRbkqiSnjbqpTtvroXow89wwDhrG0q33Tm94UFT25YiQYdjFFTW4L92IsyY8cJbA15oDAOMFTVfbai8kyr7SlDEIYeGCQXBhtoM88IkN9NwerhWwYXu53cmXAsY3uww1ajbGr/n7Uv81PstcXCZmrxc7TfDYfbBiAPHObDKyzXXfd9bZ5ZDPGIAOM1XlMThgf39ssmUdl2THsNm+epy1AIkNMNuZKkxzMBXNLG51YTn9XY36r/ar7G4gFWDFo5lZVB9T9pt9nNi70jQ0jAFznFTCnADwbWrpFO6w1646MyKMJVNpoYkCMSVN7zTHr1/0wi9aStjjIZXMgv54+aycQUDbI2mYjZ9ytM3oPQBwGfPeTVfKy6D9mr6nPTfex7vzG/JOeJempdL35pT/mYd1G1m8xldYiEF3W7+alTYv5vk1IsQIQmiMAOaa7zhY0tbPt5+a19QIYNo1t23vVXWe89VNdtMJ7odgMGctcBpfAkgCHlII4mPT6ITEim2++eWTFGAuGFgNBoTUFZVKcYgiBtMT0lcVFAYubwipSEv2UAeVO2ZR3rxY4kEBZe15iFTwHmNUPhiABx0GVY9Pwui/2B/gFDDEAdcrdc4FfJ/QoZ25D1+kLw68w2ql9ZJVYUAq5WrBIUohwazB62AuuM4qWMXNfYEjyWswaANBEq2sH+SU33ThdrdV+lP9mEMT0MBLVXa3+Yf2M7cEHHxx33TYj5lxTv9yP0WIA7N4ZHrE2fs9QjcMolPtDruaZMSVbG4bq3OAaBui53LApWCOsKIBRBrzaj7moY3LdW5Jrc98cr25MgEkG23xyLeXNreu0rE1K1Zib09qZ/tUer6faa6+94pwie0q/2pdeY6vdWBKbKLGjXbw2zabJPckO2NWfapswrtgbDK65YK6ItSOHfsXGjO5oYvKsMcA+ney1qcGuAePGSpuEwXhrSzqBn3SWOQEYyiFo42NzoD9d6aVq32zWzbVhi3nl8Ahm272qBXONYbbmqpsX1+pX0wlR65AOw66mlDFka2zHpYswuGou3UsAXrDe2zKy3bdg6d9xybxbWZJSAEVOLKDG7ja5WChQRqeJlTJMwB8lbSdRZ9y4o7kWsIp131eHGiClXMu7kgQOfY6xoVyUpOApa8bB2wiAJ0CjiwKQUWpYgd133/0OxskzGFkxYdyZcokxsomRs9vmGgYsuSGSYgX+MJIpFUC5rX4DDFDEYqgYFdf7m5JmIMmA+wj7h5notVAZLKwOAM/1MY3CWGOygA8MTDWODFtIzvoJ6HJNGWPzpQnkmaPmg/kLBAHO2FXAsM6Add1vbQNejaMAf/Goxq5cbGi4avRf//TFeDKWCRz6DjgEbKrjCCzrU9qt23xVDSo2B5NlLTDQGBlAwZyrXgtgcv1qM3coxtD8dfDHptD7iMXglU/mtpGbOYa1okew2V0U8sHMkK1Nl1CNauGRAEatN2BDjJn+VMeh+jt/A9nmiY1JtRgTp3vNLeNXBj42ecZSaAfGWIwsOXuu3/ke2ykMwHpzGMy6rbpqq8+c9t/WUx07q13An/muH8MW44kgMC/NNTYl2Zlh75l/N1kJ8EDZ7LL1VV012ZYs7actCeYQ0BCsjMnhrqoaVcaJ8mRw6wqFaLIw7piR6s7YrpmiZKwAp+r31XvaqWMBXO/ARioUizZSJuL6AAf/Bya0Uc48z3EdVwWg0EUBfDEFAEvdiUnxF5gqaWeAX0yBZydmhrHQRqc3/T71H3PIgAG1ZQUJ7Di8ktzH4tYYFffzHeNORoy5+woFoGTr3K6p/2nnzlWPFQIoJ10AFzmpsKoAU9VQAr7kAPxw22OGXcMIM0jJaLnOfAQUMDqJcTOHxc8xYHUM3jj6q73iZjFvNgZy4FGY5gG3P9bXBgcroy+YJONorMrjBYhhsNyrunkSqoC1ts6EDmBDqmDZva0th5qwWH5jvQJN5hGZJQCKhdMGoAvTDRySF3aROxEQwljbCJkrqvtbb1y3+lQduyRbgB/wHRRY9hobgJMuMM5YcmwdPZXWkUNWWErPTjFs1lav9ZCeR9bGCQAE7hLbaUPI02GOGUsgTztSMRYYcCEPKUeicTdXMad0kdABQNnJcYa0SWa9+j6N73rp5zYy7dfmDAb7SWi2v2dj6ROexbo48Nlu/ey0bkmAQ+LCaCUAUhYfJYuhwsg1vbHB94wG4Ia9qRasmZ00AFPnrnA90IMtBLAoZcwl90YZxDBojBglDpAlZsABBywhkIVlk26Agaq63qrtavu3hcAYYCaS4sQGYHK4iiwWsnMggaHCMCZDoN+YMm0FcMrAO50YLrfTrgxb4cACNpAMAAuFISM/LBLA6r5iB41LFSxU+0Y22A2uQ6daAZZqTFH1N13+ra3a7aQ61gBDVnUPipliYIUckBVA7gTpsSEVCyYKsCZPIIpLVvttHhJgMHfcu24ed9mX6r2AKoyVscHIiROVyiflS9Me68e8KKeeKd/HHEqsYXXeWlfkYNMBOHtOVXb+Nk+tC7/n/iNzsvOdNjDKZJhybQI35g4G03euo+yx7sYBcATEgPqdd945/kvWwk+0oy5W1ZhYn0BpV0Xbyc362jccOtIGa8RmQZutdf/qQ1qfZFGVY1179BNDDUwDcdaJYp1i2gFtfbX2EjAyHphZOs96SsAPg2zTIgTFOqYLyDq1r+75+bMsgaUmAfG11gYCJAP94UdvyYDDpkFmiAEvCrHJrex7ytD3dadlgSDgzzOadp6MPoWPWeEesyPHYFSvdw+KWnyP39jZM2KYRIHQDEhS5IlVo7yBxqT4Bx1ORp2hwQhgQQFm7WSItScl3GRkGdfyzlu/U+yT55e/S/93DWMG8GGfGG3uYkba/RIQYHTFFgLbKSM8EGKM3IPxxpwxpFge7QNKACjtl9JDzBTAYJzs/HqxBIPKqdf12qhf5IdpqQOmCRgmoEJeQImNi5AF88h3wCNgIE6MksIYGXPsD1d8CoifJDsKTJCn9lgHKRTDvDRfAKmUEqMqJ7IBfvXfb6vAj6xsEqwFMql+7342H0IGbFYAF0wXcAhEJ3Do9zYaZCUuk5I3j20WMFyAI/naOGCrtZkr18EgLKP2uQc52xBiOX1W3vD4vd+5f5dFv60v8crY0ZSyR3+qng7P9Zl5g60nvzqZpesw2UAgsKdf+oAltO6Nh/lV/r3NQDpoRm6uV6xVn2MiAVqycY+mZ3cpn3yvLIFJSIDNxYrbCGXWcDSJLxlw2NRNxg0QY/jqmAK/Y4QUhjExZuX7UbBYEUwKo2lSMTIMGsNp1+5zrAsXDlBkt10HIChi93N6EEASiE6hM2x+Q1kDRgAr1sP33I2jKGhGHeuGmZLbygIBtrjtMFxAF4Nbx97pZzoMwPWtbQnwMmz6yBWFtXBv8gZwucWrJ3TdHxAVlI/x0UdxY+JB9Y8MUhymf8lTsLwYH23UD8bVs7B4mKg6MNI0F0b5nHFnrBlaoK5unlQ/IydjaoeaQLnxJ3v3SSlXsLoYQ98BDWLmBEwz+oy8PtogjDIH2vTd/fWTrBWAHfsJ1Bo7Y10HxrU7Jaktp6dJz/Sb6uGdantsAoAbGxHjqr/63VSAJyBdjPGBBx4Y54416nNy1xdr0j1tXMwn3wFRWG1y5tI3p4wRIGTzAoyax/3a29SuXp9rH5DMU2Btp7evpPVU/q25pP9c4/02hcYFoLNxssl1P5/V3dczfG5tquVCZvSPmkuWwLxJgD6jD5AO1kqTF3De+j2u/tw5uEH2HdfNJ3Hf9BJrbrOmdBhYAkAHYKkqTG0EjhgtYAbrhSET05Mqd7IJx9hvE06bYr7q2IDUX8YW6MN6KJjGdHqQUseIJNeedAZ284DtsODAPRk/hhAI1E9GCkvn/1isKrBJbfVMIPjYwNZZXIw2YMPAAAWAJoOaZIjpEOPlnnXGCcgAlvSZ8QMmtEnbjI/7kx3A5J5kDSQC0xgivxcbysAmoE7udc9KfejiX33VbkpFu+tAUtNzgEFsFvABxGhvmQ0iY30GBn2v7zYs5of++64JkDY9s4vPtUvbtdW/TfPPmCwLDJM2Vk8Vt22HNWGjRcbmfNOz0v3IxLXWLfCn2qTZwKhAkjULXLsf8KptgI9x0B9z1+bE+hXXKMxCtc6tj6bMBm37VL1On8wj8132BIDO/K/blKVrscxt51qaR/rW9jfVNua/swTmUQI2h0gIB6uETrBR1mE/PTOPsuiqT3cKhur22Zq7uvOE7sOViokRqC6Gpq4wKtWYvOp1rpEPjrEGWgCmFAcFuGEaGKx0irVJOQNYDJIDAIwXdzEmUhu51fzfgQ0GmQvWJK4zHtX2jfNvhtYJasCYSwyzpH0KgIb5dA1Xbx24HrZtZAx0A8vAIEYHsGLUBcsDhOKtuCDbJD4dth2T/p1+Sx0EFFNo+sYtmmQ+6fZM6nn6DeQ1MfxN7UiK33pKLKH1nBhagLtu82DOWs82HhgFrLd1C/ybV+Ni0Mxfa1ssoFhMRiqXLIEsgfFIIB1kWx4yMYgZR96IaUaY5DK8BJY8OBRzBHgdeuiht7nLhhfH+H7pFCw2EeuBnWI8sGmzUABagJgBxW5hYCa948IsAadAk8MC2iIm0wL3qq9R8qPNgoxzG6YvASATQB33ZsxznAq3uWSkmnIUTl8iuQVZAktfArwwMmJ4AYT4aOmveM3GETqy9KXVvgdLOuYQewDYUMYYBX9PGtS0FbVYRXUWCzaFW7SLpMDD9g8LlF6N5AQlsMj9ZzzLKTqGvX/+XZYAdrGOYRyHZKypJe6UGYdY8j2zBDqXAKaeB4YXSvxu9fWQnT9wQW64ZJJg140H4CAIHEAUfA5QLFQREPAfof421Nu/rW/JiwFYTIcJ8g5wyQ/nQnUAKMR6001Nsb4LJZDc2SyBMUqAN8CBNzgAwSE0qSnsa4zNmLtbL2lwaDQccpAaxOnPurcIzN2IlTsEGB4Q6pGh/ttc9zR3LktgyUgAOBQW4WBMv5PIS6ZTuaFZAjMqgQQObcQcTstrrpuBWtJuZSJwSEKuObnT7NQXqvx36O3PQz0z1L8MdadQ77RQEsidzRKYigSc4JdfkZtafFN61SJDJeelOCjxu5n1nsrw5IcukASElTlQai16UUGvTCILJJaRu7rkwSH62E5hIXcL3jC3V6iHhLo81CeG+oyR50S+QZZAlkCDBJx49qrA008/PWYjeOlLXxpPTaci9tlJe5tWaWyyoWoQZP44S6BDCVhnKZ9pDuXoRrDTB4fnhY54WcHTQl3WTaeWzF3EDI7C9Bk9eYQ3CvVToZ4a6hNCveeSkUBuaJbAzEuAmxgQPPHEEyMwlCJnzTXXjGmt5DIsA0C5HDGKKeXVrB6Qm3mh5wZmCbSUgAOLvIfiDpFEec21FFyfy6YPDi8OLfxKqN8L9SWhNr80oU9XlsjXPwvtXB7qNaE+NdRNR2z3ncPvAetvhvqlUIHtzUe8Z/55lkCWQJQAsOcVkEceeWRMpi0Z+GabbRZf31d9NZ8DcXJ1SsW0yy67zL1L+Tvf+U7MEiGP4yRfBZmnZpZAWQLCyeQUdWp5UtkIFmEEpg8O1wxivjpUcXOPCPVhoU6/Vd2P/X+FW14V6lmhfjdUeXH/pqPHrBju85xQvx8q9pBr+UEd3TvfJktgQSXgrUbejX7IIYfENxwlUOhd4HVvipHD9PLLL4/xh95MNO8uZW+Q4kL38gGxXvOexH1Bl8HMdxsgrFuPM9/wGW/g9GHYekFC/xrqYaFeHiqwCCTOU/nf0JlLQj051F+G+sxQ1wl1lQ47+dhwr2eH+slQzw51+w7vnW+VJbCAEhBfKHG9HGp77713sfbaazcm0OZ6loBXsnv5TBchnYa4Suxheo1hemf3Ak6V3OUsgbmTwPRT2dw1yHTdUIGbr4d6ZahL+oV+lTki/+AVoZ4Q6m9CfWWou4b6pFD/HMde+dEQf/5V+M2TQ3UoBQj9xRD3yD9ZSAl4RSIgJGYnlz9LQK7Ca6+9NqbH8IaeXm9W4X72hh8pbDbddNPbHVKZV5muscYa8U1P3ol+wQUXxNeC5pIlkCUwHxKYPjgkRy5W8XdsEyA1Tzrm26E/HwtVTkLAcKNQe4HC/wnf/yrUm0P9Qag/DNWBnTaFS55L+ZZQxXHOE8hu0/98zVAS+PGPf1ycf/75xVe+8pXIAuXyJwlIkSGOybub+xXgWq5V705/xjOesRDJr7nzuNq9o/rKK6+MsZm5ZAlkCcyHBGYDHJLlWqFyszqocWmo8wBs/j3049BQgbWtQ+VKbjqdzPX8o1CvDvWMUI8J9fBb/z03/PvjUPsVLOyjQ8UenhTqH/r9IH+fJRD2LSFWzgnbj3zkI8X1118f3zSQSxFjBr1WUt7CXoW8JOD/6le/Wmy00UYx9m5RTkw+8pGPjG50h3EcxHFAJZcsgU9HGlAAACAASURBVCyBpS+B2QGHqwZh/n2okjo7cbvUCQzg9pxQMaEvD5XrfIVQm8pPwhdvCnWzUN8W6oWhYg0vC/Vdob4zVACyX3lAuGCtUJ0C51rOdr6fxBb++8c97nGF6vDFhz/84Rhjl0s4LxaA4aMf/ejiy1/+ciG5dVPhjudaxR5usskmTZfN7ecbbLBB8YhHPKL4+te/Ht3qucyuBDDhAHx+7/fsjtGstGx2wKGWPCfU1UPlnVg+KyIash020B8KlZvXIRsxgb0KQOxAzgtD9X/g7sRQxQ/uGSqw+K1Q+zGq9w7XrBGqFDdfDDVv5IMQcuklAUzXeuutF12E3/3ud4t99tknulMXvXARS1lz0003Fdddd10jQJTi5oorrigcyAAmF62Qk7yOYldPOeWURev+kumvNW0DeNZZZ8VcnblkCfSSwJ33DaXXBRP9TkqWfwl1eaiYQ/F5TW7YiTZswIexq+IMHa7ZI1RuXmCtVxF3yS3s9LbDOV6Hp+/YRiecnUD2nbjCXjLx3e9DtYHnin5uqO6bS5ZADwl4DzAgJA0LA+/kLYO/yEVMnbjDq666Kh7WefrTn36HgyYMrnQuF154YbHddtsVK6200pIQ2S9+8Yt4iET+xp/97GfxVX/eNjVsEZcpxyPwscoqqxQPfOADh71V/t0YJGAeGx+HpazxpzzlKTn9yxjkPE+3HE8qG+yWpNZiB68N9aehPiZU6VWAm6bioAYg9bhQsWQADqC0lIq+/zbU40LdOFREQi93cuqbmPdtQ71bqGUw53CKvIjA5aPSxX3+vXv4Hnt4eKiAYi5ZAn0ksMIKKxQrrrhi8dznPjcCw6OPPrpYeeWVixe+8IWF7xaxiBvkWpbC5oQTTij22GOP4h73uMftRIFpBYgSezaKnC6++OLim9/8ZnT5AaP3ve99YwyjN0B0WeQn/MQnPlGcffbZESBcc8018TWAoyQQBg6f9rSnxdQ2J598crHaaqt12eTW93JqHBDKee/+JDKbAKy3eerfG2+8sfj1r38dPQPm2aLExraeQPnC2yTQLThMoPBT4f5cpJgrdoWrc+VQ/7qF5G28nxLqsaFyrS41cIjxxBg6hPL8UO8bai+mL3wdi0075rRcMJBc7FhDLve29wIOgWwHXP45VMm2ux3pcMNcJiUBSpzb0oligGHjjTcuHvKQh3T+eIYCyJG2xSGMAw88MMYicpUu6vtK73Wve0Vw+N73vjeCQG9iKCd7BqwcRnEow7XDFmPstO8ll1xS/OY3v4ngEND57Gc/Wzj0IZ2OZxv/UQy6A0fHHXdcTLvz5je/OZ409pxRxxewlPibjJzaBkLce5JFAnKvOJSCSJjEC17wggjuF7lwH8tCYB5JNQQ4n3nmmZEFt/HIb7ZZ5NnRu+/duJWBQiEMHwj12FC/HCqvwgahvijU9UN12OTBofbzXHCnOkgBXP4uVPHdbcBVuKyr8qtf/SoqGKcQB876L2XNZ0MFErcJ9T6hDtN+fb8oVAwkYPe6UMmvTSFjTCPmcJ1Q/y7UwMpKU6Jv3vZAmY9qENo0JV8zmgTMQW7eT37ykwVmyalQYOFhD+tFwQ//TK5FrAsQwlX605/+tJDPrsqYDf+EpfVL6wRzCvBYN2V3HNmcccYZ8bT3q171qiizYQvA572w2FrP4OIHttxTLJ9UMcuXL49AnUEfhuXT3uOPP77AHNpgiDF9zGMeE18D2AU7rP3AiIMpckJOOim2+ap/ZEVm3Nte7bfIxTwxFv41b2z2vALSW21sMLsY90WW7zz3vRs+SR6+Y0M9MlTuY6dzgUHuYWxYv3i7cMltRYuAGffhVr451GV//nrc/5OOwlsR7HwtIrvPgZRcYg7XDC11CGUYYKiTcj5iIJeHikkdpACHWFpg8qZQQ5v+eLc/Fp///OfjLtLukSIHAriDKAlGieG5y1349nOZFQlIMYPp4Vp0EhYoHHc8lxQuYtB22mmn4t3vfnex1lprRWbMO0wXrQBt97znPWOslnEQVwiwAdFAkByRQEgXLNmqq65aqKnYCNjM/ehHP4ppYhwkOOigg4r99tsvzoNBAKLT1phn7CR9tuGGG97GdHb1mj9Agw4BOM8777zi5S9/+URfIWjThBETHuEVh6OA9XmZ5+Yud78NAMIjuZKBxIGJj3kRSu5HKwmMDg65PqUBAwxtnHcOFVt1z1bPr78IqBGyIg0MgLSs/rJxfCoVw2mnnVY4gWhR2b0PBA6dDhYjuG2oo+AsDCrXMNc01zAWEOh+RqhtAKeRfUSoPwn11rhDLBSjJt7klltuie4khoHR99ovypVi12dgJAPFILsplssuu6w46qij4o7/ZS97WfHYxz42jsko7su23bF5sDE6/fTTo0vqUY96VARBgwCSts+a9eswL1zt8kBym3ptnHXEjak861nP6vn2lGH7Z6wdFFIZc5u4bbfdtth8882j+3+QuDrub2vcuhZH6p7jKNq4+uqrR/e49D6TjD30LIBHKiapdeizXMLZxjB/ER1qLlkCbSUwOjjEGn4lVCDkfaGuG+rtY7bbtuXP12Eb03uHAcQtB7/FsL8AjuTtEp8BFDLIrQv3OrBMJnTvIIxp9SFCZV4QKpB8fqinhyo1DjZWaFM/97zvhaUBlqFNjBk3EoOfGAlKFDPhXycynboESLAXduCUbd59B/lNuGB2uQDlHOT6x1bZqKSdPhYIm3T11VdHxf/gBz84MjYA3SgnTsvdxJjZNGAPd99995jgGSjCyixaMQbA8Zprrhm9CsAPFsYGktwnAYBs4riatcUhg0FSDXH1Ck3wG7F4QIKYUp+bU8bUCVb3HiWe0bywceGFcE+noW00R71n2/kGLHPJ55IlkCUwugRGB4c/D42Q7PkBoYovdNp21IJxu1+oAJbTzhI59wNDoz7z1t8zAJQ9+n0odwuAiNlrw+71a7PRWRbqy0Llat8hVAdUnh4qZrFX8XwnoLnmb83fyxAkgAH0AcKpbL/99tFNduqpp8ZYM24srjSMybjdmL26sWjfAYaSKR977LHFDTfcULzrXe8qnvrUp97OBST2TfzZnnvuWTzxiU+McVXPec5zolHGlnAldcHwAZoOYzC4F110UXyWAP9JGftZGnuycKJ3r732iuwhYM6N6lV5kwjql7iYS9jGwGag13ueq3Kz4dNeh1qk2pHU22dOpQNzQH9ilrjHxZeOMsZ0Cx1Kjzjh3cVcrPYp/50lkCUwXgmMBrmANu9BBkC8GxkYabrjH8J3Dq38NFSHNoCoXoVbmlv0+6FKDdPv+l73GvA7incoYAiQSUNDDjeH2vxShcFa5PSx097LQsXStklsrS1CxBxsIfs+hTHAiAAjBxxwQAQY0pmcdNJJ8eRkLuOXQEphIsXI4YcfXrzhDW+IbFX1MIiDRdgjn7/yla+MByKkK5W8WowiVkhAfhdvQTAvttpqq3i6VTqMRX09GjlI8wM8OfTARcurALiPuySm+LDDDotrVDwdlrhNcfLZRsMGD5CVzuQDH/hA3FyYHxhoaW122223OId4D37yk5+MNM42EMChk9HSpuTXMbYZqXxNlsBsSaAJyrVrJdAmXQqw8rRQm9gywI57k2t071DPDBXj6HdNoA84fHSowA2A2ALghKumXzB6TwiVO/w/h2iO+EB99i/ZAOAOucBnXNbYxCY5h6/uUFw7yPXhcsmPDz744Gj4nMYUd4atymW8EkjskBQyr3jFK2J4Q90hEJsXnwOH6667bszBJx5OvBdwv/fee0emT2gEIDkqSMRKilHDmN10003jFcIM3x1TyMUuLAObSvbjdrMDhg69fO5zn4vyB+wGCfUAYuUedDoVs8wjYO587GMfi/XTn/50TJNkzmGsd9lll3joBUtpzQ8zd9wfQ+m3vBGDuMBnePhz07IEFkoCo4FDCZoBN2yZQ3ZNIASw+UKoe4Z6XKgOVjhscVaoAGZd4Z4WMwcU3nTrv3XXzdpnNvTiLrnaMaVN4Lep3ReGL8RuXhAq8OyNMVLjOOgjxc8WobYjDf4EMo3NEKMscH3XXXeNSt7pyA99SMBjLuOUgMNQQLmTqFicKmOYni22ClgDUrAzWC2xZEcccUSMiXMCfccdd4zxpUDFqGyfgxE2DFgmru5FLnINOvV7zDHHjJ01BK4AO+sP+P/gBz8YQ0EGST/iQJPYaWyjeWMsq25em40tt9wysomHHnpoBHRbbLFF/D/mb9DCBc/zgGW99tprG187OOh98/VZAlkCk5PAELCh1DivdXMyF5BrAofXh+/edmvlbj041P1DfVSofo8NqyvuKVfiUgOHDuNsHKq4yc+FijEdpCwLFzvcs1uoDts5kHJAqA6iuN/DQm1z0AXjeEuo9wkV2zhEAVK4zjAIGIdcxicBiZS5hB1EkXCZEW+K+2LcsYROsDpJrLhWZZCxQEICnNgELDCQXpPmEMWwBcAQo8bluMhuQjIm/64O/jSNh0wCGHvuXpuGj3/843Ec2+YmTalrvHHFJsFc8FvsoZADmwbXpJL6hWHkNnc63r+YUizioAXgNBe1vfycQe+Tr88SyBKYjgRGS4L9zdDoU0MF4rYLtcwcAifYM2Dwy6FKwfKOULFqq4f6/FABn3uHWgdRASDM26dCBZLWCnWU1DDh5xMp+sK1DNSy2yuHigFdoeXTudPJR55IrvoXhkq23jP98FDb3odL+4hQVwrVARY5F0sFIyEXGTahKaCeAbTzxyiIwXQ4wanGXLqVAAZQrJf4zhe/+MXxzQX9QECKiZV7TyyZ1CbGS/VdivcSs4hllOOSsZe/06Ek7GJioMSUakMvQGqeyLPHZSgHYtuYt24ltRh3wxgaL0yhefDqV786HjTCAMss4JS0AyZcxoC6sa/OF+EEDs8AaOYUTwAA6FoZCowlN7JT8OXf+r8xxjSKU+TKBlKBVcCy7UEYz5fKhp5xsG3SOfW4sr0zmv6S429Ri7VNF5gvmH/eCGu3aeO5qHLK/b6jBIbklG69kYMl2L8nh1oFeIDRMaGKLdw01JeFCihxcypYxF7F/bCHmDiEB7A5xUJhY3UwME7wOrnZaCCBw61DvTpUMpB6BtBrA+z8Fjt4v1C5lY0QObRhC8NlsZCVsbku1FeEWjlBzshgAgW4O2QgwbFcbdWCzaLc9Z1REJu0bNmy6mX57xElgJlh6J0adfijjQHmtvPmEuyhOEPMEsBH6XsDBuNv/LbeeuvoEpaaSByi8X7LW94SY+WccgYIGQ1xhQ63NOXOs4HwTOlPVM/KZXwSwNY7dMSta50C8sYWGPR/42QMyxkHUmusb3kNrVfuaPMqgQHxilJauQ/AoHKVl4sNBjCJqfRbc8kbeswfzCLgaJMIdDXNVSDTHJFPdRpM8w9/+MPiU5/6VIx3rPZvfKM2O3e2zm3+vVXJJsA4YXDNgxe96EXxb6mRpGKaNHCfHSnllvSSwPDgUCwddsphiepbo7iSuUB/E+pLQt0sVOzfIAAnXB6BEaJqBsChFCNSM2DRKJueOy8M6oNC3SXU94UqXE+c5dqhOkHcpgB0FVDX5mfxGmPCEwRcPinUSowit5gThYwLN6HTrtVCoTMGYswABwqEIQFeculOAoy/hMHGwSvYGOM2xRhy+++www4xXYj3pTL6QIPTzsaO8QYGsEfuK37Uc4BB7JNxxxgyEL7rlfTc8zBKDMy8HU4iA2Bm3K7iNuPqGroFoAfIMT8AjvVokwYYYoYxQNLQGLtqDCK3sRAFrmR5Bsuxq/poPkjL48BZL1aNjrCpwCCaH14h6ICalwSYT29961sbX0+X5ov2jxsceoa2YTn13aYHc0lXc48vUrE+zz333Mg8O5Bm8wDQmys2DZhUIQVkhtwQnpLB4SLNkPZ9HR4cAh4OkwBCVU/jJeEzsYhcosDhslCHKVqHdXMQY4rMIaVsYckPJsdY67eHcA3vEOpnQv1kqD8Odb1QAeWyCz782Wnhjj8vVIwurFFhLBlCRuN1r3tdNDgUf7WIFdJfBkLMUmIZKPpZMaLVNjOiDGvVxVa9bpb+llway2MMAIKem45Kwyl3jK+4NEC/HAYgPhDzg+VRMAUMhWoMnYAVg8iYYHjazGkgxHyZtxgyyZrTmqi+OQTIkMYH2CG76mGOtnMpsTZtf8+NrJK3jal/1X4g1rXG1cGkl7zkJbfNi3I73YMHQFWAY+wgdzMgaU4BhOYiICruGIjgLcFIYTRtFBo9J+Gefmu+jHuuYN0BVu1SzHNzWzonrnAb20Up5qpk5zYGAJ/XbWIHzSNjYW4gNsjFKXXj6LNcsgTqJDA8OMQKynEoDvD+lVtzJWOvHh7qA+se2/Kz5Fp2vwkXuy7uuZtC6g5KE1sicexAGf+BMrGC4v1ODFUKn2+F+txQn3fr5+GfTosUODeGCqC/NtSGk83AgFpXMEoUjH571RYFw6UuhgfTBTCOqzCA3GHkzm2K5WhjUBlEDBx3F7ZjKeyGuXvEGlLQ3nU7qFwZYEYa48jAM+TiwxhHsWTCBbAo1QJEYox6sUbV3/jbBskzlhL4ruuHzwBk8xvTyqVvbkvjIiavDNCtBWOEacHQ9gJETc8yzt5pjpk1NwcZ50E3O5gz7BD9hTHq117XA8fCErQLWylUoZr43jwzp9S2hYwH2ey0va/r6AkbWCf06Sb5H+kL61+MXcrVaDO/KMUcc0BNn73XmjzK3oDkbdhmm20iu0jvjJvVXRTZz2M/hweHMhw4DQt8VON9Hx0+E1v4o1Cxfu08Zc3yHSfLVnmqnS5XKoNhsSXXm8sE81tQGLXEtjQ3+tZvANx1QhWidXaoV4b6lVAd0KkcErn1F6P943S0NDiA6T+EmmI8W96VsgCy9BFTYOdN4QKSAAiX5CDGrddjyRrDZZefXgoPfDhpKyZy3333jUaqKaVL+d7GTDLf9A7gLsCh2DruV2PNjVZ13/XqW5vvvJsXKyVh8LDJlBO7Q25k4J6MO/c/INKVcQYibAyAdbGHS7EAFMbUCV6yAiDMZYmhHZ6Q5BrIKM83gNh3iWUdpt/Y4UMOOSSuIYa7q/VT1xZsEHeqtVvnci7/xnrWNwdfsIjyNgKTKXa17v5tPyNrTD4mr6s5mJ5NR5mLgKH1A+yIA085J7GcNkjY0EVhxvQTG2izw5VuQ9/k4fGO9LXWWiuOeVPMaNtxztfNrwSGB4dyFwIi4uKq4BDwcaDiO6HeHOqw4FBcI3cygDWBkpSlmAwsoZgdJ/24kyg4MV0YhhNPPDEyiE3MW21Tpfp5QqjkIYZyHPaVO/mKUM8PVagN1nZAYA0Ay+HGgHFLimtTAAIAxC6d4Rm1kDUDjZURLyRwnUFhmP2NqWHoGOc24JAxSO3syhhhIAT0c7OZB+kQhnYCtt4+QRlj0gZ9pt+KYfV77uQ2fewnc+41hhNr4FVpTcah333qvsfkAlbm/FI8jGLMsGmAk1PhQAU2DMhweAEo4m5Tq+DQ3OKer2OwyZs7z3iaA9ZJ1eBaUzZBNllkOK6iLVhKISDex92P4QV4xapaZw7acT/2+03btgMrNhTm96Bro98z6A4HLYC/d77znZEhLWdRME76QR6LkoAbiSE8Zdttt42nynutfXrc25dseK2BXLIE6iQwPDjkVsYeYqaqB1KWhc+Aw5+FOopLGDiUB7HNKd9w2SiFIrGLdjKQsXByU9B2ouWBFG9FwCgyKBTUwAVQg7X+hLcG/nnPH4j/vDTU40Ml++1DHRAYUjCMhP5RMtKgpEKhcDkBcV0UrI00LAANIAN4J/aLQseAMbptYpZcA8g5fCGmpg1oN34qw2WM61hB7CkGk2uWbIAizyIf4MJ8oYiBZUzlIEZQomGMqR28HIKjFqCGoTdHsae9jMMwz+KqJCPMVz9XZdv7AxAq4Magq4PIsO1zXAe8icP76Ec/GuM7MXlYwquuuqp4zWteE5lbIL0KfM0RoNL35TlCXwB61oNxNB98j7Ulf3MwgUnrCHuon12Br7q+A2MJiGJB68Bs+p01ps3mjLAEbe51fd3zen1mnQCd5Fk3F8nCmKSDEYOwqfrJu2DTljwb5bboRzrN7SDGIhQyMSfbhn3QW7lkCfSSwPDg0IEUcYVSzYg7LBegBGC8KdQ7HoStXNzjT7GyQKgQtwGBTo+71n5FSXGvAIZij4CVsqGicBhy8TmMudikSRUGNJ0QbVLg//flYGA/dudihd+vUNz5feFY+IAua8+wEwfWJL7llig/i+GjcMVpdVEws9x5XEJvetObbndLoFyuP2PBMPeTNTaT8V111VULLpNeBeBMhwzcHzDkKuViwRiVx9yzfc4IYVApX8wx5slrzNIGgcy4hquMUVM7GEbzCNuhzaOCLffDFmG4HDIaNJawqZ3pc/0GogAeLrs2xWaq7NLTxlQTKAQerDtyBOwxGdUxaPOsNteIYzVOAKG3/SSgJ3cn8A9E+EwblTQPgJvtt98+ulzTb1yDdXMilCvPYQhjaRwxd+uss07x/ve/P+aXBIzEfgFf2NcEDoEngB5I85m1VQei2vQtXaNN4qSNv+f1KtppA6YvwGGTXul1j17fGVMhKNjIunubH7wG0s0A5a99rQDpdoXM6A55HOsYd5vYxMaPA4xbD9qf5kr6N7Xe365JxVxStUUlj643QcJv6CpjarPKRo2j7+1GKF81DxIYHhxy9ap/TrJ/e3kAdXL2NRyIaCU89xazyN4Pmgan1QP+fBFFDyx4p61TXnWLl/KnjOSOE88zqZJeocWocnVrR2ofIxMN8S/+UDzsEQ8r1n3RusVjH//YgZrmHp4BpDnhiMmr7uQpNOCHQeui2OkCZnVy9GyA0DPLAKPpuXKwMRiMcC/wwmCJSxR8r7+eT46MvtxfAB8jnQpjiwlibBluIJTL/TOf+Uzxtre9LR7W2XjjjWNqD+CxGsTf1F6A6Morr4ztdRJ01MIYyWmGEeuVe27Y53CJAode0ZfCDHrdy5iRUZKx9tncGHN9B6bE/SXW0L3EizH2O+20U2uQ3asN1e+wZNogPKDMAGqb/vnXfEuAPwF9oBWLXgZuGMN3vOMd0bUJCHrNHJBvHZITrwMG3usnUxycvnsG/eE64OaAAw6Ibm5JzF3fNo1RtW/pb5sZzGGbQyM2OQ50AFHjiCHVR4zq5ptvXgtSjIV4Xusgnahv6lf1c+NkoyKPZxqv8jXGDjiyEei6GEN6QGiRzY2iDQkQ0kPmhzllEwqgaY95IAZYu7B2XcREl/tmftLf3MXmErDdRfhP1/LL91s6EhgeHAJrwGGTd9XGCds3bLyg32Mmhegg6cbIHNpFO+UljpALqG6nC0RQ3hYfIzzJXRnAghGjbLEP5V2rtgI5d73LXYsHPuCBxd0eGoJAB5AVA03JYvCwX/6tA1j6S6HV5UQMozNwwWxwgXDTixmqsm6AGkNaBal1DwKIGFiMHsXMOJfBvV084M99CLBwPTPuDHpiTG0OuJG1JRXKHxjSDqDYSWBxgu4jrs99jQtDMEhsExaL4QA8RwUE2sowiTdyv3G40cjGPGNs27jsyR74Ofnkk+P4YY+MtfkD9AMD1pFx015zC/OJ+SgDt7qxHvaztGaqbwPCbhnbxPKJMQXwvNUDsFHKwJCs3/3ud8e1KJm4DYL1qd36wSCbf0CftQQUJJaQDF1jDnmtoe/8u++++8b4W39X18Eg/cXqY4+lnupXrBPzuy75fb/f9vs+uZT1yQaobkwxrRhbrP2gYRU2xzbo73vf+6K736n88qZO+8zBug1+v7b3+56uFA5j85NArf55lnlifMXxCb/wuXlnrQs/EMpAfwKW5FJnZ/o9v9f3ZPH2t789blb23nvvYuedd44HdUZlpHs9M383vxIYHhz6pcq9XBcX6HPAcNgn+L0DL4oDLWNkDilrhp6ixMzVFQtZPJdXh41jp133zPQZg+wVWpRMYlswMIytdgO3mAkK6UEPHez0j12woG73xoY1uYEYLYbc67u6KIAoQEfJAoIMbVmJAWX+bqPguaAlfuZSEQ9Y/g15Ucxcg4pneTZGKLlzGShGXwxUuWA3Ujyi+6t+6zQgwEjRGwe/H0TRS9YLFKpdbTIYesBnFHBRHVcycV8bJwYcy9umn8YNa4YpYShTDKTf+o5MzV3/6r/xsiHx/3EZMmPt+dZKuQBkQCC2XDsAGq5Z41xXxF4KYTDnHNgqg02/J3+g14YBSFLMKwAUWLAxAA7oEXNeu/bZZ5+4rjBQw46f9ese9IB79yvWhQ1N1wyW51oXmGF9sQGrA4fG2XeYYiEsgxRt5uGQ43D//fePa954VONFB7ln22vNWeuWrcB0K0nf+Fc1z9Jcp59VY2ts/OuA4zjmubYJkyAfHhKywQ47nFQ+sNO2r/m6xZbAsNDtT3GG4g2dWsburVgSpFhB3kd3r8YjtpU3O/29W+8xZrcyNglzwC3YSznbnVZ3qG27M8p1Fj2AyFhTMILqxexhZRge7k9GhoJsMmp1z08nrx2OwGAwKk391waGHgPXRQE07WqBDwwTQ/XmN785MkxKGxCS2iHlkBPmZFRlIciG8WUMvdGBITKGSaEz4vrk+3K8Ilkng85VZwNhUwAYApa+Z5CBBcH/qd1tZENhm2vJ5djmN/2ucS8HZPQnsWDpN9gLwEE/gH/GrY1xAm4OP/zwyH5wKdflTGxqF8AMXKd8c9znvZ45Dsaz3DabDePnJDwgmApDyngaU4VLttcr3/zefbBGdWDEvLBhsFbSHPa3uUQWZGJjwe0HNPtOabsRuq3hlf+kwzHmYRvXf9Jl9MiWW2450HprakP63BzEHGNRy2ut+jtMMSa5yuZWr6v+TVZkT18I8xD3Sbb60S/WsnqvQf+2zmwKeB+spUGL+VHevA76+37XkzcdxzaIIRduIqQCCG+zaeh3//z94khgeHAoNOs+oUq47ABrGRxeG/6WIFuK8rM/igAAGTVJREFUG6luAEUgcRD2D+CUCkfcoswpw7c0/Lh3YRi4FO12uYzbuDJ737H7b+0+ASlAB1BhBOwGKSgGDSBggNsqHkZJPkOnFbloGMxeAMfuHwBNxmzUHlLwjBiFrmDlGE2HgXq1o/xcivaEE06Ibh6sKQYIG5EKQwy8UZAHH3xwZCrLAexkisVj8IUUlFlj7AdQpM/kBFyRUVKwjL2TzIwy+Q+SEoIrE3vQFQNtzB3iEUvpPcuJhcNSALA2FGRhDLlz28RG6juGjHy5SdOJ7Lbj7vQ4xpGLlvHHtKSQDQyhMU4MImBoU9J27rZtQ/k6a0Osl42EzVDaRJmHQEoqQEcvBpaOAK6Bmjqwa5PjGuBY/xQbOONAJvrK3Qxcpg2If4HUuvu17at5aG1qf2LEe/1Wn530Ba7MGa5Z89/vtQfDClToC0A0yGsz6SngsF86JX0elrk0V4wnj4DxMq5AKUbRBnFccykxh8OGg4yrXeWxpuPosxS77fAb/Wftl/Vjr/mRv8sSGB5yeWWeF2z8LtSbQn1cSZhnhf//5Nbvjgr/nhaqgykAJK+n/Hs8Cb2eDhxiDl2rDgIsw+WDFFS8mC07LawOJQlsMLKJ4UmKfpD7dn0tMGOH7BCERZ5SZlDodoxtjQtGSH+d3gTQgMMyaKprt/4DM5g47Wj7rLp7pc+ABH0Qv6dNxx57bJS5t4X0Y2i1geHyG4YOOOL2L/+OUXYNg5wS/JbbgzH2pgAG3e/Lhgo41CZsm/gyxt7hg8SsMsaANSXs+YPMD8DSfercbb3k1fSdscDsAXTAcIoLZYhUmwhtNKdtIvoZKCyqcIMPf/jDsd/GY1CW0+/JTowWV61YOEAxPRsAwayRg7kHXHuGuKk2ByqaZNH0uXUMnHJFAkTkUcdYAdLmVtN6MP/JpA6AkRtgJLzBJiddA5gbm+RmpW+MmeuT69nf/calqW8+Bz5tBsz1NvexIRZfq79Aq0NCxsAaNzbmt3Xhfv2yBZTbZe45aOJwjH6Ouwh1wOabOzbNDmOIF/XsJi9IV20iJ/0FhMXMAtgAa2KMfa92oSsHbbNnmuOybpjn4rHFPAodovMH8cwM+ux8/XxIoBc8691D4NCbiRwa+UHpUgdJ5NuT6FksIhbRU4TfiEG0mQYQha55tVzdGzxcKzTo5lCl2htznkPuRKeUKZdkyBhuBoJypEi5LC02zNEgQCy0vpNC4WuLIGOABCAcNl4NI4CpE6vjhBvQ0K9gesjBbyhERqSNEep3X0pKjJYToQAEN6a/MTu9GESG1XgxvIAdV0rVGKRYH3JiPCnq5IJnxJ0yBmAYyXJOR21mGF0v3QZ3qvi5xCx6NmbFaVXuwX5AtioDoIEhH+QQS/Ue1b8ZR3OYDBlmfTeHyTAZffO535glGTmEAmhKyQIMDQpkrRUng9O7XBN4cX+ACFjSf0CZGxeY1FZAZFRwCABietP9zG/z1boRyuB0u7rjjjvGa8oyMb+Nbx1wJHNy8L1aLX5rXRlb/S6DQ33FvgpBSPFfnmtDYv7YgGC8hmXSjHca82q76v62Jngd6BOuZYDW2jAOSdcAXg4hkVvb4vc2ntZMv7RS/e5JxuQG6PTafNlQYgzJFQjiSSCLcvqhfs8a9Hv3dwDoqKOOiieusew2Qjbt5rg5YJ5rm838tAo7gcE13g6q2PB5DWQ5D+e02pafO9sSGB4cYgKF6bhDGRxKE+Zdy9zJ3gIiXhDDKGH2N0P9eqj/GCrG8bmh1oFD1343VImdvW1lAoUyxzw5DYxtAqC4/4AHAeoWFyWOPWJgqnFd424ihc2QefYoBXDAljH8YhTbnlZMhpayZszJou3u02/IlKJkdKs7afdhTMQEYgEAE26bXrFTDEfK6eW6KjAkI2DITt7zgQGAhQIHFPyb0r+stdZadwDa6XCE+UC5Ayyp3dgWrCM3Xt1J637jo6/iPRkXQLiron3uN8o9tckJ8lNOOSWyDoPGU6a+kHu/RLuMJ4YqHezhFhyEpWqSG7cxg60Ya/MDQw3kcqWKMRWwbz6KHysDMgDJ3Go6lW0OmROAYLnoA5DFlS5UQthAAjTAOd3ieWWgZbxs+OgUrj/XayNgYe5qc5sQgNQOOgIwaVtcTz50ioppt2nyuc1GE3vadH/jSW/yvmDRhgW66f70rk0YmfSL76OPrFP/8iYAiDazTgWPo5CzuUtX0QdAmJhf9gJwpHPoNUy40+P9NmXDtFEbUriCuWIuVXWr+/rcOqavpE+S1cDazodUhpH64vxmeHB4J7MuVK7iG0K1keb6VbcP1Wnjq0P9dqgOl6S3nXARA4u94gh/Gr7/WqhiGp8Z6oQKAFQ1ahQ1NkZsGjcsat7il8KCQlhKhSJZHlJsiM8RgzVIIDrGhJKh8ChsLFobcEiBcYVLMA74YeDqXHLAGCMghkiSYsYKQKxjrJJS5M5xiruJuWOUxRlyM3EBU9gUJIDsN+6dxreab5HRxPSQE5dtGXAxCgwX0MF4kwPZul8bmWA5zSVsQwpbaPO7cc814ED8pRPk5IFhqAPdXbXDmIuL6jrGF3vDGJt35shFF10U5xygIK+fzQAQ45S+NcyAAzLmQgqbaGoTJo2MbBxdnwAgYAuUAiTY5DLrjUEDDMnSGioX4y7pvPQ4DlYw2NhU8seGtQWHae5h0oct1kTTWmpzT+uKvLUBazdqAbzcD5AB1o1RHfhJzyFfoJR+cGhP+IA13It1HLaN2oEgED5Ar5C/9plnngdYA9g2O+MAhtptntDl2EDuYvO+PO/KfTPvyJH7m1yQAj4bV9uGlWv+3exIYHhwqA/Amxcm/FOo3MhAnwLQAYFfCPWLoTq0onht3CtDxRg+JtS6pwORPw4Vy+j6Kb/lx0IHhFQ7wNe//vVxcXFV2Y3VgZfQ6pkrFCZAA5QwAA4ZDBJHRomQBdAEHLVlKFyHNRRvhnVhdAEtwK0KPChcrkhAEvtA2aVTpGWBYii4/xl/bv5eh0H0UcA9NyPGiMuLOzgdSKAsgbRqfJR+HnjggVHZVw1mcncxAFgkxb2BW/OinzEyjwAWYABAknR92rt44DYdQDHW8qU1uVZnbnJXGsQ9m06t65cx5u7F7GHoADyAX3/lu7QZwaYAhkCe8W0CIYCluDagBZtsTivm2RZbbBEBXZV1ZLCbjLbnaM8RRxwRDziZ10BG2pi0lbXfeAbmL4GVtr/t4jobZmuLR4Lsu0rubjNnY24N0sHWuvWVwHACN8aMXtB389bBQsDJ7+t0yKh99ly6QSjHtIr5+p73vCd6UJAV9Ck50SmqjUfygGgvMAm0S6WE+TZms7ApnZb88nN7S6AOnvX+RflbYPApoV4W6oWhviTUlPTaKf/X31qxikBfm6dxJWMinXbepHS/8N9pF4uPMbEDA3acOMQI1BULDzBSLUxGYJq7NIAOqGX8dthhh6FOrVHI+kvZNhnPqixcx22GNeTq4dK2u3fIAbBLSt51ZMXApRQ94tLqCjcOY68tKcFy3XXpM3JnsFUGXayZkg4gVUFq+l0TawMIYKGABId5tIerXfyW2MkEGJraBEBirez4uaH8dprgkGEVp2d8sMJcT+NOCdIkm64/N5+EjKgMojyDXtkmDYpxwAKKPcUgcqkDGMCH9VtXzE3sI8BJZjY65i6j3M+NXne/9Jk5BbAOW7Rff6xvrGb55P2w9xzkd9zqZOL51kEXhZ7SL3GEwkKMC9BnE8arYCyAG3rD881d4SLiN/1N79jkzWuxIRCuoM9ixwFBTCU9R27mFBkld7NQFuEWNrXWxTTt0byOyTz1qw1ca+6vN5c8OVR69MRQt2q4dJCTxt8J97giVB7b4XVlQ0NG/xgTYWFhohibOnDIsFBUKcebhUqZVRmo0VvT/g7icBgzKSnKbwFpf4ciAjExVZTOIIqFvBhjrODRRx8d7wFYcedxH2NtxOHZ9QOPTjsCWE2AKblT9GPQuKhyf+28jWeV6eknE+MoyPsLX/hCBBeMlgMtwEHbMRaThiFNG4d+zxzn906rejMIeUiVZFzmsZhPABiXmj4fdthhkfEFaLiIzW9xr8azV4ybDQGQiYm0SWhzoGvc8jTvAFVrTeqlSYNDssAcYjwHTWrdJBtyBTS9kYiu5fmwKXeyGutLx9K11hAABBhZg16FSaeI7wSY5rXYpPNu2MyxR0CxjQG7429ufrrU/FboOWNz0EEHxbCFthv8eZVf7ldvCYy2coA+8fTPC/W8UL8RqjRzo5wuFqN4faiS/PdP9B8ual8ScyBhMkWDmcJcMQYUTKoUis+TYrEzZTwsMgYU0ANqygYE+4PNsst1WMG9E/vgvgwTN7S0LZM2vmKhTj311GgUMXbDusLJw050EGCYRscO347fWwUwAtokt6R2ORFLvgojxyCITWwCfp7vOocJmq7pNyuwZWJJjdMwhpQR5g5khLQnubraysZ1s2C4gBxvjTFX3/jGN0ZmtW0f+sl4Fr9nELkDhRU4vbl/eIsEYMFdaY4C7UovGdgQimU1h7n0bHpmoWiX+egwEXfnpIw/vehUvznkkFtXrkpj4F6qDSlgw2VtE2n9qqnoa3Kj0m9l/T0LYzOONpTlk3Jvsi1JNv41JskOkRE9hXEc1gaMox/5nrMpgdHAoT5JS+MVpGeGelCoHwu1nBB7kH5LbwMYKuIW7zLIj/tfKwidK5FykTDZAkmxKimGzr8WE/dSUj7JkAMEdrN2p2V3pt+IQcKKYRK4m/3f4QpMhXsBoxSopMLAyCQPs2Dp9InhZ0B6Gb5+UhzF4ABDyRCnlCUOQaTTqu4NfCaXUVM7GQq7XwHhTS7hfv3AGNllu9cw7kBto2jVpVrOP//8yBhyvWHD6tIBLdW+9Wp3GjtzTXxaeZ61AexAiFPPybUMENEN0y4OSAnZcDiBnnHgrE1/Rm03th9rhT23YRpHoRus9WHX+zjaNEv3TCB6ltqU27K0JTA6OJSyBlsoZ6Hk1yeHukWoDqsMWq4LP8A+CuNba9Af97+e8sTcUTAoeQuqvLOqAsT0tztTTsAkpkot744ZF/FzWAjg0T0xYsuCa5RrAyshQJsCFfeR3mTQv8XdXEFpc4P6dxZ2jGRJJukgCTkD7OTYpn2u6eX2ayM17C73dMpb2eY383KNzYr4U68t5M53kMLcGJaFXcpyadqA9OuTE8g2J9az3H7DsM/9njHo98bP5tR4ClkA+rtIKdOrHVy8PCb0qY3wIs6hXvLJ32UJLFUJjA4OHUCR13CHUCW8PjJUqaXEAQ8SayhhtvyHXsW3QajLQu24pADdrtweqXnAoHtjEwAfBxSwjp7D+ACj3M7p5JxrJ1kAwwRqJ/ncts9KTE7b67u4Tk4yhRtxFDa0i7ZM8h7mpUTjXI9cdE45pg3MJNuxlJ5lfYtvE44CRHPd2tiI4QKOZgUcmscOUUkKn3TPOOUsJEMYDX0nzMZhkVyyBLIE5kMCo4NDcuBRAQj3CPVLt/49qHycUAYuvXnFW1G8U7njMi4Q4JSjNBQAIFeO2Eang+2mGWOpU44//vjIKDpBV8111nE373C7QQ9c3OEGS+wDTKQ4KEHZTt1WXb/GRqA2wDyMS3mJieN2zSUbqYUwSgL3ySe76ppHVM4+7mPAENsMGCo2NOKIgbBqQuzmu43/G3PdmDqRb6yrc7/LFkjHJG7YSXAnuEdNet1l2/K9sgSyBEaTQDfgUBuAOe7k1UJ1SCWltGnbvq+GC71pxZuaxhO20rYlA19HCctPBgDaTQOE/pWrz+eMi7/lt6NEh3VlDdywBfsB8M3NJ/4TWCdzCYarBtKYyAfHpVx32nyexWaDZB4KXK97W808932QvqW55C06y5cvj4mdHYCymUjxhckDkWKTB7n/OK8VZ9iUhqmr5zrMJSUQ17qDdsITcskSyBKYHwl0Bw69MQVAfPwQwpHb0NtUHFgVv9j/Vb9DPGR8PxHYztgCJALBxbJhY6RbEEtHgUohw+28VBMLj0963dyZyx4oxGQ4RcrVJTi+Doi7DkgSE7poMVL6PWwqo25GavbvIibTgSX5D1WhB1L8iDMsH/CwzoHIRWLMbIT1WyJlAHG33XaLB/Dq1tnsj3RuYZZAlkCTBLoDh01PaPP598JFQsC8EcVr9ZZYYXDl99p3332L008/Pb5iTx4pTIMkpYxL2/x3S6zrM9HclEpD/kSufeysoHxjUjVajJuT4+mduzPRgdyImZEAFhAwtMmTx9KGbs8997zDK/6AQvPOfJp0DPE0hWWz680j3u4j44MYzF5vKJpmW/OzswSyBIaXwGyAQ6eUvQxjnVBXGb4z0/wlF1PKfyh/2nbbbRdfpZUV53hHBUPolYBO32ICvU5KjsSmQ0fcgw4RAOzl9yWPt5X57ktBAoCeOFXvlpbySooab56oS1Mj/ZIkw74btwt3VmSHUfU2DonCZV/gDZmFBOCzIp/cjiyBeZLAbIBDeWd3DZVL2oGUJVrEuKUM9XIK1hmVJdq1mW32F7/4xZi2w/uJAfJ+gE8cqANEEnIvWrzhzA7ijDSMuxQwFGe48cYbx7f6NKVW8k5tB1F4CISNzGvBkEpQj1EVuuE91E5uize01qrM/LzKIfcrS2DRJDAb4NBJZ+9oHvQQy4yNFtCRXl3lxGCTYZmxZi/p5jDmmELvu24TFH/ttdfG0+JOcE8iQfCSFu6CNf6cc84pnMBdd91140GmXutXzlLhJLwFTSz1PIiPi/3MM8+MB+ukPhK6cdRRR0WWPq+feRjh3IcsgXoJzAY4XOKgMInWq/UuuOCCeBq0l2GpH4r86TASwPaIH8TStmExxBtieuaZ7RlGjov+G+/YxhhKPyVnX79DJtIBOXSGgZ7nIuWTDa/39Tq1vdNOO8U0SNkrMs+jnvuWJbDkubrZGUIuJqdkpVLZdNNN8656QkPjwI/Txw6i9CtiysQbenXhIh0i6CeX/H0RY+nMIW7ifqdvvfJRzkMM9Khv6pl12QPN2EOxmEAhcOiEf5uN2Kz3LbcvSyBLoFkCc8LZNXdwUt9wKVOi3hIgWHtcCbcn1Z+l8hyxYYD5pZdeGt9U0atgdhk5BwgyOOwlqcX7zgETcXVY6H7pjbDP1rvXcc573KoT/3vssUex9957F695zWsW5vDN4q2A3OMsgdtLYDbcynMwKliEtddeO74toJ9Lag66OzNdAMTJ/fLLL4+sz4Ybbtjo8nIYBXvohGU+RT4zQzgTDbn73e8e2TBhCg5g9HprjLkGQHqf8ryvdWtFXkzAOedonYmpmhuRJTARCWTmsCMxe5WWE8qASi6Tk4DYJymDGGvxng6cNBWMD5eymmNCm6S0mJ9jk4EfruVeDDTwKLk9xnDeXcpmgkMn2NQMDBdzXeReL64EMjjsaOy5kb2mLcfidCTQAW4jRkwqGy7j888/P/5bV5wwBQIya1gnncX+zOZOSIjQA5uIpuI74DHnyWySUP48SyBLYB4kkMHhPIxi7kN8G82TnvSk4pprromv0Kt7363XfYk15ELMJUugKgFv+5DXz8Eyh06qRUiC5NhYNEASo5ZLlkCWQJbAPEogg8N5HNUF7BO3MoDoNYXnnntugSWsFuk4vAc7g8OqZPLfJODkO3fxt771rdrwBKzihRdeGN/ZPe8pbPKMyBLIElhsCWRwuNjjP1e9l6RXAmMM4dFHH104gZqKV39xN2N95v0QwVwN6gQ7w7XsvdzYQwyh+MJUsIZnn312ZBRd0ybh+gSbnh+VJZAlkCXQqQQyOOxUnPlm05SAuE/sIYAoce8pp5wS3csMu/fgytnmMEpO4DvNUZrtZz/rWc+KqagcOrniiitiY80fJ5g/8YlPFFzP2MWcqmq2xzG3LksgS2A0CWRwOJr88q9nTAJSCklCvs466xQf/ehH4+ECTJDk5ICiN2BkcDhjgzZDzRFHuNZaa8VNxDHHHBM3FOrnP//5mPh6iy22mPvchjM0HLkpWQJZAlOSQAaHUxJ8fux4JOC0OJffRhttFOPC9txzz5iw+Pvf/350KYtJnOd34Y5HqotzV/NnjTXWiLn9vCJvxx13LD70oQ8Vb33rW4vtttuuWHnllWNWglyyBLIEsgTmWQJ3Ci6T/5vnDua+LaYEfvvb3xYXX3xxsd9++8U3WTiE8stf/rJ43/veF0+a5pIl0CQBKlG+Q+9aPv300+Nlq6yySrH99tvHjYfcf7lkCWQJZAnMswQyOJzn0V3wvnmtntOlRxxxROHtKF4DtvXWW0eXYS7TkYADHQ52nHPOORGoz+pYCEHAON9www2Fw0wPetCDIjDMrPN05k1+apZAlsBkJZC3wJOVd37aBCXg9On6668fk17ffPPNMQ5RTOKslt/97nfF9ddfXyxfvrzYdddd46nqeUuqro/eZHPSSSfF2L1XvepVMwm6gMD0Np1ZnS+5XVkCWQJZAuOSQI45HJdk831nQgJiDNdbb73oEvQu3Fl+bR5X+NVXX10cddRRkbGqS+Q9E0IdoRHeWbzaaqsVy5YtK6666qrbpRsa4bb5p1kCWQJZAlkCHUogM4cdCjPfKktgFAmIZcNyOl0tYbdXtM1bAdZf/OIXx0Md0sHc//73z67aeRvk3J8sgSyBJS+B/w8Ub3jzQFo+hQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAOCAYAAAASVl2WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAvUlEQVQYGYWR0Q3CMAxEG8QAnQE2gBnYgBVgBPhMfmEUygZlhMIIYQIoG4R3aRIVPsDS9Wyf47NUE0KofsV0LDrnauo78ORLaRN9ctB8kT+Bzz3zz+JjQ3415u8bDoiPNCC7rljgf6WxgW8agFvIxw0UM4pFFjVA7MEwQKLL9aqHTqAhv6gXj6SQ3wp0YAtaerKojLU2rz+roUDcQTp4rg1NKqAhGDgqg70G5K/1JdIGHVks1knVLTXQv4iWb/y6SDi/G9jcAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\dot{s}$" + ], + "text/plain": [ + "\\dot{s}" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_s_pl_.subs(lambda_, lambda_solved)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADWCAYAAACHdtqoAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tnQW8VcX2x9dt4tINSncJFjYgICEICgqY2D59xjNQ/NvPFlvxWYjdYDcmIgoo0gYIKqHSDTfmv7773g03Tu6zz7nnwgyf9bmHHbNn1sz8ZtXMpBhNYpPlgOWA5YDlQNQcSI36DfuC5YDlgOWA5YDDAQugtiNYDlgOWA545IAFUI+Ms69ZDlgOWA5YALV9wHLAcsBywCMHLIB6ZJx9zXLAcsBywAKo7QOWA5YDlgMeOWABtJBxuT9eL50zUiSlQj954u/4RXZtnztOhrSsIbU7j5LnF+d5bDb7ml8cyFt4uxyYqe2e1VMe+iPfr2zD5mP7QVgWlYsHLIAmtJlyZNpjd8g7i9bJ6jkvyNjn5ouF0IQ2QJJ8zPaDJGmImIthATRmFkaTQbp06NNHGiPxVGojvbs3k7RoXrfP7iYcsP1gN2lISd9dKlI+6pEitQc9JrN+vkSWZbaQdg0qlo9i21L6zAHbD3xmaJllZwE04axPlapNOkrVhH/XfjC5OGD7QXK1h7fSWBXeG9/sW5YDlgOWA/FayrlVfvvwPrlo6KHSpmENqVyhktRovK8M+s94mbm2tIc7Z+pl0jI9TWqfPEk25q2RGRNGy7CDWkrdqhWlYrW9pMugS+XpH9dL6TeDt2DOX9Nk/FUjpXv7RlKzcpZUrN5A2hw6TC4d94X8uT34ewV3cmXllw/K+f33kb1rVpKKVRtIh15ny72fr5Dcna9uk08vaCzpqelS+5in5M9ADtyc7+S6fSpLalptOXHieufNcF7f6MptZOWjfaRCSopkdr1J5gTwSG15eZhU1PvpzS+Vr3OK13v7b+/LbaN6SvsGVaVCVmWp1XQ/Gfjvh+SLZSUeDMqufFn7w7Ny9YjDpW2D6lKxgubRpKsM+Nd98snvpZkcXd1EvPeL6MpVvHqJ4amf/cA7n4I2rL0RKQfYjcnXtGmueeLE1qZSiuJdSqqpVLuxad6ktqmYmqL4l2KqHHij+W5z8S/u+PpS0yJNTHqbE8z5AxubzIxapl2PIWb4iGPMIU0rmxQRk1qjp7l33o4Iippv1k691fSqm+a8l5JZwzRu19G0b1rLZFEmSTU1Dh5jJv+dXyyvnFnXmU7pej/zMHPB//U3DdNTTVb1vUyLFg1N1QzKTl4tzKjXl5m8wje3fXmxaablTqnQy4z7w726K9vtU/5jmuv91Lqnmbc2FFzPXXCbOSCD7/QwD/5e9B0v5c43K/7X22Rp2TK63Ghm55Zmz+aXhpoKej+t2X/MlCLsy/vtaXNsA3iUYio26GgO69XT7N+0qklLSTEZrS41X24tnVeJVjOLnj/RtMgsaNf0ao1Nh65dTJv6lUyq5pFap7959Fe3QF7qZoy3frEjinIZU7o9EsPT0t91uRs9r7zxKVz72vuRcEAieSiaZ/KWPGb610gzVTudah747HezxcGpfLNuxljTt06qgmpl02vc0p0gxF23AwCw2Z3PNs/N36hvFKYtP5o7u1fVgZ5qao141awpjnulipa/8lUzsiHfyTTNhj1ovvnbRY0cs3rGY+bE1llOXrUHjTdLi+DXTgB1wPoAc+Hzs82awvG/fdmn5sYjaxu1d5i0RmeYd9YVfnbHN+aK1un6rUrmqMeW7yqzc3uHmXpZS5Om32p41gfGnTOCDRxv5fY62LeZT//d2ClbvSFPml+3FdYnf4NZ+Na95taX5hv3UikGF17IWXC3ObyKgmdKFbP/xW+YxS7g5q01Pz53hRn5r6fNzzkFD3urm7d+EU25KF3p9kgMT0t/1zuv/Bw/wdrbXg/MAd8BFLDc/Ndys7Zw8Oz6bI6ZcXV7k47Ec/R4808RINzZAVQqe6CYVFbw9sZJJ5maqUhyZ5kPQo7sHDPruk5G4+FNetvLzNclJF1y2zbzWrMPEmVaS3PplO07i7cTQPX6uR+sKgGGxuT9/ojpkw1gVDfDXlpTeH9XnSoPGG9WFgX3HdMKwDVtb3P+5F3iXOCB47XcHgd73hJz3+GZKlVXMIOfWx+4Z4S8utl8dO7eCsDalofcZRYGkHyLtrvXNom+X0RTroISlm6PxPC09Hcpj7d+ED2fQjauvRkFB+LgREqRSnUbSPVS/v10adOxjcZNGcn5Y6ksD2Cvk9SaUkeRsmSq0Kyl7KWX89cvk2UbQ1hC836St99eKDkmQzqeOEq6VSqZk0hWl9PkFNWhJW+JvPPWrCI2zcJn01vI/l1riqr/xVJqo0Ey5EB9z2yU76bOKXwvXboMP0E6qBC65cs35MPVu8qWO+sNeWtxrqQ1Pk5GHKpKdKjkR7lD5V/yXmo1qVsnS+u4Q7568iGZtiaQAbfkS0X+nzNd3npvueSlZMqhp54krUMFs/pRt0j7RTTlClE9T7di5SkfjZVXkfLJUwXtS4E4UBqtAj0V67XcLbLu7xXy1wZ1ToBMOTt06EaeUtLSJc1BNH0v1Is7fpJ5v6ibJ6WitO/UMnCQeure0rlTTfWe5crS+QtkY6TFSK0jzZpW1ffy5Z9lK3aWP63DCTK8iwLr5s/ljY/WFjq6cuXHN96SRbnp0mLYCDlIjZQhUzzLHfDD1eTo80+X1iqErvnsGjmseXvpe87N8syXS2VLiPnJzcqs+Ul++ltnwNRG0rlj7VKTTbFPxrFuJftFVOUKyJdYLsbGU+fLceJVST7FUkv7bnEOxAdAzSZZ9Mnjct1Zg+TgNvUlu2K21KjXUFqe945si2CAem6k7ZtkUy6+qspSJTtY1VKkSpVsZ9CbTZtkcxTCV0amAqVCZP72bbsmgLTWcvzw/SVDofizNz6R9dQvd4688ebPkpveWoY598KkOJe79NdTpGqvsfLx27fIyP3rSfqGn+Sjx6+V03q0lCb7nynj52wu/UqRKw7fqGdKtvK5pKxe4tUE1i2qcoWsoZebsfHU+WICeeWlhvad0hwIhjKln4zwilkzRW7t307aH3Wu3DbxF6m0/3C57PZxMuGFV+SlKw4V9YTHL2VlS3Y6vvfNsikoMhrZtHGTIymmZGdL5Yg5kCvr1/JeilSsUVN2WQfSpLlKmQerlLlh8iSZvEHxc94b8uZPuZLuSKelbBml6x/Xcpf+XMGVDNn7qDHywvTf5Y9Zb8tDVxwrHavly+rvn5JzB4+WTzYFe4/5qbJULpiBZMOmMDNiAusWVbmCVy+GO9556nw0gbyKoZL21SIciBg+IuKaWS/vXjZcrv1wuVTvO1amLZ4vk5+/X2687Dw5beTxMqRbo3gFnhYUL7O1tG+lgGW2yvw5vwbeqCP/T5k9d40q4unSpH1bqRJRxfSh3IUya+5WBVDXlrvrxVTsnIdVFLPuE3njs7Uy/803ZWFeRoF9NJR90M0ihnJnZGY6uZi8PMkLg2WBq5ohdToPlAvunCgzvn1A+tRIkdzf35I3pgePBU2p2Upa1cYovUxmz/mn0GwROHeJoW5Bcgx6OapyBc1FpCx46hQngbwKUX17KwoO+AugubPkw8l/SX5qPTn2sn/LftWLZ6/OrSiK5uHRtLYycKA6qlJyZM4Lz8r0raXz2DH7GXkWcEhrIkcP6lJ6MwCzXbbvKF3OzVOfkZdVqkzJ6CQDj25R3L6qtsAhI7pLJbNGPn5jvLz69nzJzThARhzfJrAdtmSxPJdbzRGNGglszl+2SJZsK5mxBpSvXquTRWQpq0VPOUIDVzFUa+x98JR5oBzdt74GQe2Qr595TpQtwZPnugXPMuidaMoVNJMy4inlSSSvgtbf3oiGA/4CaEp1qVkdFXqjLF2yqphksuWn5+X869+Nrw1U4bDLBdfJsPrqIlp4n5x8+qMyc7U7uvNl3ewJcvbIO+THHSlSq//VcskhAbw7OV/JzWfdIV+scCWwPFn7/aNyxumPyK+5qVLnmMvkzHYlxcoUqXfMSOldxcg/794lj87KlayDh8vQ5pGy13u5Mw7oIz1qqGtr3Tvy4OPzZSeGqh16/nPnyoArPwvgsNsqPzx8toy6YZL8usXtLkY2znhBJs3LldTqh0r3fUKZHrKlz8UXyP5qx9g27WY5+fK3doF37t/yzf0jpH2LY+TxX+Ch97pF05ELno2mXMFzLxueUp5E8ip4/e2dKDgQRchTBI/mmPljDzPqVzCp1TqbE0bfYe6//w5z5andTdMqtc1Bpx5rOuoqnPR2Y8z0InGiO+PYKhxnXtxU+jO5c/5rurJ6J6uXeWRZmEh6jdBc+/Utpqe7EimrpmnavrPp2KKO0SWNKlrqSqSDrjKfBFmJlFqnuxlyRC2TqiuYmnbqavZpVXfnKqqK7c8zby8vveLIKXH+avPisOrO6icC63s/8kexxQJurQLH/zkZeCq3MdvNnLFHGJVCTUpqFdP8sCFm5IghpnvbmiYjq6kZ/O/jTWuNHSu2EmnrVHN150rOKqSsep1N7+OGm2H99jMNK6RoHnVM34cX6DKAcGmbmffIINMovWAlUkaNpqbzvl1MqzoVTIryObPJUPPEwp0R+p7q5q1fRFOuQIH01Dv+PPWzH3jjU7j2tfcj4YD/gfR5K83nd51iDmvTwFTNTDcVazYz3YZcYsZ9udzsyJlprutcIc4AWlDtHSummEcvO94c1raBqVYxw2RVqWtadhtsLnzgE7M0QDB+QSC9BoYffq/5Zf1888KlA0yn+pVNRmZlU7v5gWbo6KfND2tDg/e61080tQCyyv3NEysCPxt84Hgrt/NW/loz84kLTb+ODUyVrCyTXaeF6TZ0tJkwc43J3TDRnFw7rdRSzvz188yrN51menVsZKo7/Glg2vU8zdzyziITdhXnzp61wyz7/AHzr36dTaNqFUxmxRqmUccjzSnXv2hmrytd/2jbxDswRF6uoO0RZ54G/W4hb6PhlXc+RQIR9plQHEjhZhQCq33UcsBywHLAcqCQA5Ea6SzDLAcsBywHLAdKcMACqO0SlgOWA5YDHjlgAdQj4+xrlgOWA5YDFkBtH7AcsBywHPDIAQugHhlnX7McsBywHLAAavuA5YDlgOWARw5YAPXIOPua5YDlgOWABVDbBywHLAcsBzxywAKoR8bZ1ywHLAcsByyA2j5gOWA5YDngkQMWQD0yzr5mOWA5YDlgAXQP7QO5yz+Vu0Z1lzZ1K0tWherS/MxJsnYP2hUhd+b/SQc9vjWlwtEyYU35qPj2ueNkSMsaUrvzKHl+caBTGffQzlyG1bYAWobML6tPm3WT5bLeA+TKp7+SRVtrSpsunaVdszpSMdQmymVVWPvdQg7kyLTH7pB3Fq2T1XNekLHPzQ984oLlV0I5YAE0oez272P5fz4m/apmSKsrvpHgh28E+l6eLBp/vTy2cIektzlX3vp1icye9qW8e81hEubw5UCZJfU17zxKTLV2fHaB7KXHzer+qcEpo41c+R2bgqdLhz59pHGmPlupjfTu3iyy0w4SU5XEfUWPDZp+d39pmJEqGZ2uE927vExTqG3Hy7Rg9uOhOZD7848yV4/GrBj6sdJ3zWr54uOZst2kS7czL5W+9Ururl/6lfJ6xTOPEl3hlAypVKWSqEWhdEqrIhWdJkqR2oMek1k/XyLLMltIuwZRt3zpvMvblbwV8sGVg2XEvdNlvZ5TkwzglQxlKG/NmATlNbJu8SJZpZ1o72hLk/+3LF+Zp7s+Z0iT5nvvxlJMDDyKlqexPp95hNy94GM5r2EgBC2aeapUbdJRqsb6vfL4/raf5ZmzBsq5L/wq21PTJDUlOWzAVoUvj51JrV+//fKbNxuYyZWcXJwmaZKm6uPum2Lg0e7LlHJZM7PuW7lzcHc5Q8HTNB8hj9x1gujhsUmR4gSgW+W3D++Ti4YeKm0a1pDKFSpJjcb7yqD/jJeZAVy9ud9dKW0y0qXOyRNlgx5JvOid2+WM3h2lUY1KUrFqA+nQ+xy5/4sVUtTc4eWdXRyPrnxbXh4mFVMzpeVlUxR8/pB3rx0snetXlszMqnLw7XOLAVnOyqny+OjhcnjbhlKjUgWpXLOxdOl3jtz17iLZeX5bYUFypl4mLdPTpPbJk2Rj3hqZMWG0DDuopdStWlEqVttLugy6VJ7+cX2Rw/lyZfa9A6VD4/rS8+5flB958uvYQySz0IaWVvsMeW9HsH61SV48rqKeKtpV/jtXOakH/71wbIVC21uqZI+cKNv11ajq+tc0GX/VSOnevpHUrJwlFas3kDaHDpNLx30hf5JZiZS38HY5MFOlqP6Py7IdK+SLB86Tozo1kmoVK0rNFkfI2Y/9oO2vL+Wvlu/GXyFDuzWXOlUqSKUajaXrwIvlyZlrQx+h7HzPA4/MNln87m0yqmc7aVCtkPcDL5UJs4ryvnhlomnnknzw+v8C/qkNNKunPPRHibNWNy2U1286VY7soPyskClZ1RpKpz5nye3PvysffPCBQx99u1QKDqo1svLRPlJB+01m15tkTgBhzukHej+9+aXydaGRPZq+QR394dEOmX77KPm/j/6WyvteLBO/fFZGtcqQ/GQJnAh13oene5vmmidObG0q6cFykpJqKtVubJo3qb3zYLYqB95ovttcPOecb0c7B5+ltz/L3Hx+Vz1LqZZp12OwOWH4YHN4q2pGBSWTktnKnPnGip0HtXl5x/mqh/JtfmmoUagxFQY/ZCZe1M5UoG4cHidZenjccj0OjqSHwk29xRzJYXZa7yqN9zNHHj3IDDi8vamTpQevpVY3B13zhSl6rJJ7lk16mxPM+QMbm8wM6j3EDB9xjDmkaWXngLrUGj3NvfPcI97yzNLXR5uRwwabAxul6fdTTHbrnua4oUPNUKVhox423xc5rK84l/PM7x+MNZefPdB0rJaq76aZ+vsNct4bOnSYOeneac5BcpHX9VbTyz24Tw/ga9yuo2nftJbJcnijB/cdPMZMLnFwn3sOUGq9XmbEUQ1NRnYzc8gxJ5gTBuiBdg6PGpjhL84x713QzlRMq2Kadutvhg2HF9kOL1KqHmxunrmleLVK/S8yHuXMuNq01z4nmQeaU87ppofy6UF41RqZFi0bmWoZHJQH73uYe+ZsL/GF6Nu5VBELL2z/9HzTSM/QiuywxGAH4GlmW2aYWw6tblLpow26mqOOO8EM69/NNK6cWnDIodNXU0zlvo+ZZc6ZiPlmxf96Gz2T1mR0udHMzi1dwoJ+UPwwwsj6RkH+0Y6F0iXYdSV/9dfmkZvHmxmF52xte/tUoxKoSe94rfkhaH8PlaN/93w/VC5vyWOmf400U7XTqeaBz343Wxx0yTfrZow1fevowE2pbHqNW1rsxEoXDGnkCm1ONuPnbCwEJX0150/z5lmtjRrYTVrjc82HGwsq7+Ud3vRSvp2dqXZ9U7dCQ9PziqfMJ9N/NHPm/mRWFE4G+SteMsMbaIdNq2/63fWNWVWkU27++UVzepssvdfEnPvhhp2tt/MwMICw89nmuflF6r3lR3Nn96o6AFJNrRGvmjXFzmjbaJ4fUsEBwZaXT43gBM0iHSbnB3Ntx3QH/Ps98fcuPhc+ElFdV75qRjakLTNNs2EPmm/+dgE+x6ye8Zg5sbXWVctde9B4s7TIIaY7D1LTe9UPvtJ88Kf7Xr5ZPfki006BK61+I1Mvs7EZ+fxvejZmYdoyz9zXu4YDEFUHTTArS59XV6SC7s/QPNoJoABlzQPNhc/8YFYVDsZtSyaac9plFvB++CvFeO+lnQMUzrnkD4DmmT/+18dU1pNQKx5wjZm2fhdzti540PStqX0yo6sZ89VKs3lnn4wFQHUchhgH1MtPHgXi3W4NoIDl5r+Wm7WlZoYcM+Pq9ur71YY+erz5p8gg2AmGGQeYW+aVnPE1x3+eM8dWR0KpaUa8ts7hqZd3Choj+vK5oAJgdL7qG1P65OUdZvrV7bRuqabO8S+ZEoKX89kN75xuGqiUkz3wKfNXYd13AmhmD/PA76WPS9446SRTUyWU1LpnmQ+KnSQaGhwCdbqd1yIE0OB1zTGzruvkTGjpbS8zX5fQJvjOtpnXmn2Q4tJamkun7GrPnQCacaC546cSYk/uz+bOgzIcSSlTT0ZdXIIdW94/y9TnxNPqJ5lJAb5Zus6hebQTQNM7msunrC8xkeSbVc8OMVU4nrsY7721c+myFVzxB0C3m/fPrKOTS6Y59J7FJY7S3mjUbKMaURVz4qSiHSg2AA3eN6iXvzwKxLtkAtA42EBTpFLdBlK9lH8/Xdp0bKOhB0Zy/lgqywPYXSStgTRulFnKRJRSq5f03V+v52sM2Dfzisc9Rv2O9/KlVBsgV1zaTSqXLGHuPHnrbbVJpmTLIX26yvZlf8qffxandXt3kLYq+G2ZMU1mlwzcTK0pdRQpS6YKzVrKXno5f/0yWbYRrTJxKWhd836St99eKDkmQzqeOEq6VSpdpqwup8kpB2SI5C2Rd96aVcx27TydUkkqlYzaT9tLmu6t06v+q9le7d8l2JHZtIXsreE8ZstyWb62hP2vdBEiv5LWWDq0q6JfLZpSpFqHTtJEv1eM97G2c7BSbZ8s/9IKl4oHzTxYxv4aaKCUKGuNalr+fFmzanVxx2L+GvlnNREXlaSy2tT8SkH7Bh+IF4/8KrzP+ZSCOZ/zL8gud4usW7NeVm9Q5KAdc3ZIUF9HoAKk1JTGjatIqqyWFb8vdwakDs/QKZp3Iixfao1m0qx6gI644xdZuEg7utkgb57TRt4MUbKUTRskUixMSUuXAke58isqhoUoQIS3gtf1J5n3i7ZAShVp36ll4DCo1L2lc6eakjp1pSydv0A2yoFSI+x3UzUqANRMkQx1KJbicrrywskjJyG8SMnILIzLLML7OLWzevYCx4FmZEtWailOlOBkhux34imyz8M3yKxxF8mYfR+VK49uJ9W2/iaf/+8iuW1KjqS3GCEnHVpaMAnbJEEeCNo3eD5ePApSlrK+HB8ANZtk0eQX5emX3pKPv5oucxb/LWp/2VlXLx/NzAQyjeRt3Szb9FdYANVnSr6zM/TY7/Lt2CrbcAuqNDP87gfk5BbBgtNTJK16GznMv76c+P6zfZNsoi1TKkuV7NJSc0GBUqRKlWwHBM2mTbJZBcYawR5NfA28fzFe7RxxHGjgomd2HSOvP7dChpz2qNw9rLPcvfOxFMluO0IefvlW6V5KbQqcV8xX48WjmAsWnwy8YFnIkpg1U+S2E0fKjR8tk/zqreWI/sPlsnPaSfOGtaTCD/fLaWO/9hC/mCvr1m5S+NSwiypVI1x9E/iduJSvYg2pgUq6Y5tUadtPBvZV/+bumrKyJTtd67p9s2wCGQMmI5s20l6Ks9nZUnl3AE/qmaztbLbI7zOmy28p+8m/7jtdmm/8R7Zm1JJmXXtK/yM7SC3fR3nARi+4mKw8ClHkWG75y1pdp/ruZcPl2g9XSu1+Y+W9Fy+R/arvGj3bM19TNVxNY9GWOHeBfD9nqw7IdGndsa0jfYa1CAZ4R+JVvoz2sk87LdXUNTLt6wWS27dLUiwzi5bNET2f2Vrat9Ju88NWmT/nV8kb3LG0Gp//p8yeu0atcunSpH1bqRJRxuXgoSRt57xFT8iYe76XnAHPyx0Xj4yI3xmZBWqQycuTvLCDKYq2SVIeRVGDqB71VzbInSUfTv5L8lPrybGX/bsYeFIq9aiFLpwGNG/dVvqZTV9NkJd/ylVTUQc5ZlDr4gM2mndiLV+w0qc2lUHH7a+BybmyYMJ98t6q0nVwXs0j9N2PpEFChS2Xn+iI4rS2MnCgOgNTcmTOC8/K9ILI7GKV2jH7GXl2utq705rI0YPKajKJA48S3s6R9ZW8PxbL0hwjO759TsZ9uED+3pIbRsBQE0ujRoJsk79skSzBJlYs5cva1Wt1AvSQkpRHHmoS0Sv+AmhKdamJk0VXuSxdsqpYI2756Xk5//p3JQA+7irojsly/el3yZS/XDd1nqyZMU5GnfGoLM5LlXpDrpSzO5awL0bzTqzlC8rSNGl55nUyqlm65P/xrJyh5Zz088adHdBsWiyfPHCGHNCgofR7UD3YQfOJ9EaG1KxVVaX5fFn+7Vfyiw6A3L+myqTPlvoE0KHKkS5dLrhOhmlMUe7C++Tk0x+VmavdNWL5sm72BDl75B3y444UqdX/arnkkLIyZ8SDR4lu51DtsOteRpe+0qdBmuQvf0+u6tde6lXOlPSMCpJdo74079hN+p48Rp76blUxQMw4oI/0UMN0/rp35MHH5zt+BSepf2D+c+fKgCs/i87Ru7M4ycmjXdzy95e/Knx6Bxlx2kFyzxVT5KPL+8uIX06SQxuJLJ/5nrw8aZ7UP7avdPhlkiwMVgeVXCvMv166N75TmrZpLFW2LZOff1V7jgp02V0ulgkPDZcGJZ2S0bwTa/mClVuvp1TvK3e9NlZ+H3S5vP/1XTK07YNSs0kzqV9xq6z87XdZs03n88rt5bTafniQMuTAgf2k3pPPyIqpY2TfBvdIpW3/yPrKQ+Tpua/LyfVLMilEwT3cSqk3TB557b/y17HXyecvnycHvHG1NGmxl2RvXyGLFq/S9kqRGgeNlpfHny6N/Z2ioyhtaB6NiCKnoo8mtp0jK2RKRivp1aeVvPT8Ktm7Y0NJ37RFduTlyLaNa+TP+WobnfedfDzxPfn102lyy0EFrtSUGoPlmjGHyYejv5TPLj9IOkzsJd320rE660uZ+ltVGXD2MNn2v1dlUWRFKPaU7zwyq+S96/8t4+cXTNT5K2fIZv1i/h+vyRXD50s1untmN/nPU1fIoYmerwMFqsZ0LW+l+fyuU8xhbRroksx0U7FmM9NtyCVm3JfLzY6cmea6zhVMersxZnqRQPudQfEVjjETfpliHjq3t2lfP9tkZWWbuq0ONSOuednM21h8+YmXd5x6eShfoGVtwXiU8/d3ZsKYkaZHh0amesUMk5ldyzTudKQZedmD5qPFxSPAdwbSVzjOvFg6Ot/kzvmv6ZqhgnxWL/PIshLLb/JXmS+kXxRUAAAgAElEQVTvOMHs2zDbZGRWMY26DDSXjJ9ZbKlowDJGGEif1uw/Zoq7UChgRhoyvWKKefSy481hbRuYalrXrCp1Tctug82FD3xilhYL/C/IYGcgvS4ceLDUwoFt5vURLF9NM3v/+7NSq6tyf7nLHAQvMg8z95aMsg9SPhOCRzsD6bMGmKdWl17aFJL3+r1o2jlY8XwJpM9daB7spau0KnYxl37yd4lAel00suQDc2U3lsKmmVZXTDPF1rfkrzUzn7jQ9OvYwFTJyjLZdVqYbkNHmwkz15jcDRPNybXTTNF+EM04oM5+8MjhXd5Sc/8RmdjFglOQMRSM935d930pp5eCFQXDZwsWGoXNxss7YTO1D1gOlDMO5M6/xeynE0tGtztMycVdBVXJMdNGt9ZVculmnxt+LA6g5ayuyVjcMlOwPGgG9hXLAcuBEhxIVTtnXd2lPnfOK/LYp8tL2C3zZNU398oNT2u0RKX95cTjO+y+0SFl1DP8tYGWUSXsZy0H9lQOpNQfITdd+4xMv/pLubtvc3mmzb7SpWU9yU7dKqsWz5YZ81fKtgqt5eRHn5X/tA+2wGNP5V7s9bYAGjsPbQ6WA2XIgUqy/5Ufyvfdxst9j7wsH02bI1M/+k53ba8stRt3kL7/ulzOuvhcObpVopYilSEryuDTKdgVyuC79pOWA5YDlgPlngPWBlrum9BWwHLAcqCsOGABtKw4b79rOWA5UO45YAG03DehrYDlgOVAWXHAAmhZcd5+13LAcqDcc8ACaLlvQlsBywHLgbLigAXQsuK8/a7lgOVAueeABdBy34S2ApYDlgNlxQELoGXFeftdywHLgXLPAQug5b4JbQUsBywHyooDFkDLivP2u5YDlgPlngMWQMt9E9oKWA5YDpQVByyAlhXn7XctBywHyj0HLICW+ya0FbAcsBwoKw5YAC0rztvvWg5YDpR7DlgALfdNaCtgOWA5UFYcsABaVpy337UcsBwo9xywAFrum9BWwHLAcqCsOGABtKw4b79rOWA5UO45YAG03DehrYDlgOVAWXHAAmhZcd5+13LAcqDcc8ACaLlvwggqkK/PrFL6TWlLBM/bRywHLAci4kDyAihnhTLY8yKqh30oFAc2681nlM5R+jbUg/ae5YDlQDQcSE4AzdEqzFZ6Xen7aKpjnw3IASTPb5R+VpoX8Al70XLAcsADB5ITQNdqTc5WQmK6zUOt7Cu7OIAk/5PSNKXtSn8podLb5DsHjIHZ5TPl5OTI3Llz5e+//5a8PKv2RdqKyQmgKVr8SkpVlIZEWhX7XEAOwMsGSkcq7aW0SGlNwCftRY8cAHx++uknmTJliqxcuVLy88vfDPXbb7/JWWedJePHj5eNGzd65MSe91pyAmhVbYiLlCjdYqXyO7EnR486TItxt9LRhfz8LjmKVd5LgcS5YcMG+eGHH+Tyyy+X4447TiZPniwAanlLP//8syxfvlxmz54t27ZtK2/FL7PyJieAZik/DlfaRwk76Moy409iP0y/xVsej/FXW/PtqLRVCfuynZRibluktpdfflluuukmmT59uhxwwAHSokULSU9PjznvRGfQunVr6dWrl5xxxhlSo0aNRH++3H4vRWfR+A0lct6gBCjsUKqgRNtUj4BfgMkbShcrXaN0YQTvlOdH0Jq+UvpV6VilveNQmama5w1KjZTuVYqkHeJQjN0ly2uvvVYeeeQRSUlJkQMPPFCuu+46B0RTU5NTLtld+J5M9YjPVAlwAgg/FNJM/bteqZZSN6VzlbDNhUqALVJoM6WXlU5SqhnqhXJ+7xct/wNK8KVPiLrk6r1/lHAINQ3xXKBbPN9JiciG+UqHBHooOa6hRq5fv142b97sSHS1atWSypUrJ6RwW7dudeyAVapUkYoVKwb9Jur79u3bpU+fPnL11VdLly5dLHgG5VbwG8hwTELlMfkPoIDnOqUXlMYpZSrVU8pQQhUnnAYPe5pSuIS0eprSjUofKo0M90I5vU+8K84deDdYqV2IeqzQe/CWdGWI5wLdqqMX2yhNVsIznyQAitMF0AIs16xZIytWrJClS5fKL7/84vwGxPr16yc9evRwQC2eCeD+/PPPZcaMGTJw4EDp2rVr0M8NHjzYAfl9991X9t5773KpugetXIJu0Pbwu3nz5tK4ceNyNwH5D6BISG8poXbj+UX13k8pW2lTYatEAp48yuR/lBJA/JISqi2S6e6UMG0gEU5Uaq90fIjKYRtFqn9PaVCI54LdYhJDfWdSwzkX58TgwKECKCGp8Reg3LFjh+Opdq+tXbvWcWBAODMWLFggW7ZsccDStcdVr15d2rVrF1cApWxffvml3HHHHbJkyRJHogwFoEceeaTss88+DsBXqkTYiE3RcoC+gPcfKf6///2v1KlTp1xJo/4DKDbP+5RaKqGSMmDdFK3wgFSP1IRU9pQSzo8Dd2VX7n8R7QKQYaKgJS5QwtkTLLkSPM/0C/ZQmOuYQaopEQ8KeAOmPiZiCP/55x/BwYL0iESJlLZu3Trn76pVqxz1mOcALEDV9fqiotetW1f69+8vrVq1kiZNmjhOGRKAW79+fR9LWjwrAPuzzz6Tu+66ywH4008/3QHscAnTgk3eOYC9GAfW888/L506dXKcWOVpMvIXQIm//VGJFS+3KxUFT688xux1jNLTSkihByiVT3NJaQ5gy5ykhONojBKTTrCE9DlLaYHSCCU86l4SIWKMeSa6tUqYV3xKAA9hMG+88YZ88sknjiSZlpYmjRo1kmrVqjkDo0KFCpKVlSWZmZmy1157Se3ataVp06aO+lavXj0HNGvWTKyxG/CkvHfffbcD7FdeeaUcddRRIe2fPrFsj8+GfoDkecstt8idd97ptD3hYPST8pD8BVAkGkAOCWeAT9VH3W+mhBngY6XlSn4As0/F85wN5oxPlT5XGq6EwyxUWqY3v1QC/HqFejDMPUwp5LFUiYB6HwGUIPInn3xS3nzzTceWBRihmp144omOjRCwrFq1qqOGM3CSIWFGQPIcO3asUxzAs3fv3hY8E9g4RC4AoBdffLHD/+zsbBkwYEC5sCn7G28BKOCg2F+pQPPypxkY9NgGCYd6058syzQXJHW84NSFiQGJMpRUjZPp68J3WJmFWcNrwq6MKYV40I1eMwn8HmCEqt2hQwdp2bKlMxBw/CBRMEiaNWvmeNOTBTwp6zfffCP33XefY3cbM2aMlTwDN23cr9JniKfFTHPDDTfIzJkzy8WKLv8A1LXnISH29ZnfSPOspmmq9JqSzwO/ZGkZWNjrXE/w119/7djwfEuo7p8oIbGfohTK/4BnHhWfiamVUg8lNwGsC5XwqEcazYvgx/f4NiDqY0LKPOGEExzny6ZNmxxpE+dPsibWfj/44INOWS+88ELp3r27Y16wqWw4cMghhziTGOFht912myxevFjiGabuRy39A1CkKpw8qNz7+lG0InkgnWEWwwsPYOCJjlPCazx//nwZN26c443FLvbSSy85g8yXRPzmDKUpSkOVwvkpsFN+pgToIqm6jjgAkHxw2GHagP9lnLBbsZoFAMV5BIBi+0zGhIPrqaeecgbpqFGjHFNDeXJeJCNP/SjTscce60xmCC0PPPCA04+SGUT9A1AkUCQhQmVaF7LSDajH4xuphBSsFZCaehbexHYYp4SH+N133xVWmTzxxBNOPCDhKjg4fEnEcX6uRHbh7MQ4jgBJbJ+9lYpGIPyh/8cEQH7Edkaa2BsUUEaVx6Hkc6Kzs6MPBCAlKvg9mmrg7MJO+8UXXzj2Trz+yQr00dQr1mfRsv766y8nOqKsQAtTyrnnnisnnXSSTJgwQV544YWk3lvAPycSALpECUnRdaIibRHDie2yuRJRKACH+1t/RpyQbHEeNVH6RgmJi2s+J1a94B1GksrIyHBUUgKmfVmeR5mJUGBPThYTsFAgWIKfqO6AJFrwMCV3uiPW1o12OE9/9wmWSYDrf+u1JUqEQjUMcD/GS0jqDEI829g6k8XeWbRa2Ndee+01x/M/fPhwx8G1pyaAct68ec6GKIsWLXI0LWIxjzjiCGeBQFmYNNBkRo8e7SykQANs3769Y0snoiPZkr8ASpwig9J1iDDQcX5gv0Oa6qAEuHZRQnXdq/D/AGtjpXAJqQkH1ftKfCsO3njUziFDhjgxgHiRCaT2BTypG6FDOI+Q0g/nQpAEeP6m9IzSIqUTlJDuUftd2yV8RYI8RCnShBaA9x06WgkQ9TmhGv/555+O9En4UrLZQIkUIOYQaYsA7o4dO0YduI0ESz5MEoANdUzGwR2uaQFPpHA0ralTpzoxuPR/gIsFBddff73T/7FJ4g9gTIRa2hrue9Hcb9iwoaMF0ka33nqrtGnTxulPybbkM009XjdEU7GgzzKwH1QCFLHVkZgwcHyQMCGisiJFLVACDL5VAgjmKqHm83xdpVAeaXw57yoRDxqN6qqPR5qQmho0aOA0mG/gycdxsH2khBcde26gBB+RUP+nREgYUxzAB68A0cVKSOD8Jj7WNWvoz7DJ5R1SMKDcPuwbUT9A7CcmEKR4VLHOnTsnjRSam5srr7/+ukOo7scff3zUMadI12+99Za8+OKL8vHHH8ucOXMcOx0hWpgrkm2Ah2pAwPPmm2+WZcuWyTHHHCOnnXaaDBo0yFlW+c477zj1atu2rTPhPPfccw6IYcpK1GRBH0ICfvrpp52/OJkS9e1QfCt6zz8JlEGOhFXUrgYgAnRoSNjxAFA8xwz+JUpIQtjycAoBitj4ABYGN1JayZSlF9gMA4CdqeRlOWPJPBP5f7ze2CDbBvnoNr2OzfNhpS+UmIwAOQC3m1JTJdI7SkxCvQr/H+kf+M6E1VKJ8Kk4JCQ71EDsigSj+zoBxVheHEYAA8HarHNngowmYRsEfB977DFniSlgwjruDz/80AHSs88+21kUUB4SS1WJfQUkib8k1MzdZ2C//fZzdqdnQQQS58SJE50JkTC1RNtGsYWyyOHRRx91wD3ZNmxxrWr+tDkAgJpdNAF2DZSGK+FBxgZ6hNKpStco3aZ0vdIZSthKb1JikAdKlBYwQeWfE+iBJL/GdMWkEiwiivp/poTH/SylG5RuUbpRaZRSDyWC4Ncr7aMUjQRO6Nd3SkjBqP3RYYe+EFlavXq1IOkR75lM4EloGhIjdr6jjz7akYyjlRbZ85OIDJYeXnPNNY5qiZRN5MZHH33krOUvDwkQfPbZZ51VY0Qg4PkuukkL7XbooYc67Yj0R32vuuoq2X///ROuTWAPvfTSS53lvjiUku24Ef8kUHoO6idxhpEmwBVA6K+ENIW0eonS40rdlbhfMiGFAhwLlZDoSgJ2kefp2KgndGzsVqjmqFlIIL6r5yXLGej/1LWpEur4n0pImEUT8a5I4dhH+UvkQdHEBIXzCPvvSUrR8Brp8xOlZkpHKQHkPicGpht2gm0wmdKvv/7qrDhCkgIcovW6I32iuiNdjxgxQg4//HCnP/3444/ORHHYYYc5TqnykBgPb7/9tjOJIIkH2uEK4KJe1PfUU091tImyCvNCIsYWS5nZcxXnbrIk/wAUFR5HEQDnJQEGhyoBHqj7K5QaBsiI51CBpykBQq6NtcijzFIA56uvvuqcVcPAdgk1BHsKm1WweQEqAQbraKWRACULfwmv+0FKSNjPKp2nVNQTj1Onb4hsMHcgRTZViibWlrClz5WWKiHpo8LHITFJsQAB/iaT8wjp84MPPhBAlE1CsOtFm7DtEtKGFEafATyR0KZNm+aotoCyb6Fu0RYuyucBfcLMcNDgOArU97H1IoDgZMP2mCjnUaCqAOR9+/Z1wBNnlhfHX6B8/bjmH4DiOYZiyREJrKfSW0qzlIIBKFIU0i6e6gAAyiDG6M2g6dmzp7OjDx2ejo6KyfZpv//+u6POYRPjfrdu3ZzlhnHdxADedFYaojS1sPxFAVQvhUw42pBCj1OKNIaT0KnvlbCbghtI+3GQPjVXh7cMTKR8pASkUTo/PIX/ZaXSszPUV1995YQrAQZ4mqNNACX9hveZcElEG2ArRPLE9plMklGo+gFCqMRMJMGAceHChc54Ofnkk53llYFANtQ3/L6HFEoZsDUT1pQszqRY4K44jwhZIsUiXfNuRyXywlOM06lkosQ4pZB2kUBLJCRNBjEGcFSPQNtjuao9jYFdC0cA6h1xb0gXhGug6oUaaEgfAARhO2zfxuABhMMCMGFceM8BflT6aBIa4gilaKRPwqBeUsLcgXMuTtInA+6VV15xgIrBSWgMUiigCXgyUJFM4Q+qIAOASAeOwuBvPBMhOYTm4JDAkxxtok9RPyYGgNJtYwY0oIyNsDzFkhJ+hVTOXgXBJjW0CaRtnIHJsBgCIYeyAv6JdmSF6i/+ASiSDikW6YZ3kcgwB6wpzK/kH0qMI4pnsAWWSHQMPMGAG8Hwgew2gB0DAUJCRTX77rvvnGV9SK3YurALod5gK+U3Ax7TAB2LPS1RcfiLtMuAwp4EgEaUMA96MRECoNGY2Vbr828rofYjtfZW8tdt6FQXCY9lkYS7IKXBV9qA+EEmGgas68Gl8wM8tNPBBx/sSP/xBFDKwCQJCDA5hpoUncoESORB3CeSWNGt9ugbeN4JYYLKS8L+y4IR2or2CSQ5Y+eljQhpSgZpz+U7Zd79ABQw8yNhAsBDzSAPpmWl6D0cR6j72PZKJJiLwZ/ZKpLB4u4YhGqGSgaIshYe9Z7f2FIBTnfgky+dj04HwGKPQaUDCMpi1UbJ+u/8P1L8dKU3lAiFQnKNw7J0+IJ6i4cbkESdJZ6Q5a8ApbtxMveQ/PmLhMp1pDZXHQ5ajxhv0JbYwdEuvEiffB4A5bgRgL7ohEw/QLUsb4m+yqQ/a9YsR8oM5FBjJVIyJbQY+lOyHRntnwTqB7dRy1HdkURbh8iQ+2y0TGhOgETHZqASpsEREUhIw4YNCwmoNBCAiEp+0EEHOUHWzHbu4GHAMxPzHDGAEJJpKDUoQNESc4mJCG/9eCUmt1OUQvEzhlIBoEwy8IkJC3UWgz9HXSRDQrtAU6A8Xne0Z9AijTFpJoM0FitfcZ4yeeHVxgtPu5W1jTNcndzyJZP0SZn9A1BXCkVC9JoAUFYlYQtl2WewxDeQQLHrlUh0cKQaJA52c2GmZZdzADFcwpb58MMPO/Y6jnbAWF0uE9LnL0rEi56qhDARS7uEYAIdG+cbQIWqjP0YtS8ZEiE4SKBMduxPyuTnJTFJol0AxEii5T1hbkBFZ8s49gQ4//zz7VnwHhvVPwBF6iF5sbFhP8XDjOf9CyUC7kvGSDqZl0gBTAcMaGxTBP6ySQIAircxEkM4A4znvv32W8cxlOijJUpWz/P/aQM0S2zFrNzK9pxT2BfhN6oxTjfChFBpA8UVhs0oDg+w2ganA1JxLDGa7oF27733nmMjJ8bVr5AlJCrs6ajRwTzicWCNDB06VKZMmeIsDEBQ4NTTRH4/HnUqizz9A1AvTiRCciYqfaMEgBLnOE+JKBE3v2Bc4X6Q0gOaOHQiduoUfgMHEaE4gGh5cgqUYhF8wcsfIMSr1LM+XECFx8sNkGJT85pwyCE1AiZIfbEmAJ2IjB49enhW3ykDEyu7cmEKYg08DkrsvMQSB/NiR1J2+IbDEsn9lFNOcSYfzASYoLC/cx1pHvNDJAJAJN90n8FcdckllzirfO69917nMqaXQE7XaPKN17Ou6h4Lv+NRtiAQ5OFTqI2oiZHmiMT6u9JYpe1KRJdgp8N2d1iYfHgX8EWN9ykxeN9//33HnkenKrfSp0/8iDQbJh3Ud6Q9QABJ1EsCOAmDwuGDehkLELvfB/CwXaORxCpdEWVx+eWXy/jx453YYfoJAMR1r3ZReAYgA5SAPXZJwBOQAPj5BkCNBO03gMIjeIym9n//939y++23O8IDpq5ATiUvbernOzgeAdGkctRqBSOFu/C8wLGDSu3Gg4Z7A7AlJvLSwr/19S/LDQm76a4UzFzFN9iQBAdSXSUfEqEc2MrYKAJnE/t/JrtR3Ydq+5IF0QrEWQJSHIkRKCQmkg8Rk4s9joHCWvVYE04fd1u9YKttovkGIImECLgAdKi+nOEDqBLL6qXenBHF+6xygo8AGA4riDKjVrNk1A9pPFBd6ePsxM/fe+65xznehFVKF110UdKEL7nlhjcAKIJNMo1NfwAUMMQrDojiuIgk8Q6hc6zp5jegOEUJB1IojzEATfwnUmhjJR8SjYNUge2OYOuwwfA+fHN3yIJIBwLnWY2DisvBYF4TERPYrFlT7od9kdhTYlEBPC8SFc4igAzJzwVHBi5q+5lnnuk4XdghiB2N2FjEy76xODvZRg4Tg+ugQmJ2g9yR5pGc4wkYmCcAajZ/efnll2XSpEk7tTAmBq+ON6/9INh7SOMAaMKWXQcrSInr/gAomSIx4vwheDua5HqHWZrJFnXEf7LkMFjCU/+bEkDbJNhDkV9HBWXWZW9EVPd4xyUWLRkdgphVHFYcJYIkDDGI+MsA5jcDmIHsruThN0Tn5lo8B1goTrI6h/hPBnqs9jNUV+qDzc+PVT2AO20LAEULArQHW9YR3oOzpWSfQDpkJ3uAjudQw3EseXVU8Z1IYpZDtUUs9zAZ4C8gzpVoBSTRq6++2lnGiUbGZBGojxG6Bq8QPPAZxNM++ccffzgASt8IVJZY6h/Lu/4BKEDI6ho2AfGSCElixQxe41AB39hLcTRh/4x+VV6pkjGzsbUXdiZWLiUq0fGQetlLEvsrQEkHdO1pdBKAk790HMAAUHXjEQEF7rshOqh6rOxJVAKg8OISZ4vtMxbpkzoxGFFV3eOQY60HgAwv3QkpmvwIMOfMJGyE1DNQgu9I3TzLbu5Ikl4BNFD+ibxGHdmODwdS06ZNHdBkIx7UehZJsOky4OoCF9K9u6E02huTOABK/DTmLzQIv8EUpxqJ8u2eAEroDGvUl3hoeqTKBUrsg3lBmPdxHs1R4lvYTWNIBMqjsjC70Vm8qHpeP4+TAPWXznfiiSc6szidDqKDuGDKXwAGAAVk+UsHxumCvRA1FRsagwBvbaK8qNgsAX9Ag4knFicNvACIkfTw5PsxQFwpnbaNNnYTIKc+SNcs4STwHNMCgEpIk1s+QAPbLxMJ7ZHMiUkYHhfdj4BJmLpgK3ZPwGTS4VkmePoW/GOCP++88xx7LH2O+FH2mkDtx45LJAG8gA9cZ2LBEehnX8S5yPd2TxsoPQcAbaaEFLlBKdhSzEC9DAAlBhQbaighCgcSccysVhqkFIP8jGSCCkqDjxw50vGmJjIx8OiUDFbsapE6IejcrqOBOgAOdHaANtI8Yq0noIKExo5W2AO9bA9XtAy0A8QEgCbgR0ICBewY8NECKMtz8Uy7R3YgjbFqB8kKcwVtx8RBOBORG6j0yR61wWR93333OaAIb1wJHV7DH/aCKMkn+hSmBWJfkQA5s53IAWylrrMVDQ7plWgBVnqxCxqLUABqzB9++ROws2PeodzJlPwrDeDHLkFPK3EsxZFRVNMFRl4JVSJ3qSfqfoxLkDHa4/Wl4xO6keiGYXCzggdAjEbdQWJAcnDtekjNJW10UXA+6kdZ6jphwgTnmAckEpYCxiJ9UgAiINAG3GB88kalB5hRC71uzgxvAFDsy9EktIEe6tgBSJmckJCR8rGVAyDffPONowmQsMn5MYlEUz4vzwI+8JLyw1u0GYj+B8jhjee3O/Gweg91GdWdMKtx48bJk08+6ZwlRfgWBy9Sd3asR0OiL9CfIXbp51ns4n4AKIshIPjsNWTMC88ieScUXEXy/q5nyIn4TYD0Q6VoADRLn++jNF+J0KZgCfUdcMb+eUCwh8JfZ6Zl+zpUDk4eLKugecDQD3U1fI39eYJOzK5LSGQMFJYAxmr3Qz0khAdJhiMbCA9CHWZQAswMGqQbL+YVQICE9ASIRrNCigmKiQkCWHCyYO9DggPsmYBRUZFGAaeydAJF0rpMTmwmjdMS8KdO8NhN7m8mc+oOryB+E2FAezMZoS0hmVNfwIxJBZCkH/A8mhz3mGgBaD8S0jPlBryjETb8+Ha4PPwDUJxIrCDqqvSu0hil6uE+X3ifUnRRulEplF0TyZMdhnimZYR5l3iMTvD555873lMO0mLmZHBhQ2Tg0ujYWugcDBh+RzPwvJWq4C0kAyQdbFVIPpQJgEUdcr3JqOl0WMpER6V8qJBFbXOxlCHYu6jYjzzyiDN42KnnwgsvdOyVRSUCBiW85MgINywHgEGSLCrh0wYk6kH93PcY2EgtOMO4x56iqI+E0yA9RZt4h/YFHGhbr+1IGYt6yikv5hPXTh1tucrqea+SPH2M3bWoM4smkDqRZFHjv/76a2evCVaiIZAgmBCSBlj7ZQPF2Qr/icPdfSVQZ0Qona6EI2hS4e9IewvvhjN/ESuKBx5nucdVSIAUp/zREZBE+c3AZZBhW2RwuKFBdBzUlXhv7YVUQychGoCyYEvCNgrouIMVMHU9ypQTEMKZxF8cJjg5kNZcqStStkfyHFLG/fff79jJOBkRFQ1gZILBycCKHwCWOE4kD3f/T8rLNoGArbs7E/sMsKYccHM366XcDFA0ASQZNySGyQR7GxKqFwCljLQfAOinjZL8EmVvjqR9EvGMK5kigbJhDO3C2GGyZ3IfPXq0M57ot4QD+uVEom8RYsjiimSU8v2TQGlFcjtKiXjqKUqAqV8JoeV7JZxIh3vPlEYghg/bDoMAFYVrgCaNzwyH9ARIMQBjCc+JtJSud52OyQmJDHbK5aorgHtRmxW/ASfKSKcFxABY1By/ExtdsEKLCQeJA6BD6iB0B088EieACf+wiRGGhEQMCLoOsqKgDggjxVJXEvzmN1Iq9S1q0mACYwLx6uFmAsKOZ5N/HECKveGGGxztDXMO3nEmSaRD2hBzBvuNEublh7qNUIGZh0k2GSctf2AHQOgAAB9LSURBVAEUNZ7llY8rRWe3D9/CSJ+fKLHHRM/wjwd7AtWQxsbby2BlANMwNDYDjmuAEQMXEEuEcwn7HpIdK0KQPqPpeIArwIkk6pfKVJR3gCReVkwK/MUbDWhSZsJ7mGAYNNgKuUYZAFMI3hV1eMFXPPjUr6hEGKi+TBCYAmiHZDqgLli/2pOu097YVAlfAihZT485hwnT1d784AdRHs8884yjAWJbDdRP/PhOLHn4C6CUBCcSEUEFTspYylb8XcLsvlTCVoqtNYYEYIZS6WL1KkdbNIDGq32KTuXGPEb73Uiex2GCFxrTAt/CW4tdEWnT3VQa0HSjAkLlST0ZYOQVTlrG042tmokuEVpAqHLbe6U5QFtisiFSAbXeb0csEycbnKABIekCzsmY/AdQt5bBNgPxwgXAeLbSKqXeSoC0TQnhAGdGseoESZdJB9CEvKhTSPsAL9IyoUucNV5ysmLgAJ5ssYYphVVODFCbkosDtB/2brQmP0KVStaOOGNMR7Q/m6Mno/RJmeMHoCU5Esv/sXsSGsVZSH1jyci+Gy0HkCxcad2PToxHHZvn448/7qyAweuOOogtF3sanlziDgFoDmxjiSRSq03JxYFPP/3UaTN24Co5CcZaUlR3zoDHdINDKh6mqVjL6L6fojM+YezJndg3tJ8Sm4y8olQ+YD+5eVpGpUN9//77750NKwh5ce2kri2XQYPUi5OC2EMv8Z9lVLU95rNAxoABAxx7NpKinxt8YNrBg4+Hn5hgIjUS4Yfw2njJD0Xs5cAuTezyBIgmf4m9tsUe8R62UlQytoFzl3AiyTBIGIjYPFkyCZBGYlfdI5iWZJV0242IESJYikZOxFJUgPnGG28UpFskUCbSZAZP6pr8cITzCKkTG3Ls++zG0r72XZ84ADASRoZ5ACkT6dONrfTTi+tTcW02JTjA+n/iqVnG6+dO+Sz/xGHEGnoC8f3MO16NmNwqPCvBflA6Ruk4pQeU2LTEJssBy4Ey4QCxx0iGTHoE06M1+JEw54waNcoJh3v++eedXZ78kmz9KF+wPJIbjpA+X1YivvQ0peQubTAe2+uWA7sNBzi+hdVBqO9+xeeyDPSCCy5wQJlNS1h4UR7Ak0ZNXhWefQ7+UEJ9P0SJ+E+bLAcsB8qUA2xXh82aeGA/VGycioAnERnsjkZcabKtdw/F8OQFUFYyPalEDOhFShzhYZPlgOVAmXKAZZVs9uLHrvM4jdgTl2XB7LXAAg0v8cVlyZDkBFBsn5x79JJSb6XoN+IpS57ab1sO7LYcYHUQqrsfK484DYLloKxzx3HkdzxpIhohOQF0nVadre2QOkcX/k0EN+w3LAcsB0JygM1isE/6YaMk4oJ17qylL6/xvsnnhefY4q+V8LpfqHSdknUehezU9qblQHnkAB59NpjBluoHIJcFD5IPQHEeLVWaqHSGUo2yYIv9puWA5YDlQHgOJB+AUmYWlyKJWsdR+Ba0T1gOWA6UGQeSE0DLjB32w5YDlgOWA5FzwFoXI+eVfdJywHLAcqAYByyA2g5hOWA5YDngkQMWQD0yzr5mOWA5YDlgAdT2AcsBywHLAY8csADqkXH2NcsBywHLAQugtg9YDlgOWA545IAFUI+Ms69ZDlgOWA5YALV9wHLAcsBywCMHLIB6ZJx9zXLAcsBywAKo7QOWA5YDlgMeOWAB1CPj7GuWA5YDlgMWQG0fsBywHLAc8MgBC6AeGWdfsxywHLAcsABaHvsA2/3llMeC2zInAwc4g4gTMG2KnQMWQGPnYXQ5AH7vKZ2gtD66V3c+vUF/cczz5UocvmeT5UCEHFi2bJlzeBunai5fvjzCt+xjwThgATQYZ+J1/XfN+GGln5S2evxIBX2Po57fVLpNabXHfOxrexwHGjZsKD179nTOdr/88svlr7/+2uN44GeF027Q5GeGNq8QHEByfETpO6V7lToqpYR4PtgtjgLk3apKzysBxPspZQZ7wV63HCjgAGcPde/eXVq3bi1vvPGGbNiwQbp06VIuT8RMhjZNzlM5k4EzfpeBo5o5LO8dpZOUuil5AU+3XJX0x/FKq5SeU+qsNMi9af9aDgTnQJMmTaROnTqyYsUKeeaZZ6R9+/Zy3HHHSWamnYGDcy3wHavCB+aL/1f/1CwfUmqnNEKpsg+fqK55nKHUUul2JUDaJsuBCDhQqVIlGTlypBxwwAHy8MMPy+LFiyN4yz5SkgMWQEtyJB7/x2P+ohI2e5w/e4X5CA7Sv5V4D6cTFCzV0xvnKdH/3wj2kL1uOVCaA/Xr15fTTz9dOF74xRdflG3btpV+yF4JyQELoCHZ49NN1Gykz35KvZSCcR0J8kMlpNS9lbKVqildqxTK4US+gDIgbVNMHCC8h7PKIWNCzVwxfSYpXsYeesghh8iAAQPkqaeesl55D60SbCh7yMq+EpQDY/VOLaVTlILZPZE631W6RKm1Ep76O5SuVxqiVFEpWCLPg5W+UuI4aJs8cQCP9GuvvSZHH320jBo1Sgj52RMSqjzS6L334tm0KRoOWACNhltenl2pL+HkOUqpfYgMGKtPK7VVelLpLCXA9DKl/UO8597qpD8IZ+J7NkXFAVTXDz74QEaPHu2otPPnz5cOHTpI5cp+GKqjKkqZPNyqVSvp16+fTJw40XEs2RQ5B6wXPnJeeXvyFX1thxLSZ7CE6v650iIlnEG1gz0Y4np9vYfGibkgnI01RDbxvIV6vHr1aocALdTkrKwsB6hatmwpqJSJTkidjzzyiDz99NOCd/qwww6TY489VoYNGyY1atRIdHHK7HvHH3+8wwck8AsvvLDMylHePpyidp7d29BTli2COn2oEoBI0Huw6YpJf0xhQQmMb+Ch0Kj/xyjNUOrq4X2fX8nLy5OVK1c60hwe3oULFzrB28Qdbt68WXJzcx1KT093wmf23ntv6dWrlwwePNhRJxORli5dKjfffLO8//77cs011zjxkWlpaU5ZKlYMZTNJROkS+w3aYuDAgbJ27Vr55ptvJDXVKqeRtECwIR3Ju/aZcByYpw8gVZ6vFIzTTF8/K32jBIjiVfeSXCdTBS8v+/POP//844DRl19+KbNnz3ZWuWzdWlCwpk2bStu2bR3VeK+99pJatWpJlSpVHDBdtWqVvPzyyzJmzBjnL6B28MEHx1Ui/eOPP+S6666TKVOmOA4UwHNPjoNkIhs6dKizOmnu3LnSuTOBxTaF5QASqE1x4sCTmm+20vIQ+W/Rezcr9VZaUOS5vBDvBLr1kF5MU/on0M34XNPwF7NkyRKjzgejgGcqVKhgFIRM8+bNzamnnmo0vtBMmzbNqLoetgCq3psZM2YY9Qqbbt26mQULijIj7OtRPaDAbv71r38ZVdnN5MmTjUrLUb2/uz6sE6BRydtpT5si40AwuSgs8NoHIuDALH2GcKRQKvkWvc8KJZxHzZWwhy5V+lxpmBLLNSNJC/UhTHZ4++OcsGX+8MMPMnbsWPnss8+kevXqjmSpoOlsVMHKlmjtmTy/3377yZ133ikXXXSRvPXWW6JA7LtUuGXLFnnyySflk08+kdtvv12OOOIIz+oqZoodO3Y472dkZHjOJ87NFXH2tWvXlk6dOsn06dOdEK5o2zDiD+1GD1oAjVdjYv9kw5Bw9kgAFMAcqMTvyUrYQX9UIvAezz3gSmhTsNbiPUwAePoT4If56aefZMSIEQ54nHPOOXLaaadJs2bNfAEQlT4dOyjqP3Y5v9XqDz/8UCZMmOCUe9CgQY4N1ksCYF599VXHvou9tF69eg4YY54oz4kJ8PPPP5d169btUU40r23mrfd4/dqe9N46rSzb1R0UptKAH9RQCUn0SiXspgTRT1IitKmnEvGgjZQCJRdsrw500/9rbINGjCQ7+wCcfoEnJQXQiMHctGmT46H3M82bN0+uv/56B+j4RqxhSldccYUjebZr186Rwlu0aJFwACXsiAlh//33d3ZZ8johuHwGQN98801hkjzooHCd18/WKZ95WQCNV7tt1oxZihlOpcbZiSMJiRW7/RVKbBTCe78r3alEGFSolmL1EvmwyikBCSnxpZdecpw/bdq08V3Va9y4se+1QFr+v//7P0c1BfhQV2NJqLcbN250VvHcdNNNjvceKTSRiboQv3rjjTc6k0KDBg2kY8eOMRUBMwohZosWLbIAGgEnbaxCBEzy9IgbHBZOpXaXa36gX8lQOk2JcCQ3JpQxeY5SnSClQM1nBVJ/JZZ9JiBlZ2dL3759hQ0pCE8qD7Yy1np/9NFHDogSOO5HwtYLiBHDihQOPxKZiHi48sorHVMK0QyUJdZUtWpVqVat2h6zCitWfoWSa2LNe89+nzDCNKW1YdiAIPQfJWKXn1KiRXAkMbWxa9P9SjiHgqX39QYOpFuCPRCf6zhjsAEidWEDRQJL1oS54e6773biTLHd+pW+/vprZzFAWaWjjjpKnnjiCenatasjfcaqvlMP2rFu3bp2o+UIG9UCaISMivoxJEa879OUEAyCSaJInacqEXA/RQmJkm3qjlRiU5FQ6Te9+bZSX6U2oR70/x4eaOI+ieUk1hOpNBkTOw09+uijjoTGShs/E5K3hm75mWVUeQGYxxyDuuJfIqIAMMaJh2TrtxPPv5ImR04WQOPVDq5N8kb9AN54POnBEs+iVUajWW7S519VAkQvUkqQ+u5WAQBl1QrgiTSarAD6448/yscff+yEWCVqhVOwZi4P192VWKwgwxOPNLpbJswdrPvXlXF6wp7oTChaWd2nV/c/iGJJsQXQePaOwZr5OKXrlJ5TyvTpY6j4eOxfUyJWlOM8EmzNxkOOwwIVlnCjZEwsG+XYCqSqE044wRcVNxnr6WeZkKrZrZ6JkUiI3RJAdZWcet9Eg5l1Ax7dgYf+iwaltmzdYVqdseqNjXDisADqZ+8rmVcTvXCrEnZKtqvzK+FgIl9CDk9RSrD0STUAUMJ3Zs6cKUijyZgIW0L6xO7JUlKbwnMAACUkC088msVulZA0tT/oChA1l6m9DCn0Vh1IgCcnlM6YoSfmvicaF6an5p4gGuuGUTgkCyyAhmSPDzc5p6i7kp8hjTiMtildowRIl0HC44v0SRykH84Lv6vA4P/iiy8coGedux+bg7ACiw1SqDvmgLvuusuRbtkGb3dJACi8QqvAfrzbJPZkeE7VwNt0lcrvGh/IpE+cMWv+e/QQ7cx6RPhGkV9+EXn8cdUaURs1nXlmSBYkWPELWZbd8yZOImI6gzmRvNT6X/rSRKV9fc43irIgdaIi40SJ1pECAGFfi+cREgDdO++843jeY90Yg/IizbJyiXAldmtiJdO1117rbEayOyUAlEmH9k1W00zU/EbS1IgJbTA9KkfPysHGOU5ta0iXX2kMIKvRsH2yC5guJNCT9kT3NdR9eZ8U9ZSG/JyVQEOyJ0lvluECEUAPjzYA+Ld2RiQwnElcZ/C5MaGADhKb+5ffeHX//PNP5yRIQovuueeemAO/A7UQ32I3KMrIappYJGS80ZSTHZs4/pffRB889NBDDsiwa1SiE5IhdXO3BWQCg5933HGHnHTSSc4Jm15jc2kv6kW77jZb2qG6Y47Arqkak9p0NPJFQ190J37HeRQo6X4MzjPffSd6REGgJ5xrFkCDssbeKMmBn3/+WU1E78msWbMc0Pz2228daUV3NnIeZcC58aAMRCQYBiMDnt8MeIAW9ffEE090NjCOR+J7r7zyimOjZWWN18R+oRdffLGzpyl/kTpxsJDYMxP7KgsKEpkATtbz4xyjfDh6atas6ZhSlixZ4oSVeQVPtx44kJh0yHO3SEiaOIcgncDl7LMLJM5QldONbLRDF3jqQzxnATQEc+ytXRwA/O677z5n6SAB3I0aNXJAkTXYBx54oPMgYIn0RwJM3UFILCFAyw7vLKFkzTjgGYtkGKptkMa+U8mBXZ28LtmkLtT3+++/V21vnHNOUlFg4jhgvsNqpEQlbM5vv/22c3YRwfOnnHKKYz759ddfnd2r2Jsg1lAt186LHRQw3i2Saj6Oc0jbUnfO1l3PFBzDJdR8qLA/B3vcAmgwztjrxTgAeCA9Queee67jQGJLuDPOOMNRGd2E5EmKVQqKhf2ACeDcu3dvz9mwSQdb9Q0fPtzZqb1kYjOS/v37R23/LZlPNP/HZIJdF6ma9e8EvMPn9evXO2FHn376qSPlx5KYONhhCk+818knlu/H5V1ClfCsY9c88sgCm2e4D2H7JLypUOMI9rgF0GCcsdeLcQCJ5Oqrr3ZWpjDIdPNjR0IpKYGVJXC6BWajExxHrVu39tyKnNsEKCFpBkqsf4cSmQBKdsI6UkHABU++D89pF8wqOPZiSbTtL+qJZl/QaBZHMOGwXJaJlb1h99lnHwfok2Ilk06oajQW3XJfl0WHWhddhHPEiOJYUqdhqGQBNBR37L2dHGCQAhios/wmhId18IkGkXBNwg5R2GhxpsRiIuDIEQY/YJIsyXXIYR4pOVH55fjBLIMEyvEeJb8Rig9835XaWTJLWSkn586TF868phqLC18Tum8CKrj2Vce7ruFsESfd0k87uK4gDLWE0DqRIuZnsjzIDA8hEZaFkZ9BgZrIRhpnaoxcLCAVD55+pWEpDNBY97LExovXnc06zjvvPGfgl3VipyScWL9rHCNxru7uTwA9u/cTEQBIxZJoV9o42m3x2Ej6+eefd+zi7CWKhoJtFsfj/fffr+GXtznORGzhPIt5AJs4e7IiqbKJdly2A2T/A8waxHPqxB9RQoon7OmCC4J76QszshJoRBxN3EOoja6t0fVa42mF+D8nW3IgGh2OPSDLIk2aNMkZDJwlnmyJgQuw4IGPJSF9cbwvB+Rx+Nwtt9zi2AXLMgE6OI8AOUCUQ/pIOJJwKHE0caxAT9viiPIaO8uEigoPkZBE0QrmzJnjLELAzEAoG9fWrFnjXMNcgjPSdwDVMSP/+5+I7l+ronDkTffsswXPhghfcjOzABo5Wz0/SSdCLSIcBrshkiMqjxtPCWC6AOnasdisl988g8TJfRISCPtZuqddei6UxxeJ5WR3IyQUBnOyJZaWAp7R2O+C1QH7J3Zf12GD88wNYwr2TqjreLhjia1EWuPcejzxOPAI6nd37ae+sdaZqAL2GAWMkQ79SExE8Ay7bcnEuCCmFttuXELalEcqAouGLRSEJJUsQKD/K6g7K5EAXLXjhksWQMNxyIf7gA6hJ3ROVG9maQYTUhy/UcHo/AwGpAwkHToUszL/d0GXv8T84UAoK2kI6QeQelw7WbQrkHxgZcgsmGxQH4cNY4eV2BODH2877ffAAw84YUv//ve/PR2ax4SJKstEyo77TIBcc8O+KC2hUuEC8wF1wAjTAiYGANWv9PTTTzvlYn/XRCT4y2YlcdmwhGgQPSLbsWFi/4w0qQNSt+MXlRLCroMnSwugkTI2huewCxFPiMRwgdpVUDEBS0DQXUsOiAKmXHdBlWvcj8aYH0Mxw76KxABwYsPChJBsiVVDgKhX9R1AK+ngoD3OOussJ8aSUzxPPvlkRyql/tF4mNEykBxxSrHjO9Ik7epKpPxGJQ8HoNhBWbiAqQIwJ6zJj4PsmBzGjx8vQ4YMiSl6IWn6BAHz7LrEpiDahhEl1sjrJCLHHisqvUT0CjYKm+LMAZVgjC4BNCpNGpVkjEodDpW3pJtzOGepq5fVl6KrtOPkpVKtL/np6iCjErrRozuizk/tnEYlwKDv0V7qFDG6LZ5zdrpKaUZNK0GfD3SDfsA7LvH/oqQTbaDXAl5TIDYapmVUejNqGgr4TDQX1UxhVAsyuropmteKPauTl9HYWaMnFRjdO8DohOQ5r5hfnDjRmPr1jfnxx8izGjPGmIYNjfnrr4jfsQAaMatie5DOBGCUR+Ck5mqTNaeffrrR+EDDQPEjXXrppUbNAEYlKj+yMxpAb1S6M3Pnzo06P121pOOtvtGNl40ulTTqpDFqmyvVXrShxjsa9XYbjXU0ajJICFDwXTX5FKuXOhONqvFGHT5G1/6baAC4aEbq4HHyuOSSS6LmW9EXdJmvUfOSM4mpM8sRGOCTrjwzajM3art3/l+U1I5uHnvsMaMSekzfLvYywglg2L690dkqfL48P3myMVoWc9ttRhkd/p3CJ6wKH5mgHvNTqGqR2AxxFqHuYYvCPoZaiQ2OhGpPPjiVCFtxHQgxFy5MBpggWAM/ffp0ufzyyyOqR5gsnduosdSnT58+kTwe9hm8ufAMG3G0CUcRdmdWH7E9Heo56jRb4aG+493GO40dWoHfCb257LLLnL1GCdyPJWg/XFnpE0/qzkDwqejCBVR3vOY6scn555+v21yOdQL/o3FUEXiPPVXxwFn6GkvihFb2DICP9E0iBeir9B/6NDwtavbgOqFORJXgNPWtPxO2tGCB6BrjyJxHqPtqvnCC7NlohN2ZIkyRPxlhhvax8Bwghs/dTYfleRCDn4GCLYp7eCbpYDia3I1tXTsp19kNiDXl8U4AEoHp7uFlhC5FM0BDlQ9bMB5atpzzI8FDbMbYGKNN2KMBRjYMIVqCtfTYrdnhiMkMUCa0h4UDtANtQjQEG4owscQTQNky77///e/OPQeK1k2lOacvXHXVVY6jknhLbO2RJCZnln8SqkWEAbGvsSQmdU4JjSYB4ICsr8tGdVMVjY/Ss8J0oxedoEMm9gDF7qlt7mx3FyUPLICG5K6/N4l9e1k9gwwIOg4Dk1AlAJFBiUTmeiWJowMMkFq5joTALE6nJ8TErzCTUDXkmzg9rr/+ekf6VRUvpjCeot9ismA3JzYiwTHiRyJPohlKOoKiyZv3KRMEIOM1JxicSQRgpe1w+EBERCCF+ukJD1RWYiX5XrB64XzCsUS8KgsJ2K80kgUOnP3OxMjEcKw6TqJxigUqp5drfrV9sW/jRVcBxAlDCgWgOpZ02y49W+xV0e3BCo7yiHIHKgugXlrd4zsMxgm6qQFqYI8ePXYuhUQ9RH2BAEyI30h6kDsYAE9AjYEUyQDxWEznNb6DeogEBpDzl4HmSp9IxgREEwztBkUDOEjOTA6AGWUE/JGSCAcqOkABZlQ8ohL8SoG86LHkTbtAhJOxmTJ1Q/J024CQNHc1TSzfCfcum6LQH6644gpHXe/Zs6cDkm5b0B9QnzE1APJEIoSTwlGZ6Yu0GWaZWHdxCleHhN4HQFnHHu5co6lT9TjwWwokVba48zCRWwBNYMtiv8K+hupHIDoDwJVmIilGMAkkknejfebmm28WCBDErsYa+Fv1/BjAkd3ZUbtQ7wETiMRf6sNgRJJDsgZIATbCY4rG+wGgSN+xLrksWi8kej+O7ijJK+qEpBQXaankxwL8H1snki/giYmBOtKXXJsswejEv/J3wIABEfEASZW4T/ojK9r8MssEKH5iLyF5sn+BTighAVFD3jRgWE910GMdOCMJwPWQLIB6YJrXVwAVltuVh4TUhaTD7j9IKUheSDWAIA4UbFbY2pDQuMb/+RvOUQbIAqws7UMF5jd2X/6S4BHf8SJhU0Yk3t0xIcVreJbDt3fffdcxKSD944DBfsserajhOL3CqeLwm2WqSLYEze824EnDc1SxLnfWyhUcFheoM2AfPeYYPYxRbeWsOoqhz1gADcRge83Z6xLyOzHo2VGdQHB+47VFqkU9JrGNGt7gQw89NCwQlCwbkiJS8e6aMKXsqxIT5DXhsMScwmR3jW4uXFYr2ryWP+x7Ojk45x4hgQY6roNgeXW4qWpUsEeoSvexJAugsXDPvhsVB5A+sdERboN0i0cbiRNJFvWYcK3XXnvNsbdiMsCrG03CHom0jH22LHaqiqasZfEsJg727PxB97p8VjfMwJS0WyUmTwBUHbLOAXE6oRZLKq07p3LOnVtg+4xmg5EgjLIAGoQx9rL/HEA6RAJCPceUgbSJPc9VIQFY1HqWSi7QOD7U1mjUS8wOAC+bnaDSxjO0yH/uxDdHePv66687B/rhrYc/u11Su7yjwrOLfNHNULDRqwPXAU82Sv7Pf0SNxb5UP0yQlC/fsJlYDjgcYBC7AdPEgLqB9C57UMGRiogNJcQG51M0iXhSgJmgeOIho30/mm+Vt2cxmTC5EMfL2v5EOiQTxisAFOcQ2w4WtWvq4gjnIDndBEeDfUXPaYl8fXyYwlsJNAyD7G3/OIA0ic0Nz3ywoydYRADIIpkCqNEkzAHseERsJpLsbgkS0TCk8FlszcR74mTD7uluxOwhq+R+BZunhnI5q4qQRPm/rnRST5voDjOiKw5Ewz4i2mUp0opaAI2UU/a5mDkAgGLvRBJlySShXEihqPYsEuAs9xtuuMGRHDkKwosnnnjJ3c62FwPniW5gx6bJkyc7Z9pHukophk+W3asApjrIdPYVPaZUdKVKwa5KOI0IWdIJ1u+Uop25IIjP75xtfpYDATiAdPk/3SWctd0sJmBPS64RlsPSSRxL2ECJD41WAg3wuT3+EicYELJELCmmDd93fd/DOWwl0D28AyS6+qzCYk9N4kUJ5sbrjhTKBhQEdWPHZMNhm2LnALKRey6R7jJlwTN2lpbKwUqgpVhiLySCA6jpeOSJ/8Teyaoa33bjSUQFysE3AFBOD2CSOuOMM2xUQhzazAJoHJhqs7QcSBYOsOQWEwnOOy825WSpR7KWwwJosraMLZflgOVA0nPAxoEmfRPZAloOWA4kKwf+Hx751hMVeoN2AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA10lEQVQoFXVS2w3CMAxsKwZAsEHYgMcElA1gBNiBv/whVmADBCN0A0RH6Aat2CDcBV8VVdSSc/b5HKdJ8xBCJvPeXxG38A98Ab+Dq4FZLiGIN/IL8MkCcAogt0PcFEaegE4i47grmx7MoxB4gFckBvZCvuTuEpYDgVLuSisLOwuTjsuIOe44s6K6U23frNEs8ivHbE5h3/VHpWktz6iRIlO9pvzuERVejchUqOZKZ+SlrlOFxXzGmlOjEMENRAfcS4yYE/hiR3ITLmYr4BkCZ/kGuEUef4ovviBAXcWd104AAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle 0$" + ], + "text/plain": [ + "0" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_tau_.subs(dot_s_pl, dot_s_pl_).subs(lambda_, lambda_solved)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Convex mathematical programming literature]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "" + } + }, + "source": [ + "## Hardening - elastic domain expands during yielding" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Yield condition" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIoAAAAXCAYAAADUf9f5AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEeUlEQVRoBe2a7VEUQRCGgSIAxAwgAwhByADKCIQMpPgF/yzMQM1AyECMQCQDyEA0A3yedWfZnRtg7na4pXC7aun57Onueafn41i8vb1dGOnleOD4+HgNa65KW7RcWuAob3APnKDBNoA5L6nJUklho6xhPVBHk7XSINGqMaIMO7elRz9A4IdZhQIwo9EKn9vXNd8BZX/gI1B0wksgJtQJ3oLvz2JPDZJPcAGyAD+FfefbND9uPXrhZdAhZhhRZqWdqKORaQPAGF3KRxQE/0au6DZkXdT8Bi456BbfJe0qpFo4Uj8P4Ev9vQPvAxSVcH6qiAJ3/qSqrOgZBUUFgUrvkj5zlEC1MT/Jq8CbUD7yIh4wmni+mJmYn/Wo80add7EXjyi7yJwAST2g+90q3yZKBbTWVS+PYaOh3BvIx6e0DvkuTKNJPNF9hxV4T3aYXUXhTiRRW8q+wUSoIAmhzaqR+ntgDxG9okmsAnOkvHN4A/KiWw/CJ65mDPaJcrckH4Eu4SNlegB/6bcF+EOPZ/vUF4smyBJ4K/DO7akoUBDeAQJ5kenAGvOQsTR5WmL894zgXm6oTpFhtllBqQbzLGvpawROHvzrNi7EJLVkZNlMe4G5Dq9AUudv4JdFgdLWFuECxMlxAj636+adZvwQmj1Eez4yb/QzXRFtrvnU9zXfLzn5vreISva0fxjXm0bw2Qn5Lb7UQrs3mtA+y+agG+09GlR+IR2uygLGc2fxw6wyF+qBRPpn0oOuUsbXAT/gzdmJtKE1jn4CuwEH9R4QT/kqR1E3N2LM8OglWJw8AdsBCm3UNxlNqMuymf5t8rJh5PGhrSFkVYtp8ejoyEobTUPvENBxdOhMueHLw+sZ6Y6TyXsLePAwS31RfYJegSNfJx7CY92uKO9skbTxp/VX8MpZQUabU+dEanNM2rHKl7LX6NUZP+4c8rQTDILCLaGRRVp9s26QtE3aHMbI4csI0QnJPTBHQLtNrZAg8UEt5QhXRueQ1O5vuqQ+sew6/xaujg0xppNquL9pCv8l9I0gaKJRVK++ye2J8lLXY4EoUBrfIdu8C1H9cmjC5pxO7TZL7UyfNErraCOTq2UCeJTpcB/chiYnsHpEaimi7lLseIFjVBiM8JtRRKDukRbQkqDxjJVLKZtz+1btigClNiCs0gmQ1BoZQr9OpV3hxugpINz+ktsmdXFEUYMwOaaHogAKt0wn3TeOGNRJ3TJsTvaLC5fjghnzRhJX3sSeiaLuj1/4jDRZxtH2qUgnN/t8YhBtaOs4aDQJ+uE3t3LB7ZZjZPb2lkuP2ZwlpzdQMMBTsmBwArzKwapVqJNdwWFFPng2sdMcyIep1E0hgCfoGlQxf1/0CW3mxY0q+voCH7fB/Nj499n8WL9OfQmgpA6tnUGeSwYHJ8Gq4/kESyqCxOeZQcxBPw+vXpE93GYTfZI2ZwuoG/YGyrQDPuP2RhpBX71X4GBD9jQ3i9i0zrtHXDlLHp22Z+lXos/i+F/4d25kIsLLrIUTv3fctfz/Un8BQfWYoXk7x+QAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle - Z - \\tau_{0} + \\sqrt{\\tau^{2}}$" + ], + "text/plain": [ + " _______\n", + " ╱ 2 \n", + "-Z - τ₀ + ╲╱ \\tau " + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Z = sp.symbols('Z')\n", + "f_ = sp.sqrt((tau)*(tau)) - (tau_bar + Z)\n", + "f_" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAADMAAAAvCAYAAABOtfLKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADoklEQVRoBe2a31EbMRDG7UwKoAbTgVNCoAMYOjAdhPETvDGkAyghoQOggmTSQVICSQfk+8laje6sO584nZ5OM7L+rVb77bdaYyXLt7e3Rc1yc3Oz0nlnqnelz/1YWuEAfYC4F6jlANkskapgPCsrtc9ZVnph7cMRR6qw+0f1SnP/1LpSFYxOvFK93R2d9+mBwCggFmq/q3lR/cSY8mHX7D4lcKS6UQV50YJuKTxR+/hOxdyzuOCUdWxrGwyUvar+ltBJvLNAfysdMDOmxE628ApzDTCc4j3n4nHMqfFe6YSVM687Xhrc195j1fiurf3mn6ZkD4xfuFdLSGBEiQIrpVMx+hoJoAuMxfVmLBLvEFh5GKvL9ksXQJ7VfrU52iQYCRFmv1QvERpZcEgxVmQb+khUe7b1pWZCjVTI94JLh21QmndJQm0cy22xS60ftydtrLUv6hOGXSFNKDkG1HIed8cB8eNXtTh+0Qfmm9YBxMa9LCQFZgRAQ65XPxQvg45k0box9lkCZCfGt76vxiUk50jJcuHduvqWprHtHDlKH5jVTmQBrQ0wUsaa3YE7jUkWKXY6WZE8xv1Qa/dzoT7h47zsz44bviBhjy/LUCSPE1xZpv7QlIB5gY149lRze8ZqDuV/VbmMp2pD0dhiu3FJg0CrI3nO3KoNnm6JHBzuJQCvFBDn6uN9kLsYbWvTOmvIwAxsxQU2jb14vqt/oYWnrsUh8w0wMogLBp0wYfRxdyxGUzot7kMoai+sPEY6Uvvac5wRvgDbi0PGAYwHgmdgJM5e7gJrLgnIyxL3G/UJOwrAuMiDivbBKlmz674M0uPASAmMAIQL27gb/gDAJUPNn2KGE/OA5g4Zs16kt2FP7MBe4a5FYwZPks+7Ypz11L1wej1gvEp4bVVDyDmBwx98D3Wm8MPbdxLJbDZ0cyznGSFxPKjfx2K8rWjfmBmtVAC4N4SoJYTROnMVFGMm9+Ap5IsxM4VxuTpnMLkeqyU/M1PL07nnLK+vr+u+z+ZamCE/p+YMZ1UVnRNAVXdnHDYzk+GsqqIzM1XdnXHYzEyGs6qK9r1ojjJEvzzt+dZebNr6whtye+G940nACIj9dD74hvxew5P7eJ4tWfWH61r1LNap8VM8nqpfnBmxwpNTeMzTmDfknDe0pNOHTNbIZhcyZNQb8hAgyNQAM/oNeSiYSX/PKMRWMoR/hi/+X0tSAKdmpsgbcsrw1NzUYIq8IacMT839B/4RvLoTtUcqAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}$" + ], + "text/plain": [ + " _______\n", + " ╱ 2 \n", + "\\lambda⋅╲╱ \\tau \n", + "──────────────────\n", + " \\tau " + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_s_pl_ = lambda_ * f_.diff(tau)\n", + "dot_s_pl_" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Hardening behavior\n", + "The hardening force $Z$ is an additional stress measure. It must be accompanied with a corresponding kinematic variable, a hardening slip and a material parameter, a hardening modulus\n", + "\\begin{align}\n", + " Z = K z\n", + "\\end{align}\n", + "This relation will be need to solve for the consistency condition in the rate form. Thus, in `sympy` we shall introduce directly $\\dot{Z} = K \\dot{z}$" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAB0AAAAOCAYAAADT0Rc6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAABwUlEQVQ4EZ2U201CQRCGD8YCjCVgB4IdSAcQKlA7kPgEr9gBtKAdSAcmdCBWIKED/L7N2c2eWxAnmTO3f3b2MnN6x+OxyGmxWDxj38Hj0r9F7vBPSjsI7DeUHPOAT+xJ6tWLxgwWcDdb5CD6confgk8y+i6P5TqxK+xv2I2HtS5zQNQJ3pf6JvpySfwRe48c5f42HcwB3hNLG2stCiAu9pEvRLK7foFX6GmRHNOmg73J/V1Fw0kBp5Oi35I4Rc7yBf6jdxW1QGoKCnmdA6Rv+CcC68ZX8DU8wd7ArjtsFC3BxIpwSmy7eQmfc50+gzdinrpF7f4+cnSBUqf4nj8WhF8BrGET4ojUcxq2i8PrMt/ioaDAtqLhPYnZdRaUTJJsopNE3iGC0L1SrznNeWNOATmf3n88ccjHtpPdkG+b3jsEOz7gxDvHqaDQyklLkP7KqOiAzj1t+HnUC7pQpSh2PF0aFUESyfpspjG6zdFJxC3om1ZOiO2vs6h3b2gUgl3X59t4Yt+2dV7J9Q3FLNGVX7CbnMIhpzefz3UYHMImSO/wJ0mxkQp0R8c57cOSJ2/8d8H5twrzjHS+XdsbmmGHG/wFT6Cz1aivRycAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle K \\dot{z}$" + ], + "text/plain": [ + "Kâ‹…\\dot{z}" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "K = sp.symbols('K', positive=True )\n", + "z = sp.symbols(r'z')\n", + "Z_ = K * z\n", + "dot_z = sp.symbols(r'\\dot{z}')\n", + "dot_Z_ = K * dot_z\n", + "dot_Z_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evolution equation\n", + "As in case of ideal plasticity, the yielding process is controlled by the plastic multiplier $\\lambda$ which must be non-negative. Following the same arguments as above, the hardening slip $z$ is assumed to evolve in a normal direction with respect to the yield surface, i.e. \n", + "\\begin{align}\n", + "\\frac{\\mathrm{d} f }{ \\mathrm{d} Z} = -1\n", + "\\end{align}\n", + "To let the hardening slip $\\dot{z}$ grow in a positive direction we introduce the evolution equation as\n", + "\\begin{align}\n", + "\\dot{z} = - \\lambda \\frac{\\mathrm{d} f }{ \\mathrm{d} Z} = \\lambda\n", + "\\end{align}\n", + "**Side remark:** The choice of the sign in the evolution equation might seem somewhat arbitrary but it is not. If a hardening stress variable, rd$Z$ in this case, appears in the yield condition with a negative sign. Therefore, we take the minus sign in the evolution equation to let the hardening slip grow positive consistently with the growth of $\\lambda$." + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAsAAAAPCAYAAAAyPTUwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA6ElEQVQoFXWSzRGCMBCFURugBuzACnLADtSjRymBK1dL0Ks3tQN1hgrsQK/eHDvA70EIhJ+dSfZl8+WxEzIpiiJQZFkWkjaMO/qtWjemdQHgh/4yXui4rrezg1UEupLkmmrdDQ+2mwdyzEG15cUQLHfFrkrN3INxVBtPRtJglerBFlArEQej9oEx+Gwhz30Mrh29vnswn17gumfINWTt7tyDLXgBWqOPZP0o14qDrcODzSVakEK9r0rFVMIWvLGWY/td6FYCauWBGVo9CUwoqgUXxphPnudbCnP0Sc56BymgehwK7ev3R39y/EPRn+AqqAAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\lambda$" + ], + "text/plain": [ + "\\lambda" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_z_ = - lambda_ * f_.diff(Z)\n", + "dot_z_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Consistency condition\n", + "The consistency condition is now depending on both $\\dot{s}_\\mathrm{pl}$ and $\\dot{z}$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "\\begin{align}\n", + " \\dot{f} = \n", + " \\frac{\\partial f}{\\partial \\tau} \\dot{\\tau} \n", + "+\n", + " \\frac{\\partial f}{\\partial Z} \\dot{Z}\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAAAvCAYAAACi7FWZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJS0lEQVR4Ae2c65HUOBCAB2oD4AgBMgAuAiADOCIAMjiKf/yjIAO4CDjI4CACHhnARcAeGXDfJySXPbbG9tgzOzNWV3lkSy2p1a1+qO3dSz9//lwVWAYHnj17do2Vfp17tYx7ae4xD228s0MjqNCzUw68YPS7bOz3O53lBAcvinKCQu1aUvQm17ZVEvqpZFe49ErfuJ5Q94NyEVAUZRFiDot8wu/zbZYbleQVpQqyonxL8YHrps9LgMuHsEgYr6V7dAi07JsG1n3P9e9yXsbXE9yhfLflPPfW+qlwN3ZN99qcF/rY8igs/k8oust1J1JmPBssCeXVWHeDUuF+AX+SVaG/QtRaOefigHW/43rLZSiT+Dw3H54yoB5lCijvRF8Kuep1U8Y++L5divISql8iNNNhKkLnBqZeD3B/hhXqwrPjMI+K9C/XN+4nKeVUWndIy0No20koE2nWa22tKPS9vsY7DaXw6Vdx+r+Xu5YIY5I3edPVHuv+pkwWZgNavol5VLZPlNlxaNN6nXNlcfIzzNuyK1riuO8p9eZzg97Eg/ic4HjlMA8TkhfpSyNOzclr5dJcWUGygdYtWhZ31w07pMW4X8+pR58FoFVvrDeZjX+MpZKo1LPROctidzxIp0dhzuBRYMaX+vyRSaGKey39tofDFf2Nby0v3FOEBV3wD3yQn4aXyZvPQZEeezZvAm2Od4Xy8RzEHdMYrTNKJN4YtOFNIpMaHoS6KZvcTEpjji7GMYeC/h7b3EyGag0F7uq3i7o90CI/PK8N4UsyZptwH0Nzpzeh3jDPsEyv0wWGVpXX4N75rlMGJYnP55QXIosugndZ11KUyADnvMr9K0sumSRDW0yP+MFqcT/msG3IZT4+C4z3mcaHlEEYlP/w7Bx7t2hTaaG//PuLS4ucCzc1RL1ro3/a5BqqTp5HHOXXAtqSl7lNo8bH5+fxnqLp6cHXcAYc7lOqWDqzSRjHOCVoKQqLS0KsNqgLhkGfuVoehDrjVa1azjLZvQsMvc67GqxjTNvN1dctlmeaFg3i7xLmoIUxfnC5cVX2HMiPjXyMtLyOA7zg+Q5Xl1fp9Cbguuk/UlZhM/cqb53P6/SZkZOuhmGjj0q2COhSFL3HqoNxDWHQXt/E9tEijQE91SZGByVinv/AM8Pmu4YGDeuT0a4wFeoYaBiETMfRtGTG6UunagTC2S3Tf8Uag6GgVFm08hqPBl9o8yyR8yYqRKUU4Ko4m+SwAuc3cBYNXYoi4xqMjxyqFAHGuSFVjsRw+6T7iD6tYA4tsN7NjaDgH/Gs90oerzWBfajsDEVayCMqHDfOO5iWEcNvhRppUlnki1821D2tdA7lwwNwN3m5reg7tU4NRYHZbn6hxTgF86sp/D7lNygO9SqJYBrS8ncurXQd3/p1OKdChWsBfVPYZXgQlJY643JDjfVN0eo/Z8UQWiKOYYnr0cp7lvP+KtcQXoAWQPz6ho/V2cK5NCIqhmeGFbT47Nv+Pv6LLnjmWMxZI6x4i5/La32Ste7yKAEVAagYbtYkCJVL4b6mzizJRy4F2Af2cWN0gZuuMUYce0U5ZiN1jT22rpeWSNNDBlbBzcqZMXLjyosxoaD9E1+53QxxXo2JXkXFFFSayvuHmswPfZxPWc4aDWSmO+rqdUUJGY0c46hXKRR8XRAql99qJQFb3uLqA4WTCw/0NklpwziMr0dxE+wbRtFS5x33Gg7PcslT99EuP7JGKtM5yeIp8yg/w9Mki0yXqlr8fRueavJjujmDqVoi05bBukg8dVpRN4ig1Rcntfv9l5s8gUpRt/4KewjzDe86D5zUa41TKKfQnd+XcVWmhud9wVRapF/eDQF5qWcaDMoiysOQS4U05TsUDBFzMhg6xiLwVBQFOSVGdRPXszl/8NwrbObV8q24WmcO6lS06mUX9xcGM9ASlLxvAcwjXl+aNjeMXkXjZtinPAcBuBqBowfWYbTh2VgPKWjINayNfc2zPKrjDMl4Ot7qLPxO+6m8B4Ro1RTWUMuvJ6oOotPIOIzerL1SfO4VoBZ/SDhlgmQr6y6/4xx1z34YDNkDFaw9GFXK9MV7LqR/AzkaJN8xVfu2TiL1tre+Vr809Z9LMLCHe4UcJuZ51DkCfEOwLOG0HQVEPvglQbLSIfNFfXimVACGuFo0N3Zl7WLbB8qcgOlSYBMH4J1hp3vJPxFp7UHqNOJ+ctNrxMH5Cq4GrpLRZI/CYLq5akDux4J9dYmNw/vYQQ4FH36kt+YNkqg3JMrxyfXn2hrjlIcsB9L+UVkqgO8aqOCtue/0IhVyvAFPI9eA9axXo3EfD3ED6VHU+MVBXPfRe9QDEJweZQU/qzCX+xDtUE7+69HJodcBMOjCSUAQZrU8Xygs3yel8OvCaVsKAfC8cT7hWcN7c4wswFV+ytFM732eTTipbLeKosCFAsfNgbjBq/MJzyZRTGyY+WqFUV2rBc8QzRDYy/vUz+TM3QsPvSCoQOHAVA6k88l3lYTLLJhnRTd5Sgf3zqFCcKUvTFS0oCR29D2KLqtA4cDWHGAPbfyXqrRrocd8yiMtg99xgBvOJ5R+vJqSKW50wy8P8kMyXT/AC8AYhlv2rxIsJfT6xZvye8QcYGNr7FtfllNvOKYSeVapf02SXS144ptcqZRE5BJ6ZVlWGo6BA3FjS2ojLRxp1ysIepVeYCzDtJaS2LEoSi/7CsKBcyCdT6q0cKKXjW+d7078btDwLwtRSTyjNDwJzx7uZ/mEJTt5aSgc2AMHwmGdDZ0LrUz36ln0Kq039tJH33Qm8e+dxPXNvIr1gCv0KWcUOFHguDjAZnYTu6FvcbnJBQ/s/i+A6mNa7k0T+07L91yCHqb1chc8/0wkfWpkAsCx9US+qAyeqigK3ChQONDHgXJG6eNQaS8cgANFUco2KBwYwIGiKAOYVFAKB4qilD1QODCAA2cDcBaHErMlphNzuffG/+VdHIMWuOCiKGtCR0lMDQq3uX5w+fw83lOEvPugPwAKyOXnJDhQFKUmRpTEnPzY/8tbG6HcnioHiqLUJIui+Ha3esMbFUevUmDhHCiH+c0bwE8Yuj6229yrtJ4cB4qibBap3xF92oxSWpfAgfIJS0bKhF3XaPpKufGPkjLdS/WJcaB4lLxA9SYlu5Xnz6JaiqLkxe0/F/AT7QKFA6v/Abwnfboas8voAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{E_{b} \\left(\\dot{s} - \\dot{s}_\\mathrm{pl}\\right) \\sqrt{\\tau^{2}}}{\\tau} - K \\dot{z}$" + ], + "text/plain": [ + " _______ \n", + " ╱ 2 \n", + "E_bâ‹…(\\dot{s} - \\dot{s}_\\mathrm{pl})⋅╲╱ \\tau \n", + "────────────────────────────────────────────── - Kâ‹…\\dot{z}\n", + " \\tau " + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_f_ = f_.diff(tau) * dot_tau_ + f_.diff(Z) * dot_Z_\n", + "dot_f_" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOoAAAA8CAYAAABo8yZ8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAM90lEQVR4Ae2d7ZXdtBaGT2ZNASFUcJMOgFTApAMgFSR0AItfyb+s0EFIBRfoAG4FBDqAWwEhHYT30Wgr/rbsI5/RGW+t5ZEsbW1Lr/Rq68M+c+f9+/eHGt3z58+fUi75P9RYvnMqkzC8q/K+lv/lOZXby/oBgYsPwXpC6lDfqDRfO0nLtIlwfCdNr+T/Xkajazk1Andqs6jqTFcC4Sdd/4kd7NSY3PjzVO8i0xzpudOsjO4ZAB/Kd8vaBOYMwlURVR2IKdr/dX2u8B9ngF/xIqreDFSP5H9bXLkUSi9WFevqS4otAN5I5+VGeteqfa2Mv6oT7ZKkETQImmXxhNMnkn0c8xFmufBXvB/z0P275H7UxZTY3RkgUA1RY6f7Qpg9OAPcUhFVbmYBTNXfKZxFsJS5E1B+6v+L/FwCvZTsI9TIh6i/6JrET3J/6fpVcgyKR5VX+bOcnndfgn9mCS8Qkt7W1H5B1rMTrYaoQo6O8zMd6ZxQVHmNoP8ofKULEqx1WMRAvEwF9xpy4AYhctwLCWFV7+rKHRRy9I7JvFQC0/ljsBnTvYv4KoiqBqSDYRFOMsKXblk6u66fpfdrXas6o/JzHIVlznbK82lD+ErhrEFO+f7gkjzP/L6ho3hQz6Ft78tfiwskZ9aCHur3rXSdYnDRo+pxF5UUhXUZnSero1VS5m4xXiniC9WBTrXGfam8qzZ44jO/00OXWGPKS56tHW2LBV/sVC9IysaXzTSYQfxvsaJbkKEKiyocv9K1qjFraQN1JjbBGGgGrZTSwqxBPpa35RTHsQnESS7Ks+YkX9elaaTkGBhYNrBTvsTSYOGY+h47Xe+WLd3HsqGfmcYax5q9iQt9hCk7FvqcB/XFWPSIKgDoNIzMTKVwNKiBYmsipql0IKxgc/qlqGUO0JWDzrZqarTsaZtL2/S3NZ1UHcESTL9R+CNdiVAKU3eI17WGWCLi3uoafKso5sXqPNF10D2bS+SbdZJjU4ly8IytsMdiZ5VnosD0D+t/hlszbiLr7UkaIiqd7Hs1IofuELHbgULtFY/lKLGmDAOC9GUdyUiOjs1ZKx3tqEEiVKTQH5WFzhMuhT/RleqjMETA4lLXbuft3h8kh6VLVoj7kWJyJsozaQscHXoJMShXwJ/MJV0sM0uBJeVpFUF5uzvYGAjcm2tvP397RKXqAsga778TUPyotBJEQYeNmBOPu05S2di4wcpk55lVeqSAykMHCkclCrMhBPmGBjE6LccvL3RRDyN2IrXSD6Th4xSmLVrpIeE6rduRLSnX/02CTC+3cGCAtS/p0OebSQ1EzYrOTYlKnI3REReRTp33ga4hIjSqcJqgygFJIaeV55XCg51fsuAJ6awDh46n+ymH3hI4Dz0j4K5yMWAUc9LHDABrumpzbKgg0gVWzEpay4oh2dsYdzFSqWBRBUprJI9ghSwKM+r3NkZG9E1F00kWEXVK2SnThAEkZReSHdtgBeVDRqblNh3tFgmr+lTphvFc3ZHbaqpnz7YpZbesa++puw1Ga3WkfBHL1nIgJe4kcDlSTxquZU0jWK2RXXHW0CNqsqNbeqdy6Zl0gL+jDOR4o7jWgDKVv3BaeLtn4PlmKXsWRbL2iiQ7ullT1wH9paph7XcvV6HKYgNMq3908nOcMlg3xbNZybQYqzvkmNomqxmfxwwqrNnj/Vv5N9XmQ2XePK5H1AgED76nMNM4GpHGAdge+FE+jJ4KL1qzSt4aC8LNOsmzefJEfmgk+XR2npk2XmaVFBTQ8wfrq3gI2iNp49Hs0l5JzojSSGoHJdPDvC2x/k66WSejwNphUplkjWSUe6zuvaMmU6r8ZmU/Vxxtzj1HLqn9JZMwURiDEWQUtuUEbW3LDAX34XpEVbVtfZoIARQCivOrBKLBozgsBKNrVmNbvugvGcmZIrd2U3XPNLJXpqi7Wk94MdDUZBE+ngNLZQZ/G3zYOGOgGbKqg9ZUspDuN/lpuaQw09kpHFhW0K9ab2wpTyK20nbhhoiK9TwMANhqFKU3SUMeRsalzsj9NiNjkNFz/5EsO84/KdwqU1eH0tFPYy9xrQFqLKN0F/lmdEx/iXiVMfeldWuH0cdKVxgQ5UNWrByDZAt/pbE2ZRbWc0qDkImUuoe4k4STzEc9RTuNGCIqALYaIGKTiCgAaVjIacCTx8JRvKynZzJNw9qHzRj5T3WPNbcZQO+B5FHk4BStJ7wwQrpzSbBQc93iYKoLsoJ/9w0h2iYX78eSZeniLgOBFlEFPOTD9QCkga6Twl82AwJxFQ9JcWzH4z/UhVVqyhM/5Ezm3lCixUmXTXuZNoVBRHGshZiCdTuLZXN/BgFhdzeKWDvM5EjJWFSsJ8RkzXiQLu75+ilXF2vO3a01wWqNu+hkMus0ZFGDqBoCYkIOaxDIzbToB8WxW8chOg2Z495GIeswY3lYo7R0xmcd5J/dGnWskjcQbwNk9q47ZYyYM2hiVa3tIG2adSE35pSHgZc+tOksbOz55xjfJWrYWRsDUPGQkjVfs0EgN184GHHxP9M16xp55jYzILQNIkGv8mJR6Rzu1iNgJLMBc4km6wPfqS3oNyxDrA/M6UHeB9g5lBrplwKXxnqtK4xypCkOC2aNx6iLjKXz/m9zJISUTWvHGmVJI9C46J5yTK9sao085eGlgrSDOJXZ00YRMIsKposcfSD2A6a8DOAcueQ6jpwGN51yFexNDqLSSMesFSDNmwZwXyn8pHE/FyTvJFFVRoifDsHnFJ5DuupEndkLGKr7I6WPLj8K1s+e3Wy/JeqxqgzqvHSSTXbJMvC6W4DA5QLZMdFkPdUAjK402hJLh3Um394c03am88xcBj9jOwEgWDZ2cbNJ1iwT7ayLAaU5o2qKeLgQAiWIijWmowXCym+tJTPKyeYT32ly+L2qw2Q8oyqRWNdkVbi/oQIyZT3KcqvsS9v7hqp63o89mqhqKCziMVNn6yhMme3Nl/NGdab0wiwNSApDluaafyZ3mWQ9l8GBHXxfK5aBdFMtF5tqz1AeOy1k3evIzCC36HgkA9YcEQYInA2U13f+t0oEbpyoERU2JKzjVAnUhoWi3ms3c44pFgMjO7dpj+EYZZ53WwRqISrv7rJG5Xxtd071PvnUVyCz1GDX1t0NI6D2p+8/1WW78L0SVfO/Z1RIXmB4LD/3XdFeZTwiD4GINS8q+EvveZANSkUcHyrRDAwDLuf7rT0b3TNjbMr0PvyQDOnIDR7NVUNUFfCgwvJlzG7/QRQYnMJFnPlAexebd1tjKhzthwAHjYzSISG7/HwCOLrUUBp7FRC9t19Ty9TXsORskbek3G2EgDoBMxc6g5O0AMbC0fZWBjfllB7eEZCPpRwlaSwKO/BXkusd11VFVBWQzsPPbNCZ3BVGQLiyBuLLp9bUrPBj9qbOrF/rizPIposXQXgHOvcFIJPrvQBUFVFjC9OJmCJwxueuEAJ0HKmiM7E+mhvZCz11F2qCRRWmyaLGvsseAMuLbKyjLOvc9DKMIVgdUVVYXgZglOIXHLAA7sogwEYF3+/aqF1Gq2vBoKRde+GLNcTQrP2yi+kvnwC2+n51RKXdVUhGIcjam6uT7m4ZAsITHCGpr0uXQTcpLTxb61Pds2QL68zJjNOJHFXiWla1ql3f6/L5X0fgPBAQMVmDQs5gPXXPv4KBqFhVfut58exFebDQ/NrmO4XT8dmlItw5ArcSAXV0ZhL80MES1zvjnMhsFhVS2WwF8kJUNu0WETWSlPxYU36MgR3gsPa98+zZs+p/TU+FducI9BBQJ77RH5jT8+FO7wf2FM+mHST+VOG0fu1VoBEhOSwp+wjkgfi8U4DusEN/qcCNVrZRVg86AmeDgHhj1rR1LBMrgFUkHas6exQWdSWSRh2sVdMxTZWbSbGg7jkCNSNg56fpWMYKK+IRx4YoPx80uSEaSQrZWdM2j3JY6x4UF149dKKChjtHYDkCgUAi0tjUNhBNarGqg055sbqQlOOcFuGjXogbdn9913cQQo90BPoIiDzhmEspn+myF3LYMOJfdaTf9FKYnWAIdl8XDhL23vOVHCTl/+WmvAibUzyDAVPiB05UQ8V9R6BiBHzqW3HjeNEcAUPAiWpIuO8IVIyAE7XixvGiOQKGgBPVkHDfEagYASdqxY3jRXMEDIFLC7hfBoG4Nc/Z2dhBN98oDm7HlymBa7mNCDhRC7aqCMirYzj+YdI7Xdy/iGF56RO+EPY/jkAuAk7UXKRm5ERSDsA5+E5fTCjMz3GMvbkyo9GTHYEPCDhRP2BxVCgSMpFS9xAXq+rOETgaAd9MOhrCUQWPlTL0ZcVoBk9wBMYQcKKOIXN8PO9pvjlejWtwBA4Hf9d3g16gae99qf1Tvn/ruwG+e1TpFnWbVseaNr8t3OYprnU3CDhRt2lq/pO3fY+4zRNc664Q+BfwZlEIOEC1hgAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\frac{E_{b} \\left(\\dot{s} - \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}\\right) \\sqrt{\\tau^{2}}}{\\tau} - K \\lambda$" + ], + "text/plain": [ + " ⎛ _______⎞ \n", + " ⎜ ╱ 2 ⎟ _______ \n", + " ⎜ \\lambda⋅╲╱ \\tau ⎟ ╱ 2 \n", + "E_b⋅⎜\\dot{s} - ──────────────────⎟⋅╲╱ \\tau \n", + " ⎠\\tau ⎠\n", + "───────────────────────────────────────────── - Kâ‹…\\lambda\n", + " \\tau " + ] + }, + "execution_count": 138, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_f_lambda_ = dot_f_.subs(dot_s_pl, dot_s_pl_).subs(dot_z, dot_z_)\n", + "dot_f_lambda_" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAA0CAYAAAB8bJ2jAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIk0lEQVR4Ae2b6XEUORTH2y4H4HUIJgOOCNZkwC4RYDKA4pP9bQsyMETAkQEQAUcGZiPAkIH3/xN6stSt7p5Wa3rMel5VW/fTu6WR5J3Ly8vmJsPp6emh+D+vLQPh3SnBuVcy6H825rn4uS8BfrgOfN1ohXjvOCxRhsagyH19eNg3fU9V91PpLLjRCpHknur7Z6oEvTLOlKKIRulbJR/13aE8B3bnDP6dx0qIWPeR0ncFfDxojUGpt4ULb5kF1TxExDwRJff1HXmKiMnOgpQe+LrbSiH6q/rPtiaPszR5poF4SCnAh/FnoSquK8JbUyEvRMELCZptGwJHOR1Q/bEq/+o0jFRoHBb9r75vys9Spsf1QGmRQjTuVotcDA34/Csp/7tbPrQ7UoSad7zutoaaN8qZZYXKsYxwY4UXJWMzuPEOFuVaAK5ruaibV4xtIYv2/RnLnCxQ4cDT8I62lU/GxQDhQRkflBIhZkNVDxE1zkNE3NeYMk+0q1IeSy9ZSGOUc/KEzCreIV7Ata/08RyC4rHV1hCPlFiaeIcnOvEI1ZWELIT43c+DUj8LT1vxZhAJDX6MJY81LusdqmdjQjjDi3JAWHKeoJS5bil1yvDlC6UJTTkkQ3XVFOIJYq4D5c9I9UE0zHUE4Ps7S1V+cJFW+xfheKTUMav0vcqMCZapOhMmys7i832grQNqM6/5U40onDLbWfIO1McZklIMz7Urb1tgaJm8WfmF+epvNYUIpa0fQXBMI4K/6Ot4hOqIu1hynzUyvFEftpLs8WPLY3cUcPo+L+kveK4yvy9yXpL1DvVFwJ+UhlCqPKEontMh93/4EQjd/CAMoP5BeaFyYqamQvCGJsNEIhi1x8JlDFY4BBc0atwPJezQ3irfxmmWi1KwXBTW7kO87/MOBB+ED40q9wpX7X+ofS1Qc1GHiUQInuIgcDGCVTnF+TbGBEH4uiTRGASD97HHR6jvVUfI6oDvi1LwEDwrBpRkXhTX5/IPVZmdI9e5Zl0VDxHzJuQOE15IRjMLplOQ6lEGwBaU9J4+wl2wTOURKh5FKHHKVp61grDEoWAIW6ozwENQHAogrjfqR/md0oCb+gFgXZi9Hgzg722q5SG2fuQ8xE0uYaAAhGhCQYkI9KXq2Ll80ocwYyBGJ3W+b6M0pwyrR4HH6rPvkaGc4Km+LptoDEYAnYOemx1cobKWQtxOo48J1SN8FsJYKCiRE1NTEOldfTFcqGDKdvXqj4cg4CGweZ6pP7SxgbB5hsbRRv+ssscG1mjfK0UiBrG+V/qcRYFHdVg0QgQO9NHH2jnfiq0O4cfWz1a1LQhCjoU0BAo+zrLCbkjlDjCPn4tQhTGwlV0V2KJnF/9VEczpN0chCGhOnEW4LNQGfyvzyAqkEioKKj2SwEswEH5AQutKoL4YwcagVsgqYSB4g4SAJSO4QcufMonHxZoWe+EUFBvpu7OpRw4SGIs8uy6nGJXH1oWNCGjpSTemkKUZ/V3m22TI+l1ktCidW4UsKu7xybYKGZfRoj22CllU3OOT7ZycnNzst6TjMlq0x3aXtai4xyfbhqxxGS3aY6uQRcU9PtlWIeMyWrRHdYXoCIS7BM6mttAjAcmHE+zDXHPVRV2TcILLnXdyh2ETq567DNo4Egc4/LNDRo7rAXeRpZQj9OzrEddrQ388D9xucm8CcKXAlUBy8q0yJ81xn/bjD9p5VmT8q9g0xcfvbnT3D5dQCWFxF03OUfra3v/Gc60r73lolNob5j6jeS0aMFBeuiRC97Rx1YC8kvHVQpYmtSP03OSeBnfHYd4BwX3A65JBPH0Dh+pFI6ECL50FwmE8ZK+svSwapff1ZflQPXc03GQm9NT0EI7Ps6Gqxb31yTIT9T2P8tctazwkjzokXDyCK4XwzzwjhHOJxov+cAlXxUNEiFuglGatoUWUsy71ja9zG5XDRZLyWE+1y6rW/DWKxkMwKtHs7neUdtaFvgk9n6w/5nFXa4gqcR20i5ZzEN61ZhpZvAJxmfa4CsKTvpqbcJd4hOpWUW6Md8k8PASD8vTfUVpy/YssWHedTFzIEiKzztF3rT1c48LsGgZB85glVH//OzhxxcaIBydAlTFk5FdqQBhiUOSeEKLtKe9a1b0DhKyLTm23wmJvews46/1vd5q11hgP31GGPnaNvFQ5VsqmYWqoRW4hKqEQXC92PxREDJ8CB+q8yhiLvWE+P0k7hE19/5vQKp6wWPPGuA3G8c6HcaXPd35LZPpQZXh/Co89TWU+wi4hf6pC8Cy3Biu9WkMoeIDYZPdgDRVSlJ0I3+Nkt+FATCI0mDalMcbyrs/YH+HIPphQPWsdJwlhVzOGK9PueBAOU0ajPMqEryOlsTFlhg9X7WWaIbr3x12mP1UX+hBkL4hQs6yOstUWexdW5hQEcx6hPZa7p3Ly/rd3wjU0DPGg6cwroX+K/A7UP6w/uzHdmhDXKXnXCkIQD4HF3pyHuHFeAcxvCkKJ4B56/zs0Z+22Xh5EM3xBK8YzaJwtopC58dskCgGZvqCt1sChIiElOQLIdAZ3I2Kz4Uf1CJ+jhBC+lEcAY+9/1WUxGORBVJx5SvCSVQG5BSNth6zSd62EISMmEOIt5ZUqnOfRoDq2x4Q4AK/Cmqzd3uTSBtzVRygwgPgSg7Hxk1PPAzRAC3QaD+xMw1qkPNtf276y+yLc9p1jgcYAvI+s0PByscanu/lzfYc1cBkO7vv17UflHyo/sPLUlLH6nkwdt67+8KbvPMbfDllBUQUZrCi7uynAZUOCN8ji7PBy6rbScJESGsLuKG7YUJ7QlkSW2vchhK5V3HQl/r3bQ7RTjMq1Fb4SHevoJF4I1R+VJmtvew2ZOzfbPdYI243Mwidi2QBM2ULOmm/hwcipw1tVD4EhCZGF70jpdQoNkHZtQLIh/HIXEkKyEfcfwgMydbea9zgAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\frac{E_{b} \\dot{s} \\sqrt{\\tau^{2}}}{\\tau \\left(E_{b} + K\\right)}$" + ], + "text/plain": [ + " _______\n", + " ╱ 2 \n", + "E_bâ‹…\\dot{s}⋅╲╱ \\tau \n", + "──────────────────────\n", + " \\tauâ‹…(E_b + K) " + ] + }, + "execution_count": 139, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lambda_solved = sp.solve(dot_f_lambda_, lambda_)[0]\n", + "lambda_solved" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEUAAAAuCAYAAAB+vtSwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAF0ElEQVRoBe2a7XEVNxSGrxkXEFyC0wGQDqADSCoAOoDhl/0vk3RgqABIB5AKMHQQUgEOHTjPo5E00u5qP67XF8NczciSjs6XXh1JdyUfXF5ebpak09PTZ/A/IN+Pcu8pP8f6USzvUB6TP8F/N9JmFVH/LzA/jAKfKD9Df1QqoP22w/MYmrxXTgdLQUkWcUA0m4Om/wn9jygFcHGaoV/QnprhTZNS2YH+E4R/yYI6e3JuVVpmNjCQouT1iMgbnRnpb3YV+o3CXqJfwDeUD8hNG/R9he2C3ORRTzcddgkz22n2B50udPxT1JdUk/53pRCDdOZfkM/GwOjI/Fy259S3ihQUh0jBsWoN0/4jGaXuLP2V2gvLpD+Djj73qReUz8mLZn6h7c22kaKD2WGN4qghXUXGFZxXfwY86r5L6R4yO8HvJH2JAk7SObSst6VoMSgoDbOIwiPqZ5ZkaYZ2L1Qjf4gg6pObXaE/gE7b0075RdGB3Edk8olE26Wo/Ulgt1k+ab1r0J3fE+Y2xjyJeo5Dc3Dmc/KclPR/QfYZ+U+EXpKPqadjelQPfP4cuENZRsVzaObJtDhS0BgipWNQQ93lVDqlzO8yzUhBP3xfsSEYJiPF5ekmO2efuoBvg/x/FJ6Cb6lX/tnfSttESm8/icrzoHHApZQGZ3e1R0T+VhH0oyMBsqFuBDoogbZ/NMHj/mHEGZ2C+Q5adZJBa6bDZs9AB4rTQHsGoiNJyhkNIEFPg3hI3X5/rbr0dLxK0Jr6YTRa7Fd39euWdk7oSEvHiArRAS3sS/aRe0s8C8fK0khJ670ZihgVBI2nQTsQHXkJzf3hAzlsvJTd1NSPrDbVI7hGYiv587/SH+1uKCcBUelSUMJGh/JyA8vOQReAv8l5KVF3oP7YSiBZ3iMPpVH9CHjamYyWVnI/SeAGHmwbKbM2WQUOg9TIHxQ6K6/IhqV5A83ZCJsZ5RFZntTvKVSCJgDlzHks5hmL+u2Xr9T/gT4jKyTqDuxpbHoqGZFD3z3ypKXqBOib3z5zNmhYN5utPwiD9Iw/OOOH421KHdxQeiK4p8x2Urldpls7MFZGhSeBvypvLCDiMbl8VgDNk+IVQARwKKv1voL+1VVc+/JZ3eMdKNzF8tnBMNY1sQdlAM89KHtQBhAYIB2cnJwsu84fUPKjkfanz8CM7veUPSgDCAyQ9pGyB2UAgQFS79uHbxM/0f0+8W7ElC53rHtNYAoXSZTNZ9PA9Q3/xHF4yxfuaPSVPOtNunn6oPRa34p3hdeMcQiadzD5bqYXKTqLohQlr203krfkk+84DdkmGds66XVmvmBqMk90FOMYvD6l36uMC8rqy30QFBgT06CywpfqRbCg35RqGkd10Q4I3sZ5pTn4Jt06fUKkIFxeK25o52tF6t6k3ejLIvxL48iTi9/uh6Nv0q1IUTAroi4ghloVGdDyrZo8NzA5jjyxcQyTb9I9UBAM6KJs1lvxDQQiuFSMI0wu7fD2Q+fkRPZAQSitw/w4rRWUfiT3FEITxLCsqK++8Wp7y5TGkd+k8c9/AHhC6W1/c+kPgRIiBaEcdtGp7nIKb8XwvTfD4+Y1OyEjkMFWR0g9RulvHbrN3u+MAZ5ESroXv0kPgdLbT6KV/MCFwzqu0QSc9dwf+UcLdAw+TkFf60gO40Bf9SZN2wm8TxkmdcjJ6vSBMaFbHWEK0udpk5LHWTZGvdrQEtO3KsfGgU/pBG2+MlagIJDWYbVUysFhUADyW3Fsy+I69eXOf3tYtJRK/SvVm+PAN8fm3th8k+6CEr4TEEzLovIRupHUfSuWppE5D+iVvmtsjI4Du2fR9mC0HMZZvcpbsbMy9wH92nCI43Bp3CMfawiab96L36QFxb2i+f8eKp9IOpHWqazVA/qE7GrdcRx+2I0m+PymGv2uOhzVMK/T/eO8YP2V+uOivbTa3M+WKtqWfw1Q8g86ZuHKD+hxxrcdzypya4Dy3T2gTyH3P99hU/nZWBigAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{E_{b} K \\dot{s}}{E_{b} + K}$" + ], + "text/plain": [ + "E_bâ‹…Kâ‹…\\dot{s}\n", + "─────────────\n", + " E_b + K " + ] + }, + "execution_count": 140, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sp.simplify(dot_tau_.subs(dot_s_pl, dot_s_pl_).subs(lambda_, lambda_solved))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The relation between the rate of control slip and rate of stress is continuous. How to transform it into an algorithm?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Numerical iterative solution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So far we expressed the change of the yield condition using the continuous rate. \n", + "To move through an inelastic space of a material, let us now choose discrete values. We assume that we are in a state $n$ represented by known values of $s_{n}$ and $s^{\\mathrm{pl}}_{n}$ and $z_n$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now prescribe the value of total control slip at the next step as\n", + "\\begin{align}\n", + "s_{n+1} = s_n + \\Delta s\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "How to determine the new state of the material represented by $s^\\mathrm{pl}_{n+1}$ and $z_{n+1}$?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we have learned from the continuous case, the consistency condition is the key to the identification of the plastic multiplier. Thus, given an inadmissible state $k$ with the consistency condition $f_k \\neq 0$ not fulfilled let us introduce a linearized approximation of its change around the state $k$ to search for $k+1$ in the form" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\\begin{align}\n", + " f_{k+1} &= f_{k} + \\frac{\\partial f}{\\partial \\lambda} \\Delta \\lambda\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While in the continuous case, we required \n", + "\\begin{align}\n", + " \\dot{f}(\\tau(s, s_\\mathrm{pl}(\\lambda), z(\\lambda)) &= 0,\n", + "\\end{align}\n", + "in the discrete case we transform this condition to\n", + "\\begin{align}\n", + " f_{k+1} = 0 \\;\\;\\; \\mathrm{for} \\;\\; k \\rightarrow \\infty \n", + "\\end{align}\n", + "In the linearized form of the yield condition we can transform it to a recurrent formula\n", + "\\begin{align}\n", + "\\left. \\frac{\\mathrm{d} f}{\\mathrm{d} \\lambda}\\right|_k \\Delta \\lambda &= - f_k,\n", + "\\hspace{1cm} f_k \\rightarrow 0, k = 1\\ldots\\infty\n", + "\\end{align}\n", + "In every iteration step the state variables $s_\\mathrm{pl}$ and $z$ must be updated using the discrete evolution equations, i.e. \n", + "\\begin{align}\n", + "\\lambda_{k+1} &= \\lambda_k + \\Delta \\lambda \\\\\n", + "s^\\mathrm{pl}_{k+1} &= s^\\mathrm{pl}_k + \\lambda_{k+1} \n", + "\\left. \\frac{\\partial f}{\\partial \\tau} \\right|_k \\\\\n", + "z_{k+1} &= z_k + \\lambda_{k+1} \\left. \\frac{\\partial f}{\\partial Z} \\right|_k\n", + "\\end{align}\n", + "a loop and simultaneous update of the state variable using the evolution equations we obtain an iterative scheme valid behind any plastic material model applied in finite-element codes. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\\begin{align}\n", + "\\frac{\\partial \\dot{f}}{\\partial \\lambda}\n", + "&= \n", + "\\frac{\\partial f}{\\partial \\tau} \\frac{\\partial \\tau}{\\partial s^{\\mathrm{pl}}}\n", + "\\frac{\\partial \\dot{s}^{\\mathrm{pl}}} {\\partial \\lambda}\n", + "+\n", + "\\frac{\\partial f}{\\partial \\tau} \\frac{\\partial Z}{\\partial z}\n", + "\\frac{\\partial \\dot{z}}{\\partial \\lambda}\n", + "\\end{align}\n", + "after substituting the evolution equations we obtain\n", + "\\begin{align}\n", + "\\frac{\\partial \\dot{f}}{\\partial \\lambda}\n", + "&= \n", + "\\frac{\\partial f}{\\partial \\tau} \\frac{\\partial \\tau}{\\partial s^{\\mathrm{pl}}}\n", + "\\frac{\\partial f}{\\partial \\tau} -\n", + "\\frac{\\partial f}{\\partial \\tau} \\frac{\\partial Z}{\\partial z}\n", + "\\frac{\\partial f}{\\partial \\tau}\n", + "\\end{align}\n", + "which can be expressed as\n", + "\\begin{align}\n", + "\\frac{\\partial \\dot{f}}{\\partial \\lambda}\n", + "&= -\n", + "\\left( \\frac{\\partial f}{\\partial \\tau} \\right)^2 E_\\mathrm{b} -\n", + "\\left( \\frac{\\partial f}{\\partial Z} \\right)^2 K\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thus, to evaluate this iterative scheme we need the functions\n", + "<table style=\"width:50%\">\n", + "<tr>\n", + "<th>Symbol</th>\n", + "<th>Sympy expression</th>\n", + "<th>Python function</th>\n", + "</tr>\n", + "<tr>\n", + "<td>$\\tau(s, s^{\\mathrm{pl}}_k) $ \n", + "</td>\n", + "<td>tau_</td>\n", + "<td>get_tau</td>\n", + "</tr>\n", + "<tr>\n", + "<td>$Z(z)$ \n", + "</td>\n", + "<td>Z_</td>\n", + "<td>get_Z</td>\n", + "</tr>\n", + "<tr>\n", + "<td>$ f(\\tau, Z)$</td>\n", + "<td>f_</td>\n", + "<td>get_f</td>\n", + "</tr>\n", + "<tr>\n", + "<td>\n", + "$\\displaystyle{\\frac{\\partial f}{\\partial \\tau}}(\\tau, Z)$\n", + " </td>\n", + "<td>df_dtau_</td>\n", + "<td>get_df_dtau</td>\n", + "</tr>\n", + "<tr>\n", + "<td>\n", + "$\\displaystyle{\\frac{\\partial f}{\\partial Z}}(\\tau, Z)$\n", + " </td>\n", + "<td>df_dZ_</td>\n", + "<td>get_df_dZ</td>\n", + "</tr>\n", + "</table>" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [], + "source": [ + "get_tau = sp.lambdify((s, s_pl),tau_.subs(s_el,s_el_))\n", + "get_Z = sp.lambdify(z, Z_)\n", + "get_f = sp.lambdify((tau, Z), f_)\n", + "get_df_dtau = sp.lambdify((tau, Z), f_.diff(tau))\n", + "get_df_dZ = sp.lambdify((tau, Z), f_.diff(Z))" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_f_df(s_n1, s_pl_k, z_k):\n", + " tau = get_tau(s_n1, s_pl_k)\n", + " Z = get_Z(z_k)\n", + " f_k = get_f(tau, Z)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bmcs_course/4_2_BS_elasto_plastic.ipynb b/bmcs_course/4_2_BS_elasto_plastic.ipynb deleted file mode 100644 index cbab04a..0000000 --- a/bmcs_course/4_2_BS_elasto_plastic.ipynb +++ /dev/null @@ -1,694 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4.2 Bond behavior governed by plasticity\n", - " \n", - "In the first part of this notebook, we rephrase the basic framework of\n", - "elasto-plastic models showing which conditions are used to find out how during yield \n", - "to describe the material behavior, once it crosses the elastic limit.\n", - "Perfect plasticity with constant level of yielding stress is considered first.\n", - "\n", - "In the second part, hardening variable is included which allows for to expand\n", - "the elastic range \n", - "\n", - "Define a bond-slip law governed yielding with hardening or softening." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "import sympy as sp\n", - "sp.init_printing()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The onset of inelasticity" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAADEAAAARCAYAAAB0MEQqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACsklEQVRIDcWX/1FTQRCAA5MCMHagHaB2gB2AHQgdyPhX8h+DHQgVKHYQ7ADoQDpQ6SB+387tm3sv7yVhQNiZZe9293Zvf90LW4vFYlTDbDb7xP49uFf4l9Dbsp4Uugt9Bd6g/6bwno8YRB9Op9MFeN0nk4fsEJwPyZ+Sv92XPrKbVfjWJy+879Cs0Aq1/y/qDQK3tpNgK62CX6uETyUbCiIqQUVu6ouwP8096zvWP3L/nHQ84NzBbVWBSx/Ca2Ue3i3ogO9AWwEP2G3Y6JuQ34VhQq7uayONLQWBoZyHCeuvKPoiydsBX4MNIDcAdd6CLxrBmgXnrlH5CI3AoXP2vnJHa46GGH3vcg7us97qa6ecB50cgQegF/Q5bQ1y2R+H5Q3/cMbAd6F15bSxsR3OWjmTF/dZqgSCqETHCeyl9upeRJ1N4I9K2P8L8YW7YN1qXeUbgMmOc32VWJqHYvAkDePUcmbbJXsjylmz6AWuQOdsDs92ui94T9ty1KoExvJiS0aL83T0mUUTlEzkXsjgBGfnuHNGnWwlX7XIIjx/IZwqA5t2Za0t/eTwj+B9YZ/gXWOGupXIeRgsL4bMgA7NaIIOL3VSHF2w/5nCispvnmn5RV/aDcDzJ0V+xvqd+gI873CXZ7pB7BeleuhkBXDI6MN4YTUkDcpgbRKcmaxs6jkPmajgoWMlukPty2NQH5BbYekBNEG7tmPAGKFZ9JClFkfwzFgMIHQCqpNyX6neINGpwUuEvYpp+X0WZVlJ7fqt6X40vaSv4lBHmIim5Q1CY3WUbB8FDKBpES3iy33d17L7IIKrBZz1g+pdBb9Lzly8kNvBeoQ/GGyyztoWsGJDmVznMdoxlbBjUHZLQv5CiHYdJ/eB1Ozu4UwzOnzJ+iH/Z9gZ8WJpUMBe3S1n7H0goqX+AWo4hU7cghCdAAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle E_\\mathrm{b} s_{el}$" - ], - "text/plain": [ - "E_\\mathrm{b}â‹…sâ‚‘â‚—" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s_el = sp.symbols('s_el')\n", - "E_b = sp.symbols('E_\\mathrm{b}', positive=True)\n", - "tau_ = E_b * s_el\n", - "tau_" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAAVCAYAAABbq/AzAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEdUlEQVRoBeWZ61EUQRCAD4oAUDPADFAzwAykjADIQMp//KMkAzUC1AzECFQyECNQyQC/b2pma/Yxw97eCSd01dI73TPdPf2a2WPt6upqtgpwdHS0hR074HerYM9N28C+X6DzHHyRdK91gwPzFcznPDtx0hk4LXgYadtgnamwJ5E2GSFjk8Ufweq9t8D+P7L5Q3Dw90bXEzBOoJ2ALSmdP+gw6Pvwd7vrJ46/LFHWRBNWYtkeVuiLkPDrQybh+FQ1p0P8SPsAThVVmVZnxSB/Ay8sq65p9bn44BIrz8B2r1mvcuIWUrXY0mrwo8YcyTtkXtI3csmdnnbM7n7ynAxWDoxQOUTwPHcD4zdpHKP8KY2nYGR4bs3A975qkv+iXy/AO6XK8cBvVQ2TPWNalQJNITp4E9wKZFJ2DfaG0tIzNB/ZJsWvyLP0bYNT9A2Jn4t2Q7bok91ecFAeqgbmQ97finmkeaN6zNMAfAPjnKc8DxrG+BfbmTeUIqDjO8w9cAgG+DNjD8yD4qJ/xFiGLcjQj+95XvC+VjDVIjgYamup/+uQA55dHh3fuoMrFLrtyDNjKhjc36XFyJe/Dc6rRH2L6Cypq9KXZQtyrHwTutbK9clmr3IghsrpOARyu/3A7zrNOfOCVamxJQiBQ9cfJng79Fuo2gbhm5leR+eBpjIri+a2pSLLAqjtw8BtDQWnd95EJd4iAkQHGMQ8oyN3eQg9lzxuxErxzNtn7FUzVXdPmWsgLvxh3BWs3Kh3tC1dGdlYH1fbuXNbwUF5qBro9vUWxE0n2mtemmBJhK/zzFrBs8kv3VpVOC+Ury9dYG1qad4IQ5ZB8/7/Rh5PrS10xS00HmsL8/SBieE5KeiPZzzH8PJE1s+1M9OOctE9c1JGFksOJUZd5+SO1wgz2l8W/IXBrBjTWnSwhgyBMpqruxOibPGNBSYaNo8tzvVM8UapL0xiaQGg6T+rsLYHE/OyGxyvtjMW5lGWFAC6EdfpraqRCa9RxrvB9UxKleiUIVBPqQVZVSlZwlrkWTk3fhlA57W2YJsO9VzU+Z8YJx+axPIS6JNvaVDA+uRsAyFmvVc7BQQh0Iy0BglmtnMS31tbUiy/BAYrN2ponu3TLBsCy97rpjw3qA1+Vy304auwCXCtLdgVkhNsG/ua6QiVko1NuN6xkfF99dNkz+C48WX9gKngBAamqaZEzDG6bYUznt4ZAs21toVbhzltsTLyzvKSsRWVQMd7Hg/edqGbhOGjfj2tWBQjtKkS3j0YrbDi2ZXp81y5jVaVmbCc1+gDnWvCzxhbNT75/oLjoRnEIfCyFbpJ7/85Q7NrtGiA2eFXraBxj6DnBgVG6Q9zLXM/eKuVVlq/KnTs98zWuafRpt6tlTk63uB95r2VvIz13RdwOIc3opDJCEGeP2POoJoO26rnXOsCUFuwojztD7fWkn34y/OrBPqgOWKW1tZK2sbQMdhMsnJsh/8z2Kryy8DovcS9t7rHwm1ttPY7PhHn2q5MLm+T/hxkwi0EfwHEAsoiJZo6qgAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle E_\\mathrm{b} \\left(s - s_{pl}\\right)$" - ], - "text/plain": [ - "E_\\mathrm{b}â‹…(s - sₚₗ)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s, s_pl = sp.symbols('s, s_pl')\n", - "s_el_ = s - s_pl\n", - "tau_.subs(s_el, s_el_)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFoAAAAWCAYAAABAMosVAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC3UlEQVRYCe2Z0VEbMRCGMUMBTEqADqCEmA7IpIJAB2F4st8ypAPSQuggpIIwdBBKyKQD5/uE7rDlM9z51sHJ3M4cK+lWK+2v3dWeGc1ms52BnhCYTqcH9H4+jcS09mLU/FdarrDmBMBvI63ajVT2r+vK3nwQDbK4DB696B0XdD8tDrXvcUBGwz6P6eeB54Kx3/ABaEGQAESAxvDzNNDxD/ME+RouwDvwr7DvPMf2h9QhCo90CdOj16XTYqKRcQTgevcAtCAAht58Cr+x34MSqHl+Shm009iQox9R0ZsN/bWJQzosJh/l/p08BGgWMWxOsuIlxvvOeS/rtAL4vKQwcAD9lTeXQPVdxYOLvQzZrCHXN+z6Grbu/DMm9vLmcmHwUN/tvJOEeHS50Lb0MXTsXuDPfXyc8z7Mm9Hlwe3DF6I4BGiUfkS5ec4wbCJDaKMpoFx0bk+WW6nEWiFzXY5X/TkdrexC3oM9hCeQc/8X/L430Cipwu4ti3jT2re0sZ0ImVRbVv1Nc9bzpv+S17miP+Zp8uqV3ox8J7uQ9/JLttOuSj0Bf+c+egGdlf+A1/mZtmFzr/LXItavPhoEW+OtjxeARsYQb/Rm3glaV7v8ONHz/VCpCV3J4UaTycSXCnWhDyhYAjNv8BKeTrGNQmQFwpAryX294WmKhoe2ayAnmIJqSNe6aPsL3TE8AUF7JSEj8J3sKpXt5YUac1gp3KL/HplvLeRqEdZv/Bpj3PCLKO88SIF2nSp32r/JttN8kTrbVWrcLQd69gUnFeg99YRNB0y92NR2RtsokQTde6Qt9bYrDGiM8ALSA5dSSltrNihXgWr4C5o17ospw/0gF2JXGNDsSQPqHOgmt4UAy8P3MWVYhjamK8abKMSuSKAt+htv8abdv8KYXm3quGvrzXmPIXaNtvV/hoChJ0VchhmvlAa8qK2d/3rk9aqjaws201ioeyOWAOCVP3xF6H9Oxx9x6wELSe8rywAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle - \\bar{\\tau} + \\sqrt{\\tau^{2}}$" - ], - "text/plain": [ - " _______\n", - " ╱ 2 \n", - "-\\bar{\\tau} + ╲╱ \\tau " - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tau = sp.symbols(r'\\tau')\n", - "tau_bar = sp.symbols(r'\\bar{\\tau}')\n", - "f_tau = sp.sqrt( tau * tau ) - tau_bar\n", - "f_tau" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKgAAAAmCAYAAABQ8dAcAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHqklEQVR4Ae2c4VUcNxDHDx4FENKB3YHtVADpwAkVYDowz5/gGw93YKcCx+4gTgUGd2BSQQgdkP9vTxLaXWlPe7e3Jx0778nSSiNpNPprZqQj2Xl4eJiVSBcXF2UKnrmypdednETcy0mYnrLcSpnPe/aZ2AvTwG5h8lbiCpivVfhaouyTzP00UCRAtcRjpc/9ljpxl6iBUgH6QlZ0sqAlIq6nzMUBVMA80honcPbc6FLZS7wk/SZlT+59ScTpgF+p677SM6VbpTPV3SvPkoqzoNLi0eTel8OSAecH5adKv2qUA6W/lxttnF5FAVRKfSG1fB9HNVs5C68fPl3qg3gea5olFQVQaZDb+6csNVmOUD4YrWv367JaSWkx6Gud9rOsNFiQMNJd84cNPBJ0Pc/y+7cYC2rcEEH9RMNpgAvTdEkaSJ/ET523d0Cs9Gag+YobRmvHwyS5a/EBzq/K3+e80J3mH4tI4LcSmBse740Qb47WcnHrg3ANKOK7+F9SsW7SPDea41C5jZtqU6qep5PPypH9yZLWzyHGKto9a+lCbRzil8pPW42ZVbRiUAnNiXqvnL8WAoDBDVc9i+RNcu2kuQDfTHkQnEYAnktGkcfMl2t2IsHQRdBwSIcYnufKK3Ca7zvlWb6OtACK1o3QFLtuzH+qPagEOg5Mv2u8qCySl8NyrTxqNQaWJ9vhpIN7JVz3W6Wa+9Y3ng/XfqmyfXICqBs52EaGoAFEwWo/DQJUbbbTop8UfzDQCIQCu9wRN3sr8wjiZD/FpST8R6kGUH1jWatQSLkjAaHLMzm+oQua94vGJMWJGLSZzs/Pb5RUXW9T3ZVfp+9n/vc6yppjX+kmNjYyKP2ItT/VenSmdFT6+mMWFFdQs55CO260ZjFVN4ZLJWaqydI4bkl/GypZcW3/mr5YDEKCjcRdI8mCzvA8Xboz6thMJj1wIX+nhFUP0VkLoOoEIKADlT+QK1HHIM2H3pl4uM3vK++12eIH8ATn3SZ+/usRLitGuPZFz0+8AJxYGZX/pW/i566wQc3Dk+YeSxaMyejrS9WY9IDBgA6VMBhVbGzKyqoY9LYFUNXbWM5tqGG+0aA1i6lvwAmIXyn9BF8KqR+Ap9/iGGT+W3EX+JHhLjavkZHfm/0xiFlra4n1H7J+KFk0DsbiDyXePWP/DRE6iVmmIZfVeyzJjIf+ptwZJ9ak5O9RNW4IoIBnFmCuuQq1V5uunM0m+E4i8QMoEsJUc8U6ihf37RYR4cPCcwJjxEbNNNZ/ynh54K20thbamyQeNjd5XaZ/7VA3x9T3UrI0x5Fs3NQ54Gx0jDiA6HllGloXGo+9J1Wkb9YR3MMQQGEObaBzs0ZgwOUmqWZK+4eT8lGJcIGnkKZ180c51oeb129ILWt8NhOvwEEirHijb55hrKcIDkU/NQz6jMaYZt5esgQFnHu60D5F2JevXocuGtKwz4RdLaoBVIJYi9ZiNkLaAd6psBRwNI4F9SeNQZDcBfQu8FpZ7lTA2rVIc2FBGAMrXG2mysx5RZvSaG6e+QaWBUPSFXsfqH209WmuVQhPGXyLrQFUTNaqRE+mFI1i2NyaSdY31skCBevY+UcI4udXKsbg9DTf62ZqA7hROdRmiU1gM0LEBiKTCxM0Lr+SAdCxNy9JFsmFHrHcXKYg5P9Ficd1e7ipRz9dlyAOBPrNmrQm5ARP/tqczLuuNC+A5FmMWfUohbisaT1RYvWHB+IBbGxGSvwGALFw9G8SJ6rLQlh+FhZzxVhXe+gqfs2FBcXFjk19ZGHdxJg8haFP9O10oTqMBOFC1yFDJykHXGwbJTAXXceeFgk4uBFWSEZU1aEMFAphneCx7Vg+QFEj1blJVAasAO+Ico2x/oGbR0CA76ycYaFvl4UwbFXswmaGiP7cdGm7V2Id/A8fmnPRvm5aKIvkQsdc5LCiX/Rt9YzstFlCX9f2I5K/Uv1JpC2narxtbP9mAJTFB/3/iqsAsL5SQ8NZ8OLmHWgkExbCbk6on6sTL4dhptSKKVWHDK3wwXUesZAii+GZKcelf/PEqyym941XaN0TbLv6cxC5jCbp0PbbRC4ZO43Q7hqFApzOqobmkXAcDpSIRfAJwGJdU4lH3k247VT5+vKhD3t46Ys+sKyWsI6Vl7IVjZxLbNQqNXiz/hwMoAKbs5Yq46IIBXwlxxQBD6cdK2EJ9+4sqq2M5eL9qDYsqJMhxpt7vVkDFpDDO9M3eiH5B9Bax+bBhp++6C8LzyFZVqK9lXo/dkYZKIUaFPSzyrGLCzw+2ecmrASgBmR3PkNi2V6qapeixL45sQFGvIqNnYnR+OPiCrBGUN6R8RohN8/9YR0hm5l63Kz1F/XjTj+fTcrmVx4uL2wEt2xuqFjFXqQ+gJuD0rtvr4nWyCzZcc2s37eYSTOqD54L198ZWiUNlgnTUBZ01eXg5rEYWF8s6eEyA5qNKRacZs247d7gpK/WX/rajQoes93H4kZL9kKEBUDRvjvbqGBjTq51Yz3xAscqc1ifPOVkQdmMbbuN9wKYQMmTS+ezS68Bt4A5CwtqLKZ9s0u+vW+B/qclLNBALhYUMSs3L7BuTYC/QPdTc4IGcgIoljPl3TRhWRPLtmjgfw7XkNedOQ1bAAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle E_\\mathrm{b} \\sqrt{\\left(s - s_{pl}\\right)^{2}} - \\bar{\\tau}$" - ], - "text/plain": [ - " ____________ \n", - " ╱ 2 \n", - "E_\\mathrm{b}⋅╲╱ (s - sₚₗ) - \\bar{\\tau}" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "f_s = f_tau.subs(tau, tau_).subs(s_el, s_el_)\n", - "f_s" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The question is, how does the stress develop in the inelastic regime?