From 2fa29f958529aad97d563fe2ba14ec012a516e8d Mon Sep 17 00:00:00 2001
From: rch <rostislav.chudoba@rwth-aachen.de>
Date: Tue, 5 May 2020 12:41:40 +0200
Subject: [PATCH] Lecture 5

---
 bmcs_course/2_2_PO_LF_LM_EL.ipynb             | 1112 ++-
 bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb       |    2 +-
 bmcs_course/4_1_Pullout_with_unloading.ipynb  |  165 +-
 bmcs_course/4_2_BS_elastic_plastic_slip.ipynb |  678 ++
 ...tropic_kinematic_hardening_softening.ipynb | 6022 +++++++++++++++++
 ...ond_behavior_governed_by_plasticity.ipynb} |   65 +-
 .../5_1_Damage.ipynb                          |   13 +
 ..._2_Bond_behavior_governed_by-damage.ipynb} |   13 +
 8 files changed, 7904 insertions(+), 166 deletions(-)
 create mode 100644 bmcs_course/4_2_BS_elastic_plastic_slip.ipynb
 create mode 100644 bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb
 rename bmcs_course/{4_3_Bond_behavior_governed_by_plasticity.ipynb => 4_4_Bond_behavior_governed_by_plasticity.ipynb} (98%)
 rename "bmcs_course/4_1_ElastoPlastizit\303\244t.ipynb" => bmcs_course/5_1_Damage.ipynb (99%)
 rename bmcs_course/{4_2_Bond_behavior_governed_by-damage.ipynb => 5_2_Bond_behavior_governed_by-damage.ipynb} (99%)

diff --git a/bmcs_course/2_2_PO_LF_LM_EL.ipynb b/bmcs_course/2_2_PO_LF_LM_EL.ipynb
index a9253e9..03cccc8 100644
--- a/bmcs_course/2_2_PO_LF_LM_EL.ipynb
+++ b/bmcs_course/2_2_PO_LF_LM_EL.ipynb
@@ -200,7 +200,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -230,7 +230,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -288,13 +288,30 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHYAAAAyCAYAAACJbi9rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHPUlEQVR4Ae2c63XVOBDHb3Io4G62g6SDABUkdABsBUAHcPiUfIUOgAqAdABUAKSDzVaQbDrI/n9CI2xf+fpty3c95ziSpdF43iM/bvbu7u5WVXB+fv5GOF/Ufq3CXeaH04D0vxb1D2qfVF1lvwrBG3WldjFqlbIGnpcNbnWJd2p/Vl1qq2FF4KUIHKp9VUVomR9HA7IFAVZp3L2yVCwCj0WAsP9jHJaXqzTRgOzyRfiXaqNBdy9GTMgul2uuMpcLFwd4FKPDmOZflM3twviE8mObf3T96N4nGrEga9HVrhtl7o7lnSqaVTdqrEc+ldDREJ+7MnaJf9nqQvLcqOWuJQexVAzSeyGzA6sE4bHBeq2D9B2DV8J5y4RaHIa0fayDFM0axoCHOp4Jp9Z13YoE/ojfqeUnAD+LDzZUV6aSXMRq4rkmDnVseIAtyLbCB+9PHSc6jnTgQfd9n/Mj4Tijqg880jmMYDzSPTvutx4Hpj7rmA2I78nlFw/oHN3lMmwxYpn8KuRg+TItC4eo++4JOzT11zouY2s0jsN893P02dHBlMHf6uD9swDxnpL8OBgRS3Z0GS9ErGe0SbTmDOPXb0uj1AIzJEr5WLAgEb4SzrownuSp+ExJ/k9eSWRcB8GwOqPm3Yrhtk+Y/tJ60msURNcZXa3V1OJ1MDbX3+YcUdqJDE4mv9cZmRIeHGQN+1QjRWV7tFoN97M/amCyeeJWKhhQfaIUg5vn1SCTHMrU8pMBj6VLsu7KGVYnRAvKLY04kMvAE2MjFK2vhXUYsOhAOBWGpsbPDhKR38qcy4gWsWXpsa6S8dbKDZcnhhM5r+JcSuGc4n+ifohi5mYEk8sv3aF/9OeeAt7zyuOE+lbXOH5ZaNj4vAtnJR3RNwd6o77tgFl7v8O1S6426nAq8lMKCZSVGfaB+nXqI2s2QEap+zzY6iupuJiON+jOZSAh+SmFLnj2xRS1laNttDbRPxfdGYM2EdzjDi0/zwJWsukxNdbqnRv0DPTeeAciTbTaoPXO0MgER5Lfsu5p1rCDRayEYnNhb/1f69zq68jqneZyI8pvNjzaOzs742kFGx82MHVuV6bRznLVWhqQDfmI7YKIpb4CbJUX2A0NrDEsb2eAm1/N8nfmGiBAD7IRO3N5FvYzGlhzH3vAgHJzo1Tsc3mGVn9d0d7ri5poUWq+NaTHC//cfmNIeat4a6gPMu8Bhm0FDS/W6hp9LBKfOCwv/zvBXOQ1IUnFrraKcTx7gd3QwA2GtRTsUvJuyPW/lgI73pKKr70akoxYn0n+FY98sdA5pXpZd725Sj5iZUwyCk9U+J4qSedLzEvQkUvFg96/yhi81bfHia10oPW8FpvFS/g+5G2lJC3Stc3xb4lYe7542JZgxboPmufhf1d4KMaJ3tShL3nbyGk2vOa1nd2v9V6/RDt8NZfxpsYM+7W2F2i8fqwFfcnbgV8zrKux0CFqedneG3hjkObtVVKXXfdT0ct+eN4bn30R6lnetmzxawrgklQM8PK7j3TpiPk/GONCfXvPa96UxanVF533tRCnRepN3g5iOB1LXyFi3ebGe10Hur+Wig5fCtinpEPX8M78diWQkLzo3X2hYo8ULV0yQZS1BnMOtbbRMcPaji1HW3hkCn7URdr+qfM5RGeQoam8YWHPHfFBtKJj94WKS8UaZAOFIcKX5Oq3hQeil/2uyQzMLUsM+CHWMx20UePHFiU01lTeoVjnKxXABaZFLAOkzrCLZaApyKBE3wu12V/C26Zpo8YKD0PyoTnGxxmyDqHTtKGpvANLY1+AugyZNSwR81zMnupoq+ADrc0a1cmiMR4JmoGL8llEF8fncN5G3qHkooyGhzjBsBhTB9bGMI0Nq7WPdZTVZ+pnLmKF66Jb4zwq5JcA12qTvqURjwHEa1N5kZ/goT3RgSEAblEoRfzMBUD/fFBf2wbCtY8Dw/5k35H6/QcFE7WNap3wc0b7TS70iMocTa2hrjsPUz/86j2sSLjTUl4LGvRA+bEffDuD65z/IoBh+LCw8lcVBfWw+bzQevTsIGdYT5hJEGuB1sAY/7mkLFqhQ8SuPC7d2UJHeZ0eJHw2GjE4Tm7AeVnZMpzQih82TThLSMNM5gzLgIC08FILQC4F5nWwteYBBB7IrUpujc5JV+BY2sEBmnpjKQ9jTiCbl6WzvKJD8GShy+NSgpBoxyEChBprI0IgpPEg0nLpb3I8c+zESgFamtwWyaVrU5tIUV7xRLSSManZOYhFLAgUcB6RscFZoD8N1E2xucwXu7xsAw5vkp54p8uhRQ0rRMKalMwubhDIMLZSn39ns9NO5OV1ZQh5UapanhtQprj3p2wRfWRK5qpKFkb9JLxsvWapg+h/ZrNJTzx6r2Y4Szu+BmQXHIJILS2F0Yg1VrXQ1Vi1dp9kU0s7kQZkC4vwUqPC2lbDgiBC1Fv+EZftbBleYAINyAbUVYJtY7NUZOc/GTDr8nRHWLkAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left( \\frac{\\bar{\\tau} p}{A_\\mathrm{f}}, \\  - \\frac{\\bar{\\tau} p}{A_\\mathrm{m}}\\right)$"
+      ],
+      "text/plain": [
+       "⎛\\bar{\\tau}⋅p  -\\bar{\\tau}⋅p ⎞\n",
+       "⎜────────────, ──────────────⎟\n",
+       "⎝A_\\mathrm{f}   A_\\mathrm{m} ⎠"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "d_sig_f = p * tau / A_f\n",
     "d_sig_m = -p * tau / A_m\n",
@@ -329,13 +346,30 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMkAAAAyCAYAAAD2k//fAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKiklEQVR4Ae2d7XXVOBCGb3JSQDZbwUIHfFQQ6ADYCoAO4PCPfxzoAKhggQ5gK+CjA7IVkE0H2feZq/Ha17It39g3tq/mHMW2NJKldzSaGdm+Obi8vFx10cuXL1+L57OOX7p4c3lGYA4IaC4fq5/vdXzY1d/DLoagICsds4J0gZXLZ4OA5vOFOvtWx+9dnW5VEjXwTA3c0PF5V0O5PCMwNwQ0r1n4OxXloMndUgMP1ADm6Le5DT73NyPQBwHN8c/i/6Fj1BgcxRoTs/lrKuv012L1p5inMaH095v6pvKnTWU5fzgEJioH5vk/6ls07o5aEphV6SxPnOEmR25p2ggE5Y16TrWYJDDf05CipmfaQ829ywhsh4Dm/SfVPNeRndwKxdwtmN6Jmeh/EaSxsAHxQgk3MkbPxfOGAh1ZIHDLbinhglGHPOiu0mPxGDY6UvaEAhFlLCw3lKj7u9Iv8Vi7Ot97EhZTlwPy+6h+EsyfucAqlkQFCBwh17TJK8ztqDExFibsqdJNJVaM2+Gc65viKU/k+7oGLBQBt5PdvTeBB+A+Kq10jYK8KJXBS7oVeImB/lTKJASEyeTloD4yN5Ax8i9o05JQ+EXMhRYVnDM80ThY0b+GwdsIdH6s9CM2HOWzQHwNZZyz4wFwTj91wmoIYZle2dn6DwpHnXchDyu0CBzDeLY+CMM5yQFlxpLgXZjHUChJGAhCXswuj8aEMhQKEcZoA2+QOD6pKwWCLSsBVVCElXiwIq90LLcFPwuM5emYH74ClkhYzEkOH9Tlt0p4VeZhFEqiDJTjYuHCxf3BJYqSxu4T3GOQzYmOIoBRWTm8LepUzLQX5GMNgcnKAdkqodT00ZTksNT9RzrfnBSl4kWcEid8SxgJgTtb4IUy6PxYeSgCK02FVIbyQEvHbz3Kq/+duhz+0hCJLfGsVqYkQchMgsZVFuY5UxgwQXjhfrWMB2XYnPAsIiiNWQu180AJzCCzPOW2df6sVL7myn9XwoSJN3U5uMttcnVLYhfq/ObEWJJYWb1SA2ksg60iACDBck1Ad6pzzDF4scvluFWe5Kucuk1umYr2miYvB8mPecKCaHI9CuLiAqGmTqJQbVYHgm4CslYKCgDPa537ThZ1b5fwwWVjtWFFhIfXGp7onPbtrVKd+y6XsjKVEJiLHJCxudGuJHeUQeZWpAmB28FugCmbjudKJ0q8C8ODSVbWpzpeW2Cre6fu2jEG4hGsatSyqoxVBsUokwV55YxdnKsvjjsrNESf6R+EXCCu2dK89kVQfZiLHHDLzVM4UqcBkrQVgKrPSsozA4Rg5knnRrrGb2d1xZ+/NgVZ9yb5L8BElSO5hR0yCl8sFgsRX8/xXKciA7qiPBTpp44PlbCAc6DrlgPPxMDuFjGJ+96WmYqeKh8rEeizMvyh85p7oTwXCErYe+KpPkrmLk9q17bm073oJyZ2VhsY6re5Beo3uzI1Urkpkgre1wonmDERObhnda+sJH0tyd/CFzcNX/2iBWsC3MnHOxoD7op/pcbrJjtTzhbsUovMLRBz20KEHFjYsCqTpQnJwfXh5pHQInaAPHN91fJXA8GFYvXCfLcpCK0Qn9SeLVAwJdI4sHpu+abUtZS+mIulMbRtb7t87a2BlEavg2cqcmBeKwHBCZYEFwPqmuzGpIq4Z6xGBLcpkwrhsH2aaTwEUvx3d6v9OF5vltXyMZaEN2QhVvwU8t0JrEknoZFiSlLAzsYyQw0B4evxSFcc5XxuUWpt5YwaAszbiiWpcTRklLcaG1hy9g4RwIpAbfEI5XzvAnUp05or/3UEzJJYTBJWfC9oOxq/GJJWJLVLsNhqSVSOO+bCLt/7WBcnKudls03C3dt8VlHhUXn3j4pVaoxzoX4cjNOytZoSj8DI4oaf3ahMKgNvNmT6EB+htcVCK5XPVQ54Vye4W32Jip0Tn0YFDoJBmbpAjD5DCfXtoyfa60uqP+bk7NudsfhZXBonPjcVDr6jFcXZOyY+FjM+SBuU5i4HAncmPUCyiqSQCUT8KQHgXfG1KkjKDTNPHAFh63FGowsV5Iql5luX2rOseMs5t4TAOUrC6gG5G7W+av7rO1Uem0Q5JRD4XkULc+ZQCLiLGrUkQUFwn3BNa0/ih+rEgttBJy5Qkl9hkEmWRGDjPhEL8AKgm/HQxNrFUj47X5tf7hU8+34ifHBXL5X84eW2kFispnZq1lp5KBDtf9P54C7Uth2eYb0zYpK+lmQl0D8p8cuOKAqm3tvAdePXJnybWJeZNhEQPgTQLDYoS1J8V25DdXh6jrtr7la4Bnv3BljwaJ8fteCYaTsEwPEcJQHc3iTwUYxFK4PGyCTkB8sGX4nVJr/S0uqyNglF9Vp39ZrqzSVf4xsN91QM1AcUBLpASXylSQnErdYO/0R97R3e/73uZav1SPdkYyPlrYWRbj/ZZsfGPWXgrg+/DiUk92cHXy1TetLGo77hlmCxdk66bxFv6dxXlcH6Edr0eHCwdufe0Ni498DHleTsMFTCmtzp0cCiWcMExg39Fgbqvv6Q436k+1zLh1pDDmLItnaEe2qX/Q2FH64kuDVjuhWpHZsKHxMYN8i/sfFVZbD+qf38zKKO5ui412/ZmGMyl5wKS2JbkUGTG2vtQ4EwYOvUX+2fcry2KHFMEHfmgcXEBO6QuxUU7G0g6YuEjh4HuZJEYxLxYX1fKOGafdd1tg4Coi/1xb1v+3351R+sCDK3NxnM3VImwTsTI/YiobL3hu4Ii/KOmitL04dKPK94rGRf/e0NSsMPtC/uw/eg2qJvzZvBcEsCCy5GsaNTrbP8KykHVoFfdCk/g/CAvRaTiI+VhpcvUSQUq6xcusyUgkBf3FPaHICHV3h4lcc8ibKSsBo+UcE9pX0UOK/klxXEsFbevzpxZbG80h+3NKWsfNoTgW1w73mL3uyEHcUb04WSoBhKaA4TZa+URON+oNQUixFvVCyJeM3qKJ9XSniRM/+zHoHQl7bAHTn4KzmnOmcyQ2zX4vby01UQc5hXpnrPY9XxHwAp4stDa/L/Pwgca4IrsReksVYUIDJorEUFD9UhhrOVRufFf8mK1M1ZDQhsibsv4sjDvjNSOzxrMuXROb8/xuTmBdukz8vFt0lsxPBuInI3qihJuAGFMC6eNF7A5Vcmm6wIGGBJVoGX00xXROCKuJs81IWylUB5WLicuG5ykZ2ndlS/CNhRwMLVgqmiJGSIMFvPVAHmRRJjU2J7j4eFrEhs31bGq2tcMHjcpKNM265Oi8Sx76DAOGB6ZdzVDot5mYZ4xQfjgDVCyQoqYhLPEQOmBq3E9VrkW74BYHYwGgkcVNhmYRrr5oI4AlPGXX3DiuBZEOtUKGZJYCDw4RUBAtRMGYEpIZDqRlU8g7YBaJ7Dy5vH0R9bjCqJKmFucLvYSci0gUAJ1JXO+cgsLyYbGI1xGXA3lxfcuYeOPNvDJeYZFy4y1gAviLJU9xgF+SD+cpxDE0YHl5fNv/YSbhLdx/YG8jEjMGcENMdRMixIo/sdtSQ+aFW0mERH3zv2onzMCMweAc1rt0CNCsIgW5UEBjVEfMKnpr7LQ3amjMCsEdB8Jg7BCNQC9c2B/Qe7YT+uqsMcigAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\left( C + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f}}, \\  D - \\frac{\\bar{\\tau} p x}{A_\\mathrm{m}}\\right)$"
+      ],
+      "text/plain": [
+       "⎛    \\bar{\\tau}⋅p⋅x      \\bar{\\tau}⋅p⋅x⎞\n",
+       "⎜C + ──────────────, D - ──────────────⎟\n",
+       "⎝     A_\\mathrm{f}        A_\\mathrm{m} ⎠"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "sig_f = sp.integrate(d_sig_f, x) + C\n",
     "sig_m = sp.integrate(d_sig_m, x) + D\n",
@@ -360,13 +394,32 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 5,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAA/CAYAAAClz4c/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAMwUlEQVR4Ae2d65XcRBCFx3s2ALNEgMkA2xFgMgA7AnAGcPzP/3xwBtgRYMgAiABwBjgDL87A3K9HV7Reo8fOqFs7XedopH6q+nZVV3Wrpbnz8ePH3RR6/vz5d8p3V+eXU/LnnEdt+F78fd7mUfFP23ElfBoEUvWB7vtILfpmal/fmaIgquxrVfqjzh2hOg18pdaCwOkQkBz/ptp/03l0sL8YY0OV3FOe1zq+Gctb0gsCG0EAWX4m2caaHKRRC6JK/lENP03RtoN3yiSxUnhGEBS/TV8p/XcduJP3dfxdZbir80MdL5T2torb6fpHXb/XgWX9SQeAd/IprlCEgHAD+6R9IB7oq1903Nf1u4i9xuVlI9QKVALwQedRU9QqmnPwBzH3lY5rHa/VtiHLCHh0IgC+1fGFrokLbqbCzGNQGPAhnrrIy4BypaPQMALJ+0D9xED4RiwGJRlidVBBVBgtRwgQplmksoy4jMKU/aADYURo8PteVXU/1RmgViP40lFPxAm3b6442g1w8P+rwrYYtCO2OgBMHEQ8FmSnuCTzNN3XeDNfhH7XYf7cTsI/KO/giEnBU5LunVMfIH//iqevdfza1+5BBVFmOhwhAOjJpPwo1TMddERDuRSGEep9TLqOVUn3tsDsdI2JtfDXfCg+CI/OuEp/1gm7HRYkLh+XJW0WTlG9R7kUv69UEYMPy5JYvAb23ERxKNE/OrOK0ysQ5Dsl6b4xhkn7AF504B0xx+7F46IPDBViFIL5erTtyxfHqQwjAy4JZT7TNR3WIMWZibtKmC1QKo+CoYDHIFwr3KEhov0xj08UxrI0SPygHDudrVgh3Mi0UsC86HY/991S6UGJlIZA5EA59MELAYHs9spVr4KoABYA6zHHFP+hMg904IfXo4TCbcLnQ3Pn1N2u4xhhFOCvvorEGy4TShzaoTBCzxGsHuk6/AAJxYmtCeFURJugWLH3Mf//gj8CgTVJTcn7QDjQx1gRHmPQ5w26bIQUUCYLwxzrgdtEOUx3EKp2vVH4WtedkThKX+1SvMaCHd+XtpCGxSKeeUWs+LSB+QlChtXc6ZoR6FMdjEipKLhV4mWoXfDlgSnJXKkNzAFe1+wD5Jf+e6yj4fl0FEQZsB50eCMjcX2kfIy2CMo7XduF6svqODqI5dGkJF4PCQiChgVlZOmQ4hkE4tWvQyN2p/wJIxiRx3ihvyCf96EEv7n0gfhAdhlUMAoNub+IcVEmTAzzjymC7qK2NGjhKOkeObhXY3wiaPEEfSx/8nThyogLBYu2v+z9dT5bkt5MGUSu3QfM274Qjo2Bo6EgyoCJgSYJ+z5rUCgux0auKnveJwFE2wHpia47PmnG3CNQ0Fg/sDoHjSnSPleC30R9YMvhAT+0/LLV/uA2iMExkONiV1Vg0oiE0Ok4OE9ROi6YOzy+FwJ7pfS+iTBmMnZ74nLhWumeWHfSeiKwpJ6D9CSPR+l+d8ZzHS3HlPkHN6NdWPHBPlYaOLPoMoe+VblDc59Ql/Jk2QfiC0zgn+lCWIyB4baCIJSDwFGgh64VNyr0lBMDdA6KdBBI5asZpJypKs8KUu/cwPmGziq3psAOsXGq+NG+U/u9ctWLrxlTPgYwttocnTLvA2T/e/GIqxVktHaxFOER+6Dw9iAWFErlG75bTz6iHvrGA+lZRYtXnvxPaVdSvsWj5xWDbpPyYBWwzCw+2J1IyvfQzcVfKtyNn3VhVyuImPWTV2ca4r8d7xUprMMgqdHkS7kEOshbX4L4ZbQFqOwVpOKTZvRaf7XFLhNuqPuZ/NlRYtz9XKzGKFYQa40zTQJPDcJlwvfnQYtNeF1Wcd5eEjb21QkZX4hnBMouxhYUJMzJxHfH+iuOfmVX8l+6dpuyRD817ro/riXy/MAAXfpCZ8w0IwyZZpHK8NDsExVCSbBAruNa178orrEyMKvyNJl5FoSfjnBlK1TClafiKHBwsaowmHvhBEWnw9nGzzl3ygF3BhkGdea674KCEKiQWwyi6kAptqYIHYFROxC297RHB3gYm07e1BHi7+CqXWr+5tw/I9x5/sV0gcHxlS1IGIEUsVhBVHYN6vWxj3xj3jSz4IEHQDVI6WxLgD7X9eYHhX1Tkv+O4r4Sh/Z+wk6Li+qmHiUP7W5dib/h20gYGdXdgOGMC1NUN3Oon6Pi4GFsQrTyMJiwGsdSMy5OoRsiMAX3G95iTnEbidDvtiDel+TEORXeirzqJPx1rAGT2YdVo4JlJU2HFfNKaQEnxa1h0SpWbucJbNWyKbivBYB1oKEgdDpkIdiHzuuXZegvI0XY6RqQbEV4CYkwnckEjgdKix5Yqnyh/xGYgjtKxJN9hNePIcLKqcL0CQspf6s/bvx8R3WwUKXq9p7DBVcibgJZe/ahM/kVIMwzALgxQABWBUFY9qvC7NXCyhTluKF8CMOpuNMvrCoyMPHWpBUBy841SnbMuSD3QynrB4VWEJYIz4oEMCMShyfmof2KpzM8WvH6cOcZz1kBdeTGLsTdA5a5cRi5DQLthGOcxeNdz0FC5YpAc86K1Ob6qWnccMUDfm9anK9cL0NgIe5rDeBWuCu7WMtaeZ6lMOWP1MEHt9acJzSnabWwZgA37mwkxDXD7eXBIsQZi3/0PgkfjlPFYQuyzrd5t2tAsvwUBMYQkB6wNYcVzPvFgoyhVdLPEYHalbuQtnhyc3bzj3Ps+dLmWQhceZI+q5Qz2zVzuJz7ETiF61qw78d6KHZpH8QKYksydI9O/NKbdioqEbMRKNjPhmxRAVys4lotgq4UusUIeGfJdWxBbnF782maBiQs9b862LqS7bsm+SCWlpOyirUy/pXF5iEk2yRmu7Urs3uut6v7xQoS3KzSYevIg3Bm9/TBL4usw0m5ywgCH+xi+dH6SP48kiVgvLDENpBHFUdsO/e+HPuPPOi5pyNXV4Z3SuZ8wbJq6vqnW4L3HOCCDKnd+1duVRLhQpiCQM2pKUVeMc5O2pc6swOg978w4EvpbDBsbEIkPjWJL0w4f922CRK/m8Z7AcgdF8ujLwqyCVKn2XrEbwC2eX+jCLetnZYy/LgSupQ8zLr3xvGe3Fa108oR5OaiKulXbe2eTK4wYUbvtB17q89tS8hq89bqBL/P0EzIO7RZvGfCaiPRUBCPsn71dmadSbIHCyJhexvfXWFengmkaxYfNuHnVyznfDoXvA8qiBNz7ijzxiS8YT2kEMw5GhZDcVZ+lyvnZQicC97WAXb07j9eLSFiokvYiVxnS+LV8w++9M4rsLiGxOE/9lpB5aODeW+AFbujvL+ses6CluC9YWAsP+ELo5dRQxhpEaItkP3hxif31ZEI/pDF4BM9PLnmRZuttDOXvliCdy68z+UD+dhJjoLrfhGVDu6KErYgPMGCuBHtNjjstuiMZeGNM76rNfjXai5Xzh0EZuHdKb2tCOS/HmRjBfEHCoIGZd4mGtGYf1T8vjDflVKEjq3imLAXWobAEryX3SlhKcmMjUMtW7GL5UjMabbLkGqEhd4KXUOqtFgJmG/wRXkazfvM7H1iheu9zuWTPQJiCgmruXgzj/VHtb/UtcvzMb5vdfhv/sJ3rVS/5U5Jycm81rJ1aZbEKO7HFuYh9ocHgVU7UIrgUunMAgT7nr6rzm5yOU9DYC7eyBHCz2oifRAGI51ZFeJL/6E+nVksYYHFk2JdJieUeCfe6kcDsYtFGgk0ilEgVwpfrhCPjecfZlbxjAJ/6KjdLaeV8yIEluCN8EPxIMbgG/cZ4SsyZUTITszzfpk3YhCNZiMgoGTjhkjomWS/1oHiBuVVHGbcHQHQYSJepWM14s5QdKGpCBwLb9UTu7zcPtv9Z+IV5UCGGh8kr10suFcmvkuKYOGz56QgAI3ZLrQCApKBc8QbmYfe7E/737aLRSxWBDcLP75QQWAJAlNdJ0bsXAivie/+MjjU1FEQZfAK1pM614Yv1B46Afdsp2smiUXxT9ifFd4MsgHv6swWIFyYp0oPf2+m67BnTuGQl3ypSDz4u8sdXsKXFduMqQDMU+gzXTc0qp23hAsCW0dAMh72Xenc+UZAx4LQWGX066DPtt74wn9B4BACknUsG14Fz2g61KsgVS6UhD+JyclP7DSgRBQEbogA3hJzj95Vz0EFUQHmIhQqVuSGPVCK54mAZJyJ+T0d9pg6jA4qSJUTs4MVoZJCBYHbhgCLN/w50uA8+6CCqKCfidR7U24bQqU954mAZJsHguzs9qptLxC9q1jtnFVl1zr7YUo7SwkXBDaDgOSYFVosx+g+sIMWxC1WRTzFfqBz2Jfj+HIuCGwNAckw0wUm5t6EebAJkxSkqoGty/WLJAdrLYkFgbwRuC9FmSTL/wEH/OH4TZz5EwAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\left( \\frac{C + \\frac{\\bar{\\tau} p x}{A_\\mathrm{f}}}{E_\\mathrm{f}}, \\  \\frac{D - \\frac{\\bar{\\tau} p x}{A_\\mathrm{m}}}{E_\\mathrm{m}}\\right)$"
+      ],
+      "text/plain": [
+       "⎛    \\bar{\\tau}⋅p⋅x      \\bar{\\tau}⋅p⋅x⎞\n",
+       "⎜C + ──────────────  D - ──────────────⎟\n",
+       "⎜     A_\\mathrm{f}        A_\\mathrm{m} ⎟\n",
+       "⎜──────────────────, ──────────────────⎟\n",
+       "⎝   E_\\mathrm{f}        E_\\mathrm{m}   ⎠"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "eps_f = sig_f / E_f\n",
     "eps_m = sig_m / E_m\n",
@@ -405,13 +458,36 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 6,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAA1CAYAAACk7pueAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQ5UlEQVR4Ae2d7bXUOBKGm3tuAOydCHbIgIUIgAwWJgIgg5nDP/5xdjIAIuAjA5gIhiGDYSPgLhmw76NWGdntr/ZHt2yXznHLlspy6VWpVCrJ7hvfv3/feXAEToXA8+fP/6Nn3dTxs44vOn5T2jfFHhyB1SCQk5xfrgZVr0j2CETBf6kY5b5T/E7RHzr+xbUHR2ANCOQm5xdrANXrsBgE/l3h9IWub6tTYNV7cATWgkBWct5LyTMy6bi/lhbwepwVgVShm5smTTsrc/5wR2AiBFKZnlzOpY9v6mAm3Bk63TUoeEpR/LGzNCdwBFoQkAzdqmTfjtefKul+6QgsFoFTyLme8U0Hrs+/dLS6O1uVvG7+VUj/rPhhX8RFy6LaEx0PdDCCXeu40vFBea90MMI9VfybYg/bRgADIpuFV8mkya1NtzFszApDrglcw3NYVwgp/uMItCMwi5xLBj/q6FT0N5p21+hmBP214n+08/8jV7QMCs900Ale/cgJMwHKQ/E/qstPaf18/QhIPsIuG8VPc6uteGLL2WfFBxaS0hgIXup4qPP3ufHu/OSFgGRkdjnXMz6o1shrreFca8mLGKvltY5eFnykxz+Elf5PXZv1o8t9UNp7HSh5ynbXT8TllJHwt4G29rHKP4nC1XNQlPgUT/K82so2JIoncyG9qSNRPrNRlD/9w5V8HUhnTlP7bE3O0dP/Vb3xlhzo1lolrxtQ2G/rbmhoP7bBNSr45B7KfaRyfaqbgHKqU+GOUjqrYhIP98XDLcVBwcfra8WfT4VDx3Pgj3DQWfbJ4Rc5fiKeOUoz1oTGT8+EgNpkU3Ku+uKffyy4kcsDz8tFtR1EzCiIoNea/jX0TF2xfh7zsGp+5Rr//NtKml9uBAHJB3LC9PVP5CzKGnKW06DPbHMn3toGHeO3upDMrR42joBk5+RyrmcysGEs0b9Koc6Sh4gpaZfC3okG652p9xed97EQ6RwlJnQf7hvKINzVQaenXID6ScdX0fyu2MNIBISjrZmAeV1gLeV3HQzyKDvaAIsberNwaaNiQBftMe3HjA96LI4iqIxvxcX5T6hnmxUPh8gnweJwcSQW4R7/mR4BtcNW5Rzd+U71L144BN2SklcmyhbBLSliCBuC+VSx5juDyqczFx1a13T4Z4rDrCE+n0UEmETZ/B3pXckLiDFBWFqb3lM5tAHXL+K5omC9moX6QPQofJQx7RGUf6ThPtKhOar9RH8wlaTMXIL4Y1AjUOe2YHSG1+5YLNoK97zhCKgdNivnqjvrnsgk+tR0c1nJx0y25RTC2wE3rh1Cl+Wzpzr8ZScOisYC018GGfNzwmhfXqwMjysIqD1RSrhIitmWzln4PHBJKA38/4xFcM6qfXGfrhl4sZQIa2s/m610yTOzGUI6GKwNi30NF/QrOXU53xtvGMkYZsGgLiz5CBCduhgBerTvVaTppYj1DBRLeHC870XlmkZikAk0irs6Ww8WnUQ4oswLha5rcE7bIQUJv54pdejSQRi64IcWzU3yFKflLL39+vjjwQDjhsWuVD7XhgX1XFRQe7ic79c88azglQkekELJKwHlXhVcJbWGa+VWFXftDWoAOgaDQapsUgXBfVhSwXXDhYfZEPhFJadWaPEgU9qKm6zaMEAYXXHj/mTp7Qf/qeKuVC+4tGz9qCSnNXgsHYuDui8wYXNyjhzqQMdS96DkL5KG4yWlVgFPaO000KtQZgBd4W58eC2d8lAehGN52N/lv8cgwID7qeMGrFoW1IuBWOdY7yivt9V7l95+Cf+1gx/1jfXH58ts01yKVSigc1k+QOUsCVuV8zdCu/jwX1DyUSjpwI0C3tBEtsgBmI1B5UNXnfbTGdhGx3MJKA/SUkv/1ySfbA8jERCeDMh8qqLAuaHIOqsWQwClH6xYlbGm9gvyp7rVGhlRDtkdxMAX3Do6L8LKsCjqtdQTtceW5dzcrUGmg5JXQ7YKeFNDC0jcL7xtxVcqbRpbkEfBxz9U9VfulMcz2aVhzy51HOXTSEw9UCoepkPA3GZdJWKN0gYhqB24ZrC+R5voWFv7Mb3dqV4Hg1+s61/K/qTzuk8drA0LoFh62KycS0bRy+jNoFPDt2uUiAV/R/GgLW66D2scBRAUs2LCtQ72bLZZRq9FYzs5mP4yULCwR4fa6d7GKTH5Ho5HQJgy6P6tuHFbqvJQWsgEQmKuB9qFwTwssiumzRfffqoHhgZya/XECkJ2r3QQqCd1LupOYhrWgkVap6Wfq002LeeqP/2XGfstU/L/UwJWSsmaXnpDT8m/sGHbIPjYzIPBKyg8xaYQUBQoDLYdHlh8Sl9EEO8M2Lhiwk6aRTDtTPZGoIcsM7Dd0UFcvCPR+wELIVyznMe64e6+cakfGtKslYU0z+nZFE5YvrygZV8orB0Qlc9sBBfWkgMDWe0MbMmVct73CBwhy1iD31aM25rlnPdZdmrr2xeKsTwJIXF/up5fVRKL1F7eGVUxlWNW/JuWgth5YhZ+C1k5a0o+yyUfdyU+GPCZkdDBPWSEwJQyorJoY0LbYI4r62hZDqVm/rMBObfdc/dTJb/KxpxY1sx6b+sYPHKRAyZKRLyH9RDFfG5iksERQDxkh4AZLG2DOWsTHKsKG5Fz0+e3LtV65k+2xFU16MSVCR1DQvI5LVfXLMrZtkJ2ntgWppQs+/PI9yJ5zx7c/BgMu4nElll8gUPJAIt1qS5Iz/OrxQCOtiDnqiN6CHSuUPJMzwlr9r3tazj+lyluyYoXkPjgS5a70lbXMcZD5yVkhgCyXH3ZDdcthkzY1SY59gE/s0YbwM5NlDyf8yWsblq2r9Y0vxJ4hJ9wpXO2ZzEDIo1B0nehCAQPy0AgkeWSwSLu2VUVZqTLqIlz2YEAhnvJku+g33y2+eP5lnrhrtE5/5bulvvmxWNRAJgs825MarDsXJYX1Y59mA2WfPDJq3GPcteInq2EJw165o2mByoPK8Ss7ZQMSxvr23yQaR7T1b7bHUPZoi8UfCyoZA0pn29GVGmKZypvFj5V7snbo6jUCU5Uv8a2H/r4c2HWVRflzyIjCU7WT8Lby6TrmfST1wlN52m8549OwjJByUgqZ+2vVO6qZbmuzn3ThM0x/QDvTLDk+5ZfojvyYaV757gQP7XTTKWzY4TFpMY3PHvyc+CPj/cV3+TRM+godKA2JT8Ln3r2MY3fs8rrJssVM/E1i4wkrXngj495bxKazlPxiWE4+Ut/ubZLJyCZErCFEm2/E7AoKA81CAgbs3wOtpspD0G38Ewn/ikGQ8Pj7BBIZLm0qIoc6yilZce8MzQEgWuUvCmp4LYZUsoG7jEfZsk1k9ZbHQTriBmD4Zlm+7kjkAsCJssHBksuDDofkyGATv92qZ+vsUi35JuxxeWzkwKvdcMoHUuftwPvQedhfgSEOfLKN5cW/Z2g+ZE6eILJcqPBcnCHJywZgS8oebM83ZJPmjIqERai2DvMsVMaijy4txSDF4rG8lE2tYOAaDxMjICwxr3ArqabijlMjid+0vKLAx/VgsXcOzqqstz4dc3l13zzNaDdr1HyprQmQ0RCtfgvNkal0XfnzWTYjS0o6dAUFTq0Yr4keNQAJHrcT68VD15Y072zyoHKv6UjWKZUdmyYm9+x/A29X/ViAOTvPRcVxLcNTvB9VlnuAi432YnYwXZw19gebwOxqz6d+XpATl9sXMq0dDSfsWFRzMXgpHMsOPbyP9BxzDOYxaDoBwc97xRywN9KTrJgeCJ+B+OpG49pvzHPOfu9agsUfDay3AVIhrJj+vzrhZgzC2+wxVYHgMrFT01o25Y16IuN+2L7/YoPpvVYMlmHifhEoT9OK6py2Y5H/XE19Qq6p/iXL53T2QYH3T+bHETebE1pMI/pjXPymz5nyLl4W4QsD6lbzT3ZyXINj6WkzGTHlPyXi8gl1jz+uimDreJ3WR+l775MycAGy3qkOttXJNPq0wb4ra3h07zSuWhQ6rjwPsWMsWs1c8rBI/E79v2HUv11MSe/1Wf5dTMCOcpyM7f7nJxk525k9rMpeZTAqKl5Te2DBadOaDOFQKJrRmg7x8KcZKodi9x6xGDNNs4m67spPcUNxUmb2ODbOTCkN9eczyYH4nOOdxJm47cGG09qRiBHWW7mdp+Tk+yEfqs+EnbXwF6w/lAOOlC8UwQGjZIVr7L9i41TINtQhvBtcrnZAG7rL7Ul6H6EFBcawWjHKvmlycHS+N231sp+M5XlLpRzkh36ctC/l5Frm5qTMdqyjsqCont/sVH3ABBvjOIqYKFwDitNRW8rxLZAUfPXhY0DuPKClZ/QmJKvtf5F19leokGeCIuQgyH87qvnv6dAILbP5LI8Be85yY54ASP6bXjhLSh5JbLHGwXwi47RSl5lmG+q9DEiPaPti40sDGKJsjaAAvEwDQJ8ZfC9sK/9HkryCL5ImM68kAdC02eU+7TX0uRgCL97lPz3FAjMJctT8J6T7Ni24qDLzZKnkkzTi10VI2sdLDgpjZI/XmWmSmSn/PDFRsWMOvZJAGhKdCN52eztwpVO8VFx6x5p2kF0TxUXWy91fRWBO3DXiK5vey1NDo7iN+Lj0QkQkMzNIssTsp6T7DDg8IXdMBu/TCqJZfZEGfd1jFWyKI26Mtq+2GiWY8KSnw5FQG3Ii0g7xa0KPpaPOyVV8CFZaXw2wJR9JC2iPu21NDkYwm8BiJ/Mg4DkcG5ZnoLxnGSHAaeYuRdKXkBi8aH56ex1CroXECojjGgiPvgAkvJSxfBMNC+UBjgoIhZ92XnzVfHU2+JU7HaC8GO6xtughYLXebDIFZuvPQACrY4mFx3rIyVLXrS92kt0i5KDAfyCC4YRMd8ssvqyde2xDrYAEuhPfDpgcJ8KpWz0R7jNKcuTtGFOsiNewoAocSnWNAslH2UIJftShLwGnyrkY0TMfFONQq2yURTmnmE9gFGHWUQx+hzzQKf9gUDElrdACwUfc+ksJWUumpIC/1FKcYYMlGh0T9/2WpocHMsvLyahwNlqiiwHw0QxO9XeKQ7lKWagxNXQtLahLA91CAg79MScsmx/GjS2DXOSHYxn1uAK/V1S8sp4pQNFD+FQhRuc/iqn6o9XkcF9gMWDBeRfbASQCYMwN8uERrb3EW7qEVc6WP8oZkiR9oPiNuWDgtpBq6M0AyC9IyxNDobwG/ARDqlBA04pVpyDv4cjEEDmRI6emFuWp2jDLGRHmMEH/b2ku0tKXpmExzqwRHClFKNByGn4ER0F+xcbG/A5YbK5D2zKlj46KJ7YVtAx2O50jeVZ/A1cTENYmAkEGsUMBn0WcBclBxGL0XKrcqr95Cs4ehiFwEll+dg2zFR2MM4x1FMjY3eg5EXAyIkVjiVYnfLXtproEXKmrh7OiIDaoellqIKr2FY2vSzS0xPR4NYpuXbS/KbzpcnB0vhtwn2N6Wqbs8pyF6a5yY74wTBj9nPgIbloqAwKm9fb8Yl5cAQcgXoE+rphmOF4yBOBc7XhZM+VnrYZ9MM4+JSQvvH9e/0fo8eRgV0BbT7bUmFDLhIGGYmwHnETMZPwkCECc7XXXOXOBWHk19xezH7pYLxnwgwYPy9+UeSYRVfcXkyje82MRevhBAicqw2nfq7KQw6vm+SrUcmDsW5CQGv3UJPvwRFwBBwBR+B8CEhHY1hgYDS6YJvcNYFr3RgsD8V1C3nnq5k/2RFwBByBjSMgvcwMkTfVGxU8ELUqeQhUAP55XqyxnRYke3AEHAFHwBE4EwLSx/jhMcIPFlqrLP0fqFetigh8r2QAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left( \\frac{C x}{E_\\mathrm{f}} + E + \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}}, \\  \\frac{D x}{E_\\mathrm{m}} + F - \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{m} E_\\mathrm{m}}\\right)$"
+      ],
+      "text/plain": [
+       "⎛                                       2                                     \n",
+       "⎜    C⋅x                  \\bar{\\tau}⋅p⋅x             D⋅x                  \\bar\n",
+       "⎜──────────── + E + ───────────────────────────, ──────────── + F - ──────────\n",
+       "⎝E_\\mathrm{f}       2⋅A_\\mathrm{f}⋅E_\\mathrm{f}  E_\\mathrm{m}       2⋅A_\\mathr\n",
+       "\n",
+       "          2      ⎞\n",
+       "{\\tau}⋅p⋅x       ⎟\n",
+       "─────────────────⎟\n",
+       "m{m}⋅E_\\mathrm{m}⎠"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "u_f = sp.integrate(eps_f, x) + E\n",
     "u_m = sp.integrate(eps_m, x) + F\n",
@@ -457,13 +533,30 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 7,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAAyCAYAAAB4SbajAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAMmUlEQVR4Ae2d6ZHVOBDHh6kJYJiNYCEDjgiADDgiADKA4hvfKMhgmQg4MgAiWCADIAKODGb/Pz2117clH+/5UFf52ZZbUqsPdeuw36WLi4ujLnj+/PlL4XzQ+WMXLs+Fd6rTMx2nun5M2tZBfLgiHvzDoev3c+dHkuFhJNRHT7ysznW+10X1cReCCsHYj3QONfbbQv+h464OFDyBOCD+fdfpnQ4EQ+dJpzhLEG1JhgeSTB89UZ4/IhdH8qWL7EttHl4FPFEBN3Xu7DmoSHgYOUr9WteL9uyi/5HacUcHbQLo8GCsAR77s46nws2n2/Pas3DJ98E/vB6Tt7bAkRNFz2pkODJrXHHizyR6Uaa1j5542h7rfL1cnt03GrwyIXi80WVDbjsLD0X+puOjrjGUVYDawpjnq84VJioNw72h429dxxo9vHqvfEGdqXAnB9GyShlOwTjxanS9KNOZk0ewnigPOom+Pi2Xx/1xXaKQT5V+riNGGV3oH5mnrvrZpIkP1zwxTcMZhizwil4/GFQu4f1rHXdzdQTnnxBxdTKcglc5mY2qF2Vae+oJNvtIeRmWVaDW4IVFWP5WmZoaVClICUQE9CzBnq6ukJmlGdMsBC+Th0cE/tqdon5tfsPqiMo8EfIaZTgFq0xmU+hFmd4oPfH291CFYMMVqBi8MiB0GlQbElRKKCbgudYEbmjS0vHd9I1tEnwbL4xXV9uQDvDM6DpA1Yupckq9KDPB5BGsJ9JXVoF+6WwRW1ZmxeD1BCQm3YI9tXAJa9cIdHxf6xqmNuPd6RzhVUwkVC7urJxwiPsVy3AKdu5DL8p0x+oJDvuJ19OsrILB6yFjURS50jNkOTZyIV40jt/1DEPHq7/S9aJXIzYiztGauRS9EJ14eaKDQqR+UuIED5lltzCi9HhTt/TiwBXxI98BEs0wwz67JTWITTA5B5akF+gt6/PZ0nFm8ErEo+Hdk8fa6YwtLT4Ub4KHN7us6XfFHFiSXryVHJj0I3J/hUzyIT2G/kfKPWQ8SplrAXry78nY1yLO0dqxGL3wussc1ANrfd7g7ysxGbuYIEY1jt+Ncem8PQ4sVC/eSFLXRDvR+87D+4YwNu2zvEQ5awMbp9WuZa6tsak9wRxYol7Yi1qOdvPw1pDk4XeytxCIvfIJEgeMA4vTCzlzJuCZg3JzD2bw3DB+3/TsvNpvbxxZSM+7BLxAlGDDHFiBXuC4nE6feDne0Plg3kwMZThhbyHRG/3ScaaD10jZ2ML4g7eAWDacDFR+WqGI4K74ZTJjXwJAhIj8AGQKcM+y0GKdyQr0gok7F8WfqDEIhuMgAlH9eNBnOlAKW/LQ7e51W6WxrMCE4qTGTn0J4jgg2fACEB2yvTlWkB+l6Rmdwjed7+mw8SSPEuyPA+wbQRbXCOnxnoBL3F1O/6vK+RoOk4R4VV4vRXkKoDRTEDqkVc0vqG14vsWD2mHDH2aDK+DlimzPKw9TQicHRtITi95v5w1+iIcn/AZiyvgkfIYSXTvWmClf8/wCndkcoI8MoTtkwhcZ0sHj7RP048AQPTG7vIrB9xV0nmwTetCyngRPmI5nCNnFxnieHUNrhGxsNYPGRckwR68L4yVT2tIEmcI1IaT0Vg4M0pNclHCGwVvPMSTEZHzNrrTOsFs4DCHo6cG3kF23jYCy5PeyNyKqPMaKS1o7f0FjRPMcPF+wDEsCoKPokjsyB+y8u2v4XaAcG1oyWvJYenKKwdvHG/Ck0SDhYIwIsjJh01CYzYTj5TtB5QeF88Kj4yJaCVKqzor3gCCa6fA4WA48GN2qO1aGjjvKR5QGdEV2hmeefper5ldlLk6ONc0YNUk8GUNPcOgFDx9NpFcUvNMdXXcK01eQX8KJrrMpg+qnY7iso/LtuaY8c0gXvXySCIF+0bWF1XsjTXVi7LEyNPqM3i4PH/yhENGzSDkaQ6Y6j6QnpyciEK94BKNDiRUuvTCTbhh51Acche/q83l1agfqiqGtvbTiU5XLctIkoLIvhRYsXJas6Ajx9BzuzabQ/H3wVMcQGVqVIeN3cGkbhtzVMVi5QedcG4LwPRLzRoX5Bt1PpgddhKnufekJEfwZBt8XUJg+wwDyBBmxmIGi0KkUBKT7USCG2aNU2F5IaITUXkrc074ytFrw8K1GLB7b/MTo+yhU9h/VPziim5keGG+bzoP0hDG8M1o1GuEHAYzWYd/Y+qFrG6OF5HcKojwhY1a+iT+JsYcQui8ctZGwmoiJ3YSTe3fapXqGyJD8JvPG8btw0CnaxkdVKvssoCNBOAfEw6F68guDp5cELNTe3QX8igAm4Fgy+6TrEAOmVIgGbCy/uyv9+sa52cnSo1Xd+nay2/CWrlu95RQNV519ZAgpreN3lYuxu2GfrkMndKdo4irKFA+xmyF6gn3/weB/eo4Ee3iP705eYYgSGnv6Ej4hCRNVL5XXwr0MRWl8q50Z/Bc6W2eUPW+6EC7DhN86Ov9up6mMfaeLVowGIbKtOCiSER7tvNAxWjtVFkYfLEPPpweclbdCt9JoF/R91nVUyC38xckRPkwJnp9RetJAz/cTPTCjivbwuUIxUAz4to5OLyUc/kmDf7QhDx2F0YDSvVMaChgFykOISv5BY5yoSocju3Gt6A4O4307aSOGwWG8G0pNkAxVH/sciOZcSO/v4bvpz6muoS9m5UboO6A9OpYmRyN/qnO0ntQQglx+YfAwdyiwrETIQejWafBUhmB1ijZs8jaByrR5hSaUXukqF+XmVdkobxVQGZ7wawBeAYV26mgdEhUyhN0EyVD1Ep1NCrRv0gp6Fi66ptKDLop66YkVKroxdsCF9OYRQ8fgu6zFX+s0rODi0+XfnasJzqON1ZScEIz/sUUzoUmnORasXYZj8Gl0PegiagQ9oQqz7Z/HKtA8zBjey8K6rnYs5rn4k80z5Jh/UPo9HTb3MjYtq5PhGAyaox5EtMsM/vuxz4SXuRFRwCZQvWHh+T77Bs/FGO6LtuBx/yaENWEjZ6wHoa22nY5fzeAZd48asoZSMnM8DIux7TdPp/WUByVbNKU17f1KYJZ6EMECp7fSm8zDuyUe35NFlLNeVPGCiRL2GAA2zp6Fwe9ISr/74MBK9ABddpPpJ55pFrLyAI+2abCOT2ebFDODr52UFB7R0TMdhP+8BJM88Ao0KFYP5thktQEnhd66fTLHEKlEJu5QbreZgrSNww3xJL+8aIbftFzE2vRDHe7LLhvn3ZqaH6sHc2y7Ld86R24eHkIJX7MZ6TlSvg+aZOh4a/a059ebbbKuEtILj96TP5ykU6CTyHcUuk2wRA7E6sGM28jeGD4246LUvMHjnR7pQdBuuRk3cChpZ+JB3thdeUr7rQsz/HIdFgGU09P9cjnQRw/m2FqG6W6nHsRlBi+Ftr+JRtk36aXEA/bxN81hMD4veHjhumhA6WxxZafhT53TcpkYsWSQDGP1AL2wLce3dI2RASyHMdS7z40A22I7+V7sS/Ww/x7I5pSOd/fZL0qLlydM3RSozQVjrmk8XrzAF+Vh7sP2OfMCTDL2GsYtKamnHhAuY8zoB8O7V14XXEega77dj9HxvgLHvoCJZN5bQXcdFAzeE8VDEDcDajeC4V9umrw7vMDDH3lcLhOsjAMD9cDph1iS9950BDgFA+6bhoWGM8pZbWGyjg4oC+cpuGDwJAgIQZ4oA8hBINysBwnKMBMk2qiD5Qo21tAzs6RWaLfuCe/AsTCNjmHMXtoU5aBcUZsWKcMxmKa2j6YHNXwcawt0rJ7gtIks3GSd8Skbw1uCEAgB6JUI72PeZkNh8JSLAS8cZjEbAX7oYZvnb8zb8cB4NSdDW5wMO3gc9PjAetBFY7SeqD14d/Ixn1CA48Ld/zeMR9hOyKRUKBDKZH88H5ppw3gWMbyZEQ+SDPsLIzRUP42sIkpPZLOUz1t9fBi14kxqDV6IhAGE9sw8hoKNFYgMNgE55h7pmg93BHWQPh98YmUkP8Y7NN82J8MxGO7l6YZ5unY2ozN7WjBW9nQwLMTjOtvQddCQUHgYb6yeYOxvlTc/l6CkHVy6uGj+Qq8nrHY90grIn4XPMgAEphnrPGNy116IvLuAR4j9xHeupGkukwyn4WtsqX30RHnoZPDsjcPUVoOHSGWmx/pX56AlJ+FRKT0Y496Q/44T2jZAvGFsRQ9MBMVHKysh1xw4kWR4WCn00RPlIZpgjb/1uxa1IX2+uSqA8TyfVLKxRP5x5Vp4rDfyvTpmFVHuBOKA+EJIx8wp0U/XP+YelGdJhodjfx89UR5CfybYK5N05Zb8B3Si/CGSZS73AAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\left( \\left\\{ C : \\frac{P}{A_\\mathrm{f}}\\right\\}, \\  \\left\\{ D : - \\frac{P}{A_\\mathrm{m}}\\right\\}\\right)$"
+      ],
+      "text/plain": [
+       "⎛⎧        P      ⎫  ⎧       -P      ⎫⎞\n",
+       "⎜⎨C: ────────────⎬, ⎨D: ────────────⎬⎟\n",
+       "⎝⎩   A_\\mathrm{f}⎭  ⎩   A_\\mathrm{m}⎭⎠"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "eq_C = {P - sig_f.subs({x:0}) * A_f}\n",
     "C_subs = sp.solve(eq_C,C)   \n",
@@ -515,9 +608,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 8,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAD4AAAAVCAYAAAAeql2xAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADIElEQVRYCd2Y3VEUQRCAD4oAUDOADA6MAMjAnwiUDKR8482CDA4jQMxAjEAhA8lAJAP8vqmdqZ3Znd3j7nw4u6qZme6env6d2WPj8fFxUsLp6el7aHvgDfOLkr8Oa+yeYucx+Au8YP3Qtnuj7TjMbZjfwWvmJ23BdZ3jxyG2X4EHzG+jH1tx0oxvGKcImO0qwP8A8whUqXAN3oXZZPKc0QDuN+MJ8ucNb2UDOs9Q9hs0k7vgJbTkGOsA0EziFxafweRX6bgKogNhY98fFOnIOaN9cstoEDoA/RvErMQ6QgsQ0HvDtk+MX93OaKBtyyOwz35tUCbBZpo9ccIB9pBgtmtgifUZUpMfpXOu988OY3DaDcx1zLXnzQULO472WOZmtQb3MMRVwmuU9QX7B3TbNMts7eBlHH/bKP3ZVs7BO+0185VmHH0x4MUxqaVq/Ey+7PGMObKw1O+aMguijdMeHJ5A1qkch3Qh55PjXWE2qwA/ZnOoisrAR31eugnKjLvJfhkEDIhRLUvOm7akjenSGY2qGdzeH43vs3EoGAY2Bi3oSxnHmVdQdOggcIb/xFt8n30zRDUoBIP1k0obeZ14Nnxch5s5UXBfFOsJZ/gBcwzOHOVvMZkymikjvsd6HsNjxv0oCNFn1Bjfyn8JQ1mN1eDb3gHs07cr0OzPNpnEd9hI+BYaiDFQJuvvZsPl2MZl+NgWgoyO6GRbXayC3sSx17d/wrgLnqceZ2Fvima/CsjFbGcXF/QHMKNVlSzH0MboZFtTDEbnjsEu336funR5JscbDUZr7JKJ/T30frcNWvXcjxQ/h0vwq9PqjVXR5svL6KXjbeHa3EtwwgGdyNY2DNHRsw3+AUMpDsnKQ86n8p4x2NHQrACz+s51BbL7YasilJE5RMW2gJEOFQHNyKvsjHlvX8EbBfbaIup5ig5/bHxkX6zOl6yzX19jB8/ruGUSnoExhYvwccBSnBsMFsJL/WzuK/V4ScxtyDoKlo53vnDW0akem21VqyRB5jgl5MXhzTj4pKXdazDBF59f/8GStUb2r6foB8LemD5b/+3/3P4Chn8OBSzvxOwAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left\\{ F : 0\\right\\}$"
+      ],
+      "text/plain": [
+       "{F: 0}"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "F_subs = sp.solve({u_m.subs(x,0) - 0}, F)\n",
     "F_subs"
@@ -536,13 +644,38 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 9,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAA1CAYAAACJMHZhAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAPKElEQVR4Ae2d27UUtxKGB9YOgIMjsMnAhggwGQAnAnAG9uKNN5bJYOMIOHYGQATGZGAcgYEM9vk/bZXoi/o20z2tma5aq0f3269qlUpSa25cXV3tnBwBR2C3e/78+a/C4Zae7/R81POL/L7IdHIEikGgdD69KAYpr4gjsCIC8UW9lIkw2cn8XcY7PT/gdnIESkDgFPj0ZglAeR0cgQIQeNiowwu5v9dLjNbi5AiUgkDxfDqoqeilYjngmZ5bsv9UCrJeD0dgAQRs2Yusbdmr6rdAkZ6lIzAZgSpPHoVP4+TqUjVFm/+jr8a9QkWJf1RilgE+6XnUl5GHOQKnjIB4/U6j/t9H9/uGvzsdgdUQWItPVe5HPciC32SiXDySaQKthseNro16JUDNIpNXMZNaQncMIyDcnirWAz2msr6VvdoRzDgYtHxDWCCUROq7v1UfZmUvS6pXSXVx/l6/N47NpyqPMetNbPkPclfHs+CdFSoxIS/VW9kZFJ0OQEAYcsTug8zWpq/86KC7er6VvdVBBxTrSfdEQP0QToHJ9OXeERgKJ+fvETjNHWUtPlW5CBbkwx+yt1awupa/eKmgVoJrb/8di4BAt2UUtJQcsU7JMiNajc+Kcwg1/IQpml/nZEfhewsDpaUffP+wgXmX0/k7j8ySPEqJa/KpymYp7JWq8VQmh1k+VFHoEiq8tMysfeZcRWs/OwIDMpXx2vX1F6kPfXNt+O8QAuJLNgp7NwuH8siFK1/66o7MIJSi+5PM2kuTS7thP+fvTOeLZxbhUYqKfLk2nzIZZgJG/9fejwt5dFE4r98V6P6jEQgzajFCl6ZyL+bUJXRGF+QR90dA/YNGiYb+QnbbAwsbkvvnuomUzt9H7OaC+NTkQ/OAy64lVFTpW0fEaAtFtSS5NVpYo6UwgHEYoiZ0YtgvCkNbpE9Yw+Ro9+b3XoTNzxGLLl7l4ENaShyJ5TvlSX4cTkmktOCfSG76k4EUIYTQIQ1+EBOEJ800IeR8f5y/M30rHpjEo2ShNIwHQ+/8IJ8qn2Py6O1m8y+aHu6eDwF1bud+isIQJsyMX8oOIyWKTMHgxukK+8L7L7lZ668NcinRRixqv+333VeTwSJoF9EeUDDMcMjOCzaIpeL9JyQe/nmguAgt8kS7TAJMftQF/879HoWdDam9zt+Z3ox8QMgoHiWi0szJp6vyqAsVenQ5glGg7yqMhpvZLZpH60ie4hHGwMRgZSqmnOHoMd8LbZaEB4PYnzLTfgp46amt6RpAhMk+G5bKj5nknzF/7Ow7prrITZ8yQ90KOX83elr8MIlHSa40s/Gp8lqdR12oNJhiZqfNWKcsiTDbhcn+16gLLzCbY5slvTAIjyRA5OYF/tIDyNxYsmlvQoSyXzTKDuvLirMVjdL5u8EAe/AoOczJp6vz6M0GJu6cFwEEAcfv+ga+ZomP5cH3QSkNg5T8mIHU9l2aCTfo/q/a3HfAYVYsrU9k2gy92R9ByFm8DfSH8/dwJw/xKDnMxqfGe2vyqAuVYabYK4Y6lQEGag48176ZX6VBePCk2XiMFgYxhTf9M7lsyot9qfe5Fi+MJTP02mQhlkc/NTXMXPVO3k/tdf4e14udPEryBfl0NR51oTKOMfaJZbNZ1vSnkq3bWzpmO0GgiAkf6kFr2TRFDNirGhK0S2BJ3zYnC8w20S5rhy7OuJOcvwc6dwKPktPcfLoaj7pQGWCMA4IRBFB2Jn0dVP8VEzIoMVgloSE/PjBiVmib9vfkZ3Z5b5aYAXbisDCW9Ee1j3CzLn4/livr2ZPz93AX9/IoyRfk09V49GIYF48xBQExCZvpd/XQqRC3enJiKX03ce3d+cvVOKT5OcZAyKDK/hr9+vYQYpJNGGyKDx1cmB1L9YHN0K0/AJu6pOPfeJwrqf3O3+M7dwyPktusfLo2j7YulFSFWNP/rCd7WRgI5EjpGAQZ/OylYzC0meTtmMakJ0cxW5crxjhuOALFIiC+RSNhCTKc9Cq2ol6xzSJwDB5VGZ1yYjZNRYUwE+dDPruxFAHTIoWznINkdnIEThEBJk3N/ZRTbIfX+XwRWJVHZ91TkcAwLeV1T39xOsY0mJ5oHuQIlIWA+JvZGdq2L0GW1TVem4jAsXhU5bD/m6WcULGlqn0GftNOhmZyfHns5AicDAJ6idh05aoc6Jnctud17eO/jsDKCKzEo0y0apRb/jJtY5/ZWEirxtWOecrNpmY4ainzix77KrlWGXc4AqUiEHnW+bbUDvJ67VbgUcZ5kxepB3KaCoM/H3YNaRspk4qFpYFaOuXDHkpNM5HfoBakOH/r2ecbj0p13OoIOAKOgCOwEALhmqI4xqciapqKAjnZwvn7ySdblNYk1m3ZOXbIMhp+qEeT8lN60pCeujg5Ao6AI+AIFIaAxmlOCKO9X8rkaqmgLKQjxfJAoISTWUSYWv+YnnVmzuun5S/Z/9Ljx4enAurxHQFHwBE4AQQ0vrOihALxSPa3F/pBK3inBylzyB9ABU1F+SWBovygmoBSeOs/ja+j7fdbqf+UDLg1uFZPuTkKvSlSm290NXguXHP5bxHrHA45P++THCrdfmvgde7824dpricUH2HCQRY0lsuLGAnB8imXYIJfaz8lpk3Xg6tAykH41Ab0CWW0oirPL/I8WBNSPp0DbKvQDXjMhWsOKsc6h8qwn/fJMEbVGEvh5fxbRTnZ0z75TYDXY3se/8iOcJhEShO0FCVqnRgj/0pmz2R/VXG71RFwBBwBR+CEEdAYz9YJq10/yf4ynf6Sg//b5sPEd7JP3SAf/D5FeSKsuFW2KmTk5eQIOAKOgCNwighoPEegsJfOZaphqyMJFRokTwQLy2AtjYPwHmI9jfTZZS35o8kgydJSGPG7SPH557zPeuxjs66o7u8IOAKOgCOwAgJxXEeg8Nfnaey3PZVqlTgOzMeKP+qpbbJXIymM/ZHf9KDVBM1GfpwCQChBHAkmjoVziWQqmAhdpHgsyZFPWqfriuv+joAj4Ag4AqsgYB+0125gzwkVzh2j0rCk1SdUWMZa7GJICRXb51Ex5ZDqxTIeV9MffDgg1yrli+QHe9unog9MuCKoobCUKPOkb3tWW5l0wGtQmJjIrM16QsjAj/fJAEAzBh+K9Tnxd2n8uwK2jFEtRSEnVEzT4IV3aiOAdsagvgiJMTZx23N8IRHOaWIiOwKG75oe6Omc0GSA9z7JgLKQ10FYq1/Pgr/VDsbHovj3mNjG9sNiNuFN7HYz2doWmxW3QzbqIyD5ODRQBVTzms1U3qalvO7JlEMVrQ7tiV9aEALkSbVSajfqNBrw6Ot5vE+qCC5rnwvrM+HvIvm3BGz7hMqyHHpiuauzmJmgxb2PVV9S6A6epot1qN2pFv1OxXisiuYOYqChcFDDlsM62+N90gnN7AEzY30O/F0q/66OrQuV8a/fY71Y7DfZQD446I3PuhUzaCoqr7ZeKTezo0CyM6OnPqdKaFkcMUdY56jLvxrX+6SKxrL2ObE+B/4ulX9Xx/ZiWT48j9w18NFRLDdBtuS0pFBhz6a2p6A67HXbc6hxgT9qT9dBB9uvMpyztfc+ycKyiOcCWJ88fxfMv6tj60Jl4DUU84QZs0w0A8gGuzEz6esUE37jC0yKg297nlBsEVFj2xHW/C214d2qm8K8T1qoLOMxFWvFZ1Dj5gyWijl0UbtBQ+4wk1bYaP4eylN5FUGxbbPz79j2l4KtC5VhdryrzqpqDTbYLXXk2dZEa5deqg68oCbQhmt9mjH4RorrtMP5954meJ/0gDNz0FSsOWSBFnpXj2md1Srtw99DeVbzX9O+FP+ObX8R2LpQ6WFBDW68FNxnk469yn07Jllq+SvM5FRmbT9FZVYF2466ZeLEqp2eobbwQvKfDNzq0Em0W4HeJ50IzRcwFWvFR4O0q5jg1xrPxppN4u+Rec7X6D1zUj0X4d+J7S8CWxcq/UyEil4VKCG2/D7LYsKlP4fpoQyauZcxXXETGQ0Gagqe6aUVkELt4YPPncxegRKr6n1yvD7bB2vT5LtquQ9/D+XZVdZR/I/Av2PbXwS2LlQ62E6M8lBP1+kq1otrmori4kZNxbyvJ8waZN7T80QPRxAhhBTX4LQEh/wszZsQs/KjsCpjPVPQiznKrBSxilVt4N64OzKTQInt2smsLffJ7X1ypF7aA2sGNPqQ4+CcUvxXJh86JpJ7Kn8P5pkyX8kCTip6Kf4d3f6SsHWhkmFGdVBNYGSiMMDX4ijNRz0IDI4cswQQXiiZfIvxu8yw3ikTgYSqnNuTsTXRlsBR/EBKD6PZEgN3pB1aZsz5+EZsyz2ZSaDEWvCi1gS64tTwztTW+yQDyj5ee2LNlUHshT2NZq7oqfw9Js9cOUfxUzt5F5fk3yntLwZbFyoN9osv1BuZuUHfYiMYdsTVU51NB38FVYUC4dU42G/ryRGDKfl+yAXKn5ke2hCakNGhZVo+RzXVFoQEbWFj3r6/uSU32LBflGa5Ma73iYBZmg7Eeqh6+/D3UJ6rhEecjsG/Y9tXDLYtoSKwmP2ObcjZxFObGdBgEgbundxoGPxHADPgQLLTccyqQxyZDHStzeVqmpBQSwHRbBmKS7ncp8QgG2bj8qMeJiwYZIlj4cxeWkJnSpnKqwSijbQp7Kc0KhSEcMTG+6QBzhLOObGu1i/mezB/V/MsxH5U/s21uRBsbZxKVWwJlRjCQBoGuBTzzC3qINpsKmS2tYrDkkxtWSYbcYJnLJclrE2R2t318WPCwfskQbG4ZSmsz5W/S+DflbE1+cC4WaObNddXB8s3LEFYwq8hbutDoGtZq5kGzWMuWqPMuep+jHzWwGeNMo+BpZfhCBgCtlrz2jzMvHF1dWX2ZEZhwoYz692bm0UnICZYhBOCwpZqAm7y42oV9gtQEdnEZNmKTXo65JXCmxvU8h5Pa5Q5vnbrx1wDnzXKXB/psFwM/7PMxRIx2jynE1vLtPIfTRHLWfMcXXgBEZds/yF5x7R8VsHSf2t1JytUwFORWetmQORPk9KmKWFOjoAj4Ag4AttDQLKAyQP7zWjj38r9pYlCp1AhohIw02ZmzcyDa0NaGcjfyRFwBBwBR+DMEdD4jxaK5shBmtohpmrTe4UKEZURkgmNJft1LXGcHAFHwBFwBM4XAckB9tdZ3r+UvXZJaLPV/wdFkph/ZtXBbAAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\left\\{ E : - \\frac{P a}{A_\\mathrm{m} E_\\mathrm{m}} - \\frac{\\bar{\\tau} a^{2} p}{2 A_\\mathrm{m} E_\\mathrm{m}} - \\frac{P a}{A_\\mathrm{f} E_\\mathrm{f}} - \\frac{\\bar{\\tau} a^{2} p}{2 A_\\mathrm{f} E_\\mathrm{f}}\\right\\}$"
