From 5bf267a8c982bcbb18596ee9c1bff8072fe006e4 Mon Sep 17 00:00:00 2001
From: nbgitpuller <nbgitpuller@example.com>
Date: Tue, 4 May 2021 08:36:20 +0000
Subject: [PATCH] WIP

---
 pull_out/2_1_2_PO_ELF_RLM.ipynb               | 152 ++++++++++--------
 .../2_2_1_PO_configuration_explorer.ipynb     |  22 +--
 pull_out/2_2_2_PO_ELF_ELM.ipynb               |   4 +-
 pull_out/pull_out.ipynb                       |  24 ++-
 4 files changed, 115 insertions(+), 87 deletions(-)

diff --git a/pull_out/2_1_2_PO_ELF_RLM.ipynb b/pull_out/2_1_2_PO_ELF_RLM.ipynb
index 3e3a74d..4924f85 100644
--- a/pull_out/2_1_2_PO_ELF_RLM.ipynb
+++ b/pull_out/2_1_2_PO_ELF_RLM.ipynb
@@ -42,13 +42,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 43,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "79cccfa13ce44e9daeb13bb513c55f39",
+       "model_id": "64c42a250acc4221b0b9fb76801d6ab1",
        "version_major": 2,
        "version_minor": 0
       },
@@ -58,6 +58,18 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwUklEQVR4nO3deZzcdX3H8debHBAiV0i0QAgbTZAjKMcaoFhBuQJFAlo1SOW0EQhUFFuIKFgRxSIoyCERKWKDgSJIigIGBClHDAmkCacEwrGEkhBAAgkJ2Xz6x/e3ZLLsMbs7x29m3s/HYx4z87vmO7vzm8/8vtdHEYGZmVnerFftApiZmXXEAcrMzHLJAcrMzHLJAcrMzHLJAcrMzHKpf7ULUA1Dhw6NpqamahfDymDOnDmvRMSwapcj73wO1Ld6OQ8aMkA1NTUxe/bsahfDykDSc9UuQzVI2gC4B1ifdF7fEBFnd7a9z4H6Vi/nQUMGKLM6tBL4VES8KWkAcK+kWyNiZrULZtZbboOqA4041nrpUnjxxWqXIj8ieTN7OiC7NeAnw+qJA1QNW7UKvv99+MxnGiNIrVkDd9wBEybAllvCv/1btUuUL5L6SZoLLAZmRMSfq1wksz5xgKph660H112X7lesqHZpyuf//g9+8AMYPRr23x/+8Af4ylfglFOqXbJ8iYjWiNgZGA6MlTSmcL2kiZJmS5q9ZMmSqpTRrCccoGrMiy/CP/0TvP469O8P//M/8JvfwIYbVrtkpbVmDdx+O3z2s7D11vDNb8KIETB1KixaBBdfDDvtVO1S5lNEvA7cDYxrt3xKRDRHRPOwYTXfwcsagANUjWhthZ/+FLbfHv7zP2Fm1vS98cbVLVepLV4M550Ho0bBuHFwzz1w6qnw5JNw113wxS/CBhtUu5T5I2mYpE2zx4OA/YAnqloosz5yL74aMH8+fPnLMGsWHHAAXHYZfOhD1S5V6UTAvffC5ZfDDTfAO+/A3nvDueem9rX11692CWvCFsAvJfUj/fC8PiJuqXKZzPrEAaoGnHkmLFyYqreOOAKkapeoNJYtS1eDl10GjzwCm2wCJ52U2pe2377apastETEP2KXa5TArJQeonJo9G4YNg222gSuugAEDYOjQapeqNJ58Ei69FK6+OgWpXXaBK69MvfMGD6526cwsL9wGlTOrVsG3vw177JGunAC22KL2g9OaNXDLLamKcrvtUtA99FB44AGYMweOP97ByczW5SuoHHn0UfjHf4S5c+Hoo+EnP6l2ifrujTfgP/4jdfB4+uk0fumcc2DiRHj/+6tdOjPLMweonPjDH9IVxcYbw29/C+PHV7tEffP00ykoXXVVqsbbc8+1nR4GDKh26cysFjhA5cTuu6erpnPOqd0ri7beeD/+cQqy/frBF74AX/0qfOxj1S6dmdUat0FV0R13wEEHwdtvpx5sV1xRm8Fp9eo0o8Xuu8MnPgF/+hNMngzPPZd66Tk4mVlvOEBVQWsrnH126jDw3HPw8svVLlHvvPlmmtFh9OjUA+/111OX8RdeSNV5W25Z7RKaWS1zFV+FLVmSxjLdeScccwxccknt9V5bvDiV+5JL4LXXYK+9UoeOT386zQtoZlYKDlAVdtRRqZ3mF7+A446rdml65tln4Uc/SmVfuTJ15PjXf00dIMzMSs0BqkJaW1OngYsvTr3adt212iUq3mOPpfnxrr02XSF96UspMH34w9UumZnVMweoMmtthdNPT7OQX3ttaq+pFQ8/nNqS2mZLP+UUOO00GD682iUzs0bgFoMyevNNOPxwuOAC2HzzNJtCLZg1Cw45JF3l3XEHfOtbqTPHj3/s4GRmleMrqDJ56aX0JT93bupMMGlStUvUvZkzU5ba226DIUPge9+Dk09OXeDNzCrNAaoM1qyBgw+Gp56C//7v9DjPZs1K3d5vuy1d6Z13XppVfKONql0yM2tkDlBlsN56cNFFqd2mubnapenc3Llw1lkpiLYFpkmT4H3vq3bJzMwcoErqnnvSl/4//3OaUSGvnngiBab/+i/YdNPUEeKUU3zFZGb5krtOEpKukrRY0iMFy4ZImiHpqex+s4J1kyUtkPSkpAOrU2r44x9TivKf/QxWrKhWKbr2/PMprcWOO8Ktt6a0HgsXwje/6eBkZvmTuwAFXA2Ma7fsDODOiBgN3Jk9R9IOwARgx2yfy7KU1xV1553w93+f0rDffTcMGlTpEnTt1VfhG9+AbbdNc+N99avwzDPw3e+mKygzszzKXYCKiHuAV9stHg/8Mnv8S+CwguXTImJlRCwEFgBjK1HONv/zP2mKn9Gj01VUniZ7XbEC/v3f4YMfhAsvTFMsPfVUejxsWLVLZ2bWtdwFqE58ICJeAsju28LAVsALBdu1ZMsq5tFHoakpjRfKy5f+mjVpUPB226VBwnvtBf/7vylx4IgR1S6dmVlxaiVAdUYdLIsON5QmSpotafaSJUv6/MJtg25POAEeeig/V07335/mxjvyyNQz749/hN/9Dnbaqdols3KStLWkuyQ9LulRSV+tdpnM+qpWAtTLkrYAyO4XZ8tbgK0LthsOLOroABExJSKaI6J5WB8vdRYvht12S21PABts0KfDlcTzz6cqvL32gpYWuPpqmD0bPvnJapfMupJ1AOrutmkRh1oNnBYR2wN7AJOyNlqzmlUr3cynA0cD52X3Nxcsv1bShcCWwGhgVjkLsnJlmr7oiSfykSbj7bfh/PPhBz9IGW3POitN5JqHsllRFmW3jmoD2vQDuqyczaq+26rBl0l6nFTd/ViJymlWcSULUJKGFLHZmoh4vZvj/BrYBxgqqQU4mxSYrpd0PPA88DmAiHhU0vWkk3A1MCkiWnv9JroRkar07r8frr8e9tijXK9UnP/+79Qjb+FC+NznUqDaZpvqlsl67PGI2KWrDSQ93JMDSmoCdgH+3G75RGAiwAg3RloNKOUVVKl+CR7Ryap9O9n+XODcYgrYV5dfnqrOzjorBYRqWbgwDQa+5RbYYYdU1fipT1WvPNYnxWTTKjrjlqT3Ab8BTo2INwrXRcQUYApAc3Nzh221ZnlSygBV8l+CeTNnTppX7+yzq/P6q1almdG/+92UW+r889MV1IAB1SmP9V1EvA0gqRk4E9iGdF4qrY6PtG3THUkDSMFpakTcWKYim1VMKQNUSX8J5tGVV6Y2qGqkNb//fpg4MXVrP/zwNNff1lt3v5/VjKnAvwDzgR4nZpEk4BekH4oXlrhsZlVRsq/aYn7lFftLMG++//0UGKTK99hbtiylvPj4x+GNN2D6dLjxRgenOrQkIqZHxMKIeK7t1oP99wK+BHxK0tzslvN59M26VspOEmd1sToi4pxSvVYl/e53cOaZaVaGcyr8Dm6/PV01vfBCClLnnus58+rY2ZKuJE3ltbJtYbFVdRFxL123/5rVnFJW8b3VwbINgS8DmwM1F6CWLUu99nbcMWWVrZQ33oCvfx1+8Ys0G8S998Lf/m3lXt+q4lhgO2AAa6v4AnBbkjWskgWoiLig7bGkjYCvAscB04ALOtsvz77zHXjxxZSWYv31K/Oaf/wjHHNMet3TT09lyMNAYCu7j0aE5/swK1DS5v5s1Pv3gHmk4LdrRJweEYu72TV3nnwSLr44paeoxHint9+Gr30N9t03zYZ+//0pgaCDU8OY6ZkfzNZVyjao84HPkMZZ7BQRb5bq2NWw1VZpvNNXvlL+13rkkTRN0SOPpLamH/4wZeO1hvJx4GhJC0ltUO92M69uscyqp5RtUKeRTqxvAWemXq/A2hNt4xK+Vtm9730poV85RaTBv1//esrLdOutKemhNST/583aKWUb1HqQBhxGxOzCdZIOLdXrVMLXvgb77APjx5fvNV5/PVUf3ngjHHRQmqEiLzOiW+X1sEu5WUMox5DTKyS929graQJphHxNeOQR+MlPYP788r3GnDmw665pTNP556cpixycGpukZkk3SXpI0jxJ8yXNq3a5zKqpHLOZfw64QdKRpHr1o4ADyvA6ZXHRRamTwkknlef4V14JkyalgHTPPSl3kxl9nEnCrB6VPEBFxDPZVdNvSdluD4iIFaV+nXJ4442UifaLX4QhxczN3gMrV8Ipp8DPfw77759eZ+jQ0r6G1bQlETG92oUwy5NS9uKbz7rZbIeQZi//syRqoTfSDTfA8uXw5S+X9rgvvwyf/Szcdx+ccQZ873tpslezAn2aScKsHpXyCuqQEh6rKoYMgS98AXbfvXTHnDcPPv1pWLIEpk1Lxy+ld955h5aWFt5+uyanOey1DTbYgOHDhzOgfqZy90wSZu2UshdfzfdCOuywdCuVW2+Fz38eNt44TVe0666lO3ablpYWNtpoI5qamijo2l/XIoKlS5fS0tLCyJEjq12cUvFMEmbtlKwXn6SHSrFNtSxalLp+l8qVV6Yrp1GjYNas8gQngLfffpvNN9+8YYITgCQ233zzertq9EwSZu2Usopv+266xQrYpISvV1Lnnps6LrzySt/ahyJSG9NZZ6VBt9dfX/4ZyBspOLWpw/fsmSTM2illgNquiG1aS/h6JfXAA9Dc3LfgtGZNmhXioovgqKPSVVT9NJFYmXkmCbN23AZF6gI+fz78y7/0/hitrSl301VXpZkofvSj6mTetdpUy+ePWbn4KxRYsABWr4YxY3q3f2srHHtsCk5nnQUXXODgZMWp9bZbs3Kqqa9RSc9mU8DMlTQ7WzZE0gxJT2X3m/X0uE8/ne5Hjep5mVpb4bjj4Fe/Sm1P//ZvKTW8rWvFihXsvffetLamWt7bbruND3/4w4waNYrzzjsPgFWrVvGJT3yC1atXV7OolbZ9NrVRZ7f5gId0W0Mq5UDdo0mJCdcDbgEmRcSyUh2/wCcj4pWC52cAd0bEeZLOyJ6f3pMD7rxzyl774Q/3rCARcOKJcM018N3vptTw1rGrrrqKz3zmM/Tr14/W1lYmTZrEjBkzGD58OB/72Mc49NBD2WGHHdh333257rrrOPLII6td5Eqp6bZbs3IqZSeJbwP7Ay8CpwDfz+7LbTywT/b4l8Dd9DBAjRiRroJ6avLkNHXR5MnlT81RjFNPhblzS3vMnXdOk+d2ZeHChRxzzDH86U9/4qGHHmK33XbjlVdeYdNNN+WjH/0os2bNYurUqVx77bUAzJo1i1GjRvHBD34QgAkTJnDzzTezww47cNhhhzF58uSGCVClanuSdBVpsPziiOhlZbVZvpSyiu+NiHg4IhZHxLeBsSU8dpsA/iBpjqSJ2bIPRMRLANl9h/OCS5ooabak2UuWLFln3dNPp2mIeuKii1JiwRNOSF3UG9mmm27KsmXpYvmnP/0pe+yxB6+99hq/+93v2H///enfvz/PPPMMTU1NALz44otsvfXW7+4/fPhwXnzxRQDGjBnDgw8+WPH3UAeuxj0Brc6U8gpqiyxoPA48QZqypdT2iohFkt4PzJD0RLE7RsQUUrZfmpubC+cM5NJL05XQsiIrJH/729RT7/DD4ZJL8tPm1N2VTrlssskmLF++nKVLl/LSSy+x11578dprrzFlyhQuvPDCd6+m2kTEe47RNq6pX79+DBw4kGXLlrFRuQeQ1ZGIuEdSU7XLYVZKpQxQZwMfAY4EdgLeJ+n3wP8C8yLi1319gYhYlN0vlnQT6SrtZUlbRMRLkrYAFvfm2MUGmYcfhiOPhLFjYepUT/oKsF7WZfHnP/85xx9/PI899hjz5s2jtbWVbbfdltdee22dWR+GDx/OCy+88O7zlpYWttxyy3efr1y5kg022KBybyAHJD0IzCOl25gHzI+IJV3v1ePXmAhMBBgxYkQpD21WFiWr4ouIKRFxckTsHRFDgA8ClwCvAwf39fiSBkvaqO0xKcfUI8B04Ohss6OBm/v6Wp155ZU0V9+QIekqatCgcr1S7VlvvfWYPn06hx9+OBtvvDE/+tGPOOGEEwDYbLPNaG1tfTdIfexjH+Opp55i4cKFrFq1imnTpnHooSnp8tKlSxk2bFg9TQJbrPHAfwEDgROAZyWVdGxUdo42R0TzsGHDSnlos7IoR8JCACKiBWgBfl+iQ34AuCmrCuoPXBsRt2W/PK+XdDzwPClhYsm1tsIRR6TUGffeC3/zN+V4ldo1cOBADjroIPr378/GG2/MW2+9xSGHrJ3g/oADDuDee+9lv/32o3///lxyySUceOCBtLa2ctxxx7HjjjsCcNddd3HwwX3+PVNzstqBRcBtAJK2B/6hqoUyq7KyBahSi4hngI92sHwpsG+5X//734c77khtVc3N5X612jO3oPvg8ccfz/HHH7/O+pNPPpkLL7yQ/fbbD4CDDz64w0B07bXX8oMf/KCsZc0jSSMi4vm25xHxuKQdq1kms2qrmQBVTsceC5/6VOfr778fvvOd1PbU7nvXirTLLrvwyU9+ktbWVvp10nC3atUqDjvsMD7c0wFp9eE6SVsDC0ntUG9T3BgpACT9mjTcYqikFuDsiPhFOQpqVikOUMBOO6VbR956C770pTRW6rLL8tNjrxYd181gs4EDB3LUUUdVqDT5EhF7AkgaRepkNAS4sAf7H1GmoplVjQMU8Nhj0NICBxzw3nVnngnPPAN3350SD5qVU0QsABZUuxxmeVBTc/GVy5VXwj900Bw9ezZcfDGcdBLsvXfly2Vm1sgcoDqxZk0KTB/4QOogYWZmleUqvk5cey08+GCaCHaT3OYBNjOrX76C6sDbb6e2p113TT33zMys8nwF1YH/+A94/vnUNuXEg2Zm1eGvX9KM5NOnp8fvvJNmKd9zT8jGlFoJtE9YeMUVVzBp0qQu92nQBIZmlnGAArbdFvbZJz2+4QZ47jn45jc95qmUChMWAsybN4+dOht8lhk4cOC7CQzNrPE4QJFmKP/Nb9Ljn/0MPvhBaMDp4Hpt4cKF7J31w3/ooYeQxNKlS2ltbWXMmDEsX76cqVOnMn78+Hf3mT9/frcBCuCwww5j6tSpZSu7meWX26CAX/0qtTdtvz3cc0+q4qvVtqe2K8FCn/986jK/fHnHgfeYY9LtlVfeOx7s7ru7f83OEhbed999HSYsBHjkkUcYM6b7xK9OYGjWuGr0a7g8pk1LgemYY6pdktrSVcLCE0888T0JC1944QU22mgjNinov3/11Vdzyy23vOfYhQkMzayx+AqqwG9/C3/3d/D+DpPG14aurng23LDr9UOHFnfF1F5PExZ21v7061//mrvuuov3v//9nH766e8ub8QEhmbmK6h3RcD8+SkhofVcTxIWdtb+dMABB3DBBRfw4IMPsmbNGqChExiaNTwHqExbT+Yssav1ULEJCyEFqClTptDU1ERTUxN77rknAFkySiS9+7hRExiamav4ADj11DSb+e23w8iR1S5NbepJwsKOeuVdffXV3HbbbcydO5fm5uZ3A1SjJjA0MwcoIOV6Wr48BSePfSqP7hIWHnPMMRzTrndKgycwNGt4ruIDZs5MY6F89VRexx13XKfZdDvSyAkMzcwBCoDrroNFixygzMzyxAEKWLEi3TtAmZnlR10EKEnjJD0paYGkM3qy70knwRVXpMennpqe15qIqHYRKq4R33NX+nIOmOVVzQcoSf2AS4GDgB2AIyTtUMy+J50El1++9vmaNel5LQWpDTbYgKVLlzbUF3ZEsHTpUg/ezfTlHDDLs3roxTcWWBARzwBImgaMBx7rbscpUzpfftllJSxhGQ0fPpyWlhaWLFlS7aJU1AYbbMDw4cOrXYy86PU5UOiLe+3Fo08/XYbiWbns+KEPce1991W7GGVTDwFqK+CFguctwO7tN5I0EZgIMGLECACy1ETv0dnyPBowYAAj3XjW6Hp9DrS3+p13ylA8K5dlr79e7SKUVT0EqI5GLr2nvisipgBTAJqbmwOgX7+Og1EPekKb5UGvz4FC9fxL3GpTzbdBkX4tbl3wfDiwqJgdJ07s2XKznOr1OWCWZ/UQoB4ERksaKWkgMAGYXsyOl10GJ5649oqpX7/0vFban8wyvT4HzPJM9dD7S9LBwE+AfsBVEXFuN9svAZ5rt3go8EpZClg/auFvtE1EDKt2ISqtROdAHtXCZ66aOvv71MV5UBcBqhQkzY6I5mqXI8/8N7JK82eua/X+96mHKj4zM6tDDlBmZpZLDlBrdTJs1wr4b2SV5s9c1+r67+M2KDMzyyVfQZmZWS45QJmZWS45QOFUBV2RtLWkuyQ9LulRSV+tdpms/kg6X9ITkuZJuknSpgXrJmfn5pOSDixYvpuk+dm6iyV1NOVT3WqE762GD1BOVdCt1cBpEbE9sAcwyX8fK4MZwJiI+AjwF2AyQPZZmwDsCIwDLsvOWYDLSZPfjs5u4ypd6GpplO+thg9QFKQqiIhVQFuqAgMi4qWIeCh7vAx4nDR7tlnJRMQfImJ19nQmaT5BSOfitIhYGRELgQXAWElbABtHxAORenpdAxxW6XJXUUN8bzlAdZyqwF/AHZDUBOwC/LnKRbH6dhxwa/a4s/Nzq+xx++WNoiG+t+oh3UZfFZWqoNFJeh/wG+DUiHij2uWx2iPpDuBvOlh1ZkTcnG1zJqlaeWrbbh1sH10sbxQN8f4doJyqoFuSBpCC09SIuLHa5bHaFBH7dbVe0tHAIcC+sXaAZmfnZwtrqwELlzeKhvjechWfUxV0KesZ9Qvg8Yi4sNrlsfokaRxwOnBoRCwvWDUdmCBpfUkjSZ0hZkXES8AySXtkn9GjgJsrXvDqaYjvrYa/goqI1ZJOBm5nbaqCR6tcrDzZC/gSMF/S3GzZNyPi99UrktWhS4D1gRlZb/GZEXFCRDwq6XrgMVLV36SIaMuDfSJwNTCI1GZ163uOWqca5XvLUx2ZmVkuuYrPzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQHKzMxyyQGqDkhqkrSiYCBtKY89SNJcSaskDS318c36yp//+uUAVT+ejoidS33QiFiRHbfu5vmyuuLPfx1ygMqpbI6tP2WPd5UUkjaX1E/SI5I27GLfpiw76ZXZtlMl7SfpPklPSRrbk+3MqinL6Lx/9vh7ki7uZnt//uuEA1R+vQ5slD0+hZTEbTPg74EZ7SbU7Mgo4CLgI8B2wBeBjwPfAL7Zi+3MquVs4ExJR5LykX2tiH38+a8DDT9ZbI79FdhQ0ubAFsB9pAA1Efh6EfsvjIj5AJIeBe6MiJA0H2jqxXZmVRER92Qzln8d2Kdgstiu+PNfB3wFlVMRsSZ7+E+kdBfLSL/y+kXEX4o4xMqCx2sKnq9h3R8mxW5nVhWSdiL9SFsZEcuK3M2f/zrgAJVva4BDgZuAN0jVDj+raonMKkjSFqTsuuOBtyQdWOUiWQU5QOXbKuDWiFhNClCDgVuqWySzysg6At0InBYRjwPnAN+paqGsopwPqg5IagJuiYgxZXyNZ4HmiHilXK9h1hv+/NcvX0HVh1Zgk3IOVAQGkKoczfLGn/865SsoMzPLJV9BmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjlAmZlZLjVkQq6hQ4dGU1NTtYthZTBnzpxXImJYtcuRd+utt14MGjSo2sWwMlm+fHlERM1fgDRkgGpqamL27NnVLoaVgaTnql2GWjBo0CDeeuutahfDykTSimqXoRRqPsKamVl9coAyM7NccoAyM7NccoAyM7NccoAyM2swkq6StFjSIwXLviPpRUlzs9vBBesmS1og6UlJB1aqnA5QZmaN52pgXAfLfxwRO2e33wNI2gGYAOyY7XOZpH6VKKQDlJlZg4mIe4BXi9x8PDAtIlZGxEJgATC2bIUr4ABlZmZtTpY0L6sC3CxbthXwQsE2LdmysnOAMjOrP/0lzS64TSxin8uBDwE7Ay8BF2TL1cG2UZpidq2iAUrSuKyRbYGkMzpYL0kXZ+vnSdq1mH0lnZKte1TSv1fivZiZ5djqiGguuE3pboeIeDkiWiNiDfBz1lbjtQBbF2w6HFhU+iK/V8UCVNaodilwELADcETW+FboIGB0dptIiuhd7ivpk6Q60o9ExI7Aj8r/bszM6oukLQqeHg609fCbDkyQtL6kkaTv51mVKFMl5+IbCyyIiGcAJE0jBZbHCrYZD1wTEQHMlLRp9kdr6mLfE4HzImIlQEQsrtD7MTOrSZJ+DewDDJXUApwN7CNpZ1L13bPAVwAi4lFJ15O+b1cDkyKitRLlrGSA6qihbfcittmqm323Bf5O0rnA28A3IuLB9i+e1cFOBBgxYkTv34WZWY2LiCM6WPyLLrY/Fzi3fCXqWCXboIppaOtsm6727Q9sBuwB/AtwvaT3bB8RU9rqY4cNczYGM7O8q+QVVDENbZ1tM7CLfVuAG7NqwVmS1gBDgSWlK7qZmVVaJa+gHgRGSxopaSBpZPL0dttMB47KevPtAfw1Il7qZt/fAp8CkLQtKZi9UvZ3Y2ZmZVWxK6iIWC3pZOB2oB9wVdb4dkK2/mfA74GDSSOVlwPHdrVvduirgKuyOaVWAUdnV1NmZlbD1Ijf5c3NzeGMuvVJ0pyIaK52OfJu8ODB4Yy69UvS8ogYXO1y9JVnkjAzs1xygDIzs1xygDIzs1xygDIzs1xygDIzs1yq5EBdMzOrc5KGFLHZmoh4vbuNfAVlVgJZgrfF2Xi8tmVDJM2Q9FR2v1nBuslZ6pgnJR1YsHw3SfOzdRe3TduVzSR9Xbb8z5KaCvY5OnuNpyQdXaG3bNaZRcBsYE4Xt3nFHMgByqw0rgbGtVt2BnBnRIwG7syek6WKmQDsmO1zWZZSBlKKmYmsTTvTdszjgdciYhTwY+CH2bGGkGai3p2UMeDswkBoVgWPR8QHI2JkZzdgaTEHcoAyK4GIuAd4td3i8cAvs8e/BA4rWD4tIlZGxELSzCljs9QyG0fEA9lsKNe026ftWDcA+2ZXVwcCMyLi1Yh4DZjBewOlWSXtWaJtHKDMyugD2VySZPfvz5Z3lVampYPl6+wTEauBvwKbd3Gs95A0sS0F+OrVq/vwtsw6FxFvl2IbcCcJs2roTVqZ3uyz7sKU9nsKpKmOui+mWe9JagbOBLYhxRoBEREfKfYY3QaoUvbIMGswL0vaIiJeyqrv2rI9d5ZWpiV73H554T4tkvoDm5CqFFtImVEL97m7tG/DrFemknL0zQfW9OYAxVxBLcpuHf1Sa9MPcJpas3VNB44Gzsvuby5Yfq2kC4EtSZ0hZkVEq6RlWaqZPwNHAT9td6wHgH