\n", - "This means when $f = 0$?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAD8AAAArCAYAAADPGFBSAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADMUlEQVRoBe2a7XETMRBA7UwKgNCB04GhA0IHyVAB0AEZftn/GOiAoQIIHSR0kKSDpAM+OjDvyZLG50R3ieNhTgc7I0un1Z31tKuVTvZ4sViMapT5fH5Iv1+U+o7+TUmX6se1wieAh+Q7D7m59nt3awXArd/S93ekRwWGY9p8LOhCdZXwQH2IUM/Jf5O8fh/LZKMRba5Doe3DOV9Tms1mU9Lhap+5Pl29vmu5Ostj0UuMaQrC9ZSC1r+3DCHgvYT69N7k3DAEeNf7803gq17ncfkJ0Ffk403ga7e8Vu+O6oWRqR1+H65PBbbO6qrdvpOuo0Htlu/Aa1f/h28fn+Fq/2nLN7a3rJe+IPyItnbLeE5d3koOzQcyPJAXwL1KsORuGZ+SOk9Eah2UAA/oBIBpAo8wx+QbbyBqGJBk+Z92FvhfZF9JJ5TPrCsJeg8Rvpf0hfrsWQV9qObZf+VgMW9y+MIDvllrmytn1BUPCJdN6v4ccxCQXP5bQgHaIyKD3z7lwbq+S91JBCVbCsDh7GvI4JIK73xvuHe0vFNg0JLc3ldDxbXdQHbNAORpoGKIkgNen+GiJ+qdORhTTrFoL/bdszzj1yXt3Z90ShXwiQIol8AiHPrX6I/IG9M43b+eO+erEICS1b+0dNg9SvKIlmZLVTXwdDdZs3XzRburTurYoCb4YHk8oPGixbX7kSCUDdh3DtQ1wRvQGlYH1jnesDR1rlQTku1bZbdV2xMlIGm+71H2wNIIb53LsoeYWQTnwjbPSI+z4pZCFfD0O833xosRoBekRoDzmuQGrfOlqxa3D5YHqjHfAVyfBp2uvuoAtcDfmO8Rwp+lgzAwToE0PWJte9Z7twcqAd34MRKd0T2Jf1TIg2ElegOig6IYG/zDQr6n9/B0OM33hotLkwQgPcMIn8G4FtoziRATyB1E40De+tbg9uGli86vz3c4gnUTVMPqUZeDIfc7eB7VJU8a9dLydFCrfSa5bJlG1Hnu4Ou34lJnm6R3v3/r4Nh4RRyM8Dzr+gqv+x7ZwS2L4Nkbdrb88F49Dm/IVqZs8NNDcuzopeW3NIIexR0A6+OcIk8o52Bn5R+8MaqBJpgVCAAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle s - \\frac{\\bar{\\tau}}{E_\\mathrm{b}}$" - ], - "text/plain": [ - " \\bar{\\tau} \n", - "s - ────────────\n", - " E_\\mathrm{b}" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s_pl_f0 = sp.solve(f_s, s_pl)\n", - "s_pl_f0[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAABoAAAAMCAYAAAB8xa1IAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAvklEQVQ4EWP8//8/A6WgoaEhBGiGKy5zgPLpjNSwCJcFyOJMyBxaslmoYTgwaMqA5lQCsQAO88optghoSSfUcGcg/QGIQfx2KBtIMTAA1dxjAMURubi+vt4IiEOQ9QP5u5H5MDYL0DaQd/eCrSaeSAXqOwfCQC0gDAZAvhGQAfIVBgBZBJIwxpAhTyAcqG03Nq3UTnWg/HQGm0VUy0fAkFECWnAXSDNis4iaPgL55h42S0Bi1LRIGWjeTFwWAQALMXeXGKiinwAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle - \\bar{\\tau}$" - ], - "text/plain": [ - "-\\bar{\\tau}" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tau_.subs(s_el, s_el_).subs(s_pl, s_pl_f0[1])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So far, so good. We obtained a trivial result telling us that the stress cannot grow over the \n", - "introduced elasticity limit. But in this case we can just reproduce the constant bond-slip \n", - "law - now extended with a elastic stiffness. How to provide a general framework suitable\n", - "for an algorithmic treatment? How to distinguish between loading and unloading?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So how much plastic deformation was consumed? What was the direction of flow? \n", - "There might be several different processes going on the material structure?\n", - "Let us postulate, that they can be clustered by a positive flow variable $\\lambda$. Then\n", - "we assume that the rate of change of all state variables representing yielding \n", - "can be related to the common positive parameter $\\lambda$ and that the yielding direction \n", - "is normal to the yield surface $f$" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAADMAAAAvCAYAAABOtfLKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADoklEQVRoBe2a31EbMRDG7UwKoAbTgVNCoAMYOjAdhPETvDGkAyghoQOggmTSQVICSQfk+8laje6sO584nZ5OM7L+rVb77bdaYyXLt7e3Rc1yc3Oz0nlnqnelz/1YWuEAfYC4F6jlANkskapgPCsrtc9ZVnph7cMRR6qw+0f1SnP/1LpSFYxOvFK93R2d9+mBwCggFmq/q3lR/cSY8mHX7D4lcKS6UQV50YJuKTxR+/hOxdyzuOCUdWxrGwyUvar+ltBJvLNAfysdMDOmxE628ApzDTCc4j3n4nHMqfFe6YSVM687Xhrc195j1fiurf3mn6ZkD4xfuFdLSGBEiQIrpVMx+hoJoAuMxfVmLBLvEFh5GKvL9ksXQJ7VfrU52iQYCRFmv1QvERpZcEgxVmQb+khUe7b1pWZCjVTI94JLh21QmndJQm0cy22xS60ftydtrLUv6hOGXSFNKDkG1HIed8cB8eNXtTh+0Qfmm9YBxMa9LCQFZgRAQ65XPxQvg45k0box9lkCZCfGt76vxiUk50jJcuHduvqWprHtHDlKH5jVTmQBrQ0wUsaa3YE7jUkWKXY6WZE8xv1Qa/dzoT7h47zsz44bviBhjy/LUCSPE1xZpv7QlIB5gY149lRze8ZqDuV/VbmMp2pD0dhiu3FJg0CrI3nO3KoNnm6JHBzuJQCvFBDn6uN9kLsYbWvTOmvIwAxsxQU2jb14vqt/oYWnrsUh8w0wMogLBp0wYfRxdyxGUzot7kMoai+sPEY6Uvvac5wRvgDbi0PGAYwHgmdgJM5e7gJrLgnIyxL3G/UJOwrAuMiDivbBKlmz674M0uPASAmMAIQL27gb/gDAJUPNn2KGE/OA5g4Zs16kt2FP7MBe4a5FYwZPks+7Ypz11L1wej1gvEp4bVVDyDmBwx98D3Wm8MPbdxLJbDZ0cyznGSFxPKjfx2K8rWjfmBmtVAC4N4SoJYTROnMVFGMm9+Ap5IsxM4VxuTpnMLkeqyU/M1PL07nnLK+vr+u+z+ZamCE/p+YMZ1UVnRNAVXdnHDYzk+GsqqIzM1XdnXHYzEyGs6qK9r1ojjJEvzzt+dZebNr6whtye+G940nACIj9dD74hvxew5P7eJ4tWfWH61r1LNap8VM8nqpfnBmxwpNTeMzTmDfknDe0pNOHTNbIZhcyZNQb8hAgyNQAM/oNeSiYSX/PKMRWMoR/hi/+X0tSAKdmpsgbcsrw1NzUYIq8IacMT839B/4RvLoTtUcqAAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}$" - ], - "text/plain": [ - " _______\n", - " ╱ 2 \n", - "\\lambda⋅╲╱ \\tau \n", - "──────────────────\n", - " \\tau " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lambda_ = sp.symbols(r'\\lambda', nonnegative=True)\n", - "dot_s_pl_ = lambda_ * f_tau.diff(tau)\n", - "dot_s_pl_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Relate increment of yielding to the increment of primary kinematic state variables**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But what is the amount of yielding controlled now by $\\lambda$? Solving for $f = 0$ is not \n", - "of much help any more. Can the elastic range change during the yielding process? An abstract\n", - "distinction between elastic and inelastic loading processes can be provided by Kuhn-Tucker conditions\n", - "\\begin{align}\n", - " \\lambda \\dot{f} = 0, \\; \\lambda > 0,\\; \\dot{f} \\le 0\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAAWCAYAAADdP4KdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEW0lEQVRoBe2Z61HcMBCAD4YCCOmAdEBSAukAJhUcdBAm//iXgQ5CKkigg0AFIXQAqSDkOiDfp5E8ts8y9p3vMUN2Rqy9D+1qpV2tj42np6fROsDp6ekufuyDL9bBn2X7wLoPsHkHfki2N+qbA/MjzPeM/Sh0DU4KO5G2BzaYTvY20mZGzLGN8iVYuy8WWP8liz8Bh3hv1SMB4xzaOdiUMviNAYN+BP+wrj/j+03bXNhy834zHnie+zDM6GNQW7AvY4wYi7DGzSZHcSBlzbcmfqR9B6eMahFrZ2HLTb4FZ+eCN0HmkZGVabcyHHeRvsS5r8FWr9FU5sRlpGyxpLXBfRuzI+8EuWQvq4LDb7LMJTMW7MtnlmOVOG/MHBghc3Dirrxu3s/SO8+e5qv0PgtmDu+tEXjlGTGL/4vQiXG1fO/nMscLv5I1CFt+KpkCzUkM8Da4spEdHbdDqdhp0mNuD8WfyPNQWAZnsdc0fS/aknwxJodTm4PxkDUwd3j+ImZI81KulBb4bowy7xivGH3BcmaHkgVs/II5BofNAP/g3QvzOKu0IMa8vqBvDL8yPMxtpdwkOG4qa0nJgBwzDhkGvtKD8z6CbjnyzpgV3NzHnDLzy98Dl7NEe/PYzJlrpQ/hC3OY9R7mlAA5m8ZkeypzkmItIE5SKT/w60FTpi+YlTqcg7Bx2PqLgN2h30IVP+qK8D2dtqN9oMjMFqXevmTmus3Qy2QP/W7T5kzdN1HLLiJADIC7Xz7RkTscws6EYSabKd55R7zbaqbsnjKmDsTBv4WcN9rt7MuUcz0Jlc3BuAEXrOsViItOtE88FJslEb7B89QK3k1+6bZlhXIhfX2oA7qppNkRhmyBZv9/Jo+xtA6viy9RxvvTGNjAGAOfrQ5m5nOxQKwAdR7qd046kdnSgREzy+CUjemEJ9pfFvyFQSe7lBYDrCNN4BxF665AnFu8tI2Jjj3rS/RpjLyHym7Sw2nT8pPRJRaIFeAck/rm2NqOmLSxXEE3szRUyZqoUwQMOTfXOylloiJNoJ1cCTKr0mEJusxn5iy9GcBmL1/ws4gfzx7WLrEIa4x/jMn1Fsqeets7d8sxguZJ0SHBk61M4tu1FcYVyICbFebL8CVbPu1emsBTd4AteWapPvhdNdeHr5PNAPP6ov/PxaLslp8mYzdHxaF+wCwb0Jkim8qM9IxtS+GIMXWHQFPXU7dyGMCXcLC6LARbyoaP+s0uCl1kDHCS49nmwAzL3l1JFuy9sopSVXJh2MdaLCzFXWOhIzZboZpM/T9Hbh/AERuED4z7qOfOv4beOeDIWt784G3NtDj/2qIYC3/RsAwKoWODHt7BxsYrxLv9ivdKxYr8G3C4h7cQmguYyPunyx3UZkcnvecqDUCbwjrziEnjf3OhT/C7siG1dRiDgj9YWasZ6fUanTZzLIcvEuLaK9Vj7rL2IiPZsGiC653rXeHnwwXvqbQ1SHcj/d+cbnFaidQ/7XrNcMLKob4AAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle E_\\mathrm{b} \\left(\\dot{s} - \\dot{s}_\\mathrm{pl}\\right)$" - ], - "text/plain": [ - "E_\\mathrm{b}â‹…(\\dot{s} - \\dot{s}_\\mathrm{pl})" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_s, dot_s_pl = sp.symbols(r'\\dot{s}, \\dot{s}_\\mathrm{pl}')\n", - "dot_tau_ = E_b * (dot_s - dot_s_pl)\n", - "dot_tau_" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "dot_f = f_tau.diff(tau) * dot_tau_.subs(dot_s_pl, dot_s_pl_)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAACcAAAAvCAYAAABg8NNYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADZElEQVRYCe2Y0U0cMRCGuSgFUAN0QEoI6YCICgIdBPEEb4h0ACUEOoBUEEgJpIKQdEC+z2dbu4fvdu07IYRuJK+99njm399jr+3J09PTxmuV9y3ATk9PN+n3m/RA+UOLjTF93o1RmtUB0D/qHkkPs22rfJ+85mFtYm6V7Cyy1Rpz5xj9Ew07xHcM9a/kiPJXysckY7MkR+h8KzV066rBYfQeA18SGPIb3p0UhxrmXeDKR5LAfT+LZbKgMypWq8DheAvbO+SZJd6PSMEZ9TuUf5JfkwehvDmjn5oG8ypwWHOGbuDsL9l30hXlW+sUyoLOwHkXrOw1SdWEwJmOPpHuSAekG+oc1nmyT8Oi9nn9Qv1o5gCRhtQhC2xRZ+Cf20YqxdEe7Z+Dp4ZHDXNXAun6AFCYcSVgAkZX0HmYu33HlGvAGW8OaRYcy5wToiSyVmKzpFusGz2s9Hap2AOQhoy9TZL/1jwzbejINuWLznt1cf37qqYsdqiJuVYfzf3W4FqpWzP3JpmbnJycvNrj13oRfpMxV/PjLxLAj3+LBncgve1UUbmycmlwEdQFICeVvgfVlwIXWXNDmc8Rgx47CvSTbbdesu/ezyOj27EgS4HDghtNj33VEoHJeDq5udP+Qcp3L82/L4z6xbvk8zabQ4CN0674kR47ZTFIMzh6e6Kft0WfWh9+ZiCopuHMdU3DGllzy94Mjr5u47viGVfx2BmklTlZW/XSob3ehKj+fUXW7gtfPv3chie2wqwl9xCVpYU5T/orYw1A2vM+pQdMhL2YQ2HXSvJF69Yh7bPxYrcgtI2+/kJXf9vkAVh8fyQPB/EMjopk1HUnrzVTl9Nn1Jl7FqU9MTp4/YWuE0D9M8ppWRFkvr4I4Gh0+l6SFO8+XL9K7M1lDf3a6y8XXNdKF98s2ElLykZvQtCgstdbt5Rnrx5SbAzeSOqJ/oI9Js9MWF8jvQmBIVHLoMzJZldc0xK73fp55X0amq+/NNoDF72kuMkLLEBl7TqCj2qDmXGUF9RB7YLCM3AAcEL4vzyg7DArAj0LpREP+sn6UtdfunkGLvpOQIwZGTAGc6BGnUWZfcJuY5HSUFsRHEBcZ0wOZ8sPfunrL4H3ZqsVSSJjTvNLymGRTG0vlReZ0zmAjDvXujRBrH5R+Q9l3C+DDXMFigAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle \\frac{\\dot{s} \\tau}{\\sqrt{\\tau^{2}}}$" - ], - "text/plain": [ - "\\dot{s}â‹…\\tau\n", - "────────────\n", - " _______ \n", - " ╱ 2 \n", - " ╲╱ \\tau " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lambda_solved = sp.solve( dot_f, lambda_)[0]\n", - "lambda_solved" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAOCAYAAAASVl2WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAvUlEQVQYGYWR0Q3CMAxEG8QAnQE2gBnYgBVgBPhMfmEUygZlhMIIYQIoG4R3aRIVPsDS9Wyf47NUE0KofsV0LDrnauo78ORLaRN9ctB8kT+Bzz3zz+JjQ3415u8bDoiPNCC7rljgf6WxgW8agFvIxw0UM4pFFjVA7MEwQKLL9aqHTqAhv6gXj6SQ3wp0YAtaerKojLU2rz+roUDcQTp4rg1NKqAhGDgqg70G5K/1JdIGHVks1knVLTXQv4iWb/y6SDi/G9jcAAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle \\dot{s}$" - ], - "text/plain": [ - "\\dot{s}" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_s_pl_.subs(lambda_, lambda_solved)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA10lEQVQoFXVS2w3CMAxsKwZAsEHYgMcElA1gBNiBv/whVmADBCN0A0RH6Aat2CDcBV8VVdSSc/b5HKdJ8xBCJvPeXxG38A98Ab+Dq4FZLiGIN/IL8MkCcAogt0PcFEaegE4i47grmx7MoxB4gFckBvZCvuTuEpYDgVLuSisLOwuTjsuIOe44s6K6U23frNEs8ivHbE5h3/VHpWktz6iRIlO9pvzuERVejchUqOZKZ+SlrlOFxXzGmlOjEMENRAfcS4yYE/hiR3ITLmYr4BkCZ/kGuEUef4ovviBAXcWd104AAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle 0$" - ], - "text/plain": [ - "0" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_tau_.subs(dot_s_pl, dot_s_pl_).subs(lambda_, lambda_solved)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Convex mathematical programming literature]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Can the elastic range expand?" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIMAAAAWCAYAAADjNi+WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAD7klEQVRoBe2a0VHcMBCGD4YCGEqADqCEQAcwqSDQQRie4C1DOoB0kNBBSAUh1wGUQNIB+T6P5LF9uovPls0w8c44K8m63dXur11ZZOPl5WU20dvywNXV1S4WP+a2eiu3wEneKB64RssRoLjPqW0zp7BJ1vAeCFlhNzcQtHzKDMPHL7eGcwR+6ioUEJlVtnksNU8854z9gU9g0AlvhQiaQTyEn3WxOQDhBi4IZvBvsB88B/anMqEX3g5dYKqZoSsdN35ohtkHFGaJ/JkBwb+RK4JNPQ+BP8MllR7yzJlXoNHBif7tAfylT4/hfcCgImNQZAa4MZKKsaxnBgw10Bp9QvtOLZHCYn7R14B3cXzirT1gVrDedyZisNf48X7ou2mzZ4YTZC4AISi0Nu3wHGBURGR4NTxDpynyaJkm3q9dh4NMT/afl8nNMY58N5hZoRnMvuIF12AHyB0MrmUErWXsO0wUCoSYonw1GgW7FmwbzYB+ik75ea+s0FSPP5R3Dy+BnLVMIHzhkwdlN4xbPrwkmcMnqngAn+ibGXzVBdIZ77NlBWQJrm14LRtmBQPCa8GmL/pU7GJWLZYpwxL6P6LBumvKTZHpstwlqQm5xyo2mS2TB+owxw2VpIqMVutivuDbgxdACP1n+DwrGKrWIlwQGACdfFt9N3Yb/THFenD1vGLfLGa7IOaMWr7Q5wk++uWa/iFPasMszQrMX2tdzLdUF2unHT8zBYVnvewHSGXOgiLRfEt71N1WGFD5B/064Ce8PC/QNkXWsljlJ6M00V+ADy4gDJCfjDUw8M4NlcwKvOuyLg/xZhAvm0pCVrEpNi4vL33ppHXoAwKSzmTcNOSB8Y52gbgomL4n75U7kPdZ7Ym6I0e+TryA12yL71OcuQbLdTVJW3d4Umt6aquDeQbcwJu+S1m0Hxlr9fXF3LXXhewabSFEVCTrVW1mi04wSCB4qZRytuivHVqaYnPa05Qd+u/h2tiasCl50cO4qTbHp6VgEwylf5Bt3w1lfNrQ2utqCt1sDnTtY7Q10AzjjlgAF2PuLC+dXpsMYHHJ8tqGRP34xmxgGTulbbaRBIbnmrbUe11ZwBAWEHfbAhDCakyFX9uubIh52Clg3cnJEjeEzjVkxsBbwgysdwCtskKudeX6mjAjWDsX6huGWsu+8JgxWi2OuUORTi5r8lBKusjFN5ZWQWp5MIv65dOWsqyrNxhYgCdTA66T/USCFSdWweFOjGlv5VnBH41AXtwkT+cj6G6jwuygPx/w4zobJ8u6Nqb/A9kmRuk5BMwdmeMAWSpApuXWu4XRM1jvzFCu4v9s1O4FcrgAECz9Y1oO+atk/AVYwWpner+tGgAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle - Z - \\bar{\\tau} + \\sqrt{\\tau^{2}}$" - ], - "text/plain": [ - " _______\n", - " ╱ 2 \n", - "-Z - \\bar{\\tau} + ╲╱ \\tau " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "z = sp.symbols('z')\n", - "K = sp.symbols('K', positive=True )\n", - "Z = sp.symbols('Z')\n", - "f_tau = sp.sqrt(tau**2) - (tau_bar + Z)\n", - "f_tau" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAADMAAAAvCAYAAABOtfLKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADoklEQVRoBe2a31EbMRDG7UwKoAbTgVNCoAMYOjAdhPETvDGkAyghoQOggmTSQVICSQfk+8laje6sO584nZ5OM7L+rVb77bdaYyXLt7e3Rc1yc3Oz0nlnqnelz/1YWuEAfYC4F6jlANkskapgPCsrtc9ZVnph7cMRR6qw+0f1SnP/1LpSFYxOvFK93R2d9+mBwCggFmq/q3lR/cSY8mHX7D4lcKS6UQV50YJuKTxR+/hOxdyzuOCUdWxrGwyUvar+ltBJvLNAfysdMDOmxE628ApzDTCc4j3n4nHMqfFe6YSVM687Xhrc195j1fiurf3mn6ZkD4xfuFdLSGBEiQIrpVMx+hoJoAuMxfVmLBLvEFh5GKvL9ksXQJ7VfrU52iQYCRFmv1QvERpZcEgxVmQb+khUe7b1pWZCjVTI94JLh21QmndJQm0cy22xS60ftydtrLUv6hOGXSFNKDkG1HIed8cB8eNXtTh+0Qfmm9YBxMa9LCQFZgRAQ65XPxQvg45k0box9lkCZCfGt76vxiUk50jJcuHduvqWprHtHDlKH5jVTmQBrQ0wUsaa3YE7jUkWKXY6WZE8xv1Qa/dzoT7h47zsz44bviBhjy/LUCSPE1xZpv7QlIB5gY149lRze8ZqDuV/VbmMp2pD0dhiu3FJg0CrI3nO3KoNnm6JHBzuJQCvFBDn6uN9kLsYbWvTOmvIwAxsxQU2jb14vqt/oYWnrsUh8w0wMogLBp0wYfRxdyxGUzot7kMoai+sPEY6Uvvac5wRvgDbi0PGAYwHgmdgJM5e7gJrLgnIyxL3G/UJOwrAuMiDivbBKlmz674M0uPASAmMAIQL27gb/gDAJUPNn2KGE/OA5g4Zs16kt2FP7MBe4a5FYwZPks+7Ypz11L1wej1gvEp4bVVDyDmBwx98D3Wm8MPbdxLJbDZ0cyznGSFxPKjfx2K8rWjfmBmtVAC4N4SoJYTROnMVFGMm9+Ap5IsxM4VxuTpnMLkeqyU/M1PL07nnLK+vr+u+z+ZamCE/p+YMZ1UVnRNAVXdnHDYzk+GsqqIzM1XdnXHYzEyGs6qK9r1ojjJEvzzt+dZebNr6whtye+G940nACIj9dD74hvxew5P7eJ4tWfWH61r1LNap8VM8nqpfnBmxwpNTeMzTmDfknDe0pNOHTNbIZhcyZNQb8hAgyNQAM/oNeSiYSX/PKMRWMoR/hi/+X0tSAKdmpsgbcsrw1NzUYIq8IacMT839B/4RvLoTtUcqAAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}$" - ], - "text/plain": [ - " _______\n", - " ╱ 2 \n", - "\\lambda⋅╲╱ \\tau \n", - "──────────────────\n", - " \\tau " - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_s_pl_ = lambda_ * f_tau.diff(tau)\n", - "dot_s_pl_" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAsAAAAPCAYAAAAyPTUwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA6ElEQVQoFXWSzRGCMBCFURugBuzACnLADtSjRymBK1dL0Ks3tQN1hgrsQK/eHDvA70EIhJ+dSfZl8+WxEzIpiiJQZFkWkjaMO/qtWjemdQHgh/4yXui4rrezg1UEupLkmmrdDQ+2mwdyzEG15cUQLHfFrkrN3INxVBtPRtJglerBFlArEQej9oEx+Gwhz30Mrh29vnswn17gumfINWTt7tyDLXgBWqOPZP0o14qDrcODzSVakEK9r0rFVMIWvLGWY/td6FYCauWBGVo9CUwoqgUXxphPnudbCnP0Sc56BymgehwK7ev3R39y/EPRn+AqqAAAAABJRU5ErkJggg==\n", - "text/latex": [ - "$\\displaystyle \\lambda$" - ], - "text/plain": [ - "\\lambda" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_z_ = - lambda_ * f_tau.diff(Z)\n", - "dot_z_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\\begin{align}\n", - " \\dot{f} = \n", - " \\frac{\\partial f}{\\partial \\tau} \\dot{\\tau} \n", - "+\n", - " \\frac{\\partial f}{\\partial Z} \\dot{Z}\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAB0AAAAOCAYAAADT0Rc6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAABwUlEQVQ4EZ2U201CQRCGD8YCjCVgB4IdSAcQKlA7kPgEr9gBtKAdSAcmdCBWIKED/L7N2c2eWxAnmTO3f3b2MnN6x+OxyGmxWDxj38Hj0r9F7vBPSjsI7DeUHPOAT+xJ6tWLxgwWcDdb5CD6confgk8y+i6P5TqxK+xv2I2HtS5zQNQJ3pf6JvpySfwRe48c5f42HcwB3hNLG2stCiAu9pEvRLK7foFX6GmRHNOmg73J/V1Fw0kBp5Oi35I4Rc7yBf6jdxW1QGoKCnmdA6Rv+CcC68ZX8DU8wd7ArjtsFC3BxIpwSmy7eQmfc50+gzdinrpF7f4+cnSBUqf4nj8WhF8BrGET4ojUcxq2i8PrMt/ioaDAtqLhPYnZdRaUTJJsopNE3iGC0L1SrznNeWNOATmf3n88ccjHtpPdkG+b3jsEOz7gxDvHqaDQyklLkP7KqOiAzj1t+HnUC7pQpSh2PF0aFUESyfpspjG6zdFJxC3om1ZOiO2vs6h3b2gUgl3X59t4Yt+2dV7J9Q3FLNGVX7CbnMIhpzefz3UYHMImSO/wJ0mxkQp0R8c57cOSJ2/8d8H5twrzjHS+XdsbmmGHG/wFT6Cz1aivRycAAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle K \\dot{z}$" - ], - "text/plain": [ - "Kâ‹…\\dot{z}" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_z = sp.symbols(r'\\dot{z}')\n", - "dot_Z_ = K * dot_z\n", - "dot_Z_" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAAAvCAYAAACv8iXeAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJYklEQVR4Ae2c7ZHUOBCGh60NgOMygAxgLwIgA6iLAMjgKP7xj4IM4CLgIIODCPjIAC4Cls2Aex+tpLJsSZZnPLMznu4qjyy5JbW61R9qe/far1+/VgbHxYHnz5/f1Iq/zb1qjXtt7jH3bbzTfSPI6NkJB15qlvva4B92MtuCJjGFWZAwW5bivcvNdZVF/VC267rwUt91PVXbhcqjAFOYoxBzssinqr1IWhorXlleq0RRVirfqfio6w71Y4CTfVmkmI/Ve7wv9OyaDq39ATzY5rwaH89wT+X7Ned50OuH4t3eNt29Oa+0OvAwWvxfoui+rnueMuJcZ1FU3vBtt1Ui3K/C39i6aAwEieVi3qMErf29rne6CHECv+fmxTMNiIfZBJB7oC+EYt22Tcbe+745hXklql9JaKTPUIjsJlY73uDhTCvErVfH0nwo1X+6vut+YyXdhO4t0vJIdG0lxPE048XWVhj1vdXjG4YT+HxZLP/3JLdEMSZ4l7e5577tH5XB0lTQ6o80F4r3WWV1LD3Hmp3rquLVZ5vn6bZo8eN+UImXnxvwLhzY5wTGs0O/mBC8yljacY5cPhYvzFcVpjZS38JV8bf5cIu0cC7Ak+LpZwHRinfGu8zGP42FsqDcs9E5y2K3PEjWw2hO52HEjK/d+T2TXJPusfjrHh7DGMS+K4115V7DEbQHP56vhJ3By89BFV58Nu8i2hjvusoncxB3SGMMzjCeeGLTxLt4JiUeRW0Ilk0P8xLlamQCWZdknlI/jY/Af/jnKCth3DpzlqZobt8BLfCEM90ob0RLMG413CfCy3oXtRP+Ea7hhXJAyBW9iJ/vlkqnLL5+rvJKZJEjeJttA4XxDGDOG7p/TakLocDQhOl6jrKAc6brN11TgVCMXH4VNM8XITxS6YSi8l/VOfjv3MJtSov6w8e/dWFkSqEohml0beofNjseOpsI8TjIaAB6FrzOXT3ECFF/4e9VpN5f+BhSh6P7kGKGzmrChnGWAgOF0cKCEOMGZbFi0BddSehEXRdnEDI76wAKd17rqPHBIdfftWDMmdBSG2OuZ3PQojEudLGBUfoSwJOSxXd9PC1v/AAvVef9Ss7LZL2LcNn8n1TGsFr3Y5ECcoauxMipH8p2FJBTGLzJSkzoblCaEmHoeX8TgzMV8F5jzHYKpfl+CpfMHO8qElr6k+o5Qp2qxImB6I/p65NpKYwzlobFGGAoiqA1OoOhEqXB6mNEEr7oGWeNkndBvlHGwkWBqrIQzjpRhIZdDuQUBsYljPfLxVU7EOPYkChWZPjlk/l/NRcWGa/HhmADPFad7EzwhINJ6aPGbIgyQJ7QwLh+3mZaJgy/FqqnCaWBL3wt0fW80NnKhz+FW/N6a9G3tE6JwojZzrvkGIdgOot/pvuoQLTrucuceBzOOi35eSw2ypcFjRnCMcIGp8RqI24nBOlvjuwYczW20OJxCFdYE1YfPnCPJ8WDdXmopiKA3934RUT/gLngPwrCmWKluajz9UDrnJxJjuYsAo/WgZNep2C1cx7GoUoAeCA2a1cQbAqXk1c7GZXwUZ7rU/lhU7A5SsA4bIYIfvyVyikbKvbf4GaUFk/TI82BopPFw2iwgT/pmhIi0r/LX1XL4OfFqOBlkAWA8iRGzbVmftSH+ZDp1iOGzPQH1dRXGJf5KDFO7XggBD8QhJ7FDax7FI4zTvBYJaYgoFrIgAcKSuzG0Jh4GDbDrmESLaIzbj7dY0Ra+BHWBE+KRisg9cogk2eaDzliwFqVDvwov964Vu1w4FRMxSKR5nRWhmdqw5qyQQA8ADjhOd+Xxc0AQgEQAH1qQMycPZT6Tlhn3lBTRfjQQWYuZnZ4sCPYlBboH+NHWMqZbvBUzYBMvFwIxTBUpIpbgdCxJofWcRaPh8IgyG3ErmyOqtXS3FjBla7seUTt9I8vza5SGjPQ4pR9bA2aB7yx9G5pGLwMxo5wELk2gXAxBgcPWgfRxx+6XKSkEsOOgU32t+rwqIvTkiFVl9XqxP3O8CMiovXUPVYOi9cSVoSU6AxU7M8QPX4gyFZ+kFBZy9przpAcSc59+8OV7VKi9fOVfVAO+H2nU+9O/lYV9iZfLIAziJjUhtH6qYuX5hGubfpPMDQgSQBSkt/8qFjI39XefM4QLqEZL9iqHsmPv9eF5wdMDlbbZcrU7uoq4Q8hMBaOLFYQ8Mo/+6iydq5TN4MSB8Q7wlH2E8oz2INqw5ifqxwN64XDnkbxooxO1bARaDC0c6ChEweFINxkcsCfOMZeoYsv4S18QpfaCZWiAJKHlzwoPeuhWrXAgbCHUJoI4juGynlv3TcZZuFh7BKYLSRLRp1Y8ZsID4P2HyX4tS/Cy16xAPEwK/EzHgd0TxRE9pA0f5OylNawcUhWGvgY2yUMznGcPxDaG9VDWHaM7LiSNYvn4S+FXVirOkaYc0qzLISL/JAjGeKHqpOcQunOTGHEBYNlcMBv9Hh+Ud19FaLVkSkbhFe5VQuP0I3jARf3oR+Z3Pt7EZKJKAPjwBwcCOeXHyiLLl5JcJZks4c08ug8KIYuIgT6k3F0ykJH3sPgwgyMAxtzQHup+q9i9RyLPeUTIWhqfkciXHd+UclHsiHpwoYnLOPA35IZuxCeA41BGEb/mIixkOySN/a7AA5og2P8OW8ET+NWpTphGsqUfefikHo/6gM+SZioLKBYSNZjlFUPkwN+g0N8kk72q8FLAHiZUdBYhG8DZaGjKcwo+wzhQDgQvEpMJwe6pQC0kU7mu0TCwiJ4ZeEMk3gW1UkCrE6LPe2BceCwOOAO9drYpZfopInxNHiZwRcALFV9w5mFv7cClzf9KBhfsrg+doYRJwwOkwPa1GxmNvaZLjY7wMGe/1UQP9rVPell3sPwngzA4wxeEguPf1ccPmEiUcDYeCZeeDrPZQojbhgYB1o5YGeYVk4ZnnFAHDCFsW1gHJjAAVOYCcwyVOOAKYztAePABA5YWrnALJ9ZIQVZytuTOYmZmMIw1rwwDpjCZAQqRSCdCNzVdaGL+gt/r8Ll7Df6uwo3iP0cHAdMYXoik7KQz5/6P4d7o1h1qRwwhelJVgqT/Mm1VyC8jIFxwNLKDXuAzyJyH/Q1dDWUpXHAsmTjEuUbpc/jaIZxDBywT2MqUlY4dlOPv6ms/mFUZQh7tDAOmIepCxTvYtmwOo+O6qkpTF3c/AMEPgs3MA44DvwPX6KA2oOXQtgAAAAASUVORK5CYII=\n", - "text/latex": [ - "$\\displaystyle \\frac{E_\\mathrm{b} \\left(\\dot{s} - \\dot{s}_\\mathrm{pl}\\right) \\sqrt{\\tau^{2}}}{\\tau} - K \\dot{z}$" - ], - "text/plain": [ - " _______ \n", - " ╱ 2 \n", - "E_\\mathrm{b}â‹…(\\dot{s} - \\dot{s}_\\mathrm{pl})⋅╲╱ \\tau \n", - "─────────────────────────────────────────────────────── - Kâ‹…\\dot{z}\n", - " \\tau " - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_f = f_tau.diff(tau) * dot_tau_ + f_tau.diff(Z) * dot_Z_\n", - "dot_f" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAA8CAYAAABl7VY7AAAACXBIWXMAAA7EAAAOxAGVKw4bAAANAklEQVR4Ae2d7ZUctRKGx3s2AGMiuEsGfETAkgHgCDAZwOGX/c/HZGAcwQUygBuBDRmYGwHGGZj30ah6W93qaWmme6yZKZ3T22p9lKpfValKHz177927d5tWw5MnTx7Bm+4/tcrjKfElHO+L3xe6f3VKfDuvdwhc3UXbikmovhNH37qyLtcvwvKtqD3X/Y/lqDqlYyJwr0ULK4G6FQi/6PpPFLJjYtJEW3pvBqxnSzAjWvf6dCLtz3R3S9sH5gTizSmshAi37f+6Plf8zxPAcHEW9d4MWF/o/v3ixCNB0cbKYm19urEWyCvQvV6B5qEkX4jA7xKki1TWCB6KWmz9hNXHKv8w1iXOVOKv+Dx1g/4fKvezLlxlDyeAQFMKGwXvS+H20Qlg17EovvEKcOHfKl6saB2BXkT1ef/fdK9Romcq/wVkdEdhf9O1E0OV+0vX7yrHAHkQz6pfFNTejQq+LipcUUh0E5e/ourJFW1KYYUewvMrwnRKSIpfU9R/FL/VhSLsG7COQfkqCDzolQU7FKMkPFUhrOx9XTUDRAntXBnm5Lj6h+CTo3sxac0orDoRIcM6HGW0X7qHEXhdv4rut7r2EkjVZxsLS10VVO+TXoVbxYsGPNX7k0vlaffHHo3Fo2qH/r3RvRob1UHR8WKgwbt9r7RjDDBqqq1w1RA7zNsQoCJha4jvPivP9fCl3gHh2id8pbp7LwLFdn9QwzUWGp6ps3agf7HoVUHvhLKyOGaeB97E/6qInFHhZiysMP1aV3WHttQXEioWyxhwshZLecGL0B1LnASlsY2D8iQh1mFOSt1h6NxLlWOQYErB6nqN9cHi4RIf6soPeeueI2/Qx/uoDczp+7ggI7jxWOtTHtxrcQjlRworEBAcRmhcKwIdasDYXAnXFQHCIvbdMSXVB8BXLQSu2l2qb231GuYWJy6m3hE8wfU7xT/Q1SmV4rw7ypezjFgm0t/oyp5SivWxRN/o2uiZRSjqzQaVY/EJXmhjLfyx4EX8TDCMfJgMGm79tIlq55ecU1gE7Ud1ImcWUcicEG2UjhVZar4ZBgfRLN7KUVmEnP1aBO7gQUN0Dg7iAyEKl+If6+reR3GUAQvMuw4FePgceFFZLF9nlXgOGeM/7KnSLn1CQLhrFATeQh9QeckQeWaaUMNPx4LqDVe7MRaEV9vbZf0dKSyvL5Cs8/67A46flbeUokDHRtAdTd5liUcWebA6VfXuKCwbEy8IUtheUZyFI5QwN6AhuGzbPNXFO5iCd8qt/BDI78Xpk1EZ8lVuKNRWrfT+UgVxPdcI4ID1XypAyxedBmiaVZ1zkZbaU0MYqxUPQdWVU4rB66z7KB5QVpTUeHmueFYBVBZMUTwT4iCAep4L0F4K72FbAXvxxuCxWBA9PAKs694LaX1mRAes8FKS6Ua/zLnHryZeMFhYAZOM6BGwUEVxRv/R4skEvblkBKVaYeeIHiNfOKCsrFqywhssou4oJa66uahDVrCyj5RvOJe8O2XXcgOtfXM3h/zu+8z728C0L41QL2KZTBEOIniila8n+KbjEusaAUtGeKUhlCgbQCbKPUF3V3JCe1dB8tQegvB3LIeivFqAh0iu6hZOCmXaNss5si4qa0cvWf0tdmczbVQxuqOwKeyDHWWSLPFig00iJ0mh7RHJ7PupPoubuMtY4VzA7Q2WNLaFNxXm8/H5je6Hylyu3abTRgobwYDpB4rj2tGJdA7AJuArH2WlzKe6PtBVHUTDOgylKwqqwyLLN7qHDtMdwWce3C3QFBFaoJDazs7jlY6ijpS11yQrurcqZ8rSyxpHVS7Bflxi/xTRZi4NAeuLncRU1pQN3qfeP7tNBWHVN6v7uR7pd57ZrulkQGUCLrpjPEK+4jbNoJ9t+qHo5YSRwurVbf7aKQRwCCz2vhLh4lkX7h0u4b6heFSnAbXHIJGswOoZHhLe9Nx00Hsw2LRmIT6cAy3ibwMRi2wMOjkry0GH0SCjNBTwpe7ddErxXR4assVAkpwAU51Oued4Pqf8nMJiTTcCZChMSacof6g0++JCZxDebG+zf0M5tf+PSrJS/YviCW9DCsqnjdpBJRmwhjR5Ft12f64jMiweaw7GW1/kXjekiZ5ZPpTW3P4Ef5Vh7ornNQrKQ6462dIzCjypfMrfy3MbNXwmCTmFBcCkA+K74rKEIBDpWBS7A36bs/5ftY37hhcQFm50f6Rn5oTmGYyYoI4Ss67bqHBFgujWKEMF5faLgqkulBb8h6eO6JtSvB+qLFMaDwUIJAor4IN1Vb0RgHRQjx6LBZ0Ck658RlUUmYArVLpXZnRnXWO1Ye4w7lQYVJTGXAnXbCg0SvZQgoCws36zviipRhksLP2OgjKv3IgWz3xxVUqLeelFzkfBqzZcDSqYlcpZ2FBUHYEFRjn6HUKHh/0xpbOyx3yj1AUNLq7KQ2MuQBch6UJsb6P7Sc1huxdoI2KD5esadiLmDJ5YWes/lDcZzKdoqg4DMLJ0dE9tiqfW04cKG1bhpgBUOhYYRRx1iPI6hVEchWeOaxZ7EgeVMcWfXfAQEZTbBpVAU/WxsAiJh/0RMGWzwbOGksnCD+oL5IeB2/p0jg7lO7mZK+z5m821wKWzXugKox2gKA1LZp3H6EsZy+d8ccmISEdQpyTQwSVlcbs4OQNN6sAXK9XdiiMZHqoRMAsLplUBWYjygCvMAM1WTWlg6pRdnColcGnlUFg6aY05BApYOnq+UtlZhRWv0DurY2l6J96bNYPc+/MFz+T0RHWWCtY2/bBPwMoyyHN4pVjpVZYB2EMFAtcVZXcWRfB0BQXVndGWkbdU2LDY1LnEgDuPm49Hk/187gigYOlY9S1Wtj5PqsciE32drC/0y3h8GQSWUlis3q06Da7u6/pQ8dJlfeq81MV3omyg7yU0EDm1EN+3szI8v6d3wJUtHVyzLIr3ZG0hW8gTD0bgYIVVR2EdS+a0u5g1YflahewUza7yZ5En7LrBSXGU5lAcq3FRuwwSrPz7XLIaveNXuDp+k+MWo+CitJc8Sq/5+dwY9LsUBgqCDZrbJ//bJAJNKGxEhkULE54mwVqZKd5930WfQ1hjkGS9oXSB8JC2vO6BCLSksJwLZg4b9oIPfK+TrK53P7pLLKCYhrDK6+E9I6D+R/4f6bqZYqWp/60jRjkE8VD3mgWrqXfz9BkEIt4cePAD9jNY7cqOOH6mMmZsGHg5H5Bsl+oZL7JfZvSBicqQT7nsll5TCismN2KYr3Au9h9hgcGxQsSaM98Xs9C3JrbC0X64MGtwlI8ysivAp4eTUxDlcUQUhR+t6bTkEhuW7Ety8srDighIGPBmEApX1gVwFo62/pJdvFN+OGegO5ZzUlkjK6zYs0062uZrTmHFJAL0RncEysMKCAhb5kh8cZW4bCs0dUkkzRomX7qhdLo4UMIZ69IjtFZudJioOYWNPYwg4TawP+hhQQQQIJFDqJg/zY30C7Z89qSChRWmnYWN8ssaAdOOYqxjWebB3aEaQ69JhRXDHChgxOLXJLAGHpZDgAUNvh+2UXw5ypdNCePSrfILX6wjRmffL8lwiznum8h/kwpLv4tRRiSUduTHk++hHgFhCpYoq89b6+GbrCE8k/mrnpnOhXnoZKX5DLY5CYmVbW6VeMuj/3UETgcBKShzVJQ0WFM9869uUFisLL9XXe3NqA4Wm18Hfat4t+12rQQPjsBZIyCBx7Mo/QUUw2K0R2oZmbtZWJTLvBeUGIVlca9KYaOyUh/ryr/aZMU4zI3vPX78uPlf/hPTHhyBSQQkzO/1x/DUPjo0+iFApbO4hzJ/ong3v518EWWoHJaVdQbqMABwLgHaYUX/WpH3+rJixoMjcLIISH/MuibbOfGFsJLkY2Vnt9AirU5ZIw3mst32TrOLTpFZvzkCrSNg+6/ddo4xLAUkjcVTftZo5+JpVFaUnjlvfwuIufBGaeFIoyssaHhwBPZHICiSFGrK5Q0KJ/JY2WxQXawwyso2UKL4kS4KHFaLfZU4C6EnOgLTCEiJwvaYSnyqyw73sLDEvyDh11dCUJyVYxTtZpuyQRlH54hVDmXlfwZ3dWP5cFM6gwKu8keusH1kPO4INI6Au8SNd5Cz5wj0EXCF7aPhcUegcQRcYRvvIGfPEegj4ArbR8PjjkDjCLjCNt5Bzp4j0Efguv/g8WUQiMv57LtNbZbzfWR2CX8ZDpzKuSLgCrtwz0oROY5G4J9CvdXF89MY1y2cWumfZAlp/scRKEHAFbYEpcIyUlY20dk8777OUJyfCJk6BVNI2Ys5AlsEXGEXlISomJ1y6hkFxsp6cAQWQcAXnRaBcZLIQ+XkvuKYrOAZjsAuBFxhd6FzeB5nQF8dTsYpOAJbBPws8UqSIHf4RqRf6+7fG6+E8SWSdQu7Xq9jXX01eD18L5KyK+x63c5/NbdvIddrxSlfFAL/AvkQVVxH238/AAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle \\frac{E_\\mathrm{b} \\left(\\dot{s} - \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}\\right) \\sqrt{\\tau^{2}}}{\\tau} - K \\lambda$" - ], - "text/plain": [ - " ⎛ _______⎞ \n", - " ⎜ ╱ 2 ⎟ _______ \n", - " ⎜ \\lambda⋅╲╱ \\tau ⎟ ╱ 2 \n", - "E_\\mathrm{b}⋅⎜\\dot{s} - ──────────────────⎟⋅╲╱ \\tau \n", - " ⎠\\tau ⎠\n", - "────────────────────────────────────────────────────── - Kâ‹…\\lambda\n", - " \\tau " - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dot_f_lambda = dot_f.subs(dot_s_pl, dot_s_pl_).subs(dot_z, dot_z_)\n", - "dot_f_lambda" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "lambda_solved = sp.solve(dot_f_lambda, lambda_)[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEcAAAAuCAYAAAB6SwSNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFx0lEQVRoBe2a63FUNxSA14wLIE4HpgMgHZgOYFJBkg5g+GX/y4QOSCogpANIBQE6CKkAxx2Q71MkjXQfWt3Lru1k9sxopSudt46O9kr36PPnz5slcHFx8RT8R5SzSPeW+mNsn8T6PvUp5QP4D2LfoirK+Qaix5HwA/VH+p+UjHh+PcD5jj5xvxiOljonSUQBvTprPOPfM/6EWkeuhg45Ou8HC7hpkip59N+l4y+Kzu2erDsVl84HBKSoedUg+VVlGuNbhwo5RucIGHcCNtSPKLOyGLsC7ZIyiyOfIRwPOzqfUzRMKl3w+LNor2kmOW9KYow1Ep5TXracMqC5Vz73tFdFDoxD5KBYtbZ5/ikJpe1s/ZaeV9ZJTp4E+JrPnlM/oyyKhKU6rI0cFcwKKxRFDfEqUlSeYmK+S105UpoOUE6mizIeUJtjugF8J+1TJHDS3vXos9g5MA2ziYAT2i+tKfYZ6lXoMq5jxHlI+YrSDYWcMAk8u0tq5KJoge49NHkH49klalLe6uA1yyrlAQW6Q7gjabg7V6V4fH7G2BpIcj7B5ynlBUx+ppzSTtt7ky94Ts596hx9PKtPl06LIwfGIXIGAukeLbOhUuIsgRShV8jSKYKR4/I1Gffks0vwNtD/TeXu+Zp2lQ4cn4M1kTPKN5H5j0kICrjEknGpe2kd5MArOWZD28jUOB3veBPAMb8Yge8oOvUNfdXOR98sLIocGCeDRwKiIkmQM5udZSfjKqfTBHOTu43Kj4D+WTkgGz2OK6P6t8xzBnikJWWEVXnLMUqVAjJh0VgaOSkPzIYmQp1RhZeG65S39L2w0PYv/++UOZiVA72yNewx7eTsKT7K0JEZouwN9VbHSLTUOSERwrxMcKVwZ1Sjq6gRoVSIdloaKUJEKaEpB0R3QMHomQPzTXJywEGuO15XMpbgOFA1fmDo7PxCMUwtG/qclZDsqE8o4qRxd61J54FTgrMX+NkJjTycabf9Us4fjBltAWhrYNqG3cWM1Kn3KnGMLqrNFUX+/u/qSeTSbFa/eAbqjp+o/HvqoxKdZ19cfSeaXaIl/k2071yXUJxQRonJ2Qi7tY7RL1uX1Y6c57I4wxmyM7y/pt19dCDRTcDel9VNGLUrmde2rHal8HXyOTin4e2Dcw7OaXigMXR0fn6+7Pqhwez/NnTYrRozesg5B+c0PNAYOkTOwTkNDzSGRu9WvPNcy114Q6edDUVbVt+3z+5WML6Wu/CdeaLBqMMWD9c8/6nOhUaRowyYnVkDr/6tJn89zd/bmzU6qLDHrfmga1KLLZ2FLZPHI4x7fHJJXZ0aynbSOfQnxEmGEkaobjhT5y2rky3VpQDO8OjEY9bZ+/a53SpEDgyq406e84E1bY8eu48cb9BhyZY80eju0erW+/a5yJE4M9MwGBp+VaTQ13WKL/0NgrbkSY52dN23j5wDcfA0DLfehWsw+KdUaz8UkMXeoLAlTDTPi+7bp5ZVWqM9d+E6xmuS1h3U3ozvYJxsWXXfPoocBIbIwcs5FKMSw2UW7sLB8x5otXOgN4+laI2iQmXCNHq/LTtje/Rt4ASOXYnvqvv2KeeM8k0UnC/qUFjFFTx0YETtr6JzRwT072IrD7bAq7pv59mJPqMOEzwSHjuqZQVy8nS17YnLmLtTArfALDB13qa6ZQt6pl23dWO6GUZOWqPVEiqNRqizMbwL13ndHwqU/PbYnrUFXb23z/fttMuJzypVkUOvobwBeXK50G9kmV/yEhMfcJkt+VAgEO35p2kLst1IhNno8ZhUw9JduFEh+OfuMrSm78LzawMOk2bn173wXZxzoNEWl8xDSmnL3H27u63gSqneq+w8hqEhNfudi0grofpQYCWPRWTRFl8gmwCe72tb39mGOafJdOGgs/Il/6Bn895CPVajzx5Z9HJkFsKyAv8e7eAMapOzYZqXXy+/24S3q8gxRM9whra57v8THwqobAv+ARqOWugtM2w2AAAAAElFTkSuQmCC\n", - "text/latex": [ - "$\\displaystyle \\frac{E_\\mathrm{b} K \\dot{s}}{E_\\mathrm{b} + K}$" - ], - "text/plain": [ - "E_\\mathrm{b}â‹…Kâ‹…\\dot{s}\n", - "──────────────────────\n", - " E_\\mathrm{b} + K " - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sp.simplify(dot_tau_.subs(dot_s_pl, dot_s_pl_).subs(lambda_, lambda_solved))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Construct the bond slip model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Given an increment of slip, calculate the corresponding amount of stress \n", - "regarding the current state of the material" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now solve this problem numerically\n", - "\\begin{align}\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": true, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/bmcs_course/4_3_BS_EP_SH_IK.ipynb b/bmcs_course/4_3_BS_EP_SH_IK.ipynb deleted file mode 100644 index 92ad5d5..0000000 --- a/bmcs_course/4_3_BS_EP_SH_IK.ipynb +++ /dev/null @@ -1,1123 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Bond-slip elasto-plstic model with isotropic and kinematic hardening \n", - "This notebook is a work in progress on an abstract and general implementation of time integration algorithm for general damage-plasticity modes. It serves for the development of a package that can be configured by specifying the ingredients of thermodynamically based model\n", - "\n", - " - Vector of state variables $\\boldsymbol{\\mathcal{E}}$\n", - " - Vector of streses $\\boldsymbol{\\mathcal{S}}$\n", - " - Yield condition $f(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", - " - Flow potential $\\varphi(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", - "\n", - "as symbolic equations using the sympy package. The time-stepping algorithm gets generated automatically within the thermodynamically framework. The derived evolution equations and return-mapping to the yield surface is performed using Newton-Raphson scheme. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "outputs": [], - "source": [ - "%matplotlib notebook\n", - "import sympy as sp\n", - "sp.init_printing()\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Material parameters" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "E_b = sp.Symbol('E_b', real=True, nonnegative=True)\n", - "gamma = sp.Symbol('gamma', real=True, nonnegative=True)\n", - "K = sp.Symbol('K', real=True)\n", - "tau_bar = sp.Symbol(r'\\bar{\\tau}', real=True, nonnegative=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "py_vars = ('E_b', 'gamma', 'K', 'tau_bar')\n", - "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", - "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## State variables" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "s = sp.Symbol('s', real=True)\n", - "s_pi = sp.Symbol(r's_pi', real=True)\n", - "alpha = sp.Symbol('alpha', real=True)\n", - "z = sp.Symbol('z', real=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "Eps = sp.Matrix([s_pi, z, alpha])\n", - "Eps.T" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Thermodynamic forces" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "tau = sp.Symbol('tau', real=True)\n", - "X = sp.Symbol('X', real=True)\n", - "Z = sp.Symbol('Z', real=True, nonnegative=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "Sig = sp.Matrix([tau, Z, X])\n", - "Sig.T" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Sig_Eps = sp.Matrix([[E_b * (s - s_pi), K * z, alpha * gamma]]).T\n", - "Sig_Eps" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable code for** $\\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "get_Sig = sp.lambdify(\n", - " (s, Eps) + sp_vars, Sig_Eps.T, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "To derive the time stepping procedure we will need also the matrix of derivatives of the generalized stresses $\\boldsymbol{\\mathcal{S}}$ with respect to the kinematic variables $\\boldsymbol{\\mathcal{E}}$ \n", - "\\begin{align}\n", - " \\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "dSig_dEps = sp.Matrix([Sig_Eps.T.diff(eps) for eps in Eps]).T\n", - "dSig_dEps" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable Python code generation** $\\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_dSig_dEps = sp.lambdify(\n", - " (s, Eps) + sp_vars, dSig_dEps, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Threshold function" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "To keep the framework general for different stress norms and hardening definitions let us first introduce a general function for effective stress. Note that the observable stress $\\tau$ is identical with the plastic stress $\\tau_\\pi$ due to the performed sign switch in the definition of the thermodynamic forces." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "f_Sig = sp.sqrt((tau - X)*(tau - X)) - (tau_bar + Z)\n", - "f_Sig" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable code generation** $f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S}})$\n", - "\n", - "Note that this is a function of both the forces and kinematic state variables" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_f_Sig = sp.lambdify(\n", - " (Eps, Sig) + sp_vars, f_Sig, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "The derivative of $f$ required for time-stepping $\\partial_\\boldsymbol{\\mathcal{S}} f$ is obtained as" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "df_dSig = f_Sig.diff(Sig)\n", - "sp.simplify(df_dSig).T" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "**Executable code generation** $\\partial_\\boldsymbol{\\mathcal{S}}f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S})}$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "get_df_dSig = sp.lambdify(\n", - " (Eps, Sig) + sp_vars, df_dSig, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Flow direction\n", - "Evolution equations have the form\n", - "\\begin{align}\n", - " \\dot{\\boldsymbol{\\mathcal{E}}} = \\lambda \\, \\boldsymbol{\\Phi}\n", - "\\end{align}\n", - "with the vector $\\Phi$ representing the flow direction within \n", - "the stress space. Assuming the normality condition, i.e. that \n", - "the flow direction coincides with the vector normal to the \n", - "yield condition we can write\n", - "\\begin{align}\n", - " \\boldsymbol{\\Phi} = \\boldsymbol{\\Upsilon} \\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", - "\\end{align}\n", - "The sign matrix $\\boldsymbol{\\Upsilon}$ is used to direct all the derivatives in the outward direction from the elastic range." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Sig_signs = sp.diag(-1,1,1)\n", - "Phi = -Sig_signs * df_dSig\n", - "Phi" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "get_Phi = sp.lambdify(\n", - " (Eps, Sig) + sp_vars, Phi, 'numpy'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Time integration scheme" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "source": [ - "## Summary of the backward Euler scheme\n", - "The derived expressions can be now plugged-in into a generic return mapping algorithm that efficiently identifies a state that satisfies the discrete consistency condition. The general structure of an implicit integration scheme reads\n", - "\\begin{align}\n", - "\\boldsymbol{\\mathcal{E}}_{n+1} &= \\boldsymbol{\\mathcal{E}}_{n} + \n", - "\\lambda_\\Delta \\, \\boldsymbol{\\Phi}_{n+1} \\\\\n", - "f(\\boldsymbol{\\mathcal{E}}_{n+1}; \\lambda_\\Delta) &= 0\n", - "\\end{align}\n", - "To reach an admissible state let us linearize the threshold function at an intermediate state $k$ as\n", - "\\begin{align}\n", - "f(\\boldsymbol{\\mathcal{E}}^{(k)}; \\lambda_\\Delta^{(k)} )\n", - "& \\approx\n", - "f^{(k)} \n", - " + \n", - "\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", - "\\Delta \\lambda\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "Thus, by rewriting the linearized equation as a recurrence formula, the iteration algorithm is obtained\n", - "\\begin{align}\n", - "&\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", - "\\Delta \\lambda =\n", - "- f ^{(k)}\n", - "\\\\\n", - "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", - "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \n", - "\\boldsymbol{\\mathcal{E}}^{(k)} + \n", - " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", - " \\\\\n", - "&k = k + 1\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "To define a generic return mapping we need to construct the derivatives of the flow rule $f$ with respect to $\\lambda$. The dependency of $f$ on $\\lambda$ is intermediated via the stresses $\\boldsymbol{\\mathcal{S}}$ and state variables $\\boldsymbol{\\mathcal{E}}$\n", - "\\begin{align}\n", - "f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda))).\n", - "\\end{align}\n", - "To correctly resolve the dependencies in the derivative $\\frac{\\partial f}{\\partial_\\lambda}$, we need to apply rules for chaining of derivatives. Let us start with the derivative with respect to $\\boldsymbol{\\mathcal{E}}$ in the form\n", - "\\begin{align}\n", - "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}))}{\\partial \\boldsymbol{\\mathcal{E}}}\n", - " &=\n", - "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}})}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", - "\\frac{\\partial \\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}})}{\\partial \\boldsymbol{\\mathcal{E}}}.\n", - "\\end{align}\n", - "By expanding the derivatives of $\\boldsymbol{\\mathcal{E}}$ with respect to $\\lambda_\\Delta$ that will be abbreviate in index position as $\\lambda$ for brevity we obtain\n", - "\\begin{align}\n", - "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda)))}{\\partial \\lambda}\n", - " &=\n", - "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", - "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", - "\\frac{\\partial \\boldsymbol{\\mathcal{E}}}{\\partial \\lambda}.\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "The last term $\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{ \\partial \\lambda}$ can be obtained from the evolution equations\n", - "\\begin{align}\n", - "\\boldsymbol{\\mathcal{E}} = \\lambda \\, \\boldsymbol{\\Phi} \\; \\implies\n", - "\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{\\partial \\lambda} = \n", - " \\boldsymbol{\\Phi}\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "**Summarizing**: the algorithm can be written in a compact way as follows:\n", - "\\begin{align}\n", - "&\n", - "\\left(\n", - "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", - "^{(k)} \\, \n", - "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", - "^{(k)} \\, \n", - "\\boldsymbol{\\Phi}^{(k)}\n", - "\\right)\n", - "\\Delta \\lambda = -\n", - "f^{(k)}\\\\\n", - "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", - "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \\boldsymbol{\\mathcal{E}}^{(k)} + \n", - " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", - " \\\\\n", - "&k = k + 1\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Implementation concept\n", - "The gradient operators needed for the time-stepping scheme have been derived above and are now available for the implementation of the numerical algorithm both in `Python` and `C89` languages\n", - "\n", - "<table style=\"width:50%\">\n", - "<tr>\n", - "<th>Symbol</th>\n", - "<th>Python</th>\n", - "<th>C89</th>\n", - "</tr>\n", - "<tr>\n", - "<td>$\\mathcal{S}(\\boldsymbol{\\mathcal{E}}) $ \n", - "</td>\n", - "<td>get_Sig</td>\n", - "<td>get_Sig_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>$ f(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$</td>\n", - "<td>get_f</td>\n", - "<td>get_f_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>\n", - "$\\displaystyle{\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$\n", - " </td>\n", - "<td>get_df_dSig</td>\n", - "<td>get_df_dSig_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>\n", - "$\\displaystyle{\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}}(\\boldsymbol{\\mathcal{E}})$</td>\n", - "<td>get_dSig_dEps</td>\n", - "<td>get_dSig_dEps_C</td>\n", - "</tr>\n", - "<tr>\n", - "<td>$\\boldsymbol{\\Phi}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}}) $</td>\n", - "<td>get_Phi</td>\n", - "<td>get_Phi_C</td>\n", - "</tr>\n", - "</table>" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "To avoid repeated calculation of the same expressions, let us put the evaluation of $f$ and $\\frac{\\partial f}{\\partial \\lambda}$ into a single procedure. Indeed, the iteration loop can be constructed in such a way that the predictor $\\frac{\\partial f}{\\partial \\lambda}$ for the next step is calculated along with the residuum $f$. In case that the residuum is below the required tolerance, the overhead for an extra calculated derivative is negligible or, with some care, it can be even reused in the next time step. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "def get_f_df(s_n1, Eps_k, *margs):\n", - " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", - " f_k = np.array([get_f_Sig(Eps_k, Sig_k, *margs)])\n", - " df_dSig_k = get_df_dSig(Eps_k, Sig_k, *margs)\n", - " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", - " dSig_dEps_k = get_dSig_dEps(s_n1, Eps_k, *margs)\n", - " df_dSigEps_k = np.einsum(\n", - " 'ik,ji->jk', df_dSig_k, dSig_dEps_k)\n", - " dEps_dlambda_k = Phi_k\n", - " df_dlambda = np.einsum(\n", - " 'ki,kj->ij', df_dSigEps_k, dEps_dlambda_k)\n", - " df_k = df_dlambda\n", - " return f_k, df_k, Sig_k" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "The update of state variables $\\boldsymbol{\\mathcal{E}}^{(k+1)}$ for an newly obtained $\\lambda_\\Delta^{(k+1)}$ is performed using the evolution equations. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "def get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs):\n", - " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", - " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", - " Eps_k1 = Eps_n + lam_k * Phi_k[:,0]\n", - " return Eps_k1" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "The double loop over the time increments and over the return mapping iteration. The inner loop represents the material point level in a standard finite element calculation. The input is the maximum slip value, the number of time steps, the maximum number of iterations and a load function which can define cyclic loading as shown below. The procedure returns the record of $\\boldsymbol{\\mathcal{E}}(t)$ and $\\boldsymbol{\\mathcal{S}}(t)$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "def get_response(margs, s_max=3, n_steps = 10, k_max=20, get_load_fn=lambda t: t):\n", - " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", - " Eps_k = np.copy(Eps_n)\n", - " Sig_record, Eps_record, iter_record = [], [], []\n", - " t_arr = np.linspace(0,1,n_steps+1)\n", - " s_t = s_max * get_load_fn(t_arr) + 1e-9\n", - " for s_n1 in s_t:\n", - " lam_k = 0\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " f_k_trial = f_k[-1]\n", - " k = 0\n", - " while k < k_max:\n", - " if f_k_trial < 0 or f_k_norm < 1e-8:\n", - " Eps_n[...] = Eps_k[...]\n", - " Sig_record.append(Sig_k)\n", - " Eps_record.append(np.copy(Eps_k))\n", - " iter_record.append(k+1)\n", - " break\n", - " dlam = np.linalg.solve(df_k, -f_k)\n", - " lam_k += dlam\n", - " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " k += 1\n", - " else:\n", - " print('no convergence')\n", - " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", - " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", - " iter_arr = np.array(iter_record,dtype=np.int_)\n", - " return t_arr, s_t, Eps_arr, Sig_arr, iter_arr" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Support functions\n", - "To run some examples, let us define some infrastructure including a more complex loading history and postprocessing" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Loading history\n", - "This implementation uses the symbolic machinery which is not necessary a simpler data point based implementation with `numpy.interp1d` would be better ... later " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "t, theta = sp.symbols(r't, \\theta')\n", - "n_cycles = 5\n", - "A = 2\n", - "ups = np.array([((theta-2*cycle)*A+(1-A), theta-2*cycle<=1) \n", - " for cycle in range(n_cycles)])\n", - "downs = np.array([((1-(theta-(2*cycle+1)))*A+(1-A),(theta-(2*cycle+1))<=1) \n", - " for cycle in range(n_cycles)])\n", - "ups[0,0] = theta\n", - "updowns = np.einsum('ijk->jik',np.array([ups, downs])).reshape(-1,2)\n", - "load_fn = sp.Piecewise(*updowns).subs(theta,t*n_cycles)\n", - "get_load_fn = sp.lambdify(t, load_fn,'numpy')\n", - "t_arr = np.linspace(0,1,600)\n", - "plt.plot(t_arr, get_load_fn(t_arr));" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Plotting functions\n", - "To simplify postprocessing examples, here are two aggregate plotting functions, one for the state and force variables, the other one for the evaluation of energies" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "def plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33):\n", - " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", - " s_pi_, z_, alpha_ = Eps_arr.T\n", - " sig_pi_, Z_, X_ = Sig_arr.T\n", - " n_step = len(s_pi_)\n", - " ax1.plot(s_t, sig_pi_, color='black', \n", - " label='n_steps = %g' % n_step)\n", - " ax1.set_xlabel('$s$'); ax1.set_ylabel(r'$\\tau$')\n", - " ax1.legend()\n", - " if ax11:\n", - " ax11.plot(s_t, iter_arr, '-.')\n", - " ax2.plot(t_arr, z_, color='green', \n", - " label='n_steps = %g' % n_step)\n", - " ax2.set_xlabel('$t$'); ax2.set_ylabel(r'$z$')\n", - " if ax22:\n", - " ax22.plot(t_arr, Z_, '-.', color='green')\n", - " ax22.set_ylabel(r'$Z$')\n", - " ax3.plot(t_arr, alpha_, color='blue', \n", - " label='n_steps = %g' % n_step)\n", - " ax3.set_xlabel('$t$'); ax3.set_ylabel(r'$\\alpha$')\n", - " if ax33:\n", - " ax33.plot(t_arr, X_, '-.', color='blue')\n", - " ax33.set_ylabel(r'$X$')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "from scipy.integrate import cumtrapz\n", - "def plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr):\n", - " W_arr = cumtrapz(Sig_arr[:,0], s_t, initial=0)\n", - " U_arr = Sig_arr[:,0] * (s_t-Eps_arr[:,0]) / 2.0\n", - " G_arr = W_arr - U_arr\n", - " ax.plot(t_arr, W_arr, lw=2, color='black', label=r'$W$')\n", - " ax.plot(t_arr, G_arr, color='black', label=r'$G$')\n", - " ax.fill_between(t_arr, W_arr, G_arr, color='green', alpha=0.2)\n", - " ax.set_xlabel('$s$'); ax3.set_ylabel(r'$E$')\n", - " ax.