From 1b171e16b642d421349847b730d7524e68119ca5 Mon Sep 17 00:00:00 2001 From: rch <rostislav.chudoba@rwth-aachen.de> Date: Wed, 27 Apr 2022 16:06:01 +0200 Subject: [PATCH] Exercises added --- index.ipynb | 25 ++++--- pull_out/pull_out.ipynb | 4 +- .../2_1_1_PO_observation.ipynb | 13 +++- tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb | 74 +++++++++++++++++-- .../3_2_anchorage_length.ipynb | 4 +- 5 files changed, 100 insertions(+), 20 deletions(-) diff --git a/index.ipynb b/index.ipynb index 45c0659..b556169 100644 --- a/index.ipynb +++ b/index.ipynb @@ -131,14 +131,6 @@ "[**Mixture rule**: example elastic mixture rule](tour1_intro/1_3_elastic_stiffness_of_the_composite.ipynb#top)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<div style=\"background-color:lightgreen;text-align:left\"> <img src=\"icons/rest.png\" alt=\"Step by step\" width=\"40\" height=\"40\">\n", - " <b>Our current location</b> </div>" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -188,8 +180,21 @@ "### 3.1 - Pull-out with softening and hardening bond behavior\n", "\n", "The shape of the bond-slip law is distinguished into hardening and softening leading to a completely different pull-out behavior. A numerical model of the pull-out test is used to monitor and explain the debonding process in two studies for steel and CFRP bond to concrete showing a qualitatively different behavior.</br>\n", - "[**Pull-out**: with softening and hardening](tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb#top)\n", - "\n", + "[**Pull-out**: with softening and hardening](tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb#top)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:lightgreen;text-align:left\"> <img src=\"icons/rest.png\" alt=\"Step by step\" width=\"40\" height=\"40\">\n", + " <b>Our current location</b> </div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "### 3.2 - Effect of bond length: anchorage versus pull-out failure \n", "\n", "With the developed understanding, we address questions related to design rules: What is the necessary bond length to avoid or to deliberately induce a fiber pull-out or fiber rupture. At which distance from the loaded end can we expect a matrix crack to appear?</br>\n", diff --git a/pull_out/pull_out.ipynb b/pull_out/pull_out.ipynb index 8e5c1b4..cb5e277 100644 --- a/pull_out/pull_out.ipynb +++ b/pull_out/pull_out.ipynb @@ -62,7 +62,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -76,7 +76,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.9.0" }, "toc": { "base_numbering": 1, diff --git a/tour2_constant_bond/2_1_1_PO_observation.ipynb b/tour2_constant_bond/2_1_1_PO_observation.ipynb index bf2e146..6ccd32b 100644 --- a/tour2_constant_bond/2_1_1_PO_observation.ipynb +++ b/tour2_constant_bond/2_1_1_PO_observation.ipynb @@ -261,6 +261,16 @@ " 5. What happends with $a$ upon unloading?" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Further material showing the sympy derivation \n", + "(not necessary for the BMCS exam)\n", + "- 2.1.2 [EXTRA - Pull-out of elastic long fiber from rigid long matrix](2_1_2_PO_ELF_RLM.ipynb)</br>\n", + " How to use the symbolic computer algebra system (CAS) to derive a symbolic model and make it executable. " + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -323,7 +333,8 @@ }, "toc_section_display": true, "toc_window_display": true - } + }, + "toc-autonumbering": false }, "nbformat": 4, "nbformat_minor": 4 diff --git a/tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb b/tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb index 74da99b..da2a35e 100644 --- a/tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb +++ b/tour3_nonlinear_bond/3_1_nonlinear_bond.ipynb @@ -35,7 +35,7 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7f0fb0615d90>" + "<IPython.lib.display.YouTubeVideo at 0x7fcee45a3040>" ] }, "execution_count": 1, @@ -3272,21 +3272,85 @@ "metadata": {}, "source": [ "<div style=\"background-color:lightgray;text-align:left\"> <img src=\"../icons/exercise.png\" alt=\"Run\" width=\"40\" height=\"40\">\n", - " <a href=\"../exercises/X0301 - Pull-out curve versus shear stress profiles.pdf\"><b>Exercise X0301:</b></a> <b>Pull-out curve versus shear stress profiles - part 1</b> \n", - "<a href=\"https://moodle.rwth-aachen.de/mod/page/view.php?id=551821\"><img src=\"../icons/bmcs_video.png\" alt=\"Run\"></a>\n", + " <a href=\"../exercises/X0301 - Pull-out curve versus shear stress profiles.pdf\"><b>Exercise X0301:</b></a> <b>Pull-out curve versus shear stress profiles - part 