8A/hgRIel24PsFHSMOACaX/62ZdWtJRLRPqdQjxQSoxyNil642kPRwXwphVusk/Zp0JTNUUgupZ915pAzPxwPPA58DyNLMXA88BqwGJkVEa3aoE0k9AgcBt2Y3SOm4fyVpAenKaUJ2rFclnUPKmQbw3Yho31nDbB2SrgIOARZHxJhs2RDgOqAJeBb4fNbxBkmTST1JW4F/jojbi3iZsyVdSerBurJtYUTcWHQ5u0u3IWmD7hq0itkmT5xuo3453UZxnG6jvnWXbkPSJ4A3gWsKAtS/A69GxHmSzgA2i4jTs2ERvyYNY9gSuAPYtuBHVWev8Z/AdsCjrK3ii4g4rtj30e0VVFvg6arBq5aCk1kht7FaI4qIewoHe2fGs7Y985ektszTKRgWASzMruLHkqqbu/LRiNipL+XsSS++Pjd4SRoHXERqs7oyIs5rt17Z+oNJGXWPiYiHitz3G8D5wLCIcMp3K5bbWK0e9ZdUWE00JevF2ZV1hkVIKhwWMbNgu06HMrQzU9IOEfFY0aVupycBqk8NXtlI+UuB/Ulv8EFJ09sV/iDWjqDfnTSqfvfu9pW0dbbu+d6WzxqW21itHq0uYVV30UMZ2vk4cIykZ0htUKXvZl6grw1eY4EFEfEMgKRppEvHwgA1nlQnGqTou2nWPbepm31/DPwra3tJmRWrZKPezWpcT4dFdKejGU16NP6uJwHqWFKD1wAKGryAYgNURyPedy9im606Wb47gKRDgRcj4n+zeTU7JGkiaY4zRoxwbY0lpRz1blbjejQsoojjDWPdfgttynIF1dcGr2IuE3s0Wl7ShqQ/wAHdvXjhKPrm5maPojcAJJ3VxeqIiHMqVhizCinhsIiuVGSgbpu+NngVc5nY2TYDO1n+IWAk0Hb1NBx4SNLYiPi/XpbTGktHfa03BL5MmuvOAcrqTkQc0cmqfTvZ/lzg3B6+TEUG6rb5OHC0pIX0rsHrQWC0pJHAi6SBhl9st8104OSsjWl34K9ZfeiSjvaNiEdZOwEnkp4Fmt2Lz4oVERe0PZa0EfBV4DhgGnBBZ/uZWbf6PFC3JwGqT1P4R8RqSScDt5O67V6VXTqekK3/GfB7UhfzBaRu5sd2tW9fymPWJhsL9XXgSNL4j13bRtCbWa/1td9C9zNJ1CPPJFG/ejqThKTzgc+Q2icvjYg3y1a4HPFMEvWtu5kkKlSG+X0dqFt0PihJzZJukvSQpHlZWuqi0vaa5dhppJ5J3wIWSXojuy2T9EaVy2ZWy2Zm0yT1WkVnkjDLm4hw0k6z8uhrv4XKzSRhZmYNpU/9FqCyM0mY5Y6khyJi175uY2aJpD2BmRHxXF+PVcmZJMzyaPtu2lJFyl5rZsU5GrhU0l+A24DbejsutZIzSZjl0XZFbFPMqHkzAyLiBABJ25EmAL9a0ibAXaSAdV+RM1FUdCYJs9wpRTWEmb1XRDwBPAH8WNIg4JOk6ZMuBIoaClLJmSTMzKzOdTO/5ZKejFOs2EwSZnkkaUREOI+YWel0NAJ8MHA8aX7L7xZ7oKIDlKtCrE7dlmUOfZw0xm9edj8/IjxQ16yHOpnf8lh6Mb9ltwHK3XCtnkXEDpIGAjsCO5Fy1RwGfETSyogYWc3ymdWiUs1vWcwVlLvhWl2LiFXAw5IWACuAoaSkbPNLcfxslv1lpN6AqyOiOTuBryNli34W+HzbCSxpMqk6pBX454i4PVu+G3A1MIg0sfJXIyIkrQ9cA+wGLAW+EBHPlqLsZj3Vbn7Lnfoyv2UxAcrdcK1uSfow8PfAIaQMoDNI03pNzAJXqXyyXRqYM4A7I+I8SWdkz0/P5i6bQLqi2xK4Q9K2Wbfcy0lZoWeSAtQ44FZSMHstIkZJmgD8EPhCCctu1hOnkTrSfQs4syDTeVvHuo2LPVC3AcptT1bnHgceJmUTnR4RK7vZvlTGkzKaQqoCuRs4PVs+LSvHwuyqbmx2FbZxRDwAIOkaUlXkrdk+38mOdQNwiSRFI6YqsKor5fyWnijTGt2JwAPAycALkh6XdL2kb0s6rESvEcAfJM2RNDFb9oGIeAkgu29LvLkV8ELBvi3Zsq2yx+2Xr7NPRKwG/krqLbUOSRMlzZY0e/Xq1SV5Y1abJD2bZaSYK2l2tmyIpBmSnsruN6t2OXvSzdys7kTEFYXPJQ0ndZTYCfgs8NsSvMxeEbEo6y04Q9ITXWyrDpZFF8u72mfdBRFTSO0CDB482FdXVlS1c08PWsqOdT3JB/VAu+cbSdql2P2zfcZJelLSguwP0H69JF2crZ8nadfu9pV0vqQnsu1vkrRpT8pkVigiWiLi9xHxw4j4UomOuSi7XwzcBIwFXpa0BUB2vzjbvAXYumD34cCibPnwDpavs4+k/qROS6+WouzWUMaTqpvJ7g/r5XG2z76PO7vNJ3VE6lZPqvjWB5B0IUBELAMuK3ZnSf2AS0lzM+0AHNFBMquDSL2nRpMagy8vYt8ZwJhsRou/AJN78J7MykrS4GwsCJIGAwcAjwDTSZNqkt3fnD2eDkyQtL6kkaRzYVZWDbhM0h5Krc5Htdun7Vj/APzR7U8Nr39bdW52m9hufU+qnXtqO+DTXdwOAf62qDfRgxdVVkXxj5JOy06AQT3YfyywICKeyQ42jRSxC+f2Gw9ckx17pqRNs1+XTZ3tGxF/KNh/JukENcuLDwA3ZT2Z+gPXRsRtkh4Erpd0PPA8aY4yIuJRSdeTzovVwKSCiTVPZG0381uzG8AvgF9lHSpeJfUCtMa2upsphXpS7dwjpexY15MANRm4F7iWNPnfX+jZFVhHjb+7F7HNVp0sb78vwHGksSXvkf1KmAgwYsSIHhTbrPeyH1Uf7WD5UmDfTvY5Fzi3g+WzgTEdLH+bLMCZFaOw2lnSOtXOEfFSu2rnqik6wETEbRGxbUScSgoCo0jjL4pVTENubxqI047SmaRfnFM7evGImBIRzRHRPGzYsCKKa2ZWf3pR7dzT4/+oFOWEXvbiy8ZiPNDthuvqrPG3mG0GdrWvpKNJ9Zr7uu7dzKxLPap27oVPlaaYle1m/iAwOmv4fZFUT/7FdttMB07O2ph2B/6aXW4u6WxfSeNIXSH3jojllXkrZma1qTfVztVSsQAVEaslnQzcDvQDrsoahE/I1v+MNH3LwcACYDlpBtxO980OfQmph+GM7BfBzLaMjmZmVnEfVcobOJ9Uddh2/0REvNOTA6kRa8Sam5tj9uzZ1S6GlYGkOT1JiNaoBg8eHG+91VHaHqsHkpZHxOAqvfbDpPktx5AGvLfdjwZeiIj3dPTpjGeSMDOzksp6CS4C3h0GlI3fG9WT4zhAmZlZKV3a0cKsA9tTPTmQJ4s1M7OSiYgrS3UsBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8slBygzM8uligYoSeMkPSlpgaQzOlgvSRdn6+dJ2rW7fSUNkTRD0lPZ/WaVej9medHduWVWqFY+LxULUJL6kfKEHATsABwhaYd2mx1Eyro4GpgIXF7EvmcAd0bEaODO7LlZwyjy3DIDauvzUsmEhWOBBRHxDICkacB44LGCbcYD12SJrWZK2lTSFkBTF/uOB/bJ9v8lcDdwek8KtssVu7DwtYW9e1dWNSM3G8nDX3m42sXIg2LOrW5NHXYq27w2t/Sls7J5brOdOXLJT3q6W0k+L5VQyQC1FfBCwfMWYPcittmqm30/EBEvAUTES5Le39GLS5pIuipjxIgR71nfGq3Fvg/LieXvLK92EfKimHNrnXNg4MCBHR5oQKwqQ/GsXAaserOzVf0lzS54PiUipmSPi/q85EElA5Q6WBZFblPMvl3K/jlTAJqbm9fZ17/CrcYVdX4UngODBw9+z/pe/BK3KusiqqyOiOZO1vX5+7RSKtlJogXYuuD5cGBRkdt0te/LWTUg2f3iEpbZrBYUc26ZtamZz0slA9SDwGhJIyUNBCYA09ttMx04KuvNtwfw16z6rqt9pwNHZ4+PBm4u9xsxy5lizi2zNjXzealYFV9ErJZ0MnA70A+4KiIelXRCtv5nwO+Bg4EFwHLg2K72zQ59HnC9pOOB54HPdVeWOXPmvCLpuZK+wdIbCrxS7ULkXEd/o22qUZBq6ub86NDy5ctD0oqKFLBv+gOrq12IHOvs7zOosx1683mpFqUOc5Y3kmZ3UYds+G/UCPw/7lq9/308k4SZmeWSA5SZmeWSA1R+Tel+k4bnv1H98/+4a3X993EblJmZ5ZKvoMzMLJccoMzMLJccoHJA0vmSnshSjNwkadOCdZOzKfGflHRgwfLdJM3P1l0sqaPpS+pSraQKsOL5HOi5RjgPHKDyYQYwJiI+AvwFmAyQTYE/AdgRGAdclk2VDykVyUTWpicZV+lCV0MtpQqwHvE50AONch44QOVARPwhItpGg88kzY0FaQr8aRGxMiIWkmbYGJvNObhxRDyQpSa5Bjis0uWukndTBUTEKqAtVYDVMJ8DPdYQ54EDVP4cB9yaPe4q/UhLB8sbQWd/E6sfPge61xDnQSXTbTQ0SXcAf9PBqjMj4uZsmzNJ82pNbdutg+1Lkn6khjXye69pPgdKqiHevwNUhUTEfl2tl3Q0cAiwb6wdnNZV+pHhHSxvBDWTKsDW5XOgpBriPHAVXw5IGkdKU39oRBSmiZ0OTJC0vqSRpIbgWVkKkmWS9sh6Lh1F46QZqZlUAVY8nwM91hDnga+g8uESYH1gRtZTdmZEnJClI7keeIxU7TEp4t3c9CcCV5Om1b+VtXX2da2WUgVYj/gc6IFGOQ881ZGZmeWSq/jMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKDMzCyXHKBqnKQmSSskzS3DsQdJmitplaShpT6+WSn4HKhfDlD14emI2LnUB42IFdlx626OL6s7PgfqkANUzkm6S9L+2ePvSbq4m+2bssykV0p6RNJUSftJuk/SU5LG9mQ7s2rzOdC4HKDy72zgTElHArsAXytin1HARcBHgO2ALwIfB74BfLMX25lVk8+BBuXJYnMuIu7JZmv+OrBPwUSZXVkYEfMBJD0K3BkRIWk+0NSL7cyqxudA4/IVVM5J2gnYAlgZEcuK3G1lweM1Bc/XsO6PkmK3M6sanwONywEqxyRtQcosOh54S9KBVS6SWUX5HGhsDlA5JWlD4EbgtIh4HDgH+E5VC2VWQT4HzPmgapykJuCWiBhTxtd4FmiOiFfK9RpmveVzoH75Cqr2tQKblHOQIjCAVCdvlkc+B+qUr6DMzCyXfAVlZma55ABlZma55ABlZma55ABlZma55ABlZma55ABlZma55ABlZma59P/dA+IdxX5UhgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 5 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
     }
    ],
    "source": [
@@ -298,7 +310,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 4,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -326,7 +338,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 5,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -383,7 +395,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 6,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -402,7 +414,7 @@
        "A_\\mathrm{f}"
       ]
      },
-     "execution_count": 4,
+     "execution_count": 6,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -430,7 +442,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 7,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -449,7 +461,7 @@
        "     A_\\mathrm{f} "
       ]
      },
-     "execution_count": 5,
+     "execution_count": 7,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -476,7 +488,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 8,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -497,7 +509,7 @@
        "   E_\\mathrm{f}   "
       ]
      },
-     "execution_count": 6,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -534,7 +546,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 9,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -554,7 +566,7 @@
        "E_\\mathrm{f}       2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -601,7 +613,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 10,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
@@ -620,7 +632,7 @@
        "⎩   A_\\mathrm{f}⎭"
       ]
      },
-     "execution_count": 8,
+     "execution_count": 10,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -678,7 +690,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 11,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -699,7 +711,7 @@
        "⎩                              ⎭"
       ]
      },
-     "execution_count": 9,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -723,7 +735,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 12,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -748,7 +760,7 @@
        "thrm{f}"
       ]
      },
-     "execution_count": 10,
+     "execution_count": 12,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -784,7 +796,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 13,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -803,7 +815,7 @@
        "⎩   \\bar{\\tau}⋅p⎭"
       ]
      },
-     "execution_count": 11,
+     "execution_count": 13,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -829,7 +841,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 14,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -850,7 +862,7 @@