+      ],
+      "text/plain": [
+       "⎧                                                   2                         \n",
+       "⎪                P⋅a                    \\bar{\\tau}⋅a ⋅p                    P⋅a\n",
+       "⎨E: - ───────────────────────── - ─────────────────────────── - ──────────────\n",
+       "⎪     A_\\mathrm{m}⋅E_\\mathrm{m}   2⋅A_\\mathrm{m}⋅E_\\mathrm{m}   A_\\mathrm{f}⋅E\n",
+       "⎩                                                                             \n",
+       "\n",
+       "                                2        ⎫\n",
+       "                    \\bar{\\tau}⋅a ⋅p      ⎪\n",
+       "─────────── - ───────────────────────────⎬\n",
+       "_\\mathrm{f}   2⋅A_\\mathrm{f}⋅E_\\mathrm{f}⎪\n",
+       "                                         ⎭"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "eqns_u_equal = {u_f.subs(C_subs).subs(x,a) - u_m.subs(D_subs).subs(F_subs).subs(x,a)}\n",
     "E_subs = sp.solve(eqns_u_equal,E)\n",
@@ -562,13 +695,32 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 10,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQkAAAA/CAYAAADzPD1gAAAACXBIWXMAAA7EAAAOxAGVKw4bAAALrklEQVR4Ae2d65EUNxDH9ygCOHAGOAMDERgyMDiCwxlA+RN8u7IzwEQAJgNwBMbOwHYEhy8D/P/Nqcfz0Lz25nYlTXeVVhqNZkbdLbW6W489+fLly24KXr169Y3K/KTwWun3U+VTvy8cHqmOLxSIwedvhVOFewqXCmcqQ5wkqG7PVbGvu5VT/g/dvNKvc+Tlsfmn79POf1V4ofTHqTZyMiUkAkIIiPdKP5l6YS73hcsz1fUnxXeaddY1uH6nuNcJm+U8nQ4FnJfLeRHaOYPNL0qPDi63xl4fXkSn+VnpYgREwPmx4pgUvVA+ktYhHwo4LxfySv0ZTZo+/UzpP8Yevz10Uw+iiiNp0CB4YWlgJlQXr6EG1y13lGvxAgH2QSEmyB7rfi34lMaEQsj/pfAwPIMp9afSO8VoU/cVrJFQnnLnVkbpHCAbXoqus/incjfOO33D+jYaNSHaz6NCIlQQmwU4u4rK+Q34way6Q4Gd8hGK5NNxUgUYiSD7rPBGdY5qeAFHOv8Tpf9UoCNxjf+lCfAZoXO/UY68LMytgGdOvJzkX8DpILzTt7ASvhe/nyt+q1ANILquISokdPepApIMe+WyLl1O4kFA5Qfhd6H0V+H6d10n2zlUt1OF2n7keoQlaBAfVabJ9L91XfFTMR3rnQLaBCOKleM+93KBbHgpGs/l36F5dy5mMzD8qNAbdIaEhBU0bSKXBjO3nozEjK5R9WruSw5dTvWtBbbSmIPWsWNVQdA3tcBWeT1faRSKMS9+b7wAjaP+TiM/1WQ2vFzAv4PyTvVikIC/38WYfCuWqTwbST4P3M89m47wKXMkEOT4Gnoghp8qk9AUInSmD9wL9+05hEfT7EL1RMPIBQ7GS9GNWS9M0jUgyr/Am2PwrhoYOm2jwnNISBgRqgftoqCYjoEdnjOAQ1TQidHwreadrulIlEd7eBru7xQzGJwqVGVDOcrmpGHlysso/wJvjsG7QYXgthrEpiB0BHBujrJZ0kC4jOHASIXHGlMC4UDHJw+HmAECgXcwQpKHPwYHZt1IyUwVVE/qD4zR4apEgr+q/1C9k+LdlJD4nCBt966SmIKqiDoNsNqMTtT19l/dTfxX9R51sOo+JkTTjIhhhAmCc/Pn2M2U81TnrHk5xr/UeDclJFJuJ4vrFjpDdh1iMaLzH3ikojmZFjVmzsvKfDwI76Z8EjVTPFEWBdTJXgsjfBLfK41fwiETChyad8loEqGh/raQT/XqQXtO75nesWaF94z1jZOxR9fCpfuNG8KNaS/zSdSfnMKxLniAxJp4z8FLZVingJbVBYTpXd03k7V5nzUo+BIGQffXbptR3lEBfWu0jQ5WMnIjusFLH2BqjVHmjtJZOLEiuHmWU2BVCqgv0CnvKS7OZB3r85szN0QM1gogAIuE0vGLMa1UnFPBa1NCQkRnCTJqZJFConT8BgREkTxNiZebERIiOvakbdwqTkiUjt+AgCiSp6nxcjNCQo2MzStMGbEuwoSFksVA6fjFGFUqzknhtQkhIcnMyrwLxThhERJFaRKl4xeTDqXinCJeyUyBxhrCink/ivg2PYWQiE1vrfi5g7+qdPxiBJ3EWTy3zVhfK11vsY+9bGbe1ArWma8ZLXYMvEYrVLwmocaBY+ttgwo2vdvIyjdZOn4xzszBWWXQHh8qZrpylSMP9K5LQqxOa+Tp3ZNtVWVWx2uq7kPrJP7VgziFsl4nIYKCAwu02C1pzIXIaBJZ46b670rHDxy7MBdnlYPHHOd3kKXL3XouvT42Xvq+DZ69fjFkbtC5SgBWzn0rApiA2CmNP8IIwsEzJkgwQ2z7eLULT9eUxcn5h8r9ojg1KB2/GL3n4AzfMC9Y+MSxbDksfkoFr7uiW91fYMCYuXGjqhUfv0lQw2AkoXO3ENY1wgB4wE+4z2hDg+K4PhMGHM5CGuatYc/qNeuB6pY8fqrjmoe07BbgDI9fK3zSM8kLiETwsn7BoNmCnpBQhZHCQPRAk6tbaf8KBzQCgjkrqwqDW7jHNVvFsQENjEjda7bL9whnhY4Rl45fjKZ74hx7VVJ5CeFlZ1v09qXEzA0bNVdx9hyDIyI85yT0QPkIgug95Wdzdkbp+PUYp4w9cY69Kqm8hPBC82I2CA21BS1NQhVmxGR0ZUebqd2tB0q7CDgjGB8p/Y0CRMIUYUELQIwGwuae7KB0/EYYYjzNkm+HxkvthAH0vYL1gboKrdkNFURFp5NU/8FQl/KEU2APCgTBioBN3i+wB3pFPiJe4dTfKa5PPqs1CWXioENAMG1k9gnlHZwCToHtUABznDMzbKZvV2kSysD/wPqB6t+eltBDz2KisBZhCfQOi1nysJdNiwJqAzbAdCtG22BKresUptzkIS0Ucjg8BUKffqMvIxMen7x8+RJGsniKf7M6ih9C3137xB6h47AWBcSfvU450nP4A/Y2N7xdrMPBffinZ7AqUB7OTJNg2hP1AjODUf5SsYNT4FoUUDu6lpC41sf94b0pIL6hGTLTgWXxvvJJKIE6yMpCpMdS00GPODgFnAIlUKAhIPBNMtvx/4pLZaA9sPiIKRDmTB2cAk6BDVFA/R7NDw2Cfxqvd7zWsxvQItzg5jOlMUEcnAJOge1QAGcl2zFam+JaQiLQwrQI7BIHp4BTYAMUkGBAi2ASozd5cTuCv6kZ+CccAgVERNQw5pCNLtDJpvaY5gOYMkIDY3dpiUfkgeMSsLa05Jmkym6I77ZdoV4fYYxorbi0TBGmiPMkDJ81Y9GG6dpBIaD7LGvHK2xEX/Pz/q4jUaB0vgs//kiaQa632jpmbsCGbDY7UdlDgQhpWsTbkW++0z3TMEaK+a1cKLARvmNqAL3lD0NC4qq4/3YpYNrBlBpdrX/vPuzX2VJgS3zvKQguJJa120qT0MjS2tui69rJqzSSuJpfXvZqL50wBTbNdxcSy1omNltLi5BQwAfR0hyU5+bGMrqmXnrTfL+dOndSqZ86vvkj2CHHNPFdBfKw5epttUo7FESBffiuZxAqnEOC6p7q+aizueRCYjap6hOtWjtY1SBoBK45zKdjbiXNH7GE72yMYgr8gQICI2twc2M++ypNQgKh5Y/Q413zI/tGMZ8kmyi5iO9qH2iW7Hxl5eJHhewP3HEhMb+d0/lbAiE8em6vCA2kalSW53H2FNiH771pxJyp4ObGDO6p81vH761G071mg8AOPVfePcWonMTfKtjzD5U+U3iqAFT/76HyMeFzVcJ/j0aBPfiOQOFsTf6OgRmvC8XZaxIuJOY1QbNLBzuzGgMNpFIzFaNqIgCY9agPXVEeq9p+VVy9TzGOLZyg7vgUERKEpXxnJS6bo56FOEGUllfJhcQ8mrH5ZSfGd/0R1dPKR1NAc0BrMEAAAE3BgoOz6eQkfZdCDklSYB++J4nIdSrlQmKAeur4OKDYOovJQEBIIAis89O5KyeVYu4zivSEiPKa5oiK7S74cUiTAuLXKnxPE7v9auVCYoBuoXNjMjhsiALO9z6zb/WzPGclCsw1Ixi5HJwCyVLAhcQNsCaorDgkd0pjohCzfBvfBaeS80e6mCjVng+lq7K6dsiYAuKjmSo7pXFQ48zOBQYHtSlzgwe7NnUuSB+tnmoc0Mw841U9lMeJP91Tf1pljlZh//AqFAh8z9VEHdRohzQJEwyDD65CVX+JU8ApkBQFgqBr1WlISHwKpXp/Q9562i+cAk6B7CkgwYDpC/Rm58gcEhJ2PkI1T0xBB6eAU6BYCrBKFHh7FbV/o2dcUkTSBYcbQqL6Fx/yHJwCToGyKKB+jkuBM235b9boyt8hTQIhgQOGFYF4aU0d0aWDU8ApUBAF7B/7Bh2ug0IiEAHvO3YKZybkNJ1TEA8dFafA+hRg4FewE7L5S7+oP4IvD5obzWrpBfgo6j8Qbd7ztFPAKZAXBdSfMTH+UcBSwJ3Q3E/UQ2aWkOApvQiT47Nimx7tvcwznAJOgTwooH7Mf/4Oag9NLP4DHXsnQ1pwLF0AAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left\\{- \\frac{- \\frac{P}{A_\\mathrm{m}} - \\frac{\\bar{\\tau} a p}{A_\\mathrm{m}}}{E_\\mathrm{m}} + \\frac{\\frac{P}{A_\\mathrm{f}} + \\frac{\\bar{\\tau} a p}{A_\\mathrm{f}}}{E_\\mathrm{f}}\\right\\}$"
+      ],
+      "text/plain": [
+       "⎧         P         \\bar{\\tau}⋅a⋅p        P         \\bar{\\tau}⋅a⋅p⎫\n",
+       "⎪  - ──────────── - ──────────────   ──────────── + ──────────────⎪\n",
+       "⎨    A_\\mathrm{m}    A_\\mathrm{m}    A_\\mathrm{f}    A_\\mathrm{f} ⎬\n",
+       "⎪- ─────────────────────────────── + ─────────────────────────────⎪\n",
+       "⎩            E_\\mathrm{m}                     E_\\mathrm{f}        ⎭"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "eqns_eps_equal = {eps_f.subs(C_subs).subs(x,a) - eps_m.subs(D_subs).subs(x,a)}\n",
     "eqns_eps_equal"
@@ -576,9 +728,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 11,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGIAAAAyCAYAAACnKw75AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAF/ElEQVR4Ae2b7XHUMBCGL5kUkAkVcHQApAKgAz4qADqAyb/8Y5IOklQAoQOgggQ6gHQQ0kF4H59WsfXhs8/JZbC8MzrrYyVb73pX65Vu4/r6etZG+/v722rfU9pW/n0b79TWREB4zVVzRFL+a7O1WdpsFpsldX6umgull0oMOFEPBITfH7GfKp0o/02JlzpJGzmNUCfAZ5Bj5YvQBM3zneb7Qom5Q9+Vrqrc4oc3/Fzpo3jr9TWWOCte+n1zLU9SfZOCcB1/q+N35Xmwokhzxl7/0vVJOHHVAehTpYfK9xUGmH5Vv1fhuDnTdOAYow7hAGMrC6THbk5oQ4ow0ZgYtKczaVzM1LHSy9o9fP+cIFBN3ojOEvcj/v8Z1kXITMmidPOLmYEeLC69fm2dtXv4zjlBwIAES6TKFOslzGnErgMlJ6g2zAzTRyFTJAg9AGpXMvG2/koBIGzQBqwFDkxOUKmuYd1OWBEJImQoqSxws+uD2hAAWnCo/K17kVslAd1hrma75wLbHBa6YSXweJKuJwxDaRJEE0Fz1d9KEGt1VCbT1BQEGvFn3ULgESZBOEEI/Oz64Fju9DIJ4gZeWx8I66ydJkHcQP7GZYklrZ2KF4RMEiHqn0LeTBOR0g/rlkTxXpNAv/VvglWEWLxGrALaXfSZBHEXqGbGlPZlv01SgrA4iAWoMsNO1QMQiOJ5KUGYG7dKdHHAsxXTlYCiYewnnVqsP6qVr8vO0UXxztWHfqge0iYus6e0dBdLfeFl76OUTahPmu+p5vtOiY2iihoaoQYCXYBqMZcFV8uv+iBd3L8D5dnLxQvBJ+fUR9Ymqn2mdoSGKeSeRZDmzGkOEm6zn7ffs1YlQmD775XynbRBfADJKQ8E4KWrPDtRRDA7C1T8RZGw4Quel7jCe0sVgPlDicV5qSkRT50QHv2/1CuV5wa2LRg0rV6sPWufQYik+o0e5dsPcvUZucarcTdqxaVZ8SMA9jjQjCNbIwDzcmnvmOG1qjjpcWVNyjMWKtdJq6xfl6u7T3Syoktf49EYvQCzfnd09Z7pJpNTsj3UC+XtU7/13uIDcJJ/21wHtGGm9rDeNU8Xhw/WBEv0XlgdbhosKrDIYmJ+KO8XEWtvuZ4FbSzUlRA0DkdH+owVDDXOojBBCMSznilfWQ4vCKasSoSBiVr6DSFezBGDeKBVx2KPRpnK7arO8qpuktrwrP4q4XUVQZorFgMh4OB4q9EQhEPCPJ7KxCxBB98fsD+QlCeEbMdRKLcKVH0QJoLPCkttYyO+t2aa+2F9YrZY1+vwcVEdAG1dcB2QqQ+xVF39Hj6vMWx98nUjz/CCe02wuaY0gjcUYiGe6BYR0EtnmEYWIKURdmsL/ll5dFcBgx+f/ehUO2vmWqhNEGt5gPu8iYC2cMN9PkZ175RpuveHKvEBitUIaQNeHRFis9uh/HEvK89GVxZYTBiuOeaKPtRBu0qDD6QVqRECFq+QY/XPlPDaMFGETshXyYSgMvRCZQvz45IT0OQMLIJi4R18BKc4jRB4vNVnugJ+RcrzYRm5lDSqfq6LRQ/Is3fi+6rMfgraNYiK0wgArwOpPIK5akHxssYP7+eAFw2aiSdn4gL2dLE4QSRgIDaWjQAI4EpIutqaEH7kVoI0vsT4naomQSz+eHLeAS0W68YBZacFCIhg6SAqWhACci70WHiT60OALICH2vBadWhMFT8K+HsVi1usA3T4so7CDQGPFTFBFv6ZSXiU8b4IZbetMda/9RoJgkGVWjuNqJGFdumWrvBAGyAOSJiHRF/+QdRVkNUA7scL1CojQbgGJIzajpoEYtdYkq0PmKbQPPXByDCNNCi3RnCzx3pQ69jnZmPkRSOGCMAwMc0KXeDsP4Zs8cEGFk16GbcFAOtB1sXtApAbBzw5bBE5B0mNECN2D2Gw52w2scv9RsWjubOY2zbu3qpYqB/CZBxMUnLTzB8wE0NEGoA9aBYzPukHB7aiGxRQ4YR5oqnycmc9rFZBgJOTJiq1o3xSmvBNFCMgvFhjCQhyiMyfhIw5Z7N/oRXjN4TpT+8AAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left\\{ a : - \\frac{P}{\\bar{\\tau} p}\\right\\}$"
+      ],
+      "text/plain": [
+       "⎧       -P      ⎫\n",
+       "⎨a: ────────────⎬\n",
+       "⎩   \\bar{\\tau}⋅p⎭"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "a_subs = sp.solve(eqns_eps_equal,a)\n",
     "a_subs"
@@ -599,13 +768,44 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 12,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAA1CAYAAACdv1c0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAYlklEQVR4Ae2d65XethGGVzpbgKJUkLgDWa7ATgeWXYGdDuLjf/6nE3UgqQLF7sBWBbLTgZ0KomwHm/fhh+GS/HgBSYDXwTm8AAQGwDtDYDi48NH9/f2NO0fAEXAEHIFjIfDDDz/8UzV6ouOvOv7Q8Z3C7nR15whsBgGX082wwguyAAK3C+ThWTgCjoAj4AgsiEBQZF7rirJ9o+uPurzX8Sl+d47AFhBwOd0CF7wMSyLweMnMPC9HwBFwBByBRRD4spHLS/mfScnB6u3OEdgKAi6nW+GEl2MRBAYt3WqkGZ78XscT3f99kVJ5Jo6AI+AIOAJzEbBpJdCxaSXVsLn0Pb0jkAKBqky6nKZA1GksikAwZrxWpowu/tSXea/SrcRfKDHDkh91vOgj5M8cAUfAEXAEtoGA2u5PGiV5Fvy/NsLd6wishoDL6WrQe8YJEZAc/6EDXfmtrhinX+hqH5C1nB51LaRUAoZ9IPImEKkl3JNH5f9W5f2bDhvK+kX3VUD40qYz8oVGAiGnc17kRDcvbeddXnxzUhfvfhd9rDCvcuazZ9ou3+tzz+V0fR6coQS53nXRRZf8OWD4qfxVPbMIblW6Q0Ia6V90j7J6CKe6sFXLv3W9WkykMIB6ruMvur8C6hAAbKgSzosNMWNkUZx3IwFbObr4VexioqtPD4zghct3BEgZoricZgDVSfYikONdF00Ub/Tnn3R/NUOka3oJjTTuKsEleH9nVd6GV7Fytznm4zCdBqu4W4PaEEoU5rxIBOQKZJx36UEXpozAdRo39Hyysqy0tGe+HieSbS7f3UC5nHZj40/2h0Cud110mWryRoh8Sx46/l1Fp0vpphPAInwkiy8KNc5M/xffw5mvE9yfLxc/Z0TAeZER3MyknXeJAVY7y8Kb3sU3U7IUXXj1ia6F0h78H3WtdQJTaB84jct3B3MlNy6nHdh48C4RyPmuY8TF4EEetfb2tgeqYn/Xnud7e1RYktRwdFm6PwsV6lLK91bfLZfXebFl7vSXzXnXj88mnqqdY2SPEcuXure1LMUCn00UcLuFcPlekDcupwuC7Vk1Ecj5rpv+3FzQfnOldOsleNIs2UH8V18cVi/VGSs3HROLRruUcovu1/kIOC/mY7gWhUm8C+/Ydyo0o2e0Mcx5YyvS06+hEDb/CFh0tb0s8C6nvEVi+V40ocdi+NIpLfiXTn74SeeDko5SThrCcBgivmmmKZ4c9+Ty3cFbycEqcuoy2sEQD56LwKR3fWSmT5vxb5sBR/Trpe2cz61nKNtYhF7pHqXAXUYEnBcZwc1MeirvlI7GDeWP1dz2h8Tf5GeucU0JzFyFzZFX/W39zOcqHFgU1ulwX5TXMMOj+ygsFe9PReLh098UF6Ue/jDKVyr4CqMshBcWIV0P7VTfSf2E0kXxZM/gBVmgCmvIqcvonoVng2Wf+q6nqMoplG4BRaOI+2ul8cCPVQeLW+vWLkRwlxwB50VySBcjOJp3et94x1DcUOZsyI0Cs0Un+/+f1oWG/4Ou5Xxu8NJRmwNoAPFM98mwFD1G+D4E+tyzjqcsi/y0jVg3z+Jcvls4LZngY2QVOXUZbWGIB6VAYPS7niJTaNymIrRxOmapOdtQ6RbZ4rzYIlfiyjSFd1hLURb/1ciCRo/FJqd1UihQrksFOyg3dz2ApMaSRZWmZKNYvWzkXcxHVJyzjEi4fDcEAK/4v6acuoy28MSDZiMw5V2fnSkEHiehsn0idPBs49LXoW2/FscoofNiv3ycwruvVF32+y/fPd2jhGNZ9fUTdVn4Wt6+hdxJsTSe6ApfcU1+oIjfWbwixrFPLt9x/F1MTk32XEbjGOOxohGY8q5HE++LeHilWy9r5zy9PmD8WXoEnBfpMV2K4hTeKQ3KNUdpzQ3lLZQ8PW+GL1WdrebD+hKm3Vy5zFhi9akZJUJ+8Kk5QnFVtiMEqL6j+4nMPNkyrGvI6elldMsCsaeyTXnXU9bv8Eq3wCo6eF2ZC+luXQScF+viPyf3ObyzecOWP5ayQuFWA/ilDqzep3YBA9acDH2I5MAS3jat3FjVGZ04y+Jyl++IN3BFOXUZjeCPR4lCYM67HpVBX6QzKN108LhWC9LlkZ8XQsB5sRDQGbIZzTt10ChtKHOlUq0wfhiAVdEWVX6mMLtX8Gkd1sNOHDJjCT+qPMLP/PHPQ766Pbxz+Y5j8Vpy6jIaxx+PNYzA6Hd9mGR8jNv4qPuKqc6CRVrPdfCy4t4qjBXY5X63l2A/50bAeZEb4Xz0E/DuhUrHu2e7YKCEM1T8zxDWN4c5X8W2R5lFi0MLS5NjKR6Y1cf4ATKUpdzekYCjOpfv0ZxdXE7PLqOjOeQJWhFI8K630h0b+Oj+/r6WRgVjDub/dPykexr5US6kx5pFx4ql66OOpzp+1jN+PoNF5e+6fqfrqZ0wMJywHuBQSMAMBx9w+JvbrRUP/JQPAfEGJREZNqUE3pglEnnGmfWFrdY+vQT52RHYDwKSWyzaTPEpdirZT8m9pGdBYMsyqrIN9RP04xj/uJZ74KfkXcDnv6KJrsB7/E5hQ9PUUhbBaTUQEP7wu1WPTmrpDgLIX+YQLhSW0slPw44lh7mCp1e4AUZ4vNGFDxG+fFDcapiFOCjmv+vZCx22vReP3GVEQFgzIsIPkzp5Q/Z6Dn9Gf5yS1p0jsAEE+Kjkg9KdI7BVBDYroyP6CUb0UIqTOuXPT8Ze6lroBrqi7P2mKz8UMiNR0jyd2DwEkszphtE6ECp+I8xvnVEma05hpjAiFN7IB3SEi01/eVcD7OF5oZjL+7btuYflQ0C8MSt3K29Czuzu4I1bPjY45UwISL5pi2l/fIpPJoyd7DwE9iCjlT68T69hI4ek/YTyxeDD4mvTrW50j2KP3zeOEAhrucCH1uzblG4bOh8jIO9FnSGUoT87Igjs+zqGdmvBDxRoit3QC8uHDS+Zu+UQsJGHPt5QGv7c584R2A0CakuY0oaVDPe9/Dbn/hLiZ0dgZQR2JKPWh/d9vDLNliOlY4S1rW9ih6Nnwo+PanfrInDFg9uW8sQIUJlMjGXKCNYSpj/wldXnELpT7PvaB0LjWaHYCbu+OVj2keLzLhvgZfYW70KTN/Kz6KyYIqUrH5GlpSFzeZy8I5AEgSCzLrdJ0HQiORDYkYy27oah8mOFtr4biKr3KSCjf2p7h00P63qeIm+nMYwAOp3p02Xs2/Lu4QZlgh8ltH1BPcTSHUKlC9ZX4rcxvxafeDpYuDPoRA/rIfOcjz5fFqYMYQ3OOLtefB3nE2HXgUCyYD4ma7wRtsh7zbKtsMHG1HmSjCdOyBFwBByBLSFAP9H8uRR9NX17MdVW7X+MfnQT208onllQ+6znUfpCLJDKE3rohyj15E8/yBo+phSboi9vu4utW3vqXYa+VKl/VL2/1VFOua4p3XqAQgywsRZV5nDjsHYPOtGHMTHMgaFMc0kqNIMFXDiC8OBlxfUNS/Hc4sUod6fADlByOvGGBhP3VPfIN/JIGPjGvh+KWnycOk8KJPzkCDgCjsBxEKj0EzXjjGqILlWMhsbWVrTG9BP0R7i7y6V27lPEaxFjPaGeTA8utxJVGNPTmPbaVoYa6ZF1q6Xdq0d1ZgdAPrZe6/qLjkJ/K5VuBSAkWPHGrHqtbnWXDBuVBSb+KRnB7RIyxa75wjZL/FkIGFLOb06EXROj1H6bz/2NMC2n/uieleGDHz/VwjhPqmj4vSPgCDgCh0HA+onnauerxpmbhfoJFPUu9+euB2PCVQ/yQOFubl38q8KiFHzROItOV4NW9WbaNdihN3D/y61OAPpeB4pE1DCB4pmzr60oJYS8dAB+cie69Q3HE+Yg2o8SkquSipnPTXw+bpg7PKScV2kP3oue8X4wbiVCTQklXHSyYV/Jt/VWeefiTfFBJPqlwh0KUOOBnrNgpRmntayxgaI3my+isRpPYuuZOp7q3CsLKXBtK/MZsW7DoS3MedKGSndYH1655JfSiPah24s+XLu5EfXEDGfl31sDn95GpZ4eqU/ZNb2MvbtTOAyy9EnN9XjUPWqWw9hCBAzRS8e4mm6SS6bHypLio2yjw2Hxfn0bagSgfUzsqjhpohTpkCnKeVIFxQom+r0drsXb2BWhrSlxzfKpXrZjyaihqiadNr9o3yl89k9ddop9GyTVsGfytPGGeVqFU715b+BhUplOwZeD8uQC/MRzClzbsnas21CJC3OexOFErFxYBdp77D/jwcsXk36iNp87ZPUuX5YXWZA8kIUp2NXs6JdwUcbQS9TeM/9WYXoE+kLhdE8eTP9t6yMvkWacU8i6aGxJpktePKZyOmyO6n90jxDFugJwpYmZe/2Z4iVVTmILucV4FZw7p4woDoLNVyYCX07E32J9jlQmYY0ijbvijZ6VDY+ef6/D+QJS7hwBR8AROBEClX6itkiSPkJHLSwTLOhf6AhNZ4r4bIVY9YA+R1N3K/pIPW+GN8tyer8wQofDas+f2F89NkTkYVEkwwfvdR+jRJMUYjib233xNc4h09JC2Hh8Vq8pdq0vhjBD0ItpP7q3eWNnxWrpehverbyhMOIJH6dsCXW3dOE8P0fAEXAEHIHVEbB+4so4s1DJmCv8vCUvjKjs/Jayb/rQyOdr8iBM+fC38VidsUHm2F7hgo7MPxCYflToE7fVKisQTRxlECEy63c1Su1ecRlWYUs/tkXh665m9ZMfZRzBZAJ+tAAoLgrnf3RAf/b0B9FJ5kLZ/ieCCPWcsiG0N6Jx9aWoMHjAXCks3LZDDNEHneJvFrvBws+MEOqegjfFR6ToXfGGIioc/tDgfY5/yIVybVKeh8ruzx0BR8AROBICoT1O2U90GmfG4Da2n1D8NzrQrVB6C8u6rvT/TEkt+6YQNqm+SoteR/1KpVp+6GN0sv6RWQy9ln09P51eojqjJ6BwwyPD6ubR/X19/YQeEgntnF1MooRJ8QCUNDDmTgfuow6U8SgaRYrKSel+l3eT+3SHslHaoT9wVmp0uVValDVwsmk8CCtY2ZAQWDL/hx+wlPOA5I92W8YuuhITI07ljdKB+1sdbbyhNPCHODznGPXRdWaeCCt3joAj4AhsBoGZ/QS6DhbmZh8+uc82YMb2E6HfYpqjLZpkp7OXCi+VPGgHutxO0VmsbzRrNzrdnQ5wIIy+cFDPC2XYpE6nOiR3qi/G6y90rc0tb1O6UShQeF8pcvLFe8lrNpKg6sSL8lbXOVbqG6XHGlpbXDCyKKeLngr7IeCcN0MIPTzPzRPR5yOe0S6++nE0zvYxaR+avJOjP2QgtiWnutI50RHhqA+uZuW4BPWfnSf9+KR8mgLrI8n4lmQ4N66if6o+/Gz1TdlOTKElvLFoXxnnbluIYXXF0YEc0WHNtC/UOfUbHFKZQ/ygaVNhPwSP82YIoYfnWXmihueVsuID3hogmwf5UALd6TlDlrv9+6zKX1iDdC3roHsUcPZnjR41DKA4TwIQC1xmYy3+HkLGVY9NyfACuJ6tnzhbfRdoPtqzCO8SD83AVEZ8XN5d35gV6vrJTkMEhG2/d1MBZXRtQlobzhmd/owJUmE/hJ3zZgihh+cL8sSs3O8ecr+6YxH3VQN1FWu7ASjY31SLJ3wZKbzTwZSyKOc8iYIpSaSUWIvWEWR8czKcC1fR5QPjNH342epbbSBUd+a8F3tkt12rcZe4b7N0L5Hv4nkEocOK/6sOLN18VNAhTnFfiR7WDXcRCCTGfihH580QQnq+ME/Muj00749pbXt1X6ngKF7NBejUuVjdL8x7PyqcJ8uxPgPWR5DxLcpwLlzP1k+crb5lY6J3nXVzvQs9y8gL3PRZuhfIftEsEDqAt47d5lyOLoTo1HZpGU3gfAmSYT8EnfNmCKHy+WI8UY6FFVC8aS7uwbJWOD3jA3gzDWMo1pgLCjVbSGJBa3Nd4dW4zpMqGnnvU2N9BBnfogxnwfVs/cTZ6pu36ZhH/XZe8n2klsDx4jJ8jTNr02Sl+0LGzzEIOPYxKC0bZwWeMLJUs3KrDEz1sg/gAgCF2bu5LCAJclPZuxZmU3dcb92cJxeQljhnwnr3Mr5RGd49rkvItOfRjYDkmsX87PDSZfhgsXsxcyG0DYyuIHds10ya4sNPV3aG4Vfzd7pOdodXugVQAXQFKOv8WhmgeIANg5iKwiIot2pPFK+x2E/MxpONQGBpnig/a7Ce6p6955/qIIz3rzkVQ0HHcaHufNyzkLSzodazUW3UXIRCuSBzRp6MwlpYDfYHU/CMoTuXzynSh7oll+GY+h8Z1xS8cRrDCEiGbDSVfctpg/Hzo8ayPVYc0wkVXGyVjRLOOpyfdVQVctISblOedDveHV7pFiTPBWDVymZgd3X4gIrVqroP53hkPQUIjMXeUcuPwNI8sQYKC0E5vUT3fNBWG7v8NV8+Bz4yflI9h7ZedZ4sx5uxWMf0B1NkPIbucqh055RLhmPqf2RcuxH3J0kQULvLB/MHXctpi7p/oqPsh6oZKZyPyw8hjHu2+yvTys/ILFbzWe7QSrcAA3T+sllu4yU/ljYcoNac4mEFsV97o6hXlfVaXPf0IzAW+35q/jQFAivxpLB0K+9mQ1d7tyhbS5wU1V6FhuqCsjL4R1nqrXjRbVSiypyVJ6OwFm9i+4NReI6gm4jd08jkkuER9T8krtO44anGIiA5o88p+x35ef/N6NpG7qPimJJNXCziVVcYapFfHX10qmmu7m+vQo4VwPBpVeEuaqcwfon6tKOqk8HsoHfW4CnYnxWrpeq9Bk9ovGoKdqhs2aDRiCmMDrZsIEOcXV5Un8IaoitzAoec82QIoXTPp2Ad0x9MkfEYuulqPpLSAjIcU//D4TqSDR49LQJfixxTRlqdZL6QSV2Ljz1FavZbyOOdxWslEhF4WKVbwHypw75amlB8VEDN0q24AEonyVcMc3f+q6tvCyggxjrhNhZ7eMFwI1fmXpnQFwsX5GcrKxwfUPxqt/kyFA/91I3AGjxRnsbHq4ZOz6qd7vcqOb8u3r0cgLPq8omupcId6nWja206jfyLvyfK83Q84a2YgHVUfzABzyi6lHktB1bKO5cMR9X/iLiuxU/Pt0QAub4ywpZPH26Y1vSHZLDso3T/RGG0nbPX+N0+5HOcOwFUU6hbagaYtThKw/wd5l5+G64tyTxoCIGJ2CPgvAzMmWJ6j60k/k3+H+Uv5vbpyscSw/Zd8/H1yF0TAeFWk/Xmc/nb3ocUPLE5mZ0fSSobnbBN6cKKsFs5CHXhr2+lwh2wprGvGQAUx3kSwMl9mYh1bH8wVsZj6eaGpZX+AjIcW/9D4doKtgcuhkBoA+hnYkZTUa6bfRaGP/rJofU5g3U6nNIdwP1Z1z7FDOXthrg6atanQcQ8QicC4KmHU7EveKL0VWGHN1X+cP9Uh7tIBFbmCcrmjcrQ2tApnMaNEQ5GN8ztUg4CztSFhZO2Yh7rCPL6TGHlqFmIu9Z7chqeIFAzsYbEkJuC5xDNVZ4HrJaQ4Zj6HQbXmMp6nOwIIE9VXaIvQwxB1g/RhuCnTf9c9yjes9yV0g1RHbOIrpFYZaaDo8GgI7+RHytpDSSFATxWqCKOrnR8g4udFM9dDwLCMBn2otUU6tP8qrcH4tGP1uJJyPetCswHWGHNVRjvpTViKKHIiz3H8nWllCtsb3JAHalT2+r2orEP2CRpo8bgE/I9FU9SYi2e1lwqPGtEt+FZVIabVT4wrs2qun95BDDCMkre6ySDphsyjdXactJ+Kn+s0l7Nw/q9Muy2vKvf0OEVHWY9eLs+AUKZbUiqtaCKwxBvbZi3NaIHjkLAsR8F1yKR1+JJyDdm3twiOCyVierd9XOcsgjOkxKK7Dc5sT6qjK8tw0fFNbuwewaDCEi2mlP+utKgQzK1khH36qh7V/yucNOfm8ajm8cdKciMIVFL2BHNgx2BZAhgAY1xT2IieZwkCKzBkzXyTALWQkTWwGeNPBeC07NxBBwBR6BEAEv3HGXbCJnF/J0F2PXR/f293ZfXoGyzqI35iaewWqmeKHMMwTIFBWs4uylcDXsr3F1iBAL2NuxeyJzC+E0486gYnmHxArxgeAhhfqPnsV+uiu5uLAJr8GSNPMfismb8NfBZI881Mba8Q72T9we56Fq5t37NVf9cdLeOp5cvHQJBhthO+oXuJ8+IqNBh6vLV7ItWpZtqKDLzWVB6yt9gEu7OEXAEHAFHwBFwBBwBR8AROAIC0ncxtqLvMrsDA987hZWL3+WPckqD8Zb1hIwO/kX+q+klnUo3OSgB1kasi2j9/Mb5ioDC3TkCjoAj4Ag4Ao6AI+AIOAKnRED6MYo7o2MsuKxt4lEFpFfpJqIIobnzBdD6Ny/iuHMEHAFHwBFwBBwBR8ARcATOhoD0ZCzkTJF9rfveH+j8H9J/H3yYCPVBAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\left\\{ C : \\frac{P}{A_\\mathrm{f}}, \\  D : - \\frac{P}{A_\\mathrm{m}}, \\  E : - \\frac{P a}{A_\\mathrm{m} E_\\mathrm{m}} - \\frac{\\bar{\\tau} a^{2} p}{2 A_\\mathrm{m} E_\\mathrm{m}} - \\frac{P a}{A_\\mathrm{f} E_\\mathrm{f}} - \\frac{\\bar{\\tau} a^{2} p}{2 A_\\mathrm{f} E_\\mathrm{f}}, \\  F : 0, \\  a : - \\frac{P}{\\bar{\\tau} p}\\right\\}$"
+      ],
+      "text/plain": [
+       "⎧                                                                             \n",
+       "⎪        P               -P                        P⋅a                    \\bar\n",
+       "⎨C: ────────────, D: ────────────, E: - ───────────────────────── - ──────────\n",
+       "⎪   A_\\mathrm{f}     A_\\mathrm{m}       A_\\mathrm{m}⋅E_\\mathrm{m}   2⋅A_\\mathr\n",
+       "⎩                                                                             \n",
+       "\n",
+       "        2                                                         2           \n",
+       "{\\tau}â‹…a â‹…p                    Pâ‹…a                    \\bar{\\tau}â‹…a â‹…p         \n",
+       "───────────────── - ───────────────────────── - ───────────────────────────, F\n",
+       "m{m}â‹…E_\\mathrm{m}   A_\\mathrm{f}â‹…E_\\mathrm{f}   2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}   \n",
+       "                                                                              \n",
+       "\n",
+       "                    ⎫\n",
+       "            -P      ⎪\n",
+       ": 0, a: ────────────⎬\n",
+       "        \\bar{\\tau}⋅p⎪\n",
+       "                    ⎭"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "var_subs = {}\n",
     "[var_subs.update(var) for var in [C_subs,D_subs,F_subs,E_subs,a_subs]]\n",
@@ -625,13 +825,41 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 13,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAA1CAYAAABcFN/dAAAACXBIWXMAAA7EAAAOxAGVKw4bAAATrElEQVR4Ae2d69XVthKGN6yvgC+kghM6AFIBSQcJqQDSQVj8Sv6xkg6ACnLpgKQCLh2EUwEcOuC8j7Zk5Ou2vWVvyR6t5S3rPvPOWB6PZO8bnz59Ouw9/PLLL78Kg2sdX+l4p+Ox8j4qtlAgAibPAoVmJJ9EwPT6JERWYaMI5KT7VxvFeDRbXhjPFGMsHRT/qegfHXdJWygLAZNnWfIyaschYHo9DiertT0EctP9m9uDeDJH3zVaPFX6jgSF18lCeQiYPMuTmVF8GgHT69MYWY1tIpCV7o8ymrD0dHyzTXk4rmIDKSzLxXkbZn2TrMWyM3luUsS7ZMr0epdiN6aFwKK6L/vmWgerTCfDyeU5DCZ6Ufz3yd4KrCC+bjfIvuPTrxv5liwAAZNnAUIyEicjYHo9GTJrsBEE1tB9jfFRB9t03ugY3JozaDSp8U/C/SvF35eAv+h8JDq/1RHceRh6wdMAC1irGENDG70xEofKVWxhDQRMnmugfBwjEdbrEWwj2TwV6YDpbwTG9k8X0X3p0N86ThpON/renlNjDI8Xir8oTQaimVcC3ypuWYzKe6myezr+o/PYoDoojTBw0/2o2EImCEgeJs+VZDEX65XIs2GEgGRk81SPJpj+9gCzkew1dF9jYCNgPzzugq3T06TK16r8QkcRHqaYMdEeltf6lhOfqT77s/BK/Rbaqh1pM5gCIJnEJs/1BDEX6/UovMxIwoUHSDzYnUHlqz1kaSybpzql4IzJWXN/T3eWLQR2qvvYPf8V7y91tOyITqNJDdgQ9UdXA+XnHjCICFiLXSFsKPsyFIpP2txW7CY/n/6g+G2oY/HFEDB5rgf9ZKzXI+1yI2ke+Eujc1w0+HnJ5ql+KZj+9mMzq2SPui+e2d/0UIBhB7VW2q6aSKoyT1UoX6tys26mafdEKD5aFqKn92sfO6NK9Xg6wd391PNOMcZTcV42CN9gMHmuJ9RJWK9Hlo1k89QoHTD9HQVTWZUuofsa8y8dfDWAo7ZM1zKaBCcGxHNVrO33KQhmDL5OD5F4wsuEUQh/wajiQ5YsR9ZeNyyYf7GyqWDyXE+cU7E+6Drh2mHJiMADCRMM1xkPI3hz36tOtQyudHFB9PNCzBMd8NoVeHHE8agYDLl5wz8PX7QhjwA+D1XnIwnFU7CzeQrQhoPp7zA+k0ulo3vWfeayP4VB9fFrALyKUVQhkx8THoZTcUH0965pqwxjCb5+03llOeq8VI9acfKZSrDJcypi8+vPxJqb/pNwPSlm/sCDyyTDdfavzjEQijWaxEOYC+97Xkg/9eeKnPHj/k3AJWQwqQ1GFA9hYBEbVLQlnzqTsFN9m6cEXF8QPnPm/kky6Bt7q/nCdNe6L/7xNrm/VZOM3dYdZF0zmpTGmOC1u3gSoF4pITzR8ZmEIHBo5+JgAr+rfCZxC2UgYPJcT05zsMb7ggERAt8846Hruc9goil1LjloruBG/EpxtZ9J57wsMuTJfuV5BwfewKnaKs0cxJM7YdPYHVlc9df0NyHc0lvT/SOe2BE8BFafIboKOHuQuNAriyqUFRS7NW3RW7nAC6LdSG0jYPJsY7JUzhys2QcYP4Qw0fLQ5fIUhyXwpWhetF/Rj3FUGUhKw1/Mb3N8Xh4JRhJ1Y4OSuu5DuqpzTZniuK9NYQezKwfT34SASzdN9494/qGIN+7xojuPeWU0KQNjiV3jJU90PG28a0xGyrJQKAImz/UENxnrjuuMPqql7/VIX22kHzRS31u5h4CHYnAgNOdSZ3SFescq1e/WsasYXejE9HchYH23u9R9rlUdGJDw74ymmxHOD3TevMij4rxPxRgTEqFYHo7k2y8ImDzX04MUWKfoYz2OZ4/EvsjXI1rj9ag9vAkfvEvc2HlyrYWdYFfjOWUiBX4p+kjJU4Z97Vn3f5c87khHWIk7OKPJKwwXde9TFJUzD+HprvYWXOY0G3n9CJg8+7FJXTILa80b3+lg3iC4PpSOl7N+isqPtQr9FR9MmOyVrPgbYAUsmg9vPJSyHOc8cepnN9gN4JSqyPQ3FZId/ZjuV99oc3oWPE1B6ZoXegeE2WbhPiOMeRI81rTfnBEwea4nnclYayJlzuABJcwdYU+Jo9pPtLi2MRS2EHjSHrupHa+3eyqFcWFAmg2l98FDx96wA4Ylg+nvkugeP9OzW93X9QrvzGNujnP/PadMPEz3FBf3WqtoZpPWPR1heY6NmLzx4tYfdW6hIARMnusJ6xys1RYP0wsd4W0x3phjsySbnd/oOKhOeIuOZNHBY/Wv4sF5ReUYRMynTLBhTgITPpLnbjyKd4WdeF8kCMfZc7/JYLxIPM671n1hwDWNp/l2MJr+p4zXyqg9LY6H1WoaAoaAIWAIaA7Fo8TSm3tTzhAxBPaCwJZ13/PGdoMbN/XDUw/HWPfbXnTA+DQEDAFDYCoCeJpK3uYwlV+rbwgEBLas+3xj7SB76Q57msLau8sM3Fu8DQQkZJ56wwf1tsHUxrkwmY0XcE5YiRYePlmSw5VvwRDYDQI70P2wV/qb2GgyT9NuVNwYNQQMgZQIYLypP7eXSzF/LWMPKikBtr6yRWAnuh/so9tXksQtL42Qma1wjDBDwBAwBHJEQDcOXkDhsGAI7AqBPei+eOStV+R6C08TLmXCx2Nkv4aAIWAIGAKGgCFgCBgCDQSuMZq+9JkfGoWWNAQMAUPAEDAEDAFDwBA4OpZqniYDxRAwBAwBQ8AQMAQMAUOgG4HrGz///DNf9eUNqxvddbpzVf9Td4nlLoXAkIxUxvdheOWzGVh+Zd9a1541/h/r+2aDZtpk3URkXHpIXvSg8kVkVqq8hvBaCisvh03PZUO4jtPkz7XUF/PJP59zRp09VLva388ovWnMu1AZkkMqXJvj7hHnJgZ96SF5dLVRfb4wcGu20dTVqeXlh4AEzVs9fMl08EvG+VG+X4pMZuNlb1iNx8pqGgKGwHwENNc4o4k9TW4vkzLChvD5vVpLQ8AQMAQMAUPAEDAEtonAB4ym8NZc+PTANlk1rgwBQ8AQMAQMAUPAEJiHADbSR77T9N63N0/TPCCtlSFgCBgCRSDgVxT4r9G3Or9bBNFGpCGQDwLvzNOUjzCMEkPAEDAEFkVAhhIrC7wUcm1bMhaF2jrfHgI4lj7gaTrr+0z+wuMtIMJXx+jwWPm1tyV8fm+k+ndU+ELxIk8/6pe/NfhWR3jDjD/VDG+UhaVJaIAHewoTCM0gDFGaLGRt8mxKZ3paGJ59zW1JDnvRb/F5WwcviGQfROfZOjrEpPrfxX1BfGYzdw/Jg7IcZeLxgzy3PBcMh2DwUDAq+I4wdKrX1nXOTfWN4m91TPm37xdqxwWySBAtvD32m2JedcUowoBqBeU/UmbFT6tCeRlTZNDLnXDhostG1qJny/JMIrNeYX4uOPuay0AOSbDaoX5/LZ5L+NuXs3X0s7q3zzLQ3zZRiXNy0+1T7GUqk2Afvb8SgRgQ8DHHw4OB9JDGIagvvEwYHnz/6YuQPxT7+q6KznEbfxyqP7dM/QYv0+8DffyhsjlY1LrUWDzJdRpmVFT5j7UGCyU0Tioss5O1eEsqT/W3NZn1apV45Rp1QednXXOp5RDoGhNrbNPvifMV8ha2YS/rGJgvUkd0JtPRIQYuqb9DdCUsy27uPsVbhjIJRtO7K0883qZ7pxjpKH+gPG5ctxtlPP3xwUy+DxQ8WY0qx6TKuYBZInytA0/TLR2pJkJ1VQvBiDn1dMr3GM4K4mtrf+CZo6yTynODMuvU4QWuuaRy6CR6+czN63cE4QPpQNbfbVtARyP2W6db0N8WU1FGjrodkdd5mptMvvZUvr3pTzAi5iyNYRBhGGH4dIW+/LguFzAGRjBUgkUX10l17jwTGq+230ppLHEXdI7BVoLb2lO8WpSjrE2e88Sf+prbghx2o9+a457PU5tVW6XW0SHit6C/Q/zlqNtD9FKWm0ycXaJrp/I0vYFKZUxy06t+3zJWMMAQVm9Qe4BhOYwQ6i5pNEFXzcskGnABB4MNOg7KC7S49Jwf9fGT2j3R0Wc4sozpnvYUgwOWNfSxbEcbpzSKsXD5GwKMuYsFjZ+jrJPKUzyOklkJ8upTFE976msuqRz6aF8yfw/6vSR+KfteSEeHSCxef4eYy1S3h0imLDeZcD92tsOVp5ylMQIFZ3lZvMJj+LDpuvdGrzJnTER1gqHi8iEmZfB00eUtnT8j1gG/jNdcXlTW/KD+g+fqvnoBA9JP/bmilmHGpnmMKPaBvdQRG1S0JT+4K3WaRxC94Jdc1uqXCwaDk2VbXipoPRn7sVU8Xp5D/apsisxKldeka24IL4AnqA46QBh9XY3p99jlZX89b5vQ78siOX50YT5JR8f33F1zjv5291RW7lK6nQKF3GQiepgD0EvuzYcrfpTJZnBu7j/oOMtoUnsMkr/U32PFQ+Ge6sReH8YnJDVgjl2632B04LWplud0zk05GGxR9Xmn6osb/ivFFY46x4NXjRn3rHwE8srncY4sqrZK4wXDA5JjWErWGIl4tthnB55dYY48O/sV3qNlVri8pl5znXg1hJFMDo1+c0huQr9zAHICDVN1dELXnVXn6G9nR4VlLqXbKWDITSa8IERw92VnNB3TbpmselvB502KdENBEH8rHnwzzN+kflQcv9p/yw+G4bBEcE/EGrNpvMSG2wHaOuqMpse3rcagPzUOBmFXPx9UJxhJ1MUjFQdnRKrOpKXTuIMlzkXPIrKGT9HLPjkwQzY1+US8TJLnUL8qQ15jZVaqvNCt0dfcEF6RDDhNJodGvxdNiv/N6PdFgZwwuDCfpKMTuh6qOkl/hzoqpWwp3U7If24ywYh7J9ycc+UqYpSnykcq+EZH340qql4/VRvnDVE8aDD5VrjyY4PJZSuPz/vfqvecLMUF2cVXZaRofG7YCKy6gSYYHe+dc+t19aUxnUGl2CmK6jRphO6PoV5XH2vniZalZe0wOcHXHHmO6Zdhe2UW5FCSvDyOc665MXgtKYcTKrBM8Q70exngzu91jo6eO+oc/T13zIu1X0G3U/CWm0y4N1crZ5XRJDDxEGFJYcw0b9yDQKgd7iu+MlsZTDp3HiPfZ9WeujqCZ6XK9ycfFNc8Tb4fDDry2SMUjAu3QVrpBzoI0P2r6rdoV15o0zJeVBbfGJ6oj6cpxoQgH8CmZSCGwigO1mxFj+i4Vjm0t/b0RO1WPRVNS8qaiwUdwqvGHqP3iluvRitvqjxH9RsBOUZmRcgLnoTX1GtuFF4ryCESyTqnYKWRlprLdovrKenN0FHuByXfF05Bkrx8Yd0+Wx4wLBqnzu1Jxu0DW/SErTHVPfiqUZkb1TNVZCNydfNu1KklVY+JgK/LVgaTr8DkUzOOVAcGhwJj1uqoDW4xjA729rBsE944442/P5V265+KMbhwqXftiXJ1VNYyqJTngtrDR1gWwrNz7pgH9QEv9DnGc4WyNOnDIASTysrV+cWC+Fha1uzngtdHPu7jdao8x/Z70LhjZZa9vADP89OHI/ld19xYvBaTwxDBS5UJq83r91LYndPvTB0t9r5wDlZz266g2ynkAXtT55Qk9+oBXHGksEe7sodqRpMKnuvAcKLiyRu16nKDwdqn0/D20bXSt3SwN6jyEvi6LxV3GTWq7gKGz4G6OuLN2S5fRbFRQXlch3PG7QoYcPTbabwonxsgfODJCuHcMemHcWMaQ99dMRN2GBNaSYPpfZ1XAutquEaeaFhL1mPYmSPPMf1SZ6zMspYXjHiZzb3m6OJUWFIOp8ZOWr4j/U6K27mdnamjYb4s7b5wLmyT2q+o2+fKA77mzCkpxm1hKtygBXumZgvVjCbf6qFiPDgsU526WQf3aHBh+S5c5IwF9cGg1MMwOSiNh6hmCCgP4vBUuTqKmehbG8qV16Sn968AVJdxX+hwngPFB+VBRwAYA4s6oZyn67dK14LyRo9Za3hMYCDi/RoMGiPwzfJiwJK2d5Uea3QNjpGgcFVZN+kVDknk2ey3I31SZrnLy2OV5Jpr4rOiHJpDL53ei34vjeOo/lPqqPoaPUen0t8pY44CZNlKq+r2VGwylgnOIxxJtXtwy2hSBbxGGA94OZpLbjXRql7fBw+reqqDQgeXW5UfnzCm0rWlvLh8zrkfd8xeojndj2ojGgbxizoBH9ybPDHFT01RlcueiraLynoteY6UWdby8lgtcs2tJYe1tV187UK/18a1b7wldbRvTPK3qr8neL6obg/RlqtMpCc4cnCoxKtPjpWb7rf9g7HBZ+xZgsgh4BUaE/BGpAprjomnKUtjKRWYG+vH5LUxgRo7RSKw5hwdALrEmGHs3ONLYZN0XNk9YVXje29k13C/8enTp1pGSHhLi+UilisuFjwDYakBLxiM8D0pPGEstbHeiGeMZTBuZrjTxnp4VL0d1hzTj8WnFuArqbetzVneOR4LllSx8sGCJeLWkulULlL26/vatLxS4hXLaql+4zFyPl+K/6X6LQDLzd4Xcsa+izavg6vKAzqWGFd9wscHxZ12RK/R5AnCEOn8dgblFs5DQELBOMD4ww2IcfC78qrN80pbyAgBk1dGwjBSDAFDwBBIjIDmeBwyODB6tzcMGk3Qo8ZYXfwtiN3MAcSCIWAIGAKGgCFgCGwKAdk4rFSxuja4B6xvT1MFhjpgfxMfe6NDC4aAIWAIGAKGgCFgCGwGAdk37GNiOa618bvJ5P8BO5sGm7GbR/gAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left( \\frac{P^{2}}{2 A_\\mathrm{m} E_\\mathrm{m} \\bar{\\tau} p} + \\frac{P^{2}}{2 A_\\mathrm{f} E_\\mathrm{f} \\bar{\\tau} p} + \\frac{P x}{A_\\mathrm{f} E_\\mathrm{f}} + \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{f} E_\\mathrm{f}}, \\  - \\frac{P x}{A_\\mathrm{m} E_\\mathrm{m}} - \\frac{\\bar{\\tau} p x^{2}}{2 A_\\mathrm{m} E_\\mathrm{m}}\\right)$"
+      ],
+      "text/plain": [
+       "⎛                    2                                          2             \n",
+       "⎜                   P                                          P              \n",
+       "⎜──────────────────────────────────────── + ──────────────────────────────────\n",
+       "⎝2⋅A_\\mathrm{m}⋅E_\\mathrm{m}⋅\\bar{\\tau}⋅p   2⋅A_\\mathrm{f}⋅E_\\mathrm{f}⋅\\bar{\\\n",
+       "\n",
+       "                                                         2                    \n",
+       "                    Pâ‹…x                    \\bar{\\tau}â‹…pâ‹…x                     \n",
+       "────── + ───────────────────────── + ───────────────────────────, - ──────────\n",
+       "tau}â‹…p   A_\\mathrm{f}â‹…E_\\mathrm{f}   2â‹…A_\\mathrm{f}â‹…E_\\mathrm{f}    A_\\mathrm{\n",
+       "\n",
+       "                                      2      ⎞\n",
+       " P⋅x                    \\bar{\\tau}⋅p⋅x       ⎟\n",
+       "─────────────── - ───────────────────────────⎟\n",
+       "m}⋅E_\\mathrm{m}   2⋅A_\\mathrm{m}⋅E_\\mathrm{m}⎠"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "u_f_x = u_f.subs(var_subs)\n",
     "u_m_x = u_m.subs(var_subs)\n",