1</b>\n", "</div>" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRodHRsfIC0mIiIiIjElJSYoOCcyMDEwLTA1PVBCNThLOS4tRWFFS1NWW11dMkFlbWRYcFBZW1cBERISGRYYLRsbMGM/NTZXV1dXV1dXV1dXV1dXWFdXV1dXXVdXV1dXV1dXV1dXV1dXXVdXV1dXV1dXXVdYXVdXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAQUBAAAAAAAAAAAAAAAABAECAwUHBv/EAEwQAAEDAQQECQgHBgYBBAMAAAEAAhEDBBIhMQVBUWETFBciU3GRktIGMjVjgaGx4QdSYnOywdEVIzNCQ3IWVIKTs/DxJCU0ooOjw//EABgBAQEBAQEAAAAAAAAAAAAAAAACAQME/8QAJBEBAQACAgICAAcAAAAAAAAAAAECERIxA1EhQQQTFGHh8PH/2gAMAwEAAhEDEQA/AOfoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAin6F0TUttcUaRY1xBMvJAw6gV6Hk4tvS2bvP8AAg8ei9hycW3pbN3n+BOTi29LZu8/wIPHovYcnFt6Wzd5/gTk4tvS2bvP8CDx6L2HJxbels3ef4E5OLb0tm7z/Ag8ei9hycW3pbN3n+BOTi29LZu8/wACDx6L2HJxbels3ef4E5OLb0tm7z/Ag8ei9hycW3pbN3n+BOTi29LZu8/wIPHovYcnFt6Wzd5/gTk4tvS2bvP8CDx6L2HJxbels3ef4E5OLb0tm7z/AAIPHovYcnFt6Wzd5/gTk4tvS2bvP8CDx6L2HJxbels3ef4E5OLb0tm7z/Ag8ei9hycW3pbN3n+BOTi29LZu8/wIPHovYcnFt6Wzd5/gTk4tvS2bvP8AAg8ei9hycW3pbN3n+BOTi29LZu8/wIPHovYcnFt6Wzd5/gTk4tvS2bvP8CDx6L2HJxbels3ef4E5OLb0tm7z/Ag8ei9hycW3pbN3n+BOTi29LZu8/wACDx6L2HJxbels3ef4E5OLb0tm7z/Ag8ei9hycW3pbN3n+BOTi29LZu8/wIPHovYcnFt6Wzd5/gTk4tvS2bvP8CDx6L2HJxbels3ef4E5OLb0tm7z/AAIPHovYcnFt6Wzd5/gTk4tvS2bvP8CDx6L2HJxbels3ef4FZV+jy2Ma5xqWeGgkw5+of2IPJItx/huv9an2n9FUeTVf61LtP6KeUbppkW7HkvX+vS7XeFXDyUtH16Xa7wpyhqtEi348kbR9ej3neFXDyOtP16Ped4VvKGq88i9EPIy0/Xo953hVw8ibV0lDvO8Kbhp5tF6YeQ9q6Sh3neFRtJeSlos1B1Z76Ra2JDS4nEga2jat2xo1REQEREHqPo79JN+7f8F1dco+jv0k37t/wXV0GB9ogkQqca+z71pfKZj3U2tZm6uwZuaILsZLcQOpa2rVtFipXC+9NKs5sBzwKktNNgJknAnP8kHrONfZ96ca3e9eWstWqLU51178a5DZgE3aEATgP5o9qyO0laOGDbhYb7AKJZeJYWy518YYGd2Eawg9Lxrd7041u968a7Sdeq2lz3MDRZ3VCGRDy8ioDhkIbIW1t9sqMtDWXuDp3WkHgzU4RxfBbhlAjtnUg3vGt3vTjW73rytr0vXaKgb57BaDFz6pHBdoJ61mq2u106rqQHClrDVDrgAc0MIuYa78exB6TjW73pxrd71odE2mvWo1S4tDsqbo1loPOGWDv+yoFTS1rNJtQMuBzyzFvmltPGdxqSOoYYlB63jW73pxrd715itbrVdrPvNbcNJobckc5rS83oO0gEiBrVjdM1obIcC5tK7ep5k1i2ocJHmgH2g60HquNbvenGt3vXn9G2+s+1VaVQS0Xi2GQAA+ACTBBjbM5gwtfW0haKjLRTMyC0tLWEBv78AA5OBjUc8TMIPYca3e9ONbvevKWvSdrZzW3SQ+q3hCyA4tLbgOybxyxMYKlo0xaBUtAaMGU6paCzJ7LsdcyevPBB6zjW73pxrd71odL2mvQo0y1wc69z3XcxdJwwujGM+2VBq2y0Cq57XPaalOzXWPp4NvPh5jUROOOvcg9Zxrd7041u968odJ2sOrghvMDwJYZEOAY6Gg4ESdmWoFWP01aAyk6HEEuDhwcufDwBd/lcIJyIJzQeu41u96ca3e9ef03b6lGpTax4YHU6rp4PhCXNu3RA2zCwC32m697jwY4ZlM/u54NpY1znbTibuwa8kHp+NfZTjW73rxbq1eo91V5fzaIui65rT/AOoLL0bS0A+3Ysz7daabi2mMDVrEF4MEiqA1s6hBOXsyQeu41u96ca3e9ef0bb6z7VVpVMWi8WwyAAHwASYIMbZnMFbhBI41u96ca3e9R0QSONbvenGt3vUdEEjjW73pxrd71HRBI41u96ca3e9R0QSONbvenGt3vUdEEjjW73pxrd71HRBI41u96ca3e9R0QSONbvenGt3vUdEEjjW73rFabTNN4jNp17lYsVo/hv8A7T8FlHmnjFGhWudiVe1eZ0ZGhRLZpihQN1ziXfVaJI69QWPTNtNCgXN89xutOwwcfcvHcBUeZgmdZV44+2W+nsbN5S2dxh19m9wke6VvKbgQCCCDkRkVz1mjH8E55gXRMa1stC20ktpzIIMgaiDnukH3KtT6N2dvaNcNqvFVo1qLoyw8MHE1AwNVKlmLXloN6NYEgpBsKLw4wCtZ5ZtjRtbrZ/yNU/R9Ih8kGI1hRvLZv/tdfrZ/yNVxNcpREVMEREHqPo79JN+7f8F1hcn+jv0k37t/wXWEEapQJJIhWcWdtCmIgh8WdtCcWdtCmIgicXdtCcXdtClogicWduTiztylogicWduTiztoUtWVKjWiXODRMYmMUEfiztoTi7toUinUDpg5GDuKvQROLO2hOLu2hSkQReLO3JxZ25Zn1wHtZBJcCRERhE/ELFS0hSdTFS9AMZ4EEgGD7CEFOLO3Jxd20K+ta2sMEOxEiBgcQI68QrGaQpuBIJIER9qTAj24IHF3bQnF3bQqHSdAAkvGEzgdWepZqdpa4wDmCRvgwew/FBHNilwfDbzQQDrAMSPcOxX8WduUpVQROLu2hOLu2hS0QROLO3KnFnblMRBD4s7cnFnblMUS22l1M0gxl8vfdiY/kc7M9SCnFnbk4s7clht4rEwMCxlRp+y8GJ3y0+5TEEPiztycWduUxEEPiztycWduUxEEPiztycWduUxEEPiztycWduUxEEPiztycWduUxEEPiztycWduUxEEPiztyx2mzng35eafgtgsNr/hVP7HfBZR4WcVlasAzWVpXmdGq8qmk0aZ1B+PYVqqVqAgEHsXqLVSp1GFlTzTvjsXneD4J7XGDDsMdU4e1dJ0TtnsttcSWilIjGTmoNB7rLaXc28Wk4ajhPYt1Sc1zy4AAnGM4Vlp0Ua5o1aeJe97HT5vNIgk6pmPYrxM+lT5WVB5tFgO8k/otloPylqV7Qyk+mwB0gFs4GCdZ3Lzlo0DamYmnfGONM3uvDP3K/ycnj1AZG/HuM/mq1pz26fTC0/lwP8A2qv1s/5Grd0wtP5dj/2qv1s/5GrRyNERAREQeo+jv0k37t/wXWFyf6O/STfu3/BdYQEREBERAREQEREBa7TGjTaqdwPDAWuaTdkw5sYYghbFUQRrHQLDVJ/nfI6gxrZ9t2exSlRVQRrax7mQzA3m45wLwlVFKoBAqD2sn81H0zUc2kA0kS9gJBIMcI0HEZZqJd+1U/3H/qgnVLG9zg41BLcjdIzicnY5BKdic1t1rmR93OqNZ2QFBu/aqf7j/wBUu/aqf7j/ANUEx9gc5xcXgkgA805AyML2CHR5ggOYJjKnlBkRjhBxUO79qp/uP/VLv2qn+4/9UEg6JBEFzTMzzTrEH+bcFebE9oJa8F10gc3ASZOucT8FEu/aqf7j/wBVQgwedU/3H/qg21naWsaHOl0Yk7VlC1top0qoY2q4tcGhwcDBx+YB6wFWxaWo1WxQlwZUNJwgi6Wg5bctSDZIrQ6RIx2LW09KuNHhODgkEtkmCAy9nHsyQbRFrhpOXNAbg+7ccTgZJwMZHCf0KmWerwjGviJGWxBlWG0WanVAFRjXgGReEwYiR2lZUQYqVnaxznAYuAHUAMAN2J7Ssyh19INp1BTLXXjEZQZnLHdHtG1Y9M6VZZKbHvyfVYwe04n2CT7EGwRUVUBERAREQEREBERAREQFgtn8Gp/Y74FZ1a5oIIOIOBCDnk4rLTxXtP2VZ+hp90Ko0ZQGVFndXKeNXJ4qtTvBam02RzhdEDEnHAHcul/s2h0TOxP2ZZ+hZ3Quuoj5cvp32i41vOJjqXotFvuWekwtIdTbUd/dLmw/49i9YNE2aZ4CnP8AaFzTyxtdShpKqyi8sa0NADcAAWgn4rcdYty3k9CKlyo3Y0D8M/kpfFf/AFlK0MaCSBTqmBJvDB24yD7lzh2lrQTJrPJ61kbp+2CQLRUxicdmSq5Sp07PTC0nl56Kr9bP+Rq5wPKa3f5qr3litenbXXpmnVtFR7DEtJwMGQoU1yIiAiIg9R9HfpJv3b/gusLk/wBHfpJv3b/gusICIiAiIgIiICIiAiIgIiINR5TVuCsrqxbeFNzHEDM/vG5b9/6ryv8AjWl/l63uXr9Nn9037yn/AMjf+wo6DzH+NaX+Xre5P8a0v8vW9y9OiDzH+NaX+Xre5P8AGtL/AC9b3L06IPMf42pf5et7lQ+WtKP/AI9b3L1Co7I9SC/ye0qy10DWbTey7DCHYk3ROAHWpb+CLbtyoACSLrHNxMycBvKkWf8Ahs/tHwWRBr7TbWWezPcGPIpUy6CwibrZziBMLHofSVO2Uw4UKtMDECpTLR/pORWzJGuFWUFopNEwAJ2CFVrQAABAAgDcqoCgqqKqILS0HGAoelbHSrU2irTZUAe2A5oMS4A57lOWC2eYP72fjCDMBAgKqIgIiogqisfVa0tDnAFxhoJiTsG1WNtLSYxxyMG6eo5IMyIiAiIgIiICIiAiIgIiIC5D5e+lK3Uz8AXXlyHy99KVupn4Ag86iIgIiICIiAiIg9R9HfpJv3b/AILrC5P9HfpJv3b/AILrCAiIgIiICIiAiIgIiogqioiCJpKzmowAEA3m/jafyWHiNT7Haf0Uq21WsYC4gAvYBO0vAA7VIQa3iNT7Haf0TiNT7Haf0WyRBq+KVL0czKcz+iu4jU+x2n9FMc4CoAdbcO0LFarUab2NjmnM+0DDqBJ6gUEfiNT7Haf0Q2GpH8naf0Vzra8Ne4hgArNY05i6XNBMzmJOyI9qy0rWXViyJbEtcNl0HHdnigz2b+Gz+0fBRbNYn3X33vF5xIhxkC84jEk6iOwKRYnh1JhaZF0fBZkEKvo+84OvYhgaCZJPOB52MEYfFY6mjnFoa15ADGNnEEXXScjk4YHHUFsVVBqv2XVwPDnDe7a4/W+0O6FPstIsYGnOSdwkkwNwmPYsyogqiIgj2pjyWXJEOBOMCJxB9kqMWVBfLzgXsgTP9T3YED2KdVqtYJcYG1YLVVaRdBF4OZI/1t/UdoQSLoS6EvdfYl7r7EC6FR0AScgsVstjKFJ1WoSGMEkwVEo27hgyqy7wbv4d6Re92B1Y/wDkLrZoynaLjqrMWGaf2TtO05diqaL3VHS26C0NJkEYGZHvj2ZYqXTqh7WuGEnI6jkR2rIgKqoqoCIiAiIgIiICIiAiIgLkPl76UrdTPwBdeXIfL30pW6mfgCDzqIiAiIgIiICIiD1H0d+km/dv+C6wuT/R36Sb92/4LrCAiIgIiICIiAiIgKFaaVU8NdODqYDBP82M4atWMqaqINTxCpfJbhTdVZUuzEEEThqF0DDaN6tp6PrUwHMMEuF9s826HkwBGJLXEHqGxbhEGh01op1oslFjqr6V2qx3NgnF8NB6g7tC3zcscSomlal2iXRMPpn/APY1W0bXNQsvFxDrrpAAkgmWxq5pzQTlRVWotjnis2ccXCCMxLbt05gxfy37kEx9lY6tec0ONyMQDGIyWXilLo2d0K2lelt7zrmPXhKkIMPFKXRs7oVHWOmRFxg6mhUtlfg2zkMSTEkANJMDWcFbY698HGRAIMg5kj+XA5e9BdYaQZRpNGQY0bNSkLHZ/wCGz+0fBZEBERAREQEREGG00OEbdvuZiDzYxjUbwOCjV7I1pNSSXFzc41vZOX9rexSbRXuGmIBvvu5xGBPtyUR1sFS80DBr2QZn+pGPZPUUGxVrnACTkqPdAkkR1LWWdtpdWeLQ5gplxNIMkEAAYO34+4oJ5ZfBLxhGDT+e9YKtieXNNOqabQ68W3Q4E7pySwVy+m06nUmviZuk6pOfyU0ILGUwxrWjILIrXautXICKisFZpJAIwmdgiMDvxQZEVA4bVVAREQEREBERAREQFyHy99KVupn4AuvLkPl76UrdTPwBB51ERAREQEREBERB6j6O/STfu3/BdYXJ/o69JN+7f8F1hAREQEREBERAREQEREBRrU15dTLCYDpcBEERkcZ/7ipKINLpA1m0KrnGP3rLswf6w1bIu+0FYbHa2tqS6WFwguABG45SP/Cnaf8A/iu/vp/8rV551o+qC7fkO3X7FGWVlevweLHyY3b1jQXAFtUkHWA0j4KLXrXgQyoXOGRAF0EbTHwXmmveDIc4YyQMGnrGv2rZWfS2qoCPtNxHZmPekylRn+Hyx6+U4vq3weFExlcEZ5fP3KQyvODnlh3gQeowohtTJDr4uwcbw2/9wUWtpMnCmDH1neH9exVt5sspj23NdoDZqVYbtMD8lqxbXNBbSJz894GI1GMz7YyWsBcDN5xjIOggdX1fZgsrLQMnc078u1TcvTz5+W/T0ejnl1nouOZptJ7oUiVF0X/8ah90z8IUag+hUtNUsrUy+DTewQHgj2zOerHDYrelsWVA4Ag4HJHVAMSVqxoaS1xc0OF3+STzbsGZ+x7JVG6Eughrm85hYYZdwcGgnPPmoNuqqiqgIiIKEKPbSG05OAvM/G1SVRzQRBEjegwt5xvOIwybOW871c4NcCHQRKcXZ9RvdCh1HBr6o4K9di6BTwyxxjFBMaGNBDYCvDxtHatLVtVSHAWa6QMHXC4TBOV3q7cVSpbywc6zDUBzTiYB+rvPdJQbpzxhiM9qrfG0dq1VSo5tV7RRBbebdIZqhkibpnM9hVgtVS453FQTJui6RhdadhzJdjlgg3F8bR2rSW8WRldratdjHvJc0OAg85pzOGbfep1iPCXr9JjYjITmAYyzGtVtGiLNVe19ShTe5oht5oIHsyQY7HoplNzHtdeujm4CPNiRswJyzlbJUa0AQBAGoKqAiIgIiICIiAiIgLkPl76UrdTPwBdeXIfL30pW6mfgCDzqIiAiIgIiICIiD1H0d+km/dv+C6wuS/R80nSLQCW/u34iJy3hdT4F3Sv7GeFBnRYOAd0r+xnhTgHdK/sZ4UGdFg4B3Sv7GeFOAd0r+xnhQZ0WDgHdK/sZ4U4B3Sv7GeFBnRYOAd0r+xnhTgXdK/sZ4UGdFg4F3Sv7GeFOAd0r+xnhQZ0WDgHdK/sZ4U4B3Sv7GeFBkq0mvaWvaHNOYcJB9hWtt9KhRDTxeiQTiSxuG+Ik+xTuAd0r+xnhTgHdK/sZ4UGnba7JcDnWZk3ZMMZHsOv/AMK+s+hwIqMs1EXnuaLzWRzWuJOH9pW04uelf2M8KcXPSv7GeFG7avh7KMeKtwMEim3aQfwuPUFltD7PTcGmzNkhpwazXOGf2TithwDulf2M8Kt4pzi7hHyQATDchl/LvKMaqpaLPLA2z0hLgCXMbleaO3nY7IyUiwCz1hHF6YIY0nmNuyWgwNetTuLnpX9jPCqig7pX9jPCgCx0uip90KLZ9BWSnVdWbQZwrnF14iSDunzfYpXAu6V/YzwpwLulf2M8KDMqrBwLulf2M8KcC7pX9jPCgzosHAu6V/YzwpwLulf2M8KDOiwcC7pX9jPCnAu6V/YzwoM6LBwLulf2M8KcC7pX9jPCgzqiw8C7pX9jPCnAu6V/YzwoMyo5oOYB61i4F3Sv7GeFOBd0r+xnhQZkWHgXdK/sZ4U4F3Sv7GeFBmAVVg4F3Sv7GeFOBd0r+xnhQZ0WDgXdK/sZ4U4F3Sv7GeFBnRYOBd0r+xnhTgXdK/sZ4UGdFg4F3Sv7GeFOBd0r+xnhQZ0WDgXdK/sZ4U4F3Sv7GeFBnRYOBd0r+xnhTgXdK/sZ4UGdch8vfSlbqZ+ALq/Au6V/Yzwrk3l02NJ1gSTgzExPmDYg8+iIgIiICIiAiIg9R9HfpJv3b/gurrlH0d+km/dv+C6ughaQthouYYll15cBnDROHvWOvbnim+7F9ldlMyJkOczISMYf2hZdJWplJoLmXyA5zQRhLWl2cYYBWsrWcxTkOLnE3XAkl0mSZGGIOexBa7SVw3ajcbhfMgS0Te14FvNnGOcFjbpWXjmm6ZbBwIcHuafZzUbpFgqcCKQzc0XYibzRDsObN6dfmnYsgr2eJaxhEtDuZEBzobgR9Ye5BY3TIddusJvXTJOEGJy1iRgsjNJX6bXtYYdUY0S4Ytdd5wifrZHYr31LOx8FrQ6QPM1y0ATGclnuVjLdZiLoi6TP8M3Zu39kTGKDDZtLzSYXMJqECQCADzA4kSY15LLbdKtoucHMcbozEY81zvgx3uWWzuoPLmsDCWwSA2IOIGrMQepZRZWcI6pEucA0zjgJw96DX/tNzqhu4NDw0iJMis+m7L+zBZbTpdlMONx5DWycLp81zsjByaVMFmpiIYzDLmhXupNJktBMRJGMbOpBFs1u4Sq9gbAaDjOsPc3L/SoVHTRbSD6jS4kB0NjCaZeBjmIacfYtsyixvmsaOoAK3i1OI4NkREXRls6kEV+lA0kFhkENPOHnm7Dc/tDHd1TdX0m2m0Oc040+EIkSGiJ14kTq/RSXWdhmWNMiDIGI2HcrjSaYloN3LDLq2INe/S8FzeCcS3zoLY/lyJOPnN9+xXP0s0XiWOhpukyIBGc6wBtyUvitOI4NkREXRlMx24q40GEkljSTEmBJjJBrzploBmm4GC6JGIF6fbzDh84tfpoFrg1jg83gyYglvCDGD6px7FOo2KmxlwNBE3sQDjMz1q42Wnj+7ZjnzRjjOPtxQQKel9Ra4mRJwAHMpkxjj/EHvWR2lZoV6rWE8ECYJADiBMSJjepZs1Po2d0f91DsVtnsVOm0ta0Q7OdfXt9qCyjbg95aAcL0HUbrrrurFQrPpk3Q+o2A9rHNAORLA6Ce3FbVtNoJIaATnAiVZxan0bO6NkfBBgqaQDW03FhF83YkYGYxInM/9nBRm6bbDbzCCWBxgi6CbmBOr+I337p2XAt5vNbzfNwGHVsWKrYaTxBY0ZYgCcMkEUaYBBPBPwaCQYlpIaYImcnapyKkvtBv0Yi7UBnX/LIgyr22SmABcbg0N80ZDV1K99JroloJEwYxE5xsQYbdVe1rTTLAbwwcCb24YiMJxxjYsVs0mKVQMuOcTGRGudvUVJdZaZDWuY0hvmggGOqVWpZ6bzLmNcdpaCggt0nfq0msEAvLXztuOMDu5qRZ6zzVqsfENulsNjAzrkzkdnUszbPTBBDGgjIhow6u09qcXZ9UedewEc7b1oINu0pwb7sRdeA6R5wLTlsExJ1YzCVtLhs8w3WuLXGRqBvQM5Ee2VOdZ2OJJY0k5y0HVHwQWdgyY0ZfyjVl2IIbtIkVGS3mOEYEGCXtaDIOI5wVa+lQx72Cm5xaQDBGZLQMzh5/uOxShZaYiKbMMuaMMZw9uKs4jTvueWgudnIB2foOxBDqaba1xbwbiQSMxGDXk4z6t3u3xVmkzeLXA/xIaQB5t9rcR/qAUurYKTnNcWNlri4YDEwRJ2+cVkNmpkyWMmZm6JmZntQQHaYaWtutPPEtMg4ES0kA+z2Kln0m68GvbN4gNIgC8abHXes3nHqaVPNlpn+mzMnzRmc0FmYHBwaBGoYCYieuMEEO26QfTrNYGgtADnbSC2oYGzzAZWRmkg5tRwY4tY0mZGMTIiZBw1qVUoMcZcxriNoBVrrMwte26AHtuuuiDERn1IIY0u29dLCDea04jNxaB1+e33rHY9JOu3qsn90x/NYTiQ4uymBzda2DbLTAaLjeb5uAw6ldTosZ5rWtwjAAYakEF2l2gwWGRniIzpxj/wDkb2FXt0j+5ovc3nVRIaHD6hdEmNQKlcXpwBcbAMgXRAO5VNFhbdLW3QZiBEzOSCAzTAc8U203Fx3ga6g//k73KtLS7XGmAx0v1SARBaHTJ1F0HqKm8Xp3r1xt6Zm6JnbKudSaYJaCQZGGR2hBBr6T4MvljnBry3VhFLhNuyfatgCsbrOwzLGmcTLQZwj4LIAgLkXl76UrdTPwBddXIvL30pW6mfgCDzqIiAiIgIiICIiD1H0d+km/dv8AgurrlH0d+km/dv8AguroMNqsjKoh4JEEYEjAgg5birKVgpsffaHB2M890GSTiJg4kxOUrJa54J8FwN0wWiXDDMDWVqG2m002OineMu5wDi15DBdAacWycNkg7VlunTHx3KfDaGxtghsgl9+SSYd7dW5YxoymCYkSWlwkmbri5oEnDnGcFquO2ikHXGOIL6hxY50HhGwOq6XdivtFptDXkhj3ltd90XXAXeCN3LAiYGM57VPOOn6e+21fYKbnOJDpcWkw9wF5pBBiYB5ox3K2lo2kxlwNN2WmC4nFoAGZ+yOxa2tpO1NcA2nLZz4N3OHCMHswLu7K3FmqFwdOp7gOaW4A78+vIqpZXPLx3GbqlKysYSW3hLr0XnRJmYEwMyY2rMiLXMVVREFUVrjAJzgKLYdItrBkNc2/TFRsx5p2wcCgmIrb42jtWK1V+DZeiSXNaBvc4NHxQZ0USm5/DEuDrt1oA/lBxLj7wPYpDarSYDgSNQOKC9FHdbaYvAPa5zcC1rgTJMARqxwV7qwGEgujzZEnCUGVFGdbGfu4M8IRGUwQSDGzBZmVWuJDXAkZwZQXoqIgqioiCqKiIKoqIgqioiCqoqqPbgeBqxM3HREzMaoxlBnRaplOpToElxh72EjEXGG6HDHEZOJ2SVHosqODmHhaZFZxpuDHQAXvIJwyyBBwiNqDeqq1VgNThW3mlhc2oajZkA3wGkHYedG7qWwoWhlQOLHA3XFh3OBghBlREQEREBERAREQEREBERAXIfL30pW6mfgC68uQ+XvpSt1M/AEHnUREBERAREQEREHqPo79JN+7f8F1dco+jv0k37t/wXV0BFVEFEVUQURVRAREQEREFrhII3KPo6xNs9GnSbjcYGzEEwIBO9SkQReIsvXtczqznqVLc1zixrWkw8OJ1YSQO0DtUtUQR7E+o5ruEEEERhEi40n/AOxcPYsVksRa81H4Ol8AZQ5wz2mGtHapyIItSy8xwbnfDxqycCB7gEbZi17qk3nEQBAGRcQJ/wBRUpEGup6MuhkPyLScJktbdw2CNSk2WzcHexkuMkxH/dnsUhUQVREQEREBERAREQEREBUVUQUQIoVS2vb/AEpHCBhcHYAEedlOZiI9oQTYz2rTeTeiuKi0DhXVL9YuN4Ac6BJw24di2DLZerGndynGdYDScP8AUEsjoNTP+IdXUglIrb439hVDUG/sKC9FbfG/sKXxv7CguRa606Yp0rRToOa69UGBAwEkgb9Sn3xv7CsllVlhljJbO1yoqXxv7CqXxv7CtSvRW3xv7Cl8b+woLkVAZ29iqgLkPl76UrdTPwBdeXIfL30pW6mfgCDzqIiAiIgIiICIiD1H0d+km/dv+C6uuUfR36Sb92/4Lq6CqpKLU2ixVeErOpggPE5iZlvmnMAhpkHYI1oNsi0VpqWtjiOcGufhBZIEumJwOF3DX2rY2RtW/VNUm7Jujm3YkxGuYgGdYQTEUTRtJzKdNrmlsNiJEDHcpaAHDakrSfsx1yq64b5c8NYLoBBq3wc8T1nDHas9WhXN/g3XX33TORaRzDljEAd5BtElRqVCpIc5+8tx9ozy9iiCy1OLincIiqXkSILeHvXc9bdWWooNpKLW2Cz1G3mkx+6Y0nEi/wA6Y2wC0T1bFltFmeaRbevm80xlIDgS3E6wCgmkotXUsb3WdlJzSXNggy0tBxi8D5zRgMtkbRIrNq8OwtvGnEPEiJxgjXhrG8bDITJS8Nq19ms9RldzyJBLsZHOvOBb3RI+CwvsDuLWhjWTwklrXXb0kDzjkccZJJQba8JicUWtr0azqzKjGlkC7iW5X2EznhAcMFmY2qLQ4m8aRGGIhpge2D7iDtEBMlCVAo2VzOHLQ5vCYgS2/exkh2zKJy6sFZUs1SpZeDqhznkwSC3OcHQcLuRumdkFBspRa2yWOo2uXuiIeCR/NJYW4fZDXDHbhrUyhRc0m8+92/mSgzShK1lqsxJtH7nhA+5A5sHAgmCdW/Yr6tlL+BFxwNMgguLXAAXZkTiYkTmCO0NheG0YJK1Nrs1U1qpFO9SfTDYBaCXAOzk4jHdjt1SdHWV1Jz72IhoY44vuiYDjrImJ19coJyIiAiIgIiIKLDTsdJvm0mNxnBoGO3rWdEGNlFjTLWtBiJAAw2LFY/6n3h/JSVGsf9T7w/kgkqypkVerKnmlBerKlS6NpyA2lVc4AScAFjptJN93+kbB+pRsYzZmkgvALz/NGI/tOpZaTzN13nD3jaFc7MKlWne3EYg7EN77Xq0eceofmqUqk4HBwzH/AHUqjzj1D80YvVFVEBERAXIfL30pW6mfgC68uQ+XvpSt1M/AEHnUREBERAREQEREHqPo79JN+7f8F1dco+jv0k37t/wXV0FVRFrK+kX06lRpaCAJYPrCWg87UQXYiNiDZota7TLA4tuOJDg0RGM3hhj9kqRRtvCGoGCLpIDjF0kEtOEzgQglKqi2GrUcwcJdJx5zRAInA3SSRIg5lSUBFqBbLS4VC3gwGl4Diw+c2oWtaBe5xI6o3zhlqaVuNvubzbzmiNrc+uYcRuag2aoorbWXEQwwcnYxGoyBCwcbqto3nXHONVrGuAIaQ54aHXZO3bjAOEoNiigWK3uqCS3Hgm1BG+RH/wBZ9u5X1bY4U7wZdN9rReBgXnBs6spQTVRa+pbKpszarA2c34TDRMlokTlgJ168jIqWu7WZSLTzwSHSIwzHX89hQSFVau0W6oyjbHyy9SvcHhspB4nHHM7FmraRDKTqhY6GPuuEjDfvH/dSCaii2qtUa6kWgXHOAefOImAIxGs54xs1i5lrms6ldIIbemRBGGX/AHZtCCQqrT2nSNakXhzWCCS3A3bgY9wkziTcIyEb8zPfaSC2GOMgHI4e5BIRRrbUqNDTTLJvCQ4E3hrAxEYSZxyyWF1rqM4wXtB4Nt9gAzbBzdOZu5QI35oNgi1dXSTmUnPdHMqtY4gGCCRJA1ed7ijrfUbUDXBoa97Qx0TmAXNOOcGQdcHDDENmiKqAiIgIiICIiCiXhtRa51jfiAykQa1/FxBAkERzTjIn80GxkTGtR7H/AFPvD+StpWYis6qQGlzQDDi6ctowjEYZyq2QfxMf6h/JBKVlTzSq3d5Wu0xYuM0zRvEYhxOYGwRrWXpWElykt1EwfvD9hp7SPyHxWZYbNZxTpsphziGNDQTngIWW7vK1l7+FHZhXKwtxGJV13eUYsqsODm+cOwjYVgs1vpVKj2NeC9oF5usbVKu7yodDRtKnWqVWNh7xzjt2/BZd/S8eOry7+v5TkVt3eUu7ytQuRUAVUBch8vfSlbqZ+ALry5D5e+lK3Uz8AQedREQEREBERAREQeo+jv0k37t/wXV1yj6O/STfu3/BdXQFYaDDJLGm8IOAxG/ar1GNvpAvBdApmHE5AwDE7ec3tQUr6OovIJY3OfNGPXh19pWfgWc7mt5/nYDnasdqpw7PrtzjMZ7OtXcI3GCCW5gYkexBSlQYzBjGt/tAG/Ur1is9pbUaC2RM4OEOwN04HeFmQYXWSkW3TTYWzMFoidsbVc2i0EwM9WqYj4KI7S1IXpD5aHGLpJIa664iNhUjjdOSC4CMMSBjhMTskdqDKWiIjDKNSxsslJoutpsAxwDQBjn8Aq8ZpzF9pOwEE9ixi2s4O/zgL12C0g3r10COtBlZSaCXAYmAeoZDqxPaVc5oIIIBBzByWGjbKbwSHYBodjhzTkerA9hVX2pgaXXgRIHNM4kwB1yQgvNBkg3GyIjAYRlHaUdRaTJa0nDEgThl8T2rDUt9NtNj5kPIDdpJ1Y681mNZoddLm3tkiez2HsQUFmpgl1xknM3RJnNV4FkBt1sDIQIGrDtKsp2pjnlgOInVgYMGNsEwsf7Rpmk+qJLGEyQJmM4QZxRYC0hrZaIbgMBsGxV4Jt69dbe2wJ2HH2DsWN1paKjaZwc5siYxxAjrxV4rNLi0OaXDMTjq1e0dqBwDIi42JmIETt61esFK2MdwhBhtMkOccACM8dyV7ZTp0zULgWzGBnGYjtQX1aDHxfY10Yi8AY6pVRRYMmtGN7IZ6z14rHStjHPLAecJz1xF6Oq8J61kp1mO81zXdRBQOAZdDbjboMgQIB3BKdBjRDWNaNwAyyWKpbWtv4OJZEgNJOInDaj7awcFjPC+ZGsRM47kElFGq25jC8GZYAY1kEE83bkexXWe0tqeZiLocDqIOUdiDOiIgIiICIiCiKqIKKPY/wCp94fyUlRLO8NFUnpD7csEGarUiAMXHIfmdyCndZGe06ydqUmHFzvOPuGxXVPNKNq5VREYsdmFerHZhXoCsHnHqH5q9WDzj1D80F6IiAiKBbalobUHBtvMIE4DAzBxn7TT1NduQT1yHy99KVupn4AuujLHNci8vfSlbqZ+AIPOoiICIiAiIgIiIPUfR36Sb92/4Lq65R9HfpJv3b/guroChV9Gte9zy4gubdwAykETtgjCcpO1TkQaa0aFJdea8mXSZja47MucZyyCnWewimajmuxeSZLWyJJOcSRJOalogj2WzCkIacMTERiXSY2Z5LOqoggDRjblRkg8I5xcS0SQ4kke/BUfotrmljibt4uBB53OBkE9Zns2LYIgwNsrQBEyBnr61h/ZwuXbxHPD8AAL4cHAx1jLXJU1EEOzWEUydbbjWATjAkyd5Lj2LJVsjXMuiRzg4HYQQQcd4UhEEPiI4LgrxuRBBAM5z7STKuq2O9WZVvEFmAwGIMyD14dnXMpEESnYQ2oXhxmTA1C84Od2kKlSwB1KqwuINXznADYBllkFMRBBq6Pvua57ySNwAi81wG7Fo96yNscVzWvGSLpECCMI7Me3cIlIgjcV/iG9zniCYGQmMMjmVZTsN2jwIcbmIEgHmn+XfhrUxEEOho9lOpfBOAcGjULxaXdcloUinRa3IR7VkRBDq2IuNQioW8JdnAGANWO1Xvst4NDnSAQYgZiCOrET7VJRBAraOvVX1RUc0uZcIiRGOrbjms9msbaTnubPPMkap1kDVJJPWSpCICIiAiIgIiICIiCigMbUZUeTSc4XyWwWxiBjic9S2CogjcYqdA/vM8SOr1CI4B/eZ4lJWrda6vAUy2S8zeN3HJ0YRrcAPbvQTOMVOgf3meJOMVOgf3meJSG5Y5rFanRTcbzmwM2iXDqEHH2IMZr1JH7h/eZ4lXjFToH95niUJ1prXaN0lxLec67EuvNABw1i+TllqW1QR+MVOgf3meJUFepJPAP7zPEqWqq5tSkG5E88fZg45bY1j25K2x1qjnvvCBjqy5xDYOuWwfagycYqdA/vM8ScYqdA/vM8SkogiutNSD+4f3meJa/QGlLXaGg2ixuoYecXAA/6Tzgt