        "⎩                                                                ⎭"
       ]
      },
-     "execution_count": 12,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -873,7 +885,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 15,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -898,7 +910,7 @@
        "thrm{f}â‹…E_\\mathrm{f}"
       ]
      },
-     "execution_count": 13,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -924,7 +936,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 16,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -944,7 +956,7 @@
        "2          2 "
       ]
      },
-     "execution_count": 14,
+     "execution_count": 16,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -967,7 +979,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 17,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -981,7 +993,7 @@
        "       0.405, 0.5  ])"
       ]
      },
-     "execution_count": 15,
+     "execution_count": 17,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1005,7 +1017,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 18,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
@@ -1047,7 +1059,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 21,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
@@ -1057,7 +1069,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "c3062deeab0644e8ae69adf6a9256e92",
+       "model_id": "e8e9275b251b47078c5fcba1fc8d0ebc",
        "version_major": 2,
        "version_minor": 0
       },
@@ -1090,7 +1102,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 22,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1109,7 +1121,7 @@
        "⎩   \\bar{\\tau}⋅p⎭"
       ]
      },
-     "execution_count": 18,
+     "execution_count": 22,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1150,7 +1162,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 23,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1180,7 +1192,7 @@
        "                                           "
       ]
      },
-     "execution_count": 19,
+     "execution_count": 23,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1193,7 +1205,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 24,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -1213,7 +1225,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 27,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
@@ -1223,7 +1235,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "19ff4834a4444e4d9e0f59275f99da86",
+       "model_id": "d92e0776b5c343afb5d7ee6fbbc5cb2f",
        "version_major": 2,
        "version_minor": 0
       },
@@ -1237,7 +1249,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "64c838aee46444a68b8149e32549a62d",
+       "model_id": "138314d1150e48399bd6862329c04b38",
        "version_major": 2,
        "version_minor": 0
       },
@@ -1277,7 +1289,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 30,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1297,7 +1309,7 @@
        "⎩                          0                                 otherwise      "
       ]
      },
-     "execution_count": 22,
+     "execution_count": 30,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1323,7 +1335,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 31,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1349,7 +1361,7 @@
        "erwise      ⎠"
       ]
      },
-     "execution_count": 23,
+     "execution_count": 31,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1375,7 +1387,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": 32,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1395,7 +1407,7 @@
        "⎩    0            otherwise      "
       ]
      },
-     "execution_count": 24,
+     "execution_count": 32,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1419,7 +1431,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 33,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1445,7 +1457,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 45,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -1454,7 +1466,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 46,