@@ -654,13 +882,31 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 14,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQkAAAA1CAYAAABSpx4GAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKNUlEQVR4Ae2d7XEUORCGbcoBGF8EZzLgI4IzGQAXAZABlH/BP+rIAIjgDBkcF8EBGZwzgCMD3/vI6qnZWc16Z1aar21VaTWj0Ve/rWm1WtLs4dXV1YE7R8AQeP369R+6PpY/lb+Uf6m4nwrdzQCBEvw7mgHd3sSBEIgd7J1ChMOBwo8K/pa/x727aSNQin+3pk22t25gBB416nuj+7vqfGgV7qaPQBH+bSUkkFDyZ9PHyFuYAYG6QLBpRj0uQxVeREEE6rxq5Z/e52N5NMUb3Y3TDQQEpSj8fGNpnmDWCIjHdxoE3I33XxrxfjtBBLrwT2l/yjO1/Cq/cTq5UZNQ5hfC4lThywli4k0qjwADhBsuy+NcqoaN/NN7zcAfBMWmBhy2rW6oAOY3HxTe3lSAP1smAuJ7WOVQ+HyZFC6bqi78U9q/hMY3hUllIKlJKDFLYB/kHy8bSqcuhYD4/0zxzFldQKQAmnhcD/7xnj9TvqTdMSkklAGDxoUyuR1i4h0id/NiR7mjMAgI7uXNNpG7Oi8vMwJ9+Kc8GDifyicNmWvTDWVgmkHi2zGzLt3tAwLiN8IADZKlT3MIi8feFwyO6Ya78k/5/xV1nxSuTDtSqxvMRd97p5huZ+jSMvGRqSPTB9wDeTrAqTwC4Rf570rzViGOjVOkXxlRvC8AzThuYP7RNz6qzmpDHVSvCAk9pDPRgRAU7maOQOxg5wrDyBD5i5GKTvBWnpEDVTMICd27kXpCPBc/ENiD8U/1oUWErfiqt7JHNW0SdKbPMeGE4PKm9ETgXPnqUwf2QTAIvI/lhalEvPZgegiMwT8UBIyYCKjgKk1CkaifdKBKglwnyf+rusLyWqzPDxHlh9hKfCOs0RTMwWMGgRCn0A3Thsw0wzH4dyEo3skzqwgaZl2TQDiwC6tox1H5CAjU3efyD3V9Is9c2F1mBIRvXUBQOktcTDfczQCBMfgX6/wmeH43iOpC4okiiwqIWGmRQyhGkIdpBMR8tAjcEDy+rsl/syEwMP/+VMOrg31BSMQGMAcZapRhWmPORrt6nD3zcAcExNdH8vAVhxZxoHtGieB0/aL23KI9nAgC4s1Y/PsUIQh9xjSJcKMHxUcZEc5GnXo9NsL5IaKMnVMYw1OWMo23TO0qp+cIZaaXJqSrZ34xPgJj8k91YyekX4Q+cxTh4IYOEz42EuOGCrBR+CGi/GgjdBkROKDHQT3beotR6qv8geJtlYNbd9NCYGz+UX8YwE1I3FcEkZ2cOhkWUASM2RnQEOojE6MV5SaFgPIjILC222Ye3Y7jdqVlnFa31yp64EPz7M3oOLe3eLcnzr/d8EvkZloatNDDV69eHevmP3l2WfZa/lQ+PpTJKbK1c+mKw86BEPpV15UA0TUC5p7CXnUqbxGn9nSmpUhDvNBeCDj/esG2lim+n2id97BJMNrj2H3X2akwsynU7Qz1cqgIQYRQCE55kFBZDhGpLIw7qNM7uz607FxpSwE56WqpYnHRU+LfAsC1mcUZ0w0TEn3tEUElUTltKyNWPucEDiIjmWawUcSmKWgTTdWY5EO7TrQM3Tiv70YEnH83QrR1ApMHd9AkTmI2i9y6lJgwWED1wrdpEhwqwpkQYeMU2geWd/Nnyl9NRRQ/lutKy1jt9HrTCDj/0rh0jq29jydoEkwFcH1fUqR3tfYeSoo/qggtAm0Be0cQIgqnfIioEy2QKXrqUykEIudfoBtB2DxlqSh3BRFw/uUH9xhNIkwDFP7oWr5ekFZ7hJ4hHNAeOG04KeNkis4+tCgPAoJTetDIygH04tmtxj0YVNtbde2uEALCu3NfVB7n32Z+oDisaBKbk6efIrlxrMVjZzAH+BhCWb2gojm4PrSci7A3NeJSpyz7TuNqxfrlFgg4/7YAqUeS4yNlOiFjz5c5zAGV/WnP/FS9lVP5CCHrCPU8CKQTPU+N2JeK39Yg2oeWnU/plaJL5Rb5/0aVe1gHf5drlQXvuh7uo6+lprdj8S8nDRWcE+Efs4ugSVQN63HBS8uLWFxbUB3M9dec4lHp0WR23SjUmZYE3ZSRbOdaw2NEKbpUbraXua3tu8ZH/Nb21vQsdyz+0fdz0VCRPiX+YZMItgg1Com4tVP61jng1oVMJGEOWnKUMRE4ZteMHNjnKGN2wG3X4B8ICdMCwrRju3whFZIbt/I9xOuo2f32okUda6xTerMDuHCDnX9lAEYm/DzSz/dYfidNQnnMBmA7s2Ixsww60yIBQcdEQGLz+CRvc2JdBhsPy6CLPmUpDOgzbOlPbslX/FDO+VcO6UuERCdNQh2Dbdb35W26wb98/SO/q02gHJktJe9IC8IR4bC3pyyFn50cPtY13vpSC+J5o51/efFMlMYg8AMh0Wl/hBgz+T0PCWKTUbvQEl+I5srJLASl2g7zbckajQfHSd3UqsH105Zf5eEMDsbjwZ3q7d0XlReBtvf8a2Oa8KGP4MJ0w9bxrbNcP5rPb9t28PlQkG5pEboi89H+qhdE1wgM/l36oXyfeh8oH1qVu8IICGde3tz8S7Xa5MH3W6rURo/syzipmnPHqf2LnPcXpAuB8LTOB9XFsi0ja2cjtPLSac2uVS/Wr8sgkJV/G5poQuLyVkyENoGdwd3yEeCDx+HLVA1S0SCwK1jnaDxuvX2iPLOYZrVSMK8HufnXRv2D+OCbCQk6iBki2zJ5/DIQYEDA2GpzziZVbfHNdOFe5fgn8JLIFIvMyr8NrQyDhfgbVjdIZ988HNxCvaGR/qgAAmJ627TSBgmzURWo3YvcFYEB+ccSf7BPmSbBch6OB+72DAF1PPjOyMFpVmwT7maEQG7+qTz6Ahpl+AZMEBKKxHhJ57BNKbp0t0cIsPdl7S/n94j+uZOam3+2pB1WrEyTAKQLeXs4d9C8/VsioAGCDsYXy6sl0S2zerIJIFCIf+we5uBmmHrWhURY/tIDn3JMgPlDNEG8Dh8QVth7U9IQ7fQ60ggU5B8ygMEjuEpIqEKMFEgOH1GusVn0r/iN1lh9sRxiFceqx+miCV8IcaX4p3Lty/PVqlUlJCJ2bNR4poSdlsEWgvvekCH+spLBLsmmBuHTzRn0gsL8OxcE2KcqA/bh1dXqB4z00P6oh1147haGgPiLpoDVur6NmkHhRJ5vc/IJPncTRaAk/1Q2gwRmBzTMain8KIEFW3Y/KlHz02yJpB41QwToBAgKUyvrJFQdox7p15NCoCT/0CL4sv1KP1jTJIBDidhc9UVhUx3lsTtHwBFYGAJ619EiPsiv/B0nZDZtEsThMF6yJ9924YVI/3EEHIHlIaD3nOkmAuKxritbhFGaFBJKiLoRph2W0ENHwBFYLAIIiAu992EbdpPKpJAgkTJg2GKTTdg/0czo946AIzB/BPR+80fenNlqNS20CgnIt4wKU0au+SPkFDgCe4yA3ms2TT1XyA7LVrdRSJBLBWCfYEnEd2K2wugPHIF5IaD3GTsE2sNvN7X8f5XkW38RMXqQAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\left( P^{2} + P x + \\frac{x^{2}}{2}, \\  - P x - \\frac{x^{2}}{2}\\right)$"
+      ],
+      "text/plain": [
+       "⎛            2          2⎞\n",
+       "⎜ 2         x          x ⎟\n",
+       "⎜P  + P⋅x + ──, -P⋅x - ──⎟\n",
+       "⎝           2          2 ⎠"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "data_f = {L_b:1, p:1, E_f:1, A_f:1, tau:1, E_m:1, A_m:1}\n",
     "u_f_x.subs(data_f), u_m_x.subs(data_f)"
@@ -679,13 +925,27 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 15,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(array([0.5  , 0.505, 0.52 , 0.545, 0.58 , 0.625, 0.68 , 0.745, 0.82 ,\n",
+       "        0.905, 1.   ]),\n",
+       " array([ 0.5  ,  0.495,  0.48 ,  0.455,  0.42 ,  0.375,  0.32 ,  0.255,\n",
+       "         0.18 ,  0.095, -0.   ]))"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "get_u_f_x = sp.lambdify((x, P), u_f_x.subs(data_f))\n",
     "get_u_m_x = sp.lambdify((x, P), u_m_x.subs(data_f))\n",
@@ -706,7 +966,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 16,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
@@ -749,13 +1009,803 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 17,
    "metadata": {
     "slideshow": {
      "slide_type": "slide"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"600\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "fig, ax_u1 = plt.subplots(1,1, figsize=(6,3), tight_layout=True)\n",
     "ax_u1.plot(x_range, u_f_x_range, color='black', label=r'$u_\\mathrm{f}$');\n",
diff --git a/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb b/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb
index eb87892..627e8f7 100644
--- a/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb
+++ b/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb
@@ -3990,7 +3990,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.2"
+   "version": "3.7.6"
   },
   "toc": {
    "base_numbering": 1,
diff --git a/bmcs_course/4_1_Pullout_with_unloading.ipynb b/bmcs_course/4_1_Pullout_with_unloading.ipynb
index 763816b..c403cab 100644
--- a/bmcs_course/4_1_Pullout_with_unloading.ipynb
+++ b/bmcs_course/4_1_Pullout_with_unloading.ipynb
@@ -9,7 +9,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -29,7 +29,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -51,7 +51,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -76,10 +76,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f4042acf7d0>"
+       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f05d5785530>"
       ]
      },
-     "execution_count": 3,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -90,14 +90,14 @@
     "pm.sim.tline.step = 0.001\n",
     "pm.mats_eval.s_tau_table = [[0, 0.1, 0.4, 4],\n",
     "                            [0, 800, 0, 0]]\n",
-    "#w = pm.get_window()\n",
-    "#w.configure_traits()\n",
+    "# w = pm.get_window()\n",
+    "# w.configure_traits()\n",
     "pm"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
@@ -118,10 +118,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f403feab050>"
+       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f0590610e90>"
       ]
      },
-     "execution_count": 4,
+     "execution_count": 10,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -145,7 +145,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [
     {
@@ -166,10 +166,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f403feab050>"
+       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f0590610e90>"
       ]
      },
-     "execution_count": 5,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -185,7 +185,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
@@ -207,7 +207,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [
     {
@@ -224,10 +224,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f403f7cd230>"
+       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f058b14fa70>"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 13,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -239,7 +239,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [
     {
@@ -254,10 +254,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.pullout.pullout_sim.Geometry at 0x7f403f7cd170>"
+       "<bmcs.pullout.pullout_sim.Geometry at 0x7f058b14f9b0>"
       ]
      },
-     "execution_count": 8,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -275,7 +275,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 15,
    "metadata": {},
    "outputs": [
     {
@@ -293,10 +293,10 @@
        "        "
       ],
       "text/plain": [
-       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f403f78df50>"
+       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f058b08e8f0>"
       ]
      },
-     "execution_count": 9,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -307,29 +307,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAbl0lEQVR4nO3db4xc133e8e+zf8QlRe2KCpcUuztbMihhlxJg2V2wSl0EbuREtBOYelEhNGCXCFQQLdTUbgsEVF7UyAsCeiEEaYuqBWG7ZRHHAuvYJSEkbggmRlC0lbKS5VgUzZIWY2pFirtRLK7IXa52uL++mLv0aDm7e4czd2bnzPMBiLlz58zMby/Eh0dnz7lHEYGZmaWlp90FmJlZ8znczcwS5HA3M0uQw93MLEEOdzOzBPW1uwCArVu3xs6dO9tdhplZR3nllVf+OiKGa722LsJ9586dTExMtLsMM7OOIuknK73mYRkzswQ53M3MEuRwNzNLkMPdzCxBDnczswTlCndJ/0rSGUmvS/qmpAFJD0g6Jel89rilqv0zki5IOifp8eLKNzOzWtYMd0kjwL8ExiPiYaAXOAAcBk5HxG7gdPYcSXuy1x8C9gHPS+otpnwzM6sl77BMH7BRUh+wCbgM7AeOZa8fA57IjvcDL0TEfERcBC4Ae5tXcn7n3z3PqR+fasdXm5m11ZrhHhFvA88Bl4ArwLWI+BNge0RcydpcAbZlbxkB3qr6iMns3IdIOiRpQtLE9PR0Yz/FCp7738/x69/69UI+28xsPcszLLOFSm98F/C3gHslfWG1t9Q4d8eOIBFxNCLGI2J8eLjm6tmGvf/B+/z05k+ZmZ8p5PPNzNarPMMynwYuRsR0RCwA3wb+AXBV0g6A7HEqaz8JlKreP0plGKflZhdmAXjr2ltrtDQzS0uecL8EPCppkyQBjwFngZPAwazNQeBEdnwSOCBpg6RdwG7g5eaWnc9SuF+6dqkdX29m1jZr3jgsIl6S9C3gVaAMfB84CmwGjkt6iso/AE9m7c9IOg68kbV/OiJuFVT/qm733Gfcczez7pLrrpAR8RXgK8tOz1PpxddqfwQ40lhpjXPP3cy6VdIrVOfKc4B77mbWfZIOd/fczaxbdUW4e7aMmXWb7gj3mbdYjMU2V2Nm1jrJhntEMLswy5aBLXxw6wOmbxSzCtbMbD1KNtxvlm8C8NGtHwU87m5m3SXZcF8akvnI1o8ADncz6y7JhvvSNMiP/lyl5+7pkGbWTZIN96We++jgKJv6N7nnbmZdJflw39S/idJgyT13M+sqXRHuY0Nj7rmbWVfpinAvDZa8kMnMukpXhPvY0BhXrl9hvjzf5qrMzFqjK8K9NFTZO+Tt999uZ0lmZi2TbLjPLVSmQi713MH3mDGz7pFsuC8flgEvZDKz7pFng+yPSHqt6s+MpC9LekDSKUnns8ctVe95RtIFSeckPV7sj1DbUrhv7N/I6OAo4IVMZtY91gz3iDgXEY9ExCPA3wNmge8Ah4HTEbEbOJ09R9Ie4ADwELAPeF5Sb0H1r+h2uPdtZFP/JrZu2uqeu5l1jXqHZR4DfhwRPwH2A8ey88eAJ7Lj/cALETEfEReBC8DeZhRbj9mFWTb0bqC3p/LvihcymVk3qTfcDwDfzI63R8QVgOxxW3Z+BKhO0cns3IdIOiRpQtLE9HTzb8c7uzDLpv5Nt597IZOZdZPc4S7pHuBzwH9fq2mNc3HHiYijETEeEePDw8N5y8htebh7IZOZdZN6eu6fAV6NiKvZ86uSdgBkj1PZ+UmgVPW+UeByo4XWa648d0fP/dr8Na7dvNbqUszMWq6ecP88PxuSATgJHMyODwInqs4fkLRB0i5gN/Byo4XWa3Zhlo39G28/X1rI5HF3M+sGucJd0ibgl4FvV51+FvhlSeez154FiIgzwHHgDeC7wNMRcauZRedRa8wdvJDJzLpDX55GETEL/Nyyc+9SmT1Tq/0R4EjD1TVgpXD3L1XNrBskvUK1Otx3bN5Br3o9LGNmXaFrwr23p5eRwRH33M2sK3RNuIMXMplZ90g23OfKc2zq+3C4eyGTmXWLZMN9+VRI+NlCpsVYbFNVZmatkWS4R0TNYZmxoTEWFheYujG1wjvNzNKQZLjfLN8EqBnu4OmQZpa+JMO9eqOOardXqXohk5klrqvC3T13M+sWSYb7XPln+6dW2zKwhU39mzwd0sySl2S4r9Rzl+TpkGbWFZIO9419G+94zQuZzKwbJB3uy3vu4IVMZtYdui7cS4Ml3rn+DvPl+VaXZWbWMl0X7kszZt5+/+2W1mRm1kpdG+4emjGzlOXdiel+Sd+S9CNJZyX9gqQHJJ2SdD573FLV/hlJFySdk/R4ceXXNrdQeyokeCGTmXWHvD33fwd8NyI+CnwMOAscBk5HxG7gdPYcSXuAA8BDwD7geUm9zS58NWuNuYN77maWtjXDXdIg8IvA1wAi4oOIeA/YDxzLmh0DnsiO9wMvRMR8RFwELgB7m134am5Phey/cyrkxv6NbN201dMhzSxpeXruPw9MA/9F0vclfVXSvcD2iLgCkD1uy9qPANXJOZmd+xBJhyRNSJqYnp5u6IdYbnZhlg29G+hR7R/P0yHNLHV5wr0P+ATwnyLi48ANsiGYFajGubjjRMTRiBiPiPHh4eFcxeZV63a/1UqDJYe7mSUtT7hPApMR8VL2/FtUwv6qpB0A2eNUVftS1ftHgcvNKTeftcJ9bGjMwzJmlrQ1wz0i3gHekvSR7NRjwBvASeBgdu4gcCI7PgkckLRB0i5gN/ByU6tew2x57XCfmZ/h2s1rLazKzKx1+nK2+03gG5LuAd4EfoPKPwzHJT0FXAKeBIiIM5KOU/kHoAw8HRG3ml75KuYW5tYclgF4a+YthgaGWlWWmVnL5Ar3iHgNGK/x0mMrtD8CHGmgrobkGZaBynTIh7c93KqyzMxaJtkVqrWmQS7xQiYzS12y4b5az33H5h30qtczZswsWV0Z7r09vYwMjnjGjJklqyvDHbyQyczSlm64960e7l7IZGYpSzLc58qrT4WESs99cmaSxVhsUVVmZq2TXLhHxJqzZaAS7guLC1y9frVFlZmZtU5y4X6zfBOofbvfatULmczMUpNcuK92L/dq3pHJzFLWteHuhUxmlrKuDfctA1u4t/9e99zNLEldG+6SKA2VuDTjcDez9CQX7nPllTfHXm5saMzDMmaWpOTC/fb+qX2rT4UEGBv0KlUzS1Oy4Z6n514aKnH1xlXmy/NFl2Vm1lK5wl3SX0n6oaTXJE1k5x6QdErS+exxS1X7ZyRdkHRO0uNFFV9LPeG+NB1ycmay0JrMzFqtnp77P4qIRyJiadOOw8DpiNgNnM6eI2kPcAB4CNgHPC+pt4k1r6qunrsXMplZohoZltkPHMuOjwFPVJ1/ISLmI+IicAHY28D31OVueu4edzez1OQN9wD+RNIrkg5l57ZHxBWA7HFbdn4EqO4KT2bnPkTSIUkTkiamp6fvrvoa5hbyz5YZHRwFvJDJzNKTd4PsT0bEZUnbgFOSfrRKW9U4F3eciDgKHAUYHx+/4/W7dXu2zBo3DltqM7xp2D13M0tOrp57RFzOHqeA71AZZrkqaQdA9jiVNZ8ESlVvHwUuN6vgtcwuzLKhdwM9yvc/JV7IZGYpWjMBJd0r6b6lY+BXgNeBk8DBrNlB4ER2fBI4IGmDpF3AbuDlZhe+kjy7MFXzQiYzS1GeYZntwHckLbX/g4j4rqS/AI5Legq4BDwJEBFnJB0H3gDKwNMRcauQ6muoO9wHxzj95ukCKzIza701wz0i3gQ+VuP8u8BjK7znCHCk4eruwmy5vnAvDZV4/4P3uXbzGkMDQwVWZmbWOkmuUK13WAY8HdLM0pJcuM8trL1/ajUvZDKzFCUX7u65m5klGu555rgveXDzg/T19DnczSwpSYZ7PT333p5eRu4b8bCMmSWl68MdsoVM7rmbWULSDPe++sLdC5nMLDVphnudPfexwTEmZyZZjMWCqjIza62kwj0imCvXNxUSKsMyC4sLXL1+taDKzMxaK6lwv1m+CeS73W81T4c0s9QkFe713O63mhcymVlqkgx399zNrNs53IH7B+7n3v57He5mlgyHOyCpMh3SwzJmlgiHe2ZsaMw9dzNLRlLhPlfOvzn2cqXBkhcymVkycoe7pF5J35f0Yvb8AUmnJJ3PHrdUtX1G0gVJ5yQ9XkThtdyeLdNX32wZqPTcr964ynx5vtllmZm1XD099y8BZ6ueHwZOR8Ru4HT2HEl7gAPAQ8A+4HlJvc0pd3WNDMuUhirTISdnJptak5lZO+QKd0mjwK8CX606vR84lh0fA56oOv9CRMxHxEXgArC3OeWurtExd/B0SDNLQ96e++8BvwVU33xle0RcAcget2XnR4DqwevJ7NyHSDokaULSxPT0dN2F19JQz90LmcwsIWuGu6RfA6Yi4pWcn6ka5+KOExFHI2I8IsaHh4dzfvTqGgn30cFRwD13M0tDX442nwQ+J+mzwAAwKOn3gauSdkTEFUk7gKms/SRQqnr/KHC5mUWv5G5vP7D0nuFNww53M0vCmj33iHgmIkYjYieVX5T+aUR8ATgJHMyaHQROZMcngQOSNkjaBewGXm565TXMLcwx0DdAj+5uhqcXMplZKvL03FfyLHBc0lPAJeBJgIg4I+k48AZQBp6OiFsNV5rD7MLsXU2DXDI2NMa5d881sSIzs/aoK9wj4nvA97Ljd4HHVmh3BDjSYG11u5uNOqqVBkucevMUEYFU61cHZmadIakVqrPlxsJ9bGiM6x9c59r8tSZWZWbWemmFe6M992whk29DYGadzuFexQuZzCwVSYX73EL9+6dWW1rI5HA3s06XVLg32nN/cPOD9PX0eTqkmXW85ML9bhYwLent6WV0cNQ9dzPreMmFeyM9d8ju6+6eu5l1uPTCva+xcPeOTGaWgvTCvQk997dn3ubWYksW1ZqZFSKZcI8I5sqNzZaBSs99YXGBqzeuNqkyM7PWSybcb5ZvAnd3u99qXshkZilIJtwbuZd7NS9kMrMUJBfujUyFBC9kMrM0JBfujfbc7x+4n833bPZ0SDPraA73ZSR5OqSZdTyHew1eyGRmnS7PBtkDkl6W9ANJZyT9Tnb+AUmnJJ3PHrdUvecZSRcknZP0eJE/wJJmhrt77mbW6fL03OeBX4qIjwGPAPskPQocBk5HxG7gdPYcSXuo7LX6ELAPeF5SbxHFV5srzwHN67lP3Zi6Pb3SzKzT5NkgOyLieva0P/sTwH7gWHb+GPBEdrwfeCEi5iPiInAB2NvUqmtods8dYHJmsuHPMjNrh1xj7pJ6Jb0GTAGnIuIlYHtEXAHIHrdlzUeA6gHryezc8s88JGlC0sT09HQjPwNQNRWygQ2ylywtZPLQjJl1qlzhHhG3IuIRYBTYK+nhVZrX2lk6anzm0YgYj4jx4eHhfNWuooieu1epmlmnqmu2TES8B3yPylj6VUk7ALLHqazZJFCqetsocLnhStfQzHAfHRwF3HM3s86VZ7bMsKT7s+ONwKeBHwEngYNZs4PAiez4JHBA0gZJu4DdwMvNLny5Zq1QBRjoG2Dbvds8HdLMOlZfjjY7gGPZjJce4HhEvCjp/wDHJT0FXAKeBIiIM5KOA28AZeDpiCj8/rmzC7MM9A3Qo+ZM3fd0SDPrZGuGe0T8JfDxGuffBR5b4T1HgCMNV1eHRjfHXq40WOLcu+ea9nlmZq2U1ArVZsyUWbLUc4+443fBZmbrXjrhXm58F6ZqpcES1z+4zrX5a037TDOzVkkn3JuwxV4139fdzDqZw30FXshkZp3M4b4CL2Qys07mcF/Bg5sfpL+n3z13M+tIyYR7s6dC9qiHkcERL2Qys46UTLjPLsw2ZXVqNS9kMrNOlVS4b+prXs8dvCOTmXWutMK9icMyUOm5T85Mcmux8LsnmJk1VRLhvhiLzJWbO+YOlZ57ebHMO9ffaernmpkVLYlwX9oOr4ieO+ChGTPrOEmE+9xC8/ZPreaFTGbWqZII92Zu1FHNC5nMrFMlFe7Nngo5tGGI++65zz13M+s4eXZiKkn6M0lnJZ2R9KXs/AOSTkk6nz1uqXrPM5IuSDon6fEifwAorucuidKQp0OaWefJ03MvA/8mIv4u8CjwtKQ9wGHgdETsBk5nz8leOwA8RGWv1eezXZwKU1S4gxcymVlnWjPcI+JKRLyaHb8PnAVGgP3AsazZMeCJ7Hg/8EJEzEfEReACsLfZhVcrMty9kMnMOlFdY+6SdlLZcu8lYHtEXIHKPwDAtqzZCFCdhpPZueWfdUjShKSJ6enp+iuvUnTPferG1O0ZOWZmnSB3uEvaDPwh8OWImFmtaY1zd+xVFxFHI2I8IsaHh4fzllHTXLmYqZBQ6bkDTM5MNv2zzcyKkivcJfVTCfZvRMS3s9NXJe3IXt8BTGXnJ4FS1dtHgcvNKbe2onvu4IVMZtZZ8syWEfA14GxE/G7VSyeBg9nxQeBE1fkDkjZI2gXsBl5uXsl3uj0VsokbZC/xdntm1on6crT5JPBF4IeSXsvO/TbwLHBc0lPAJeBJgIg4I+k48AaVmTZPR0Shd94qsuc+OjgKeCGTmXWWNcM9Iv4XtcfRAR5b4T1HgCMN1FWXohYxAWzo28D2e7e7525mHSWZFaoDfQP0qJgfxwuZzKzTJBPuRQzJLPFCJjPrNEmEe7P3T12uNFji0rVLRNwxo9PMbF1KItxny8X33G8s3OC9m+8V9h1mZs2URrgvzBYyDXLJ0kImD82YWadIJtyL7rmDFzKZWedwuOfghUxm1mkc7jls37yd/p5+L2Qys47hcM+hRz2MDo5yacY9dzPrDEmEe9FTISFbyOSeu5l1iCTCvejZMuCFTGbWWZIJ98J77oMlJmcmubVY6D3QzMyaouPDfTEWmSsXPywzNjTGrbjFO9ffKfR7zMyaoePD/Wb5JlDM7X6reTqkmXWSjg/3Iu/lXm1plaoXMplZJ+j4cF/auNo9dzOzn8mzzd7XJU1Jer3q3AOSTkk6nz1uqXrtGUkXJJ2T9HhRhS9pVc99aGCI++65z9Mhzawj5Om5/1dg37Jzh4HTEbEbOJ09R9Ie4ADwUPae5yX1Nq3aGorchWm5saExL2Qys46wZrhHxJ8Df7Ps9H7gWHZ8DHii6vwLETEfEReBC8DeJtVaU6t67uCFTGbWOe52zH17RFwByB63ZedHgOr0m8zO3UHSIUkTkiamp6fvsozWhvvYoBcymVlnaPYvVGttpF1z+6KIOBoR4xExPjw8fNdf2Oqe+/Ts9O1f4pqZrVd3G+5XJe0AyB6nsvOTQKmq3Shw+e7LW1tLe+7ZjJnJmcnCv8vMrBF3G+4ngYPZ8UHgRNX5A5I2SNoF7AZebqzE1c2VWzMVEjwd0sw6R99aDSR9E/gUsFXSJPAV4FnguKSngEvAkwARcUbSceANoAw8HRGF3oylpcMyXshkZh1izXCPiM+v8NJjK7Q/AhxppKh63J4KWfBdIQFGB0cB99zNbP3r+BWqrZznvqFvA9vv3e7pkGa27iUR7gN9A/SoNT+KFzKZWSdIItxbMd6+pDRU8rCMma17Dvc6jQ2O8da1t4ioOX3fzGxd6Phwb8VGHdXGhsa4sXCDn978acu+08ysXh0f7u0YlgH8S1UzW9eSCPdWTINc4oVMZtYJkgj3lvbcvZDJzDqAw71O2zdvp7+n3z13M1vXHO516lEPo4Oj7rmb2brmcL8LY0O+r7uZrW8dH+5zC62dCgleyGRm61/Hh3tbeu6DY7w98za3Fgu94aWZ2V3r6HBfjEXmynMtnQoJlWGZW3GLK9evtPR7zczy6uhwv1m+CbTmXu7VvJDJzNa7jg73Vm7UUc0LmcxsvSss3CXtk3RO0gVJh4v4jnaFuxcymdl6V0i4S+oF/iPwGWAP8HlJe5r9Pe0K96GBIQY3DLrnbmbr1prb7N2lvcCFiHgTQNILwH4qe6s2zdxC6zbHXq40WOLYD45x+uLpln+3maXjM3/nMzz3K881/XOLCvcRoHrMYhL4+9UNJB0CDgGMjY3d1ZdsvmczT+558vYYeCsd/oeHOXHuRMu/18zSMnLfSCGfqyI2nZD0JPB4RPzT7PkXgb0R8Zu12o+Pj8fExETT6zAzS5mkVyJivNZrRf1CdRIoVT0fBS4X9F1mZrZMUeH+F8BuSbsk3QMcAE4W9F1mZrZMIWPuEVGW9C+A/wn0Al+PiDNFfJeZmd2pqF+oEhF/BPxRUZ9vZmYr6+gVqmZmVpvD3cwsQQ53M7MEOdzNzBJUyCKmuouQpoGfNPARW4G/blI5zeS66uO66uO66pNiXX87IoZrvbAuwr1RkiZWWqXVTq6rPq6rPq6rPt1Wl4dlzMwS5HA3M0tQKuF+tN0FrMB11cd11cd11aer6kpizN3MzD4slZ67mZlVcbibmSWoY8J9rQ23VfHvs9f/UtIn1kldn5J0TdJr2Z9/26K6vi5pStLrK7zeruu1Vl0tv16SSpL+TNJZSWckfalGm3Zdrzy1teOaDUh6WdIPsrp+p0abll+znHW16+9kr6TvS3qxxmvNv1YRse7/ULlt8I+BnwfuAX4A7FnW5rPAHwMCHgVeWid1fQp4sQ3X7BeBTwCvr/B6y69Xzrpafr2AHcAnsuP7gP+3Hv77qqO2dlwzAZuz437gJeDRdl+znHW16+/kvwb+oNZ3F3GtOqXnfnvD7Yj4AFjacLvafuC/RcX/Be6XtGMd1NUWEfHnwN+s0qQd1ytPXS0XEVci4tXs+H3gLJV9gKu163rlqa3lsutwPXvan/1ZPjuj5dcsZ10tJ2kU+FXgqys0afq16pRwr7Xh9vL/wPO0aUddAL+Q/W/iH0t6qOCa8mrH9cqrbddL0k7g41R6fNXafr1WqQ3acM2yYYbXgCngVESsi2uWoy5o/fX6PeC3gMUVXm/6teqUcFeNc8v/Nc7TptnyfOerVO7/8DHgPwD/o+Ca8mrH9cqjbddL0mbgD4EvR8TM8pdrvKVl12uN2tpyzSLiVkQ8QmWP5L2SHl7WpC3XLEddLb1ekn4NmIqIV1ZrVuNcQ9eqU8I9z4bb7diUe83vjIiZpf9NjMruVP2SthZcVx7rchPzdl0vSf1UwvMbEfHtGk3adr3Wqq3d/41FxHvA94B9y15q639jK9XVhuv1SeBzkv6KytDtL0n6/WVtmn6tOiXc82y4fRL4J9lvnR8FrkXElXbXJelBScqO91K55u8WXFce7bhea2rH9cq+72vA2Yj43RWateV65amtTddsWNL92fFG4NPAj5Y1a/k1y1NXq69XRDwTEaMRsZNKRvxpRHxhWbOmX6vC9lBtplhhw21J/yx7/T9T2a/1s8AFYBb4jXVS1z8G/rmkMjAHHIjs1+NFkvRNKrMCtkqaBL5C5ZdLbbteOetqx/X6JPBF4IfZWC3AbwNjVXW15XrlrK0d12wHcExSL5VwPB4RL7b772TOutryd3K5oq+Vbz9gZpagThmWMTOzOjjczcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0vQ/wdNQv3bviWjAgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "pm.mats_eval.bs_law.plot(plt, color='green')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -340,45 +327,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAEGCAYAAAAOgW4QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de3hV1b3v//cXSAh3wQAi0QMV8YaKNSKgUEStiFVQseCpVSuW09aeuqu7x3p+++n27KO79jnVdrv9tf1RZStWBcRaqAe83xUvWBAR1E0RNQYhBMSgBkjy/f2xZhYrYV1mwlprrmR9Xs+znow15u07E9b6Msaccwxzd0RERGR/XaIOQEREpFApSYqIiKSgJCkiIpKCkqSIiEgKSpIiIiIpdIs6gHwrLy/3YcOGRR2GiIgUkDfffHObuw9sXV90SXLYsGGsXLky6jBERKSAmNmHyerV3SoiIpKCkqSIiEgKSpIiIiIpKEmKiIikoCQpIiKSgpKkiIhICkqSIiIiKRTdc5LtsgIYBgyJOI4iVlNTw5NPPkljYyNlZWXs2LEj7frl5eVs27Yt5fJDDz2UzZs3k2qquEMOOYTa2lr27t2bdHnPnj1xd7766quUxxgwYADbt29PG2NtbW3KGA499FBqa2vZvXt30uWDBw+mvr6enTt3Jl3epUsXunXrxp49e9LGsH37dpqamlKew1dffZXyPA855BDq6+v57LPPUm5fVlbGli1baGxsTLpO79692bVrV8oYhw4dyq5du1KeZ3l5Od26dePTTz9NuvzQQw+le/fubN68mfr6+v2W9+/fn8MOO4wtW7awZcuW/ZabGUcffTTbtm2jpqYm6TEqKyupr6+nuro66d/8lFNOobS0lM2bN1NdXb1fHGPGjGHw4MFs3rw5/kr8m4wfP56RI0eyZcuW+PLEWCdNmsTIkSPZu3cvW7Zs4dNPP2Xz5s1s3bqV7t27M2nSJCoqKgBwd+rq6tiyZQs1NTU0NDRw4okn0q9fvxYxNTQ0UFdXh7vTv39/zCzpuXd2VmzzSVZWVnqbBxOYm1D+r8AW4DbgT8AuoDdwGXA9cERWwix6dXV1LFu2LOUXo4gUlm7dutHQ0JB02eDBg5kyZQrbtm1j69atbN26lZqaGr788ksmTpzI0UcffcDH//vf/85tt93Gn/70J3bt2kXv3r257LLLuP766zniiMxfzGb2prtX7levJBlCYpJcG7xvAhIbGSXBazFw7oHFWKyee+453n///XZv36dPH+rq6lIuLy0tTduqMrOUrbqw0n1RAJSVlSVtzeRTpt+DSCHp27cv3/72t/n888/Zvn07O3bsYO/evVRWVtKtW6wzdPny5cyYMYO9e/e26P0pKSmhpKSExYsXc+656b+YlSQD7U6SXwO+BC4B0n2/9ATWoBZlGyxatChldx3AoEGDOPvss+nVq1ceoxIpHE1NTbg7Xbt2Tbp8165d1NXVMWjQoKTrfPjhh1RXVzN48GAGDRpEr169WnSfvvrqq3zwwQcMHDiQ8vJyysvLGTBgAN27d6epqYn/+I//aLG/AQMGxNf57LPPePfdd7N7wm1QUVHBxRdfnPY/nz179mTNmjVpW5RKkoF2J8mRwCLgLlq2IFsrAeYAd7YzwCLy4Ycf8vjjj+9XX1JSwvnnn095eXkEUYlILjQ1NdGly/73ilZXV7Ns2TKampro2rVrPEmXlpayatWqjPt94IEHeOmll1Je84bYd8qcOXO4887UX8x5T5JmVga8AHQndoPQYnf/ZzMbACwkdivMJuDb7r4j2OZGYDbQCPzE3R8P6k8G7gF6AMuAa93dzaw7MB84GagFZrr7pnRxtTtJHgtMBVL35u3TF9CltJQaGhqYN2/efvVXXnklpaWlEUQkIoWqqamJpqameNdqs4ceeogdO3Zw7bXXhrqE0bdv37T3OESRJA3o5e67zKwEeAm4FrgI2O7ut5rZz4H+7n6DmR0LPAiMAQ4FngJGunujmb0ebPsqsSR5h7svN7MfASe4+w/MbBZwobvPTBdXu5PkCcB4IMyvqwuxNC/7eeGFF/brmpk8eTIjRoyIKCIR6ci6dOkS6l6CLl26pG1tpkqSOXsExGNRN9/X3XxbiwPTgElB/b3Ac8ANQf0Cd98NfGBmG4AxZrYJ6OvuK4ITmQ9MB5YH29wU7GsxcKeZmeci83cjdhdrmJZk76wfvcPbsWMHDz30UIu67t27c8UVV0QUkYh0Br179057w17ieu2R08EEzKyrma0GtgJPuvtrwGB33wwQ/BwUrD4U+Dhh86qgbmhQbl3fYht3byDWyXlwkjjmmNlKM1uZ6jmnjLoRe8yjJMN6JcB323eIzuqZZ57ZL0HOmjVLCVJEDthll11GSUn6L+aSkhK++932fTHnNEm6e6O7jwYqiLUKR6VZPdmTqp6mPt02reOY6+6V7l45cOB+E0+H043Yc5BhkuRP23eIzmjhwoVs2LAh/v6EE05gzpw59O3bN8KoRKSzuP7660MlyZ/+tH1fzHkZls7dPyPWrToF2GJmQwCCn1uD1aqAwxI2qwCqg/qKJPUttjGzbkA/IPUQJweiG7HHOhYTe8yj9d+kJKhfjB7/CMydO7fFhfLvfe97jB07NsKIRKSzOeKII1i8eDE9e/bcL1mWlJTQs2dPFi9eHGpAgWRyliTNbKCZHRSUewBnAe8CS4HmfrYrgCVBeSkwy8y6m9lw4Ejg9aBLts7MxgY3A13eapvmfc0AnsnJ9UjYd/X2XGLPQc4hdhdrl+DnnKBeAwkAsQSZ6Oqrr874vz0RkfY499xzWbNmTbyXqkuXLvTt25c5c+awZs2ajAMJpJPLu1tPIHZjTldiqWSRu/+LmR1M7InDw4GPgEvcfXuwzf8DXAU0AP/g7suD+kr2PQKyHPjvwSMgZcB9wEnEWpCz3H1jurjafXfrN4k9tCIZtU6Qc+bMiSgSEZFwNJhAoN1JciotO30lKSVIEemI8v4ISKejnsK0mpqauOuuu1rUKUGKSEenJBmWflMptR5Bp6SkhO9973sRRiQikh366g9Lv6mk6uvrmT9/fvz9wQcfzMUXXxxhRCIi2aOv/rD0m0oqMUEOHz6cs88+O8JoRESyS1/9Yek3tZ/Em3SOPfZYTj/99AijERHJvrwMJtApKEm28MQTT7R4rwQpIp2RkmQmTcHP5HOdFqWPPvqITZs2xd/rLlYR6ayUJDNpiDqAwrJnzx4ee+yx+HvdxSoinZmSZCaaF7KFe+65J14+77zzNNSciHRqSpKZ7I06gMKReKPOiBEjGDp0aJq1RUQ6PiXJTNTdCsCKFStavJ88eXJEkYiI5I+SZCZKktTU1PD222/H3+tGHREpFkqSmRR5kmxsbOSRRx6Jv7/ssssijEZEJL+UJDMp8iR59913x8tnnHEGPXv2jDAaEZH8UpLMpIiT5IMPPhgvl5eXc+SRR0YYjYhI/ilJZlKkSfKzzz6jrq4u/v6iiy6KMBoRkWgoSWZSpEly0aJF8fLVV18dYSQiItFRksykCJPkiy++GC8ff/zxdOmifyYiUpz07ZdJkSXJxsZG1q9fH38/bty4CKMREYmWkmQmRZYkE+9mnTlzZoSRiIhET0kykyJKkh9++GG8XFpaSr9+/SKMRkQkekqSmRTR2K2PP/54vHzllVdGF4iISIFQksykSFqSCxcujJc1LquISEzOkqSZHWZmz5rZejN7x8yuDepvMrNPzGx18JqasM2NZrbBzN4zs3MS6k82s7eDZXeYmQX13c1sYVD/mpkNy/qJFMFUWV988QU7d+6Mvx8xYkSE0YiIFI5ctiQbgOvd/RhgLHCNmR0bLPuNu48OXssAgmWzgOOAKcDvzKxrsP7vgTnAkcFrSlA/G9jh7iOA3wC/yvpZFEF36/333x8vq5tVRGSfnCVJd9/s7n8LynXAeiDdBITTgAXuvtvdPwA2AGPMbAjQ191XuLsD84HpCdvcG5QXA2c2tzKzppN3t/7tb3+Ll4cPH05paWmE0YiIFJa8XJMMukFPAl4Lqn5sZmvMbJ6Z9Q/qhgIfJ2xWFdQNDcqt61ts4+4NwE7g4CTHn2NmK81sZU1NTduC78RJ0t1ZuXJl/P3ZZ58dYTQiIoUn50nSzHoDDwP/4O6fE+s6PQIYDWwGbmteNcnmnqY+3TYtK9znunulu1cOHDiwbSfQiZPkH//4x3h5+vTpadYUESlOOU2SZlZCLEHe7+5/BnD3Le7e6O5NwB+BMcHqVcBhCZtXANVBfUWS+hbbmFk3oB+wPasn0UmT5I4dO1q8HzRoUESRiIgUrlze3WrA3cB6d789oX5IwmoXAmuD8lJgVnDH6nBiN+i87u6bgTozGxvs83JgScI2VwTlGcAzwXXL7OmkSfKhhx6KlzWAuYhIct1yuO/TgO8Cb5vZ6qDufwKXmtloYt2im4D/BuDu75jZImAdsdR0jbs3P4DxQ+AeoAewPHhBLAnfZ2YbiLUgZ2X9LDphkvz73/8eL48aNUoDmIuIpJCzJOnuL5H8muGyNNvcAtySpH4lMCpJfT1wyQGEmVknfE7y6aefjpfHjx8fYSQiIoVNTYgi895778XLp556aoSRiIgUPiXJIvP888/HyyeeeGKEkYiIFD4lySKydu3aePm0006LMBIRkY5BSbKIvPLKK/HycccdF2EkIiIdg5JkkVi9enW8PGnSpOgCERHpQJQki8Trr78eL48cOTLCSEREOg4lySLwxhtvxMtnnXVWhJGIiHQsSpJFYNWqVfHy1772tQgjERHpWJQkO7nEm3WmTJmSZk0REWkt5Yg7ZnZdiO2/cPf/L4vxSJYlPvZx+OGHRxiJiEjHk64l+TOgN9Anzev6XAco7Zc4cMB5550XYSQiIh1TurFb73P3f0m3sZn1ynI8kkWJQ9ANHTo0zZoiIpJMypaku/+PTBuHWUei8dRTT8XL06ZNizASEZGOK901ycvTbeju87MfjmTLxo0b4+XBgwdHGImISMeVrrv1lCR1BpwPDAWUJAtU4iMfF154YYSRiIh0bCmTpLv/9+aymRnwHeAG4FWSzPkohSNx8ICBAwdGGImISMeWdtJlM+sGXEnsLtbXgBnu/l66bSRa27dvj5e//vWvRxiJiEjHl+6a5DXAtcDTwBR3/zBvUUm7LV68OF6urKyMMBIRkY4vXUvy34GtwOnAX2M9rkDsuqS7+wk5jk3aqKmpKV4uLS2NMBIRkc4hXZIcnrcoJCsWLlwYL1922WURRiIi0jmku3FH3asdTF1dXbzcrVvay80iIhJCysEEzOzRTBuHWUfyY82aNfHy9OnTI4xERKTzSNfcON3MlqZZbsCxWY5H2unVV1+NlwcNGhRhJCIinUe6JBlmLLM9qRaY2WHEBhw4BGgC5rr7v5nZAGAhMAzYBHzb3XcE29wIzAYagZ+4++NB/cnAPUAPYBlwrbu7mXUPjnEyUAvMdPdNIeLuVD777LN4+YQTdD+ViEi2pLsm+XyqZSE1ANe7+9/MrA/wppk9Sey5y6fd/VYz+znwc+AGMzsWmAUcBxwKPGVmI929Efg9MIfYQAbLgCnAcmIJdYe7jzCzWcCvgJkHGHeHs2jRonh57NixEUYiItK55GzSZXff7O5/C8p1wHpiw9lNA+4NVrsXaL6ANg1Y4O673f0DYAMwxsyGAH3dfYW7O7GWY+I2zftaDJxpCc+qZE0B3wOT+NhHly6aQ1tEJJvy8q1qZsOAk4iN2jPY3TdDLJECzRfQhgIfJ2xWFdQNDcqt61ts4+4NwE7g4CTHn2NmK81sZU1NTdtPoICT5MMPPxwvX3HFFRFGIiLS+aRNkmZ2kpnNMLNj2nsAM+sNPAz8g7t/nm7VJHWepj7dNi0r3Oe6e6W7V7ZrLNMCTpI7duyIl0tKSiKMRESk80n3CMgviN1gczHwf83s+23duZmVEEuQ97v7n4PqLUEXKsHPrUF9FXBYwuYVQHVQX5GkvsU2wTiz/YDtZFuBJsl33nknXr7gggsijEREpHNK15KcCYx290uJTZs1py07Dq4N3g2sd/fbExYtBZr7Ba8AliTUzzKz7mY2HDgSeD3okq0zs7HBPi9vtU3zvmYAzwTXLbOrQJPkyy+/HC8fcsghEUYiItI5pfv6r3f3LwHcvdbM2nr98jTgu8DbZrY6qPufwK3AIjObDXwEXBIc4x0zWwSsI3Zn7DXBna0AP2TfIyDLgxfEkvB9ZraBWAtyVhtjDKcAk+Tnn+/ruT7uuOMijEREpPNK9/V/RMJgAtbqPe6etn/P3V8i+TVDgDNTbHMLSeaqdPeVwKgk9fUESTanCjBJLliwIF4+7bTTIoxERKTzastgAr/OZSAFTffDiIgUpVwOJtB5dI06gJYSh6DTYx8iIrmjp8/DKLCWZOJg5t27d48wEhGRzk1JMowCuibZ2NgYLw8frik/RURyKXSSNLNeuQykoBVQkly6dN/ELGeddVaEkYiIdH4Zk6SZjTezdcTGXsXMTjSz3+U8skJSQEkycVi9XAxTKyIi+4RpSf4GOIfYVFS4+1vAxFwGVXAKJEnu2rUrXh4/fnyEkYiIFIdQ3a3u/nGrqsakK3ZWBZIkH3jggXh51Kj9HhsVEZEsC/P1/7GZjQfczEqBnxB0vRaNAkmSIiKSX2Fakj8ArmHflFWjg/fFowCSZHV1dbx8/vnnRxiJiEjxyPj17+7bgO/kIZbCVQDPST766KPx8pAhQyKMRESkeIS5u/VeMzso4X1/M5uX27AKTIGNuCMiIvkRprv1BHf/rPmNu+8ATspdSAUo4pZk4gg73/lOcTfqRUTyKUyS7GJm/ZvfmNkACuIqXR5FfLaJY7X26lW8YzqIiORbmK//24BXzGwx4MC3STKdVacWYZJMnEN60KBB0QUiIlKE0n79BxMtbwAuBiYTmx/yIndfl4fYCkeESfLJJ5+Ml3VXq4hIfqX9+nf3JjO7zd3HAcWVGBNFmCQ3bdoUL3ftqjuIRETyKcw1ySfM7GIrxoFCm3s6I8pNu3fvjpdPPPHEaIIQESliYdpI1wG9gEYzqw/q3N375i6sAtE8+F5E/z1YsGBBvHzqqadGE4SISBELM5hAn3wEUpAaoj18YktSRETyL9TVNjO7gH0zfzzn7o+mW7/TiDBJJs74MXny5OgCEREpYmFG3LkVuJbYjTvrgGuDus4vwiSZ2NU6YsSI6AIRESliYVqSU4HR7t4EsWHqgFXAz3MZWEGIMEk2NTVFd3AREQFCzicJHJRQ7hdmAzObZ2ZbzWxtQt1NZvaJma0OXlMTlt1oZhvM7D0zOyeh/mQzeztYdkfzXbZm1t3MFgb1r5nZsJDnEl5ESfKLL76IlydNmhRNECIiEipJ/hJYZWb3BK3IN4F/DbHdPcCUJPW/cffRwWsZgJkdC8wCjgu2+Z2ZNT948XtgDnBk8Gre52xgh7uPAH4D/CpETG0TUZJcuHBhvDxy5MhoghARkdRJ0sxOC4p/BsYGP/8MjHP3Bam2a+buLwDbQ8YxDVjg7rvd/QNio/yMMbMhQF93X+Gx8dnmA9MTtrk3KC8Gzsz6s5wRJcmGhohvqxURESB9S/KO4OcKd9/s7kvdfYm7f3qAx/yxma0JumObB04fCnycsE5VUNc80XPr+hbbuHsDsBM4ONkBzWyOma00s5U1NTXhI40gV3355Zfx8sSJE9OsKSIiuZbuxp29ZvYfwFAzu6P1Qnf/STuO93vgfxMby+Z/Exs8/SqSP67vaerJsKxlpftcYC5AZWVl0nWS2ht6zaxZvHhxvHz00UfnPwAREYlLlyS/BZxFbGDzN7NxMHff0lw2sz8Czc9bVgGHJaxaAVQH9RVJ6hO3qTKzbsRuKArbvRtOBC3J+vr6zCuJiEhepEyS7r4NWGBm6939rWwczMyGuPvm4O2FQPOdr0uBB8zsduBQYjfovO7ujWZWZ2ZjgdeAy4F/T9jmCmAFMAN4xhPnlcqGPCfJxAQ5bty4/B5cRET2E2ZYunYlSDN7EJgElJtZFfDPwCQzG02sW3QT8N+CY7xjZouIDVbQAFzj7s0jp/6Q2J2yPYDlwQvgbuA+M9tArAU5qz1xppXnJPnII4/Ey8cff3x+Dy4iIvvJ2SRQ7n5pkuq706x/C0kmc3b3lcCoJPX1wCUHEmNGeU6SdXV1+T2giIikFWZYuuFh6jqlPCbJPXv2xMunnHJK/g4sIiIphRlM4OEkdYuT1HU+eUySS5cujZdPOumk/B1YRERSStndamZHExsBp5+ZXZSwqC9QluvACkIek+T27dm9MVdERA5cumuSRxF7DOQg4PyE+jrg+7kMqmDkKUnu3bvvgczRo0fn56AiIpJRukdAlgBLzGycu6/IY0yFI09JctmyZfHymDFj8nNQERHJKMzdrXPMbL+Wo7tflYN4CkueRtzZsmVL5pVERCTvwiTJRxPKZcQGAahOsW7nkoeWZGNjY7x83HHH5f6AIiISWpjBBFrc3RoMEvBUziIqJHlIko8//ni8PH78+NwfUEREQgs76XKiI4HDsx1IQcpDkqyq2jfJSbZn+hIRkQOTsSVpZnXsm5HDgU+BG3IcV2HIcZJsamqKlzW5sohI4QnT3donH4EUpBwnyWeeeSZe1tyRIiKFJ9TYrWZ2AdD8Lf6cuz+abn0JZ+PGjfFyly7t6fkWEZFcCjN2663AtcRm6FgHXGtmv8x1YJ1d4qxew4YNiy4QERFJKUxLciow2t2bAMzsXmAVcGMuA+vsXnjhhXj5rLPOijASERFJJWwf30EJ5X65CKTYvPfee/GyulpFRApTmJbkL4FVZvYssTtcJ6JW5AFJ7GqtqKiIMBIREUknzN2tD5rZc8ApxJLkDe7+aa4D68xWrNg3FO4555wTYSQiIpJOqH4+d9/s7kuBwUqQB27t2rXxcteuXSOMRERE0mnrxbAf5CSKIjVo0KCoQxARkTTamiQ1btoBeuONN+Llb33rWxFGIiIimbQ1SZ6feRVJZ9WqVfFyt26hxnIQEZGIpPyWNrPrUtQD4O635yimotC/f/+oQxARkQzStST7ZHilZWbzzGyrma1NqBtgZk+a2X8GP/snLLvRzDaY2Xtmdk5C/clm9naw7A4LsrSZdTezhUH9a2Y2rG2nnn+rV6+Ol6dNmxZhJCIiEkbKlqS7/68D3Pc9wJ3A/IS6nwNPu/utZvbz4P0NZnYsMAs4DjgUeMrMRrp7I/B7YA7wKrAMmAIsB2YDO9x9hJnNAn4FzDzAmHPq9ddfj5dLS0sjjERERMJI1916R7oN3f0nGZa/kKR1Nw2YFJTvBZ4jNu3WNGCBu+8GPjCzDcAYM9sE9HX3FUFM84HpxJLkNOCmYF+LgTvNzDzxSf0C1bt376hDEBGRENLdOfJmDo432N03Q+zZSzNrfgZiKLGWYrOqoG5vUG5d37zNx8G+GsxsJ3AwsK31Qc1sDrHWKIcfHs180YnPRl500UWRxCAiIm2Trrv13jzGkezREk9Tn26b/Svd5wJzASorKyNpab7yyivxcllZWRQhiIhIG2V8BiEYs3W/xOLuk9txvC1mNiRoRQ4Btgb1VcBhCetVANVBfUWS+sRtqsysG7GB17e3I6a86t69e9QhiIhISGEe1PvHhHIZcDHQ0M7jLQWuAG4Nfi5JqH/AzG4nduPOkcDr7t5oZnVmNhZ4Dbgc+PdW+1oBzACeKdTrkYkzflxyySURRiIiIm0RZoDz1tcmXzaz5zNtZ2YPErtJp9zMqoB/JpYcF5nZbOAj4JLgGO+Y2SJikzo3ANcEd7YC/JDYnbI9iN2wszyovxu4L7jJZzuxu2ML0vPP7/t19ezZM8JIRESkLcJ0tw5IeNsFOBk4JNN27n5pikVnplj/FuCWJPUrgVFJ6usJkmxH0TwQg4iIdAxhulvfZN9NNA3AB8SeUZQQNm7cGC/PmlWwjV0REUkiTHfr8HwE0lk99dRT8XKfPhkHKhIRkQISpru1DPgRcDqxFuVLwO+D7k4REZFOK0x363ygjn13lV4K3EcHux4YhY8++ihenjmzoEfMExGRJMIkyaPc/cSE98+a2Vu5Cqgzeeyxx+Llfv36RRiJiIi0R5j5JFcFzykCYGanAi/nLqQC0zXqAEREJCphWpKnApebWXPf4eHAejN7G3B3PyFn0RWCds6LXF1dHS/PmDEjS8GIiEg+hUkBU3IeRSFrZ5J89NFH4+UBAwakWVNERApVmEdAPsxHIAWrnUlSREQ6vjDXJItbO5Lkli1b4uULL7wwi8GIiEg+KUlm0o4kuWTJknh54MCBWQxGRETySUkyE3W3iogULSXJTNqYJLdt2xYvn3/++VkORkRE8klJMpM2Jsk///nP8fKQIUOyHIyIiOSTkmQmJVEHICIiUVGSzKQNLcnPPvssXp46dWoOghERkXxSksykDUly0aJF8XJFRUUOghERkXxSksxEd7eKiBQtJclMQibJzz//PF4+++yzcxSMiIjkk5JkJiGT5IIFC+Ll4cOH5ygYERHJJyXJTNTdKiJStJQkMwmRJL/44ot4+YwzzshhMCIikk9KkpmESJILFy6Ml4888sgcBiMiIvkUSZI0s01m9raZrTazlUHdADN70sz+M/jZP2H9G81sg5m9Z2bnJNSfHOxng5ndYWaW9WBDJMmGhoasH1ZERKIXZUvyDHcf7e6VwfufA0+7+5HA08F7zOxYYBZwHLEJoH9nZl2DbX4PzAGODF7ZnyA6Q5L86quv4uUJEyZk/fAiIhKdQupunQbcG5TvBaYn1C9w993u/gGwARhjZkOAvu6+wt0dmJ+wTfZkSJIPP/xwvHzMMcdk/fAiIhKdqJKkA0+Y2ZtmNieoG+zumwGCn4OC+qHAxwnbVgV1Q4Ny6/r9mNkcM1tpZitramraFmmGJPnll1+2bX8iItJhRPWAw2nuXm1mg4AnzezdNOsmu87oaer3r3SfC8wFqKysTLpOSml+Q7t3746Xx44d26bdiohI4YukJenu1cHPrcAjwBhgS9CFSvBza7B6FXBYwuYVQHVQX5GkPrvSJMm//OUv8fIJJ5yQ9UOLiEi08p4kzayXmfVpLgPfBNYCS4ErgtWuAFXsMtkAABBkSURBVJYE5aXALDPrbmbDid2g83rQJVtnZmODu1ovT9gme9IkyZ07d2b9cCIiUjii6G4dDDwSPK3RDXjA3R8zszeARWY2G/gIuATA3d8xs0XAOqABuMbdG4N9/RC4B+gBLA9e2dF8hBT/jdi7d2+8fPLJJ2ftsCIiqezdu5eqqirq6+ujDqXDKisro6KigpKScJMF5z1JuvtG4MQk9bXAmSm2uQW4JUn9SmBUtmME9iXJFP7617/Gy0qSIpIPVVVV9OnTh2HDhpGLx8I7O3entraWqqqq0GNsF9IjIIVlb/rF27Zty08cIiKB+vp6Dj74YCXIdjIzDj744Da1xJUkU0kziE7iCDu6YUdE8kkJ8sC09fenJJlKmiT52GOPxct69ENEpPNSkkwlTZKsrs7+kyYiIh1B165dGT16NKNGjeKSSy6JD6jy1Vdf8Y1vfIPGxgw3dGTRTTfdxK9//esWdXv27GHixIlZG1NbSTKVFL/fpqameFnD0IlIsenRowerV69m7dq1lJaW8oc//AGAefPmcdFFF9G1a9cMe8it0tJSzjzzzBazMx0ITSmcSook+cQTT8TLp59+ep6CERFpae7cuTnZ75w5czKvFJgwYQJr1qwB4P777+eBBx4A4Ec/+hFTpkzhggsu4MILL6R///7MmzePu+++mw8++ICbb76ZqVOnctddd9GrVy/GjBnD0qVLOeqoo7j00kuZPHky3//+99t9DtOnT+fGG2/kO9/5Trv30UwtyVRSJMmPPvooXtYFdBEpVg0NDSxfvpzjjz+ePXv2sHHjRoYNGwbAxIkTefHFFwH45JNPWLduHQAvvfRSfLakZcuWceihh9KvXz/uvPNOrrzyShYsWMCOHTviCXLmzJmMHj16v9f8+fPTxjZq1CjeeOONrJynWpKpJHkEJLGr9YgjjshjMCIiLbWlxZdNX331FaNHjwZiLcnZs2ezbds2DjrooPg6EyZM4Le//S3r1q3j2GOPZceOHWzevJkVK1Zwxx137LfPs88+m4ceeohrrrmGt956K17f3i7Trl27UlpaSl1dHX369GnXPpopSaaSpCX53HPPxctnnHFG/mIRESkQzdckW9clPns4dOhQduzYwWOPPcbEiRPZvn07ixYtonfv3kmTVlNTE+vXr6dHjx5s376diorYsNwzZ87kvffe22/96667jssvvzxtnLt376asrKw9p9iCkmQqSW7Q2rBhQ7zcpYt6qkVEAPr3709jYyP19fXxxDRu3Dh++9vf8swzz1BbW8uMGTOYMWNGfJszzzyT+fPnM3ToUH7zm99wzDHH8K//+q9cddVVrFixgpKSkna3JGtraxk4cGDooefS0Td9Kq26W2PzOsccfvjheQ5GRKSwffOb3+Sll16Kv58wYQINDQ2MGDGCr3/962zfvj1+PbKpqYkNGzYwYMAA3n//fe666y5uu+02JkyYwMSJE7n55ptDH/fmm2+moqIi/gJ49tlnmTp1albOyxK//ItBZWWlr1y5MvOKrwJrgKDb/4UXXuDdd2PTXl599dVqSYpI3q1fv75gHz1btWoVt99+O/fdd1/GddeuXcu8efO4/fbbcxLLRRddxC9/+UuOOuqopMuT/R7N7E13r2y9rr7pU2l1TbI5QYK6WkVEWjvppJM444wzQg0mMGrUqJwlyD179jB9+vSUCbKtdE0ylRSPgAwZMiS/cYiIdBBXXXVV1CFQWlqa8aaetlCTKJWEJPnqq6/Gy+eee24EwYiISBSUJFNJSJLNI0oAdOumxreISLFQkkwlSXdreXl5/uMQEZHIKEmmEiTJN998M151/vnnRxSMiIhEQUkylSRJMhsPpoqIdGSFNFXW7t27mTlzJiNGjODUU09l06ZNANTU1DBlypSsHENJMpVW3a39+vWLJg4RkQJSSFNl3X333fTv358NGzbw05/+lBtuuAGAgQMHMmTIEF5++eUDPoaSZCoNUFVVFX87ffr0CIMRESk8EyZMiA/Xef/99zNt2jQgNlXW0qVLAbjwwgvjj4bcfffd/NM//RMAU6dOpbq6mp07d3LUUUfFx2i99NJL+eMf/xjq+EuWLOGKK64AYMaMGTz99NPx0dGmT5/O/ffff8DnqFs1U2mAjRs3QmyUI7p37x5tPCIireViSsmQk4s0T5U1ZcqUlFNlXXDBBXzyySds3rwZiE2VNWvWLCA2VVaz5qmyrr322v2myko3wPknn3zCYYcdBsSePOjXrx+1tbWUl5dTWVkZT8gHQkkylYSxW3v27BldHCIiqUQwW1YhTZWVbFjV5nl+Bw0aRHV1dbvOMVGHT5JmNgX4N6ArcJe735qN/VZ/su+Xe/HFF2djlyIiHV4hTZVVUVHBxx9/TEVFBQ0NDezcuZMBAwYAUF9fT48ePQ74fDt0kjSzrsD/C5wNVAFvmNlSd193oPtOnBYrG79oEZHOKqqpsi644ALuvfdexo0bx+LFi5k8eXK8Jfn+++8zatSoAz63jn7jzhhgg7tvdPc9wAJgWjYPoMc+REQyi2KqrNmzZ1NbW8uIESO4/fbbufXWfR2Jzz77LOedd94Bn1eHbkkCQ4GPE95XAae2XsnM5hD03oeZC7KxsZEPT/yQsl1lzJw5M0uhioh0fLt27Upa/+Mf/5jbb7+ds846C4glsNmzZwOxxsYXX3wRX3fdunVcfPHF9OjRg5EjR7J+/fr4srbMDlJWVsZDDz2UdNnSpUtZsmRJ6H2l0tGTpCWp2+9KrrvPJbgPrLKyMuMEml27duW7P/sue/bsobS09MCjFBHp5BKnysr0rGQup8qC2GAC1113Hf379z/gfXX0JFkFHJbwvgI48NuZAkqQIiLhFcJUWRAbTCBbz7Z39GuSbwBHmtlwMysFZgFLI45JRCRnkj32IOG19ffXoZOkuzcAPwYeB9YDi9z9nWijEhHJjbKyMmpra5Uo28ndqa2tjd+BG0ZH727F3ZcByzKuKCLSwVVUVFBVVUVNTU3UoXRYZWVl8ecww+jwSVJEpFiUlJQwfPjwqMMoKh26u1VERCSXlCRFRERSUJIUERFJwYrtLikzqwE+DLl6ObAth+Hki86jsOg8CktnOQ/oPOcSxXn8F3cf2Lqy6JJkW5jZSnevjDqOA6XzKCw6j8LSWc4DOs+5FNJ5qLtVREQkBSVJERGRFJQk05sbdQBZovMoLDqPwtJZzgM6z7kUzHnomqSIiEgKakmKiIikoCQpIiKSQtEmSTObYmbvmdkGM/t5kuVmZncEy9eY2dfDbptPIc7jO0H8a8zsFTM7MWHZJjN728xWm9nK/Ea+X5yZzmOSme0MYl1tZr8Iu20+hTiPnyWcw1ozazSzAcGygvh7mNk8M9tqZmtTLO8on41M59FRPhuZzqNDfDaCeDKdS+F9Pty96F5AV+DvwNeAUuAt4NhW60wFlgMGjAVeC7ttgZ3HeKB/UD63+TyC95uA8g7y95gEPNqebQvpPFqtfz7wTAH+PSYCXwfWplhe8J+NkOdR8J+NkOdR8J+NsOfSat2C+HwUa0tyDLDB3Te6+x5gATCt1TrTgPke8ypwkJkNCbltvmSMxd1fcfcdwdtXgfBzxOTPgfxOO9Tfo5VLgQfzElkbuPsLwPY0q3SEz0bG8+ggn40wf49UCurvAW0+l4L4fBRrkhwKfJzwviqoC7NOmG3zpa2xzCbWAmjmwBNm9qaZzclBfGGFPY9xZvaWmS03s+PauG0+hI7FzHoCU4CHE6oL5e+RSUf4bLRVoX42wir0z0abFNLno1jnk7Qkda2fhUm1Tpht8yV0LGZ2BrEvgtMTqk9z92ozGwQ8aWbvBv/Ty7cw5/E3YmMr7jKzqcBfgCNDbpsvbYnlfOBld0/8X3Wh/D0y6QifjdAK/LMRRkf4bLRVwXw+irUlWQUclvC+AqgOuU6YbfMlVCxmdgJwFzDN3Wub6929Ovi5FXiEWPdMFDKeh7t/7u67gvIyoMTMysNsm0dtiWUWrbqSCujvkUlH+GyE0gE+Gxl1kM9GWxXO5yPfF0EL4UWsBb0RGM6+C9rHtVrnPFrenPB62G0L7DwOBzYA41vV9wL6JJRfAaYU8Hkcwr7BL8YAHwV/mw719wjW60fsukyvQvx7BDEMI/WNIgX/2Qh5HgX/2Qh5HgX/2Qh7LsHygvp8FGV3q7s3mNmPgceJ3QE2z93fMbMfBMv/ACwjdhffBuBL4Hvpto3gNMKexy+Ag4HfmRlAg8dG1x8MPBLUdQMecPfHIjiNsOcxA/ihmTUAXwGzPPaJ6Wh/D4ALgSfc/YuEzQvm72FmDxK7Y7LczKqAfwZKoON8NiDUeRT8ZwNCnUfBfzaahTgXKLDPh4alExERSaFYr0mKiIhkpCQpIiKSgpKkiIhICkqSIiIiKShJioiIpKAkKZIHZnalmd0ZlG8ys3/M0n6nm9mxbVh/kpk9GpQvyOXMEMEMDqvN7NAc7Pv/mNmn2fo9iqRSlM9JinQi04FHgXVt3dDdlwJLsx7RPl+5++hc7Njdf2ZmX2ReU+TAqCUp0kZmNszM3jWze4O5CBcHAzI3z3lXHpQrzey5Nu770mDOvLVm9quE+l0J5Rlmdo+ZjQcuAP5P0GI7otW+Lgn285aZ7TfGZavW7T1m9gcze9HM3jezbyVZ/3dmdkFQfsTM5gXl2WZ2c4hz22VmvwoGqH7KzMaY2XNmtjFhv1ea2V/M7K9m9oGZ/djMrjOzVWb2qgVzC4rki5KkSPscBcx19xOAz4EfHegOg27JXwGTgdHAKWY2PdX67v4KsZbgz9x9tLv/vdUqvwDOcfcTiSXTTIYB3yA27NwfzKys1fIXgAlBeSjQ3M17OvBiiP33Ap5z95OBOuBm4GxiI6z8S8J6o4D/SmyItVuAL939JGAFcHmI44hkjZKkSPt87O4vB+U/0XIGifY6hVgSqXH3BuB+YpPUttfLwD1m9n1iw5Jlssjdm9z9P4mN+Xl0q+UvAhOCa6DrgC0Wm0dyHLGxNDPZAzQPJfY28Ly77w3KwxLWe9bd69y9BtgJ/DVhm8T1RHJO1yRF2qf1eI7N7xvY95/P1i2xFszsMPYlgD8An4Y8Xtr9xjdw/4GZnUqsZbjazDJdH0x1Ts37+8TM+hOb5+8FYADwbWCXu9eFCGmv7xsHswnYHey3ycwSv4t2J5SbEt43oe8syTO1JEXa53AzGxeULwVeCsqbgJOD8sXpduDuHwfdpKODwZ1fA75hZuVm1jXY7/PB6lvM7Bgz60Kse7JZHdAn2f7N7Ah3f83dfwFso+W0SclcYmZdgmubXwPeS7LOCuAfiCXJF4F/JFxXq0iHpCQp0j7rgSvMbA2xFtXvg/r/Bfybmb0INLZlh+6+GbgReJbYtEZ/c/clweKfE7uL9Rlgc8JmC4CfBTe2tLhxh9gNPW+b2VpiSe2tDCG8RywpLwd+4O71SdZ5Eejm7huITfY7ACVJ6cQ0C4hIG5nZMOBRdx8VcShZY2b3EDunxVnc5y53752t/SXZ/03Eunp/natjiKglKSK58nkuBxMALgP0rKTklFqSIiIiKaglKSIikoKSpIiISApKkiIiIikoSYqIiKSgJCkiIpLC/w9A9EJqy/79wgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 504x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "fig, ax = plt.subplots(1,1,figsize=(7,4))\n",