0iAuQ+XvpSt1M/AF15ch8vfSlbqZ+AIPOoiICIiAiIgIiIPT/R36Sb92/wCC6tzty5V9HfpJv3b/AILq6C3nbk525RLRpDg64Y5puFrTeAm6S+6J3TH/AIWOnpqkYJbUY2JvOAAi6XA56w13ZjGCCfztyc7cobdKsvspllRr36nAAgYY54jEebMa4V9fSLGOcC15DYBcGyLxAIb1mRuxGKCTztyc7cog0pTjEPBlrSCMQXVODg4/W92KxjTdKRIe0XC+XQAGCednJHNOWWuJCCfztyc7csFhtzK7SWfymCJBgwDqJGRClILOduTnbleiCznbk525Xogs525OduV6ILOduTnbleiCznbk525Xogs525OduV6ILOduTnbleiCznbk525Xogs525OduV6ILOduTnbleiCznbk525Xogs525OduV6ILOduTnbleiCznbk525Xogs525OduV6ogt525OduXltJaatLH1m03NltcMbLQcCxxjtAWTSnlDUFOzmgQC9ge+RMAuDY709inlHpn4XO6/f/XpeduTnbl5Sppm0RXfxhjTTqvYymaUl92NftXpGWwBjDUkOc0EgAuAJG0LZdufl8V8clrPztyc7craNdr5uzhtBHxUTSleqyjUNKb4LQ2G3s3NBw6iVUm7pxt1NpvO3Jzty8tX0npFmTC8S7+nBAaSCDhrF0iM1kraQtrC6CXwXgA0wMBSDg7AbSRviF0/Kvtz/ADZ6el525OduWvpWyoWNJBkgE4Rqx96udaXxgcMJMRtlTwq+UTuduXI/Lz0pW6mfgC6rZaznEg5RIPtj8lyvy99KVupn4Aps02XbzqIixoiIgIiICIiD1H0d+km/dv8AgurrhuiNK1bHWFajdvgEc4SIK3vKDb/U9z5oOmWiwMqPD3F0iMAYBh14SOvFWfsulAaQSAAIJzAYWY+xxXNuUG3+p7nzTlBt/qe580HR/wBlU5aS6o6HB3OdMkRdnqgZRvlX19G06ji517EgwHEC8BAd1gALmvKDb/U9z5pyg2/1Pc+aDo50RS5uL8HBx53nEVOEBd/qx92WCVNE0nBodec1rbt0mWkY5jbzjlnrmAuccoNv9T3PmnKDb/U9z5oOn2WzCk0gFxkyS4ycgPZgAs65Tyg2/wBT3PmnKDb/AFPc+aDqyLlPKDb/AFPc+acoNv8AU9z5oOrIuU8oNv8AU9z5pyg2/wBT3Pmg6si5Tyg2/wBT3PmnKDb/AFPc+aDqyLlPKDb/AFPc+acoNv8AU9z5oOrIuU8oNv8AU9z5pyg2/wBT3Pmg6si5Tyg2/wBT3PmnKDb/AFPc+aDqyLlPKDb/AFPc+acoNv8AU9z5oOrIuU8oNv8AU9z5pyg2/wBT3Pmg6si5Tyg2/wBT3PmnKDb/AFPc+aDqyLlPKDb/AFPc+acoNv8AU9z5oOrIuU8oNv8AU9z5pyg2/wBT3Pmg6si5Tyg2/wBT3PmnKDb/AFPc+aDqyLlPKDb/AFPc+acoNv8AU9z5oOrIuU8oNv8AU9z5pyg2/wBT3Pmg6sqLlXKDb/U9z5pyg2/1Pc+aD3FTQL3VzUvtg2htWIOQBEe9Yv8ADJDK7WvHPe0skYNYH37vaSvGcoNv9T3PmnKDb/U9z5qeMd/1Hk9/2Pa/sS0tFdjK1IU6z3OM0y5wve3YpzNGOZTYxjgQymGguLhiNoBAXPOUG3+p7nzTlBt/qe581smukZ+TLOaydGpWSow3hcne55+JU5rYJO1cr5Qbf6nufNOUG3+p7nzVW7cpNOqqA6wE/wAwyA9i5zyg2/1Pc+acoNv9T3PmkthZt0h1hOOI1jqGEJxEzmIx1bVzflBt/qe5805Qbf6nufNbyrOMdQoULhdvj4frPauT+XvpSt1M/AFI5Qbf6nufNaDSmkalrrurVbt90TdEDAR+SlSIiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIP/2Q==\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/SLrxMpAdmN4\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7fcee4570eb0>" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('SLrxMpAdmN4')" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div style=\"background-color:lightgray;text-align:left\"> <img src=\"../icons/exercise.png\" alt=\"Run\" width=\"40\" height=\"40\">\n", - " <a href=\"../exercises/X0302 - Pull-out curve versus shear stress profiles.pdf\"><b>Exercise X0302:</b></a> <b>Pull-out curve versus shear stress profiles - part 2</b> \n", - "<a href=\"https://moodle.rwth-aachen.de/mod/page/view.php?id=551823\"><img src=\"../icons/bmcs_video.png\" alt=\"Run\"></a>\n", + " <a href=\"../exercises/X0302 - Pull-out curve versus shear stress profiles.pdf\"><b>Exercise X0302:</b></a> <b>Pull-out curve versus shear stress profiles - part 2</b>\n", "</div>" ] }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRkeHRsfISomIiIiIyolLictLy4zMDAuLSs1PVBCNjhLPy0tRWFFS1NWW1xbMkFlbWVYbFBZW1cBERISGRYZLxobL1c9Lz1dV1dXV1dXV1dXV1dXV1dXV1dXV1dXX1dXV11XV1dXV1dXV1dXV1dXXVdXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAQUBAAAAAAAAAAAAAAAABAEDBQYHAv/EAEwQAAEDAQMFCwkGBgECBwEBAAEAAhEDEiExBAUTQVEUFiJUYXGRkqPR0gYyNVNzgaGxsgdCUnKiwRUjM2KC8JMl8TRDg7PC4eJjJP/EABkBAQEBAQEBAAAAAAAAAAAAAAABAgMEBf/EACYRAQACAQQCAAYDAAAAAAAAAAABEQIDEiExQVEEExQiYaHB4fD/2gAMAwEAAhEDEQA/AOfoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAilZuzdWyqpoqDLb4JiQ24Y3kgLLbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxJvJzlxbtKXiQa+i2DeTnLi3aUvEm8nOXFu0peJBr6LYN5OcuLdpS8Sbyc5cW7Sl4kGvotg3k5y4t2lLxLzV8jc4sa5zsnhrQSTpKeAx+8gwKKZ/C6/wCD9Te9VGaa/q/1N71N0FISKd/B8o9X+pvevQzJlPqv1N703QtSx6LI/wACyr1X6m96r/AMq9V+pnelwUxqLJjyeyv1P62d69Dycyz1P62d6XCUxSLLDyZy31P62d6tZXmHKqNM1KlKyxsSbTDiYFwPKqMeqIiAiIg2j7OvSTfZv/ZdXXKPs69JN9m9dYQWXZQAYgqm6hsKxOfa9RgZoy606qG8AMLiCDhb4M3a1Ap53qUiyllAaKztFAJALtJVcw3C6WtDSYuk7EGy7qGwpuobCtezXnGo9pLw6p5nmNF0gyThdcrOS+UIeGue2m1pNO04PkMth3BeSBDwWiR/cEGz7qGwpuobCtbzfnh9XSPc1tkZOyq2m0kuMhxIvxwjoRufQKVOo80bLnuaXNqS0RTLxeQL5ER/2QbJuobCm6hsK1lufXiga7qTdGHBpDSS6SwEXR+JzW++VIyHOj6mUvouptbYBmHgkEBv3MYNoweTlQZ7dQ2FN1DYVrVXPj2tqE0gNG9tNxc6y0OLjiT92yGmf7wFR2fKgp1KmipgMNMQagxe1rjfgQLWo3oNm3UNhTdQ2Fa0PKAGwLLLT7BDbREtdSLyRIF0iJIVzI88mrklXKLDLVMO4IfcSGh0F5u14gkINh3UNhTdQ2FaqzPtR1mo1rCyw4vFo6qoZLTF5g83KVXfEYqE02Cy6y3+YCZl9zgPNMMm+BfyXhtO6hsKbqGwrC5uzg6vpHWGhjLMcKSSabX33QBw4WNpeUL6jKTwKTZrWHi3aH9IvADoiZEXTq2oNs3UNhTdQ2FauM/VLTWmjTk0hUjShpvY5wi1EgWQCeU7F43ynR06lhkOe5rjbwizgIlx4X3Zw6A2vdQ2FN1DYVgc452NCu2nZYZa08J9lzpfZssEXnWotXPz2Na51Onwg8tFsguDXBtll17zeY5vcG0bqGwpuobCtTr50rtp1n2wCDlNnAgaIhrdU7dfcPdXyhcNN/KYBTfZvqtBHDLeE3ETEjbPSG07qGwpuobCsfkdfS0qdTC2xrrp1idYB+AV5BK3UNhTdQ2FRUQSt1DYU3UNhUVEErdQ2FN1DYVFRBK3UNhTdQ2FRUQSt1DYU3UNhUVEErdQ2FN1DYVFRBK3UNhTdQ2FRUQSt1DYU3UNhUVEErdQ2FN1DYVFRBK3UNhUfOGUA5PWEG+m/wCkryrGWf0avs3fSVJGkNarjQvLVdaF5nSHpoVK+V06Qmo8DYMSfcvNeuKbHOIuaJWo5VlDqjy5xknHu5lvHGyZps7fKChMcONtn/7lZTJcoZVFqm4OHJq5wtCo03E3NJ9yyWROfk9Rw81wE84xIK3thm5bs0K62FG3DXOTtr2g5haHXHAHBRWTrKy0zVNsrG+VrP8Ap1b/AA+tqyeQCWD3qF5Yt/6bX/w+tq6xDEuYIiKoIiINo+zr0k32b/kurrlH2dekm+zf8l1hBEqUXFxMa14OTu