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "def plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr): \n", - " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", - " E_i = cumtrapz(Sig_arr, Eps_arr, initial=0, axis=0)\n", - " c = 'black'\n", - " ax.plot(t_arr, E_i[:,0], '-.', lw=1, color=c)\n", - " ax.fill_between(t_arr, E_i[:,0], 0, color=c, alpha=0.1)\n", - " c = 'black'\n", - " ax.plot(t_arr, E_i[:,0], color=c, lw=1)\n", - " ax.fill_between(t_arr, E_i[:,0], E_i[:,0], \n", - " color=c, alpha=0.2);\n", - " c = 'blue'\n", - " ax.plot(t_arr, E_i[:,1], '-.', lw=1, color='black')\n", - " ax.fill_between(t_arr, E_i[:,1], 0, color=c, alpha=0.1)\n", - " c = 'blue'\n", - " ax.plot(t_arr, E_i[:,1] + E_i[:,2], color='black', lw=1)\n", - " ax.fill_between(t_arr, E_i[:,1] + E_i[:,2], E_i[:,1], \n", - " color=c, alpha=0.3);" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Examples" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "material_params = {\n", - " E_b:1, gamma: 0.0, K:0.1, tau_bar:1, \n", - "}\n", - "margs = [material_params[map_py2sp[name]] for name in py_vars]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Monotonic load \n", - "Let's first run the example with different size of the time step to see if there is any difference" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", - "ax11, ax22, ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", - "for n_steps in [20, 40, 200, 2000]: \n", - " t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", - " margs=margs, s_max=8, n_steps=n_steps, k_max=10\n", - " )\n", - " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", - "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", - "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Cyclic loading" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", - "ax11,ax22,ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", - "t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", - " margs, s_max=2, n_steps=20000, k_max=20, get_load_fn=get_load_fn\n", - ")\n", - "plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false, - "slideshow": { - "slide_type": "subslide" - } - }, - "outputs": [], - "source": [ - "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", - "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", - "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "hide_input": false, - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Interactive application" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "hide_input": true, - "scrolled": false, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [], - "source": [ - "def init():\n", - " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", - " s0 = 0\n", - " t0 = 0\n", - " Sig_record = []\n", - " Eps_record = []\n", - " iter_record = []\n", - " t_arr = []\n", - " s_t = []\n", - " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", - " \n", - "def get_response_i(s1, margs, n_steps = 60, k_max=20):\n", - " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", - " Eps_k = np.copy(Eps_n)\n", - " t1 = t0+n_steps+1\n", - " ti_arr = np.linspace(t0, t1, n_steps+1 )\n", - " si_t = np.linspace(s0,s1,n_steps+1)\n", - " for s_n1 in si_t:\n", - " lam_k = 0\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " f_k_trial = f_k[-1]\n", - " k = 0\n", - " while k < k_max:\n", - " if f_k_trial < 0 or f_k_norm < 1e-6:\n", - " Eps_n[...] = Eps_k[...]\n", - " Sig_record.append(Sig_k)\n", - " Eps_record.append(np.copy(Eps_k))\n", - " iter_record.append(k+1)\n", - " break\n", - " dlam = np.linalg.solve(df_k, -f_k)\n", - " lam_k += dlam\n", - " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", - " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", - " f_k_norm = np.linalg.norm(f_k)\n", - " k += 1\n", - " else:\n", - " print('no convergence')\n", - " t_arr = np.hstack([t_arr, ti_arr])\n", - " s_t = np.hstack([s_t, si_t])\n", - " t0 = t1\n", - " s0 = s1\n", - " return\n", - "\n", - "import ipywidgets as ipw\n", - "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", - "ax11 = ax1.twinx()\n", - "ax22 = ax2.twinx()\n", - "ax33 = ax3.twinx()\n", - "axes = ax1, ax11, ax2, ax22, ax3, ax33\n", - "axes = ax1, None, ax2, ax22, ax3, ax33\n", - "def update(s1):\n", - " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n, axes\n", - " global margs\n", - " get_response_i(s1, margs)\n", - " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", - " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", - " iter_arr = np.array(iter_record,dtype=np.int_)\n", - " for ax in axes:\n", - " if ax:\n", - " ax.clear()\n", - " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, *axes)\n", - " \n", - "init()\n", - "\n", - "s1_slider = ipw.FloatSlider(value=0,min=-4, max=+4, step=0.1,\n", - " continuous_update=False)\n", - "\n", - "ipw.interact(update, s1 = s1_slider);\n", - "\n", - "def reset(**material_params):\n", - " global margs\n", - " init()\n", - " s1_slider.value = 0\n", - " margs = [material_params[name] for name in py_vars]\n", - "\n", - "n_steps = 20\n", - "margs_sliders = {\n", - " name : ipw.FloatSlider(description=name, value=val, \n", - " min=minval, max=maxval, step=(maxval-minval) / n_steps,\n", - " continuous_update=False)\n", - " for name, val, minval, maxval in [('E_b', 50, 0.5, 100),\n", - " ('gamma', 1, -20, 20),\n", - " ('K', 1, -20, 20),\n", - " ('tau_bar', 1, 0.5, 20)]\n", - "}\n", - "\n", - "ipw.interact(reset, **margs_sliders);" - ] - } - ], - "metadata": { - "celltoolbar": "Slideshow", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": { - "height": "calc(100% - 180px)", - "left": "10px", - "top": "150px", - "width": "165px" - }, - "toc_section_display": true, - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/bmcs_course/4_3_BS_EP_SH_IK_N.ipynb b/bmcs_course/4_3_BS_EP_SH_IK_N.ipynb new file mode 100644 index 0000000..b471645 --- /dev/null +++ b/bmcs_course/4_3_BS_EP_SH_IK_N.ipynb @@ -0,0 +1,6015 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Bond-slip elasto-plastic model with isotropic and kinematic hardening \n", + "This notebook is a work in progress on an abstract and general implementation of time integration algorithm for general damage-plasticity modes. It serves for the development of a package that can be configured by specifying the ingredients of thermodynamically based model\n", + "\n", + " - Vector of state variables $\\boldsymbol{\\mathcal{E}}$\n", + " - Vector of streses $\\boldsymbol{\\mathcal{S}}$\n", + " - Yield condition $f(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", + " - Flow potential $\\varphi(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n", + "\n", + "as symbolic equations using the sympy package. The time-stepping algorithm gets generated automatically within the thermodynamically framework. The derived evolution equations and return-mapping to the yield surface is performed using Newton-Raphson scheme. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "%matplotlib notebook\n", + "import sympy as sp\n", + "sp.init_printing()\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Material parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "E_b = sp.Symbol('E_b', real=True, nonnegative=True)\n", + "gamma = sp.Symbol('gamma', real=True, nonnegative=True)\n", + "K = sp.Symbol('K', real=True)\n", + "tau_bar = sp.Symbol(r'\\bar{\\tau}', real=True, nonnegative=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "py_vars = ('E_b', 'gamma', 'K', 'tau_bar')\n", + "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n", + "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## State variables" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "s = sp.Symbol('s', real=True)\n", + "s_pi = sp.Symbol(r's_pi', real=True)\n", + "alpha = sp.Symbol('alpha', real=True)\n", + "z = sp.Symbol('z', real=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGAAAAAZCAYAAADOtSsxAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADDUlEQVRoBe2a7VHbQBCGRSYFeJIOnA6AEkwHECogdBAmv+x/GacDpwTsDpwOQugAUkEIHTjPo5E0Z418CJA0nsztzM7e5+7q3bu9k+yD6XS6zLLsEC7pZDab3ZeVJLtDAFwnaFsEGlcHBOCOjg9BYyoOgACYjzEzfzOArWQigkAKQAScIbpSAIZAOWIjBSACzhBdKQBDoByxkQIQAWeIrrdtjHBlmjPuTzH2EXlD222buUOMwZfyfv0Oe2fUf8C+2xwjvw/kQ4iR1/qlfjxl+8kAoOQXSi6QOeDINfUj+PIp5UP0488IO1ewAFg2AGfIMfIE2SthY4wBMbmknAOO1I/fyCP4vqhPkKu6M9EAMEHlh8hwtfuwe/WmjH8V0IXPi7Ct/tAd1wV/hb1qtVN+hG9oFysX6ie4cSdGA8CkBzhD2V/ENdxqWzlnKPJhS1uUTTvuBHdA74Q9Pyu4SL82GHORHhft70M/w7HRQ7iY5OoymkZxTZsR3zvCL8+BL0i/ZVVB6dnRj+j3vGmyZ5tp0AXRFKDctZ07gIll+jFvlbntM+W5ffDepCF8OcWvc+QgK1/ksDVCyGF6tisk+38y1mA00s4AMNqvpCqoDg4UfYMNQAU+ZQNV/6JKU0UeRDEnq4EvKaBb8F31W+BTN11utb1E/6456DbP2323awztjqnwaxoXC4D5f+sBUOYO8GAJyfpF0TBBeti47fJxOlr0dS7QXeZ8F4U2BcNFcw7X/aSpc/JZTdFbByy+mK4lfcn0E25chLEAeHqfMlEdgqgyr1RVRCmPYMdlSIPjbSBfGUrbeyavfvmndKQPbRDcnVfUq1tJXz5gQ/th8HNTtOUBQYqPPvkO1RiAzN8DNptN9lpGz1odyDG8eK2+/31+gdMyegtqu3KIsudASZZ9I03UAoFOAoAd860HseTZ4VmQqAUCXQVAwH1Ry9gN5roHZH4A2ZZoNwKxQ3j3rFoPYG/9plyv14anaoBAVzsgUJmKz0EgBeA5aPUwNv9bSk1v+l9QDZCuqqRmz8rwf0G3/wARrh6V0tmKEwAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}s_{\\pi} & z & \\alpha\\end{matrix}\\right]$" + ], + "text/plain": [ + "[sₚᵢ z α]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Eps = sp.Matrix([s_pi, z, alpha])\n", + "Eps.T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Conjugate stress variables" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "tau = sp.Symbol('tau', real=True)\n", + "X = sp.Symbol('X', real=True)\n", + "Z = sp.Symbol('Z', real=True, nonnegative=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAZCAYAAAAhd0APAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADJ0lEQVRoBe2a7U0bQRBATZQCkNMBdAAlAB0EpYJAB0H8sv9FTgeQDsAdkFQQ4g5CCQkl5L3LrXV3Xtt31nodSzfSaPb29uZ7Z2cxB6PR6HEwGJyAAS7G4/FLeOhpWg/g23M43lW4Tg8Iwi9eHFcm+2EmD+D3I0RN3mSS14tZ4YG3K979V6/Imj8odAi+gs8l/Q0VzCi3+Yx1p05sE5BxBf9LUJmC5XvC/L0PUPX8DoYy/43xHfNT6ALsRRBQXmM17LJpSGnwT94ZnDNw64BMnX0P9Tx9D95U9WL8Clr3L8CPPkOXwl4EAe3NuoUAlFaZcUPwdJ2x5fqU5DPMDMItOM9y9HAH2OCo91rYlzNhiEFzI4NVzD0x1uAzxtk7OmTOkC2eMC5KD9TSeAttFQDWDvYlCGZcDTDS7W6ZMuN0xK4g6KbjDYBnQ+sAqPTKcgSzT6xxq1mPY2At/BJ7kXIOGTUn8zyBv4fjNWMPvZ0B8qegNd+ypJ86BUDFl+6E0tB3rPGw8x5hObDzcFwga7YeAGTVAJk63+QwAYpupLZgNw9Bjyd0WnkIx9SL7gQYWd9+QOd1mPEhWMvIGMNtziHfbLMM2ZlkT4AVtlmGBKtGZ72iO0Fng9UAGJTOEVarVIA+1n9bQrf/dZUvz8EJ1eksY2SbFDeg/jJRTZROEA1ChMMH5uxEdgIYZhIo3+SI1VydkB3KAHgJszMLB3QtQdoo1TYIRve5DcPUazDQLPcu8MJ44TbMnDvEy1pWQK7NwSO0KNElNRjnjNW5NawNQsnwKAhrzTnBQmTabYQduBCAUoTl4CGBuNYs0MvGwEO42ZkZGKHTzlwbBBi6C7JfhLQEWHobxgFekNwB7pBs5xWyPJeOoc0ADJgLXdIVYxOoFUS7o8aXtqNmW1bAiPA7hwngBUj5GjYE3e7ByM41mG87AbI9k76CUqH42xDz826xsubfCkqk78HYGRbWFLT/PaHmjrwPBMhk6n9PyOv2uLQ2Z0L8y342mQf6ICRz5eaM+iBs7rtkX/ZBSObKzRn1Qdjcd8m+LFrUBrf+/44aDkn5SFvqn1mq967ZXy34CSrx3MmyAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}\\tau & Z & X\\end{matrix}\\right]$" + ], + "text/plain": [ + "[Ï„ Z X]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Sig = sp.Matrix([tau, Z, X])\n", + "Sig.T" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABLCAYAAABDargmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAI20lEQVR4Ae2dW44UNxSGa0Z5jgYiRXkedgDDDpodcFnBMDsI4ml4Q7ADYAVcdhCyAgg7AF6jSJBRNpD8n2OXXNV2tatrqtqe9pGM7/bx+X2OL+VpDs7Pz282TfOHXIjePXny5F4oo6YtLwFh8Vm9Hod6Vt7BD17GS4Up7NMXP1LDO5fAM3Fw1OPituJ3SfPBfCZ0swNPPDETV/KZbFeeNE6A+RTCIiQDW34NzCRBqfKvKnhHbmUrvJfvJsF1m4bpBgSYumXTRnuqyyx8IZ/+9oI0Vpa2t3KP5Jxck8bua2ZSBXXwXAWfy/9XPmAFBa30h8qfut7+fgltqIni6FQcM/ZRinC4zTAFlNPK1wP13yhv1Mzy27KT4aP8rdvw2ysprDFfiN/38rGCyTRaM23LThsxsUPU31ANle3nPVKC66eftw/xpxrkVzksYRJtpZlq2WimZs4nvxfF2W0ZsrPrnYuP8VWX9baRv3da6eRk5fdFvrOCLivqb6uZbHA6WqlOWSM7mjgBDHZnnfZDI1D7TJ5vNg/ThFnuTLBQvTnSZuIFGbDv2CgLxjQaTDHtZsp1hV+oDXawpLHzvCF3GYR5fTvUkPrmouNUvgFP/m+Ks2E4G6o3R96MvKAcyeMZDaYad+tYK0gExIDk1syi0gDamF+FU3dnmNnvtBsitUP+Tfm+FrLGrvUfqn+ZaTPzggxQkiTaBkzAaXqCJKljCpRvhC2fXRl5yUypLNqO2YyRAVrt/q0C7Jo5l3X671dUPv2z3R9DnQkbqTial0g7oWQmp9k/hDL7aduAubZe2kbZfRmyggN0pzmE2/z/S23/r9q/kMNCoI2s1Q8VZ9I4q7HWOHWUmGoZ1urHEmjX9pvMS6ytqemjwBTTgAKxPnXICsulPVbAB48J4IB1ZYZ8ZntQk9WPM7HslI02Ko3zGNeRx3KLmdoFeMFCJY9nFJhq2M38qEnTAAEOoRozaeNKau4qjM/FMObL5JMQIAbAQELExgig22OP2uJGahd3y0m8iDcmIGWRTYhuqUxoslNvSE6dtg47sc0Rc6Eb6bhROprLuuRrJWmA81L5HIA/yLXnUYVDxMBiJhGtdZPK1FW7aCZmbmlK5QXeTuUYE+Frcnw4wL8m/kNAKsuUjyoOBXzaqJnqCC14JccswTVKY5YxEAgNoozL577WZw7Bc1nuZhj+idwQYcY59oToTIlOy2mLvjlct5oaqjRT2kZexNeRHOUa+Uw6LtJZZ4k7mcTYQ05MgiRKAZMOp1yYw5CviczOwXVAg2Qzw2DX1kClUTf5iktlZ6MUXlTGB+yO4iwJRimGGFMZJikTwVeMoSrN4WDu5WTC1EevqfsKv/bisSATYBemM8bPpPQegIAZ2xO4fthExqyTK9PxlwCz1UINiGMEV24bTaLKsKagmRtncWdE+UaYmCxPEEvUyoQC/2jMKMBK/igLtASYmOhXYgxNuyG/s3kJjMVPou6o2elXziwMeFxwNJIBpvO7fEALEaCPXtoOvAddCLrVolAPu0gTT2gms3Rfno1gvdgzJGGhcpwwuAE72LgB2gWAfp92UHsBJOPWeLce6xJm1semhmeUQAVzRuEu3XQFc2mJz9hfBXNG4S7ddAVzaYnP2F/2u9mhsWvnx13nbTm25xDnN+5pO2c0xTm3+WVSPjrTXlFUOpjmhkRguQfZsS8tXB9yQD9T2aTzW1EoWmaLBpMxCJyVHUvwU5HyOYRz2zLm5sk2WZZXPJgStwOp8/pB4KGJ5rJa4Surjf50uwpgGs0UYK1mKswX/Qfyr8xXFx+0WPgqgAlw7Tc/AYhZ5RmG+SAcG7ifrrJMCC70+Sx1T3HuRmn3RP7W12uqvygVDaYFAYEZrVSc3S1fZ5LNqupgjtFg6hEGTHbDfH5zJlzR/Kn0c6YT9jeAlGN3iyYBhDuKbEQB0OTcGyVALQ5IBlk6mGa91Dh4U+M+5AIGxOZnI6nehSukMKYVc9s5p7r83H3A/FHuL+vnzm+fP4TP+tauawpjYjG7vKgnP4lUlonxWD5a2gKcVHm3hX5R9+BnNPMf+T/L4RdDVvjw2zmS2AGM1U5MMhcKJWrkn+Id/Io2s269bI8kDAgSKKShoTzJZFMTJeUDJNrYAVJx914nWje3jJJ3s2aDI6G3x5KecFn70FDWzuB5U3Uxw5ThNTw+f0IH+A/kgnWUni0VBaYEjqAR+oncMVJVGhr0Qb7bAJHGEcWdM9nlAlroXpY08zel8jmf0jYazS99rGm80rOm7B90ZS29DJjTpMNCmQddpR9NMhBnPixUMPPBYjInFczJIsyngQpmPlhM5qSCOVmE+TRQwcwHi8mcVDAnizCfBiqY+WAxmZMK5mQR5tNABTMfLCZzUsGcLMJ8Gqhg5oPFZE4qmJNFmE8DFcx8sJjMSQVzsgjzaaCoj9MxsembHh+V3S9C87E5+pOl9vsf5Y/l+ADNO9n2AZfN55FYm6YyRVDRYErgAMKDLl4MmJcB8nmN8FU+r9r58z7iK/n8zJl7TUBZfovIfNiV794TKWjezBYHJIyXbmYBEpDaJx4KAwS/CObe8AAgmgbwPNzihwfRRp6GoMW8ueVZSSMfcDf+4BRlc6RiwZTgebAFQE8DguUdD++EoJ9UFoBXcqck9Ig0HnBBvGSnbpFUspm9L4nH1jbAAxjWRgO2wu1DaR8pgJZr5NDOVsP9MqWEi9RMCf5IAsbFnlkif/J5tQewKcSfAA61l9LGTsuUCqYDiHeuMULjxqx/Q23F+sgqvUgwrQQxm/4u1CQLQDY8EJrZKG42N4QHiLJvBvKLyCp2zRRIHEf8l+hG4Eoza6P8I/KVyPlzo/lUWaftRQAXYrJYMBmMAHDHj7WxKc+9aF/Lu6oJJZvZS8FEoK/UEP8VVfG092AKQdbdoo8kbhZWMCUJaWexFwUOSPy9B1NARtddX1AlhPcezBJASuXR381+1izt1+MSu/MXxf0CNb6cBIQFFxvHsR4B0/xxaaTAxvNZpF5NnkcCnJvNZUio+f8A92/+mZ/dmfwAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}E_{b} \\left(s - s_{\\pi}\\right)\\\\K z\\\\\\alpha \\gamma\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡E_bâ‹…(s - sₚᵢ)⎤\n", + "⎢ ⎥\n", + "⎢ Kâ‹…z ⎥\n", + "⎢ ⎥\n", + "⎣ α⋅γ ⎦" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Sig_Eps = sp.Matrix([[E_b * (s - s_pi), K * z, alpha * gamma]]).T\n", + "Sig_Eps" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable code for** $\\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "get_Sig = sp.lambdify(\n", + " (s, Eps) + sp_vars, Sig_Eps.T, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "To derive the time stepping procedure we will need also the matrix of derivatives of the generalized stresses $\\boldsymbol{\\mathcal{S}}$ with respect to the kinematic variables $\\boldsymbol{\\mathcal{E}}$ \n", + "\\begin{align}\n", + " \\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAABLCAYAAAC4EY+8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIKklEQVR4Ae2dX27VRhTGb1CeKwpS1efLDkK7gpIdQFkBZQdFPCVvCHYArCCQHZSuAMgO4LmqBIq6gfb7+fqYsa/t2vH8czQj+c5fe74555szM/ZMcnBycnK02Ww+6upz56enpw/6MkraOiQg/X0S0m0fWuUdHDoZrxSmsOs+u5ESXqUEngv1zQ7ynxW/T5pLgOdiRFF4R1Jrj0qndOyWUxrK3yNAq1CoiCr/Xc8+1nWvruOdfCPerTqNYQmzdaHyd+u0LDzhoUd90XWp646uM6VdyE/iluJxLUCUBgjwC1X0Qv6/8lEwZNhzSv9NiVnNP4SJudIz+ecAlo9p/Sj/WJeRmKwoTnUuxnMjCtJOJQJuvf+sk+VG3ygSXaguADcszBByK79SPnkKYwWIvyUe0/nCk4QAEpT1esz/mOtOSsfKhs7DGvXhfa/0IymkO9FaBZ5UBKgsgITWGjsVZ3ytnMLWuywptW9Wq4sDnLih/F2u/9+h+mbhSUUAJnmt3iSFY2JbPV5pWQwBwmG9++uIHrcjeV6zfOI59IpswsME3ph7S+GXuoWZP2kImVl1js5WJ9a7XIxjpHDL+Qx7wxOdAJKCjf+PRIBmCFCY2fRej1ca5KiGBoVTLwnNEvQp83ZfYuC0xXgmEUCCp6I/ZzampWDnXhS60TMb5dd53SGBiRXLxHdcKjPW2PoRwbyxXm69kXcDsZw3PFMJcKmW+ep9R3pWS9m11J6Z9KRwlA1RjCSEm3wrF8sXnktdVGfKdqs2Yu5ZL7eQz7BPPFEngQKOInF/7LxvvzTqW2zzVGH3FSakMTI4xaIGh6yQkaKP1CEBesFzGBJhz7Nt/B8UloiAsnnhUhGijvOo+wrj8yGD4cUlDOmhHS97mmWqUxkTV4aqVeKJagEkqOoDhITV25uVjoVgruGae9Iwr6+Uz2tkXrz0KULJ4ZzqxiJ9lV+1gZoUvimP5esj4jGdLzzBLUAtpNcSDuvkaq2sNHqTTWQwoQjS8ulNLkGwGi+VZj0M/yddKRzzoKfCUrVDYazRLx28MXEtxhODAChsyUcdlO32eBodbcLlarMm4RM3LWXYB54bKRswsW6swwen7K8KnznxElwggTUQoOntYjzj7Qf5zRe5BW0vt0oCwYcAD1Jm+HgtpVdEkG8rCQ+PLo/IngBSOBPCJXOIouURCaxhCBiBX7KWSqAQYKkEV35/IcDKFbgUfiHAUgmu/P5CgJUrcCn8QoClElz5/dGWgVrO8To3mwMVU/Um3Bxk4Z2/fQRiWfpZ6a2lqeJ833DLDG2IUTF/bqlcoxBAIBcfYPAnsnlPEna+QG7k20GWoY0xvJ7mtfVjlW3eXnJvKKd6Fss1+BAgkFkdqLiKMtSGe/V9vfsY6jZu5B/riqV8L3INTgAJDlPZJzi+66c4UFHrcpZnr59bO5mk7Ju6GNrYtxj7+4QXucYYAug9fcLhMzFuKH+Xm8dvZQGk5IbICrNz6aH8VJ+Hh+Q2S66HIeUr4TAm4mzzxy7W/t22o1nGUHazSUXtwvzelf84BVqfcg1KAAmH3T44Y+UutvsdI4VbLmlYwq56v0BUvV9xVgWY/Shj/UDjvck1xhyANpgl6GvP7b7EjNJs/P+C8nWxKmB/IBtXbdmXCu5iuYYmwFgvNxbHPFBxFUWZBeBsQLUk1EOwADi2r6dw3uQKAb7T9Xfte22MBGam35TtPt/Ym9KUuniGwkfKYJbfnFNQGMwMCaxiyI/qPMj1RwFG5xsI8I+uH2pfnneHoEzZ7sONFM3M2s3MISxBW+9vLf9qbKmtwBK5/qU2oPOKAHV7gnm8ImVnb9elOlDRxTEWt/F/j6QiB2lYAg6s9BF87Lk+8rzINfQcYCPhZHWgYqbkq0me2nAxcB/H23HR5wK+5Bp6GbgTz+5gaU4HKgzXni/B0psx71itLQWURm97L98mgaSxHLT3AKwOmAtE+w6gunCLD4YcOH8p9I4akfuEbNfs8rtIAtIzlu2t/IPgQ8AipOXm4BIoBAgu4rwrKATIWz/B0RUCBBdx3hUUAuStn+DoCgGCizjvCgoB8tZPcHSFAMFFnHcFhQB56yc4ukKA4CLOu4JY3wI2eu3I+/XVHQzpqu+6tMPaFcUCSGgcYKg+pijM10H+DBzvorcGZA3+dWmHK+vgBJDQvBxgcEGnCF+XdnRlF5wAqtDLAYYu8ATx69KOluhiEMC2VbUqVuSyThjK75ZPHR/CubZ2tOQYdBIos2lbpcZ2sWY/D8ixHcLEN30m1siP7WkPlGZk3NT5bGZt0lRmz4W2ALbxsw/EGCn2gCZOyKodUirzKv78LlvV2KUECdi15LrmD267id1wUAvgVGaWwElqgrkfDGmAKpC8HVI+yuYU8vcOsCeKs6qyf7KBdeg7j+ncsguGtgBjvdx6Ve4HQ5BUTu1gLvJop77WL2kP6xR6/6TtfUEJIBBm+k3ZLmLrTZOAujfGDufUDmHhz+abXBtRWJr8IyXubWNvCnYCQQlQ1wUYU7ZbvZFiMlj35gThtbSDI+vMDSa5GATwcoBhUmvCFlpLO1r/e/H/RBKcAGLjmg+GNPJbSTuwtG8a0BMCsVYBiw8wTGhLjCLZt0NE3ZsfjAkmCgFqUKn+lMpY+2flXZd2uI0OPgS4lZVwOAmInCwP+eo6yxUCzBJX1oU5yTx7RVUIkLVO54GTFZj9TqUQYJ6Msy0t5V9pjlUIkK1K4wBzVwGfxKJuredKYyNEcSuVgPTHi6HtEHwIwLgxZD4mv1IcqqCkJ5cAewb6XsVXwP4DpDjQ0VAkiCUAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}- E_{b} & 0 & 0\\\\0 & K & 0\\\\0 & 0 & \\gamma\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡-E_b 0 0⎤\n", + "⎢ ⎥\n", + "⎢ 0 K 0⎥\n", + "⎢ ⎥\n", + "⎣ 0 0 γ⎦" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dSig_dEps = sp.Matrix([Sig_Eps.T.diff(eps) for eps in Eps]).T\n", + "dSig_dEps" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable Python code generation** $\\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_dSig_dEps = sp.lambdify(\n", + " (s, Eps) + sp_vars, dSig_dEps, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Threshold function" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "To keep the framework general for different stress norms and hardening definitions let us first introduce a general function for effective stress. Note that the observable stress $\\tau$ is identical with the plastic stress $\\tau_\\pi$ due to the performed sign switch in the definition of the thermodynamic forces." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAVCAYAAAC38ldgAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADs0lEQVRoBe2a7VHcMBCGSYYCGEqADiAdBDqASQXhOgjDP/5lSAeQDgIdQCoIoQQ6CKED8jyO7fh8Pse+ky178M4s+rR29Wq1Wul48/LysjFRHATOz8/3kPxI+hxHg/6lZnN+27/oSWIBgQ/k3xXKryGbzHkz9Eyx6N+MuQW7i+/T9IlU2oEP4Af67Vsx0XIEwOiE1mNYzKRH+IL6Kwuk4vwd1nNKd/Al9TdJacB/ghoeExYgwTguTz4F6SdtGuR7eKL/IABmGtgV6TXpEXxaxJX8M3xJ/SH80TLpKCio4TFjd+eC0aVIuDO34f0YACHThXOBKon2WWVDTWU65g7pl5puIZo+M4j6n8G5N0Ounu6QVNxHRaENbxsQcmAyJKi7JS9IGp3HRe+U6rWgW++KrCAQ3Q1NHvh0j1S2bNhyRjo6oxOC0JcLd+YcAYxHgUewO1PwJloNgQxbjU2jM9YbpdE5/aAer2xYlC+QYYA8I2/gG42Q/wnhHlXGoFVk/NT1kVklt1Edut3AxnAeuc5hMEa3CrZBDa+IIMpocC62C5rcwortfeaR7waQvNS4eJb1IOYTok+UECCT3zAVRzG9Rd9c94bfdtJtVWw7MTyUcVd6xHoji+pFkG9s+YM0j+/Ib8FjPPY9YiU9d1RcVQIMV8Z200VgDG+cbcire+XCUW885/Xfo2FWHJSyN8Baz0J7aH3UM9eV8QWrlbfgGz2k8yqTunqh8lG0TP4iEew4ZCw38mkq5IiynG+msvCqMv0Hg62G5yIEecxlLBfVG6y3rirQBW7OGCnPUUh95gb+V9BI1LExoVO24HPfUK9n7/w5BTkanQ/DGrMhgnLFsa3hBVtrZFdRY2yD3WoBxGNAzyk4C4ZMnR7DB+TY5KLdx1aiqXxw09tekyZeO009NQ7IZ0dv0+G67tcY2yCGBwC68MyLLBhdOlt37beuZ143frpQeqj86K3rH7sNPbOLRPlFILssVXriGHq3xTaI4THRpb9KoJAPnnq6IfwXhjuyNsaMsWhVMsHMOHmXtGx0G9RlrwQn5N30Q6BW2K59q2XiAmRs54L6qEmyIRjbsEdBBkxtbEe/PmgXIXreQRLYieNX2FRKfoulPvfQhT5/exC+2A5XxdRZnz7SVtiGMLzYE24MKoszBONfqq8GROOyUCX5rkmfpQI6bGiL7dqG1+FcxjD0wjE4BqWHoONkeGusArv8eY3PX/WnoS4XrxrEafLtEZgMrz1mIb/4xWBPIQccwVjJnP8AH7ZnRmtTxKsAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle - Z - \\bar{\\tau} + \\left|{X - \\tau}\\right|$" + ], + "text/plain": [ + "-Z - \\bar{\\tau} + │X - τ│" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f_Sig = sp.sqrt((tau - X)*(tau - X)) - (tau_bar + Z)\n", + "f_Sig" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable code generation** $f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S}})$\n", + "\n", + "Note that this is a function of both the forces and kinematic state variables" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_f_Sig = sp.lambdify(\n", + " (Eps, Sig) + sp_vars, f_Sig, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The derivative of $f$ required for time-stepping $\\partial_\\boldsymbol{\\mathcal{S}} f$ is obtained as" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAAZCAYAAABHJCk0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAG5klEQVR4Ae2c65HUOhCFvVs3gAUiuJABjwhYMoBLBAsZQPFr9x81ZABkAJsBEMGFzQAy4BEC59NaLo/HsuUZyaOZaVUJWbIldR+3z7RaWo7Oz88/VlV1V9mnRxcXFz98xUpDwBAwBHYdAXHaqXR429Lj8kjk91037rQa7dIQMAQMgb1FQHx3W8otjvdWww0UAxzlZxsMsTNdpefj2hh2RmYTNB4Bs+UwVkV4fvXH901ivtT1u7C4+e9o/hPN8lHlo77Z1A4pPlHGjSYRIlh4uev+X9TmQwmfdf1W7Zcqi0ySjdAH2Fu4Y8M3JAzxKsyWN8Rx3e4xtly/o8U/606SuB+EQy5h+Q1xQW69ScBBzu9qkB/rGtJoiE3Xf5SJLUCeZ9RVlp7OJCB63ytd0K58wpd38F7530KwNlvuvqR569G2XAT5yWivhM/RvBitziY58Oq+qozxgF7rWT68V8pt8sPjY9MoSKC6X1SSrBD2Z+UXym+KEq5HGMkIwUB4vCc8LepFJMlmtrzFNyH8o23ZYn7LL+qlqovlpv5abeQY+l1duyWuSj7EVyp3hvha2kHmEHnxSfhi4E+UeV+fihd4OwKaLY/gXgT5yYjZYGhIZETmLLeRgYFVxnh9XgYIgwTh0Z/Y3y4SH3qzPP+h0scy0cvSRASEn9nyRMxSPx5ry7MseyUMnhEfFcRyU5llylO138NYdE2MjPssH5fIQ/dpf65MX/oRTPbLHOJq/MKxBGKcD8p+LF1WD5T/1xgxSzmWsGxORCeNe6kMadAXmZZkjx4ow4OS64WGxZPzWHVnIVbZxQX90WESDt2B97kuzMyWZ37BuWw5O/lJcD4+PCKIqkmqQ2iVSkiNGBmktpTUBvGxrLmha0imUvldhdtd1TV1lp6QKO0Q4Kmu3UetkjrnGCGpMY8O+dj1nJrYAIFoPmkOJ+PUAVI/Lzn80v2hxkYm6nipjXwBPMDQvReVljoICLMTNZktd3DJWc1py9nJT8DcJ2M4ys3HpzY8tHb61a7U187j6/SD7PD22HFtey6QG/M0JKtrlnFqdl7l2BEaiLJPBvoPJfqR8LLa8rjGuf+RvngmeLvtTRiwB7exhP584Jb6ETBb7sclS2tuWw6SnybmI+D4w5TE0Y6lj0x1dhH5qH5zrRJPDk8shijoxzI5NoW8u5gPmnna5Dw6p3SAwCFiEoeFyQ3pXDcP/6vnk+DsZ9F44N+8A9Uhw1i9wM+TuR8yeZla5+QCBgaU3GbLAWxoTv1eNV5WWx4iPz6YVOe+GAfP6FSZJZhfto4tsXj2mUBgM+SqBpcxzpT7EmQ5S5IsEB+Hl/EuWVIS90OfqeSXEmdNv5KeqqWoHVHhlVvnFRASNpgtB8Cc4b0mteXjgB7JmgWI8yRUEmAnNsd5PkgCUoPIxhKeFZsjPoDPGJMIZmyC+j7EeRLzrOaHlPkrEOdh1SVeE/HG7J5TjIytZyDlr6360CXeb8h7Hup3EPf8u1VptrydN57UloOeX0LdIAOEbpa5Mh7idcTmxoiCJRse3xy7j3z0fPyDSbL4zY2uTBCiXwaPebSDc6S6KVnBl6MXjqQjxuV5vDJL/QiYLffjkr01hy0fZ5f6egLOwXW9KupdAuk+w4fIEhmPyp0DrEHIITYEMbjM19zsBt9R2ZW7UpvfUMGj7eqRQ96YMfnRmeLJof+KbjETbfGZubE2W97Oy05uy3N4fkAFMfxXkwKExt/wQmrEy/DufDywUh2CcX8Tq2sCzKoux6zUxhgfVD5X7utPDI5fae+BYbAPlIfO4REXw3NbSvX479XIPCT+uoBYX+NNtZ65fkJnEbmvPDSffzZnCc4rOg1MeF/3QvHUgW7z3xK26IWn7kMnX9TG8h7s/Q9RDsHMlnOgOj5mclsu4n91CektI3aEpNLF+FTyK4/BQ0Rumam2ZjkdGie2XWNxzo0zh1O8pdjhi36uxhbiwMgsJUZAuJotJ8Y0NNyYLes+jlEx/6vLih4SEDe3Utlsbugaj4+MxwgJ4lklIz+NBaGyweI9Rl0eTML7nuIlHgwwmyoqWzVb3hTEaf2jbHmumN800a+fJvbk/k4y0BniS/qxykhZ0jAnvwwHk6QvHjVx1ZQ/JAeDX4SiZssRIKV4ZIotzxXzm6yXlCC25s5UqeR8z896kFsq+Vg5btDE3ep7KQpIlbhj85ciKQYtfAz03XZ8snCI1hfPbHl97NboGW3LRcf81lA8SRcZK54fnlDOwHkSWTcdRDryfxiysXRwcc5NsduF/mbLq2+pxmRh5LeKjbUYAobAHiPgye94j3U01QwBQ8AQCCLgPL/O3YM86tHBwKqGgCGwRwjI2+M8aHuD9OovsCr4xBzdBfIAAAAASUVORK5CYII=\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}- \\operatorname{sign}{\\left(X - \\tau \\right)} & -1 & \\operatorname{sign}{\\left(X - \\tau \\right)}\\end{matrix}\\right]$" + ], + "text/plain": [ + "[-sign(X - Ï„) -1 sign(X - Ï„)]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dSig = f_Sig.diff(Sig)\n", + "sp.simplify(df_dSig).