-    "pm.hist.plot_Pw(ax,1)"
+    "pm.hist.plot_Pw(ax,0.68)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO2deZhU5ZXwf4duaPa9QWTfREEUBZQoLhFRccOZxAQTR2KS8ZuJMxMmGWd0MpNJvvmcOE72RTNkZaIGdVxAE42CgrvYIjuyCUILQoNssjRLn++Pcy9V3fTedeveqjq/56nnvXXrVtXp27fued+ziqriOI7jOACt4hbAcRzHSQ6uFBzHcZwTuFJwHMdxTuBKwXEcxzmBKwXHcRznBMVxC9ASevbsqYMGDYpbDMdxnJzi7bff3qmqpbW9ltNKYdCgQZSVlcUthuM4Tk4hIu/X9ZqbjxzHcZwTuFJwHMdxTuBKwXEcxzmBKwXHcRznBK4UHMdxnBNEqhRE5O9FZKWIrBCR34tIWxHpLiLPi8i6YOyWdvxdIrJeRNaIyJVRyuY4juOcTGRKQUT6An8HjFPVM4EiYBpwJzBfVYcD84PniMjI4PVRwFXAfSJSFJV8juM4zslEbT4qBtqJSDHQHtgKTAVmBa/PAm4ItqcCs1W1UlU3AuuB8yKWz3EcJ14OHoSbb4Y//CFuSYAIlYKqfgB8F9gMbAP2qupzQG9V3RYcsw3oFbylL7Al7SPKg33VEJHbRKRMRMoqKiqiEt9xHCc73HcfPPggXHstHD8etzSRmo+6YbP/wcCpQAcRubm+t9Sy76QOQKo6U1XHqeq40tJas7Qdx3Fyh8OHU9vz58cnR0CU5qPLgY2qWqGqR4HHgQuA7SLSByAYdwTHlwP9097fDzM3OY7j5C/vvpva/u1vYxMjJEqlsBmYICLtRUSAScBqYC4wPThmOjAn2J4LTBOREhEZDAwHFkUon5PvqMKBA3FL4Tj1k64UnngC9uyJTxai9Sm8CfwvsBhYHnzXTOAeYLKIrAMmB89R1ZXAI8Aq4FngdlWN38Dm5C5f+hJ07w4rV8YtiePUTlVVSimMGGGmpIcfjlUkUT3JbJ8zjBs3Tr1KqlMrVVVQFEQ0X3stPPVUvPKEHD0KrVvHLYWTFDZvhoEDbfIyYwZ885swYQK8/nqkXysib6vquNpe84xmJz9ZujS1/cYbdjOOm02boE8fW8E4DqRWCYMGwWWXQYcOdr2uXh2bSK4UnPzk+edT2zt3wnPPxSdLyA9/CLt2wa9/Ddu2xS2NkwTCm/+gQdC2LUyebM9nzarzLVHjSsHJT0IlMHy4jQ88EJ8sYPHnjz+eeh6z3dhJCOFKYfBgG6+91sbf/S62nAVXCk7+cegQvPIKiJiNFuDJJ2HfvvhkmjcPtqTlZj70UHyyOMkhfaUAcPbZMGAAbN0a2+rWlYKTf7z8MlRWWjTHGWfAuedaVMcTT8Qn069+ZeOtt0L79vDWW7B+fXzyOMmg5kpBJLVaiClnwZWCk3+EM6wJE2ycMsXGuExIO3faSqVVK/j0p+HSS23/738fjzxOMti9G7Zvh3btoFev1P6rrzbl8OSTdkyWcaXg5B+hk/n8822cNMnCQOfPt2V5tnngAYt+mjABeveGq66y/Q8+aAl2TmESmo4GDrQJQ8gpp9i1e+RILBMHVwpOfvHhh7BsGZSUmH0WoHNnmDjRbsDZ/pGpwi9/adtTp9p43nnQtSusWQNLlmRXHic51DQdpROjCcmVgpNfzJtn49ix0KZNan9cJqRFiyyjuls3uPhi21dcnAo9dIdz4ZK+UqjJpZdCx47me8pyRr4rBSe/CE1H59VoxXHhhdCpk83Ms/kjCx3M11xTPZP5yqCx4OzZln3tFB71rRTatoUrrrDtLK8WXCk4+YNqSimETuaQkhK4/HLbfvDB7Mhz4IDd9CFlOgo56yzLbi4vt/BZp/CoGY5ak9CE9NBDWZ04uFJw8oeVKy1TuEcPGDr05NdDE9KDD2bnR/boo7B/vymAmrPBVq1SqwU3IRUehw/Dxo1Wn2vAgNqPGT3aAhO2bjUzZJZwpeDkD2Eo6vnnW0hfTcaMsciOzZuzMzsPTUc1VwkhYRTSo49apIlTOKxbZxOTvn3rLpAoAp/8pG1nMcfGlYKTP9QMRa1Jq1bZczi/+64pnvbtU07lmgwbZiuajz6qXqvJyX8aMh2FhErh8cezFr7sSsHJDyorYeFC265LKUBKKTzySPU2iJnm17+2cfJkUwx14SakwqQ+J3M6Y8ZY+PL69bBiRfRy4UrByRdefdVqHg0bBj171n3ckCFW/mLvXnjmmWhkOXo0VeXyhhvqPzZUCk8+6V3iConGrhSKiuCSS2w7SyakyJSCiIwQkSVpj30iMkNEuovI8yKyLhi7pb3nLhFZLyJrROTKqGRz8pC6oo5qIzTnPPlkNLK8/DLs2GE/+DPPrP/Yvn3NEX3wIMydG408TvIIlUJDKwWobkLKAlG241yjqmNUdQwwFjgIPAHcCcxX1eHA/OA5IjISmAaMAq4C7hORoqjkc/KMdCdzQ4S1h55+Go4dy7wsixfbOH587Q7vmrgJqbCoqrJsdmh4pQCWc9OhgzWOeu+9SEWD7JmPJgEbVPV9YCoQdpCYBYTr66nAbFWtVNWNwHrgvJM+yXFqUlEB77xjURznnNPw8YMGWRjgRx+Z2SnTLF9u47BhjTv+8stNeTz3nIWwOvnN+++bP6tnT8tabog2bSz5ErJiQsqWUpgGhEVneqvqNoBgDMsD9gXSCs5THuyrhojcJiJlIlJWUVERochOzjB/vkVmnHOOZYI2htBOO2dO5uVpqlLo0cNi0o8c8SikQqCxTuZ0LrvMxiyYkCJXCiLSBrgeeLShQ2vZd1IMlqrOVNVxqjqutLQ0EyI6uU5dpS3qI1QKc+dmNtTv2DFYtcq2a0ugq4uwLpL7FfKfxjqZ07ngAlsxvPZa5K1cs7FSmAIsVtXtwfPtItIHIBh3BPvLgf5p7+sHxFDn2Mk5QhNQU5TC6NFWpG7DhtRNPBOsW2fhsX36NM40EBIqhT/8IbY2jE6WCFcKTVEK7dun/GVRrG7TyIZSuImU6QhgLjA92J4OzEnbP01ESkRkMDAcyF5ut5ObHDgAa9da6F5jzTVgx0+caNuZ/JE11XQUMniwRSLt3Alvvpk5eZzk0ZyVAmTNhBSpUhCR9sBkIP2vuAeYLCLrgtfuAVDVlcAjwCrgWeB2VfUpk1M/K1ea+Wfw4OqlshtDFH6F5ioFETchFQpNCUdN56KLbDLz4ouRdmSLVCmo6kFV7aGqe9P27VLVSao6PBg/SnvtblUdqqojVDWizCInr1i61Mbhw5v+3vPPt+qpixZlriPbsmU2NlUpQEopPPVUZmRxksfOnbBrl4WYNtUn2rWr9Rs/dszCqSPCM5qd3KYlSqFdu5QfIlM/suauFMCipzp2NB/Hhg2ZkcdJFumNdRqTw1KTLCSyuVJwcptQKZx2WvPen0kT0v79Vg65devau2k1RHGxRZmArxbyleY4mdMJEy+ffTaysiiuFJzcRTVlrmnOSgHMTitiuQ4ff9wyecKCZYMH2w2+ObgJKb9prj8hpFcvK51y+DD86U+ZkysNVwpO7vL++7BvH3TvbglgzSFMHKusbPmPLDQdNSU/oSYXXGDOxJdegj17WiaPkzxaqhQgchOSKwUnd2mJPyGdcHbeUhNSqBRaIk/nzlYu+dgxMxE4+UVLzUeQUgpPPx1JcyZXCk7u0lJ/Qkhop/3DH1pWIK8lTuZ0LrrIRg9NzS8OHrTVbVER9OvX/M8ZMABuvhnuvz9zsqXhSsHJXVrqTwjJRIG8dP9GS5VCuHJ55hnrzeDkB2vX2nXSv3/zfU4hd9wBN93U9NycRuBKwcldMmU+gpZHIW3daglFnTs3Pf68JgMGmKLasyc7vaSd7BCWU2mJPyELuFJwcpOPP7ZY/uLiltlnQ9KVQnMK5KWbjpoTf14Tj0LKP955x8ZMTGIixJWCk5ssX2437yFDLC+gpYQF8t57r3kF8jJlOgpJL3mRpYbtTsSESuH00+OVowFcKTi5SaZvwukF8pozO8+Ukzlk9Gjo0sVWQ2HEipO7qKY68o0YEa8sDeBKwclNMhV5lE7Y3ao5+QqZCEdNp6VKykkW779vPqdu3SwBLcG4UnByk0w6mUPGj4dWrSwCqSnZzUePppKShgzJnDwempo/hKuE00/PjM8pQlwpOLlHVVXKfJTJlUKXLjBypN3kFy5s/PvWrrUkor59rfplpvjEJ8yR/vrrkZZKdrJAjvgTwJWCk4ts2mQz+R49bDmeSSZMsPG55xr/nkyUt6iNDh3grLNMCb7wQmY/28kuOeJPgOib7HQVkf8VkXdFZLWIfEJEuovI8yKyLhi7pR1/l4isF5E1InJllLI5OUwU/oSQliiFKEINw9LeYR9qJzdJNx8lnKhXCj8CnlXV04GzgdXAncB8VR0OzA+eIyIjgWnAKOAq4D4RKYpYPicXicKfEHLmmTZDf/dd2LKlce/JdCRUOqGScqWQu2zbBh9+aL0y+vaNW5oGiUwpiEhn4GLgVwCqekRV9wBTgVnBYbOAG4LtqcBsVa1U1Y3AeqAJndidgiHKlUJxMYwda9uNvRFnOhw1nTPOgE6dLH/ivfcy//lO9KSbjhLuZIZoVwpDgArgNyLyjoj8UkQ6AL1VdRtAMIbxWX2B9KlZebDPcaoT5cwcmmZC2rfPwg3btLGaNpmmqAjGjbPtefMy//lO9IRO5hzwJ0C0SqEYOBe4X1XPAQ4QmIrqoDYVelIqp4jcJiJlIlJWUVGRGUmd3GHfPpsxt26dmfIWtZFusjl+vP5jM9FYpyHOPz8lj5N75JA/AaJVCuVAuaq+GTz/X0xJbBeRPgDBuCPt+PSpVj/gpG7qqjpTVcep6rjSlhYec3KP0FQzZEh0N+H+/eHUU61qajjLq4uoVy2QUlLz5zespJzk4UrBUNUPgS0iEq6ZJgGrgLnA9GDfdCAsSzkXmCYiJSIyGBgOLIpKPidHidLJHCKSmp03ZEKK0p8Q0q+fOSh3707dYJzcYNcuMy+WlDSvb3cMRB199LfAgyKyDBgD/AdwDzBZRNYBk4PnqOpK4BFMcTwL3K6qPi1yqpOpHgoN0Vi/QpThqOl4aGpusmSJjaedZv6hHCBSpaCqSwJTz1mqeoOq7lbVXao6SVWHB+NHacffrapDVXWEqj4TpWxOjhJl5FE6YcmL116D/ftrPyaTjXUawv0KuUmOmY7AM5qdXKKqKnsz886dYdSo+ktelJfD3r1WHqNHj2jlGT/ezFqvvgoHDkT7XU7myKFM5hBXCk7usGGD3RBLS6Fr1+i/ryETUrqCijr+vEsXy1k4ehReeina73Iyh68UHCdCsuVPCGnI2fzWWzZGbcqqKY+bkHKD/fth3TqLkst0XawIcaXg5A7Z8ieEhCUv1qyBzZtPfv2NN2wcPTo78rhSyC2WLjW/09ChmekOmCVcKTi5Q6gUonbqhhQXp7KJa96Iq6rgzSAFJ1tK4ayzoG1bS5jbti073+k0nxw0HYErBSeXSA/vyxZ1+RXWrrW8gdJS6N07O7K0aQPnnmvbXvIi+bhScJwI2brVTDgdOmQ3CShUCvPmVc8mDk1HZ56Z3SJnYb6CK4Xkk2M1j0JcKTi5wWuv2XjmmdlNAgqziT/6qHo2cagUzjore7JA9bpMelJpMCcpHD4MK1darku2AiMyhCsFJzcIlcLZZ2f3e+sqefH66zZmy58QMnSo5URs2warVmX3u53Gs3y5rSwHDYJ27eKWpkm4UnByg1ApZHtmDimTzYsv2rh/vzl7i4qyby8W8ZIXuUAOJq2FuFJwks+hQ/YjEzHzUbYJnbuvvQZHjlh+QlWV/eDbts2+PB6amnxcKThOhJSVWSbvsGHW0jDbdO9upboPHTKFkO5kjoNQKSxcaErKSR6hkznHIo/AlYKTC8TlT0gnbNG5YEF8TuaQ0lJTUgcOpLKqneRw9Ggq+95XCo4TAa++amNcN2GorhRCJ3NcKwWAc86xsa5ifU58rF4NlZUWtdapU9zSNBlXCk6yUY3XyRwS+hVeeQV27oRu3exHH7c8rhSSR44mrYW4UnCSzbp11r2qR494b8KhX+HwYXs+enR2k9ZqEq5cXn3VzBVOcggnMaNGxStHM4lUKYjIJhFZLiJLRKQs2NddRJ4XkXXB2C3t+LtEZL2IrBGRK6OUzckR0lcJcd6EITU7h+znJ9SkZ08YMMD8Ct6iM1mEpc3Tr5ccIhsrhU+q6hhVDSqLcScwX1WHA/OD54jISGAaMAq4CrhPRHKjf50THaE/IU4nc0g4O4f4lQKk5HETUnLYvt2q6rZt6+ajJjAVmBVszwJuSNs/W1UrVXUjsB44Lwb5nCSRBH9CSLo5IAmlC9yvkDxeecXGs86yKrs5SNRKQYHnRORtEbkt2NdbVbcBBGOvYH9fYEvae8uDfdUQkdtEpExEyioqKiIU3Ymd3butlEObNsmYdW3fntretCk2MU6Q7vw+dixeWRwjx01H0AilICKXiUj7Zn7+hap6LjAFuF1ELq7vq2rZd1LFL1WdqarjVHVcaWlpM8VycoIwH+CMM0wxxE3YfhOSYcfv3duc7/v2pcqKO/ESKoUwZDgHacxK4QvAEhF5XUTuFZHr0p3D9aGqW4NxB/AEZg7aLiJ9AIJxR3B4OdA/7e39gK2N+iuc/CQJ+QnppCuFt9+OT4503ISUHPbssUZQxcU5G3kEjVAKqnqLqp4GfAq7cf8MaNBuIyIdRKRTuA1cAawA5gLTg8OmA3OC7bnANBEpEZHBwHBgUdP+HCevSEImc4hqdaWwZEkyTDbubE4Or75q18moUfHUxMoQDXpCRORm4CJgNLAT+CnwciM+uzfwhFgYYTHwkKo+KyJvAY+IyJeAzcCNAKq6UkQeAVYBx4DbVfV47R/t5D3HjqXaXSZhpbB9uyWtdegAnTunSlfHLVu4Unj5ZSvVnM1eE0518sCfAI1QCsAPgQ3Az4EXVXVTYz5YVd8DTpriqeouYFId77kbuLsxn+/kOUuXwsGD0L+/JY7FTVjLZuhQyxHYts38CnErhVNPhVNOgQ8/tJXMmDHxylPI5IE/ARpnPuoJfBFoC9wtIotE5HeRS+YUNkkKRYWU6WjYsFQklPsVnJADB6yab6tWyblmm0ljoo86AwOAgcAgoAtQFa1YTsGTNKWwYoWNw4ZZNBQkx6/gSiF+3njDroURI+Ip755BGhN99ApwHbAM+KyqjlDV6Q28x3FaRpKczEeOwLvvWpmNoUOha1fo08f6K6xeHbd0KWfzSy9Z8x8n++SJ6QgaZz46S1W/AjwF7IleJKfgKS+HzZvNqTtkSNzSWNmCo0fNft8+SNlJkgmpXz/rsbBrl/dtjos8cTJD48xHZ4rIO1g46aogOznGQvJO3pNuOmqVgEK+S5faOGxYal9oQkpCEpuIh6bGSWVlKtEyDxz9jfnFzQS+pqoDVXUA8PVgn+NEQ5JMR5AKjQ0VAaRWCu5XcMrKrKT6kCFmWsxxGqMUOqjqi+ETVV0AdIhMIsdJkpO5sjK1GkjvtNatm4WCHjxo/oa4SVcKelJ1GCdK8sh0BI1TCu+JyL+KyKDg8S/AxqgFcwqUffus6XlRUTJKBSxZYoph4EDo0qX6a+Fqoaws+3LVZOBAa0S0Y0cylFQhkUdOZmicUvgiUAo8jtUvKgVujVIop4CZN8/MMaNHm6M5bkJbcW39mENz0jvvZE+euhBxE1IcHD+eqtFVKEpBVXer6t+p6rmqeo6qflVVd2dDOKcAeeYZGy+4IF45QkJ/Qm1NdU47zcZly5IRCupKIfssXQr791sEWK9eDR+fA9RZ5kJEnqKW0tUhqnp9JBI5hYtqspTCzp2wdq2V7a6tqU7Pnmay2bULNm60HIY4qelXiLt9aSGQZ6YjqL/20XezJoXjAKxcCR98YDfacBYeJ+Eq4fTT6+7nMHy4KYUlS+JXCkOGmAN82zbYsKF6CK0TDXnmZIb6zUffVNWFwNWqurDmI1sCOgVEuEr4xCeSkZ8Q+hPq68ccKq8wlyFORFJhvKGd24kO1bxcKdT3y+sjIpcA14vIOSJybvojWwI6BUSSTEdVVbAoaOeRK0oBXClkk9WrbZXYq5d1wMsT6jMffRO4E+uA9j2qt8tU4LII5XIKjf37rddwq1Zw/vlxSwPr19sPvls3K29RF/37W0OVDz6AigorNxEnrhSyR+jQP+ecvPLf1LlSUNX/VdUpwL2qepmqfjLt4QrBySwvvGD1hc488+R8gDh4/XUbR4+u/wffqlXKCZ2E1ULo/1i1Cj76KG5p8ptnn7UxLDGSJzQmJPXfW/IFIlIkIu+IyNPB8+4i8ryIrAvGbmnH3iUi60VkjYhc2ZLvdXKMJJmOoP5Q1JokyYTUpg2MHGnboWJzMs+hQ/D887Z94YXxypJhsuHN+yqQXl/4TmC+qg4H5gfPEZGRwDRgFHAVcJ+IeG/BQiBpoaiHD1tCmkjjsqrDlcKSJdHK1VjchBQ9L7xgiuH006F377ilySiRKgUR6QdcA/wybfdUYFawPQu4IW3/bFWtVNWNwHrgvCjlcxLC6tVWKrtbt1TpiDhZvNhMWYMGQadODR8/dKiZkdautVpIceNKIXqeesrGiy6KV44IqFcpiEgrEVnRgs//IfCPVO/U1ltVtwEEY5gG2BfYknZcebCvpky3iUiZiJRVVFS0QDQnMYS22QkTcicUNZ22ba320PHjqQ5tcRIWEly0yBoEOZlFFZ5+2rYvvjheWSKg3l+gqlYBS0VkQFM/WESuBXaoamO7kNTmzTspo1pVZ6rqOFUdVxp3pIeTGULTUVJss/XVO6qLJPkVuna1VU5oBnMyyzvvWLRZaWkyVrYZpjHTsj7AShGZLyJzw0cj3nchluOwCZgNXCYiDwDbRaQPQDDuCI4vB/qnvb8fsLWRf4eTq3z8sSUAidhKIW62b4f33rPZf22lLeoiVAruV8h/QtPRxIl5FYoa0hil8G3gWuD/YvkK4aNeVPUuVe2nqoMwB/ILqnozMBcIezxPB+YE23OBaSJSIiKDgeHAoib8LU4u8uKLZuIYOTIZDUrSG+oU15fGU4NQKSxfnoymO64UoiNUCnloOoL6k9cAiKCkxT3AIyLyJWAzcGPwPStF5BFgFXAMuF1Vj2f4u52kEfoTkhB1BE33J4R07WqZrTt2WOJb3GaFdKXgxfEyx9at1pe7pATGj49bmkhoTI/mCSLyloh8LCJHROS4iOxrypeo6gJVvTbY3qWqk1R1eDB+lHbc3ao6VFVHqOozTf9znJwiPRQ1Cf6EqqrUSqEp/oSQJPkVBgywaK7QHOZkhtDBfN55ZmLMQxpjPvopcBOwDmgHfDnY5zgtY+1aKzndpUv1/sdx8e67sHevlcQ+5ZSmvz9J+QoiqSgkNyFljtB0dMkl8coRIY2K/1PV9UCRqh5X1d8Al0YqlVMYhKuECROs/WbchL2hGyptURcjRti4dGky+iS7XyGzHDxonQHBnMx5SmM8aQdFpA2wRETuBbYBCeiT6OQ8SfMnzJ9v45gxzXt/nz7WQnTHDvjwQ3seJ64UMsu8eRbmO3KkrSbzlMasFP4iOO5vgANY2OinohTKKQA+/hgWLEhOKOrGjbBuHbRv33Qnc0h6cbwkmJDOOMNqIa1cCbu9g26LyfOoo5DGFMR7H0ss66Oq31bVrwXmJMdpPnPmQGWl3YB79IhbGnjuORvHjYPWrZv/OUlyNntxvMxRVZVyMudhaYt0GhN9dB2wBHg2eD6mkclrjlM3Dz5o41VXxSsHmP0/rHjZ0lWLJ7HlJ2+/bSbB3r2T0So2QhpjPvoWVphuD4CqLgEGRSeSk/fs2GEz86IimDw5bmnMbLRpkxW/C2fWzWXwYEt627DBGgfFTagUXnklXjlynfQCeHme89EYpXBMVfdGLolTODzyiBWPmzDBYunjJlwljB/f8iioNm1MMajCsmUtl62leHG8zJDHVVFr0hilsEJEPgcUichwEfkJ8FrEcjn5TGg6mjIlXjnAbt6hPyFTDu8kdWLz4ngtZ8sWMwe2a2c+pzynMUrhb7HGN5XA74F9wIwohXLymA0brJREu3bJSABatcoqXnbtmsozaCnp+QpJwP0KLSN0ME+YYOUt8pzGRB8dVNVvqOr4oGT1N1T1cDaEc/KQhx6y8dJLTTHETbhKOO+8zPVyGDrUxpUrvThePvDwwzbmeShqSIPJayJyGvAPmHP5xPGqell0Yjl5iWqyoo6qqlIZqpnMlejSJVUcb8OGzK1AmosXx2s+GzfCwoW2QvjkJ+OWJis0JqP5UeDnWEtNr1rqNJ/Fi2HNGnMun39+3NKYI3j7dsuTGDYss589bJgpheXL41cKNYvjhSsZp2H+539svOwy6NgxXlmyRGOjj+5X1UWq+nb4iFwyJ/8IVwmTJzetV0FUhKaj88/P/Ow5VDJJiEBKL47nSWyNp6oKZgXt5K+9Nl5ZskidSkFEuotId+ApEfmKiPQJ9wX7HafxHD8Os2fbdhKijo4fT9U6iqLMRqgUktCzGVKlO8J+EU7DvPyymY969y6IqKOQ+qZrb2M9ksMp1B1prykwJCqhnDzkxRdh2zbo1695vQoyzeLFsGuX/eAHDcr85/fvbzkLmzfDnj3xd5ULz7mvFBrPb39r4zXXJKOKb5aoc6WgqoNVdUgw1nw0qBBEpK2ILBKRpSKyUkS+HezvLiLPi8i6YOyW9p67RGS9iKwRkSsz8yc6iSCMOrrqqmQ4OqM0HYGZxwYPtu0krBZGjrToqqVLrQS0Uz8ffwyPPmrbBWQ6gsbVPrpRRDoF2/8iIo+LyDmN+OxK4DJVPRsYA1wlIhOAO4H5qjocmB88R0RGYr2cRwFXAfeJSOGo53zm8GF47DHbTkLU0bFj8MILth1lhdYk+RXatzd5jh+3Oj5O/Tz2GBw4YJFbAwbELU1WaYyj+V9Vdb+ITASuBGZh0Uj1osbHwdPWwUOBqcFnEIw3BNtTgdmqWqmqG4H1WM0lJ9d5+mnYt4D1kLkAACAASURBVM9KOUdhqmkqb75pHdb69jUzT1SESmH58ui+oym4X6HxhKaj666LVYw4aIxSCMNQrwHuV9U5QJvGfLiIFInIEmAH8Lyqvgn0VtVtAMHYKzi8L7Al7e3lwb6an3mbiJSJSFlFRUVjxHDiJkm5CQB//KONUfdxCJXCypU2Q4+bUCm4X6F+Nm60Xh8lJXD55XFLk3UaoxQ+EJH/Bj4D/FFEShr5PoL2nWOAfsB5IlKfh7E2w+5JPQ1VdWaQWT2utLS0MWI4cbJrl92EW7WCKxPgJtq506KORODCC6P9rq5drUPXwYOWHxA36UohCe1Ck0oB5iak05ib+2eAPwFXqeoeoDvVI5EaJHjfAsxXsF1E+gAE447gsHKsq1tIP2BrU77HSSAzZ1p1zgkTktHC8IknzKdw7rmQjUlFkkxIAwZA587WF2DLloaPL0QKNDchncbWPnpcVdcFz7ep6nMNvU9ESkWka7DdDrgceBeYC0wPDpsOzAm25wLTRKRERAYDw4FFTf2DnARx5Aj85Ce2/bnPxSsLwNGjKYd3tvo4JEkpiKRCU92vUDsFmpuQToYqgNVKH+BFEVkGvIX5FJ4G7gEmi8g6YHLwHFVdCTwCrMK6vN2uqgkwxDrN5uGHLTdhyJBklLV44QUzH/Xt2/JmOo0lLKOdhAgkcL9CQxRobkI6kdUaUNVlwEmhq6q6C5hUx3vuBu6OSiYni6jC979v25//fDJyE8Jql5MnZ0+eAQOs5/P771vEU5cu2fneuvAIpLop4NyEdKJcKTiFzIIF1pike/dkRB2tXm2z9fbto3cwp5O0JLYzzzSFuHgxVFbGLU2yePzxgs1NSMeVghMN4SrhxhuT0ZgkXCVccgm0bZvd7w6rkiZBKXTsaErqyBFT2o6hCvffb9sFmJuQjisFJ/OsWWMJa23awKc/Hbc0sHu3lbUQiSfuPGl+Ba+DdDKvvGImtS5d4Ior4pYmVlwpOJnnhz+08ZprrI5/3DzxhM2Mzz7bmt9km/SKqVVV2f/+moRltN2vkOKee2z8zGfMxFjAuFJwMsvOnak475tuilcWsJyEMAw1rhlgt27WyOfAAQt3jBsPS63OsmWWYFlSAp/9bNzSxI4rBSez/Pd/w6FDcMEFFooaNwsWWMexPn1g1Kj45EhSvsLgwdChg0VEbdsWtzTxc++9Nt5wQ/wlzhOAKwUnc1RWwk9/atuf/3y8soQ88oiNkydbqY24CJ3NSVAKRUUpBVnoq4VNm6z5U1ER3Hxz3NIkAlcKTuaYPdtKKAwbBucloMDt2rUWetm2LUycGK8sobM5CUoBPF8h5Hvfs2KFV1xhq0nHlYKTIZKYrBY29rn4YmjXLl5ZBg60nIX33oP9++OVBVwpAFRUwK9+ZdvTp9d/bAHhSsHJDE8/bQ67Hj2SUQ110yZ45hkzGSUhxLB161QviZUrYxUFSDmb33rLakIVIj/5ifm/Jk5M+XwcVwpOBjh6FP7xH237llssPyFufv5zMwtccokVN0sCSerE1rWrNRg6dCg5Jq1s8vHHKf/XF74QqyhJw5WC03J+8Qt4913o18/ivONm1SqYN89m5zfc0PDx2SI9XyEJFLIJ6Re/sKTGs86CMWPiliZRuFJwWsbevfBv/2bbf/d3diOOm3AGeMUVVnspKaQrhSQ0uSlUpXDkSMr/5auEk3Cl4LSM//gPS1g75xz45Cfjlsb6Ly9aZFmpSat02b27lVHYtw82b45bmsIto/3QQ1Bebnk0cUelJRBXCk7z2bgxVdJixoz4I45U4Wc/s+1rrkleK0WRVL5CEpzNw4ZZFu/69abYC4HKSvj3f7ftW26JN3cloUR2RkSkv4i8KCKrRWSliHw12N9dRJ4XkXXB2C3tPXeJyHoRWSMiCQhhcerlrrtsKT5lSrzZwiEvvGD+hCQXNUtSxdTi4sJLYvvRjywsePDgZJR0TyBRqsljwNdV9QxgAnC7iIwE7gTmq+pwYH7wnOC1acAorJfzfSJSmK2PcoE33rBy1CUlcPvtcUtjNY7uu8+2b7gh++WxG0uSlAKkQlMXFUDn2w8/TK0SvvY1U4rOSUSmFIJezouD7f3AaqAvMBUIKqYxCwjDQ6YCs1W1UlU3AuuBBKTFOiehaj8qsN7Lp5wSrzxgeRLvv29VUC+9NG5p6mbIEDMjrV2bjCY34UrhzTfjlSMb3HWXhaJedBF84hNxS5NYsmJQE5FBWGvON4HeqroNTHEAYS3jvsCWtLeVB/tqftZtIlImImUVFRVRiu3UxaOPmnOye/dkRG8cPmwhhmD9G5I8A2zXDk491VY2a9fGLU31lUISIqKiYtEi67/cunVqQuPUSuRKQUQ6Ao8BM1R1X32H1rLvpKtUVWeq6jhVHVdaWpopMZ3GUlkJd95p2//n/1i1zbh59FGrhDpgAJx/ftzSNEySTEi9ekHPnrBnD6xbF7c00VBVZeHSYCvb/v3jlSfhRKoURKQ1phAeVNXHg93bRaRP8HofYEewvxxI/2/1A7ZGKZ/TDP71Xy3qaNgwmDo1bmms9PPMmbb92c/mRjRJkiKQRFKrhXw1IT34oP1tPXrAF78YtzSJJ8roIwF+BaxW1e+nvTQXCKtPTQfmpO2fJiIlIjIYGA4UgPcrh1iwAL77Xbvx3nVX/GYaVXMcHjoE48en4u6TTpJWCpDyK+Sjs3n/fvinf7Ltv/3bZKxsE06Uv+oLgb8AlotI2CH8n4F7gEdE5EvAZuBGAFVdKSKPAKuwyKXbVfV4hPI5TWH3bovrVoUvfclaW8bNk0/ajaxjR6tyGXeeRGPp18/qQ5WXm9km7sYu+bxS+M53bDU5ahRcfXXc0uQEkSkFVX2F2v0EAJPqeM/dwN1RyeQ0E1X467+GLVvsBvLlL8ctkYUXholzt9xiuQm5QlGRVUxdu9ZWC3Fn1Z5xhinUJUvMaZ/UcN6msmGD9UsAuOOO3DAtJgA/S07DPPCA5SS0a2fmmiSYjf7f/7Oex+PGwYQJ8crTHJLkV+jY0ZK5jh6FpUvjliYzqJpz+cgRK3cSroacBnGl4NTPxo2p5LQ77khG5MacOZY817GjhcTmitkonaT6FfLFhDRzJvzxj3aN/M3fxC1NTuFKwambY8esb+3+/XDZZXDddXFLZGajH/zAtnPNbJRO+kohCfkB+aQUVq60Wlxg4dM9e8YrT47hSsGpm+98B157DUpL4Z//Of4ZuapVZT1wAMaOzU2zUUiPHqmKqVu2NHx81ORLuYvDh+Gmm2y87jqvb9QMXCk4tfPii/Dtb9v2t78df4QMwNy5pqQ6dMhds1FIesXUJJiQ0ium7toVtzTN5447rJPcgAG27TQZVwrOySxfDn/2Z9bO8gtfgPMSUIJq7Vq4917bvuWWZCiplpIkpVBcDKefbtu5ulp46ilrsFRcDHffbT01nCbjSsGpzvvv25J7715rmvPXfx23RDZz/fu/txIbEyfmTzGzJCkFyG0T0tatcOuttn377RZm6zQLVwpOip074cor7Qd27rkW9lkUc/XyykozA2zfbiaOW2/NbbNROoMHe8XUTHD8OPzFX9jkYcIE+Pzn45Yop3Gl4BgHDlg895o1dvP93vfMxhwnqmYGWLbMHLMzZlgmcL7Qvj306WNRXkkoRperFVPvvdcaLHXvDt/6lieptRA/e44lLd14o80Q+/SBn/wEOnWKWyqYNctizUtKzHyUq+Gn9ZEkE1KfPnZj3bXLupPlAk8+mYqM+7d/8/DTDOBKodCpqrJaRs88Yzfdn/zEQlDjZsGCVL/lv/orGDgwVnEiI0lKQSS3TEivvGLhpwC33QYXXhivPHlCYSqFqiqYPdvGQubIEYvk+d3vrITFj35kNXniZu1aK9GtaiuYcePilig6kqQUIHcqpq5caXkIhw9bpFwS6nHlCYWpFO6+22YYf/7nlq1biHz0kTW3f/BBK4D2/e8noz7M5s1W4vjQIbjggmRkUUdJzYqpcZMLFVO3bLEIuT174JJLrDR2vgQfJIDCVArnn2+mkjlzLFph/fq4Jcou69bZ371wodlgZ860fgRxs349/OVfmk37jDPMrJXvP/bi4tTqLAnF8cKVwjvv2EoyaXz0kSmE8nIr33733fEXaMwzClMpXHEFPPushQSuWmU3xOeei1uq7LBwoSmEdevgtNPMmTtyZNxSwerV1t5z1y67MX3ta/kVaVQfSTIhdepk/pvKSov6ShKHDsH119tvdsgQW93mS5nvBFGYSuHQIbOj//SncPHFtgydMsUuslwKxWsqs2bB5Mk227roIvjlL6F377ilsnLNf/VXljA3ZowphEL6sSepjDYk09lcWWn+pVdftWv2xz/Oz2i0BBBlO85fi8gOEVmRtq+7iDwvIuuCsVvaa3eJyHoRWSMiV0YlF2DhjffdZ7brGTPMSVVVBV//ujleDx6M9Ouzzr59Zor5whcs/PSmm6ytZhLKALz1lpU2PnDAyml89auFs0IISVrF1KT5FfbuNZPRH/5g5U1+/GM45ZS4pcpbolwp/BaoWaLwTmC+qg4H5gfPEZGRwDRgVPCe+0QkulTaO+6w5ed771mG7PjxcM89Njt94AGzZ//pT5F9fVaZM8fMQ7/+tdleZ8ww5Rd3pjJYSOFXv2ort4kT4StfKUz7cFgxde9eKzMSN0mKQPrgA1vVLlhg5+lnP0spUScSIlMKqvoS8FGN3VOBWcH2LOCGtP2zVbVSVTcC64HoqrANHWo3/7PPth/iV75is+mf/9yUxebNNjP59KeTUda4OWzbZvLfcIP9sM480/7mm2+OWzJblf3mN6agjhyBSZPMwZwERRUHIjB8uG0nwa9w2mm2Wluzxnpzx8WqVVbnavly83P85jcwYkR88hQI2fYp9FbVbQDB2CvY3xdIv/uWB/tOQkRuE5EyESmrqKhoviSdOpntesoUq53yH/9hCVyzZlkbv3bt4LHHbNVw773JjMSojaoq+MUvTO7HHjMT0T/8A/zqV1a+Im727DHzXZiY9md/BtOne2mC8H+TBOdu69apm+9bb8UjwyuvWDLali1w1ll2/Z56ajyyFBhJ+SXWFndYq3FVVWeq6jhVHVfa0szbVq3gc59LzVIffthuoNdfD48+ajPYAwcsDnrMGPjtb02BJJGjR815fsoplt25d6+ZZB55BKZNS8YsfPlyK1b26qvWJvHrX7dckXwPO20MoVJYvjxeOUJCv8Krr2b/ux97DC6/PJWHcN99+VEqPUfItlLYLiJ9AIJxR7C/HEhv/tsP2Jo1qS6+2OqndOxozrUbb7Sl83/+p5V96NXLQiZvvdV+vN/9brzL6nT27TN5hgwxJ3lFheUe/Mu/WNvKJDjkVC1J7stfTlU7/fd/N0XrGIMHm+LesMEmInEzdqyNL76Yve88csQmZZ/+tEUbfepTtkovpEi0BJBtpTAXmB5sTwfmpO2fJiIlIjIYGA5k18t12mlWUOu00+yG//Wvw113WeORxx83+3ffvrBpkzmq+/a1uPq4bMBLl8I//iP072/ylJebYvjmN61D2Q03JGMGvn27OZN/8ANbZU2ZAt/4hhcuq0mbNtYtrKoqGaGpY8faSvqNN7KjpN591/Jnvvc9U44zZlh/5SSscAuMKENSfw+8DowQkXIR+RJwDzBZRNYBk4PnqOpK4BFgFfAscLuqZt9Oc8opdsO6+WarzPn88zZrWbDAzB6PP243t/PPt4iZmTNh9GiLHLnzTivfG1Vd/CNH7PO/9jVTXGPGwH/9l60Uxo6FH/7Q6jldf30yQjqPHDFz26c+ZS00i4pMOXzuc4UZYdQYkmRC6tTJJkRHj0ZrQlI1H9i551oWdd++lj9z883JmNQUIKJJiItuJuPGjdOysrKmv/HgQVsVnHFG3TfQHTssjDOctV10kd2Q+wdWrk2bLJrnyServ69dOzNHTZ5sP6qzzjIHWVNmPMePW2jimjUwf75tP/ecKYCQzp0trn/atOSZYV5/3RTW5s32fNw4U6q+Oqif1183+/nEiabk4+bHP4b/+R/zqd1zT+Y/f9cu8+c98YQ9v/pqW/127Jj578o3Wre2e0szEZG3VbXWSpOFqRS+9S1rRt+zp92sxo6tfVaiamUhHnggtQK48UbzLfQKAqcOH4YlS8wX8eabVuGzJq1bm2lg0CB7bNtms/2qKlMAx4+bOahXL3v/hg21RzsNGWLK6aKLzBGYtBn3Bx/YSmrBAnvep491xBo9OlaxcoaKCpt4dOkC8+bFP1N+/XVL8Bw/PrM5C6q2qp0xwyZfHTrYSnvKlMx9R77jSqF2mq0UFi6EL34x1Uhk9GhbrtYV8rZjh0UjvfmmXdBt2phZZPr0k2e/u3bZD+iZZ6wC69attq+p9O5timTgQDNrTZ5sS+sksmmTmQDChL+2bc2nceWVyVNcSUbVbsJ791oETtw9JA4dgksvNbl27cpMBNDbb5sZMTRJDR9ugRJJvbaTiiuF2mm2UgAzy/zgBzYePmzmnSuusLj5du1qf095uS11w1lTSYmtHKZNqz/K5/Bh+PBDm0mvWmXva9Uq9SgqsjFsctK/fzJKUDTE0qVmXnjpJbtxiFhC4K23Wgcvp+n88Id24/zWt6w9atx8+cu2Ep4zx/xVzeXDDy3C77e/tWule3dLGr3uOncmN4cIlULhTuOKisxhfOaZphjefttm96+9ZvkJ11xzsr+hXz+byW3ebMqhrMxMSw88YPHUU6daD4Cas+O2bVOmo1zvDnXsmIUpzp5tSgHsAp040Zb/ffrEK1+uM2yYXYvLlydDKYwfb0rhhReapxT277fJ13/9F3z8sf02brrJanG57yCRFK5SCOnQwS72ceMsumjHDhvnzTPzx+WXnzxrHzDAlsDr15tyWLHCTFJhf4LrrrPP7N+/9u/MNaqqLDLkT3+yvzdcXbZvb+fniiu8YmWmCMtdJCECCex38YtfmFJoCjt2WI7Pd76TSvi8+GLzIwwYkHk5nYxRuOajBQvg5Zer71M1887LL5svAMyUNGmS1UKq68a3Z4+l5S9caMvkkB49LKT1wgstEimXSjmE8fLz5llo7o4dqddOPdUin66+um5Tm9M8jhyxjHRVW5F16BC/PJ/8pAVabN+eCrCoiw0bLNfgN78xsymYmeOWW8w/4WQG9ynUTsaVQoiqXdwvvwwbN9q+sB7M1Kk21hWttHat/ZhrxnZ3727JORdeaNFOSQvPrKqyv7mszMwXYQRRSM+eJv+ECTbTizsyJp/55jfturv//mR0xLv9dguyePhh+MxnTn79+HFLmJw1C556KtX7/KKLLBgjaSHT+YD7FLKMiNl2hw2zglzz5tmPdMUKe/TqlQoN7dGj+vtGjLDHF75gM+1ly8z2vmsX/PGP9gCLLjr9dMuVCMf0z4qSY8fMaR4qgfJyWyHt3Vv9uB49rKLsVVfZuXBFkB2GDbPrbfnyZCiF8eNNKbzwQnWlsGaNKYLf/c6uoZDrrrNQ5CFDsi+r02JcKTRE//4WTbNrl9nVlywxU8pjj5nvYdQoC2mdONESykLatrUVwdixtoL44ANTDi+9ZJ3Ptm+3x8KF1b/vjDMskqlPn9SjUydbabRvb4927U52Zqvazf7YMUvO273bZA4fq1fbcn7rVkuGO3r05L+1e3f7/vBRWuqKIA6GDTOTXZL8CmABGR98YNf9Qw9ZCYyQvn3NnHjttR5emuO4UmgsPXqYU/Wyy2yG/c47qZXDihUWjTN8uKXrn3tu9SgcEYtc6tfPopqqqsz3sHGjxfhv2mS1X8Bu3qtXNyxPSUkqoa642JRBU+jZ0368ffuaj2DYMBtdCcRPermLMNQ3LlTNF9a6tQVW9OuXei0MNLj2WjMR5ZLPzKkTVwpNpVUru/kPH24/hsWLTUls2mT+hLVrTUGccordcEMnc6dO1T/j1FPtEYaoVlWZ+WbnTnvs2mXjihX24zt82B6VlZZUlF5jKVQIRUX2OHLEnOKnnmpj+GjXzvwB/fu7gzjJlJba/2vPHjNfZjtaZ+dO8ymtXm1ZzelBBmEo9wUXmH/Nr6O8w5VCS2jf3sxGEyfaDXvDBpvxr1ljK4EPPzSnLZiCOP108zcMHXqyaaZVK+jWzR5hWGJdqJr55+hR+5EWF9vos/z8IPRphfkKUSoFVfMHvPNOyjxas9tg1662sly/3lYGd98dnTxO7LhSyBRt25p/YdQoi8bYtMmS3DZtsh/dBx/YY/58O75Tp1RCW/horA1fxBLrklAN1YmGdKVwzTWZ+czjx+2aXLMm9aitplFJiU1Mhg0zf9nw4aYovvENUxpxm7ScSHGlEAVFRbYaCBuMHztmDt5Nm+xHdeCAZXouX36yM3Hw4JRp6dRTzTfRu7fXECo0WtKe8/Bhu/m//749Nm0yc5Bq7aXdW7e2SKGxY20lO3DgyaUn+vWzicz27fGYtJys4XeabFBcbD+iAQMsq1PV/Adbt9pj2zZYt86O3bgxlRuRTpcu5qcoLbWlfGmp/Uh79zaTU9u2PnvLJ8JObOvXWzRZmFWvauUitm2zKLbw+gkfS5fadVBX/lHHjlahd+DA1Aq1W7eGr51WrSwibdEi69vsSiFvcaUQByJmp+3aFUaOTO0/cMDKJ4fO5ooKUxYipkT27rUlf22UlNiPu0sXuyGccoopj06d7NG5szkFO3e2G0xJiSuRJBDO3j/+2G7++/enHp06mbN5xgwz/YTXRUONnFQtl6Zfv+qhzWF4c3MZOdKUQlmZVQl28pLEKQURuQr4EVAE/FJVI+jukVA6dLDHoEHV9x87Zg12du+2m8SePebULipK3UAqK1PObai9r0M6RUWmHMIyCqrmDG/XzlYd4cqjVSsLx23TxhRJmza2r6TEjmndOvUoLk6N+RKeqJrqexE6948etf/JkSN2Iwc7/0eO2OPwYYvYad/eIsXCqLEDB2wV2L27bR88aI8wA7guFi+u/rxtW5tQHD5sNv+ePVOrxx497POjMDeGE5iyMpM5X/7HTjUSpRREpAj4Gdaqsxx4S0TmquqqeCWLmeJi+6Gnl6OeNCm1Hc429++3UNbwRpR+49myxRTB8eP2+rFjKYUSsn175mQWSUVFFRWZLN27p0qFh+XCy8tNCaaXEhcxeQcOtO30x+bNJ/cZKC+3WXCrVqkbbJgw2KtXan94g//gA1tVFRdXb3S0c6cptZISOz/Hj9uY6VIwNTPHW7e2G/3+/XYuOnQwhbJ/v0WznXqqZRJ37mwrwYYa2YeKKtO0b2/fv3u31frKl4KPuUhxsV2nI0Zk/KMTVftIRD4BfEtVrwye3wWgqt+p7fgW1T5y04njOLlOM+/f9dU+Str6ry+QHiRdHuw7gYjcJiJlIlJWUVGRVeEcx3HynUSZj4Dapu/VVKGqzgRmgq0Umv1NCVohOY7jJIWkrRTKgXRDZT9ga0yyOI7jFBxJUwpvAcNFZLCItAGmAXNjlslxHKdgSJT5SFWPicjfAH/CQlJ/raorYxbLcRynYEiUUgBQ1T8Cf4xbDsdxnEIkaeYjx3EcJ0ZcKTiO4zgncKXgOI7jnMCVguM4jnOCRJW5aCoiUgG834KP6AnszJA4mcTlahouV9NwuZpGPso1UFVLa3shp5VCSxGRsrrqf8SJy9U0XK6m4XI1jUKTy81HjuM4zglcKTiO4zgnKHSlMDNuAerA5WoaLlfTcLmaRkHJVdA+BcdxHKc6hb5ScBzHcdJwpeA4juOcoCCVgohcJSJrRGS9iNwZoxz9ReRFEVktIitF5KvB/m+JyAcisiR4XB2DbJtEZHnw/WXBvu4i8ryIrAvGblmWaUTaOVkiIvtEZEYc50tEfi0iO0RkRdq+Os+PiNwVXG9rROTKLMv1XyLyrogsE5EnRKRrsH+QiBxKO28/z7Jcdf7fYj5fD6fJtElElgT7s3m+6ro3RH+NqWpBPbCS3BuAIUAbYCkwMiZZ+gDnBtudgLXASOBbwD/EfJ42AT1r7LsXuDPYvhP4z5j/jx8CA+M4X8DFwLnAiobOT/A/XQqUAIOD668oi3JdARQH2/+ZJteg9ONiOF+1/t/iPl81Xv8e8M0Yzldd94bIr7FCXCmcB6xX1fdU9QgwG5gahyCquk1VFwfb+4HV1OhJnTCmArOC7VnADTHKMgnYoKotyWhvNqr6EvBRjd11nZ+pwGxVrVTVjcB67DrMilyq+pyqHguevoF1NMwqdZyvuoj1fIWIiACfAX4fxXfXRz33hsivsUJUCn2BLWnPy0nAjVhEBgHnAG8Gu/4mWO7/OttmmgAFnhORt0XktmBfb1XdBnbRAr1ikCtkGtV/rHGfL6j7/CTpmvsi8Eza88Ei8o6ILBSRi2KQp7b/W1LO10XAdlVdl7Yv6+erxr0h8musEJWC1LIv1rhcEekIPAbMUNV9wP3AUGAMsA1bwmabC1X1XGAKcLuIXByDDLUi1qr1euDRYFcSzld9JOKaE5FvAMeAB4Nd24ABqnoO8DXgIRHpnEWR6vq/JeJ8ATdRfeKR9fNVy72hzkNr2desc1aISqEc6J/2vB+wNSZZEJHW2D/9QVV9HEBVt6vqcVWtAn5BREvn+lDVrcG4A3gikGG7iPQJ5O4D7Mi2XAFTgMWquj2QMfbzFVDX+Yn9mhOR6cC1wOc1MEIHpoZdwfbbmB36tGzJVM//LQnnqxj4c+DhcF+2z1dt9waycI0VolJ4CxguIoODGec0YG4cggQ2y18Bq1X1+2n7+6Qd9mfAiprvjViuDiLSKdzGHJUrsPM0PThsOjAnm3KlUW0GF/f5SqOu8zMXmCYiJSIyGBgOLMqWUCJyFfBPwPWqejBtf6mIFAXbQwK53suiXHX932I9XwGXA++qanm4I5vnq657A9m4xrLhSU/aA7ga8+ZvAL4RoxwTsSXeMmBJ8Lga+B2wPNg/F+iTZbmGYJEMS4GV4TkCegDzkGHa0wAAAxBJREFUgXXB2D2Gc9Ye2AV0SduX9fOFKaVtwFFslval+s4P8I3gelsDTMmyXOsxe3N4jf08OPZTwf93KbAYuC7LctX5f4vzfAX7fwv8VY1js3m+6ro3RH6NeZkLx3Ec5wSFaD5yHMdx6sCVguM4jnMCVwqO4zjOCVwpOI7jOCdwpeA4juOcwJWCk/cE1S0jyV0Iqmj2bOz+Fn7XIBH5XNrzL4jITzP5HY7jSsFxcodBwOcaOshxWoIrBadQKBaRWUHxtf8VkfYAIjIpKHC2PCjKVhLs3yQi3xaRxcFrpwf7e4jIc8F7/pvaa85UQ0RuFpFFQQ3+/07Liv1YRO4WkaUi8oaI9A72Dw2evyUi/1dEPg4+6h7gouBz/j7Yd6qIPBvU1783s6fMKURcKTiFwghgpqqeBewDviIibbHM1c+q6migGPjrtPfsVCsKeD/wD8G+fwNeUSuKNhcYUN+XisgZwGexAoNjgOPA54OXOwBvqOrZwEvAXwb7fwT8SFXHU71+zZ3Ay6o6RlV/EOwbE3z+aOCzIpJe/8ZxmowrBadQ2KKqrwbbD2BlBEYAG1V1bbB/FtZ0JSQsQvY2ZroheP0BAFX9A7C7ge+dBIwF3hLr4DUJKyMCcAR4upbv+ASpCrAPNfD581V1r6oeBlZhTYccp9kUxy2A42SJmvVclIZNP5XBeJzqv5Wm1IYRYJaq3lXLa0c1VWem5nc0lsq07eZ+huOcwFcKTqEwQEQ+EWzfBLwCvAsMEpFhwf6/ABY28DkvEZh/RGQK0FBDn/nAp0WkV/Ce7iLS0Gz+Daz4GlgV35D9WGtGx4kMVwpOobAamC4iy4DuwP2ByeVW4FERWQ5UAQ01Y/82cLGILMZKim+u72BVXQX8C9bFbhnwPNZ/tz5mAF8TkUXBsXuD/cuAY4Fj+u/rfLfjtACvkuo4CSOIjDqkqioi04CbVDWWPuJO4eH2R8dJHmOBnwaNVvZgfZUdJyv4SsFxHMc5gfsUHMdxnBO4UnAcx3FO4ErBcRzHOYErBcdxHOcErhQcx3GcE/x/QLv2SXpcTgsAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "ax = plt.axes()\n",
     "for t in np.linspace(0.,0.62,4):\n",
@@ -388,22 +349,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xUZf73/9c1M+m9EEIKoYUUugQIBOyyWAklKNjW1VVXZRcrCL/b3fu7i3V19VZcRVddd1UISgQRRQSRXgSkhZaEQBrpPZl+/f6YkG/EICAzOcnkej4e80jmnDOZd4ZwPudc5zrXJaSUKIqiKMrZdFoHUBRFUTonVSAURVGUdqkCoSiKorRLFQhFURSlXapAKIqiKO0yaB3AmcLDw2WfPn20jqEoitJl7N69u0JK2aO9dW5VIPr06cMPP/ygdQxFUZQuQwhx8lzrVBOToiiK0i5VIBRFUZR2qQKhKIqitEsVCEVRFKVdqkAoiqIo7XJZLyYhxHvATUCZlHJwO+ufBG5vkyMJ6CGlrBJC5AP1gA2wSilTXJVTURRFaZ8rzyA+ACada6WU8iUp5XAp5XDgaeB7KWVVm02ualmvioOiKMovMFqNLvm5LisQUsqNQNV5N3SYCXziqiyKoijuyGa3sWDdAtLeS6PJ0uT0n6/5NQghhC+OM43P2iyWwDdCiN1CiPvP8/r7hRA/CCF+KC8vd2VURVGUTqPGWMPkJZN5dvOz/Hj6R77P/97p79EZ7qS+GdhyVvNSmpSyWAgRAawVQhxpOSP5GSnlYmAxQEpKipr9SFEUt3e4/DCTl0zmeNVxAjwD+GjqR1wff73T30fzMwjgNs5qXpJSFrd8LQOygNEa5FIURel0VhxZwZh3x3C86jh9gvvw8sSXuarvVS55L00LhBAiCLgCWNFmmZ8QIuDM98BE4KA2CRVFUToHu7Tzfzf8X9KXplNvrmd87HhevPZFIv0jXfaeruzm+glwJRAuhCgE/gx4AEgp32rZbArwjZSysc1LewJZQogz+T6WUn7tqpyKoiidXZ2pjruy7mLF0RUIBHcNu4upiVNp2U+6jMsKhJRy5gVs8wGO7rBtl+UBw1yTSlEUpWs5VnmM9CXpHK44jJ+HH0+Me4KRvUZ2yHt3hovUiqIoSjtWH1/NrM9mUWuqpXdQb+aPn09UQFSHvb8qEIqiKJ2MlJIXtrzA/HXzkUhSY1KZM2YOvh6+HZpDFQhFUZROpNHcyD0r7mFZ9jIAbh9yOxnJGehEx/cpUgVCURSlk8irziN9SToHyg7gY/Dh8bGPMzpau17+qkAoiqJ0Amtz13Lrp7dSbawmOiCaBRMWEBMYo2kmVSAURVE0JKXklW2v8NS3T2GXdlKiUng89XH8PP20jqYKhKIoilaaLE38/ovf8/GBjwGYkTyDWUNmaXK9oT2qQCiKomjgZM1Jpiydwt7Te/E2eDNnzBzGxY7TOtZPqAKhKIrSwTbkbyBjWQYVTRVE+keyYPwC4oLjtI71M6pAKIqidBApJa/vfJ3H1jyGTdoYETmCJ8c9ib+nv9bR2qUKhKIoSgcwWo08uOpB/r3v3wBMS5rGHUPuQK/Ta5zs3FSBUBRFcbHCukKmLp3KruJdeOm9+OOYPzKh9wStY52XKhCKoigutPnUZqZlTqOssYwIvwgWjF9A35C+Wse6IKpAKIqiuICUkrd3v83sr2ZjtVsZGjGUp9KeItArUOtoF0wVCEVRFCczWU3M/mo27+x5B4DJCZP57bDfdurrDe1RBUJRFMWJSupLmJY5jW2F2/DUe/LwqIe5qo9rpgR1NVUgFEVRnGR74XamLp1KSUMJ4b7hzB8/nwGhA7SO9aupAqEoiuIE/9rzLx5a/RBmm5lBPQYxN20uwd7BWse6JKpAKIqiXAKzzcyjXz/Kmz+8CcCN8Tdy74h7Mei6/u7VZSNCCSHeE0KUCSEOnmP9lUKIWiHEjy2PZ9qsmySEOCqEyBFCzHNVRkVRlEtR1ljGtR9ey5s/vIlBZ2D26Nk8MPIBtygO4NoziA+AN4APf2GbTVLKm9ouEELogUXAdUAhsEsIsVJKme2qoIqiKBdrd/Fu0pemU1hXSKhPKE+Pf5qEsAStYzmVy84gpJQbgapf8dLRQI6UMk9KaQaWAJOdGk5RFOUS/Gfffxj//ngK6wpJDEvklYmvuF1xABcWiAs0VgixTwjxlRBiUMuyaKCgzTaFLcvaJYS4XwjxgxDih/LycldmVRSlm7ParTy25jHu+vwujFYjE/tNZOHVCwn1CdU6mkto2VC2B4iTUjYIIW4APgfiAdHOtvJcP0RKuRhYDJCSknLO7RRFUS5FRVMFt356K+tPrMegM3D/ZfczacAkrWO5lGYFQkpZ1+b71UKIN4UQ4TjOGGLbbBoDFHd0PkVRlDP2nd5H+tJ08mvyCfYOZl7aPJJ7JGsdy+U0KxBCiEigVEophRCjcTR3VQI1QLwQoi9QBNwGzNIqp6Io3duSg0v43Yrf0WxtJj40nqfHP024b7jWsTqEywqEEOIT4EogXAhRCPwZ8ACQUr4FTAf+IISwAs3AbVJKCViFEI8AawA98J6U8pCrciqKorTHZrcxf918Xtz6IgDX9L2GP6T8AU+9p8bJOo7LCoSUcuZ51r+Boxtse+tWA6tdkUtRFOV8qpurmfnZTNbkrkEndNw34j5ujL8RIdq7ROq+3ONuDkVRFCc5WHaQ9CXp5FbnEugVyNxxcxnSc4jWsTShCoSiKEqL5YeXc1fWXTRaGukX0o/54+cT4RehdSzNqAKhKEq3Z5d2nvnuGRZuWgjAFXFX8MioR/AyeGmcTFuqQCiK0q3VGmu5ffntfHn8S3RCx2+H/ZbJCZO73fWG9qgCoShKt3Wk4giTl0zmWOUxAjwDeHLckwyPHK51rE5DFQhFUbqlL45+we3Lb6feXE9cUBwLJiwg0j9S61idiioQiqJ0K3ZpZ+HGhTyzwTHDQFpsGn8c/Ud8PHw0Ttb5qAKhKEq3UW+q5+7P7ybrSBYCwV3D7mJq4lR1veEcVIFQFKVbyKnKYfKSyWSXZ+Pn4ccTY59gZNRIrWM5hWMQCufTerhvRVEUl/s652tGvTOK7PJsYgNjeXniy25THNbkriFjWQZWu9XpP1udQSiK4raklLyw5QXmr5uPRJIancqc1Dn4evhqHe2SWe1W3t3zLqtzHKMSrTq2ivTEdKe+hyoQiqK4pUZzI79b+TsyD2UCMGvwLGYMmoFOdP2Gk1pjLc9veZ5D5YfQCz0vT3zZ6cUBVIFQFMUN5VXnkb4knQNlB/Ax+PDY2McYEz1G61hOkVedx7ObnqWsqQx/T38ykjK4dfCtLnkvVSAURXEr3+Z9y62f3kpVcxXRAdEsmLCAmMAYrWM5xeZTm3ltx2uYbCaiAqLISMogwCvAZe+nCoSiKG5BSskr217hqW+fwi7tpESl8Hjq4/h5+mkd7ZLZpZ2PD3xMZrajuWxIxBBujL8Rg861u3BVIBRF6fKaLE38/ovf8/GBjwGYkTyDWUNmucX1hiZLE69se4WdxTsRCK7tdy2jo0Z3yL0bqkAoitKlnaw5yZSlU9h7ei/eBm/mjJnDuNhxWsdyiuL6YhZuWkhBXQHeBm+mJk6lX0i/Dnt/VSAURemyNuRvIGNZBhVNFUT6RbJgwgLiguO0juUUe0v28uLWF2m0NBLuG86M5BmE+oR2aAZVIBRF6XKklCzatYg5X8/BJm2MiBzBE2OfcOkF244ipWTlsZW8v/d97NgZGDaQyQMnazI3hSoQiqJ0KUarkYe+fIj3f3wfgKmJU7lz6J3odXqNk106s83Mol2L+C7/OwDGx47nirgrNBsrymUFQgjxHnATUCalHNzO+tuBuS1PG4A/SCn3tazLB+oBG2CVUqa4KqeiKF1HYV0h0zKnsbNoJ156L2aPns3lcZdrHcspKpsqeW7zcxyrOoaHzoNbBt5CUo8kTTO58gziA+AN4MNzrD8BXCGlrBZCXA8sBtreyXKVlLLChfkURelCtpzawrTMaZQ2lhLhG8H8CfM79IKtKx2pOMJzm5+j2lhNkFcQM5Jn0NO/p9axXFcgpJQbhRB9fmH91jZPtwPucSeLoihO9/YPbzP7q9lY7BaGRgzlqbSnCPQK1DqWU6zLW8eiHxZhtVuJC4pjauLUTnPvRme5BnEv8FWb5xL4RgghgbellIvP9UIhxP3A/QC9e/d2aUhFUTqWyWrij1/9kcV7HLuAyQmT+e2w37rF9Qab3cZ7P77HF8e+ACClVwrX9buuU/1umhcIIcRVOArE+DaL06SUxUKICGCtEOKIlHJje69vKR6LAVJSUlwzKLqiKB2upL6E6cums7VgK556Tx5OeZir+l6ldSynqDfV8+LWF9lXug+d0DGp/yQu63WZ1rF+RtMCIYQYCrwLXC+lrDyzXEpZ3PK1TAiRBYwG2i0QiqK4nx2FO5iaOZXi+mLCfcKZP2E+A0IHaB3LKU7WnGThpoWcbjyNn4cf05Km0Tuoc7Z+aFYghBC9geXAnVLKY22W+wE6KWV9y/cTgf/RKKaiKB3s/b3v8+CXD2K2mRnUYxBz0+YS7B2sdSyn2F64nVe2v4LRaiTSP5KM5AyCvIK0jnVOruzm+glwJRAuhCgE/gx4AEgp3wKeAcKAN1v6+J7pztoTyGpZZgA+llJ+7aqciqJ0DhabhUfXPMqiXYsAuCH+Bu4bcZ/LB6TrCHZpJ/NQJh8fdIwVNajHIG6KvwkPvYfGyX6ZK3sxzTzP+vuA+9pZngcMc1UuRVE6n7LGMjKWZbDx5EYMOgMPjnyQif0nah3LKZotzby641W2FW5DILi679WkRqdqdvPbxej6pVlRlC5td/FupiydQkFdAaHeocwbP4/E8EStYznF6YbTLNy0kJO1J/HSezElcUqXupaiCoSiKJr5z77/cP+q+zFajSSEJfD0+Kc7fEA6V9lXuo8Xt7xIvbmeMJ8wZiTPIMw3TOtYF0UVCEVROpzVbuWptU/xj+3/AGBiv4k8MPKBTt8mfyGklHx5/Eve3fsudmlnQMgA0hPT8TZ4ax3toqkCoShKh6poquDWT29l/Yn16IWeB0Y+wKQBk7SO5RQWm4W3dr/F2ry1AIyLGceVfa7sshMXqQKhKEqH2Xd6H+lL08mvySfYO5h5afNI7pGsdSynqG6u5rnNz3Gk8ggGnYGb4m9icMTPxintUlSBUBSlQyw9uJR7VtxDs7WZ+NB4nh7/NOG+4VrHcorjVcd5dtOzVDZXEuAZwIxBM+jl30vrWJdMFQhFUVzKZrcxf918Xtz6IgBX97mah0Y9hKfeU+NkzvFd/ncs2rUIs81MbGAs05Km4e/pr3Usp1AFQlEUl6lurmbmZzNZk7sGndBx34j7uDH+xi5xD8D52Ow2Ptz/IVlHsgAYETmCSf0ndarB9i6VKhCKorjEobJDTF4ymdzqXAK9Apk7bi5Deg7ROpZTNJgb+Pu2v7OnZA86oeM3/X7DyKiRWsdyOlUgFEVxuqzDWdyZdSeNlkb6hfRj/vj5RPhFaB3LKQrrCvnbpr9RXF+Mr4cv0xKnERccp3Usl1AFQlEUp7FLO3/Z8Bf+uvGvAFwRdwWPjHoEL4OXxsmcY1fRLl7e/jJNliZ6+vUkIznDbQYSbI8qEIqiOEWtsZY7su5g1bFV6ISOu4fdTXpCultcb5BS8unhT/nv/v8ikSSFJ3HzwJvd5kL7uagCoSjKJTtScYT0JekcrTxKgGcAT4x7ghGRI7SO5RRGq5HXd77OplObALgy7krSYtPcovCdjyoQiqJcki+OfsHty2+n3lxPXFAcCyYsINI/UutYTlHeWM7fNv2NEzUn8NR7kp6QzsCwgVrH6jCqQCiK8qvYpZ2FGxfyzIZnAEiLTeNPY/7UJcccas/BsoO8sOUFak21hHiHMCN5Bj38emgdq0OpAqEoykWrN9Vz9+d3k3UkC4HgzqF3Mi1pmts0u3yV8xWLdy/GJm30De7L1MSp+Hj4aB2rw6kCoSjKRcmpymHykslkl2fj5+HHE2OfcJt7ACw2C+/seYevcx2TWI6JHsM1fa/psoPtXSpVIBRFuWBf53zNzM9mUmOsITYwlgUTFhAVEKV1LKeoMdbw/JbnyS7PRi/03Bh/I0N7DtU6lqZUgVAU5byklLyw5QXmr5uPRJIancqc1Dn4evhqHc0p8qrzWLhpIeVN5fh7+pORnEF0QLTWsTTnsgIhhHgPuAkok1L+bMxb4WisfA24AWgCfiul3NOyblLLOj3wrpTyeVflVBTllzWaG/ndyt+ReSgTgFmDZzFj0Ay3aXbZfGozr+54FbPNTHRANNOTphPgFaB1rE7BlWcQHwBvAB+eY/31QHzLYwzwT2CMEEIPLAKuAwqBXUKIlVLKbBdmVRSlHSeqT5C+NJ39pfvxMfjw2NjHGBM9RutYTmGXdj4+8DGZ2Y7CN7TnUG4YcAMGnWpYOcNln4SUcqMQos8vbDIZ+FBKKYHtQohgIUQvoA+QI6XMAxBCLGnZVhUIRelA6/LWMePTGVQ1VxEVEMWC8QuIDYrVOpZTNFmaeGXbK+ws3olAcG2/axkdNdptemE5i5alMhooaPO8sGVZe8vPecgihLgfuB+gd+/ezk+pKN2MlJJ/bP8HT659Eru0kxKVwmOpj7nNHAfF9cUs3LSQgroCvA3eTE2cSr+QflrH6pS0LBDtlWr5C8vbJaVcDCwGSElJOed2iqKcX7Olmd9/8Xs+OvARADOSZzBryCy3ud6wp2QPL219iUZLIz18e5CRnEGoT6jWsTotLQtEIdD2fDUGKAY8z7FcURQXOlV7iilLp7CnZA/eBm/mjJnDuNhxWsdyCiklnx/9nH//+G/s2EkIS+CWgbe4zSizrqJlgVgJPNJyjWEMUCulLBFClAPxQoi+QBFwGzBLw5yK4va+z/+ejGUZlDeVE+kXyYIJC9xmjgOT1cSiXYvYcHIDABN6T+Dy3per6w0XwJXdXD8BrgTChRCFwJ8BDwAp5VvAahxdXHNwdHO9p2WdVQjxCLAGRzfX96SUh1yVU1G6Mykli3YtYs7Xc7BJGyMiR/DE2CfcpptnRVMFz25+lpyqHDx0HtyScAtJ4Ulax+oyXNmLaeZ51kvg4XOsW42jgCiK4iJGq5GHvnyI9398H4BpSdO4Y8gdbjOn8uGKwzy3+TlqjDUEeQUxY9AMevr11DpWl6I6/CpKN1RUV8TUzKnsLNqJl96L2aNnc3nc5VrHcpq1eWv55w//xGq3EhcUx7SkaW5z13dHUgVCUbqZLae2MC1zGqWNpUT4RjB/wny36eZptVt5b+97rDq+CoBRUaO4tu+1bnNW1NFUgVCUbuTtH95m9lezsdgtDIkYwty0uQR6BWodyynqTHW8uOVF9pftRyd0XD/gereZ1U4rF1QghBDewEPAeBz3JGwG/imlNLowm6IoTmK2mZm9ejaL9ywG4JaBt3DP8Hvc5sg6vyafhZsWUtpYip+HH9OTpxMb6B53fWvpQs8gPgTqgddbns8E/gNkuCKUoijOU1JfwvRl09lasBUPnQcPj3qYq/terXUsp9lasJVXd7yK0Wqkl38vMpIz3OasSGsXWiASpJTD2jz/TgixzxWBFEVxnh2FO5iaOZXi+mLCfcJ5esLTxIfGax3LKezSzpKDS1hyaAkAgyMGc+OAG/HQe2iczH1caIHYK4RIlVJuBxBCjAG2uC6WoiiX6v297/Pglw9itplJ7pHM3LS5hHiHaB3LKZosTby641W2F25HILi679WkRqeqm9+c7EILxBjgLiHEqZbnvYHDQogDOG5p6N7TLilKJ2KxWXhszWO8sesNAG4YcAP3jrjXbY6sTzecZuGmhZysPYmX3oupiVPpH9pf61iaOVh2kAe+eICs27KcPmbWhRaISU59V0VRXKKssYyMZRlsPLkRg87AgyMfZGL/iVrHcpp9p/fx4tYXqTfXE+YTxozkGYT5hmkdSxN2aWdD/ga2Fm4FYMWRFUxJmuLU9/jFAiGECJRS1uG4QP0zUsoqp6ZRFOVX2128mylLp1BQV0Codyjzxs8jMTxR61hOIaVk1fFV/Gvvv7BLOwNCB5CekI63wVvraJowWo18fvRzcqpyEAieueIZ0hPTnf4+5zuD+BjHtKG7+flQ3BJwj7trFKWL+2j/R9z3xX0YrUYSwxKZN36e2wxjbbFZePOHN1l3Yh0A42LHcWXclW4zBPnFqmyqJDM7k8rmSjz1noyLGcedQ+90yfWXXywQUsqbWr72dfo7K4pyyax2K3PXzuWV7a8AMLHfRB4Y+YDbXG+oaq7iuc3PcbTyKAadgZsH3sygHoO0jqWZ3Kpclh9ZjslmIsgriLTYNJdO5HS+JqbLfmm9lHKPc+MoinKhKpsqufXTW1l3Yh16oef+kfczqf8kt+nJc6zyGM9ufpaq5ioCvQKZkTyDSP9IrWNpQkrJ9qLtrD+xHokkOiCa0dGj8dC59kDgfE1ML7ezrO2sbe5zt42idCH7Tu8jfWk6+TX5BHsHMy9tHsk9krWO5TTrT6xn0a5FWOwWYgNjmZ40HT9PP61jacJis/BlzpccLDsIQHJ4MoN6DOqQA4HzNTFdBSCEmAF8LaWsE0L8H+Ay4K8uT6coys8sPbiUe1bcQ7O1mQGhA5g/fj7hvuFax3IKm93GB/s+YMXRFQBcFnkZv+n/G7cZEuRi1Znq+DT7U4obijHoDIyOGk1MYEyHvf+FdnP9/6SUmUKI8cB1OM4s/onj/ghFUTqAzW5jwfoFvLDlBQCu7nM1D416CE+9p8bJnKPB3MBLW19i7+m96ISO3/T/DSN7jdQ6lmYK6wpZlr2MRksjfh5+pMWmEewd3KEZLrRA2Fq+3gi8JaVcIYT4i2siKYpyturmamZ+NpM1uWvQCR33jbiPG+NvdJvrDadqT7Fw00JKGkrw9fBlWtI04oLcY8rTX2Nf6T5WH1+NTdro4duDcTHjNJk/+0ILRJEQ4m3gWuAFIYQX0D37mClKBztUdojJSyaTW51LoFcgc8fNZUjPIVrHcpqdRTt5edvLNFub6enXk4zkjA4/Uu4s7NLOt3nfsrN4JwADQgYwPHK4Zl16L7RAzMBxN/XfpZQ1QohewJOui6UoCsDyw8u5K+suGi2N9Avpx/zx84nwi9A6llNIKVmWvYyPDnyERJIcnsxNA29ymyazi9VsaWb5keWcqDmBTugYETmC/iHaDiFyQQVCStkELG/zvAQoOd/rhBCTgNcAPfCulPL5s9Y/CdzeJksS0ENKWSWEyMdxB7cNsEopUy4kq6K4A7u085cNf+GvGx19QS7vfTmzR8/WpJnBFYxWI6/teI0tBVsQCK7qcxXjYsa5TZPZxSpvLCczO5NqYzVeei/GxY6jh28PrWO5bkY5IYQeWITjonYhsEsIsVJKmX1mGynlS8BLLdvfDDx61vAdV0kpK1yVUVE6o1pjLXdk3cGqY6vQCR13D7ub9IR0t9l5ljWWsXDTQk7UnMBT78mUhCnEh7nHEOS/xtHKo6w4ugKzzUywdzBpsWn4eXSOLr2unHJ0NJAjpcwDEEIsASYD2efYfibwiQvzKEqnd6TiCOlL0jlaeRR/T3+eHPskI3q5z7SZB8sO8vyW56kz1RHiHcKtg251my66F0tKyeaCzXx/8nsAYgNjGRU1CoOu88wE7cok0UBBm+eFnKNbrBDCF8c1jkfaLJbAN0IICbwtpVx8jtfeD9wP0Lt3byfEVhRtfHH0C25ffjv15nriguKYP34+vQJ6aR3LaVYfX807e97BJm30C+nHlIQp+Hj4aB1LE2abmS+OfcHhisMADIkYQmJYYqc7S3RlgWjvN5XtLAO4GdhyVvNSmpSyWAgRAawVQhyRUm782Q90FI7FACkpKef6+YrSadmlnYUbF/LMhmcAx2B0fxr9J7fZeVpsFt7Z8w5f534NQGp0Klf3vbrbDrZXY6xhWfYyShtLMegMpEanEhUQpXWsdrmyQBQCbWcNjwGKz7HtbZzVvCSlLG75WiaEyMLRZPWzAqEoXVm9qZ67P7+brCNZCAR3DL2D6UnTO92R5K9VY6zh+c3Pk12RjV7ouWngTQyJcJ8uuhfrZO1JPjv8GU2WJvw9/RkfO75Tz5/tygKxC4gXQvQFinAUgVlnbySECAKuAO5os8wP0Ekp61u+nwj8jwuzKkqHO155nPSl6WSXZ+Pn4ccTY59gZJT73DmcW5XLws0LqWiqIMAzgIzkjE57pNwRdpfsZk3uGuzSTk+/noyNGdvpu/S6rEBIKa1CiEeANTi6ub4npTwkhHiwZf1bLZtOAb6RUja2eXlPIKvlKMoAfCyl/NpVWRWlo311/CtmfjaTWlMtsYGxLJiwwK12nhtPbuT/7fx/mG1mYgJimJY8jQDPAK1jacJmt7Emdw17TjsGvx4YOpChPYd2iSY2l14ul1KuBlafteyts55/AHxw1rI8YJgrsymKFqSUvLDlBeavm49EMiZ6DI+mPoqvh6/W0ZzCZrfx3wP/5bPDnwEwrOcwrh9wfafqmdORGs2NfHb4M07VnUIndKT0SqFPcB+tY12w7vmvpigaaDQ38ruVvyPzUCYAswbPYsagGV3iSPJCNJobeXnby/xQ8gMCwXX9rmNU1Ci3uZ5ysUobSsnMzqTWVIu3wZu0mLQuN3+2KhCK0gFOVJ8gfWk6+0v342Pw4bGxjzEm2n0GQy6qK+Jvm/5GUX0RPgYfpiZNpW9w952I8nD5YVYeW4nFbiHUO5S02LQu2StNFQhFcbF1eeuY8ekMqpqriAqIYsH4BcQGxZ7/hV3E7uLdvLTtJZosTUT4RpCRnEGIT4jWsTQhpeT7k9+zuWAzAHFBcaT0Sumy81moAqEoLiKl5NXtr/LE2iewSzspvVJ4bOxjLp1DuCNJKck6ksW/9/0biSQhLIHJCZM7fc8cVzFZTaw4toJjlccQCIb2HMrA0IFduolNFQhFcYFmSzO//+L3fHTgIwAykjOYNXhWlz2SPJvJauKNXW+0DhNxee/LmdB7QpfeGV6KquYqlmUvo7ypHA+dB2NjxrrF/NmqQCiKk52qPcWUpVPYU7IHb4M3f3kiTSUAACAASURBVBrzJ9Ji07SO5TTljeU8t/k5cqpz8NB5MDlhMonhiVrH0kxedR7LjyzHaDUS6BlIWmwaAV7u0aVXFQhFcaLv878nY1kG5U3lRPpFMn/C/C7VrfF8ssuzeX7L89QYawj2DmZG8gy3mZ/iYkkp2VW8i7V5a5FIevn3IjU6FQ+9h9bRnEYVCEVxAikli3Yt4tE1j2K1WxneczhPjnvSbY4kAb7J/Ya3dr+F1W6lT3AfpiZOdZv7Ny6W1W7lq5yv2Fe6D4Ck8CQG9xjsdk1sqkAoyiUyWo089OVDvP/j+wBMSZzCXUPvcpvrDVa7lXf3vsvq4457XkdHjebafte6zf0bF6veXM+n2Z9SVF+EXugZFTWK3kHuOZK0KhCKcgmK6oqYmjmVnUU78dJ78cjoR7gi7gqtYzlNnamOF7a8wIGyA+iFnusHXM/wyOFax9JMcX0xy7KXUW+ux9fgS1psmlt36VUFQlF+pS2ntjAtcxqljaVE+EYwf8J8+oX00zqW05yoPsHCzQspayzD39Of6UnTiQmM0TqWZg6UHWDVsVXYpI1wn3DGxY7D2+CtdSyXUgVCUX6Ft394m9lfzcZitzAkYghz0+Z26mGbL9bWgq38Y/s/MNlMRPlHMT15ulv9fhfDLu18l/8d2wq3AdAvuB8jeo1AL9yjCfGXqAKhKBfBbDMze/VsFu9xTHB4y8BbuGf4PW5zvcEu7Xxy8BOWHloKOGY6uzH+xm472J7RaiTrSBa51bkIBCMiR9A/pL/bXYw+l+75r64ov0JJfQnTl01na8FWPHQePDzqYa7ue7XWsZymydLEP7b/gx1FOxAIrul7DWOix3SbneHZKpsqWZq9lKrmKjz1noyLGdftuvSqAqEoF2BH4Q6mZk6luL6YcJ9wnh7/NPFh8VrHcpqS+hL+tulvFNQV4G3wZkriFPqH9Nc6lmZyqnLIOpKFyWYiyCuI8bHj8fP00zpWh1MFQlHO4/297/Pglw9itplJ7pHM3LS5hHi7T8+Vvaf38tLWl2gwNxDuE86MQTMI9QnVOpYmpJRsK9zG+vz1AMQExDAqehQeOve5+e1iqAKhKOdgsVl4bM1jvLHrDQBuiL+Be4ff6zZ3ykopWXlsJe//+D52aSc+NJ70hHS8DF5aR9OExWZh1fFVHCo/BMCgHoNIDk/utk1soAqEorSrrLGMGctm8P3J7zHoDDw48kEm9p+odSynMdvMvLnrzdYj5bTYNK6Mu7Lb7gzrTHUsy15GSUMJBp2BMVFjiA6M1jqW5lSBUJSz7C7ezZSlUyioKyDUJ5R5afPcajC6yuZKntv8HMcqj+Gh8+DmgTeT3CNZ61iaKagr4NPsT2m0NOLn4cf42PEEeQdpHatTcOm98kKISUKIo0KIHCHEvHbWXymEqBVC/NjyeOZCX6sorvDf/f9l/PvjKagrIDEskZcnvuxWxeFo5VEeX/M4xyqPEegVyN3D7u7WxeHH0z/y3/3/pdHSSIRvBNf2vVYVhzZcdgYhhNADi4DrgEJglxBipZQy+6xNN0kpb/qVr1UUp7DarcxdO5dXtr8CwMR+E3lg5ANuc70BYN2JdSzatQir3UrvwN5MS5rWLXvmgON+j7V5a9lVvAuA+NB4hvUc1m3HlzoXVzYxjQZypJR5AEKIJcBk4EJ28pfyWkW5KJVNldz66a2sO7EOvdBz/8j7mdR/ktu0x9vsNj7Y9wErjq4AYGSvkUzsN9Ftbu67WE2WJpYfXk5+bT46oeOyyMvcaogUZ3JlgYgGCto8LwTam6V9rBBiH1AMPCGlPHQRr0UIcT9wP0Dv3u45oqLiOvtL95O+JJ0TNScI9gpmbtpcBkUM0jqW09Sb6nlp60v8WPojOqHjN/1/w8heI7WOpZmyxjIyszOpMdbgrfdmXOw4wn3DtY7VabmyQLR3+CXPer4HiJNSNgghbgA+B+Iv8LWOhVIuBhYDpKSktLuNorQn81Am96y4hyZLEwNCB/B02tP08OuhdSynOVV7ir9t+hunG07j6+HL9KTpbjss9YU4WnGUFcdWYLaZCfEOIS02rdvOZ3GhXFkgCoHYNs9jcJwltJJS1rX5frUQ4k0hRPiFvFZRfi2b3caC9Qt4YcsLAFzV5yoeSnnIrfr/7yjawcvbXsZoNRLpF0lGcka3vfgqpWRzwebW+bN7B/YmJSql244vdTFc+QntAuKFEH2BIuA2YFbbDYQQkUCplFIKIUbj6FVVCdSc77WK8mtUN1cz87OZrMldg07ouHfEvdwUf5PbXG+QUpKZnclHBz4CIDk8mZsH3uxWF9svhtlmZuXRlRypPALA0IihJIQluM2/t6u5rEBIKa1CiEeANYAeeE9KeUgI8WDL+reA6cAfhBBWoBm4TUopgXZf66qsSvdwqOwQk5dMJrc6l0CvQJ4a9xRDew7VOpbTGK1GXt3xKlsLtiIQXNnnSsbFjOu2O8MaYw2Z2ZmUNZbhofMgNTqVXgG9tI7Vpbj0HEtKuRpYfdayt9p8/wbwxoW+VlF+razDWdyZdSeNlkb6hfRj/vj5bjUyZ2lDKQs3LyS/Jh8vvRfpienEh7rPYIIXK78mn88Of0aztZkAzwDSYtO67XwWl0I1wiluzS7t/GXDX/jrxr8CcHnvy5k9erZbXW84UHqA57c8T725nlCfUGYkz+i2PXOklOwu2c03ed9gl3Yi/SJJjUnFU++pdbQuSRUIxW3VGmu5I+sOVh1bhU7ouHvY3aQnpLtNk4uUktU5q3lnzzvYpZ3+If2ZkjjF7afBPBeb3cbXuV+z9/ReABLCEhgSMUTd/HYJVIFQ3NLRiqNMXjKZo5VH8ff058lxTzIicoTWsZzGYrPw9u63+SbvGwBSo1O5uu/V3XZn2Ghu5NPDn1JQV4BO6BjVaxRxwXFax+ryVIFQ3M6qY6u4ffnt1JnqiAuKY8GEBUT6R2ody2mqjdU8v/l5DlccxqAzcGP8jQyJGKJ1LM2cbjhNZnYmdaY6fAw+pMWmddv5LJxNFQjFbdilnWc3Pcsz3z2DRDIudhx/Gv0nfDx8tI7mNDlVOTy76VkqmisI8AwgIzmDqIAorWNp5lD5Ib449gVWu5UwnzDGxYxzq39vrakCobiFelM9v13xW5YfXo5AcMeQO8hIznCb6w0A35/8ntd3vo7ZZiYmMIbpSdPx9/TXOpYmpJRsOLmBLQVbAOgT3IeRkSO77fhSrqIKhNLl5VTlkL4knUPlh/Dz8OPxsY+TEpWidSynsdlt/Gf/f1h+ZDkAwyOHM6n/pG57J7DJauLzo59zvOo4AsGwnsOID413q4OBzqJ7/oUpbuPrnK+Z+dlMaow1xAbGMn/8fLeaCazB3MDft/2dPSV7EAgm9p9ISq+UbrszrGquIvNQJhXNFXjqPRkbPZae/j21juW2VIFQuiQpJS9ueZGn1z2NRDImegyPpj7qVoOvFdQWsHDzQorri/Ex+DAtaRp9gvtoHUszudW5ZB3OwmgzEugVyPjY8d22ia2jqAKhdDkN5gbuXXkvmYcyAZg5eCa3DrrVrbp47iraxd+3/Z1mazMRfhHMSJ5BsHew1rE0IaVke9F21p9Yj0QSHRDN6KjR3XZ8qY6kCoTSpeRU5TBl6RQOlh3Ex+DDo6mPkhqTqnUsp5FSsix7GR8d+AiJJCk8iZsH3txt7wS22Cx8efxLDpYfBGBQj0Ekhyd32ya2jqYKhNJlfHnsS25ffju1plpiAmOYP34+MYExWsdymiZLE6/teI1thdscg+3FXUlabFq33RnWGmv59PCnlDSUYNAZGB012q3+vbsCVSCUTs8u7SzcuJA/b/gzEklqdCpzUue41fWG4vpiFm5aSEFdgWOwvYR04sO692B7yw8vp8nahJ+HH+Njx3fb+Sy0pAqE0qnVmeq4K+suVhxd0Xp/w/Tk6e51vaF4Fy9ve5kmSxPhvuFkJGUQ5humdSxNSCnZUbSDdSfWIZFE+kUyJmYMXnr3GVyxK1EFQum0DpQeYGrmVHKqcvDz8OOJsU8wMsp95lO2SzuZhzL55OAnSCSJYYncPPBmtxpp9mJYbBZWHV/FoXLH1C+JYYkMjhjsVgcDXY0qEEqn9O8f/80fvvwDzdZm+gT34em0p91qspcGcwOv7niVnUU71fUGHDP9LTu8jLLGMnW9oRNRBULpVIxWI3/66k8s3rMYgGv6XsODIx90q6PqvOo8nt/yPKcbTuNt8CY9IZ0BoQO0jqWZ41XHWXFkBUabEX9Pf9Ji0tT1hk5CFQil0zhRfYLpy6azp2QPHjoPHhj5ANf1u86tjqq/zfuWt3a/hdlmpqdfT6YlTeu2I4/apZ3vT37fOp5SlH8Uo6NHd9suvZ2RKhBKp7Dy6Eru/vxuaow19PTryby0efQP7a91LKcxWU0s3rOYtXlrAcd4Sr/p95tue7NXg7mBrCNZnKw9iUAwOGIwiWGJbnUw4A5UgVA0ZbKamPftPF7d8SoAo6NGMyd1jlsNoVBSX8LzW57nRM0JDDoDk/pPYnjkcK1jaeZU7SmWH1lOg7kBb703qTGpbjU/uDtxaYEQQkwCXgP0wLtSyufPWn87MLflaQPwBynlvpZ1+UA9YAOsUkr3GZ5TAeB45XFu++w29pTsQS/03Dn0TtIT092q18rmU5t5fefrNFubCfEOYVrSNLeavOhiSCnZVriN7/K/QyLp4duD1OhUNX/DJTJZTazNW+uSM26XFQghhB5YBFwHFAK7hBArpZTZbTY7AVwhpawWQlwPLAbGtFl/lZSywlUZFe38d/9/+cOXf6DB3ECEXwRPjnuShLAErWM5jclq4p0977ROCZoYlshNA2/qtvNFN5gbWHl0JXk1eYDqwuospY2l7CzayZc5X5ISleL0Ye5deQYxGsiRUuYBCCGWAJOB1gIhpdzaZvvtgOrX5uYazA08vPphPtz3IQATek/goZSH8PP00ziZ8+TX5PPS1pcoqCtAL/Rc1+86RvYa2W3b13Orcll5bCWNlkY89Z6MjhrdrWfBcwa7tHOw7CBHKo8AMLzncMJ9w53+Pq4sENFAQZvnhfz07OBs9wJftXkugW+EEBJ4W0q5uL0XCSHuB+4H6N279yUFVlxrW8E27sy6k9zqXLz0Xvz+st+7VS8lKSVf5XzFv/b+C4vdQrhPOFOSptDTr3vOV2C1W/ku/zt2FO0AIMI3gtHRo91qiBQtNJgb2F64nSpjFQCxgbH865Z/uWQoeFcWiPb+18t2NxTiKhwFYnybxWlSymIhRASwVghxREq58Wc/0FE4FgOkpKS0+/MVbZltZv6y4S+8sOUF7NJOpH8k88fPd6u5DWqNtby+63V2Fu0EYETkCK7rd1237bJZ2VRJ1tEsTjecbu2llBCWoJqULlF+TT57Tu/BarfipfdiYNhAgryCXDa7oCsLRCEQ2+Z5DFB89kZCiKHAu8D1UsrKM8ullMUtX8uEEFk4mqx+ViCUzm1/6X7uyrqLfaX7EAimJU1j1uBZbtW9c1vhNt7c9Sa1ploEgimJU0jukax1LE1IKdldsptvT3yL1W7Fz8OP1OjUbju2lLOYbCb2lOyhoM7RKBPuE86A0AEun3bWlT99FxAvhOgLFAG3AbPabiCE6A0sB+6UUh5rs9wP0Ekp61u+nwj8jwuzKk5ms9v4+9a/83+++z9Y7BYi/SOZM2aOW+04G8wNLN69mA0nNwAQFxTHzQNv7rYT+9QYa1h1bBX5tfmAuvHNWYrqi/ih+AdMNhMAA0IG0NOvZ4c0zbqsQEgprUKIR4A1OLq5vielPCSEeLBl/VvAM0AY8GbLL3umO2tPIKtlmQH4WEr5tauyKs51sOwgGcsyOFLhuIA2acAk7hl2j1t1Z9xdvJvXd71OVXMVBp2Ba/pe023nipZSsuf0HtadWIfZZsZL78VlvS4jNjD2/C9WzslkM7H39F5O1Z4CINArkPiQ+A79f+TS8xMp5Wpg9VnL3mrz/X3Afe28Lg8Y5spsivM1WZr46/d/5e/b/o7VbsXH4MNTaU8xspf7jMBaZ6rjX3v/xXf53wEQExDDLQm3dNvhMmqNtaw6vooTNScAx+dxWa/Lum13Xmdpe9agEzriguKI8o/q8AMQdSe14hRrctbw0OqHyKvOQyC4YcAN3Dn0Trfpviql5PuT3/P27rdptDQCcHWfq0mNSe2WF17t0s7Wgq1sOrUJm7ThqfdkZORIYoPUWcOlaLY280PxD5Q0lAAQ6BlIfGjHnjW0pQqEcklKG0p5dM2jfHLwE8DRDv/wqIdJDE/UOJnzFNYV8tYPb7G/bD/g6FZ4/YDru+3wEIV1hXyV8xWljaUARPhFkBqdqs4aLoFd2smpyuFg+UGsdisAfYP7anLW0JYqEMqvYrQaeW37a8xbNw8AL70Xtw2+jckJk13es6KjmKwmPj38KZ8d/qy1yeyavtcwrOewbnmtocnSxPoT6/mx9EcAfD18GRE5guiAaI2TdW0VTRXsKdlDjakGgBDvEPqF9MPHoP01O/f4n6x0GCklSw8tZd638zhZexKA5PBk5qTOcZsxhqSUrD+xno8OfkRFk2Okl2E9h3FN32u65U1edmlnb8leNpzcQLO1GZ3QkRCWQFJ4ktscDGjBaDWyv3R/a68vL70X/UL6Eeod2mkOQNS/rnLBtpzawuPfPN56Z2xcUBy/G/47RvQaoXEy5zlUdogP9n3A0cqjAAR4BjAlcQq9g7rfXfpSSo5XHeernK+oN9cDjuakyyIvI9ArUON0XZfFbuFY5bHWqVUFgpjAGGICYtDr9Bqn+ylVIJTz2l28m7nfzmXdiXWA4xT49iG3c03fazrdH/Svdar2FB/u+5CdxY47of08/Li89+UMjxzuNr/jxThVe4r1+esprCsEHM1JyeHJ9A3u22mObrsam91GbnUuhysOt97TEOAZwMDQgZ22C7gqEMo5bSvYxsJNC/ny+Jety24bdBtTEqd02j/oi3Wq9hRZR7L4Lv877NKOh86DsTFjSY1J7ZY3eJU1lvFd/nccrzoOOJo9ksKT6B/Sv1sWSmewSzunak9xsPwgTZYmwFEY4oLiOv1NlapAKD8hpWTdiXUs3LSQDfkbAMdOYtKASaQnpLvNkAm5VbksP7KcTac2tS4b2WskE3pPcKvJii6ElJLCukLW569vHcrBoDMwMHQgCWEJbjUsSkey2W3k1eRxpOIIzdZmAHwNvsQFx3Wq6wy/RBUIBYBGcyPv//g+b+x8o7X93c/Djxvjb+TmgTe7xSTyUkp+LP2R5YeXs690HwA6oWNwj8HdclYzu7RztOIo24u2U1RfBDg+j5jAGIb3HK66rf5KRquR3OpccqpyWpuS9EJP/5D+9PDt0SUKwxmqQHRzu4t3886ed/j4wMetFyIFgjuG3sENA25wixvdGswNrD6+mk2nNrX2vPLUezIicgSjo0cT5NX1i9/FaLI0cbDsIDuLd1JjdHSt9NR70j+kPwNCB3SK7pVdUa2xlmNVxzhZexK7tAOOg6zogGjCfcO75A2VqkB0QyX1JXx04CM+PvAxe0/vbV2eGJbIxP4TmdB7Al4GLw0TXjqb3ca+0n2sP7Ge7UXbMdvMgKP4XRF3BSN7jXSb6ygX4swF0gNlBzhccbh1uZ+HHwPDBtI3uK/qsvorGK1GTtWeIrc6t/UACyDUO5SogCiCvIK61BnD2dRfRDdxrPIYnx/5nM+PfM62wm2tywM8A7iqz1VM7D+xy3fllFJyqPwQu4p3sfHkRiqbW0ePp09QH4b2HEpSeFK3aVOXUlJUX8TBsoMcKj/U2g4Ojsl7egf1pk9wny55ZKslq91KUX0RJ2tOUtpYimyZ5kYv9AR7BxMXFOc298uoAuGmGs2NrDuxjnV561ibt/YnR40eOg+GRQ4jpVcK1/a7tkv31jFZTewv3c/O4p3sKt5FVXNV67oQ7xCG9hzKkIghnb63iLOYbWZO1JwgpyrnJ2eH4BgNNC4ozq12YB2l0dxISUMJ+bX5P/kbEwhCvUPp4deDUO9Qt+vppQqEm6gz1bHl1BY2ntzI9ye/Z1fxrtYxXcDRlDAqahSpMamMiBzRZZtXbHYb+TX5bC7YzMnak+wv3d/afASOM6IBoQNICEugf0j/Ln16fyGklBTXF1NYX0hOVQ6nak9hk7bW9V56LyL9IxkYOpBg72C3/zycxWq3Ut5YTmljKacbTlNnrvvJei+9FzGBMYT7hLv1GakqEF1QVXMVe0v2sve04/H5kc9b+1efoRM6BoQMYFDEIJLCkxgdPbpLtjGbrCZyq3M5VH6I7PJsDlcc/tnv2su/F/Gh8QwMG9hhE6loxWq3UlxfTEFdAQW1BRTWF2K0Gn+yTZhPGL38e9HLv5cqCheo2dJMRXMFFU0VVDZVts73fMaZ5qMQ7xBCfELw0nfta3QXquvtMboJq93KyZqTHKs8xvGq4xyvPM7XuV/TYG7gdMPpdl8T7hPO5XGXMzhiMEnhSV2uB1KTpYm86jzyqvPIrc4lrzqvtddRW8HewfQO7E1UQBQDwwa67bAPJquJssYyx1Fs42myy7Ox2q2tPWTO8DX4EuwdTK+AXsQExHT5DgauJKWk2dpMjbGGGmMNxfXFNFubf3J95gw/Dz98PXyJ9IskwCugW16rUQWigxmtRiqbKqlsruRkzUkazA2UNJRQWFdIUX0RRXVFbCnYct6fkxCWQL+Qfo5HcD96B/XuEjsGKSWVzZUU1RVRVF/U+nuf3V5+hkDg5+lHn6A+DAgdQO+g3m5VEM7ssM78TVQ2V3K86jh2af9JW3dbfh5+RPpH0sO3B2G+Yfh5dK0DgY5gl3aaLE3Um+upN9VT2liKxW6hzlT3kybJtoK9ggn0CiTQKxB/T/8uecbtbN3+EzhScYTbl9+Or4cvPgYffD18Wx/eBm9O1Z4iMTwRndChF3r0Oj35Nfn0C+mH1W79yeNg2UHiguJotDQ6HmbH151FO4kOiKaquardI5Vz8TZ4MzB0IFEBUfQK6EVUQBRR/lFEBUR12othRquRquYqShpKaDA1UNZURlnj/z7O3JB1Lj18exATGEOkXyQ9/XvS069nl27jPVMA6k311JpqqTXWOr6aasmpykGv0/+siaitYO9gx8PL0bwR5B3UpTsVOItd2jFajTRZmmiyNNFoaaTJ0kRpYykCQaOl8WdnWmcYdAb8PPwcD0+/1u9VU9zPdfsCUd1czZ6SPb+4zRfHvrjk9zmzYzToDAR4BhDgFUCAZwBGq5GEsAR6+PUgzCeMcN9wQn1CCfMJ0/yMwGKztP7nqzXVYrQaqTPVUW+qp85UR52pjsMVh/Hz8KPaWH1RBTAmIIZw33DCfMMI83E8gr2DO23ha8tqt9JsaabJ6tg5NVuaabI0UdJQgkFnoMHcQIO5gXpzPY3mxp9cND6bxW752d9EgGcA/p7+BHkHoRed//NwBiklVrsVs82MyWbCZDNhtpmpMdYgEBhtRowWI0Zry8N27qJ6hqfeEx+Dj+Ph4YOX3osAzwA89Z6qGFwglxYIIcQk4DVAD7wrpXz+rPWiZf0NQBPwWynlngt5rbPkVudiEAaEEK1nCHqdHoPOgJQSu7QT5BWEh84Dg96Ah84DD70HtaZaovyjWp976D0w6Aw0WZqI9IvEx8MHb4N36x+nt96bQO9AfA2+6HQ6dEKHQJzzD/XMfxQpJXbsSClb/xNJHLlsdhs26XgYLUaEEFjsFqx2KxabBbPNTJ2pDk+9Z+vPM9vMNJobKW8qJ8AzgGZrc+t/uhpjDUX1RQR7BdNgaTjnqfgv0Qs9/p7+BHgGYLFb6Bvcl2DvYIK8ggjyDiLIK6jDCt+Zf78zZ3itn43dgsVmwWJ3fEb1pnr0Oj1mm7n10WRporKpEh8Pn9bPx2Q10WBpuOgcHjoPLHYLkf6Rre3aZ76eOXPtajssu7S3frZnvtrsNqzS8bXZ2oxA/Oyzr26uxtvD2/H52yyY7WYsNkvrkBQX68zn523wxkvvhZfBC0+9J74G3y5xsNHZuaxACCH0wCLgOqAQ2CWEWCmlzG6z2fVAfMtjDPBPYMwFvtYpssuysUorSLBggXYO9mpNte2+Nq86z9lxOoW2PTgMwoBBb2j9zx7sFfy/hVLngR073npvfDx88NR7otfpEQjqzfX4GnxBOIYgqDHWIGskdea61jbztsWv1lTbutwu7a1FsMZYg6+HLwLRulOySRvVzdX4ePigE7qfFMoGcwMCR7G3Smu7v5+z+Hv4Y9Ab8NR5th4gICHAKwAvvWNHdaY5SKfTgaT1pioAk82E1W6lzlTnWN6y3mJznFWc2VbiODgw2UwYdIbWz+LMOqPViF7o0Qld6+cmpWO5TujQ6/Sty+zYabY4dt4GnaH1Mz2z3C7teOo9sUlb6zqjxYjZbsZL7+X4nO22n/weF+0XTjI99Z6tf1tnPlO7tLce+XvoPVo/7+540bijufIMYjSQI6XMAxBCLAEmA2138pOBD6WUEtguhAgWQvQC+lzAa53ihvgbeG7Lc87+sW7DKq1Yrf+7oy1vLtcwzU81WZvaXS6RLi8OgONswuLyt+k0fu1R/sU4cwZ3tjPzXyv/f3v3H3tVXcdx/PmaJE2zH4g6UuALRpSbgfjN5QL+oZW4kn4tQCuylrNyC51bOFpqW1vaqrm58aPFYqnprFzf9RPHmmQbwRfip4CAsiAI0Ap0GQq+++N8bpzv9dzv93v5cs+5cF+P7e6e877n3Pve+5zv+dxz7vl+PsUmLZlE3D2ERruBVjbBlwJ7c/P7UmwwywxmXQAk3SKpV1Lv4cPNH7ymjp3a9DpmZp2glWcQRRdV65u4RssMZt0sGLEUWArQ3d19Sk1oK1peM7MzXSsbiH3A6Nz8ZcD+QS5z7iDWNTOzFmrlJaa1wARJ4ySdC8wBeuqW6QE+r8wHgCMRcWCQ65qZWQu17AwiIo5Lug34FQvUowAABxRJREFUA9mtqssiYqukW9Pri4Hfkt3iuovsNteb+1u3VbmamdkbKbuB6OzQ3d0dvb29VadhZnbGkLQuIrqLXvONxGZmVsgNhJmZFXIDYWZmhdxAmJlZobPqR2pJh4E3jjAzOCOBF05jOqeL82qO82qO82rO2ZjX2Ii4qOiFs6qBGApJvY1+ya+S82qO82qO82pOp+XlS0xmZlbIDYSZmRVyA3HS0qoTaMB5Ncd5Ncd5Naej8vJvEGZmVshnEGZmVsgNhJmZFer4BkLSdZJ2SNolaUGFeYyW9EdJ2yRtlfT1FL9H0t8lbUiP6yvIbY+kzenze1NshKQnJe1Mz+8oOaeJuZpskHRU0vyq6iVpmaRDkrbkYg1rJOmutM/tkPSRkvP6nqTtkjZJekLS21O8S9IrudotLjmvhtuu4no9lstpj6QNKV5Kvfo5NrR+/4qIjn2QdSW+GxhPNkjRRuCKinIZBUxJ0xcAzwJXAPcAd1Zcpz3AyLrY/cCCNL0AuK/i7fgPYGxV9QKmA1OALQPVKG3XjcBwYFzaB88pMa8PA8PS9H25vLryy1VQr8JtV3W96l7/PvCtMuvVz7Gh5ftXp59BXAPsiojnIuJV4FFgVhWJRMSBiFifpl8CttFgHO42MQtYnqaXAx+vMJcZwO6IONX/oh+yiFgF/LMu3KhGs4BHI+JYRDxPNh7KNWXlFRErIuJ4ml1NNmJjqRrUq5FK61UjScBngJ+14rP7yanRsaHl+1enNxCXAntz8/tog4OypC7gKuAvKXRbuhywrOxLOUkAKyStk3RLil0S2eh/pOeLK8irZg59/2irrldNoxq10373ReB3uflxkv4q6SlJ0yrIp2jbtUu9pgEHI2JnLlZqveqODS3fvzq9gVBBrNL7fiW9BfgFMD8ijgKLgMuBycABslPcsn0wIqYAM4GvSZpeQQ6FlA1JewPweAq1Q70G0hb7naSFwHHg4RQ6AIyJiKuAO4BHJL21xJQabbu2qBcwl75fREqtV8GxoeGiBbFTqlenNxD7gNG5+cuA/RXlgqQ3ke0AD0fELwEi4mBEnIiI14Ef0aJT6/5ExP70fAh4IuVwUNKolPco4FDZeSUzgfURcTDlWHm9chrVqPL9TtI84KPATZEuXKdLEi+m6XVk167fXVZO/Wy7dqjXMOCTwGO1WJn1Kjo2UML+1ekNxFpggqRx6ZvoHKCnikTS9c0fA9si4ge5+KjcYp8AttSv2+K8zpd0QW2a7AfOLWR1mpcWmwf8qsy8cvp8q6u6XnUa1agHmCNpuKRxwARgTVlJSboO+AZwQ0T8Jxe/SNI5aXp8yuu5EvNqtO0qrVfyIWB7ROyrBcqqV6NjA2XsX63+Bb7dH8D1ZHcF7AYWVpjHVLLTwE3AhvS4HvgpsDnFe4BRJec1nuyOiI3A1lqNgAuBlcDO9DyigpqdB7wIvC0Xq6ReZI3UAeA1sm9wX+qvRsDCtM/tAGaWnNcusmvUtf1scVr2U2kbbwTWAx8rOa+G267KeqX4T4Bb65YtpV79HBtavn+5qw0zMyvU6ZeYzMysATcQZmZWyA2EmZkVcgNhZmaF3ECYmVkhNxDWUVIPnC3534jU0+fIwcaH+Fldkm7MzX9B0oOn8zPM3ECYnZm6gBsHWshsKNxAWCcaJml56hTu55LOA5A0I3W8tjl1Fjc8xfdIulfS+vTae1L8Qkkr0jpLKO4Dpw9Jn5W0Jo0fsCT3n7gvS/qOpI2SVku6JMUvT/NrJX1b0svprb4LTEvvc3uKvVPS79P4APef3pJZJ3IDYZ1oIrA0It4HHAW+KunNZP8tOzsirgSGAV/JrfNCZB0WLgLuTLG7gacj66ytBxjT34dKei8wm6zzw8nACeCm9PL5wOqImASsAr6c4g8AD0TE++nbn84C4E8RMTkifphik9P7XwnMlpTvj8esaW4grBPtjYg/p+mHyLoymAg8HxHPpvhyssFjamodpK0ju7xDev0hgIj4DfCvAT53BnA1sFbZqGQzyLoyAXgV+HXBZ1zLyZ5qHxng/VdGxJGI+C/wDNkASmanbFjVCZhVoL5/mWDgy0PH0vMJ+v7dNNNXjYDlEXFXwWuvxcl+b+o/Y7CO5aZP9T3M/s9nENaJxki6Nk3PBZ4GtgNdkt6V4p8DnhrgfVaRLhFJmgkMNDjRSuDTki5O64yQNNC3/NVkncJB1ttwzUtkw0+atYwbCOtE24B5kjYBI4BF6bLMzcDjkjYDrwMDDUJ/LzBd0nqybtD/1t/CEfEM8E2y0fk2AU+SjTfcn/nAHZLWpGWPpPgm4Hj6Ufv2hmubDYF7czVrY+kOq1ciIiTNAeZGRCXjplvn8TVKs/Z2NfBgGjTm32RjSJuVwmcQZmZWyL9BmJlZITcQZmZWyA2EmZkVcgNhZmaF3ECYmVmh/wFD0ee/bS1+/QAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "ax = plt.axes()\n",
     "for t in np.linspace(0.,.99,5):\n",
@@ -413,22 +361,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEGCAYAAABy53LJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAbzElEQVR4nO3de9RdZX3g8e/PMODSURETnBiICRIvVBQwA2qLOlLbJKjptF6AVgO6mkGJy8tChaH10jW2VGkdumQSo2ZAq6JWO6aSFlm01rGdlITIVUAjUglkIF6IdhAw+Js/9o7vycu57fOefa7fz1pnnXOevZ9zfme/J+eX59nPfp7ITCRJ6tajhh2AJGm8mDgkSZWYOCRJlZg4JEmVmDgkSZUcNOwABmH+/Pm5ZMmSYYchSWPl2muv/UFmLphdPhWJY8mSJWzfvn3YYUjSWImIf21WbleVJKkSE4ckqRIThySpEhOHJKkSE4ckqRIThySpEhOHJKmSqbiOQ9IU+dqpcPeWYUcxWs7o7/IZJg5pnPijqBFgV5U0TkwaGgG2ODR5/F+5VCtbHJo8Jg2pVrY4NL46tSxWjOnEln+3vP32Q58Lzzp3MLEM2y0XwX3Xt95+7B8NLpZxdewf9v0lTRwaX+2SxoJfHVwcdXnBp4YdwfC1SxqPWza4OHQAE4fG37i2LNQ9WxYjxXMckqRKTBySpEpMHJKkSjzHodE3qddlXPtW2PNPw45iNHQaPaWRYotDo29SR0+1SxqHPndwcYwCR0+NFVscGh+TOnrKYbczHD01FmxxSJIqMXFIkiqpNXFExIqIuC0idkbEeU22R0T8Rbn9hog4oWHbpoi4NyJumlXnsIi4KiK+U94/sc7PIEk6UG2JIyLmAZcAK4FjgNMj4phZu60ElpW3tcD6hm2XAiuavPR5wNWZuQy4unwuSRqQOlscJwI7M/P2zHwIuBxYPWuf1cAns7AVODQiFgJk5teBHzV53dXAZeXjy4DfqiV6SVJTdY6qWgTc2fB8F3BSF/ssAna3ed0nZ+ZugMzcHRGHN9spItZStGJYvHhxtcg1eJN6rYY0gepMHNGkbPbCt93s05PM3AhsBFi+fHl/F9xV/3VKGuN8vYYX+mnC1Jk4dgFHNjw/Ari7h31muyciFpatjYXAvXOOVKNjEq/V8EK/GV4hPhHqTBzbgGURsRS4CzgNOGPWPpuBdRFxOUU31t793VBtbAbWABeW91/ua9RSXbzQzyvEJ0RtiSMz90XEOuBKYB6wKTNvjoizy+0bgC3AKmAncD9w1v76EfFZ4CXA/IjYBbw3Mz9BkTA+HxFvBL4PvLquzyCpJl4h3j93fAp++p3W2298D5zR3976WqccycwtFMmhsWxDw+MEzmlR9/QW5T8ETuljmJI0vtoljZo4V5UkTYKjz25efuL65uVz4JQjkqRKTBySpEpMHJKkSkwckqRKPDmuwXJqEWnsmTg0WJO6DCw4tYimholDw+HUItLYMnFI/ebUIs5JNeE8OS6p/5yTaqLZ4pBUH+ek6p9Oc1INkC0OSRoH7ZLGYwa7WJ0tDkkaJ63mpBogWxySpEpMHJKkSkwckqRKTBySpEpMHJKkShxVpXo4maE0sWxxqB6TPJmhNOVscahekziZoTTlTBxSVU6friln4pCqcvr0Gc6CO5VMHFKvnD7dWXCnlIlD0tw5C+5UMXFI0igZoenTW3E4riSNkhGaPr2VWlscEbECuBiYB3w8My+ctT3K7auA+4EzM3NHu7oRcRywAXg0sA94c2ZeU+fnkKSBG4Hp01uprcUREfOAS4CVwDHA6RFxzKzdVgLLyttaYH0XdT8IvD8zjwPeUz6XJA1InV1VJwI7M/P2zHwIuBxYPWuf1cAns7AVODQiFnaom8Djy8dPAO6u8TNIkmaps6tqEXBnw/NdwEld7LOoQ923AVdGxEUUie+Fzd48ItZStGJYvHg0+gUlaRLU2eKIJmXZ5T7t6r4JeHtmHgm8HfhEszfPzI2ZuTwzly9YsKDLkCVJndSZOHYBRzY8P4JHdiu12qdd3TXAl8rHX6Do1pIkDUidiWMbsCwilkbEwcBpwOZZ+2wGXh+F5wN7M3N3h7p3Ay8uH78UGO0Bz5I0YWo7x5GZ+yJiHXAlxZDaTZl5c0ScXW7fAGyhGIq7k2I47lnt6pYv/fvAxRFxEPAA5XkMDYnrbkhTp9brODJzC0VyaCzb0PA4gXO6rVuWfwN4Xn8jVc9cd0OaOk45ov5w3Q1papg4pFZcd0NqyrmqpFZcd0NqyhaH1Inrbrhgkw5gi0NSZy7YpAa2OCR1zwWbhIlDkoZjDBZsasWuKkkahjFYsKkVWxySNEwjvGBTK7Y4JEmVmDgkSZWYOCRJlZg4JEmVmDgkSZWYOCRJlZg4JEmVeB2HuuNKf5JKtjjUHVf6k1SyxaFqXOlPmnq2OCRJldjikFwiVqrEFofkErFSJbY4pP1cItYlYtUVWxySZrhErLpgi0PSI7lErNowcUhSncZ4idhW7KqSpDqN8RKxrdTa4oiIFcDFwDzg45l54aztUW5fBdwPnJmZOzrVjYi3AOuAfcAVmfmuOj+HJM3ZGC4R20pXiSMing68E3hqY53MfGmbOvOAS4CXAbuAbRGxOTO/1bDbSmBZeTsJWA+c1K5uRPwnYDXwnMx8MCIO7/rTSpLmrNsWxxeADcDHgIe7rHMisDMzbweIiMspfvAbE8dq4JOZmcDWiDg0IhYCS9rUfRNwYWY+CJCZ93YZjySpD7pNHPsyc33F114E3NnwfBdFq6LTPos61H06cHJEfAB4ADg3M7fNfvOIWAusBVi8eDz7ESVpFHV7cvxvIuLNEbEwIg7bf+tQJ5qUZZf7tKt7EPBE4PkU3WefL8+VHLhz5sbMXJ6ZyxcsWNAhVElSt7ptcawp79/ZUJbAUW3q7AKObHh+BHB3l/sc3KbuLuBLZffWNRHxC2A+sKfzx5AkzVVXLY7MXNrk1i5pAGwDlkXE0og4GDgN2Dxrn83A66PwfGBvZu7uUPd/AS+FX560Pxj4QTefQ5I0d21bHBHx0sz8+4j47WbbM/NLrepm5r6IWAdcSTGkdlNm3hwRZ5fbNwBbKIbi7qQYjntWu7rlS28CNkXETcBDwJqy9SFJGoBOXVUvBv4eeEWTbQm0TBwAmbmFIjk0lm1oeJzAOd3WLcsfAn6vQ9zqlUvESuqgbeLIzPeW92cNJhwNnUvESuqg6yvHI+JU4FeAR+8vy0xnQptULhErqYWuTo5HxAbgtcBbKIbKvpriKnJJ0pTp9jqOF2bm64EfZ+b7gRdw4HBZSdKU6Lar6oHy/v6IeArwQ2BpPSFJNXFtcakvuk0cfxMRhwIfAnZQjKj6WG1RSXVwbXGpLzomjoh4FHB1Zt4HfDEivgI8OjP31h6dVAfXFndtcc1Jx3McmfkL4M8anj9o0pDGnGuLaw667ar6akT8DjNzREmaBK4t3j8TuERsK90mjncAjwX2RcQDFENyMzMfX1tkkjROJnCJ2Fa6ShyZ+bi6A5GkiTBBS8S20u0FgFd3UyZJmnydZsd9NPAYYH5EPJGZBZYeDzyl5tgkSSOoU1fVfwHeRpEkrqU8twH8FPhIvaFJkkZR266qzLw4M5cCHwCOKx//T+B24P8MID5J0ojpdq6qV2XmTyLi14CXAZcC62uLSpI0srpNHA+X96cCGzLzyxRLtkqSpky3ieOuiPgo8BpgS0QcUqGuJGmCdHsB4GuAFcBFmXlfRCwE3llfWKqdS8RK6lG3FwDeT8P64pm5G9hdV1AaAJeIldSjrpeO1YSaxCViXXdDqpXnKTR5XHdDqpUtDk0u191w3Q3VwhaHNMlcd0M1sMUhTQPX3eifKVp3oxVbHJJUxRStu9GKLQ5J6sUUrLvRSq0tjohYERG3RcTOiDivyfaIiL8ot98QESdUqHtuRGREzK/zM0iSDlRb4oiIecAlwErgGOD0iDhm1m4rgWXlbS3lxImd6kbEkRSTLX6/rvglSc3V2eI4EdiZmbdn5kPA5cDqWfusBj6Zha3AoeV0Jp3qfhh4F8XaIJKkAaozcSwC7mx4vqss62aflnUj4pXAXZnZdnB6RKyNiO0RsX3Pnj29fQJJ0iPUmTiiSdnsFkKrfZqWR8RjgAuA93R688zcmJnLM3P5ggULOgYrSepOnYljF3Bkw/MjgLu73KdV+dOApcD1EXFHWb4jIv5DXyOXJLVU53DcbcCyiFgK3AWcBpwxa5/NwLqIuBw4CdibmbsjYk+zupl5M3D4/spl8liemT+o8XOMN6dPl9RntSWOzNwXEeuAK4F5wKbMvDkizi63bwC2AKuAncD9wFnt6tYV60Sb5OnTnQVXGopaLwDMzC0UyaGxbEPD4wTO6bZuk32WzD3KKTGJ06c7C+4MJzPUAHnluMafs+A6maEGysQhTRInM+wfJzNsyUkOJakZJzNsyRaHJLUzxZMZtmKLQ5JUiYlDklSJiUOSVImJQ5JUiYlDklSJo6omxSTPSeXUItJIMXFMikmek8qpRWY4tYhGgIlj0kzinFT7ObWIU4toJJg4pHHk1CL949QilXlyXNJ0c2qRymxxSBI4tUgFtjgkSZWYOCRJlZg4JEmVeI5Do8GL/GZ4rYZGnC0OjYZOSWOaLvTrlDS8XkNDZotj3Ezy1CLgRX6NvFajv7xeo29scYybSZ5aRKqT12v0jS2OcTXJU4tIdfJ6jTmzxSFJqsTEIUmqxK4qDZbDbmc47FZjyhaHBsu1NWY4RbrGVK0tjohYAVwMzAM+npkXztoe5fZVwP3AmZm5o13diPgQ8ArgIeC7wFmZeV+dn0M1cNjtDIfd9pfDbmtXW4sjIuYBlwArgWOA0yPimFm7rQSWlbe1wPou6l4FPDsznwN8Gzi/rs8gaQw57LZ2dbY4TgR2ZubtABFxObAa+FbDPquBT2ZmAlsj4tCIWAgsaVU3M7/aUH8r8KoaP8PwTPqFflLdHHZbmzrPcSwC7mx4vqss62afbuoCvAH422ZvHhFrI2J7RGzfs2dPxdBHgBf6SRpRdbY4oklZdrlPx7oRcQGwD/h0szfPzI3ARoDly5fPft/xMa4X+jl6aoajpzRh6kwcu4AjG54fAdzd5T4Ht6sbEWuAlwOnlN1cGjWOnprh6Kn+8wT4UNWZOLYByyJiKXAXcBpwxqx9NgPrynMYJwF7M3N3ROxpVbccbfVu4MWZeX+N8asfHD01w9FT/dMpaXgSvFa1JY7M3BcR64ArKYbUbsrMmyPi7HL7BmALxVDcnRTDcc9qV7d86Y8AhwBXFaN52ZqZngWTppEnwIei1us4MnMLRXJoLNvQ8DiBc7qtW5Yf3ecwNReey5jhuQxNCaccGbZxH3bruYwZnsvoP89ljCQTx7BNyrBbz2XM8FxG/3gx30gycYyKcR12O43skho8z2WMFBOHuuO5jBl2SWnKmTjUHc9lPJJdUv3juYyxYuJQNdN0LsMuqcHxXMZYMXHoQHZJzbBLqv86tSw8lzEWTByDME5Dbu2SeiS7pPrHlsVEMHEMQqekMYrDbu2SUp1sWYw1E8cgjdKQ22nskuolQdgl1RtPdk80E8e0msYuqU7nLJa8bnCxTDq7pCaaiWPSdWpZTGKXVKeWhecs+seT3VPJxDHpJrllYdfT4PTS9WTLYmKZOPppmKOnJrll0WuCsOupul4TxFNW1ROPRpKJo5+GOWHhuLcseh3ZZILojQlCc2DiqEOdo6fGpWXR7yGuJoj2+jmKyQShDkwcbRQLDHYvP13We9Lz+vL+q162lysu33lg4bBaFoO41sHkUBjUUFYThHpk4hhhW656QpMklH157a+ceyqnHl/v+ZgrvrmKl190Ra3vUadBHKO+MhFoQEwcU6pfP+jtflxPPX4L+emKzTYB459021n1whu54sP/Y9hhaA5MHG1kwpve9MjyN//KqRx7WOv/if7xudce8PyyLx7Nbd97Qr/Dm5Ox+9/0kEzyD/iwbPnnY4mT1tf6Hianepk4etAuaezc+8jRU19556kc/YT+TO9x6oe+wpbrTq1UZ9VxV3DFO1/el/dvZs8DR3HdD1/d1b5/sOlMrrn1mbXFst8Ln30rf77u0jm/zvyjYeuG8+YeUBPv+MiZ/PNN9R+Ll5xwC5v+6ydqf59uvOGP38jXdjyr9vepmpxMNNVEZn/6zEfZ8uXLc/v23kY6NWtxrD+56H75k29295rnH7+8p/euopeE8uvH/gPvet2VNUXUP/1MNv1KKMPSz2QzSgmlnwaRnMYq0ZzYe+suIq7NzEf8gJk4OqiSOF591Fv71rJo5869z+Dq28/qat8Pf/FV3PC9p1V6/ROfeSv/7Q2X9hDZaOgl0Yx7Qmmll0QzqQmllX4mmpFMKCaO3gwqcfS7ZVElQVRlQnmkurqkRpEJpXe9JJqhJhQTR29GPXHUmSCqmsaE8hvvurDltkltibTSKaHc/lfnDjCa8TKyCcXE0Zu6EkcVP/v5Y/ncTX/YUwyjYJITil1bnT3/7NbJ1ZZIe50SSv5Lkx+ZfjJx9KbnxPGZ3q5BuPSbrf+RTRoTyoEmNaHYtdV/R73qopbb+toSGbfEERErgIuBecDHM/PCWduj3L4KuB84MzN3tKsbEYcBnwOWAHcAr8nMH7eLY5CJY5S6nYbJhHIgE8oME0phYF1b45Q4ImIe8G3gZcAuYBtwemZ+q2GfVcBbKBLHScDFmXlSu7oR8UHgR5l5YUScBzwxM9/dLpa6Esc0tSz6pZeE0s4oJRuHDc9w2HDv+p5QxixxvAB4X2b+Zvn8fIDM/JOGfT4KfC0zP1s+vw14CUVromnd/ftk5u6IWFjWf0a7WHpNHMcvCb63p/m2fQ/D/3uw8kuqpWcDTxp2ENIEOo7M/95TzVaJo84rxxcBdzY830XRqui0z6IOdZ+cmbsByuRxeLM3j4i1wFqAxYt7W4nsxjvh4V/0VFWV3dRDHZONNAx1Jo5m/Tyzmzet9ummbluZuRHYCEWLo0rd/fY9PPkDBySpqkfV+Nq7gCMbnh8B3N3lPu3q3lN2UVHe39vHmCVJHdSZOLYByyJiaUQcDJwGbJ61z2bg9VF4PrC37IZqV3czsKZ8vAb4co2fQZI0S21dVZm5LyLWAVdSDKndlJk3R8TZ5fYNwBaKEVU7KYbjntWubvnSFwKfj4g3At8HupuWVZLUF14AKElqqtWoqjq7qiRJE8jEIUmqxMQhSarExCFJqmQqTo5HxB7gX3usPh/4QR/D6Rfjqsa4qjGuakY1LphbbE/NzAWzC6ciccxFRGxvNqpg2IyrGuOqxriqGdW4oJ7Y7KqSJFVi4pAkVWLi6GzjsANowbiqMa5qjKuaUY0LaojNcxySpEpscUiSKjFxSJIqMXG0ERErIuK2iNhZrm8+rDiOjIh/iIhbIuLmiHhrWf6+iLgrIq4rb6uGENsdEXFj+f7by7LDIuKqiPhOef/EAcf0jIZjcl1E/CQi3jaM4xURmyLi3oi4qaGs5fGJiPPL79ttEfGbA47rQxFxa0TcEBF/HRGHluVLIuJnDcdtw4Djavl3G/Lx+lxDTHdExHVl+SCPV6vfhnq/Y5nprcmNYjr37wJHAQcD1wPHDCmWhcAJ5ePHAd8GjgHeB5w75ON0BzB/VtkHgfPKx+cBfzrkv+P/BZ46jOMFvAg4Abip0/Ep/6bXA4cAS8vv37wBxvUbwEHl4z9tiGtJ435DOF5N/27DPl6ztv8Z8J4hHK9Wvw21fsdscbR2IrAzM2/PzIeAy4HVwwgkM3dn5o7y8U+BWyjWZR9Vq4HLyseXAb81xFhOAb6bmb3OHDAnmfl14Eezilsdn9XA5Zn5YGZ+j2KdmhMHFVdmfjUz95VPt1KsvDlQLY5XK0M9XvtFRACvAT5bx3u30+a3odbvmImjtUXAnQ3PdzECP9YRsQQ4HviXsmhd2bWwadBdQqUEvhoR10bE2rLsyVms5Eh5f/gQ4trvNA78Bz3s4wWtj88ofefeAPxtw/OlEfHNiPjHiDh5CPE0+7uNyvE6GbgnM7/TUDbw4zXrt6HW75iJo7VoUjbUscsR8e+BLwJvy8yfAOuBpwHHAbspmsuD9quZeQKwEjgnIl40hBiaimLZ4VcCXyiLRuF4tTMS37mIuADYB3y6LNoNLM7M44F3AJ+JiMcPMKRWf7eROF7A6Rz4n5OBH68mvw0td21SVvmYmTha2wUc2fD8CODuIcVCRPw7ii/GpzPzSwCZeU9mPpyZvwA+Rk3N9HYy8+7y/l7gr8sY7omIhWXcC4F7Bx1XaSWwIzPvKWMc+vEqtTo+Q//ORcQa4OXA72bZKV52a/ywfHwtRb/40wcVU5u/2ygcr4OA3wY+t79s0Mer2W8DNX/HTBytbQOWRcTS8n+upwGbhxFI2Yf6CeCWzPzzhvKFDbv9Z+Cm2XVrjuuxEfG4/Y8pTq7eRHGc1pS7rQG+PMi4GhzwP8FhH68GrY7PZuC0iDgkIpYCy4BrBhVURKwA3g28MjPvbyhfEBHzysdHlXHdPsC4Wv3dhnq8Sr8O3JqZu/YXDPJ4tfptoO7v2CDO/I/rDVhFMUrhu8AFQ4zj1yiakzcA15W3VcCngBvL8s3AwgHHdRTFCI3rgZv3HyPgScDVwHfK+8OGcMweA/wQeEJD2cCPF0Xi2g38nOJ/e29sd3yAC8rv223AygHHtZOi/3v/d2xDue/vlH/f64EdwCsGHFfLv9swj1dZfilw9qx9B3m8Wv021Podc8oRSVIldlVJkioxcUiSKjFxSJIqMXFIkioxcUiSKjFxSPxyRtNarusoZ06d3235HN9rSUSc0fD8zIj4SD/fQzJxSJNlCXBGp52kuTBxSDMOiojLysn0/ioiHgMQEaeUE9bdWE6yd0hZfkdEvD8idpTbnlmWPykivlrW+SjN5wc6QET8XkRcU67f8NGGK4//LSI+EBHXR8TWiHhyWf608vm2iPijiPi38qUuBE4uX+ftZdlTIuLvyrUZPtjfQ6ZpZOKQZjwD2JiZzwF+Arw5Ih5NcXXwazPzWOAg4E0NdX6QxSSP64Fzy7L3At/IYpK7zcDidm8aEc8CXksxYeRxwMPA75abHwtszcznAl8Hfr8svxi4ODP/IwfONXQe8L8z87jM/HBZdlz5+scCr42IxrmKpMpMHNKMOzPzn8rHf0kxncMzgO9l5rfL8ssoFvXZb/+kctdSdBNRbv9LgMy8Avhxh/c9BXgesC2KVeROoZjOBeAh4CtN3uMFzMz6+5kOr391Zu7NzAeAb1EsaiX17KBhByCNkNnz7ySdu5keLO8f5sB/T1Xm8gngssw8v8m2n+fMvECz36NbDzY87vU1pF+yxSHNWBwRLygfnw58A7gVWBIRR5flrwP+scPrfJ2yqykiVgKdFoy6GnhVRBxe1jksIjq1CrZSTKYHxczN+/2UYglRqTYmDmnGLcCaiLgBOAxYX3bvnAV8ISJuBH4BbOjwOu8HXhQROyimmv9+u50z81vAH1CspHgDcBXFWtLtvA14R0RcU+67tyy/AdhXnkx/e8va0hw4O640hsoRXz/LzIyI04DTM3P1sOPSdLCvUxpPzwM+Ui7kcx/FGuHSQNjikCRV4jkOSVIlJg5JUiUmDklSJSYOSVIlJg5JUiX/H2MgGbD7jSB3AAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "ax = plt.axes()\n",
     "for t in np.linspace(0.,.99,5):\n",