    "metadata": {
     "tags": []
    },
@@ -1466,7 +1478,7 @@
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-27-ba8b1ad0059a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mpull_out\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPullOutAModel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCB_ELF_RLM_Symb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mpo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPullOutAModel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msymb_class\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mCB_ELF_RLM_Symb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0mpo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteract\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m<ipython-input-46-ba8b1ad0059a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mpull_out\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPullOutAModel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCB_ELF_RLM_Symb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mpo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPullOutAModel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msymb_class\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mCB_ELF_RLM_Symb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0mpo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteract\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
       "\u001b[0;31mImportError\u001b[0m: cannot import name 'CB_ELF_RLM_Symb' from 'pull_out' (/home/jovyan/bmcs/pull_out/pull_out.py)"
      ]
     }
@@ -1511,7 +1523,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 47,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1531,7 +1543,7 @@
        "     2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}â‹…\\bar{\\tau}â‹…p"
       ]
      },
-     "execution_count": 28,
+     "execution_count": 47,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1553,7 +1565,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 48,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1571,7 +1583,7 @@
        "√2⋅╲╱ A_\\mathrm{f} ⋅╲╱ E_\\mathrm{f} ⋅╲╱ \\bar{\\tau} ⋅√p⋅√w"
       ]
      },
-     "execution_count": 29,
+     "execution_count": 48,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1594,7 +1606,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 49,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1611,7 +1623,7 @@
        "{A_\\mathrm{f}: 1, E_\\mathrm{f}: 1, L_b: 1, \\bar{\\tau}: 1, p: 1}"
       ]
      },
-     "execution_count": 30,
+     "execution_count": 49,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1622,7 +1634,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 50,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1639,7 +1651,7 @@
        "√2⋅√w"
       ]
      },
-     "execution_count": 31,
+     "execution_count": 50,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1662,7 +1674,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": 51,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1686,7 +1698,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
+   "execution_count": 53,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1696,7 +1708,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "e799be60ce884d97ab79f14b31b5546a",
+       "model_id": "5eb3f54e32fd4ee5a64c90d32081b66a",
        "version_major": 2,
        "version_minor": 0
       },
@@ -1726,7 +1738,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
+   "execution_count": 54,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -1737,7 +1749,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 35,
+   "execution_count": 55,
    "metadata": {},
    "outputs": [
     {
@@ -1763,7 +1775,7 @@
        "            otherwise                    "
       ]
      },
-     "execution_count": 35,
+     "execution_count": 55,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1775,7 +1787,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 36,