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Executable code generation** $\\partial_\\boldsymbol{\\mathcal{S}}f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S})}$" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "get_df_dSig = sp.lambdify(\n", + " (Eps, Sig) + sp_vars, df_dSig, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flow direction\n", + "Evolution equations have the form\n", + "\\begin{align}\n", + " \\dot{\\boldsymbol{\\mathcal{E}}} = \\lambda \\, \\boldsymbol{\\Phi}\n", + "\\end{align}\n", + "with the vector $\\Phi$ representing the flow direction within \n", + "the stress space. Assuming the normality condition, i.e. that \n", + "the flow direction coincides with the vector normal to the \n", + "yield condition we can write\n", + "\\begin{align}\n", + " \\boldsymbol{\\Phi} = \\boldsymbol{\\Upsilon} \\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", + "\\end{align}\n", + "The sign matrix $\\boldsymbol{\\Upsilon}$ is used to direct all the derivatives in the outward direction from the elastic range." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJMAAABLCAYAAAB0iLVXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJcElEQVR4Ae2dX3LVNhTGbzJ97qTtTKevhR3wZwWkO6BlBcAOYHgKbwzdAbADYAfACkrZQXjudKaU6Qr6/RTJ8XUs69jX9rWToxlFtv4effp0dCzfWAcnJyc3NpvNn/Jt7u3Tp09/bUvwuKuHgLhwql5fa+u50g6+qSW81DWZ6+5z/cavrzwCz4XAUQOF27q/S1ydTM/FLidPAylhwkw8Vshku9ROfYQUn3I8aMMglrlApkUAJeEYPJbdx23Czymk2mcWvlD4S1u7in+geMyA45jOZGRSBuLF8h8UhymBey9PfW/D3cL+IJf8G3mw761YDhfWH8RhAPHXudmzgwgPczII8JfyEC2RY2sCKO2r0l7E9O/IK5/y5qrdd/x9CfBmiBD1ZW5I+dHLCOxPqvRg9Ip7Vig50DofFVpm6DPlRdU/ka/IorJoJAi0mocYyfpV/r38I/nfJb/ZLVEzmYWfOONj1Y/BWXQCnQmAv6HrsKQpZLl+onA1RKp1lMnBxOjlFkcmBoEBwffqyYiZkYHqFFq0UmqZAcBBIMpjO62RSPSb5fmzwmQL0q+im32Zk4CQBCEZqO/lsY/uKf6mPIOAjUE6y8XWYMTOYcNQlnIY6oQ4bBe0ySt56nktn+rS5ea2/B+qw6K6WbIwls1O9WK8MgiURaYt2c0VTZBRcj1StWiahFWzFWy9Ji70nz6YcZiVTBKYzjBjt56OdA9BNgohCTbGhU1UxUGwd/IYsgzaRiH7YuHpSdfcs9RASuIh1LGuA0gKuT9VyKCXNA7yDTFCeYpj4N6pjSCjrvfqJEdaqu9IEGTiHi1ayZfBAwzDuCg0uVnJJIlu4SX8UQNsNEjdfanfxOugkRrlIA/aiKeq+syCLLRTkVbXqG1FB61X2jOCeG0yUL7LUQ6HFqjLEyLn/qP+sgqgjesPBWAPbiVH/49KmerpJjKpcSrlMbmPu98UWvc8JSDkv1wrRNOgKSzAU45l0epy2scCEO1UM9fSoPrAhIDYuLu6x1eDeBbd/Vf5R8E5taL6IA0+ON1DLmu/wC9NjrMKCn+tZEKAm4W6rMnUw8w9lkflpmWqpFLJ+wBAAEke4Knjvnybg3yzOMkCkdiMRPuxhGA30Z++ZBoTZzV/wd1TDBN4Enc4Sa2ZSgV0YLpCDD5sG/aTAB2SQIySY+ZjrCeDkjp6DVipgZgOESFr0al9SM6ucdAAMWRWY6/1mtnFxnbPAMk/GqtBO+e0e2sVJs3UWnJYJODSoWpZE+BpF7kEPCoajWR+uhgmYigFiIDZ6SRLMrabMkGwtOyVNG5nG2MlRmKz7VIte4W6GQ80pdkdmnOOl5F9mOas5745IM08dIwlkRkf9qEUlgg4VGoA71zW1TZPe9cVNuXeKC4Z+GjcZj+GyrRrOSZxH01D/y/0rUuIuTUTsgD0bxFkCMI7OEiCvYH2SfbURvcMGIZ82uLX7faaT5riXit8KN9WHhsG0iUNAZlvy3ftA2FXoFm2XKz/lSJpB4dc2ErVbK/lOcuhvTDS5bvaS3mnDMH5Qp86GryltJw92lrsoPbjOGZZH+a2VjhVpGQLA6ww2EgKmfEsRQxsWFYUVy2fu8qhuthnYc9rsZjs2sdc+Ygtk6D4sl150HjYjAf70Ey5PmTjo8AbhZWxrWs0Eh6NBqmY+aORSXVBUAz+pNF0eWUcq0MfLRaA2YfNNGREWLvDO7tMYYjUu/OZukK0CMpyTJtT2WVdze8tTf1F41dvDvoIshbNhG0S9qcUslfyT+zkDwrpPFsNld0S08YIICl2W7WTPkalC6+D/g6y71ZBJsAXWVjSWHZmc7Qpj2HPU1l6Qput/bkbop9qk/4OshNXQ6a5gU3tRWAvPZHor/q6Uz/XYjOlsfVwwQg4mRY8OGsTzcm0thFbsLxOpgUPztpEczKtbcQWLK+TacGDszbRfGugMGJ6XObdEy93f9Y1e13uMgg4mVqAEWnYVYdAbN5dk+feXQEBJ1MLQFEDhVcKumZXGO3kroCA20wFgDzZjoCTyY6V5ywg4GQqAOTJdgScTHasPGcBASdTASBPtiMAmb6V/zuG9pKe0xE4Q+AnBfBnA5n+k/8xhgrcOQK9EPhLueFPIFOvkp7ZEcgh4DZTDpnzeN/9Psei88p3wDPwaOeb/3bhX6iOY5YPiuP/9Pl/sp1+3hrru3SBkykzpCLMVfx/uQwatmhf5mw4eS4DAk4mA0iexYaAk8mGk+cyIOBkMoDkWWwIOJlsOHkuAwJOJgNInsWGgJPJhpPnMiDgZDKA5FlsCDiZbDh5LgMCTqYCSNoJ54Nf/FPBpXfqJx/Cvza0o4t7nRI74ydhDh3RHcoJe06L4PuUfDyt9zealqiZeEuPL36ccwfcrEU54iP7jk6Ap2+Yp29tMgjVS2Bdf1V5XhiT7idhCoRZnQaAzwn6SZizon7eGBNA3k/CPIdklCs+ecgXd4suTgAmQXXoouKwPfjm+KDvQxYbnTbDM2Tv28TiljkGQb4alL4dGiN/JMJGYR+7gQHAQSCIxIfy10gk+s3yzCex02+56FfRzW6AS0A+Ao+QDBQ/PsM+4nAdPwlTQEzhhG06uAis2xy2XvMb6nwum8lgPvJiVjJJYDrDjN36FLLug5GrEIJxKoCfhCkgxnDCMi3Vd1QfGod7tCjXwUXc020K/STMiASk9JMwz1YBPwkzTY9a+EXXLItWl7N3cqq+Xi/tVDO3npC71uxmCyB9p9xPwuwACmA7j8zKlW2JDycNKB67CZXLssd+TVjqWvKnKPI+UD4/CTMh0j/kdAcONJrEzfo0JyLwlLNRiMHnJ2FOMqSdlfKdKf7DxuLQzjnt3lp+VgNcEkAmOlQ9OYhUaRc5EK1VyrPIGwr8JMwOgLqShDP4su3CfpjFkb/XUn9oqXXkPOzDNO0W7puPoM08dIwlkROH/CTM/oPCJO6jaTBHmmPS2ercmglheHflJ2F2DsskiX4SZoJV2shPwkxgTBzGlcNPwhwRZ54eedQvPWWO2ORiquK9HFsdvdw+bKZeAsbMrN3hnV2mMNv+vTufqStEa3ayHNMmhuiVcVErYZdWD0nWzu/DZrLKVuVTx/wkzAqNyS/8JMwpII4k9pMwjeCuQjMZ+zJJNhGKx+nq15OTNLKQStXXnfpZJ9OpKmt2i98Er/I3Oc2O+P3uCIgL/JIga0NCJmZeekHZbNG6W9os5/eXEwGecJubyVVP/wcXjB6Obd/+AQAAAABJRU5ErkJggg==\n", + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}- \\operatorname{sign}{\\left(X - \\tau \\right)}\\\\1\\\\- \\operatorname{sign}{\\left(X - \\tau \\right)}\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡-sign(X - Ï„)⎤\n", + "⎢ ⎥\n", + "⎢ 1 ⎥\n", + "⎢ ⎥\n", + "⎣-sign(X - Ï„)⎦" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Sig_signs = sp.diag(-1,1,1)\n", + "Phi = -Sig_signs * df_dSig\n", + "Phi" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "get_Phi = sp.lambdify(\n", + " (Eps, Sig) + sp_vars, Phi, 'numpy'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Time integration scheme" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "## Summary of the backward Euler scheme\n", + "The derived expressions can be now plugged-in into a generic return mapping algorithm that efficiently identifies a state that satisfies the discrete consistency condition. The general structure of an implicit integration scheme reads\n", + "\\begin{align}\n", + "\\boldsymbol{\\mathcal{E}}_{n+1} &= \\boldsymbol{\\mathcal{E}}_{n} + \n", + "\\lambda_\\Delta \\, \\boldsymbol{\\Phi}_{n+1} \\\\\n", + "f(\\boldsymbol{\\mathcal{E}}_{n+1}; \\lambda_\\Delta) &= 0\n", + "\\end{align}\n", + "To reach an admissible state let us linearize the threshold function at an intermediate state $k$ as\n", + "\\begin{align}\n", + "f(\\boldsymbol{\\mathcal{E}}^{(k)}; \\lambda_\\Delta^{(k)} )\n", + "& \\approx\n", + "f^{(k)} \n", + " + \n", + "\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", + "\\Delta \\lambda\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Thus, by rewriting the linearized equation as a recurrence formula, the iteration algorithm is obtained\n", + "\\begin{align}\n", + "&\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n", + "\\Delta \\lambda =\n", + "- f ^{(k)}\n", + "\\\\\n", + "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", + "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \n", + "\\boldsymbol{\\mathcal{E}}^{(k)} + \n", + " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", + " \\\\\n", + "&k = k + 1\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "To define a generic return mapping we need to construct the derivatives of the flow rule $f$ with respect to $\\lambda$. The dependency of $f$ on $\\lambda$ is intermediated via the stresses $\\boldsymbol{\\mathcal{S}}$ and state variables $\\boldsymbol{\\mathcal{E}}$\n", + "\\begin{align}\n", + "f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda))).\n", + "\\end{align}\n", + "To correctly resolve the dependencies in the derivative $\\frac{\\partial f}{\\partial_\\lambda}$, we need to apply rules for chaining of derivatives. Let us start with the derivative with respect to $\\boldsymbol{\\mathcal{E}}$ in the form\n", + "\\begin{align}\n", + "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}))}{\\partial \\boldsymbol{\\mathcal{E}}}\n", + " &=\n", + "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}})}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", + "\\frac{\\partial \\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}})}{\\partial \\boldsymbol{\\mathcal{E}}}.\n", + "\\end{align}\n", + "By expanding the derivatives of $\\boldsymbol{\\mathcal{E}}$ with respect to $\\lambda_\\Delta$ that will be abbreviate in index position as $\\lambda$ for brevity we obtain\n", + "\\begin{align}\n", + "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda)))}{\\partial \\lambda}\n", + " &=\n", + "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}} \\, \n", + "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", + "\\frac{\\partial \\boldsymbol{\\mathcal{E}}}{\\partial \\lambda}.\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "The last term $\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{ \\partial \\lambda}$ can be obtained from the evolution equations\n", + "\\begin{align}\n", + "\\boldsymbol{\\mathcal{E}} = \\lambda \\, \\boldsymbol{\\Phi} \\; \\implies\n", + "\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{\\partial \\lambda} = \n", + " \\boldsymbol{\\Phi}\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "**Summarizing**: the algorithm can be written in a compact way as follows:\n", + "\\begin{align}\n", + "&\n", + "\\left(\n", + "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n", + "^{(k)} \\, \n", + "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n", + "^{(k)} \\, \n", + "\\boldsymbol{\\Phi}^{(k)}\n", + "\\right)\n", + "\\Delta \\lambda = -\n", + "f^{(k)}\\\\\n", + "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n", + "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \\boldsymbol{\\mathcal{E}}^{(k)} + \n", + " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n", + " \\\\\n", + "&k = k + 1\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Implementation concept\n", + "The gradient operators needed for the time-stepping scheme have been derived above and are now available for the implementation of the numerical algorithm both in `Python` and `C89` languages\n", + "\n", + "<table style=\"width:50%\">\n", + "<tr>\n", + "<th>Symbol</th>\n", + "<th>Python</th>\n", + "<th>C89</th>\n", + "</tr>\n", + "<tr>\n", + "<td>$\\mathcal{S}(\\boldsymbol{\\mathcal{E}}) $ \n", + "</td>\n", + "<td>get_Sig</td>\n", + "<td>get_Sig_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>$ f(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$</td>\n", + "<td>get_f</td>\n", + "<td>get_f_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>\n", + "$\\displaystyle{\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$\n", + " </td>\n", + "<td>get_df_dSig</td>\n", + "<td>get_df_dSig_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>\n", + "$\\displaystyle{\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}}(\\boldsymbol{\\mathcal{E}})$</td>\n", + "<td>get_dSig_dEps</td>\n", + "<td>get_dSig_dEps_C</td>\n", + "</tr>\n", + "<tr>\n", + "<td>$\\boldsymbol{\\Phi}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}}) $</td>\n", + "<td>get_Phi</td>\n", + "<td>get_Phi_C</td>\n", + "</tr>\n", + "</table>" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "To avoid repeated calculation of the same expressions, let us put the evaluation of $f$ and $\\frac{\\partial f}{\\partial \\lambda}$ into a single procedure. Indeed, the iteration loop can be constructed in such a way that the predictor $\\frac{\\partial f}{\\partial \\lambda}$ for the next step is calculated along with the residuum $f$. In case that the residuum is below the required tolerance, the overhead for an extra calculated derivative is negligible or, with some care, it can be even reused in the next time step. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "def get_f_df(s_n1, Eps_k, *margs):\n", + " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", + " f_k = np.array([get_f_Sig(Eps_k, Sig_k, *margs)])\n", + " df_dSig_k = get_df_dSig(Eps_k, Sig_k, *margs)\n", + " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", + " dSig_dEps_k = get_dSig_dEps(s_n1, Eps_k, *margs)\n", + " df_dSigEps_k = np.einsum(\n", + " 'ik,ji->jk', df_dSig_k, dSig_dEps_k)\n", + " dEps_dlambda_k = Phi_k\n", + " df_dlambda = np.einsum(\n", + " 'ki,kj->ij', df_dSigEps_k, dEps_dlambda_k)\n", + " df_k = df_dlambda\n", + " return f_k, df_k, Sig_k" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "The update of state variables $\\boldsymbol{\\mathcal{E}}^{(k+1)}$ for an newly obtained $\\lambda_\\Delta^{(k+1)}$ is performed using the evolution equations. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "def get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs):\n", + " Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n", + " Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n", + " Eps_k1 = Eps_n + lam_k * Phi_k[:,0]\n", + " return Eps_k1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "The double loop over the time increments and over the return mapping iteration. The inner loop represents the material point level in a standard finite element calculation. The input is the maximum slip value, the number of time steps, the maximum number of iterations and a load function which can define cyclic loading as shown below. The procedure returns the record of $\\boldsymbol{\\mathcal{E}}(t)$ and $\\boldsymbol{\\mathcal{S}}(t)$" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "def get_response(margs, s_max=3, n_steps = 10, k_max=20, get_load_fn=lambda t: t):\n", + " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", + " Eps_k = np.copy(Eps_n)\n", + " Sig_record, Eps_record, iter_record = [], [], []\n", + " t_arr = np.linspace(0,1,n_steps+1)\n", + " s_t = s_max * get_load_fn(t_arr) + 1e-9\n", + " for s_n1 in s_t:\n", + " lam_k = 0\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " f_k_trial = f_k[-1]\n", + " k = 0\n", + " while k < k_max:\n", + " if f_k_trial < 0 or f_k_norm < 1e-8:\n", + " Eps_n[...] = Eps_k[...]\n", + " Sig_record.append(Sig_k)\n", + " Eps_record.append(np.copy(Eps_k))\n", + " iter_record.append(k+1)\n", + " break\n", + " dlam = np.linalg.solve(df_k, -f_k)\n", + " lam_k += dlam\n", + " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " k += 1\n", + " else:\n", + " print('no convergence')\n", + " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", + " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", + " iter_arr = np.array(iter_record,dtype=np.int_)\n", + " return t_arr, s_t, Eps_arr, Sig_arr, iter_arr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Support functions\n", + "To run some examples, let us define some infrastructure including a more complex loading history and postprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Loading history\n", + "This implementation uses the symbolic machinery which is not necessary a simpler data point based implementation with `numpy.interp1d` would be better ... later " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"639.85\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t, theta = sp.symbols(r't, \\theta')\n", + "n_cycles = 5\n", + "A = 2\n", + "ups = np.array([((theta-2*cycle)*A+(1-A), theta-2*cycle<=1) \n", + " for cycle in range(n_cycles)])\n", + "downs = np.array([((1-(theta-(2*cycle+1)))*A+(1-A),(theta-(2*cycle+1))<=1) \n", + " for cycle in range(n_cycles)])\n", + "ups[0,0] = theta\n", + "updowns = np.einsum('ijk->jik',np.array([ups, downs])).reshape(-1,2)\n", + "load_fn = sp.Piecewise(*updowns).subs(theta,t*n_cycles)\n", + "get_load_fn = sp.lambdify(t, load_fn,'numpy')\n", + "t_arr = np.linspace(0,1,600)\n", + "plt.plot(t_arr, get_load_fn(t_arr));" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Plotting functions\n", + "To simplify postprocessing examples, here are two aggregate plotting functions, one for the state and force variables, the other one for the evaluation of energies" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "def plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33):\n", + " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", + " s_pi_, z_, alpha_ = Eps_arr.T\n", + " sig_pi_, Z_, X_ = Sig_arr.T\n", + " n_step = len(s_pi_)\n", + " ax1.plot(s_t, sig_pi_, color='black', \n", + " label='n_steps = %g' % n_step)\n", + " ax1.set_xlabel('$s$'); ax1.set_ylabel(r'$\\tau$')\n", + " ax1.legend()\n", + " if ax11:\n", + " ax11.plot(s_t, iter_arr, '-.')\n", + " ax2.plot(t_arr, z_, color='green', \n", + " label='n_steps = %g' % n_step)\n", + " ax2.set_xlabel('$t$'); ax2.set_ylabel(r'$z$')\n", + " if ax22:\n", + " ax22.plot(t_arr, Z_, '-.', color='green')\n", + " ax22.set_ylabel(r'$Z$')\n", + " ax3.plot(t_arr, alpha_, color='blue', \n", + " label='n_steps = %g' % n_step)\n", + " ax3.set_xlabel('$t$'); ax3.set_ylabel(r'$\\alpha$')\n", + " if ax33:\n", + " ax33.plot(t_arr, X_, '-.', color='blue')\n", + " ax33.set_ylabel(r'$X$')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "from scipy.integrate import cumtrapz\n", + "def plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr):\n", + " W_arr = cumtrapz(Sig_arr[:,0], s_t, initial=0)\n", + " U_arr = Sig_arr[:,0] * (s_t-Eps_arr[:,0]) / 2.0\n", + " G_arr = W_arr - U_arr\n", + " ax.plot(t_arr, W_arr, lw=2, color='black', label=r'$W$')\n", + " ax.plot(t_arr, G_arr, color='black', label=r'$G$')\n", + " ax.fill_between(t_arr, W_arr, G_arr, color='green', alpha=0.2)\n", + " ax.set_xlabel('$s$'); ax3.set_ylabel(r'$E$')\n", + " ax.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [], + "source": [ + "def plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr): \n", + " colors = ['blue','red', 'green', 'black', 'magenta' ]\n", + " E_i = cumtrapz(Sig_arr, Eps_arr, initial=0, axis=0)\n", + " c = 'black'\n", + " ax.plot(t_arr, E_i[:,0], '-.', lw=1, color=c)\n", + " ax.fill_between(t_arr, E_i[:,0], 0, color=c, alpha=0.1)\n", + " c = 'black'\n", + " ax.plot(t_arr, E_i[:,0], color=c, lw=1)\n", + " ax.fill_between(t_arr, E_i[:,0], E_i[:,0], \n", + " color=c, alpha=0.2);\n", + " c = 'blue'\n", + " ax.plot(t_arr, E_i[:,1], '-.', lw=1, color='black')\n", + " ax.fill_between(t_arr, E_i[:,1], 0, color=c, alpha=0.1)\n", + " c = 'blue'\n", + " ax.plot(t_arr, E_i[:,1] + E_i[:,2], color='black', lw=1)\n", + " ax.fill_between(t_arr, E_i[:,1] + E_i[:,2], E_i[:,1], \n", + " color=c, alpha=0.3);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Examples" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [], + "source": [ + "material_params = {\n", + " E_b:1, gamma: 0.0, K:0.1, tau_bar:1, \n", + "}\n", + "margs = [material_params[map_py2sp[name]] for name in py_vars]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Monotonic load \n", + "Let's first run the example with different size of the time step to see if there is any difference" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1399.1833333333334\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", + "ax11, ax22, ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", + "for n_steps in [20, 40, 200, 2000]: \n", + " t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", + " margs=margs, s_max=8, n_steps=n_steps, k_max=10\n", + " )\n", + " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"898.9166666666666\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", + "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", + "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Cyclic loading" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1399.1833333333334\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", + "ax11,ax22,ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n", + "t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n", + " margs, s_max=2, n_steps=20000, k_max=20, get_load_fn=get_load_fn\n", + ")\n", + "plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33);" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"898.9166666666666\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n", + "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n", + "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hide_input": false, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Interactive application" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "hide_input": true, + "scrolled": false, + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1399.1833333333334\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0cae1d743e8042e7915c9f95c59453ce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='s1', max=4.0, min=-4.0), Ou…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb6ccc833ae94df7ab2af3122a4d66fd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=50.0, continuous_update=False, description='E_b', min=0.5, step=4.975)…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def init():\n", + " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", + " s0 = 0\n", + " t0 = 0\n", + " Sig_record = []\n", + " Eps_record = []\n", + " iter_record = []\n", + " t_arr = []\n", + " s_t = []\n", + " Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n", + " \n", + "def get_response_i(s1, margs, n_steps = 60, k_max=20):\n", + " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n", + " Eps_k = np.copy(Eps_n)\n", + " t1 = t0+n_steps+1\n", + " ti_arr = np.linspace(t0, t1, n_steps+1 )\n", + " si_t = np.linspace(s0,s1,n_steps+1)\n", + " for s_n1 in si_t:\n", + " lam_k = 0\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " f_k_trial = f_k[-1]\n", + " k = 0\n", + " while k < k_max:\n", + " if f_k_trial < 0 or f_k_norm < 1e-6:\n", + " Eps_n[...] = Eps_k[...]\n", + " Sig_record.append(Sig_k)\n", + " Eps_record.append(np.copy(Eps_k))\n", + " iter_record.append(k+1)\n", + " break\n", + " dlam = np.linalg.solve(df_k, -f_k)\n", + " lam_k += dlam\n", + " Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n", + " f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n", + " f_k_norm = np.linalg.norm(f_k)\n", + " k += 1\n", + " else:\n", + " print('no convergence')\n", + " t_arr = np.hstack([t_arr, ti_arr])\n", + " s_t = np.hstack([s_t, si_t])\n", + " t0 = t1\n", + " s0 = s1\n", + " return\n", + "\n", + "import ipywidgets as ipw\n", + "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n", + "ax11 = ax1.twinx()\n", + "ax22 = ax2.twinx()\n", + "ax33 = ax3.twinx()\n", + "axes = ax1, ax11, ax2, ax22, ax3, ax33\n", + "axes = ax1, None, ax2, ax22, ax3, ax33\n", + "def update(s1):\n", + " global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n, axes\n", + " global margs\n", + " get_response_i(s1, margs)\n", + " Sig_arr = np.array(Sig_record, dtype=np.float_)\n", + " Eps_arr = np.array(Eps_record, dtype=np.float_)\n", + " iter_arr = np.array(iter_record,dtype=np.int_)\n", + " for ax in axes:\n", + " if ax:\n", + " ax.clear()\n", + " plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, *axes)\n", + " \n", + "init()\n", + "\n", + "s1_slider = ipw.FloatSlider(value=0,min=-4, max=+4, step=0.1,\n", + " continuous_update=False)\n", + "\n", + "ipw.interact(update, s1 = s1_slider);\n", + "\n", + "def reset(**material_params):\n", + " global margs\n", + " init()\n", + " s1_slider.value = 0\n", + " margs = [material_params[name] for name in py_vars]\n", + "\n", + "n_steps = 20\n", + "margs_sliders = {\n", + " name : ipw.FloatSlider(description=name, value=val, \n", + " min=minval, max=maxval, step=(maxval-minval) / n_steps,\n", + " continuous_update=False)\n", + " for name, val, minval, maxval in [('E_b', 50, 0.5, 100),\n", + " ('gamma', 1, -20, 20),\n", + " ('K', 1, -20, 20),\n", + " ('tau_bar', 1, 0.5, 20)]\n", + "}\n", + "\n", + "ipw.interact(reset, **margs_sliders);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "315.333px" + }, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/index.ipynb b/index.ipynb index 4238ac7..c94911e 100644 --- a/index.ipynb +++ b/index.ipynb @@ -29,14 +29,15 @@ "## Unloading, reloading and inelasticity\n", "\n", "- [J0401 - Unloading with multi-linear bond-slip law](bmcs_course/4_1_PO_multilinear_unloading.ipynb) (PO_BS_ML)\n", - "- [J0402 - Plasticity framework](bmcs_course/4_2_BS_EP_SH_IK_analytical.ipynb) (BS_EP_SH_IK_A)\n", - "- [J0403 - Iterative numerical simulation](bmcs_course/4_3_BS_EP_SH_IK_numerical.ipynb) (BS_EP_SH_IK_N)\n", + "- [J0402 - Plasticity framework](bmcs_course/4_2_BS_EP_SH_IK_A.ipynb) (BS_EP_SH_IK_A)\n", + "- [J0403 - Iterative numerical simulation](bmcs_course/4_3_BS_EP_SH_IK_N.ipynb) (BS_EP_SH_IK_N)\n", "- [J0404 - Damage framework](bmcs_course)\n", - "- [J0405 - Iterative numerical simulation](bmcs_course)\n", + "- [J0405 - Iterative numerical simulation](bmcs_course)/4_3_BS_EP_SH_IK_N\n", "\n", - "## Energy dissipation\n", + "# CRACK\n", "\n", - "# CRACK" + "## Energy dissipation\n", + "\n" ] }, { -- GitLab