@@ -438,22 +373,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEGCAYAAACUzrmNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdX0lEQVR4nO3de7SddX3n8fcHUBCEIhCYQIgJNDDlMgY4gzBUioPKzQLaFoOOILKMMDCK1o5ErVK7spYXLgOiwVgYwHIvULI0cpFVQVsiJBBIuJVAohyTJpGLSQdNSfjOH8/veHZO9t7PPufs53n25fNa66w8+/dc9pfnbPb3/C7P76eIwMzMrJmtqg7AzMw6n5OFmZnlcrIwM7NcThZmZpbLycLMzHJtU3UARdltt91iypQpVYdhZtZVFi1a9OuImDCyvGeTxZQpU1i4cGHVYZiZdRVJv6hX7mYoMzPL5WRhZma5nCzMzCyXk4WZmeVysjAzs1xOFmZmlsvJwszMcvXscxZm1id+chKsnF91FJ3lw+1fesLJwqyT+YvQOoSbocw6mROFdQjXLKz7+a9vs8K5ZmHdz4nCrHCuWVj3yKtBHN/FE0fePdB4387vgD/6XHmxVO3pi+HVxxvvP/ir5cXSjQ7+60Iu62Rh3aNZophwVHlxFOnI71cdQfWaJYodp5UXh23GycK6TzfXIKx1rkF0FPdZmJlZLicLMzPLVViykHSNpDWSltaU3SJpcfpZIWlxKp8i6bc1+66qOecwSUskLZN0hSQVFbOZmdVXZJ/FtcCVwPVDBRHxoaFtSZcAv6k5/vmImF7nOnOAmcACYD5wPPCjAuK1TtHLz00s+jSs/eeqo+gMeaOerKMUVrOIiAeBl+vtS7WD04Cbml1D0kRgp4h4KCKCLPGc2u5YrcP08qinZoli53eUF0cn8KinrlLVaKh3Aasj4rmasqmSHgPWAV+KiJ8CewGDNccMpjLrB7086slDZId51FNXqCpZnM7mtYpVwOSIeEnSYcA/SjoQqNc/0XA6RUkzyZqsmDx5chvDNTPrb6WPhpK0DfBB4JahsojYEBEvpe1FwPPAfmQ1iUk1p08CVja6dkTMjYiBiBiYMGFCEeGbmfWlKobOvgd4JiJ+37wkaYKkrdP2PsA04IWIWAWsl3RE6uc4A7irgpjNzPpakUNnbwIeAvaXNCjp7LRrBlt2bB8NPCHpceAfgHMiYqhz/Fzg74BlZDUOj4QyMytZYX0WEXF6g/KP1Sm7Hbi9wfELgYPaGpyZmY2K54ay6vTy8xRmPcbJwqrTy89T+OE76zFOFla9Xnyewg/fDfOT2j3BycKsSH74zk9q9wgnCzMrh5/Ubp8V34f1z9Xft+TL8OGGzy6PmacoNzPrNo0SRYFcszAz61Z/eM6WZYfPKeStXLMwM7NcThZmZpbLycLMzHI5WZiZWS53cFvxPK2HWddzsrDieVoPs67nZGHl8bQeZl3LycKsHTyth+eA6nHu4Daz9vAcUD3NNQszay/PAdU+zeaAKplrFmZmnapZoth+cnlxUGDNQtI1wPuBNRFxUCq7CPgEsDYd9oWImJ/2zQLOBjYBn4qIe1L5YcC1wFuA+cCnI6L9UyqamXWqenNAlazImsW1wPF1yi+LiOnpZyhRHADMAA5M53xH0tbp+DnATGBa+ql3TTMzK1BhySIiHgRebvHwU4CbI2JDRCwHlgGHS5oI7BQRD6XaxPXAqcVEbGZmjVTRZ3G+pCckXSPpbalsL+DFmmMGU9leaXtkeV2SZkpaKGnh2rVrGx1mZmajVHaymAPsC0wHVgGXpHLVOTaalNcVEXMjYiAiBiZMmDDeWM3MLCk1WUTE6ojYFBFvAN8DDk+7BoG9aw6dBKxM5ZPqlJuZWYlKfc5C0sSIWJVefgBYmrbnATdKuhTYk6wj++GI2CRpvaQjgJ8DZwDfKjNmGwVPGGjWs4ocOnsTcAywm6RB4CvAMZKmkzUlrQA+CRART0q6FXgK2AicFxGb0qXOZXjo7I/Sj3WiXp4w0KzPFZYsIuL0OsVXNzl+NjC7TvlC4KA2hmZF68UJA836nKf7MGuFpyK3PudkYdYKT0U+zLPL9iUnC7PR8FTknl22TzlZmNnYeHbZvuJkYWZWtQ6airwRT1FuZla1DpqKvBHXLMzMOkUHTEXeiGsWZmaWy8nCzMxyOVmYmVkuJwszM8vlZGFmZrmcLMzMLJeHztroed0Ks77jmoWNntetMOs7rlnY2HndCrO+4WRhVsvrVpjVVVgzlKRrJK2RtLSm7JuSnpH0hKQ7Je2cyqdI+q2kxennqppzDpO0RNIySVdIUlExm3ndCrP6iqxZXAtcCVxfU3YfMCsiNkr6OjAL+Hza93xETK9znTnATGABMB84Hq/DbUXzuhVe5Mg2U1jNIiIeBF4eUXZvRGxMLxcAk5pdQ9JEYKeIeCgigizxnFpEvGY2ghc5shpV9ll8HLil5vVUSY8B64AvRcRPgb2AwZpjBlOZmZXFixwZFSULSV8ENgI3pKJVwOSIeEnSYcA/SjoQqNc/EU2uO5OsyYrJkztjDngzs9/rgkWOGin9OQtJZwLvBz6SmpaIiA0R8VLaXgQ8D+xHVpOobaqaBKxsdO2ImBsRAxExMGHChKL+E8zMxqYLFjlqpNSahaTjyTq0/yQiXqspnwC8HBGbJO0DTANeiIiXJa2XdATwc+AM4Ftlxmxm1nYdvMhRI4UlC0k3AccAu0kaBL5CNvppW+C+NAJ2QUScAxwNfFXSRmATcE5EDHWOn0s2suotZKOgPBLKzKxkTZOFpF1auMYbEfHqyMKIOL3OsVfXu0BE3A7c3mDfQuCgFuIwM7OC5NUsVqafZg/CbQ10dmObmZmNS16yeDoiDml2QBruamZmPSxvNNSRLVyjlWPMzKyLNa1ZRMTval9L2h3Yrmb/L0ceY2Zmvael5ywknSzpOWA58ACwAo9KMjPrG60Onf1b4AjgxxFxiKR3A/VGO1kv8Yp4Zpa0+gT36+kJ660kbRUR/wTUmyHWeolXxDOzpNWaxauS3go8CNwgaQ3Z3E7WD7winlnfa7VmcTLwGvAZ4G6yuZv+tKigzMyss+Q9wf1OYC6wL7AEODsirisjMLNCeflUs1HJq1l8G/gcsCtwKXBZ4RGZlcHLp5qNSl6fxVYRcV/avk3SrKIDMiuVl0/18qnWkrxksbOkDzZ6HRF3FBOWmZXGy6daC/KSxQNs3pFd+zoAJwuzXuHlU62JvOk+ziorEDOzntHFy6c2kjca6rPN9kfEpe0Nx8ysB3Tx8qmN5DVDXQwsJpsHagPN17UwM7NaXbh8aiN5yeJQYAZwErAIuAm4PyKi6MDMzKxzNH3OIiIWR8SFETGdbEnUU4CnJJ2cd2FJ10haI2lpTdkuku6T9Fz69201+2ZJWibpWUnH1ZQfJmlJ2neF0uLdZmZWnlanKJ8AHAIcDAwCa1o47Vrg+BFlF5LVTKYB96fXSDqArAZzYDrnO5K2TufMAWYC09LPyGuamVnBmiYLSWdJuhu4jay/4rSIeG9ELMi7cEQ8CLw8ovgUYGi6kOuAU2vKb46IDRGxHFgGHC5pIrBTRDyUmr6urznHzMxKktdncTXZnFC/BI4D3lfbChQRuc1RI+wREavSuavSynsAewG1CWgwlb2etkeW1yVpJlkthMmTu3PEgZlZJ8pLFu8uJYr6o6yiSXldETGXbOJDBgYG3AlvZtYmeQ/lPdDm91staWKqVUxkuO9jENi75rhJwMpUPqlOuZmZlSivz2Ju3gVaOabGPODMtH0mcFdN+QxJ20qaStaR/XBqslov6Yg0CuqMmnOsXX5yEtyoLX/MzJK8ZqhTJf2uyX7RoKlK0k3AMcBukgaBrwBfA26VdDZZP8hfAETEk5JuBZ4iW4HvvIjYlC51LtnIqreQPRz4o/z/LBsVL59qZjnyksVftXCNn9YrjIjTGxx/bIPjZwOz65QvBA5qIQ4bLy+famYN5PVZeFU8MzNreQ1uMzPrY3nNUGbdzWttm7XFqGsWkraStFMRwZi1ndfaNmuLlmoWkm4EzgE2kc0++weSLo2IbxYZnFnbeK1tr7Vt49JqzeKAiFhHNi/TfGAy8NHCojKz9vNa2zYOrfZZvEnSm8iSxZUR8bokT6dh1o281nb79ODyqY20WrP4LrAC2AF4UNLbgXVFBWVm1hV6cPnURlqqWUTEFcAVNUW/kFTWJINmZp2th5ZPbaTVxY8+LWknZa6W9Cjw3wuOzczMOkSrzVAfTx3c7wMmAGeRzfNkZmZ9oNVkMTQF6YnA/42Ix6m/1oSZmfWgVpPFIkn3kiWLeyTtCLxRXFhmZtZJWh06ezYwHXghIl6TtCtZU5SZmfWBVmsWARwAfCq93gHYrpCIzMys47SaLL4DHAkMrVGxHvh2IRGZmVnHabUZ6p0RcaikxwAi4hVJby4wLivCT05qviqemVkDrdYsXpe0NVlzFJImMMYObkn7S1pc87NO0gWSLpL0q5ryE2vOmSVpmaRnJR03lvc1vHyqmY1ZqzWLK4A7gd0lzQb+HPjSWN4wIp4l6ywnJaBfpWufBVwWERfXHi/pAGAGcCCwJ/BjSfvVrNFto9Vry6d6zQqzwuUmC0lbAcuB/022fraAUyPi6Ta8/7HA8xHxC6nhYxunADdHxAZguaRlwOHAQ214f+sFeYnC61aYjVtusoiINyRdEhFHAs+0+f1nADfVvD5f0hnAQuAvI+IVYC9gQc0xg6nMbHNes8JrVlhhWu2zuFfSn6nJn/+jlTrITwZuS0VzgH3JmqhWAZcMHVrn9LrTo0uaKWmhpIVr165tV6hm3SMvUXjdChujVvssPkv2bMVGSb8j+wKPiBjP8qonAI9GxGqyi60e2iHpe8AP0stBYO+a8yYBK+tdMCLmAnMBBgYGvN6G9S+vWdFefbRuRSMt1SwiYseI2Coi3hwRO6XX412H+3RqmqAkTazZ9wFgadqeB8yQtK2kqcA04OFxvreZWev6aN2KRlpdg/v+iDg2r6xVkrYH3gt8sqb4G5KmkzUxrRjaFxFPSroVeArYCJznkVBmVok+WLeikabJQtJ2wPbAbpLexnD/wU5kw1jHJCJeA3YdUdZwTe+ImA3MHuv7mZnZ+OTVLD4JXECWGBYxnCzW4ek+zMz6RtNkERGXA5dL+l8R8a2SYjIzsw7T6tDZf0trWCDpS5LukHRogXGZmVkHaTVZ/HVErJf0x8BxwHVkz0WYmVkfaDVZDI0+OgmYExF3AZ511sysT7T6UN6vJH0XeA/wdUnb0nqisbJ5KnIza7NWk8VpwPHAxRHxanqA7q+KC8vGpVenIvfssmaVaSlZpOci7qh5vYps/ibrZL02FXmzRNFvM8t6wkArWas1C7PO4dllmycKTxZoBXCyMOtmnjCwvTxhYEPupDYzG+IJAxtyzcLMbKQ+njCwEdcszMwsl5OFmZnlcrIwM7NcThZmZpbLycLMzHJ5NFQ369U5oDyth1nHqSRZSFoBrCebzXZjRAxI2gW4BZhCtgb3aRHxSjp+FnB2Ov5TEXFPBWF3nl6dA8rTegzztB7WIaqsWbw7In5d8/pC4P6I+JqkC9Prz0s6AJgBHEi2vOuPJe0XEZu2vGSf6rU5oIZ4Wg9P62Edo5OaoU4Bjknb1wE/AT6fym+OiA3AcknLgMOBhyqI0awantajfTylx5hU1cEdwL2SFkmamcr2SLPZDs1qu3sq3wt4sebcwVS2BUkzJS2UtHDt2rUFhW5mXS0vUfT5tB6NVFWzOCoiVkraHbhP0jNNjlWdsqh3YETMBeYCDAwM1D3GzAzwlB6jVEnNIiJWpn/XAHeSNSutTosqkf5dkw4fBPauOX0SsLK8aM3MrPRkIWkHSTsObQPvA5YC84Az02FnAnel7XnADEnbSpoKTAMeLjdqM7P+VkUz1B7AnZKG3v/GiLhb0iPArZLOBn4J/AVARDwp6VbgKWAjcJ5HQpmZlav0ZBERLwBbDJaPiJeAYxucMxuYXXBoVjY/fDfMz1NYh/N0H1YdP3w3zM9TWIfrpOcsrJ5endKjlh++G+bnKdrHz1O0lWsWnS4vUXTztB5mRfISqW3lmkW36NUpPcyK5ucp2sI1CzMzy+VkYWZmudwMZcXzENlhHiJrXco1Cyueh8gO8xBZ61KuWVh5PER2mIfIto+HyJbCNQsz624eIlsK1yw6RT88fGdWJA+RLZRrFp2iV9fTNrOe4JpFp+nmh+886mmYRz1Zj3GysPbxqKdhHvXUfu7IrpSThbWfRz0N86in9nFHdqWcLMysu7gjuxJOFjZ67psY5r4J6xOlJwtJewPXA/8JeAOYGxGXS7oI+ASwNh36hYiYn86ZBZwNbAI+FRH3lB132/TCEFn3TQxz30T7uW+iI1VRs9gI/GVEPCppR2CRpPvSvssi4uLagyUdAMwADgT2BH4sab+uXYe7l4bIum9imPsm2sd9Ex2pijW4VwGr0vZ6SU8DezU55RTg5ojYACyXtAw4HHio8GCL1M1DZPuRm5vK576JjlJpn4WkKcAhwM+Bo4DzJZ0BLCSrfbxClkgW1Jw2SIPkImkmMBNg8mT/BTJu7psY5uYm63OVJQtJbwVuBy6IiHWS5gB/C0T69xLg44DqnB71rhkRc4G5AAMDA3WPsVFw38SW3NzUPu6b6CqVJAtJbyJLFDdExB0AEbG6Zv/3gB+kl4PA3jWnTwJWlhSqQX/1Tbi5qTzum+gqVYyGEnA18HREXFpTPjH1ZwB8AFiatucBN0q6lKyDexrwcIkh9z43Nw1zc1P75dUg3DfRFaqoWRwFfBRYImlxKvsCcLqk6WRNTCuATwJExJOSbgWeIhtJdV5XjITqpiGybm7akpub2sc1iJ5QxWion1G/H6LhN2tEzAZmFxZUEbpxiKybm6xIrkF0NT/BXbROGiLbj81NY0kKbm4aG3dY9zQni37Sj81NeX0QUz5aXiy9zs1NPc3Johfl1SB6rbmpldqD+yDaxx3WfcnJohf1ag1irP0MblYam7E0K7kG0bOcLMarylFPvVqDGGs/g5uUxmasSWHPE4uJxzqSk8V4VTnqqdtrEE4K5XJSsHFwsmiXokY9tTKCqVNqEO0cjuqk0Fy7Rx45KVgOJ4tOl5coiqxBlPEsgpNCpqxhp04KNkZOFp2ijP4Hf/nn66ZnBfzFbyVysugU7ex/KLo5qNkX6vrnYMmX2/Pe/cZf/tbBnCxa1a5RT6OtQQx98T9U0V/r/fjl7y9tsy04WbRqtKOexjq1RlVJYbT8hWrWV5wsRqvVUU+dOgeTv+TNbAycLMarjMn5/AVvZhVzshivdiYKJwUz61BOFlVwUjCzLuNkMVp3D7R+7FbbwT4fKywUM7OyOFmMdGO9Rfxa4GmZzayHdU2ykHQ8cDmwNfB3EfG1smP44WMn8v6Lf1j225pZm53435bww8u+U3UYXaUrkoWkrYFvA+8FBoFHJM2LiKfa/l4fiXZf0sw6zPx/ORi9c07VYWym0xNYVyQL4HBgWUS8ACDpZuAUoO3JYvrbxfK19fdt3AT/b0O737EIBwG7Vh2EmY3C/H8BvbMdV7qAiP/TjgttpluSxV7AizWvB4EtbqukmcBMgMmTx7Zi15IXYdMbYzq1gyytOoARnLzMul23JIt6vc5btBdFxFxgLsDAwMCY2pM2bnIzlJnZSFtVHUCLBoG9a15PAlZWFIuZWd/plmTxCDBN0lRJbwZmAPMqjsnMrG90RTNURGyUdD5wD9nQ2Wsi4smKwzIz6xtdkSwAImI+0IYFJczMbLS6pRnKzMwq5GRhZma5nCzMzCyXk4WZmeVSRG8+hCZpLfCLMZ6+G/DrNobTLo5rdBzX6Diu0enVuN4eERNGFvZsshgPSQsjYhQLV5TDcY2O4xodxzU6/RaXm6HMzCyXk4WZmeVysqhvbtUBNOC4RsdxjY7jGp2+ist9FmZmlss1CzMzy+VkYWZmuZwsakg6XtKzkpZJurDCOPaW9E+Snpb0pKRPp/KLJP1K0uL0c2IFsa2QtCS9/8JUtouk+yQ9l/59W8kx7V9zTxZLWifpgqrul6RrJK2RtLSmrOE9kjQrfeaelXRcyXF9U9Izkp6QdKeknVP5FEm/rbl3V5UcV8PfXcX365aamFZIWpzKS7lfTb4biv98RYR/sn6brYHngX2ANwOPAwdUFMtE4NC0vSPwr8ABwEXA5yq+TyuA3UaUfQO4MG1fCHy94t/jvwFvr+p+AUcDhwJL8+5R+r0+DmwLTE2fwa1LjOt9wDZp++s1cU2pPa6C+1X3d1f1/Rqx/xLgy2XerybfDYV/vlyzGHY4sCwiXoiI/wBuBk6pIpCIWBURj6bt9cDTZOuQd6pTgOvS9nXAqRXGcizwfESM9en9cYuIB4GXRxQ3ukenADdHxIaIWA4sI/sslhJXRNwbERvTywVkq1CWqsH9aqTS+zVEkoDTgJuKeO8mMTX6bij88+VkMWwv4MWa14N0wBe0pCnAIcDPU9H5qcngmrKbe5IA7pW0SNLMVLZHRKyC7MMM7F5BXENmsPn/wFXfryGN7lEnfe4+Dvyo5vVUSY9JekDSuyqIp97vrlPu17uA1RHxXE1ZqfdrxHdD4Z8vJ4thqlNW6bhiSW8FbgcuiIh1wBxgX2A6sIqsGly2oyLiUOAE4DxJR1cQQ13Kltw9GbgtFXXC/crTEZ87SV8ENgI3pKJVwOSIOAT4LHCjpJ1KDKnR764j7hdwOpv/UVLq/arz3dDw0DplY7pfThbDBoG9a15PAlZWFAuS3kT2YbghIu4AiIjVEbEpIt4AvkdB1e9mImJl+ncNcGeKYbWkiSnuicCasuNKTgAejYjVKcbK71eNRveo8s+dpDOB9wMfidTQnZotXkrbi8jauvcrK6Ymv7tOuF/bAB8EbhkqK/N+1ftuoITPl5PFsEeAaZKmpr9QZwDzqggktYdeDTwdEZfWlE+sOewDwNKR5xYc1w6SdhzaJuscXUp2n85Mh50J3FVmXDU2+2uv6vs1QqN7NA+YIWlbSVOBacDDZQUl6Xjg88DJEfFaTfkESVun7X1SXC+UGFej312l9yt5D/BMRAwOFZR1vxp9N1DG56vo3vtu+gFOJBtd8DzwxQrj+GOyquITwOL0cyLwfWBJKp8HTCw5rn3IRlY8Djw5dI+AXYH7gefSv7tUcM+2B14C/qCmrJL7RZawVgGvk/1ld3azewR8MX3mngVOKDmuZWRt2kOfs6vSsX+WfsePA48Cf1pyXA1/d1Xer1R+LXDOiGNLuV9NvhsK/3x5ug8zM8vlZigzM8vlZGFmZrmcLMzMLJeThZmZ5XKyMDOzXE4W1rfSTKGFPHuRZiTdrdXycb7XFEkfrnn9MUlXtvM9zJwszLrfFODDeQeZjYeThfW7bSRdlyas+wdJ2wNIOjZNCrckTWS3bSpfIelvJD2a9v3nVL6rpHvTOd+l/pw8m5H0PyQ9nNY/+G7NE8D/Lmm2pMclLZC0RyrfN71+RNJXJf17utTXgHel63wmle0p6e60vsE32nvLrB85WVi/2x+YGxH/BVgH/E9J25E9pfuhiDgY2AY4t+acX0c2meIc4HOp7CvAzyKbSG4eMLnZm0r6I+BDZBMzTgc2AR9Ju3cAFkTEO4AHgU+k8suByyPiv7L5/D4XAj+NiOkRcVkqm56ufzDwIUm18wOZjZqThfW7FyPin9P235NNp7A/sDwi/jWVX0e2EM6QocnbFpE1AZH2/z1ARPwQeCXnfY8FDgMeUbba2rFk06kA/AfwgzrvcSTDM+remHP9+yPiNxHxO+ApssWgzMZsm6oDMKvYyPlugvwmpA3p301s/v/QaObOEXBdRMyqs+/1GJ6HZ+R7tGpDzfZYr2H2e65ZWL+bLOnItH068DPgGWCKpD9M5R8FHsi5zoOkZiRJJwB5Cy3dD/y5pN3TObtIyvvrfwHZhHWQzYo8ZD3ZEptmhXGysH73NHCmpCeAXYA5qenmLOA2SUuAN4Crcq7zN8DRkh4lm7r9l80OjoingC+RrTr4BHAf2frKzVwAfFbSw+nY36TyJ4CNqUP8Mw3PNhsHzzpr1iXSSK3fRkRImgGcHhGVrBNv/cftmGbd4zDgyrQAzqtka2ablcI1CzMzy+U+CzMzy+VkYWZmuZwszMwsl5OFmZnlcrIwM7Nc/x/GiyIl4NlIIwAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "ax = plt.axes()\n",
     "for t in np.linspace(0.,.99,5):\n",
@@ -514,6 +436,19 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {},
+   "toc_section_display": true,
+   "toc_window_display": true
   }
  },
  "nbformat": 4,
diff --git a/bmcs_course/4_2_BS_elastic_plastic_slip.ipynb b/bmcs_course/4_2_BS_elastic_plastic_slip.ipynb
new file mode 100644
index 0000000..f12403d
--- /dev/null
+++ b/bmcs_course/4_2_BS_elastic_plastic_slip.ipynb
@@ -0,0 +1,678 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 4.2 Bond behavior governed by plasticity\n",
+    "Define a bond-slip law governed yielding with hardening or softening."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "import matplotlib.pyplot as plt\n",
+    "import sympy as sp\n",
+    "sp.init_printing()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## The onset of inelasticity"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAADEAAAARCAYAAAB0MEQqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACsklEQVRIDcWX/1FTQRCAA5MCMHagHaB2gB2AHQgdyPhX8h+DHQgVKHYQ7ADoQDpQ6SB+387tm3sv7yVhQNiZZe9293Zvf90LW4vFYlTDbDb7xP49uFf4l9Dbsp4Uugt9Bd6g/6bwno8YRB9Op9MFeN0nk4fsEJwPyZ+Sv92XPrKbVfjWJy+879Cs0Aq1/y/qDQK3tpNgK62CX6uETyUbCiIqQUVu6ouwP8096zvWP3L/nHQ84NzBbVWBSx/Ca2Ue3i3ogO9AWwEP2G3Y6JuQ34VhQq7uayONLQWBoZyHCeuvKPoiydsBX4MNIDcAdd6CLxrBmgXnrlH5CI3AoXP2vnJHa46GGH3vcg7us97qa6ecB50cgQegF/Q5bQ1y2R+H5Q3/cMbAd6F15bSxsR3OWjmTF/dZqgSCqETHCeyl9upeRJ1N4I9K2P8L8YW7YN1qXeUbgMmOc32VWJqHYvAkDePUcmbbJXsjylmz6AWuQOdsDs92ui94T9ty1KoExvJiS0aL83T0mUUTlEzkXsjgBGfnuHNGnWwlX7XIIjx/IZwqA5t2Za0t/eTwj+B9YZ/gXWOGupXIeRgsL4bMgA7NaIIOL3VSHF2w/5nCispvnmn5RV/aDcDzJ0V+xvqd+gI873CXZ7pB7BeleuhkBXDI6MN4YTUkDcpgbRKcmaxs6jkPmajgoWMlukPty2NQH5BbYekBNEG7tmPAGKFZ9JClFkfwzFgMIHQCqpNyX6neINGpwUuEvYpp+X0WZVlJ7fqt6X40vaSv4lBHmIim5Q1CY3WUbB8FDKBpES3iy33d17L7IIKrBZz1g+pdBb9Lzly8kNvBeoQ/GGyyztoWsGJDmVznMdoxlbBjUHZLQv5CiHYdJ/eB1Ozu4UwzOnzJ+iH/Z9gZ8WJpUMBe3S1n7H0goqX+AWo4hU7cghCdAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle E_\\mathrm{b} s_{el}$"
+      ],
+      "text/plain": [
+       "E_\\mathrm{b}â‹…sâ‚‘â‚—"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "s_el = sp.symbols('s_el')\n",
+    "E_b = sp.symbols('E_\\mathrm{b}', positive=True)\n",
+    "tau_ =  E_b * s_el\n",
+    "tau_"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAAVCAYAAABbq/AzAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEdUlEQVRoBeWZ61EUQRCAD4oAUDPADFAzwAykjADIQMp//KMkAzUC1AzECFQyECNQyQC/b2pma/Yxw97eCSd01dI73TPdPf2a2WPt6upqtgpwdHS0hR074HerYM9N28C+X6DzHHyRdK91gwPzFcznPDtx0hk4LXgYadtgnamwJ5E2GSFjk8Ufweq9t8D+P7L5Q3Dw90bXEzBOoJ2ALSmdP+gw6Pvwd7vrJ46/LFHWRBNWYtkeVuiLkPDrQybh+FQ1p0P8SPsAThVVmVZnxSB/Ay8sq65p9bn44BIrz8B2r1mvcuIWUrXY0mrwo8YcyTtkXtI3csmdnnbM7n7ynAxWDoxQOUTwPHcD4zdpHKP8KY2nYGR4bs3A975qkv+iXy/AO6XK8cBvVQ2TPWNalQJNITp4E9wKZFJ2DfaG0tIzNB/ZJsWvyLP0bYNT9A2Jn4t2Q7bok91ecFAeqgbmQ97finmkeaN6zNMAfAPjnKc8DxrG+BfbmTeUIqDjO8w9cAgG+DNjD8yD4qJ/xFiGLcjQj+95XvC+VjDVIjgYamup/+uQA55dHh3fuoMrFLrtyDNjKhjc36XFyJe/Dc6rRH2L6Cypq9KXZQtyrHwTutbK9clmr3IghsrpOARyu/3A7zrNOfOCVamxJQiBQ9cfJng79Fuo2gbhm5leR+eBpjIri+a2pSLLAqjtw8BtDQWnd95EJd4iAkQHGMQ8oyN3eQg9lzxuxErxzNtn7FUzVXdPmWsgLvxh3BWs3Kh3tC1dGdlYH1fbuXNbwUF5qBro9vUWxE0n2mtemmBJhK/zzFrBs8kv3VpVOC+Ury9dYG1qad4IQ5ZB8/7/Rh5PrS10xS00HmsL8/SBieE5KeiPZzzH8PJE1s+1M9OOctE9c1JGFksOJUZd5+SO1wgz2l8W/IXBrBjTWnSwhgyBMpqruxOibPGNBSYaNo8tzvVM8UapL0xiaQGg6T+rsLYHE/OyGxyvtjMW5lGWFAC6EdfpraqRCa9RxrvB9UxKleiUIVBPqQVZVSlZwlrkWTk3fhlA57W2YJsO9VzU+Z8YJx+axPIS6JNvaVDA+uRsAyFmvVc7BQQh0Iy0BglmtnMS31tbUiy/BAYrN2ponu3TLBsCy97rpjw3qA1+Vy304auwCXCtLdgVkhNsG/ua6QiVko1NuN6xkfF99dNkz+C48WX9gKngBAamqaZEzDG6bYUznt4ZAs21toVbhzltsTLyzvKSsRWVQMd7Hg/edqGbhOGjfj2tWBQjtKkS3j0YrbDi2ZXp81y5jVaVmbCc1+gDnWvCzxhbNT75/oLjoRnEIfCyFbpJ7/85Q7NrtGiA2eFXraBxj6DnBgVG6Q9zLXM/eKuVVlq/KnTs98zWuafRpt6tlTk63uB95r2VvIz13RdwOIc3opDJCEGeP2POoJoO26rnXOsCUFuwojztD7fWkn34y/OrBPqgOWKW1tZK2sbQMdhMsnJsh/8z2Kryy8DovcS9t7rHwm1ttPY7PhHn2q5MLm+T/hxkwi0EfwHEAsoiJZo6qgAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle E_\\mathrm{b} \\left(s - s_{pl}\\right)$"
+      ],
+      "text/plain": [
+       "E_\\mathrm{b}â‹…(s - sâ‚šâ‚—)"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "s, s_pl = sp.symbols('s, s_pl')\n",
+    "s_el_ = s - s_pl\n",
+    "tau_.subs(s_el, s_el_)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFoAAAAWCAYAAABAMosVAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC3UlEQVRYCe2Z0VEbMRCGMUMBTEqADqCEmA7IpIJAB2F4st8ypAPSQuggpIIwdBBKyKQD5/uE7rDlM9z51sHJ3M4cK+lWK+2v3dWeGc1ms52BnhCYTqcH9H4+jcS09mLU/FdarrDmBMBvI63ajVT2r+vK3nwQDbK4DB696B0XdD8tDrXvcUBGwz6P6eeB54Kx3/ABaEGQAESAxvDzNNDxD/ME+RouwDvwr7DvPMf2h9QhCo90CdOj16XTYqKRcQTgevcAtCAAht58Cr+x34MSqHl+Shm009iQox9R0ZsN/bWJQzosJh/l/p08BGgWMWxOsuIlxvvOeS/rtAL4vKQwcAD9lTeXQPVdxYOLvQzZrCHXN+z6Grbu/DMm9vLmcmHwUN/tvJOEeHS50Lb0MXTsXuDPfXyc8z7Mm9Hlwe3DF6I4BGiUfkS5ec4wbCJDaKMpoFx0bk+WW6nEWiFzXY5X/TkdrexC3oM9hCeQc/8X/L430Cipwu4ti3jT2re0sZ0ImVRbVv1Nc9bzpv+S17miP+Zp8uqV3ox8J7uQ9/JLttOuSj0Bf+c+egGdlf+A1/mZtmFzr/LXItavPhoEW+OtjxeARsYQb/Rm3glaV7v8ONHz/VCpCV3J4UaTycSXCnWhDyhYAjNv8BKeTrGNQmQFwpAryX294WmKhoe2ayAnmIJqSNe6aPsL3TE8AUF7JSEj8J3sKpXt5YUac1gp3KL/HplvLeRqEdZv/Bpj3PCLKO88SIF2nSp32r/JttN8kTrbVWrcLQd69gUnFeg99YRNB0y92NR2RtsokQTde6Qt9bYrDGiM8ALSA5dSSltrNihXgWr4C5o17ospw/0gF2JXGNDsSQPqHOgmt4UAy8P3MWVYhjamK8abKMSuSKAt+htv8abdv8KYXm3quGvrzXmPIXaNtvV/hoChJ0VchhmvlAa8qK2d/3rk9aqjaws201ioeyOWAOCVP3xF6H9Oxx9x6wELSe8rywAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle - \\bar{\\tau} + \\sqrt{\\tau^{2}}$"
+      ],
+      "text/plain": [
+       "                 _______\n",
+       "                ╱     2 \n",
+       "-\\bar{\\tau} + ╲╱  \\tau  "
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tau = sp.symbols(r'\\tau')\n",
+    "tau_bar = sp.symbols(r'\\bar{\\tau}')\n",
+    "f_tau = sp.sqrt( tau * tau ) - tau_bar\n",
+    "f_tau"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKgAAAAmCAYAAABQ8dAcAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHqklEQVR4Ae2c4VUcNxDHDx4FENKB3YHtVADpwAkVYDowz5/gGw93YKcCx+4gTgUGd2BSQQgdkP9vTxLaXWlPe7e3Jx0778nSSiNpNPprZqQj2Xl4eJiVSBcXF2UKnrmypdednETcy0mYnrLcSpnPe/aZ2AvTwG5h8lbiCpivVfhaouyTzP00UCRAtcRjpc/9ljpxl6iBUgH6QlZ0sqAlIq6nzMUBVMA80honcPbc6FLZS7wk/SZlT+59ScTpgF+p677SM6VbpTPV3SvPkoqzoNLi0eTel8OSAecH5adKv2qUA6W/lxttnF5FAVRKfSG1fB9HNVs5C68fPl3qg3gea5olFQVQaZDb+6csNVmOUD4YrWv367JaSWkx6Gud9rOsNFiQMNJd84cNPBJ0Pc/y+7cYC2rcEEH9RMNpgAvTdEkaSJ/ET523d0Cs9Gag+YobRmvHwyS5a/EBzq/K3+e80J3mH4tI4LcSmBse740Qb47WcnHrg3ANKOK7+F9SsW7SPDea41C5jZtqU6qep5PPypH9yZLWzyHGKto9a+lCbRzil8pPW42ZVbRiUAnNiXqvnL8WAoDBDVc9i+RNcu2kuQDfTHkQnEYAnktGkcfMl2t2IsHQRdBwSIcYnufKK3Ca7zvlWb6OtACK1o3QFLtuzH+qPagEOg5Mv2u8qCySl8NyrTxqNQaWJ9vhpIN7JVz3W6Wa+9Y3ng/XfqmyfXICqBs52EaGoAFEwWo/DQJUbbbTop8UfzDQCIQCu9wRN3sr8wjiZD/FpST8R6kGUH1jWatQSLkjAaHLMzm+oQua94vGJMWJGLSZzs/Pb5RUXW9T3ZVfp+9n/vc6yppjX+kmNjYyKP2ItT/VenSmdFT6+mMWFFdQs55CO260ZjFVN4ZLJWaqydI4bkl/GypZcW3/mr5YDEKCjcRdI8mCzvA8Xboz6thMJj1wIX+nhFUP0VkLoOoEIKADlT+QK1HHIM2H3pl4uM3vK++12eIH8ATn3SZ+/usRLitGuPZFz0+8AJxYGZX/pW/i566wQc3Dk+YeSxaMyejrS9WY9IDBgA6VMBhVbGzKyqoY9LYFUNXbWM5tqGG+0aA1i6lvwAmIXyn9BF8KqR+Ap9/iGGT+W3EX+JHhLjavkZHfm/0xiFlra4n1H7J+KFk0DsbiDyXePWP/DRE6iVmmIZfVeyzJjIf+ptwZJ9ak5O9RNW4IoIBnFmCuuQq1V5uunM0m+E4i8QMoEsJUc8U6ihf37RYR4cPCcwJjxEbNNNZ/ynh54K20thbamyQeNjd5XaZ/7VA3x9T3UrI0x5Fs3NQ54Gx0jDiA6HllGloXGo+9J1Wkb9YR3MMQQGEObaBzs0ZgwOUmqWZK+4eT8lGJcIGnkKZ180c51oeb129ILWt8NhOvwEEirHijb55hrKcIDkU/NQz6jMaYZt5esgQFnHu60D5F2JevXocuGtKwz4RdLaoBVIJYi9ZiNkLaAd6psBRwNI4F9SeNQZDcBfQu8FpZ7lTA2rVIc2FBGAMrXG2mysx5RZvSaG6e+QaWBUPSFXsfqH209WmuVQhPGXyLrQFUTNaqRE+mFI1i2NyaSdY31skCBevY+UcI4udXKsbg9DTf62ZqA7hROdRmiU1gM0LEBiKTCxM0Lr+SAdCxNy9JFsmFHrHcXKYg5P9Ficd1e7ipRz9dlyAOBPrNmrQm5ARP/tqczLuuNC+A5FmMWfUohbisaT1RYvWHB+IBbGxGSvwGALFw9G8SJ6rLQlh+FhZzxVhXe+gqfs2FBcXFjk19ZGHdxJg8haFP9O10oTqMBOFC1yFDJykHXGwbJTAXXceeFgk4uBFWSEZU1aEMFAphneCx7Vg+QFEj1blJVAasAO+Ico2x/oGbR0CA76ycYaFvl4UwbFXswmaGiP7cdGm7V2Id/A8fmnPRvm5aKIvkQsdc5LCiX/Rt9YzstFlCX9f2I5K/Uv1JpC2narxtbP9mAJTFB/3/iqsAsL5SQ8NZ8OLmHWgkExbCbk6on6sTL4dhptSKKVWHDK3wwXUesZAii+GZKcelf/PEqyym941XaN0TbLv6cxC5jCbp0PbbRC4ZO43Q7hqFApzOqobmkXAcDpSIRfAJwGJdU4lH3k247VT5+vKhD3t46Ys+sKyWsI6Vl7IVjZxLbNQqNXiz/hwMoAKbs5Yq46IIBXwlxxQBD6cdK2EJ9+4sqq2M5eL9qDYsqJMhxpt7vVkDFpDDO9M3eiH5B9Bax+bBhp++6C8LzyFZVqK9lXo/dkYZKIUaFPSzyrGLCzw+2ecmrASgBmR3PkNi2V6qapeixL45sQFGvIqNnYnR+OPiCrBGUN6R8RohN8/9YR0hm5l63Kz1F/XjTj+fTcrmVx4uL2wEt2xuqFjFXqQ+gJuD0rtvr4nWyCzZcc2s37eYSTOqD54L198ZWiUNlgnTUBZ01eXg5rEYWF8s6eEyA5qNKRacZs247d7gpK/WX/rajQoes93H4kZL9kKEBUDRvjvbqGBjTq51Yz3xAscqc1ifPOVkQdmMbbuN9wKYQMmTS+ezS68Bt4A5CwtqLKZ9s0u+vW+B/qclLNBALhYUMSs3L7BuTYC/QPdTc4IGcgIoljPl3TRhWRPLtmjgfw7XkNedOQ1bAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle E_\\mathrm{b} \\sqrt{\\left(s - s_{pl}\\right)^{2}} - \\bar{\\tau}$"
+      ],
+      "text/plain": [
+       "                ____________             \n",
+       "               ╱          2              \n",
+       "E_\\mathrm{b}⋅╲╱  (s - sₚₗ)   - \\bar{\\tau}"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "f_s = f_tau.subs(tau, tau_).subs(s_el, s_el_)\n",
+    "f_s"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The question is, how does the stress develop in the inelastic regime?\n",
+    "This means when $f = 0$?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAD8AAAArCAYAAADPGFBSAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADMUlEQVRoBe2a7XETMRBA7UwKgNCB04GhA0IHyVAB0AEZftn/GOiAoQIIHSR0kKSDpAM+OjDvyZLG50R3ieNhTgc7I0un1Z31tKuVTvZ4sViMapT5fH5Iv1+U+o7+TUmX6se1wieAh+Q7D7m59nt3awXArd/S93ekRwWGY9p8LOhCdZXwQH2IUM/Jf5O8fh/LZKMRba5Doe3DOV9Tms1mU9Lhap+5Pl29vmu5Ostj0UuMaQrC9ZSC1r+3DCHgvYT69N7k3DAEeNf7803gq17ncfkJ0Ffk403ga7e8Vu+O6oWRqR1+H65PBbbO6qrdvpOuo0Htlu/Aa1f/h28fn+Fq/2nLN7a3rJe+IPyItnbLeE5d3koOzQcyPJAXwL1KsORuGZ+SOk9Eah2UAA/oBIBpAo8wx+QbbyBqGJBk+Z92FvhfZF9JJ5TPrCsJeg8Rvpf0hfrsWQV9qObZf+VgMW9y+MIDvllrmytn1BUPCJdN6v4ccxCQXP5bQgHaIyKD3z7lwbq+S91JBCVbCsDh7GvI4JIK73xvuHe0vFNg0JLc3ldDxbXdQHbNAORpoGKIkgNen+GiJ+qdORhTTrFoL/bdszzj1yXt3Z90ShXwiQIol8AiHPrX6I/IG9M43b+eO+erEICS1b+0dNg9SvKIlmZLVTXwdDdZs3XzRburTurYoCb4YHk8oPGixbX7kSCUDdh3DtQ1wRvQGlYH1jnesDR1rlQTku1bZbdV2xMlIGm+71H2wNIIb53LsoeYWQTnwjbPSI+z4pZCFfD0O833xosRoBekRoDzmuQGrfOlqxa3D5YHqjHfAVyfBp2uvuoAtcDfmO8Rwp+lgzAwToE0PWJte9Z7twcqAd34MRKd0T2Jf1TIg2ElegOig6IYG/zDQr6n9/B0OM33hotLkwQgPcMIn8G4FtoziRATyB1E40De+tbg9uGli86vz3c4gnUTVMPqUZeDIfc7eB7VJU8a9dLydFCrfSa5bJlG1Hnu4Ou34lJnm6R3v3/r4Nh4RRyM8Dzr+gqv+x7ZwS2L4Nkbdrb88F49Dm/IVqZs8NNDcuzopeW3NIIexR0A6+OcIk8o52Bn5R+8MaqBJpgVCAAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle s - \\frac{\\bar{\\tau}}{E_\\mathrm{b}}$"
+      ],
+      "text/plain": [
+       "     \\bar{\\tau} \n",
+       "s - ────────────\n",
+       "    E_\\mathrm{b}"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "s_pl_f0 = sp.solve(f_s, s_pl)\n",
+    "s_pl_f0[0]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAABoAAAAMCAYAAAB8xa1IAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAvklEQVQ4EWP8//8/A6WgoaEhBGiGKy5zgPLpjNSwCJcFyOJMyBxaslmoYTgwaMqA5lQCsQAO88optghoSSfUcGcg/QGIQfx2KBtIMTAA1dxjAMURubi+vt4IiEOQ9QP5u5H5MDYL0DaQd/eCrSaeSAXqOwfCQC0gDAZAvhGQAfIVBgBZBJIwxpAhTyAcqG03Nq3UTnWg/HQGm0VUy0fAkFECWnAXSDNis4iaPgL55h42S0Bi1LRIGWjeTFwWAQALMXeXGKiinwAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle - \\bar{\\tau}$"
+      ],
+      "text/plain": [
+       "-\\bar{\\tau}"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "tau_.subs(s_el, s_el_).subs(s_pl, s_pl_f0[1])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "So far, so good. We obtained a trivial result telling us that the stress cannot grow over the \n",
+    "introduced elasticity limit. But in this case we can just reproduce the constant bond-slip \n",
+    "law - now extended with a elastic stiffness. How to provide a general framework suitable\n",
+    "for an algorithmic treatment? How to distinguish between loading and unloading?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "So how much plastic deformation was consumed? What was the direction of flow? \n",
+    "There might be several different processes going on the material structure?\n",
+    "Let us postulate, that they can be clustered by a positive flow variable $\\lambda$. Then\n",
+    "we assume that the rate of change of all state variables representing yielding \n",
+    "can be related to the common positive parameter $\\lambda$ and that the yielding direction \n",
+    "is normal to the yield surface $f$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAADMAAAAvCAYAAABOtfLKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADoklEQVRoBe2a31EbMRDG7UwKoAbTgVNCoAMYOjAdhPETvDGkAyghoQOggmTSQVICSQfk+8laje6sO584nZ5OM7L+rVb77bdaYyXLt7e3Rc1yc3Oz0nlnqnelz/1YWuEAfYC4F6jlANkskapgPCsrtc9ZVnph7cMRR6qw+0f1SnP/1LpSFYxOvFK93R2d9+mBwCggFmq/q3lR/cSY8mHX7D4lcKS6UQV50YJuKTxR+/hOxdyzuOCUdWxrGwyUvar+ltBJvLNAfysdMDOmxE628ApzDTCc4j3n4nHMqfFe6YSVM687Xhrc195j1fiurf3mn6ZkD4xfuFdLSGBEiQIrpVMx+hoJoAuMxfVmLBLvEFh5GKvL9ksXQJ7VfrU52iQYCRFmv1QvERpZcEgxVmQb+khUe7b1pWZCjVTI94JLh21QmndJQm0cy22xS60ftydtrLUv6hOGXSFNKDkG1HIed8cB8eNXtTh+0Qfmm9YBxMa9LCQFZgRAQ65XPxQvg45k0box9lkCZCfGt76vxiUk50jJcuHduvqWprHtHDlKH5jVTmQBrQ0wUsaa3YE7jUkWKXY6WZE8xv1Qa/dzoT7h47zsz44bviBhjy/LUCSPE1xZpv7QlIB5gY149lRze8ZqDuV/VbmMp2pD0dhiu3FJg0CrI3nO3KoNnm6JHBzuJQCvFBDn6uN9kLsYbWvTOmvIwAxsxQU2jb14vqt/oYWnrsUh8w0wMogLBp0wYfRxdyxGUzot7kMoai+sPEY6Uvvac5wRvgDbi0PGAYwHgmdgJM5e7gJrLgnIyxL3G/UJOwrAuMiDivbBKlmz674M0uPASAmMAIQL27gb/gDAJUPNn2KGE/OA5g4Zs16kt2FP7MBe4a5FYwZPks+7Ypz11L1wej1gvEp4bVVDyDmBwx98D3Wm8MPbdxLJbDZ0cyznGSFxPKjfx2K8rWjfmBmtVAC4N4SoJYTROnMVFGMm9+Ap5IsxM4VxuTpnMLkeqyU/M1PL07nnLK+vr+u+z+ZamCE/p+YMZ1UVnRNAVXdnHDYzk+GsqqIzM1XdnXHYzEyGs6qK9r1ojjJEvzzt+dZebNr6whtye+G940nACIj9dD74hvxew5P7eJ4tWfWH61r1LNap8VM8nqpfnBmxwpNTeMzTmDfknDe0pNOHTNbIZhcyZNQb8hAgyNQAM/oNeSiYSX/PKMRWMoR/hi/+X0tSAKdmpsgbcsrw1NzUYIq8IacMT839B/4RvLoTtUcqAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}$"
+      ],
+      "text/plain": [
+       "           _______\n",
+       "          ╱     2 \n",
+       "\\lambda⋅╲╱  \\tau  \n",
+       "──────────────────\n",
+       "       \\tau       "
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "lambda_ = sp.symbols(r'\\lambda', nonnegative=True)\n",
+    "dot_s_pl_ = lambda_ * f_tau.diff(tau)\n",
+    "dot_s_pl_"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Relate increment of yielding to the increment of primary kinematic state variables**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "But what is the amount of yielding controlled now by $\\lambda$? Solving for $f = 0$ is not \n",
+    "of much help any more. Can the elastic range change during the yielding process? An abstract\n",
+    "distinction between elastic and inelastic loading processes can be provided by Kuhn-Tucker conditions\n",
+    "\\begin{align}\n",
+    "  \\lambda \\dot{f} = 0, \\; \\lambda > 0,\\; \\dot{f} \\le 0\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAAWCAYAAADdP4KdAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEW0lEQVRoBe2Z61HcMBCAD4YCCOmAdEBSAukAJhUcdBAm//iXgQ5CKkigg0AFIXQAqSDkOiDfp5E8ts8y9p3vMUN2Rqy9D+1qpV2tj42np6fROsDp6ekufuyDL9bBn2X7wLoPsHkHfki2N+qbA/MjzPeM/Sh0DU4KO5G2BzaYTvY20mZGzLGN8iVYuy8WWP8liz8Bh3hv1SMB4xzaOdiUMviNAYN+BP+wrj/j+03bXNhy834zHnie+zDM6GNQW7AvY4wYi7DGzSZHcSBlzbcmfqR9B6eMahFrZ2HLTb4FZ+eCN0HmkZGVabcyHHeRvsS5r8FWr9FU5sRlpGyxpLXBfRuzI+8EuWQvq4LDb7LMJTMW7MtnlmOVOG/MHBghc3Dirrxu3s/SO8+e5qv0PgtmDu+tEXjlGTGL/4vQiXG1fO/nMscLv5I1CFt+KpkCzUkM8Da4spEdHbdDqdhp0mNuD8WfyPNQWAZnsdc0fS/aknwxJodTm4PxkDUwd3j+ImZI81KulBb4bowy7xivGH3BcmaHkgVs/II5BofNAP/g3QvzOKu0IMa8vqBvDL8yPMxtpdwkOG4qa0nJgBwzDhkGvtKD8z6CbjnyzpgV3NzHnDLzy98Dl7NEe/PYzJlrpQ/hC3OY9R7mlAA5m8ZkeypzkmItIE5SKT/w60FTpi+YlTqcg7Bx2PqLgN2h30IVP+qK8D2dtqN9oMjMFqXevmTmus3Qy2QP/W7T5kzdN1HLLiJADIC7Xz7RkTscws6EYSabKd55R7zbaqbsnjKmDsTBv4WcN9rt7MuUcz0Jlc3BuAEXrOsViItOtE88FJslEb7B89QK3k1+6bZlhXIhfX2oA7qppNkRhmyBZv9/Jo+xtA6viy9RxvvTGNjAGAOfrQ5m5nOxQKwAdR7qd046kdnSgREzy+CUjemEJ9pfFvyFQSe7lBYDrCNN4BxF665AnFu8tI2Jjj3rS/RpjLyHym7Sw2nT8pPRJRaIFeAck/rm2NqOmLSxXEE3szRUyZqoUwQMOTfXOylloiJNoJ1cCTKr0mEJusxn5iy9GcBmL1/ws4gfzx7WLrEIa4x/jMn1Fsqeets7d8sxguZJ0SHBk61M4tu1FcYVyICbFebL8CVbPu1emsBTd4AteWapPvhdNdeHr5PNAPP6ov/PxaLslp8mYzdHxaF+wCwb0Jkim8qM9IxtS+GIMXWHQFPXU7dyGMCXcLC6LARbyoaP+s0uCl1kDHCS49nmwAzL3l1JFuy9sopSVXJh2MdaLCzFXWOhIzZboZpM/T9Hbh/AERuED4z7qOfOv4beOeDIWt784G3NtDj/2qIYC3/RsAwKoWODHt7BxsYrxLv9ivdKxYr8G3C4h7cQmguYyPunyx3UZkcnvecqDUCbwjrziEnjf3OhT/C7siG1dRiDgj9YWasZ6fUanTZzLIcvEuLaK9Vj7rL2IiPZsGiC653rXeHnwwXvqbQ1SHcj/d+cbnFaidQ/7XrNcMLKob4AAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle E_\\mathrm{b} \\left(\\dot{s} - \\dot{s}_\\mathrm{pl}\\right)$"
+      ],
+      "text/plain": [
+       "E_\\mathrm{b}â‹…(\\dot{s} - \\dot{s}_\\mathrm{pl})"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_s, dot_s_pl = sp.symbols(r'\\dot{s}, \\dot{s}_\\mathrm{pl}')\n",
+    "dot_tau_ = E_b * (dot_s - dot_s_pl)\n",
+    "dot_tau_"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dot_f = f_tau.diff(tau) * dot_tau_.subs(dot_s_pl, dot_s_pl_)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAACcAAAAvCAYAAABg8NNYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADZElEQVRYCe2Y0U0cMRCGuSgFUAN0QEoI6YCICgIdBPEEb4h0ACUEOoBUEEgJpIKQdEC+z2dbu4fvdu07IYRuJK+99njm399jr+3J09PTxmuV9y3ATk9PN+n3m/RA+UOLjTF93o1RmtUB0D/qHkkPs22rfJ+85mFtYm6V7Cyy1Rpz5xj9Ew07xHcM9a/kiPJXysckY7MkR+h8KzV066rBYfQeA18SGPIb3p0UhxrmXeDKR5LAfT+LZbKgMypWq8DheAvbO+SZJd6PSMEZ9TuUf5JfkwehvDmjn5oG8ypwWHOGbuDsL9l30hXlW+sUyoLOwHkXrOw1SdWEwJmOPpHuSAekG+oc1nmyT8Oi9nn9Qv1o5gCRhtQhC2xRZ+Cf20YqxdEe7Z+Dp4ZHDXNXAun6AFCYcSVgAkZX0HmYu33HlGvAGW8OaRYcy5wToiSyVmKzpFusGz2s9Hap2AOQhoy9TZL/1jwzbejINuWLznt1cf37qqYsdqiJuVYfzf3W4FqpWzP3JpmbnJycvNrj13oRfpMxV/PjLxLAj3+LBncgve1UUbmycmlwEdQFICeVvgfVlwIXWXNDmc8Rgx47CvSTbbdesu/ezyOj27EgS4HDghtNj33VEoHJeDq5udP+Qcp3L82/L4z6xbvk8zabQ4CN0674kR47ZTFIMzh6e6Kft0WfWh9+ZiCopuHMdU3DGllzy94Mjr5u47viGVfx2BmklTlZW/XSob3ehKj+fUXW7gtfPv3chie2wqwl9xCVpYU5T/orYw1A2vM+pQdMhL2YQ2HXSvJF69Yh7bPxYrcgtI2+/kJXf9vkAVh8fyQPB/EMjopk1HUnrzVTl9Nn1Jl7FqU9MTp4/YWuE0D9M8ppWRFkvr4I4Gh0+l6SFO8+XL9K7M1lDf3a6y8XXNdKF98s2ElLykZvQtCgstdbt5Rnrx5SbAzeSOqJ/oI9Js9MWF8jvQmBIVHLoMzJZldc0xK73fp55X0amq+/NNoDF72kuMkLLEBl7TqCj2qDmXGUF9RB7YLCM3AAcEL4vzyg7DArAj0LpREP+sn6UtdfunkGLvpOQIwZGTAGc6BGnUWZfcJuY5HSUFsRHEBcZ0wOZ8sPfunrL4H3ZqsVSSJjTvNLymGRTG0vlReZ0zmAjDvXujRBrH5R+Q9l3C+DDXMFigAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\frac{\\dot{s} \\tau}{\\sqrt{\\tau^{2}}}$"
+      ],
+      "text/plain": [
+       "\\dot{s}â‹…\\tau\n",
+       "────────────\n",
+       "    _______ \n",
+       "   ╱     2  \n",
+       " ╲╱  \\tau   "
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "lambda_solved = sp.solve( dot_f, lambda_)[0]\n",
+    "lambda_solved"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAOCAYAAAASVl2WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAvUlEQVQYGYWR0Q3CMAxEG8QAnQE2gBnYgBVgBPhMfmEUygZlhMIIYQIoG4R3aRIVPsDS9Wyf47NUE0KofsV0LDrnauo78ORLaRN9ctB8kT+Bzz3zz+JjQ3415u8bDoiPNCC7rljgf6WxgW8agFvIxw0UM4pFFjVA7MEwQKLL9aqHTqAhv6gXj6SQ3wp0YAtaerKojLU2rz+roUDcQTp4rg1NKqAhGDgqg70G5K/1JdIGHVks1knVLTXQv4iWb/y6SDi/G9jcAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\dot{s}$"
+      ],
+      "text/plain": [
+       "\\dot{s}"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_s_pl_.subs(lambda_, lambda_solved)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA10lEQVQoFXVS2w3CMAxsKwZAsEHYgMcElA1gBNiBv/whVmADBCN0A0RH6Aat2CDcBV8VVdSSc/b5HKdJ8xBCJvPeXxG38A98Ab+Dq4FZLiGIN/IL8MkCcAogt0PcFEaegE4i47grmx7MoxB4gFckBvZCvuTuEpYDgVLuSisLOwuTjsuIOe44s6K6U23frNEs8ivHbE5h3/VHpWktz6iRIlO9pvzuERVejchUqOZKZ+SlrlOFxXzGmlOjEMENRAfcS4yYE/hiR3ITLmYr4BkCZ/kGuEUef4ovviBAXcWd104AAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle 0$"
+      ],
+      "text/plain": [
+       "0"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_tau_.subs(dot_s_pl, dot_s_pl_).subs(lambda_, lambda_solved)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "[Convex mathematical programming literature]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Can the elastic range expand?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIMAAAAWCAYAAADjNi+WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAD7klEQVRoBe2a0VHcMBCGD4YCGEqADqCEQAcwqSDQQRie4C1DOoB0kNBBSAUh1wGUQNIB+T6P5LF9uovPls0w8c44K8m63dXur11ZZOPl5WU20dvywNXV1S4WP+a2eiu3wEneKB64RssRoLjPqW0zp7BJ1vAeCFlhNzcQtHzKDMPHL7eGcwR+6ioUEJlVtnksNU8854z9gU9g0AlvhQiaQTyEn3WxOQDhBi4IZvBvsB88B/anMqEX3g5dYKqZoSsdN35ohtkHFGaJ/JkBwb+RK4JNPQ+BP8MllR7yzJlXoNHBif7tAfylT4/hfcCgImNQZAa4MZKKsaxnBgw10Bp9QvtOLZHCYn7R14B3cXzirT1gVrDedyZisNf48X7ou2mzZ4YTZC4AISi0Nu3wHGBURGR4NTxDpynyaJkm3q9dh4NMT/afl8nNMY58N5hZoRnMvuIF12AHyB0MrmUErWXsO0wUCoSYonw1GgW7FmwbzYB+ik75ea+s0FSPP5R3Dy+BnLVMIHzhkwdlN4xbPrwkmcMnqngAn+ibGXzVBdIZ77NlBWQJrm14LRtmBQPCa8GmL/pU7GJWLZYpwxL6P6LBumvKTZHpstwlqQm5xyo2mS2TB+owxw2VpIqMVutivuDbgxdACP1n+DwrGKrWIlwQGACdfFt9N3Yb/THFenD1vGLfLGa7IOaMWr7Q5wk++uWa/iFPasMszQrMX2tdzLdUF2unHT8zBYVnvewHSGXOgiLRfEt71N1WGFD5B/064Ce8PC/QNkXWsljlJ6M00V+ADy4gDJCfjDUw8M4NlcwKvOuyLg/xZhAvm0pCVrEpNi4vL33ppHXoAwKSzmTcNOSB8Y52gbgomL4n75U7kPdZ7Ym6I0e+TryA12yL71OcuQbLdTVJW3d4Umt6aquDeQbcwJu+S1m0Hxlr9fXF3LXXhewabSFEVCTrVW1mi04wSCB4qZRytuivHVqaYnPa05Qd+u/h2tiasCl50cO4qTbHp6VgEwylf5Bt3w1lfNrQ2utqCt1sDnTtY7Q10AzjjlgAF2PuLC+dXpsMYHHJ8tqGRP34xmxgGTulbbaRBIbnmrbUe11ZwBAWEHfbAhDCakyFX9uubIh52Clg3cnJEjeEzjVkxsBbwgysdwCtskKudeX6mjAjWDsX6huGWsu+8JgxWi2OuUORTi5r8lBKusjFN5ZWQWp5MIv65dOWsqyrNxhYgCdTA66T/USCFSdWweFOjGlv5VnBH41AXtwkT+cj6G6jwuygPx/w4zobJ8u6Nqb/A9kmRuk5BMwdmeMAWSpApuXWu4XRM1jvzFCu4v9s1O4FcrgAECz9Y1oO+atk/AVYwWpner+tGgAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle - Z - \\bar{\\tau} + \\sqrt{\\tau^{2}}$"
+      ],
+      "text/plain": [
+       "                     _______\n",
+       "                    ╱     2 \n",
+       "-Z - \\bar{\\tau} + ╲╱  \\tau  "
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "z = sp.symbols('z')\n",
+    "K = sp.symbols('K', positive=True )\n",
+    "Z = sp.symbols('Z')\n",
+    "f_tau = sp.sqrt(tau**2) - (tau_bar + Z)\n",
+    "f_tau"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAADMAAAAvCAYAAABOtfLKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADoklEQVRoBe2a31EbMRDG7UwKoAbTgVNCoAMYOjAdhPETvDGkAyghoQOggmTSQVICSQfk+8laje6sO584nZ5OM7L+rVb77bdaYyXLt7e3Rc1yc3Oz0nlnqnelz/1YWuEAfYC4F6jlANkskapgPCsrtc9ZVnph7cMRR6qw+0f1SnP/1LpSFYxOvFK93R2d9+mBwCggFmq/q3lR/cSY8mHX7D4lcKS6UQV50YJuKTxR+/hOxdyzuOCUdWxrGwyUvar+ltBJvLNAfysdMDOmxE628ApzDTCc4j3n4nHMqfFe6YSVM687Xhrc195j1fiurf3mn6ZkD4xfuFdLSGBEiQIrpVMx+hoJoAuMxfVmLBLvEFh5GKvL9ksXQJ7VfrU52iQYCRFmv1QvERpZcEgxVmQb+khUe7b1pWZCjVTI94JLh21QmndJQm0cy22xS60ftydtrLUv6hOGXSFNKDkG1HIed8cB8eNXtTh+0Qfmm9YBxMa9LCQFZgRAQ65XPxQvg45k0box9lkCZCfGt76vxiUk50jJcuHduvqWprHtHDlKH5jVTmQBrQ0wUsaa3YE7jUkWKXY6WZE8xv1Qa/dzoT7h47zsz44bviBhjy/LUCSPE1xZpv7QlIB5gY149lRze8ZqDuV/VbmMp2pD0dhiu3FJg0CrI3nO3KoNnm6JHBzuJQCvFBDn6uN9kLsYbWvTOmvIwAxsxQU2jb14vqt/oYWnrsUh8w0wMogLBp0wYfRxdyxGUzot7kMoai+sPEY6Uvvac5wRvgDbi0PGAYwHgmdgJM5e7gJrLgnIyxL3G/UJOwrAuMiDivbBKlmz674M0uPASAmMAIQL27gb/gDAJUPNn2KGE/OA5g4Zs16kt2FP7MBe4a5FYwZPks+7Ypz11L1wej1gvEp4bVVDyDmBwx98D3Wm8MPbdxLJbDZ0cyznGSFxPKjfx2K8rWjfmBmtVAC4N4SoJYTROnMVFGMm9+Ap5IsxM4VxuTpnMLkeqyU/M1PL07nnLK+vr+u+z+ZamCE/p+YMZ1UVnRNAVXdnHDYzk+GsqqIzM1XdnXHYzEyGs6qK9r1ojjJEvzzt+dZebNr6whtye+G940nACIj9dD74hvxew5P7eJ4tWfWH61r1LNap8VM8nqpfnBmxwpNTeMzTmDfknDe0pNOHTNbIZhcyZNQb8hAgyNQAM/oNeSiYSX/PKMRWMoR/hi/+X0tSAKdmpsgbcsrw1NzUYIq8IacMT839B/4RvLoTtUcqAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}$"
+      ],
+      "text/plain": [
+       "           _______\n",
+       "          ╱     2 \n",
+       "\\lambda⋅╲╱  \\tau  \n",
+       "──────────────────\n",
+       "       \\tau       "
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_s_pl_ = lambda_ * f_tau.diff(tau)\n",
+    "dot_s_pl_"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAsAAAAPCAYAAAAyPTUwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA6ElEQVQoFXWSzRGCMBCFURugBuzACnLADtSjRymBK1dL0Ks3tQN1hgrsQK/eHDvA70EIhJ+dSfZl8+WxEzIpiiJQZFkWkjaMO/qtWjemdQHgh/4yXui4rrezg1UEupLkmmrdDQ+2mwdyzEG15cUQLHfFrkrN3INxVBtPRtJglerBFlArEQej9oEx+Gwhz30Mrh29vnswn17gumfINWTt7tyDLXgBWqOPZP0o14qDrcODzSVakEK9r0rFVMIWvLGWY/td6FYCauWBGVo9CUwoqgUXxphPnudbCnP0Sc56BymgehwK7ev3R39y/EPRn+AqqAAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\lambda$"
+      ],
+      "text/plain": [
+       "\\lambda"
+      ]
+     },
+     "execution_count": 16,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_z_ = - lambda_ * f_tau.diff(Z)\n",
+    "dot_z_"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\\begin{align}\n",
+    " \\dot{f} = \n",
+    "     \\frac{\\partial f}{\\partial \\tau} \\dot{\\tau} \n",
+    "+\n",
+    "     \\frac{\\partial f}{\\partial Z} \\dot{Z}\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAB0AAAAOCAYAAADT0Rc6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAABwUlEQVQ4EZ2U201CQRCGD8YCjCVgB4IdSAcQKlA7kPgEr9gBtKAdSAcmdCBWIKED/L7N2c2eWxAnmTO3f3b2MnN6x+OxyGmxWDxj38Hj0r9F7vBPSjsI7DeUHPOAT+xJ6tWLxgwWcDdb5CD6confgk8y+i6P5TqxK+xv2I2HtS5zQNQJ3pf6JvpySfwRe48c5f42HcwB3hNLG2stCiAu9pEvRLK7foFX6GmRHNOmg73J/V1Fw0kBp5Oi35I4Rc7yBf6jdxW1QGoKCnmdA6Rv+CcC68ZX8DU8wd7ArjtsFC3BxIpwSmy7eQmfc50+gzdinrpF7f4+cnSBUqf4nj8WhF8BrGET4ojUcxq2i8PrMt/ioaDAtqLhPYnZdRaUTJJsopNE3iGC0L1SrznNeWNOATmf3n88ccjHtpPdkG+b3jsEOz7gxDvHqaDQyklLkP7KqOiAzj1t+HnUC7pQpSh2PF0aFUESyfpspjG6zdFJxC3om1ZOiO2vs6h3b2gUgl3X59t4Yt+2dV7J9Q3FLNGVX7CbnMIhpzefz3UYHMImSO/wJ0mxkQp0R8c57cOSJ2/8d8H5twrzjHS+XdsbmmGHG/wFT6Cz1aivRycAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle K \\dot{z}$"
+      ],
+      "text/plain": [
+       "Kâ‹…\\dot{z}"
+      ]
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_z = sp.symbols(r'\\dot{z}')\n",
+    "dot_Z_ = K * dot_z\n",
+    "dot_Z_"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAAAvCAYAAACv8iXeAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJYklEQVR4Ae2c7ZHUOBCGh60NgOMygAxgLwIgA6iLAMjgKP7xj4IM4CLgIIODCPjIAC4Cls2Aex+tpLJsSZZnPLMznu4qjyy5JbW61R9qe/far1+/VgbHxYHnz5/f1Iq/zb1qjXtt7jH3bbzTfSPI6NkJB15qlvva4B92MtuCJjGFWZAwW5bivcvNdZVF/VC267rwUt91PVXbhcqjAFOYoxBzssinqr1IWhorXlleq0RRVirfqfio6w71Y4CTfVmkmI/Ve7wv9OyaDq39ATzY5rwaH89wT+X7Ned50OuH4t3eNt29Oa+0OvAwWvxfoui+rnueMuJcZ1FU3vBtt1Ui3K/C39i6aAwEieVi3qMErf29rne6CHECv+fmxTMNiIfZBJB7oC+EYt22Tcbe+745hXklql9JaKTPUIjsJlY73uDhTCvErVfH0nwo1X+6vut+YyXdhO4t0vJIdG0lxPE048XWVhj1vdXjG4YT+HxZLP/3JLdEMSZ4l7e5577tH5XB0lTQ6o80F4r3WWV1LD3Hmp3rquLVZ5vn6bZo8eN+UImXnxvwLhzY5wTGs0O/mBC8yljacY5cPhYvzFcVpjZS38JV8bf5cIu0cC7Ak+LpZwHRinfGu8zGP42FsqDcs9E5y2K3PEjWw2hO52HEjK/d+T2TXJPusfjrHh7DGMS+K4115V7DEbQHP56vhJ3By89BFV58Nu8i2hjvusoncxB3SGMMzjCeeGLTxLt4JiUeRW0Ilk0P8xLlamQCWZdknlI/jY/Af/jnKCth3DpzlqZobt8BLfCEM90ob0RLMG413CfCy3oXtRP+Ea7hhXJAyBW9iJ/vlkqnLL5+rvJKZJEjeJttA4XxDGDOG7p/TakLocDQhOl6jrKAc6brN11TgVCMXH4VNM8XITxS6YSi8l/VOfjv3MJtSov6w8e/dWFkSqEohml0beofNjseOpsI8TjIaAB6FrzOXT3ECFF/4e9VpN5f+BhSh6P7kGKGzmrChnGWAgOF0cKCEOMGZbFi0BddSehEXRdnEDI76wAKd17rqPHBIdfftWDMmdBSG2OuZ3PQojEudLGBUfoSwJOSxXd9PC1v/AAvVef9Ss7LZL2LcNn8n1TGsFr3Y5ECcoauxMipH8p2FJBTGLzJSkzoblCaEmHoeX8TgzMV8F5jzHYKpfl+CpfMHO8qElr6k+o5Qp2qxImB6I/p65NpKYwzlobFGGAoiqA1OoOhEqXB6mNEEr7oGWeNkndBvlHGwkWBqrIQzjpRhIZdDuQUBsYljPfLxVU7EOPYkChWZPjlk/l/NRcWGa/HhmADPFad7EzwhINJ6aPGbIgyQJ7QwLh+3mZaJgy/FqqnCaWBL3wt0fW80NnKhz+FW/N6a9G3tE6JwojZzrvkGIdgOot/pvuoQLTrucuceBzOOi35eSw2ypcFjRnCMcIGp8RqI24nBOlvjuwYczW20OJxCFdYE1YfPnCPJ8WDdXmopiKA3934RUT/gLngPwrCmWKluajz9UDrnJxJjuYsAo/WgZNep2C1cx7GoUoAeCA2a1cQbAqXk1c7GZXwUZ7rU/lhU7A5SsA4bIYIfvyVyikbKvbf4GaUFk/TI82BopPFw2iwgT/pmhIi0r/LX1XL4OfFqOBlkAWA8iRGzbVmftSH+ZDp1iOGzPQH1dRXGJf5KDFO7XggBD8QhJ7FDax7FI4zTvBYJaYgoFrIgAcKSuzG0Jh4GDbDrmESLaIzbj7dY0Ra+BHWBE+KRisg9cogk2eaDzliwFqVDvwov964Vu1w4FRMxSKR5nRWhmdqw5qyQQA8ADjhOd+Xxc0AQgEQAH1qQMycPZT6Tlhn3lBTRfjQQWYuZnZ4sCPYlBboH+NHWMqZbvBUzYBMvFwIxTBUpIpbgdCxJofWcRaPh8IgyG3ErmyOqtXS3FjBla7seUTt9I8vza5SGjPQ4pR9bA2aB7yx9G5pGLwMxo5wELk2gXAxBgcPWgfRxx+6XKSkEsOOgU32t+rwqIvTkiFVl9XqxP3O8CMiovXUPVYOi9cSVoSU6AxU7M8QPX4gyFZ+kFBZy9przpAcSc59+8OV7VKi9fOVfVAO+H2nU+9O/lYV9iZfLIAziJjUhtH6qYuX5hGubfpPMDQgSQBSkt/8qFjI39XefM4QLqEZL9iqHsmPv9eF5wdMDlbbZcrU7uoq4Q8hMBaOLFYQ8Mo/+6iydq5TN4MSB8Q7wlH2E8oz2INqw5ifqxwN64XDnkbxooxO1bARaDC0c6ChEweFINxkcsCfOMZeoYsv4S18QpfaCZWiAJKHlzwoPeuhWrXAgbCHUJoI4juGynlv3TcZZuFh7BKYLSRLRp1Y8ZsID4P2HyX4tS/Cy16xAPEwK/EzHgd0TxRE9pA0f5OylNawcUhWGvgY2yUMznGcPxDaG9VDWHaM7LiSNYvn4S+FXVirOkaYc0qzLISL/JAjGeKHqpOcQunOTGHEBYNlcMBv9Hh+Ud19FaLVkSkbhFe5VQuP0I3jARf3oR+Z3Pt7EZKJKAPjwBwcCOeXHyiLLl5JcJZks4c08ug8KIYuIgT6k3F0ykJH3sPgwgyMAxtzQHup+q9i9RyLPeUTIWhqfkciXHd+UclHsiHpwoYnLOPA35IZuxCeA41BGEb/mIixkOySN/a7AA5og2P8OW8ET+NWpTphGsqUfefikHo/6gM+SZioLKBYSNZjlFUPkwN+g0N8kk72q8FLAHiZUdBYhG8DZaGjKcwo+wzhQDgQvEpMJwe6pQC0kU7mu0TCwiJ4ZeEMk3gW1UkCrE6LPe2BceCwOOAO9drYpZfopInxNHiZwRcALFV9w5mFv7cClzf9KBhfsrg+doYRJwwOkwPa1GxmNvaZLjY7wMGe/1UQP9rVPell3sPwngzA4wxeEguPf1ccPmEiUcDYeCZeeDrPZQojbhgYB1o5YGeYVk4ZnnFAHDCFsW1gHJjAAVOYCcwyVOOAKYztAePABA5YWrnALJ9ZIQVZytuTOYmZmMIw1rwwDpjCZAQqRSCdCNzVdaGL+gt/r8Ll7Df6uwo3iP0cHAdMYXoik7KQz5/6P4d7o1h1qRwwhelJVgqT/Mm1VyC8jIFxwNLKDXuAzyJyH/Q1dDWUpXHAsmTjEuUbpc/jaIZxDBywT2MqUlY4dlOPv6ms/mFUZQh7tDAOmIepCxTvYtmwOo+O6qkpTF3c/AMEPgs3MA44DvwPX6KA2oOXQtgAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\frac{E_\\mathrm{b} \\left(\\dot{s} - \\dot{s}_\\mathrm{pl}\\right) \\sqrt{\\tau^{2}}}{\\tau} - K \\dot{z}$"
+      ],
+      "text/plain": [
+       "                                                _______            \n",
+       "                                               ╱     2             \n",
+       "E_\\mathrm{b}⋅(\\dot{s} - \\dot{s}_\\mathrm{pl})⋅╲╱  \\tau              \n",
+       "─────────────────────────────────────────────────────── - K⋅\\dot{z}\n",
+       "                          \\tau                                     "
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_f = f_tau.diff(tau) * dot_tau_ + f_tau.diff(Z) * dot_Z_\n",
+    "dot_f"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAA8CAYAAABl7VY7AAAACXBIWXMAAA7EAAAOxAGVKw4bAAANAklEQVR4Ae2d7ZUctRKGx3s2AGMiuEsGfETAkgHgCDAZwOGX/c/HZGAcwQUygBuBDRmYGwHGGZj30ah6W93qaWmme6yZKZ3T22p9lKpfValKHz177927d5tWw5MnTx7Bm+4/tcrjKfElHO+L3xe6f3VKfDuvdwhc3UXbikmovhNH37qyLtcvwvKtqD3X/Y/lqDqlYyJwr0ULK4G6FQi/6PpPFLJjYtJEW3pvBqxnSzAjWvf6dCLtz3R3S9sH5gTizSmshAi37f+6Plf8zxPAcHEW9d4MWF/o/v3ixCNB0cbKYm19urEWyCvQvV6B5qEkX4jA7xKki1TWCB6KWmz9hNXHKv8w1iXOVOKv+Dx1g/4fKvezLlxlDyeAQFMKGwXvS+H20Qlg17EovvEKcOHfKl6saB2BXkT1ef/fdK9Romcq/wVkdEdhf9O1E0OV+0vX7yrHAHkQz6pfFNTejQq+LipcUUh0E5e/ourJFW1KYYUewvMrwnRKSIpfU9R/FL/VhSLsG7COQfkqCDzolQU7FKMkPFUhrOx9XTUDRAntXBnm5Lj6h+CTo3sxac0orDoRIcM6HGW0X7qHEXhdv4rut7r2EkjVZxsLS10VVO+TXoVbxYsGPNX7k0vlaffHHo3Fo2qH/r3RvRob1UHR8WKgwbt9r7RjDDBqqq1w1RA7zNsQoCJha4jvPivP9fCl3gHh2id8pbp7LwLFdn9QwzUWGp6ps3agf7HoVUHvhLKyOGaeB97E/6qInFHhZiysMP1aV3WHttQXEioWyxhwshZLecGL0B1LnASlsY2D8iQh1mFOSt1h6NxLlWOQYErB6nqN9cHi4RIf6soPeeueI2/Qx/uoDczp+7ggI7jxWOtTHtxrcQjlRworEBAcRmhcKwIdasDYXAnXFQHCIvbdMSXVB8BXLQSu2l2qb231GuYWJy6m3hE8wfU7xT/Q1SmV4rw7ypezjFgm0t/oyp5SivWxRN/o2uiZRSjqzQaVY/EJXmhjLfyx4EX8TDCMfJgMGm79tIlq55ecU1gE7Ud1ImcWUcicEG2UjhVZar4ZBgfRLN7KUVmEnP1aBO7gQUN0Dg7iAyEKl+If6+reR3GUAQvMuw4FePgceFFZLF9nlXgOGeM/7KnSLn1CQLhrFATeQh9QeckQeWaaUMNPx4LqDVe7MRaEV9vbZf0dKSyvL5Cs8/67A46flbeUokDHRtAdTd5liUcWebA6VfXuKCwbEy8IUtheUZyFI5QwN6AhuGzbPNXFO5iCd8qt/BDI78Xpk1EZ8lVuKNRWrfT+UgVxPdcI4ID1XypAyxedBmiaVZ1zkZbaU0MYqxUPQdWVU4rB66z7KB5QVpTUeHmueFYBVBZMUTwT4iCAep4L0F4K72FbAXvxxuCxWBA9PAKs694LaX1mRAes8FKS6Ua/zLnHryZeMFhYAZOM6BGwUEVxRv/R4skEvblkBKVaYeeIHiNfOKCsrFqywhssou4oJa66uahDVrCyj5RvOJe8O2XXcgOtfXM3h/zu+8z728C0L41QL2KZTBEOIniila8n+KbjEusaAUtGeKUhlCgbQCbKPUF3V3JCe1dB8tQegvB3LIeivFqAh0iu6hZOCmXaNss5si4qa0cvWf0tdmczbVQxuqOwKeyDHWWSLPFig00iJ0mh7RHJ7PupPoubuMtY4VzA7Q2WNLaFNxXm8/H5je6Hylyu3abTRgobwYDpB4rj2tGJdA7AJuArH2WlzKe6PtBVHUTDOgylKwqqwyLLN7qHDtMdwWce3C3QFBFaoJDazs7jlY6ijpS11yQrurcqZ8rSyxpHVS7Bflxi/xTRZi4NAeuLncRU1pQN3qfeP7tNBWHVN6v7uR7pd57ZrulkQGUCLrpjPEK+4jbNoJ9t+qHo5YSRwurVbf7aKQRwCCz2vhLh4lkX7h0u4b6heFSnAbXHIJGswOoZHhLe9Nx00Hsw2LRmIT6cAy3ibwMRi2wMOjkry0GH0SCjNBTwpe7ddErxXR4assVAkpwAU51Oued4Pqf8nMJiTTcCZChMSacof6g0++JCZxDebG+zf0M5tf+PSrJS/YviCW9DCsqnjdpBJRmwhjR5Ft12f64jMiweaw7GW1/kXjekiZ5ZPpTW3P4Ef5Vh7ornNQrKQ6462dIzCjypfMrfy3MbNXwmCTmFBcCkA+K74rKEIBDpWBS7A36bs/5ftY37hhcQFm50f6Rn5oTmGYyYoI4Ss67bqHBFgujWKEMF5faLgqkulBb8h6eO6JtSvB+qLFMaDwUIJAor4IN1Vb0RgHRQjx6LBZ0Ck658RlUUmYArVLpXZnRnXWO1Ye4w7lQYVJTGXAnXbCg0SvZQgoCws36zviipRhksLP2OgjKv3IgWz3xxVUqLeelFzkfBqzZcDSqYlcpZ2FBUHYEFRjn6HUKHh/0xpbOyx3yj1AUNLq7KQ2MuQBch6UJsb6P7Sc1huxdoI2KD5esadiLmDJ5YWes/lDcZzKdoqg4DMLJ0dE9tiqfW04cKG1bhpgBUOhYYRRx1iPI6hVEchWeOaxZ7EgeVMcWfXfAQEZTbBpVAU/WxsAiJh/0RMGWzwbOGksnCD+oL5IeB2/p0jg7lO7mZK+z5m821wKWzXugKox2gKA1LZp3H6EsZy+d8ccmISEdQpyTQwSVlcbs4OQNN6sAXK9XdiiMZHqoRMAsLplUBWYjygCvMAM1WTWlg6pRdnColcGnlUFg6aY05BApYOnq+UtlZhRWv0DurY2l6J96bNYPc+/MFz+T0RHWWCtY2/bBPwMoyyHN4pVjpVZYB2EMFAtcVZXcWRfB0BQXVndGWkbdU2LDY1LnEgDuPm49Hk/187gigYOlY9S1Wtj5PqsciE32drC/0y3h8GQSWUlis3q06Da7u6/pQ8dJlfeq81MV3omyg7yU0EDm1EN+3szI8v6d3wJUtHVyzLIr3ZG0hW8gTD0bgYIVVR2EdS+a0u5g1YflahewUza7yZ5En7LrBSXGU5lAcq3FRuwwSrPz7XLIaveNXuDp+k+MWo+CitJc8Sq/5+dwY9LsUBgqCDZrbJ//bJAJNKGxEhkULE54mwVqZKd5930WfQ1hjkGS9oXSB8JC2vO6BCLSksJwLZg4b9oIPfK+TrK53P7pLLKCYhrDK6+E9I6D+R/4f6bqZYqWp/60jRjkE8VD3mgWrqXfz9BkEIt4cePAD9jNY7cqOOH6mMmZsGHg5H5Bsl+oZL7JfZvSBicqQT7nsll5TCismN2KYr3Au9h9hgcGxQsSaM98Xs9C3JrbC0X64MGtwlI8ysivAp4eTUxDlcUQUhR+t6bTkEhuW7Ety8srDighIGPBmEApX1gVwFo62/pJdvFN+OGegO5ZzUlkjK6zYs0062uZrTmHFJAL0RncEysMKCAhb5kh8cZW4bCs0dUkkzRomX7qhdLo4UMIZ69IjtFZudJioOYWNPYwg4TawP+hhQQQQIJFDqJg/zY30C7Z89qSChRWmnYWN8ssaAdOOYqxjWebB3aEaQ69JhRXDHChgxOLXJLAGHpZDgAUNvh+2UXw5ypdNCePSrfILX6wjRmffL8lwiznum8h/kwpLv4tRRiSUduTHk++hHgFhCpYoq89b6+GbrCE8k/mrnpnOhXnoZKX5DLY5CYmVbW6VeMuj/3UETgcBKShzVJQ0WFM9869uUFisLL9XXe3NqA4Wm18Hfat4t+12rQQPjsBZIyCBx7Mo/QUUw2K0R2oZmbtZWJTLvBeUGIVlca9KYaOyUh/ryr/aZMU4zI3vPX78uPlf/hPTHhyBSQQkzO/1x/DUPjo0+iFApbO4hzJ/ong3v518EWWoHJaVdQbqMABwLgHaYUX/WpH3+rJixoMjcLIISH/MuibbOfGFsJLkY2Vnt9AirU5ZIw3mst32TrOLTpFZvzkCrSNg+6/ddo4xLAUkjcVTftZo5+JpVFaUnjlvfwuIufBGaeFIoyssaHhwBPZHICiSFGrK5Q0KJ/JY2WxQXawwyso2UKL4kS4KHFaLfZU4C6EnOgLTCEiJwvaYSnyqyw73sLDEvyDh11dCUJyVYxTtZpuyQRlH54hVDmXlfwZ3dWP5cFM6gwKu8keusH1kPO4INI6Au8SNd5Cz5wj0EXCF7aPhcUegcQRcYRvvIGfPEegj4ArbR8PjjkDjCLjCNt5Bzp4j0Efguv/g8WUQiMv57LtNbZbzfWR2CX8ZDpzKuSLgCrtwz0oROY5G4J9CvdXF89MY1y2cWumfZAlp/scRKEHAFbYEpcIyUlY20dk8777OUJyfCJk6BVNI2Ys5AlsEXGEXlISomJ1y6hkFxsp6cAQWQcAXnRaBcZLIQ+XkvuKYrOAZjsAuBFxhd6FzeB5nQF8dTsYpOAJbBPws8UqSIHf4RqRf6+7fG6+E8SWSdQu7Xq9jXX01eD18L5KyK+x63c5/NbdvIddrxSlfFAL/AvkQVVxH238/AAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\frac{E_\\mathrm{b} \\left(\\dot{s} - \\frac{\\lambda \\sqrt{\\tau^{2}}}{\\tau}\\right) \\sqrt{\\tau^{2}}}{\\tau} - K \\lambda$"
+      ],
+      "text/plain": [
+       "             ⎛                     _______⎞                       \n",
+       "             ⎜                    ╱     2 ⎟    _______            \n",
+       "             ⎜          \\lambda⋅╲╱  \\tau  ⎟   ╱     2             \n",
+       "E_\\mathrm{b}⋅⎜\\dot{s} - ──────────────────⎟⋅╲╱  \\tau              \n",
+       "             ⎝                 \\tau       ⎠                       \n",
+       "────────────────────────────────────────────────────── - K⋅\\lambda\n",
+       "                         \\tau                                     "
+      ]
+     },
+     "execution_count": 19,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dot_f_lambda = dot_f.subs(dot_s_pl, dot_s_pl_).subs(dot_z, dot_z_)\n",
+    "dot_f_lambda"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "lambda_solved = sp.solve(dot_f_lambda, lambda_)[0]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEcAAAAuCAYAAAB6SwSNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFx0lEQVRoBe2a63FUNxSA14wLIE4HpgMgHZgOYFJBkg5g+GX/y4QOSCogpANIBQE6CKkAxx2Q71MkjXQfWt3Lru1k9sxopSudt46O9kr36PPnz5slcHFx8RT8R5SzSPeW+mNsn8T6PvUp5QP4D2LfoirK+Qaix5HwA/VH+p+UjHh+PcD5jj5xvxiOljonSUQBvTprPOPfM/6EWkeuhg45Ou8HC7hpkip59N+l4y+Kzu2erDsVl84HBKSoedUg+VVlGuNbhwo5RucIGHcCNtSPKLOyGLsC7ZIyiyOfIRwPOzqfUzRMKl3w+LNor2kmOW9KYow1Ep5TXracMqC5Vz73tFdFDoxD5KBYtbZ5/ikJpe1s/ZaeV9ZJTp4E+JrPnlM/oyyKhKU6rI0cFcwKKxRFDfEqUlSeYmK+S105UpoOUE6mizIeUJtjugF8J+1TJHDS3vXos9g5MA2ziYAT2i+tKfYZ6lXoMq5jxHlI+YrSDYWcMAk8u0tq5KJoge49NHkH49klalLe6uA1yyrlAQW6Q7gjabg7V6V4fH7G2BpIcj7B5ynlBUx+ppzSTtt7ky94Ts596hx9PKtPl06LIwfGIXIGAukeLbOhUuIsgRShV8jSKYKR4/I1Gffks0vwNtD/TeXu+Zp2lQ4cn4M1kTPKN5H5j0kICrjEknGpe2kd5MArOWZD28jUOB3veBPAMb8Yge8oOvUNfdXOR98sLIocGCeDRwKiIkmQM5udZSfjKqfTBHOTu43Kj4D+WTkgGz2OK6P6t8xzBnikJWWEVXnLMUqVAjJh0VgaOSkPzIYmQp1RhZeG65S39L2w0PYv/++UOZiVA72yNewx7eTsKT7K0JEZouwN9VbHSLTUOSERwrxMcKVwZ1Sjq6gRoVSIdloaKUJEKaEpB0R3QMHomQPzTXJywEGuO15XMpbgOFA1fmDo7PxCMUwtG/qclZDsqE8o4qRxd61J54FTgrMX+NkJjTycabf9Us4fjBltAWhrYNqG3cWM1Kn3KnGMLqrNFUX+/u/qSeTSbFa/eAbqjp+o/HvqoxKdZ19cfSeaXaIl/k2071yXUJxQRonJ2Qi7tY7RL1uX1Y6c57I4wxmyM7y/pt19dCDRTcDel9VNGLUrmde2rHal8HXyOTin4e2Dcw7OaXigMXR0fn6+7Pqhwez/NnTYrRozesg5B+c0PNAYOkTOwTkNDzSGRu9WvPNcy114Q6edDUVbVt+3z+5WML6Wu/CdeaLBqMMWD9c8/6nOhUaRowyYnVkDr/6tJn89zd/bmzU6qLDHrfmga1KLLZ2FLZPHI4x7fHJJXZ0aynbSOfQnxEmGEkaobjhT5y2rky3VpQDO8OjEY9bZ+/a53SpEDgyq406e84E1bY8eu48cb9BhyZY80eju0erW+/a5yJE4M9MwGBp+VaTQ13WKL/0NgrbkSY52dN23j5wDcfA0DLfehWsw+KdUaz8UkMXeoLAlTDTPi+7bp5ZVWqM9d+E6xmuS1h3U3ozvYJxsWXXfPoocBIbIwcs5FKMSw2UW7sLB8x5otXOgN4+laI2iQmXCNHq/LTtje/Rt4ASOXYnvqvv2KeeM8k0UnC/qUFjFFTx0YETtr6JzRwT072IrD7bAq7pv59mJPqMOEzwSHjuqZQVy8nS17YnLmLtTArfALDB13qa6ZQt6pl23dWO6GUZOWqPVEiqNRqizMbwL13ndHwqU/PbYnrUFXb23z/fttMuJzypVkUOvobwBeXK50G9kmV/yEhMfcJkt+VAgEO35p2kLst1IhNno8ZhUw9JduFEh+OfuMrSm78LzawMOk2bn173wXZxzoNEWl8xDSmnL3H27u63gSqneq+w8hqEhNfudi0grofpQYCWPRWTRFl8gmwCe72tb39mGOafJdOGgs/Il/6Bn895CPVajzx5Z9HJkFsKyAv8e7eAMapOzYZqXXy+/24S3q8gxRM9whra57v8THwqobAv+ARqOWugtM2w2AAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\frac{E_\\mathrm{b} K \\dot{s}}{E_\\mathrm{b} + K}$"
+      ],
+      "text/plain": [
+       "E_\\mathrm{b}â‹…Kâ‹…\\dot{s}\n",
+       "──────────────────────\n",
+       "   E_\\mathrm{b} + K   "
+      ]
+     },
+     "execution_count": 21,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "sp.simplify(dot_tau_.subs(dot_s_pl, dot_s_pl_).subs(lambda_, lambda_solved))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Construct the bond slip model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Given an increment of slip, calculate the corresponding amount of stress \n",
+    "regarding the current state of the material"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let us now solve this problem numerically\n",
+    "\\begin{align}\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {},
+   "toc_section_display": true,
+   "toc_window_display": true
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb b/bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb
new file mode 100644
index 0000000..525881f
--- /dev/null
+++ b/bmcs_course/4_3_BS_isotropic_kinematic_hardening_softening.ipynb
@@ -0,0 +1,6022 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Plasticity model isotropic and kinematic hardening \n",
+    "This notebook is a work in progress on an abstract and general implementation of time integration algorithm for general damage-plasticity modes. It serves for the development of a package that can be configured by specifying the ingredients of thermodynamically based model\n",
+    "\n",
+    " - Vector of state variables $\\boldsymbol{\\mathcal{E}}$\n",
+    " - Vector of streses $\\boldsymbol{\\mathcal{S}}$\n",
+    " - Yield condition  $f(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n",
+    " - Flow potential $\\varphi(\\boldsymbol{\\mathcal{S}},\\boldsymbol{\\mathcal{E}})$\n",
+    "\n",
+    "as symbolic equations using the sympy package. The time-stepping algorithm gets generated automatically within the thermodynamically framework. The derived  evolution equations and return-mapping to the yield surface is performed using Newton-Raphson scheme.  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "import sympy as sp\n",
+    "sp.init_printing()\n",
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Material parameters"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "E_b = sp.Symbol('E_b', real=True, nonnegative=True)\n",
+    "gamma = sp.Symbol('gamma', real=True, nonnegative=True)\n",
+    "K = sp.Symbol('K', real=True)\n",
+    "tau_bar = sp.Symbol(r'\\bar{\\tau}', real=True, nonnegative=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "py_vars = ('E_b', 'gamma', 'K', 'tau_bar')\n",
+    "map_py2sp = {py_var : globals()[py_var] for py_var in py_vars}\n",
+    "sp_vars = tuple(map_py2sp[py_var] for py_var in py_vars)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## State variables"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "s = sp.Symbol('s', real=True)\n",
+    "s_pi = sp.Symbol(r's_pi', real=True)\n",
+    "alpha = sp.Symbol('alpha', real=True)\n",
+    "z = sp.Symbol('z', real=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGAAAAAZCAYAAADOtSsxAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADDUlEQVRoBe2a7VHbQBCGRSYFeJIOnA6AEkwHECogdBAmv+x/GacDpwTsDpwOQugAUkEIHTjPo5E0Z418CJA0nsztzM7e5+7q3bu9k+yD6XS6zLLsEC7pZDab3ZeVJLtDAFwnaFsEGlcHBOCOjg9BYyoOgACYjzEzfzOArWQigkAKQAScIbpSAIZAOWIjBSACzhBdKQBDoByxkQIQAWeIrrdtjHBlmjPuTzH2EXlD222buUOMwZfyfv0Oe2fUf8C+2xwjvw/kQ4iR1/qlfjxl+8kAoOQXSi6QOeDINfUj+PIp5UP0488IO1ewAFg2AGfIMfIE2SthY4wBMbmknAOO1I/fyCP4vqhPkKu6M9EAMEHlh8hwtfuwe/WmjH8V0IXPi7Ct/tAd1wV/hb1qtVN+hG9oFysX6ie4cSdGA8CkBzhD2V/ENdxqWzlnKPJhS1uUTTvuBHdA74Q9Pyu4SL82GHORHhft70M/w7HRQ7iY5OoymkZxTZsR3zvCL8+BL0i/ZVVB6dnRj+j3vGmyZ5tp0AXRFKDctZ07gIll+jFvlbntM+W5ffDepCF8OcWvc+QgK1/ksDVCyGF6tisk+38y1mA00s4AMNqvpCqoDg4UfYMNQAU+ZQNV/6JKU0UeRDEnq4EvKaBb8F31W+BTN11utb1E/6456DbP2323awztjqnwaxoXC4D5f+sBUOYO8GAJyfpF0TBBeti47fJxOlr0dS7QXeZ8F4U2BcNFcw7X/aSpc/JZTdFbByy+mK4lfcn0E25chLEAeHqfMlEdgqgyr1RVRCmPYMdlSIPjbSBfGUrbeyavfvmndKQPbRDcnVfUq1tJXz5gQ/th8HNTtOUBQYqPPvkO1RiAzN8DNptN9lpGz1odyDG8eK2+/31+gdMyegtqu3KIsudASZZ9I03UAoFOAoAd860HseTZ4VmQqAUCXQVAwH1Ry9gN5roHZH4A2ZZoNwKxQ3j3rFoPYG/9plyv14anaoBAVzsgUJmKz0EgBeA5aPUwNv9bSk1v+l9QDZCuqqRmz8rwf0G3/wARrh6V0tmKEwAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}s_{\\pi} & z & \\alpha\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "[sₚᵢ  z  α]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Eps = sp.Matrix([s_pi, z, alpha])\n",
+    "Eps.T"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Thermodynamic forces"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "tau = sp.Symbol('tau', real=True)\n",
+    "X = sp.Symbol('X', real=True)\n",
+    "Z = sp.Symbol('Z', real=True, nonnegative=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAZCAYAAAAhd0APAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADJ0lEQVRoBe2a7U0bQRBATZQCkNMBdAAlAB0EpYJAB0H8sv9FTgeQDsAdkFQQ4g5CCQkl5L3LrXV3Xtt31nodSzfSaPb29uZ7Z2cxB6PR6HEwGJyAAS7G4/FLeOhpWg/g23M43lW4Tg8Iwi9eHFcm+2EmD+D3I0RN3mSS14tZ4YG3K979V6/Imj8odAi+gs8l/Q0VzCi3+Yx1p05sE5BxBf9LUJmC5XvC/L0PUPX8DoYy/43xHfNT6ALsRRBQXmM17LJpSGnwT94ZnDNw64BMnX0P9Tx9D95U9WL8Clr3L8CPPkOXwl4EAe3NuoUAlFaZcUPwdJ2x5fqU5DPMDMItOM9y9HAH2OCo91rYlzNhiEFzI4NVzD0x1uAzxtk7OmTOkC2eMC5KD9TSeAttFQDWDvYlCGZcDTDS7W6ZMuN0xK4g6KbjDYBnQ+sAqPTKcgSzT6xxq1mPY2At/BJ7kXIOGTUn8zyBv4fjNWMPvZ0B8qegNd+ypJ86BUDFl+6E0tB3rPGw8x5hObDzcFwga7YeAGTVAJk63+QwAYpupLZgNw9Bjyd0WnkIx9SL7gQYWd9+QOd1mPEhWMvIGMNtziHfbLMM2ZlkT4AVtlmGBKtGZ72iO0Fng9UAGJTOEVarVIA+1n9bQrf/dZUvz8EJ1eksY2SbFDeg/jJRTZROEA1ChMMH5uxEdgIYZhIo3+SI1VydkB3KAHgJszMLB3QtQdoo1TYIRve5DcPUazDQLPcu8MJ44TbMnDvEy1pWQK7NwSO0KNElNRjnjNW5NawNQsnwKAhrzTnBQmTabYQduBCAUoTl4CGBuNYs0MvGwEO42ZkZGKHTzlwbBBi6C7JfhLQEWHobxgFekNwB7pBs5xWyPJeOoc0ADJgLXdIVYxOoFUS7o8aXtqNmW1bAiPA7hwngBUj5GjYE3e7ByM41mG87AbI9k76CUqH42xDz826xsubfCkqk78HYGRbWFLT/PaHmjrwPBMhk6n9PyOv2uLQ2Z0L8y342mQf6ICRz5eaM+iBs7rtkX/ZBSObKzRn1Qdjcd8m+LFrUBrf+/44aDkn5SFvqn1mq967ZXy34CSrx3MmyAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}\\tau & Z & X\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "[Ï„  Z  X]"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Sig = sp.Matrix([tau, Z, X])\n",
+    "Sig.T"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABLCAYAAABDargmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAI20lEQVR4Ae2dW44UNxSGa0Z5jgYiRXkedgDDDpodcFnBMDsI4ml4Q7ADYAVcdhCyAgg7AF6jSJBRNpD8n2OXXNV2tatrqtqe9pGM7/bx+X2OL+VpDs7Pz282TfOHXIjePXny5F4oo6YtLwFh8Vm9Hod6Vt7BD17GS4Up7NMXP1LDO5fAM3Fw1OPituJ3SfPBfCZ0swNPPDETV/KZbFeeNE6A+RTCIiQDW34NzCRBqfKvKnhHbmUrvJfvJsF1m4bpBgSYumXTRnuqyyx8IZ/+9oI0Vpa2t3KP5Jxck8bua2ZSBXXwXAWfy/9XPmAFBa30h8qfut7+fgltqIni6FQcM/ZRinC4zTAFlNPK1wP13yhv1Mzy27KT4aP8rdvw2ysprDFfiN/38rGCyTRaM23LThsxsUPU31ANle3nPVKC66eftw/xpxrkVzksYRJtpZlq2WimZs4nvxfF2W0ZsrPrnYuP8VWX9baRv3da6eRk5fdFvrOCLivqb6uZbHA6WqlOWSM7mjgBDHZnnfZDI1D7TJ5vNg/ThFnuTLBQvTnSZuIFGbDv2CgLxjQaTDHtZsp1hV+oDXawpLHzvCF3GYR5fTvUkPrmouNUvgFP/m+Ks2E4G6o3R96MvKAcyeMZDaYad+tYK0gExIDk1syi0gDamF+FU3dnmNnvtBsitUP+Tfm+FrLGrvUfqn+ZaTPzggxQkiTaBkzAaXqCJKljCpRvhC2fXRl5yUypLNqO2YyRAVrt/q0C7Jo5l3X671dUPv2z3R9DnQkbqTial0g7oWQmp9k/hDL7aduAubZe2kbZfRmyggN0pzmE2/z/S23/r9q/kMNCoI2s1Q8VZ9I4q7HWOHWUmGoZ1urHEmjX9pvMS6ytqemjwBTTgAKxPnXICsulPVbAB48J4IB1ZYZ8ZntQk9WPM7HslI02Ko3zGNeRx3KLmdoFeMFCJY9nFJhq2M38qEnTAAEOoRozaeNKau4qjM/FMObL5JMQIAbAQELExgig22OP2uJGahd3y0m8iDcmIGWRTYhuqUxoslNvSE6dtg47sc0Rc6Eb6bhROprLuuRrJWmA81L5HIA/yLXnUYVDxMBiJhGtdZPK1FW7aCZmbmlK5QXeTuUYE+Frcnw4wL8m/kNAKsuUjyoOBXzaqJnqCC14JccswTVKY5YxEAgNoozL577WZw7Bc1nuZhj+idwQYcY59oToTIlOy2mLvjlct5oaqjRT2kZexNeRHOUa+Uw6LtJZZ4k7mcTYQ05MgiRKAZMOp1yYw5CviczOwXVAg2Qzw2DX1kClUTf5iktlZ6MUXlTGB+yO4iwJRimGGFMZJikTwVeMoSrN4WDu5WTC1EevqfsKv/bisSATYBemM8bPpPQegIAZ2xO4fthExqyTK9PxlwCz1UINiGMEV24bTaLKsKagmRtncWdE+UaYmCxPEEvUyoQC/2jMKMBK/igLtASYmOhXYgxNuyG/s3kJjMVPou6o2elXziwMeFxwNJIBpvO7fEALEaCPXtoOvAddCLrVolAPu0gTT2gms3Rfno1gvdgzJGGhcpwwuAE72LgB2gWAfp92UHsBJOPWeLce6xJm1semhmeUQAVzRuEu3XQFc2mJz9hfBXNG4S7ddAVzaYnP2F/2u9mhsWvnx13nbTm25xDnN+5pO2c0xTm3+WVSPjrTXlFUOpjmhkRguQfZsS8tXB9yQD9T2aTzW1EoWmaLBpMxCJyVHUvwU5HyOYRz2zLm5sk2WZZXPJgStwOp8/pB4KGJ5rJa4Surjf50uwpgGs0UYK1mKswX/Qfyr8xXFx+0WPgqgAlw7Tc/AYhZ5RmG+SAcG7ifrrJMCC70+Sx1T3HuRmn3RP7W12uqvygVDaYFAYEZrVSc3S1fZ5LNqupgjtFg6hEGTHbDfH5zJlzR/Kn0c6YT9jeAlGN3iyYBhDuKbEQB0OTcGyVALQ5IBlk6mGa91Dh4U+M+5AIGxOZnI6nehSukMKYVc9s5p7r83H3A/FHuL+vnzm+fP4TP+tauawpjYjG7vKgnP4lUlonxWD5a2gKcVHm3hX5R9+BnNPMf+T/L4RdDVvjw2zmS2AGM1U5MMhcKJWrkn+Id/Io2s269bI8kDAgSKKShoTzJZFMTJeUDJNrYAVJx914nWje3jJJ3s2aDI6G3x5KecFn70FDWzuB5U3Uxw5ThNTw+f0IH+A/kgnWUni0VBaYEjqAR+oncMVJVGhr0Qb7bAJHGEcWdM9nlAlroXpY08zel8jmf0jYazS99rGm80rOm7B90ZS29DJjTpMNCmQddpR9NMhBnPixUMPPBYjInFczJIsyngQpmPlhM5qSCOVmE+TRQwcwHi8mcVDAnizCfBiqY+WAxmZMK5mQR5tNABTMfLCZzUsGcLMJ8Gqhg5oPFZE4qmJNFmE8DFcx8sJjMSQVzsgjzaaCoj9MxsembHh+V3S9C87E5+pOl9vsf5Y/l+ADNO9n2AZfN55FYm6YyRVDRYErgAMKDLl4MmJcB8nmN8FU+r9r58z7iK/n8zJl7TUBZfovIfNiV794TKWjezBYHJIyXbmYBEpDaJx4KAwS/CObe8AAgmgbwPNzihwfRRp6GoMW8ueVZSSMfcDf+4BRlc6RiwZTgebAFQE8DguUdD++EoJ9UFoBXcqck9Ig0HnBBvGSnbpFUspm9L4nH1jbAAxjWRgO2wu1DaR8pgJZr5NDOVsP9MqWEi9RMCf5IAsbFnlkif/J5tQewKcSfAA61l9LGTsuUCqYDiHeuMULjxqx/Q23F+sgqvUgwrQQxm/4u1CQLQDY8EJrZKG42N4QHiLJvBvKLyCp2zRRIHEf8l+hG4Eoza6P8I/KVyPlzo/lUWaftRQAXYrJYMBmMAHDHj7WxKc+9aF/Lu6oJJZvZS8FEoK/UEP8VVfG092AKQdbdoo8kbhZWMCUJaWexFwUOSPy9B1NARtddX1AlhPcezBJASuXR381+1izt1+MSu/MXxf0CNb6cBIQFFxvHsR4B0/xxaaTAxvNZpF5NnkcCnJvNZUio+f8A92/+mZ/dmfwAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}E_{b} \\left(s - s_{\\pi}\\right)\\\\K z\\\\\\alpha \\gamma\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "⎡E_b⋅(s - sₚᵢ)⎤\n",
+       "⎢             ⎥\n",
+       "⎢     K⋅z     ⎥\n",
+       "⎢             ⎥\n",
+       "⎣     α⋅γ     ⎦"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Sig_Eps = sp.Matrix([[E_b * (s - s_pi), K * z, alpha * gamma]]).T\n",
+    "Sig_Eps"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "**Executable code for** $\\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "get_Sig = sp.lambdify(\n",
+    "    (s, Eps) + sp_vars, Sig_Eps.T, 'numpy'\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "To derive the time stepping procedure we will need also the matrix of derivatives of the generalized stresses $\\boldsymbol{\\mathcal{S}}$ with respect to the kinematic variables $\\boldsymbol{\\mathcal{E}}$ \n",
+    "\\begin{align}\n",
+    " \\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAABLCAYAAAC4EY+8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIKklEQVR4Ae2dX27VRhTGb1CeKwpS1efLDkK7gpIdQFkBZQdFPCVvCHYArCCQHZSuAMgO4LmqBIq6gfb7+fqYsa/t2vH8czQj+c5fe74555szM/ZMcnBycnK02Ww+6upz56enpw/6MkraOiQg/X0S0m0fWuUdHDoZrxSmsOs+u5ESXqUEngv1zQ7ynxW/T5pLgOdiRFF4R1Jrj0qndOyWUxrK3yNAq1CoiCr/Xc8+1nWvruOdfCPerTqNYQmzdaHyd+u0LDzhoUd90XWp646uM6VdyE/iluJxLUCUBgjwC1X0Qv6/8lEwZNhzSv9NiVnNP4SJudIz+ecAlo9p/Sj/WJeRmKwoTnUuxnMjCtJOJQJuvf+sk+VG3ygSXaguADcszBByK79SPnkKYwWIvyUe0/nCk4QAEpT1esz/mOtOSsfKhs7DGvXhfa/0IymkO9FaBZ5UBKgsgITWGjsVZ3ytnMLWuywptW9Wq4sDnLih/F2u/9+h+mbhSUUAJnmt3iSFY2JbPV5pWQwBwmG9++uIHrcjeV6zfOI59IpswsME3ph7S+GXuoWZP2kImVl1js5WJ9a7XIxjpHDL+Qx7wxOdAJKCjf+PRIBmCFCY2fRej1ca5KiGBoVTLwnNEvQp83ZfYuC0xXgmEUCCp6I/ZzampWDnXhS60TMb5dd53SGBiRXLxHdcKjPW2PoRwbyxXm69kXcDsZw3PFMJcKmW+ep9R3pWS9m11J6Z9KRwlA1RjCSEm3wrF8sXnktdVGfKdqs2Yu5ZL7eQz7BPPFEngQKOInF/7LxvvzTqW2zzVGH3FSakMTI4xaIGh6yQkaKP1CEBesFzGBJhz7Nt/B8UloiAsnnhUhGijvOo+wrj8yGD4cUlDOmhHS97mmWqUxkTV4aqVeKJagEkqOoDhITV25uVjoVgruGae9Iwr6+Uz2tkXrz0KULJ4ZzqxiJ9lV+1gZoUvimP5esj4jGdLzzBLUAtpNcSDuvkaq2sNHqTTWQwoQjS8ulNLkGwGi+VZj0M/yddKRzzoKfCUrVDYazRLx28MXEtxhODAChsyUcdlO32eBodbcLlarMm4RM3LWXYB54bKRswsW6swwen7K8KnznxElwggTUQoOntYjzj7Qf5zRe5BW0vt0oCwYcAD1Jm+HgtpVdEkG8rCQ+PLo/IngBSOBPCJXOIouURCaxhCBiBX7KWSqAQYKkEV35/IcDKFbgUfiHAUgmu/P5CgJUrcCn8QoClElz5/dGWgVrO8To3mwMVU/Um3Bxk4Z2/fQRiWfpZ6a2lqeJ833DLDG2IUTF/bqlcoxBAIBcfYPAnsnlPEna+QG7k20GWoY0xvJ7mtfVjlW3eXnJvKKd6Fss1+BAgkFkdqLiKMtSGe/V9vfsY6jZu5B/riqV8L3INTgAJDlPZJzi+66c4UFHrcpZnr59bO5mk7Ju6GNrYtxj7+4QXucYYAug9fcLhMzFuKH+Xm8dvZQGk5IbICrNz6aH8VJ+Hh+Q2S66HIeUr4TAm4mzzxy7W/t22o1nGUHazSUXtwvzelf84BVqfcg1KAAmH3T44Y+UutvsdI4VbLmlYwq56v0BUvV9xVgWY/Shj/UDjvck1xhyANpgl6GvP7b7EjNJs/P+C8nWxKmB/IBtXbdmXCu5iuYYmwFgvNxbHPFBxFUWZBeBsQLUk1EOwADi2r6dw3uQKAb7T9Xfte22MBGam35TtPt/Ym9KUuniGwkfKYJbfnFNQGMwMCaxiyI/qPMj1RwFG5xsI8I+uH2pfnneHoEzZ7sONFM3M2s3MISxBW+9vLf9qbKmtwBK5/qU2oPOKAHV7gnm8ImVnb9elOlDRxTEWt/F/j6QiB2lYAg6s9BF87Lk+8rzINfQcYCPhZHWgYqbkq0me2nAxcB/H23HR5wK+5Bp6GbgTz+5gaU4HKgzXni/B0psx71itLQWURm97L98mgaSxHLT3AKwOmAtE+w6gunCLD4YcOH8p9I4akfuEbNfs8rtIAtIzlu2t/IPgQ8AipOXm4BIoBAgu4rwrKATIWz/B0RUCBBdx3hUUAuStn+DoCgGCizjvCgoB8tZPcHSFAMFFnHcFhQB56yc4ukKA4CLOu4JY3wI2eu3I+/XVHQzpqu+6tMPaFcUCSGgcYKg+pijM10H+DBzvorcGZA3+dWmHK+vgBJDQvBxgcEGnCF+XdnRlF5wAqtDLAYYu8ATx69KOluhiEMC2VbUqVuSyThjK75ZPHR/CubZ2tOQYdBIos2lbpcZ2sWY/D8ixHcLEN30m1siP7WkPlGZk3NT5bGZt0lRmz4W2ALbxsw/EGCn2gCZOyKodUirzKv78LlvV2KUECdi15LrmD267id1wUAvgVGaWwElqgrkfDGmAKpC8HVI+yuYU8vcOsCeKs6qyf7KBdeg7j+ncsguGtgBjvdx6Ve4HQ5BUTu1gLvJop77WL2kP6xR6/6TtfUEJIBBm+k3ZLmLrTZOAujfGDufUDmHhz+abXBtRWJr8IyXubWNvCnYCQQlQ1wUYU7ZbvZFiMlj35gThtbSDI+vMDSa5GATwcoBhUmvCFlpLO1r/e/H/RBKcAGLjmg+GNPJbSTuwtG8a0BMCsVYBiw8wTGhLjCLZt0NE3ZsfjAkmCgFqUKn+lMpY+2flXZd2uI0OPgS4lZVwOAmInCwP+eo6yxUCzBJX1oU5yTx7RVUIkLVO54GTFZj9TqUQYJ6Msy0t5V9pjlUIkK1K4wBzVwGfxKJuredKYyNEcSuVgPTHi6HtEHwIwLgxZD4mv1IcqqCkJ5cAewb6XsVXwP4DpDjQ0VAkiCUAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}- E_{b} & 0 & 0\\\\0 & K & 0\\\\0 & 0 & \\gamma\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "⎡-E_b  0  0⎤\n",
+       "⎢          ⎥\n",
+       "⎢ 0    K  0⎥\n",
+       "⎢          ⎥\n",
+       "⎣ 0    0  γ⎦"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "dSig_dEps = sp.Matrix([Sig_Eps.T.diff(eps) for eps in Eps]).T\n",
+    "dSig_dEps"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "**Executable Python code generation** $\\partial_\\boldsymbol{\\mathcal{E}} \\boldsymbol{\\mathcal{S}}(s,\\boldsymbol{\\mathcal{E}})$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "get_dSig_dEps = sp.lambdify(\n",
+    "    (s, Eps) + sp_vars, dSig_dEps, 'numpy'\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Threshold function"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "To keep the framework general for different stress norms and hardening definitions let us first introduce a general function for effective stress. Note that the observable stress $\\tau$ is identical with the plastic stress $\\tau_\\pi$ due to the performed sign switch in the definition of the thermodynamic forces."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAVCAYAAAC38ldgAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADs0lEQVRoBe2a7VHcMBCGSYYCGEqADiAdBDqASQXhOgjDP/5lSAeQDgIdQCoIoQQ6CKED8jyO7fh8Pse+ky178M4s+rR29Wq1Wul48/LysjFRHATOz8/3kPxI+hxHg/6lZnN+27/oSWIBgQ/k3xXKryGbzHkz9Eyx6N+MuQW7i+/T9IlU2oEP4Af67Vsx0XIEwOiE1mNYzKRH+IL6Kwuk4vwd1nNKd/Al9TdJacB/ghoeExYgwTguTz4F6SdtGuR7eKL/IABmGtgV6TXpEXxaxJX8M3xJ/SH80TLpKCio4TFjd+eC0aVIuDO34f0YACHThXOBKon2WWVDTWU65g7pl5puIZo+M4j6n8G5N0Ounu6QVNxHRaENbxsQcmAyJKi7JS9IGp3HRe+U6rWgW++KrCAQ3Q1NHvh0j1S2bNhyRjo6oxOC0JcLd+YcAYxHgUewO1PwJloNgQxbjU2jM9YbpdE5/aAer2xYlC+QYYA8I2/gG42Q/wnhHlXGoFVk/NT1kVklt1Edut3AxnAeuc5hMEa3CrZBDa+IIMpocC62C5rcwortfeaR7waQvNS4eJb1IOYTok+UECCT3zAVRzG9Rd9c94bfdtJtVWw7MTyUcVd6xHoji+pFkG9s+YM0j+/Ib8FjPPY9YiU9d1RcVQIMV8Z200VgDG+cbcire+XCUW885/Xfo2FWHJSyN8Baz0J7aH3UM9eV8QWrlbfgGz2k8yqTunqh8lG0TP4iEew4ZCw38mkq5IiynG+msvCqMv0Hg62G5yIEecxlLBfVG6y3rirQBW7OGCnPUUh95gb+V9BI1LExoVO24HPfUK9n7/w5BTkanQ/DGrMhgnLFsa3hBVtrZFdRY2yD3WoBxGNAzyk4C4ZMnR7DB+TY5KLdx1aiqXxw09tekyZeO009NQ7IZ0dv0+G67tcY2yCGBwC68MyLLBhdOlt37beuZ143frpQeqj86K3rH7sNPbOLRPlFILssVXriGHq3xTaI4THRpb9KoJAPnnq6IfwXhjuyNsaMsWhVMsHMOHmXtGx0G9RlrwQn5N30Q6BW2K59q2XiAmRs54L6qEmyIRjbsEdBBkxtbEe/PmgXIXreQRLYieNX2FRKfoulPvfQhT5/exC+2A5XxdRZnz7SVtiGMLzYE24MKoszBONfqq8GROOyUCX5rkmfpQI6bGiL7dqG1+FcxjD0wjE4BqWHoONkeGusArv8eY3PX/WnoS4XrxrEafLtEZgMrz1mIb/4xWBPIQccwVjJnP8AH7ZnRmtTxKsAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle - Z - \\bar{\\tau} + \\left|{X - \\tau}\\right|$"
+      ],
+      "text/plain": [
+       "-Z - \\bar{\\tau} + │X - τ│"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "f_Sig = sp.sqrt((tau - X)*(tau - X)) - (tau_bar + Z)\n",
+    "f_Sig"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "**Executable code generation** $f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S}})$\n",
+    "\n",
+    "Note that this is a function of both the forces and kinematic state variables"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "get_f_Sig = sp.lambdify(\n",
+    "    (Eps, Sig) + sp_vars, f_Sig, 'numpy'\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "The derivative of $f$ required for time-stepping $\\partial_\\boldsymbol{\\mathcal{S}} f$ is obtained as"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAAAZCAYAAABHJCk0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAG5klEQVR4Ae2c65HUOhCFvVs3gAUiuJABjwhYMoBLBAsZQPFr9x81ZABkAJsBEMGFzQAy4BEC59NaLo/HsuUZyaOZaVUJWbIldR+3z7RaWo7Oz88/VlV1V9mnRxcXFz98xUpDwBAwBHYdAXHaqXR429Lj8kjk91037rQa7dIQMAQMgb1FQHx3W8otjvdWww0UAxzlZxsMsTNdpefj2hh2RmYTNB4Bs+UwVkV4fvXH901ivtT1u7C4+e9o/hPN8lHlo77Z1A4pPlHGjSYRIlh4uev+X9TmQwmfdf1W7Zcqi0ySjdAH2Fu4Y8M3JAzxKsyWN8Rx3e4xtly/o8U/606SuB+EQy5h+Q1xQW69ScBBzu9qkB/rGtJoiE3Xf5SJLUCeZ9RVlp7OJCB63ytd0K58wpd38F7530KwNlvuvqR569G2XAT5yWivhM/RvBitziY58Oq+qozxgF7rWT68V8pt8sPjY9MoSKC6X1SSrBD2Z+UXym+KEq5HGMkIwUB4vCc8LepFJMlmtrzFNyH8o23ZYn7LL+qlqovlpv5abeQY+l1duyWuSj7EVyp3hvha2kHmEHnxSfhi4E+UeV+fihd4OwKaLY/gXgT5yYjZYGhIZETmLLeRgYFVxnh9XgYIgwTh0Z/Y3y4SH3qzPP+h0scy0cvSRASEn9nyRMxSPx5ry7MseyUMnhEfFcRyU5llylO138NYdE2MjPssH5fIQ/dpf65MX/oRTPbLHOJq/MKxBGKcD8p+LF1WD5T/1xgxSzmWsGxORCeNe6kMadAXmZZkjx4ow4OS64WGxZPzWHVnIVbZxQX90WESDt2B97kuzMyWZ37BuWw5O/lJcD4+PCKIqkmqQ2iVSkiNGBmktpTUBvGxrLmha0imUvldhdtd1TV1lp6QKO0Q4Kmu3UetkjrnGCGpMY8O+dj1nJrYAIFoPmkOJ+PUAVI/Lzn80v2hxkYm6nipjXwBPMDQvReVljoICLMTNZktd3DJWc1py9nJT8DcJ2M4ys3HpzY8tHb61a7U187j6/SD7PD22HFtey6QG/M0JKtrlnFqdl7l2BEaiLJPBvoPJfqR8LLa8rjGuf+RvngmeLvtTRiwB7exhP584Jb6ETBb7sclS2tuWw6SnybmI+D4w5TE0Y6lj0x1dhH5qH5zrRJPDk8shijoxzI5NoW8u5gPmnna5Dw6p3SAwCFiEoeFyQ3pXDcP/6vnk+DsZ9F44N+8A9Uhw1i9wM+TuR8yeZla5+QCBgaU3GbLAWxoTv1eNV5WWx4iPz6YVOe+GAfP6FSZJZhfto4tsXj2mUBgM+SqBpcxzpT7EmQ5S5IsEB+Hl/EuWVIS90OfqeSXEmdNv5KeqqWoHVHhlVvnFRASNpgtB8Cc4b0mteXjgB7JmgWI8yRUEmAnNsd5PkgCUoPIxhKeFZsjPoDPGJMIZmyC+j7EeRLzrOaHlPkrEOdh1SVeE/HG7J5TjIytZyDlr6360CXeb8h7Hup3EPf8u1VptrydN57UloOeX0LdIAOEbpa5Mh7idcTmxoiCJRse3xy7j3z0fPyDSbL4zY2uTBCiXwaPebSDc6S6KVnBl6MXjqQjxuV5vDJL/QiYLffjkr01hy0fZ5f6egLOwXW9KupdAuk+w4fIEhmPyp0DrEHIITYEMbjM19zsBt9R2ZW7UpvfUMGj7eqRQ96YMfnRmeLJof+KbjETbfGZubE2W97Oy05uy3N4fkAFMfxXkwKExt/wQmrEy/DufDywUh2CcX8Tq2sCzKoux6zUxhgfVD5X7utPDI5fae+BYbAPlIfO4REXw3NbSvX479XIPCT+uoBYX+NNtZ65fkJnEbmvPDSffzZnCc4rOg1MeF/3QvHUgW7z3xK26IWn7kMnX9TG8h7s/Q9RDsHMlnOgOj5mclsu4n91CektI3aEpNLF+FTyK4/BQ0Rumam2ZjkdGie2XWNxzo0zh1O8pdjhi36uxhbiwMgsJUZAuJotJ8Y0NNyYLes+jlEx/6vLih4SEDe3Utlsbugaj4+MxwgJ4lklIz+NBaGyweI9Rl0eTML7nuIlHgwwmyoqWzVb3hTEaf2jbHmumN800a+fJvbk/k4y0BniS/qxykhZ0jAnvwwHk6QvHjVx1ZQ/JAeDX4SiZssRIKV4ZIotzxXzm6yXlCC25s5UqeR8z896kFsq+Vg5btDE3ep7KQpIlbhj85ciKQYtfAz03XZ8snCI1hfPbHl97NboGW3LRcf81lA8SRcZK54fnlDOwHkSWTcdRDryfxiysXRwcc5NsduF/mbLq2+pxmRh5LeKjbUYAobAHiPgye94j3U01QwBQ8AQCCLgPL/O3YM86tHBwKqGgCGwRwjI2+M8aHuD9OovsCr4xBzdBfIAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}- \\operatorname{sign}{\\left(X - \\tau \\right)} & -1 & \\operatorname{sign}{\\left(X - \\tau \\right)}\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "[-sign(X - Ï„)  -1  sign(X - Ï„)]"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_dSig = f_Sig.diff(Sig)\n",