+   "execution_count": 56,
    "metadata": {},
    "outputs": [
     {
@@ -1792,7 +1804,7 @@
        "            ╲╱ \\bar{\\tau} ⋅√p            "
       ]
      },
-     "execution_count": 36,
+     "execution_count": 56,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1811,7 +1823,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 37,
+   "execution_count": 57,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -1843,7 +1855,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 38,
+   "execution_count": 58,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -1858,13 +1870,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 39,
+   "execution_count": 59,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "ab75cbbf2e3b4e2faf3a3e80a8843216",
+       "model_id": "06eca19989734958a85847a67c140847",
        "version_major": 2,
        "version_minor": 0
       },
@@ -1878,7 +1890,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "f345204bd14c44988b031288fd505a82",
+       "model_id": "fb8a530de80c4b0293766d6e0459da87",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/pull_out/2_2_1_PO_configuration_explorer.ipynb b/pull_out/2_2_1_PO_configuration_explorer.ipynb
index a713ca7..dc5da92 100644
--- a/pull_out/2_2_1_PO_configuration_explorer.ipynb
+++ b/pull_out/2_2_1_PO_configuration_explorer.ipynb
@@ -58,7 +58,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -79,13 +79,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "3131d78c172c468896bad5a5d528fe89",
+       "model_id": "7ad01419664742fb82f4e580a3f93731",
        "version_major": 2,
        "version_minor": 0
       },
@@ -117,7 +117,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -128,13 +128,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1bcd601ed07f4f89b8bf736455e7237e",
+       "model_id": "ae6fe4a340f949df99c76f90a0d40daf",
        "version_major": 2,
        "version_minor": 0
       },
@@ -164,7 +164,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -175,13 +175,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "d0155a33ad1146e381c73eeb9662faf4",
+       "model_id": "6340e516bd324ddf8172a479f25e3ec6",
        "version_major": 2,
        "version_minor": 0
       },
@@ -211,13 +211,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "107cbe8f4f4e4a5a9bef25479850d4a3",
+       "model_id": "9d24033169774742948b005d0d23ab51",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/pull_out/2_2_2_PO_ELF_ELM.ipynb b/pull_out/2_2_2_PO_ELF_ELM.ipynb
index 13ced5e..c9f0954 100644
--- a/pull_out/2_2_2_PO_ELF_ELM.ipynb
+++ b/pull_out/2_2_2_PO_ELF_ELM.ipynb
@@ -15,13 +15,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "93b6825917414c54a9da1652b435142f",
+       "model_id": "23cc0c8e03054172b6d37ba098e580c9",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/pull_out/pull_out.ipynb b/pull_out/pull_out.ipynb
index 1e9ad5e..f514398 100644
--- a/pull_out/pull_out.ipynb
+++ b/pull_out/pull_out.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "markdown",
-   "id": "spoken-israel",
+   "id": "still-ribbon",
    "metadata": {},
    "source": [
     "# [2.1 Pull-out observation, virtual experiment](2_1_1_PO_observation.ipynb)\n",
@@ -12,7 +12,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "close-conducting",
+   "id": "outstanding-intranet",
    "metadata": {},
    "source": [
     "# [2.2 Classification of pull-out configurations](2_2_1_PO_configuration_explorer.ipynb)\n",
@@ -22,7 +22,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "seasonal-pollution",
+   "id": "asian-plenty",
    "metadata": {},
    "source": [
     "# Further material showing the sympy derivation \n",
@@ -38,7 +38,23 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "laden-enhancement",
+   "id": "spiritual-parker",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "rubber-taxation",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "neither-termination",
    "metadata": {},
    "outputs": [],
    "source": []
-- 
GitLab