2KciCEMnds+Sbnds+Smoghbnds+Sbnds+Smoghbnds+SbndsU1EELc7tnyTc7tnyU1EELc7tibndsU1EELc7tg+Cbnds+SmoghbndsVNzO2fJTkQQtzu2Km5nbPkpyIMfuLh27PCs2ZnUDMfEr3ud2z5KaiCFud2wfBNzu2fJTUQQtA7Z8U0DtnxU1EELQO2fFNA7Z8VNRBC0DtnxTQO2fFTUQQtA7Z8U0DtnxU1EELQO2fFNA7Z8VNRBC0DtnxTQO2fFTUQQtA7Z8U0DtnxU1EELQO2fFNA7Z8VNRBC0DtnxTQO2fFTUQQtA7Z8U0DtnxU1EELQO2fFWMuouFCrd/5bvpKyijZy/8PW9m/wCkpI541SGhRmlXWvXldUbPjP8A/M8ja36gtfyRzQL4BnWtprlrqbmvPBIIK1inkxFoFpgG5xFx5l0jpPKezKGNgl3QoudXte5lRs4QZ+H7qRktCmaUffn4KTlGROrUi2kLRZDrN0kTZ+bh8VrHsy6S82+UdJmT06bxUNkQQL2+4ErIZuz9k9Wq2m1jml1wJaInZcVptfJ302ttscyZvc0gcwPu+Kk5lcd1UIF+kb871qnK3TKQWM8svRlf/D62rJMKxflkf+mV/wDD62rpQ5eiIsqIiINo+zr0k32b/kusLk/2dekm+zf8l1hAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEVEFUREBERAREQERUQVRURBVFREFVFzl/4et7N/0lSV5q0w9rmuEtcCCOQ3FBzEFXqLZPIt13t5H6n9b+9exmDJQI0X6n965Rp+2tzTHtuuMLE5exxZAm1jHNiulfwHJfVfqf3ry7yfyQ40f1P710mIZuXK8ndF5kDXKzOY3/ANdxMEim1s6m27zz4Ld3+S+ROMmhP+b/ABLn3lblL8my6rQoOsUm2CGwDfZBxMk3q4RGM2ZTMxTP1avBnUYa0HUBrIVnJM3UHZQyq2mGvaA6G8EEnWW4SMboWnvz3lJEGrP+Le5eqWf8qY602rDttlh1Rs5V0nKJYjGXT2FYrywd/wBOrf4fW1aWPKnLfX/oZ4VZyvP+VV6Zp1atpjokWWDAyLwORZuGqY1ERZUREQbR9nXpJvs3/JdYXJ/s69JN9m/5LrCAiIgIiICIiAiIgIiIC8veGiXEAbTcvSsZV5g/Oz6ggruul6xnWCiZyy2KU0ajbdpmBButC1t1SsiiDXn50ykSw2CW2P5jYIdfTtED/Kp1Feq52qtpUy1jX1DTlwLmjhQ2643YuN/4Y1rM1PNPMU1+5BiKGdahbUc5rAQBYbgTwnAnG+4Ax3qgztVtubZpwCwNdfBk8I46sVmVZyrKWUmE1Hho1SceYa0EGjnN5dTDxTANu2bWFkgCInG8idXKp+66frGdYLGVstqlzjR0lQE8EMYIizcbbgG48uCksflTnu4DGMIEW3SQb54LRfq+8glbrpesZ1grjHhwlpBG0GVAyihVsS+u7FsikwNuLhP4nfFXs3VbdMn+91+E8I3wglry5wAkkAcq9KPlY/p/nH7oLmnZ+NvSE07Pxt6QqMptgcEdC9aNv4R0IMHWz5VY8DRtc3S2TE3sNuCDt4LZkRfdMgr3V8oC0/0HG+pgfwNcRN11otj3jaszo2/hHQmjbsHQgxdfOlRtei0BlhwBfi432rg64DAYjXqXmhnt73sG54a6JcX+bjMiNUAe9ZbRt/COhNG38I6EFNOz8bekJp2fjb0hHNYASQ0AXkmLl4bUpGYLDZxwu59iD3p2fjb0hewQRIMhWyxpskAROzkK85IOAfzv+tyC+iKzlQBZBEi0z6ggvKLnLSbnraGdNo3aOI8+DZxuxjFXNy0/Vs6oTctP1bOqEGKZXy5tsaIOEmy50SRJi4EYcERrmZuhXcgrZY54NakGN0YlosxaIYTfJOJqD3DnWQ3LT9WzqhNy0/Vs6oQYStluXsBqOpgANEiAWyBVkgWrV5FLXr51JyqvloFN1OmC7QvtMujSWmWdc4W8D+yyW5qfq2dUJuan6tnVCCNklTKTWeKrWCl90gGTrg8I6iBztO0Kco1VlBnnNYCcBZEnmGJXjRh3mUGAbXgDoaL+mES0xVUNmb2TL4cdgaGjoGPvJV3JAA0gCBbdd/kUIX0REUXIfL30rX5mfQ1deXIfL30rX5mfQ1BrqIiAiIgIiICIiDaPs69JN9m/5LrC5P8AZ16Sb7N/yXWEBFDy7K3U3Ma0Al03nkCs7uqbGfFBkkWN3dU2M+KbuqbGfFBkkWN3dU2M+KbuqbGfFBkkUBr9IGVDU0dm0XAG4gGJPJcf9CmPqNaLTiANpMBB7RWhlFM4PabpxGGM8yU8oY4w17XGJuIN1xnmvHSEF1WMqPBH52fWFeWHpCKjwS0kOYRZM2eGOTEyZv1YDWGZRF5e8NBLiAAJJNwA2lBSqYa4kwIKx1bOJc8im5jGYaZ7rp1hrbrR5ZjniFYyirUysObTEURrMi0Rt1xyD3kYHI0MjZTcCJLrMWjjGzYByCFGqrtFmif6mWF//qtYP0RPvle2OyRgJY6gHEYgtk+/ErIQvFZgLXAgEQbiJQ+1BqZ4phxAdTIkC0agAvjvXqlnai5zRpKYBYHGXtkTqI/3BT4SEPtR/wCIUPXU+u3vXvJvNP53fMq7CtZNg787vqKqTXhcebjeBdicBzqCKzn2SYjSCLom7EGTIUvKP6b/AMpwBOrYLz7lAycvLW6QQdKIucLoxhxMa8CURkqeAVVGykkUhBIlzBcdReAb+YqPWoh1ZtNr6gDW26hFR2GDRjdPCP8Ajyol80mVcqpsMPqMadhcArf8Qo6qjTzGfkoGS5ueWmo2vUBqG1DyXCPuzBa6bMa1esvZ/Up1CPxUqr39LZte4WlOWp44r9/0knLmag881N5/ZDlZ+7Rqu9zW/UQvFBtKoCWVHui4xUfIOwibjyFXdyN/FU/5H96cpf4/a3UqVXNI0TQ0gzaffHM0FQskA4QY9otNtOs0yXR5txJ5DAAWROSNNxNT/kf3q2M20wCOHBEH+Y+/HEzylDdPiFMmoiKbhUqPEcGbhEHUAPir2Seafzv+typTyYMLYL7ruE9ztR2lVyTzT+d/1uVLme12oYab45diiNe5zJd+NkYG60L5AH+hXss/pPx804WZ/Vd03KHkc6Ih1m1pGyBZwtNjzbtXzQZNFSVYOVtNzAah/svHWw+KJM0plGWtpuDS1xMTcJ2wOcwqtyxkAk2QW2pMAYxjtUaq8OcdIWMIEQG23X6pIjXhBxV+hQpB1wBe0Ym8gHZOAu1XKFvW6S7+mwu5TwW9JvPuBVNC93nvgfhZd+rHohSEQr2t0qDWea0CcTrPOdauKqKqorOS4O/O76irys5Lg787vqKC+iIgLkPl76Vr8zPoauvLkPl76Vr8zPoag11ERAREQEREBERBtH2dekm+zf8AJdBzr5S5JkdQU69QteWhwAY51xJGIHIVz77OvSTfZv8Akuo1skpVDL6THGIlzQT8UGqZd5Y5A+pTLapgAydG73av9+VvfdkPrT1HdyzecsioipSAo0gDa+43YrO4qPqafUb3IMVvuyH1p6ju5N92Q+tPUd3LK7io+pp9Rvcm4qPqafUb3IMVvuyH1p6ju5N92Q+tPUd3LK7io+pp9Rvcm4qPqafUb3IGba+TZwyWpZqOsQ+m83si0SdfIVdy3L8iyPJ6VF9WxSkMaWkvIi8SbzqxU/NVFjKIsMa2S6bIAnhHYpFbJqdQtL2NcWmW2gDB2icCghUclo1g2rSqTTuLLERcA3lBF3u6Iv0MibTfaaTEOu5XWcNnmYcpUpVQUWPc3WWVG8NsEvJB4bdU/ssirGV+YPzM+oILywVWo7LahaydzsN98Co4ayfwjVF5xuEFT84E1CMnYSLYmo4YtZrjlOHTsUujSaxoYwBrQIACz2t10jPyKaZa55iLmt4DRGwC/pJXrJm2alRkkgQ4SSYBEa+VpUip5p5irFmMpmTLqeH5T/8ApViY8pS81PNPMqqlTzTzKtKqqoqoCs5Ng787vqKvKzk2Dvzu+ooLrgCIIkHEFYvJ4IBFNjDpgJYALQGBu59aydQEtIBgwYOw7VAp+a3hNd/NE2Y2a4AvQVzllAp0W63F7LLRi42wYC8Gi4N0TiDVrEuqEYBt1oDkAho6dq8ZS6iwSxrTWc9khsFx4YME6hz3Kdk1Egl74NR2MYADBo5B+5KixFTcr4REVRYr5GyoQ4gh4we02XD3jVyYK1pKtLzwarPxtHDH5mDzudvVUxEFk5XT0ekDgWbRfrj5ry3LaZa54JstMEwboxuXjKchDiXsOjqHEjB0YWm3TgL7iNRXmjUbdQqMFN2pv3X6zYOvXIx5IQS3Yjn/AGKt5J5p/O/63K67Ec/7FWsk80/nf9bkF5QMnrF9KXYio0YAfebGBO1TyoGTNcKMOaWnSNuMfibfdigiML6uU1Wvc2yH2aYLbQ4LQSImJvnp2LIChW9cP+Md6j0KNsZRBhwrlzTscGtj3ajyEqdk9YVGBwEbRsIuIPMZCzitRVwg1c1ueXOdUBLhB4HN/dyBXWZJVaXEVhLongTgIul1ynItIiaGt68f8Y700Nb1w/4x3qWiCJoa3rx/xjvTQ1vXj/jHepaIIzKVUETVBGsWI+Mr1kuDvzu+oq+rGS4O/O76igvoiIC5D5e+la/Mz6Grry5D5e+la/Mz6GoNdREQEREBERAREQbR9nXpJvs3/JdYXJ/s69JN9m/5LrCCJlmRmoWuDrJbOIkGfeFZ/h7/AFjeofEsiiDHfw5/rG9Q+JP4c/1jeofEsiiDHfw5/rG9Q+JP4e/1jeofEsiiCzk1HRsDZmJviMTOHvV5EQEREBWMr8wfmZ9QV9WsoYXNgRMg38hB/ZBGzeLTq1U4uqFo/KzggdIcfepqjUmVGNDWsZA/vPhXu1V/AzrnwqRAu1PNPMVHr3VqR22m9In/AOKpWrvaIcKbbVw4Zx6qsV65dYmyCZLIcQSRjEt51UlkVSp5p5lBZTquaHBxggG9+3/BeMqa9rOHULQbptnX/ghcpdXLKbH2HE2oBiCcZA+RXtldriADe5toXHC7vCgtyZ7wccYMvv4Ju+7717bklQRB80QOHgLrvM5AoXLIKzk2Dvzu+oqOKNafO7T/APCk5Owtbwokkm6/EyqQuEgCTcAsZk5aRLS0g1weDOzlWUUSpk4aBo2k8MOIm89JRVMpaBSEAD+ZTw/O1S1CrOe5oaKL7nNOLNTgT97kV/Tu9S/pZ4lE8ryqrGnd6l/SzxJp3epf0s8Sqr6Kxp3epf0s8Sad3qX9LPEgvLxXotqNLXtDgf8AQRsPKvGnd6l/SzxJp3epf0s8SC1SZUY9rCdJTkw4nhNuNzvxc+O2cVdyTzT+d/1uVDWdd/JfcdrNn5l6yZpDLxBLnGLtbidXOguOaCCCJBxBUDJWgUrhH8xt0Rrbq/2cVkHTFxg9KjDJyylZEvIc06gTDgTjzEoKZAP6vLVd+w/ZD/Lrf2Vfg8D9wOkDalGWWop1DLi7Fmv/ACVa81GFppVL9YLJB1EcLEG9SuFxmuyrl9JjnNc6C0SRB5O8K8yqC4tGLYm468Pkse7JqhJJ0knG6n4uQKsVGXy9swPNpcwHncvxVWo9smixzn1QAS58GB5tPXcPvL1/P2v6tLxKFR7T0WOY6s4SHPI/LT8S9fz9r+rT8SFR7TlZyXB353fUVH/n7X9Wn4lJyVpDTaEEucYMazyKpMLyIiILkPl76Vr8zPoauvLkPl76Vr8zPoag11ERAREQEREBERBtH2dekm+zf8l1hcn+zr0k32b/AJLrCAiIgIiICIiAiIgIiICoqogIiIPLmAxIBgyJ1Hao9aqxjmMNMm1IENEDbOyZ+KlKiDGuzvSplzXizZmIjAEtGzYr2T5e2s4BokcKSYxFnZj521S2tAmABJkxt2pZEzAkCAdcH/sEFQAMBCKqICIiAiIgoo2U5K57w9tQsIa5twnGI16o/wCylIgxxzfVJ4VcubaY4AtN1kzE2ubo1qoyGoCLNcgW7UWbokmMeVZBEGNybN9VtSnUfWktBDheZnlJuwGpeaGb6zWkaezwYAAJDeDEgyNfCwWUVEETJclex8vfb4MWsDj7+XXrUxEQEREBERAREQFHynI21S0uJ4JkRG0G/oCkIgx4zW0Me20eGRJjUDMfO/lVP4NSuvdcXEeb96J1cgWRRBbo07LYmbydmJn917VUQURVRAREQFyHy99K1+Zn0NXXlyHy99K1+Zn0NQa6iIgIiICKqogIiINo+zr0k32b/kurrk/2etnOIF/9N+BI+IXVNANruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXEVvQN2u67u9NA3a7ru70FxFb0Ddruu7vTQN2u67u9BcRW9A3a7ru700Ddruu7vQXFyLy99K1+Zn0NXWdA3a7ru71yXy7bGdK4E4MxJP3G7UGvIiICIiAiIgIiINo+zr0k32b/kurrlH2dekm+zf8l1hBGynLG0nND7g6eFqEX38nKqOy1oF4Nq2Kdn+44e6DPMveU5KyrFsE3EY4giCDyFeNxNLXB15c+3IuhwiCOaB0IKMzhTJLSbLmuskHUTEX4X2m9IXl2cmSLJBBa4zMAWbNxu12wV4p5qbA0ji9wdJeCWlxtBwLo1y0YQLrgBcqtzTSAIFq8EG/aGg/Q1BV2dqIa5xcRZtyLLp4FqYEX+Y6NsHYrrcupkkWr+Y7QL7rryFZqZoouJJDjNq60Y4Vu1GydI7pGwRd3DTmSJMuMn+4QRzXDoQW/4pSLgA6WkOJcL4LSwQRj98K9Uy2mwAudAJcLwfuzPRB6FZdm5tgNaTIYWC2S/gusyDJk3NGv916yjIA8UmzDGSCNbgWFsT70CnnBhEuNk2nNjHzXFuraW3bVStnNjabXw422F4BBFwAJk6sdaq3NtIHA3mTfjwy8TzOJI516fkLCxrb4a0tF+oxd8Ag9Ny2kXNYHi06YGu6ZHPcbuQ7FbOcaekaybnWuFqkOa2Ol4vXqhkDKbi9tqSSTwjBJJdJGGLj/oEeDmynaLuECSSYOslp+bG9CD3/EKN40gudZ95/blwVKmXsFMPZLw5wa2AbyTA1Ycq8nNlMgN4cAyBaJAvm4HCP8A6wuV3cjbDWSYYQRfsMhBaoZzpuYxxNkua02cYkAxI18IdMq8Mrpljn2uC0SSQRAv28xVlma6LW2YJBEQSfwhk89kAL1UyFuhq0qcM0gdfje4QSgru+lMW79kGcYw5+mRtXgZyaarWNvBA4RkDhWoAuvPBKr/AA9hmZJMEmdYIcHc4IHQqtzfTDg4SCCDjsteN3Sg8UM60nMYS4Nc5jXWcSLUXXYnhDpCvVcsYx0OcBcDrnhGBdGuFYZmqkGFgtWSACC4kGABgbsAB7leqZG1zg6XAgNGP4TaHxQenZXTAYbYh8WTtmAPiQPeFR+VsDrNoWgQCL7p1TtvF3KNqtuzbTLaTeFFIAM4R+6WkfSL+faV6qZCx1TSGbV14Owgj4j57TIUbnGiQ0io2HRHLNmOm03rDalDL6b7AJDXvmGk33T3HoKsHNDQWFjiAyMb8A0N6LAx1wVIoZCym6021MR5xg3kiRh94/6Ag8nOLNNo5HOTAkWpAuvIsnoOxehnCiY4YvnbqnHZgegrwc2UrVrhAguIhxEF0z9TulW25pa14c1xAGrlMzyXzsuv2oL5zjRgE1AARaBMi7b8D7r17p5ZTcHEPENEu1QLxf72uHODsVmpmym6JtXNsi/VBHyJXpmb2C3538wEO4UYuc64jC97ulBWnl9NxeGkmw207gnCXCMMZY4RjcvFLOVN1qTZAAIm6QWh3uN+HIveT5vp07VkHhAg37XOd7r3u6V4dmymRBtRd96MGhoMi+bggvbsp2Wutiy7A/7gvAzhRkDSCTz8l/Nwhfyr0/JGusSXS2YNoyZxBOsFWf4XSgAWhDbOM3XQL9lkIPbM5UjPCIIJEFpBucW4RtBA2r1Sy1jrZkBrINqbiCJlef4fTvxvM44G2XyP8iSqjIKdh7INl4hwkjVFxF4PKgpTzlRdNmoDEzjq1c/IlHLmOp6Q8EWnNvxlri3D/GV5fm2m7zi83ze7XETK9nN9M0jSMlpc5xk4lxLj8SebUg8U85MPnGyZcIvJkOc3ADXYKvOyumCwF7eH5t+M4R0qO/NgtNLHFpDrR1zJc4xsveVe3FTBYQCLDbAAcQLOoEa8PntKCjc40SYFQT7/AO3xt6wRmXMdUaxhtTak7IDT8Q4FRqeZ2Bzi4kgkWbyCAAwQTrvptM4/Gb+T5up03Wm2pvxM4gC/3NHQg9UcvpvIAdBLi0Agi9pIOP5Xc8Fet207Rba4QuiDtA2bSOleKeb6bX2wDNq1iYmXGY/zd08gj3uOnpNLZ4f4vdHyA6Ag80ssBa8ua5lh1kh198AiImfOAu13JTzjRcJbUabpu14YbfOb1htQZE3RmmXPIJBvcZuIOPOL9t8zKsszPRaGgWoaIbwsIsEdGjZ0c6C4zONPRNqPNgOmJn7oJPwaT7l73Y3SNYAeFag3C9uNxM++E3FT0YpkEtDrQknGZx/bZdgjMiY0MaJhghgmYuLZk3zBN/KgkKqoqoC5D5fela/Mz6Grry5D5fela/Mz6GoNdREQEREBERAREQbR9nXpJvs3/JdYXJ/s69JN9m/5LrCCHnDLdCA6zLb5dfDbsTF4HLqVqpnZkgM4Rthp1XWi0kbYIIU2rRa/zmg8/LiFb3FSmbDZkOw1gkg9JJ96zNumM4VzHKLTzxTfZsBxtckRwBU+RCMz1SLQSTNkEwCcQy4f8jelSKebqLbm0miDIgYGLN3uuQZvoxGjbEAYahEfS3oGxPuavS9S95NlLaoDmh0ETJEayI57lfVqjk7GeY0C6Ltkk/uVdWnKavhYfVeKzGClNMtcXVLQ4JEQLOJmTfyKLl+XPpVqTGtBa8gOOJBLgBdIMY3iYukResiqIjBUvKVthhfThzqTahhwhslgIJOzSA7eCbsJlZJnjTMqObRdLGB1m028lodZHWAnBZCsxrmkPAs3Y8hkfFVptaAA2ABdcgxgzuXMY8MsA1m0yH6wTiMNRaffyLKqjiAJJAHKqoCIiAiIgIiICIiAiIgsuqvFZrBSmmWkmpaHBIIhtnEzJv5FFy7L3Uq1JgaC15AJxIJcALpmMbwDGuBesgiDA0vKZhYxz6cF1JlQw4Q20aYIJ5NIOW43YTNyLOuna8tpGWtBslwvJaHWZHOL8FPqU2vEOEi67mMhKbA0ANAAGACDDnPlpjHNsU5qsYBVkWw6HcHCDYcHa9kSs2qIgqiIgIiICIiAiIgKiqiCiKqIKIqogoiIgIqogoqoiAuQ+X3pWvzM+hq68uQ+X3pWvzM+hqDXUREBERAREQEREG0fZ16Sb7N/yXWFyf7OvSTfZv8AkusICIiAiIgIipKCy/KIeWBjnEAExGskDE8hVdM71T+lnerf/nv/ACU/qepSCFljDWplhpvAMXy26DIIIcCMMQVCp5tewFrX1wC4uxYMeZ3y5VmkQYjcDjS0b9M/hNJc4tJNkAYWuSecpTyBzS02so4JEC20CBqIte7m95OXVEFrTO9U/pZ4k0zvVP6WeJXlHynKhTLZE2jGPMMPeg9aZ3qn9LPEvJykjGm8CQJ4OsgDXyrwMtAbTc8WLe03C4m+Y2Ly+sx7CWODhpKd4Mjzm60Wp7TVRVREUVURBREUbLHuEWCbRm66PeSO5BVuVT5rHm9wng/dMHE7V60x9U/9PerGQiA0TN9W/b/MU1BZ0x9U/wDT3rG5yyGpWfbY6pTdDRg13muDgYtY44bb5ujMIgxFahlTps1qjZL/ALjDEghoHC1Eg8scpTKcjqOraVjqjDYDBc0kQZN9rXKypqNGLgPerTstojGrTHO4IsRMo+Rtq0y62atSTIkMFnkuKlaY+qf+nvXgZfROFRrvy8L5KNleUF8CmarTBv0dQY68L+lS12z6TNMfVv8A096Uq9oxZc2QSJjUYOB5VHbWfaBFKqW2Yg2RftvdK90TwmXRwX3bOE1VJiktFRERVFREFUVFVAREQEREBERAREQEREBch8vvStfmZ9DV15ch8vvStfmZ9DUGuoiICIiAiIgIiINo+zr0k32