+    "sp.simplify(df_dSig).T"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "**Executable code generation** $\\partial_\\boldsymbol{\\mathcal{S}}f(\\boldsymbol{\\mathcal{E}}, \\boldsymbol{\\mathcal{S})}$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "get_df_dSig = sp.lambdify(\n",
+    "    (Eps, Sig) + sp_vars, df_dSig, 'numpy'\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Flow direction\n",
+    "Evolution equations have the form\n",
+    "\\begin{align}\n",
+    " \\dot{\\boldsymbol{\\mathcal{E}}} = \\lambda \\, \\boldsymbol{\\Phi}\n",
+    "\\end{align}\n",
+    "with the vector $\\Phi$ representing the flow direction within \n",
+    "the stress space. Assuming the normality condition, i.e. that \n",
+    "the flow direction coincides with the vector normal to the \n",
+    "yield condition we can write\n",
+    "\\begin{align}\n",
+    " \\boldsymbol{\\Phi} = \\boldsymbol{\\Upsilon} \\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n",
+    "\\end{align}\n",
+    "The sign matrix $\\boldsymbol{\\Upsilon}$ is used to direct all the derivatives in the outward direction from the elastic range."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJMAAABLCAYAAAB0iLVXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJcElEQVR4Ae2dX3LVNhTGbzJ97qTtTKevhR3wZwWkO6BlBcAOYHgKbwzdAbADYAfACkrZQXjudKaU6Qr6/RTJ8XUs69jX9rWToxlFtv4effp0dCzfWAcnJyc3NpvNn/Jt7u3Tp09/bUvwuKuHgLhwql5fa+u50g6+qSW81DWZ6+5z/cavrzwCz4XAUQOF27q/S1ydTM/FLidPAylhwkw8Vshku9ROfYQUn3I8aMMglrlApkUAJeEYPJbdx23Czymk2mcWvlD4S1u7in+geMyA45jOZGRSBuLF8h8UhymBey9PfW/D3cL+IJf8G3mw761YDhfWH8RhAPHXudmzgwgPczII8JfyEC2RY2sCKO2r0l7E9O/IK5/y5qrdd/x9CfBmiBD1ZW5I+dHLCOxPqvRg9Ip7Vig50DofFVpm6DPlRdU/ka/IorJoJAi0mocYyfpV/r38I/nfJb/ZLVEzmYWfOONj1Y/BWXQCnQmAv6HrsKQpZLl+onA1RKp1lMnBxOjlFkcmBoEBwffqyYiZkYHqFFq0UmqZAcBBIMpjO62RSPSb5fmzwmQL0q+im32Zk4CQBCEZqO/lsY/uKf6mPIOAjUE6y8XWYMTOYcNQlnIY6oQ4bBe0ySt56nktn+rS5ea2/B+qw6K6WbIwls1O9WK8MgiURaYt2c0VTZBRcj1StWiahFWzFWy9Ji70nz6YcZiVTBKYzjBjt56OdA9BNgohCTbGhU1UxUGwd/IYsgzaRiH7YuHpSdfcs9RASuIh1LGuA0gKuT9VyKCXNA7yDTFCeYpj4N6pjSCjrvfqJEdaqu9IEGTiHi1ayZfBAwzDuCg0uVnJJIlu4SX8UQNsNEjdfanfxOugkRrlIA/aiKeq+syCLLRTkVbXqG1FB61X2jOCeG0yUL7LUQ6HFqjLEyLn/qP+sgqgjesPBWAPbiVH/49KmerpJjKpcSrlMbmPu98UWvc8JSDkv1wrRNOgKSzAU45l0epy2scCEO1UM9fSoPrAhIDYuLu6x1eDeBbd/Vf5R8E5taL6IA0+ON1DLmu/wC9NjrMKCn+tZEKAm4W6rMnUw8w9lkflpmWqpFLJ+wBAAEke4Knjvnybg3yzOMkCkdiMRPuxhGA30Z++ZBoTZzV/wd1TDBN4Enc4Sa2ZSgV0YLpCDD5sG/aTAB2SQIySY+ZjrCeDkjp6DVipgZgOESFr0al9SM6ucdAAMWRWY6/1mtnFxnbPAMk/GqtBO+e0e2sVJs3UWnJYJODSoWpZE+BpF7kEPCoajWR+uhgmYigFiIDZ6SRLMrabMkGwtOyVNG5nG2MlRmKz7VIte4W6GQ80pdkdmnOOl5F9mOas5745IM08dIwlkRkf9qEUlgg4VGoA71zW1TZPe9cVNuXeKC4Z+GjcZj+GyrRrOSZxH01D/y/0rUuIuTUTsgD0bxFkCMI7OEiCvYH2SfbURvcMGIZ82uLX7faaT5riXit8KN9WHhsG0iUNAZlvy3ftA2FXoFm2XKz/lSJpB4dc2ErVbK/lOcuhvTDS5bvaS3mnDMH5Qp86GryltJw92lrsoPbjOGZZH+a2VjhVpGQLA6ww2EgKmfEsRQxsWFYUVy2fu8qhuthnYc9rsZjs2sdc+Ygtk6D4sl150HjYjAf70Ey5PmTjo8AbhZWxrWs0Eh6NBqmY+aORSXVBUAz+pNF0eWUcq0MfLRaA2YfNNGREWLvDO7tMYYjUu/OZukK0CMpyTJtT2WVdze8tTf1F41dvDvoIshbNhG0S9qcUslfyT+zkDwrpPFsNld0S08YIICl2W7WTPkalC6+D/g6y71ZBJsAXWVjSWHZmc7Qpj2HPU1l6Qput/bkbop9qk/4OshNXQ6a5gU3tRWAvPZHor/q6Uz/XYjOlsfVwwQg4mRY8OGsTzcm0thFbsLxOpgUPztpEczKtbcQWLK+TacGDszbRfGugMGJ6XObdEy93f9Y1e13uMgg4mVqAEWnYVYdAbN5dk+feXQEBJ1MLQFEDhVcKumZXGO3kroCA20wFgDzZjoCTyY6V5ywg4GQqAOTJdgScTHasPGcBASdTASBPtiMAmb6V/zuG9pKe0xE4Q+AnBfBnA5n+k/8xhgrcOQK9EPhLueFPIFOvkp7ZEcgh4DZTDpnzeN/9Psei88p3wDPwaOeb/3bhX6iOY5YPiuP/9Pl/sp1+3hrru3SBkykzpCLMVfx/uQwatmhf5mw4eS4DAk4mA0iexYaAk8mGk+cyIOBkMoDkWWwIOJlsOHkuAwJOJgNInsWGgJPJhpPnMiDgZDKA5FlsCDiZbDh5LgMCTqYCSNoJ54Nf/FPBpXfqJx/Cvza0o4t7nRI74ydhDh3RHcoJe06L4PuUfDyt9zealqiZeEuPL36ccwfcrEU54iP7jk6Ap2+Yp29tMgjVS2Bdf1V5XhiT7idhCoRZnQaAzwn6SZizon7eGBNA3k/CPIdklCs+ecgXd4suTgAmQXXoouKwPfjm+KDvQxYbnTbDM2Tv28TiljkGQb4alL4dGiN/JMJGYR+7gQHAQSCIxIfy10gk+s3yzCex02+56FfRzW6AS0A+Ao+QDBQ/PsM+4nAdPwlTQEzhhG06uAis2xy2XvMb6nwum8lgPvJiVjJJYDrDjN36FLLug5GrEIJxKoCfhCkgxnDCMi3Vd1QfGod7tCjXwUXc020K/STMiASk9JMwz1YBPwkzTY9a+EXXLItWl7N3cqq+Xi/tVDO3npC71uxmCyB9p9xPwuwACmA7j8zKlW2JDycNKB67CZXLssd+TVjqWvKnKPI+UD4/CTMh0j/kdAcONJrEzfo0JyLwlLNRiMHnJ2FOMqSdlfKdKf7DxuLQzjnt3lp+VgNcEkAmOlQ9OYhUaRc5EK1VyrPIGwr8JMwOgLqShDP4su3CfpjFkb/XUn9oqXXkPOzDNO0W7puPoM08dIwlkROH/CTM/oPCJO6jaTBHmmPS2ercmglheHflJ2F2DsskiX4SZoJV2shPwkxgTBzGlcNPwhwRZ54eedQvPWWO2ORiquK9HFsdvdw+bKZeAsbMrN3hnV2mMNv+vTufqStEa3ayHNMmhuiVcVErYZdWD0nWzu/DZrLKVuVTx/wkzAqNyS/8JMwpII4k9pMwjeCuQjMZ+zJJNhGKx+nq15OTNLKQStXXnfpZJ9OpKmt2i98Er/I3Oc2O+P3uCIgL/JIga0NCJmZeekHZbNG6W9os5/eXEwGecJubyVVP/wcXjB6Obd/+AQAAAABJRU5ErkJggg==\n",
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}- \\operatorname{sign}{\\left(X - \\tau \\right)}\\\\1\\\\- \\operatorname{sign}{\\left(X - \\tau \\right)}\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "⎡-sign(X - τ)⎤\n",
+       "⎢            ⎥\n",
+       "⎢     1      ⎥\n",
+       "⎢            ⎥\n",
+       "⎣-sign(X - τ)⎦"
+      ]
+     },
+     "execution_count": 16,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Sig_signs = sp.diag(-1,1,1)\n",
+    "Phi = -Sig_signs * df_dSig\n",
+    "Phi"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "get_Phi = sp.lambdify(\n",
+    "    (Eps, Sig) + sp_vars, Phi, 'numpy'\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Time integration scheme"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "## Summary of the backward Euler scheme\n",
+    "The derived expressions can be now plugged-in into a generic return mapping algorithm that efficiently identifies a state that satisfies the discrete consistency condition. The general structure of an implicit integration scheme reads\n",
+    "\\begin{align}\n",
+    "\\boldsymbol{\\mathcal{E}}_{n+1} &= \\boldsymbol{\\mathcal{E}}_{n} +  \n",
+    "\\lambda_\\Delta \\, \\boldsymbol{\\Phi}_{n+1} \\\\\n",
+    "f(\\boldsymbol{\\mathcal{E}}_{n+1};  \\lambda_\\Delta) &= 0\n",
+    "\\end{align}\n",
+    "To reach an admissible state let us linearize the threshold function at an intermediate state $k$ as\n",
+    "\\begin{align}\n",
+    "f(\\boldsymbol{\\mathcal{E}}^{(k)}; \\lambda_\\Delta^{(k)} )\n",
+    "& \\approx\n",
+    "f^{(k)} \n",
+    " + \n",
+    "\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n",
+    "\\Delta \\lambda\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "Thus, by rewriting the linearized equation as a recurrence formula, the iteration algorithm is obtained\n",
+    "\\begin{align}\n",
+    "&\\left. \\frac{\\partial f}{\\partial \\lambda} \\right|^{(k)}\n",
+    "\\Delta \\lambda =\n",
+    "- f ^{(k)}\n",
+    "\\\\\n",
+    "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n",
+    "& \\boldsymbol{\\mathcal{E}}^{(k+1)}  = \n",
+    "\\boldsymbol{\\mathcal{E}}^{(k)} + \n",
+    " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n",
+    " \\\\\n",
+    "&k = k + 1\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "To define a generic return mapping we need to construct the  derivatives of the flow rule $f$ with respect to $\\lambda$. The dependency of $f$ on $\\lambda$ is intermediated via the stresses $\\boldsymbol{\\mathcal{S}}$ and state variables $\\boldsymbol{\\mathcal{E}}$\n",
+    "\\begin{align}\n",
+    "f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda))).\n",
+    "\\end{align}\n",
+    "To correctly resolve the dependencies in the derivative $\\frac{\\partial f}{\\partial_\\lambda}$, we need to apply rules for chaining of derivatives. Let us start with the derivative with respect to $\\boldsymbol{\\mathcal{E}}$ in the form\n",
+    "\\begin{align}\n",
+    "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}))}{\\partial \\boldsymbol{\\mathcal{E}}}\n",
+    " &=\n",
+    "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}})}{\\partial \\boldsymbol{\\mathcal{S}}}   \\, \n",
+    "\\frac{\\partial \\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}})}{\\partial \\boldsymbol{\\mathcal{E}}}.\n",
+    "\\end{align}\n",
+    "By expanding the derivatives of $\\boldsymbol{\\mathcal{E}}$ with respect to $\\lambda_\\Delta$ that will be abbreviate in index position as $\\lambda$ for brevity we obtain\n",
+    "\\begin{align}\n",
+    "\\frac{\\partial f(\\boldsymbol{\\mathcal{S}}(\\boldsymbol{\\mathcal{E}}(\\lambda)))}{\\partial \\lambda}\n",
+    " &=\n",
+    "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}   \\, \n",
+    "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n",
+    "\\frac{\\partial \\boldsymbol{\\mathcal{E}}}{\\partial \\lambda}.\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "The last term $\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{ \\partial \\lambda}$ can be obtained from the evolution equations\n",
+    "\\begin{align}\n",
+    "\\boldsymbol{\\mathcal{E}} = \\lambda \\, \\boldsymbol{\\Phi} \\; \\implies\n",
+    "\\frac{\\partial \\boldsymbol{\\mathcal{E}} }{\\partial \\lambda} = \n",
+    " \\boldsymbol{\\Phi}\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "**Summarizing**: the algorithm can be written in a compact way as follows:\n",
+    "\\begin{align}\n",
+    "&\n",
+    "\\left(\n",
+    "\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}\n",
+    "^{(k)} \\, \n",
+    "\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}\n",
+    "^{(k)} \\, \n",
+    "\\boldsymbol{\\Phi}^{(k)}\n",
+    "\\right)\n",
+    "\\Delta \\lambda = -\n",
+    "f^{(k)}\\\\\n",
+    "&\\lambda_{\\Delta}^{(k+1)} = \\lambda_{\\Delta}^{(k)} + \\Delta \\lambda \\\\\n",
+    "& \\boldsymbol{\\mathcal{E}}^{(k+1)} = \\boldsymbol{\\mathcal{E}}^{(k)} + \n",
+    " \\lambda_\\Delta \\, \\boldsymbol{\\Phi}^{(k)}\n",
+    " \\\\\n",
+    "&k = k + 1\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "## Implementation concept\n",
+    "The gradient operators needed for the time-stepping scheme have been derived above and are now available for the implementation of the numerical algorithm both in `Python` and `C89` languages\n",
+    "\n",
+    "<table style=\"width:50%\">\n",
+    "<tr>\n",
+    "<th>Symbol</th>\n",
+    "<th>Python</th>\n",
+    "<th>C89</th>\n",
+    "</tr>\n",
+    "<tr>\n",
+    "<td>$\\mathcal{S}(\\boldsymbol{\\mathcal{E}}) $  \n",
+    "</td>\n",
+    "<td>get_Sig</td>\n",
+    "<td>get_Sig_C</td>\n",
+    "</tr>\n",
+    "<tr>\n",
+    "<td>$ f(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$</td>\n",
+    "<td>get_f</td>\n",
+    "<td>get_f_C</td>\n",
+    "</tr>\n",
+    "<tr>\n",
+    "<td>\n",
+    "$\\displaystyle{\\frac{\\partial f}{\\partial \\boldsymbol{\\mathcal{S}}}}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}})$\n",
+    "    </td>\n",
+    "<td>get_df_dSig</td>\n",
+    "<td>get_df_dSig_C</td>\n",
+    "</tr>\n",
+    "<tr>\n",
+    "<td>\n",
+    "$\\displaystyle{\\frac{\\partial \\boldsymbol{\\mathcal{S}}}{\\partial \\boldsymbol{\\mathcal{E}}}}(\\boldsymbol{\\mathcal{E}})$</td>\n",
+    "<td>get_dSig_dEps</td>\n",
+    "<td>get_dSig_dEps_C</td>\n",
+    "</tr>\n",
+    "<tr>\n",
+    "<td>$\\boldsymbol{\\Phi}(\\boldsymbol{\\mathcal{S}}, \\boldsymbol{\\mathcal{E}}) $</td>\n",
+    "<td>get_Phi</td>\n",
+    "<td>get_Phi_C</td>\n",
+    "</tr>\n",
+    "</table>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "To avoid repeated calculation of the same expressions, let us put the evaluation of $f$ and $\\frac{\\partial f}{\\partial \\lambda}$ into a single procedure. Indeed, the iteration loop can be constructed in such a way that the predictor $\\frac{\\partial f}{\\partial \\lambda}$ for the next step is calculated along with the residuum $f$. In case that the residuum is below the required tolerance, the overhead for an extra calculated derivative is negligible or, with some care, it can be even reused in the next time step.  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def get_f_df(s_n1, Eps_k, *margs):\n",
+    "    Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n",
+    "    f_k = np.array([get_f_Sig(Eps_k, Sig_k, *margs)])\n",
+    "    df_dSig_k = get_df_dSig(Eps_k, Sig_k, *margs)\n",
+    "    Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n",
+    "    dSig_dEps_k = get_dSig_dEps(s_n1, Eps_k, *margs)\n",
+    "    df_dSigEps_k = np.einsum(\n",
+    "        'ik,ji->jk', df_dSig_k, dSig_dEps_k)\n",
+    "    dEps_dlambda_k = Phi_k\n",
+    "    df_dlambda = np.einsum(\n",
+    "        'ki,kj->ij', df_dSigEps_k, dEps_dlambda_k)\n",
+    "    df_k = df_dlambda\n",
+    "    return f_k, df_k, Sig_k"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "The update of state variables $\\boldsymbol{\\mathcal{E}}^{(k+1)}$ for an newly obtained $\\lambda_\\Delta^{(k+1)}$ is performed using the evolution equations. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs):\n",
+    "    Sig_k = get_Sig(s_n1, Eps_k, *margs)[0]\n",
+    "    Phi_k = get_Phi(Eps_k, Sig_k, *margs)\n",
+    "    Eps_k1 = Eps_n + lam_k * Phi_k[:,0]\n",
+    "    return Eps_k1"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "The double loop over the time increments and over the return mapping iteration. The inner loop represents the material point level in a standard finite element calculation. The input is the maximum slip value, the number of time steps, the maximum number of iterations and a load function which can define cyclic loading as shown below. The procedure returns the record of $\\boldsymbol{\\mathcal{E}}(t)$ and $\\boldsymbol{\\mathcal{S}}(t)$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def get_response(margs, s_max=3, n_steps = 10, k_max=20, get_load_fn=lambda t: t):\n",
+    "    Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n",
+    "    Eps_k = np.copy(Eps_n)\n",
+    "    Sig_record, Eps_record, iter_record = [], [], []\n",
+    "    t_arr = np.linspace(0,1,n_steps+1)\n",
+    "    s_t = s_max * get_load_fn(t_arr) + 1e-9\n",
+    "    for s_n1 in s_t:\n",
+    "        lam_k = 0\n",
+    "        f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n",
+    "        f_k_norm = np.linalg.norm(f_k)\n",
+    "        f_k_trial = f_k[-1]\n",
+    "        k = 0\n",
+    "        while k < k_max:\n",
+    "            if f_k_trial < 0 or f_k_norm < 1e-8:\n",
+    "                Eps_n[...] = Eps_k[...]\n",
+    "                Sig_record.append(Sig_k)\n",
+    "                Eps_record.append(np.copy(Eps_k))\n",
+    "                iter_record.append(k+1)\n",
+    "                break\n",
+    "            dlam = np.linalg.solve(df_k, -f_k)\n",
+    "            lam_k += dlam\n",
+    "            Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n",
+    "            f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n",
+    "            f_k_norm = np.linalg.norm(f_k)\n",
+    "            k += 1\n",
+    "        else:\n",
+    "            print('no convergence')\n",
+    "    Sig_arr = np.array(Sig_record, dtype=np.float_)\n",
+    "    Eps_arr = np.array(Eps_record, dtype=np.float_)\n",
+    "    iter_arr = np.array(iter_record,dtype=np.int_)\n",
+    "    return t_arr, s_t, Eps_arr, Sig_arr, iter_arr"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Support functions\n",
+    "To run some examples, let us define some infrastructure including a more complex loading history and postprocessing"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Loading history\n",
+    "This implementation uses the symbolic machinery which is not necessary a simpler data point based implementation with `numpy.interp1d` would be better ... later "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"640\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "t, theta = sp.symbols(r't, \\theta')\n",
+    "n_cycles = 5\n",
+    "A = 2\n",
+    "ups = np.array([((theta-2*cycle)*A+(1-A), theta-2*cycle<=1) \n",
+    "                for cycle in range(n_cycles)])\n",
+    "downs = np.array([((1-(theta-(2*cycle+1)))*A+(1-A),(theta-(2*cycle+1))<=1) \n",
+    "                  for cycle in range(n_cycles)])\n",
+    "ups[0,0] = theta\n",
+    "updowns = np.einsum('ijk->jik',np.array([ups, downs])).reshape(-1,2)\n",
+    "load_fn = sp.Piecewise(*updowns).subs(theta,t*n_cycles)\n",
+    "get_load_fn = sp.lambdify(t, load_fn,'numpy')\n",
+    "t_arr = np.linspace(0,1,600)\n",
+    "plt.plot(t_arr, get_load_fn(t_arr));"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Plotting functions\n",
+    "To simplify postprocessing examples, here are two aggregate plotting functions, one for the state and force variables, the other one for the evaluation of energies"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33):\n",
+    "    colors = ['blue','red', 'green', 'black', 'magenta' ]\n",
+    "    s_pi_, z_, alpha_ = Eps_arr.T\n",
+    "    sig_pi_, Z_, X_ = Sig_arr.T\n",
+    "    n_step = len(s_pi_)\n",
+    "    ax1.plot(s_t, sig_pi_, color='black', \n",
+    "             label='n_steps = %g' % n_step)\n",
+    "    ax1.set_xlabel('$s$'); ax1.set_ylabel(r'$\\tau$')\n",
+    "    ax1.legend()\n",
+    "    if ax11:\n",
+    "        ax11.plot(s_t, iter_arr, '-.')\n",
+    "    ax2.plot(t_arr, z_, color='green', \n",
+    "             label='n_steps = %g' % n_step)\n",
+    "    ax2.set_xlabel('$t$'); ax2.set_ylabel(r'$z$')\n",
+    "    if ax22:\n",
+    "        ax22.plot(t_arr, Z_, '-.', color='green')\n",
+    "        ax22.set_ylabel(r'$Z$')\n",
+    "    ax3.plot(t_arr, alpha_, color='blue', \n",
+    "             label='n_steps = %g' % n_step)\n",
+    "    ax3.set_xlabel('$t$'); ax3.set_ylabel(r'$\\alpha$')\n",
+    "    if ax33:\n",
+    "        ax33.plot(t_arr, X_, '-.', color='blue')\n",
+    "        ax33.set_ylabel(r'$X$')\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from scipy.integrate import cumtrapz\n",
+    "def plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr):\n",
+    "    W_arr = cumtrapz(Sig_arr[:,0], s_t, initial=0)\n",
+    "    U_arr = Sig_arr[:,0] * (s_t-Eps_arr[:,0]) / 2.0\n",
+    "    G_arr = W_arr - U_arr\n",
+    "    ax.plot(t_arr, W_arr, lw=2, color='black', label=r'$W$')\n",
+    "    ax.plot(t_arr, G_arr, color='black', label=r'$G$')\n",
+    "    ax.fill_between(t_arr, W_arr, G_arr, color='green', alpha=0.2)\n",
+    "    ax.set_xlabel('$s$'); ax3.set_ylabel(r'$E$')\n",
+    "    ax.legend()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr):    \n",
+    "    colors = ['blue','red', 'green', 'black', 'magenta' ]\n",
+    "    E_i = cumtrapz(Sig_arr, Eps_arr, initial=0, axis=0)\n",
+    "    c = 'black'\n",
+    "    ax.plot(t_arr, E_i[:,0], '-.', lw=1, color=c)\n",
+    "    ax.fill_between(t_arr, E_i[:,0], 0, color=c, alpha=0.1)\n",
+    "    c = 'black'\n",
+    "    ax.plot(t_arr, E_i[:,0], color=c, lw=1)\n",
+    "    ax.fill_between(t_arr, E_i[:,0], E_i[:,0], \n",
+    "                    color=c, alpha=0.2);\n",
+    "    c = 'blue'\n",
+    "    ax.plot(t_arr, E_i[:,1], '-.', lw=1, color='black')\n",
+    "    ax.fill_between(t_arr, E_i[:,1], 0, color=c, alpha=0.1)\n",
+    "    c = 'blue'\n",
+    "    ax.plot(t_arr, E_i[:,1] + E_i[:,2], color='black', lw=1)\n",
+    "    ax.fill_between(t_arr, E_i[:,1] + E_i[:,2], E_i[:,1], \n",
+    "                    color=c, alpha=0.3);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Examples"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "material_params = {\n",
+    "    E_b:1, gamma: 0.0, K:0.1, tau_bar:1, \n",
+    "}\n",
+    "margs = [material_params[map_py2sp[name]] for name in py_vars]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Monotonic load \n",
+    "Let's first run the example with different size of the time step to see if there is any difference"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1400\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n",
+    "ax11, ax22, ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n",
+    "for n_steps in [20, 40, 200, 2000]: \n",
+    "    t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n",
+    "        margs=margs, s_max=8, n_steps=n_steps, k_max=10\n",
+    "    )\n",
+    "    plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"900\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n",
+    "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n",
+    "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Cyclic loading"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1400\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n",
+    "ax11,ax22,ax33 = ax1.twinx(), ax2.twinx(), ax3.twinx()\n",
+    "t_arr, s_t, Eps_arr, Sig_arr, iter_arr = get_response(\n",
+    "    margs, s_max=2, n_steps=20000, k_max=20, get_load_fn=get_load_fn\n",
+    ")\n",
+    "plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, ax1, ax11, ax2, ax22, ax3, ax33);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"900\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ax = plt.subplots(1,1,figsize=(9, 5))\n",
+    "plot_work(ax, t_arr, s_t, Eps_arr, Sig_arr)\n",
+    "plot_dissipation(ax, t_arr, s_t, Eps_arr, Sig_arr)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "hide_input": false,
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Interactive application"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "metadata": {
+    "hide_input": true,
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1400\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3a62cf0387304a1ead559bc095e64dcc",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='s1', max=4.0, min=-4.0), Ou…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "aa6037de0b35435e9aea0559417df4d6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=50.0, continuous_update=False, description='E_b', min=0.5, step=4.975)…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "def init():\n",
+    "    global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n",
+    "    s0 = 0\n",
+    "    t0 = 0\n",
+    "    Sig_record = []\n",
+    "    Eps_record = []\n",
+    "    iter_record = []\n",
+    "    t_arr = []\n",
+    "    s_t = []\n",
+    "    Eps_n = np.zeros((len(Eps),), dtype=np.float_)\n",
+    "    \n",
+    "def get_response_i(s1, margs, n_steps = 60, k_max=20):\n",
+    "    global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n\n",
+    "    Eps_k = np.copy(Eps_n)\n",
+    "    t1 = t0+n_steps+1\n",
+    "    ti_arr = np.linspace(t0, t1, n_steps+1 )\n",
+    "    si_t = np.linspace(s0,s1,n_steps+1)\n",
+    "    for s_n1 in si_t:\n",
+    "        lam_k = 0\n",
+    "        f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n",
+    "        f_k_norm = np.linalg.norm(f_k)\n",
+    "        f_k_trial = f_k[-1]\n",
+    "        k = 0\n",
+    "        while k < k_max:\n",
+    "            if f_k_trial < 0 or f_k_norm < 1e-6:\n",
+    "                Eps_n[...] = Eps_k[...]\n",
+    "                Sig_record.append(Sig_k)\n",
+    "                Eps_record.append(np.copy(Eps_k))\n",
+    "                iter_record.append(k+1)\n",
+    "                break\n",
+    "            dlam = np.linalg.solve(df_k, -f_k)\n",
+    "            lam_k += dlam\n",
+    "            Eps_k = get_Eps_k1(s_n1, Eps_n, lam_k, Eps_k, *margs)\n",
+    "            f_k, df_k, Sig_k = get_f_df(s_n1, Eps_k, *margs)\n",
+    "            f_k_norm = np.linalg.norm(f_k)\n",
+    "            k += 1\n",
+    "        else:\n",
+    "            print('no convergence')\n",
+    "    t_arr = np.hstack([t_arr, ti_arr])\n",
+    "    s_t = np.hstack([s_t, si_t])\n",
+    "    t0 = t1\n",
+    "    s0 = s1\n",
+    "    return\n",
+    "\n",
+    "import ipywidgets as ipw\n",
+    "fig, ((ax1,ax2,ax3)) = plt.subplots(1,3,figsize=(14,4), tight_layout=True)\n",
+    "ax11 = ax1.twinx()\n",
+    "ax22 = ax2.twinx()\n",
+    "ax33 = ax3.twinx()\n",
+    "axes = ax1, ax11, ax2, ax22, ax3, ax33\n",
+    "axes = ax1, None, ax2, ax22, ax3, ax33\n",
+    "def update(s1):\n",
+    "    global Eps_record, Sig_record, iter_record, t_arr, s_t, s0, t0, Eps_n, axes\n",
+    "    global margs\n",
+    "    get_response_i(s1, margs)\n",
+    "    Sig_arr = np.array(Sig_record, dtype=np.float_)\n",
+    "    Eps_arr = np.array(Eps_record, dtype=np.float_)\n",
+    "    iter_arr = np.array(iter_record,dtype=np.int_)\n",
+    "    for ax in axes:\n",
+    "        if ax:\n",
+    "            ax.clear()\n",
+    "    plot_Sig_Eps(t_arr, s_t, Sig_arr, Eps_arr, iter_arr, *axes)\n",
+    "    \n",
+    "init()\n",
+    "\n",
+    "s1_slider = ipw.FloatSlider(value=0,min=-4, max=+4, step=0.1,\n",
+    "                                         continuous_update=False)\n",
+    "\n",
+    "ipw.interact(update, s1 = s1_slider);\n",
+    "\n",
+    "def reset(**material_params):\n",
+    "    global margs\n",
+    "    init()\n",
+    "    s1_slider.value = 0\n",
+    "    margs = [material_params[name] for name in py_vars]\n",
+    "\n",
+    "n_steps = 20\n",
+    "margs_sliders = {\n",
+    "    name : ipw.FloatSlider(description=name, value=val, \n",
+    "                            min=minval, max=maxval, step=(maxval-minval) / n_steps,\n",
+    "                           continuous_update=False)\n",
+    "    for name, val, minval, maxval in [('E_b', 50, 0.5, 100),\n",
+    "                                     ('gamma', 1, -20, 20),\n",
+    "                                     ('K', 1, -20, 20),\n",
+    "                                     ('tau_bar', 1, 0.5, 20)]\n",
+    "}\n",
+    "\n",
+    "ipw.interact(reset, **margs_sliders);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "celltoolbar": "Slideshow",
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": false,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {
+    "height": "calc(100% - 180px)",
+    "left": "10px",
+    "top": "150px",
+    "width": "165px"
+   },
+   "toc_section_display": true,
+   "toc_window_display": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/bmcs_course/4_3_Bond_behavior_governed_by_plasticity.ipynb b/bmcs_course/4_4_Bond_behavior_governed_by_plasticity.ipynb
similarity index 98%
rename from bmcs_course/4_3_Bond_behavior_governed_by_plasticity.ipynb
rename to bmcs_course/4_4_Bond_behavior_governed_by_plasticity.ipynb
index 7e94707..9d26b5d 100644
--- a/bmcs_course/4_3_Bond_behavior_governed_by_plasticity.ipynb
+++ b/bmcs_course/4_4_Bond_behavior_governed_by_plasticity.ipynb
@@ -4,7 +4,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# 4.3 Bond behavior governed by plasticity\n",
+    "# 4.4 Bond behavior governed by plasticity\n",
     "Define a bond-slip law governed by plasticity and loading history using unloading."
    ]
   },
@@ -35,7 +35,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
@@ -60,10 +60,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.bond_slip.bond_slip_model.BondSlipModel at 0x7f05bedb1ad0>"
+       "<bmcs.bond_slip.bond_slip_model.BondSlipModel at 0x7fe172604230>"
       ]
      },
-     "execution_count": 20,
+     "execution_count": 2,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -82,7 +82,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
@@ -102,10 +102,10 @@
        "        "
       ],
       "text/plain": [
-       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipEP at 0x7f05be979ef0>"
+       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipEP at 0x7fe1722bb7d0>"
       ]
      },
-     "execution_count": 21,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -128,7 +128,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -149,10 +149,10 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f05be979d10>"
+       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7fe1755e6d10>"
       ]
      },
-     "execution_count": 22,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -176,7 +176,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
@@ -205,7 +205,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -221,7 +221,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
@@ -252,7 +252,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
@@ -272,10 +272,10 @@
        "        "
       ],
       "text/plain": [
-       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipEP at 0x7f05be7bec50>"
+       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipEP at 0x7fe171cc3b30>"
       ]
      },
-     "execution_count": 27,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -291,7 +291,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -321,7 +321,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -330,7 +330,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [
     {
@@ -351,6 +351,20 @@
     "ax.grid(True)\n",
     "bs2.hist.plot_Pw(ax,1)"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {
@@ -370,6 +384,19 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {},
+   "toc_section_display": true,
+   "toc_window_display": true
   }
  },
  "nbformat": 4,
diff --git "a/bmcs_course/4_1_ElastoPlastizit\303\244t.ipynb" b/bmcs_course/5_1_Damage.ipynb
similarity index 99%
rename from "bmcs_course/4_1_ElastoPlastizit\303\244t.ipynb"
rename to bmcs_course/5_1_Damage.ipynb
index 8832b91..4d1dea5 100644
--- "a/bmcs_course/4_1_ElastoPlastizit\303\244t.ipynb"
+++ b/bmcs_course/5_1_Damage.ipynb
@@ -513,6 +513,19 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": false,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {},
+   "toc_section_display": true,
+   "toc_window_display": true
   }
  },
  "nbformat": 4,
diff --git a/bmcs_course/4_2_Bond_behavior_governed_by-damage.ipynb b/bmcs_course/5_2_Bond_behavior_governed_by-damage.ipynb
similarity index 99%
rename from bmcs_course/4_2_Bond_behavior_governed_by-damage.ipynb
rename to bmcs_course/5_2_Bond_behavior_governed_by-damage.ipynb
index 8832b91..4d1dea5 100644
--- a/bmcs_course/4_2_Bond_behavior_governed_by-damage.ipynb
+++ b/bmcs_course/5_2_Bond_behavior_governed_by-damage.ipynb
@@ -513,6 +513,19 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": false,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {},
+   "toc_section_display": true,
+   "toc_window_display": true
   }
  },
  "nbformat": 4,
-- 
GitLab