b/kusLk/2dekm+zf8l1hAREQEREBQ84QQGwZMw4MtxhN0HkUxQM6ZKaoaLMgEm5rSRzEkFvOL0HqkAKpjDR0tUa36lfqZSxphzoMTCsUp0rpEHR07rvxP2KtSsKdSq92ApswxN74AGsnCESZea2d8nphxfVaLOM3cqtszoXAOaxsHCX9wKNokNZSdFuo41Kuu4GSOUTZbzKQ7N9IkkNsOOLqZLCectifeo1zELG73/hpj/J5/+Cbqef8AzaY/9N5/cK7Yr0/NcKzdj+C7rAQeaBzr3Ryxr3WDLKn4HiD7tThygkIlz+EfSzjlLh+VgHzBVjK3Nhpa+o8zfJf8hAWXRSl3Ze2IoOpsdS4LA4yXkMnVdwoxn9/fMqVA5hIMjSM+pqlqPlHmn2lP6mqpcz3KSiIqCIiCixud2WrEQLjeSOS6Dj0hZJRc4vc1gLHBptC87NeooLeR1GhocTDZqmSYH9ReK2V06jwzStFNt7jbAtHU3m1n3DarNYONNgaQJqOBdN4/nC8DWedZSjSaxoa0QB/pJ2lSSJrpCsZJrNI87gf3QMyPZQ/SsgiUbs/aC05IMNAOorrcqoDCpTHM5qkpCJM5T5WN20fW0+sF4q5fSDXEVGEgEgWhepUIicsY3O7bBcbAMgAWsZ5sFKpGXMIMgtff/k1SVHp+ezmf9TVVi0hERFEREBVVFVAREQEREBERAREQEREBch8vvStfmZ9DV15ch8vvStfmZ9DUGuoiICIiAiIgIiINo+zr0k32b/kusLk/2dekm+zf8l1hAREQEREBQs6hrqRa50E4cINNx1SpqjZcYZashxBwN3xQWn1Qyo9xDiLFLzQXHzn6gFYYDUrvqVRo6bGNcGuI1W+G+Lrr4HvN8RftEVHENJOjpcER+J+1eGUnVK79IAAGsNgGZvdFo/t81JK6tfyQFxdVcIL4sg6mjD3m8++NSkoiLM3Kqt1qDKjbL2hwxg7do5V7REQ7FWj5k1qf4XHhj8rj53M6/lOCtvy9ziNAA4EgGWulpm+1hZgRcb78FkFHyjJA822ksqAQHtxjYR94ch23Qb1R6a9+kskCzZkkAi/nwK85R5p9pT+pq8UsrIcKdYBrz5rh5j+Y6j/ab8YmJXvKPNPtKf1NQSUREBERBRQ842QGue9zADF0xftA5lNUHOj4pxMScSJCCLWpWqbIc5pFR17Y11hqMg+8KZZyhmBZVH90sd0iQT7go58xvtT/AO+1ZNE8oozgwXVQ6if7wAOuJb7plSkIUTcAZfRcaR/CL2HnZh0QeVFX212HB7TdNxGGE8yuAgiReCsZQGgtaRhEiNIzhNgYSIlvQQNqn5OG2G2CCyBZIMgjVeguIiICjU/PZ+V/1NUlRqfns/K/6moJKKqogIiICqqKqAiIgIiICIiAiIgIiIC5D5fela/Mz6Grry5D5fela/Mz6GoNdREQEREBERAREQbR9nXpJvs3/JdYXJ/s69JN9m/5Lq6CqIiAiIgKJnIE0iA20LpAmcdUKWqIIlP+q72dL5vVyn/XqfkZ83pUya04uD3NJABizqJIxB2leW5IQ4u01SSAD5mqf7eUqJPcJKKBuhl85S5tkkG1oxEEifNwkI6u0H+u8+beAyOEYF9nlVVPRQRXYcMqJvAusG84DzcV5GUtLC8V6hALQbmDzjAN7cL0GQRQdOzjRvJGNPVE/d1SOlXaTS9sirUxIvDMQSD93kQX6tNr2lrgHNOIN4KimlYp2bTnAVGQXGTFpt04n33q9oHeuf0M8KpuWcajyJBjg3kEEYN5AgkIiICIiCio5gIggEct69IgxX3Ge1P/AL7VlFBdkDiIFUgBxcBZGt9u/wB4V7Q1fXDqDvRPKSqKHWL6YtPrgCQJLBrMDWvOlMkbqpyMRDdXvRU5RX5CAS+k40nm8wJa4/3MwPOIPKrLcpkA7paAWhwtMDbiCRidgKpVyoMicqZeQPNB87DXhfigvDLCy6u2xqDwZYff908h2wCVLUB1Q2ix2UNBwhzQJum6TfiOlWcmphjrNLKQQSG2GgFrDBNwngyBhhdggyqjU/PZ+V/1NVdFV9cOoO9Vo0HNdLn2oBA4IGJB/ZBIVFVEFEVUQUVURAREQEREBERAREQEREBch8vvStfmZ9DV15ch8vvStfmZ9DUGuoiICIiAiIgIiINn+zw/9RHs3rqWkdtHQuW/Z76RHs3/ACXTw4GRIkYjYg96R20dCaR20dCoiCukdtHQmkdtHQqIgrpHbR0JpHbR0KiIK6R20dCaR20dCoiCy/JmOmWMMzPB23n43896DJmD7jIMXRsw+QV5EEd+RsJBsgEEOkSDIECTKqclZZLQ1oBszAjzTIV9EEfcdP1bNerbjr5Ar1IFggHWTftJk/Er0iCukdtHQmkdtHQqIgrpHbR0JpHbR0KiIK6R20dCaR20dCoiCukdtHQmkdtHQqIgrpHbR0JpHbR0KiIPNUW22XQR7xhftVjcVOZsAc1oRGEX3Rq2alJRBHOSMIiyLm2fvebERivH8Pp3yJBi6TdAgRepaIIz8jY5xc4T7yIuAOB1gDoVWZK1rrTRBmTiZuIvk8qkIgrpHbR0JpHbR0KiIK6R20dCaR20dCoiCukdtHQmkdtHQqIgrpHbR0JbdydC8rVcted3ZTeY0Ttf/wDMLGeW120dL5szF9Nstu2joS27k6Fp/k7nI0qgZUcdHUwJwDts/DoXjL8ufWytjxaFMVAxuIwcJ96x86Kt6Post843x7bnbdydCW3bR0LTmUadTKMrNapUaym5x4J/vIwgqZ5P1AMpqMpVXOoFt1vEuu1c0qxq3PTOfwu2Jm+vx/LZbbto6E0jto6Fq+X1KumrkVKrWtq02yHGGtcLzZ1qJWr5Wxz2l9QinFMmTeHEkO57seZeyNC/L5c69eG523bR0JpHbR0LU8pNZjqtirWNnKGMbL3EQQTf0BTs216xNe2XFzazjAJIAEXCfu4qTpVF21jrXNUz2kdtHQmkdtHQoAqknhWg0mfdf/8AS8OqPs4uiTjM6sVjZLpuZK27aOhcq+0BkZyedbmMJ6I/ZdIpvdaF5LSYxJGE6/8Ablzr7QvSJ9mz91mYpprCIigIiICIiAiIg2f7PfSI9m/5Le8ooVdO9zGvFp9IhwcA2yBw5bN90jDYuT5vzhVyWppaD7D4ImAbjjcQQspvzzjxns6fhQb9uXKgzgvqaSxSi1UJFuCKhImCMLsNiuvp1dGLDcoaQbw54dPBvvFQECeXHUueb8848Z7On4U355x4z2dPwoOjZTRrOMhr5LG4VbIbcbTYm9xkQY5ZEKPVyfKrLw0PFppszVEs/qQCZx4TLxOGNwnQd+eceMdnT8Kb8848Y7On4UG/5VkeUaQ6M1DTukGoSTAFzf5jTjeZg8pmFl8na4U2B5tODQHHaYvK5Tvzzjxjs6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg60i5Lvzzjxns6fhTfnnHjPZ0/Cg6ysDlOaKrsqrVBZsvplrb75LQPmtE355x4z2dPwpvzzjxns6fhWcsYy7dNPVy05mcW808wOORmk+yKoeXNIvF4Fx516y3Mb5yYUoLaRlxcYJNoEnnuK0TfnnHjPZ0/Cm/POPGezp+FZ+Xi6/Val3/uW8U83ZZSyitVpCkRUc48InAukK/QzflNTKadbKNG3Ri4U5v8A9laBvzzjxns6fhTfnnHjPZ0/Cny4Sficp8RfTrSoVybfnnHjPZ0/Cm/POPGezp+FdHndKDH8EgOFlo24gG5GU3wBBvuPugrmu/POPGezp+FN+eceM9nT8K3vZp0oUnWW3XhpngkX3fHlXumw2gLJibyQR+LHbzrmW/POPGezp+FN+eceM9nT8Kb1p0/J6RBYbwLMkcuH7rnP2hekT7Nn7qNvzzjxns6fhWLzhnCrlVTS1323wBMAXDC4ABZmbVFREUBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERB//2Q==\n", + "text/html": [ + "\n", + " <iframe\n", + " width=\"400\"\n", + " height=\"300\"\n", + " src=\"https://www.youtube.com/embed/rg-NIf0e0kU\"\n", + " frameborder=\"0\"\n", + " allowfullscreen\n", + " \n", + " ></iframe>\n", + " " + ], + "text/plain": [ + "<IPython.lib.display.YouTubeVideo at 0x7fcee45a3fa0>" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "YouTubeVideo('rg-NIf0e0kU')" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/tour3_nonlinear_bond/3_2_anchorage_length.ipynb b/tour3_nonlinear_bond/3_2_anchorage_length.ipynb index 6cd8543..4a60141 100644 --- a/tour3_nonlinear_bond/3_2_anchorage_length.ipynb +++ b/tour3_nonlinear_bond/3_2_anchorage_length.ipynb @@ -35,7 +35,7 @@ " " ], "text/plain": [ - "<IPython.lib.display.YouTubeVideo at 0x7fd09c336e20>" + "<IPython.lib.display.YouTubeVideo at 0x7ffb741484c0>" ] }, "execution_count": 1, @@ -236,7 +236,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a231605ffe14aebb31a0bebd36c9822", + "model_id": "33b29fb386294879a1083ed5b778851c", "version_major": 2, "version_minor": 0 }, -- GitLab