From 0169630a98e9f163df1c51ab39ca181aaff5bfe2 Mon Sep 17 00:00:00 2001
From: rch <rostislav.chudoba@rwth-aachen.de>
Date: Mon, 15 Jun 2020 22:53:02 +0200
Subject: [PATCH] seminar work model example

---
 bmcs_course/3_1_PO_LF_LM_EL_FE_CB-Copy1.ipynb | 4007 +++++++++++++++
 bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb       |   91 +-
 bmcs_course/5_3_BS_DP_A.ipynb                 |    7 -
 bmcs_course/7_1_PO_LF_LM_EL_FE_Energy.ipynb   | 4513 +++++++++++++++++
 bmcs_course/PullOut-InteractiveApp.ipynb      |  618 +++
 bmcs_course/SeminarWorkHowTo.ipynb            | 4489 ++++++++++++++++
 environment.yml                               |    1 +
 index.ipynb                                   |    3 +
 8 files changed, 13672 insertions(+), 57 deletions(-)
 create mode 100644 bmcs_course/3_1_PO_LF_LM_EL_FE_CB-Copy1.ipynb
 create mode 100644 bmcs_course/7_1_PO_LF_LM_EL_FE_Energy.ipynb
 create mode 100644 bmcs_course/PullOut-InteractiveApp.ipynb
 create mode 100644 bmcs_course/SeminarWorkHowTo.ipynb

diff --git a/bmcs_course/3_1_PO_LF_LM_EL_FE_CB-Copy1.ipynb b/bmcs_course/3_1_PO_LF_LM_EL_FE_CB-Copy1.ipynb
new file mode 100644
index 0000000..41a5b66
--- /dev/null
+++ b/bmcs_course/3_1_PO_LF_LM_EL_FE_CB-Copy1.ipynb
@@ -0,0 +1,4007 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Example 3.1: Softening and Hardening versus Pull-Out \n",
+    "# PO-LF-LM-EL-SH\n",
+    "\n",
+    "@author: rosoba"
+   ]
+  },
+  {
+   "attachments": {
+    "image.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAABnCAYAAADmM/4PAAAABHNCSVQICAgIfAhkiAAAH+JJREFUeF7tnQm0VdMfx7cpKtMKUSHzSqUkylT9F1ZFk1qtZkMStaRoVBSeUCpllSkJTUSqpcJKxiYKGSpSCqEkQxkS0v99trWv8847595z7z3n3HPv+f3WOuu9e4Y9fPc5+7d/495nbzEpIUFAEBAEBIFYIrBvLHstnRYEBAFBQBDQCAgTkBdBEBAEBIEYIyBMIMaDL10XBAQBQUCYgLwDgoAgIAjEGIH9Y9x36boPCOzcuVPNnj1bl3TMMceoH3/8Uf3555+qcuXKqnHjxj7UIEVEEYE33nhDffHFF+rwww9XZcqUUdu2bZMxj+JAeWiTSAIeQJJb3BEoV66c+t///qcWLFigLr30Uj0h8PvMM890f0iu5D0CNWvWVFu3blWtW7dWEyZMUPXq1ZMxz9NRFUkgTwcuKs3ef//91ZFHHqnmz5+vTjjhBNW2bduoNE3aESACjPnPP/+sa2jXrp2qXr16gLVJ0UEiIJJAkOjGpOzVq1erP/74Q9WuXTsmPZZugsAHH3yggRCpL7/fB2EC+T1+kWi9TAaRGIbQG/Hhhx9qm0C1atVCr1sq9A8BYQL+YRnbkjASQtgChOKBwKeffqptAn369FEHHXRQPDpdoL0UJlCgAxtmt1gRQqIWCBP13NZlpL+rr746tw2R2rNGQJhA1hDGu4Bff/1VbdiwQUsBqAbcaMaMGapBgwZul+V8niEAE8ARgCMZbd++XfXu3Vv16tVLj//ff/+d7Ha5lgMEhAnkAPRCqnLJkiX6w7799tsdu2VURZ06dVIwDKHCQGDhwoWqUaNGjp35+uuv1bfffquvdezYUcePFBUVqVGjRim8yYSihYAwgWiNR961hkme1aCTPYAAIqQEO7E6JMhMKD8RYExRATqNOT169tln9cQPcS+xJBUqVFDnnntufna4wFstbLnABzjo7qEWcHMNnThxourQoUOiCUgM6JArVaqkMCw2adJE9ejRI+gmSvk+IzBt2jT1zz//ONqAiB347LPP1L777qvGjRunYwlefvllrSoU+4HPA+FXcewnICQIZIpA8Ypvb7EqqNTjixcv3lscRbp3z549iWvcu2nTJv2b88XRpnvHjh1b6lk5EV0EGLdTTjllb7FH0N5du3aVaChjXhxJvHfq1KmJ88VSooxxdIdTt0wkAb+4aYzKYXU3adIknTsG90D+3nHHHRoBcgetX79erwa7d++uV4SGuNcYEjl/2WWX6Xu6dOmio46Foo3ACy+8oLAFINERGzBixIhEg9euXavee+89rfq5/PLLo90RaV0JBIQJyAuRNgKI9v3799fPkTcmUzJGQjEWZopguM+1bNlScWQz5uG2WGrzgoAYhr2gJPf4ggDZRU2+GQp87bXX1KBBg5K6lvpSsRQiCAgCrgiIJOAKjVzwGwGiS+fOnatVSKiN2rRpI6oDv0GOUHmoj6pWraqdAFAXSZK5CA2OpSn7YBiIZtOi3yomNNF/Rn+cCq2FeOZYbS3o6PHAad68eaF1Nef9Ibbl4IMPTrQD+xd4FxvHc942vxog6iCPSD755JMl7sQ/PlmErMdi5TZBIG0E8MMnIMsQRvqzzz477XLkgdQIjB49usRNzAOFxADonDCB1O+BvoMVgCGzq5JbsIzHIuU2QSAjBEjbzWqU45FHHtEeVyY4K6MC5SFPCMAACjHWQWwCnob/v5t4EfjoCvFlSBMKuT2HCMAA8NIhGE8YQLADwQLQMADj4hxsjeGWLkwgDbyTpUhIoxi5VRDIGoHJkyfrxGzCALKGMmUBMAATB5Py5jy8QQzDLoNm8qWby7wI2ADEEOwCmJwODYE5c+boRGwtWrQIrc64VsTkj9RvlQDwbiukPEhiE3B5u63+7EgA5MgRBuAClpwOBQFUQBiBMQqfc845odQZ10qMCghJy64CIt6FsSgU8qwOIlzcpIdN1vnifDGh+gMzGEzObHTuJxlOjwRgDMBiCPYTYSkrHQSMDQBvFdxBeT/tk1M65cm97gjAAAwTQBIo9O/esyRQsWJFxYq4a9eu2kjCC2gO8r48//zz+hq6yjBp+PDhasGCBYHkqhcbQJgjKXUlQwAJQIzAyRDy75oxAvtXYrRL8iwJsHWg2VD6uuuuK8UdSQbWt29fBbMIi9599101ffp0XR0RqNagjmzbYNxAxQsoWyTl+WwQMCogFlxiBM4GSW/Pxo0BgIpnSYCbmRihiy66SP+1EhGMqGWOP/54+6VAfhM1iYrqrrvu0uV7UVV5bYjppzAAr4jJfUEhwKTEd9W0adOgqpByixHABmhUP3FTs3mWBHhT2E3IviJBP2le0K1bt4a2Wlm2bJnC/mBSEFsNudm+1YWuA8wWH3k+PASuvfba8CqLcU14/hWyG2iyofUsCTDBc3Tu3DlRHlvHPfPMM4nfrFjCcp1atGiRlkhQUSGFoA4SEgQEAUFAEEgPAc+SgFGRoHdHRDUh61YmgP9sGPTiiy9qmwSTP3VWrlzZV3VQGH2QOgQBQUAQiAICaTGBRo0aqVtuuUXvL4oL1YoVK0JPpkRWvyVLlqh77rkngV+VKlUUm5oLCQKCgCAgCKSHgGcmgD2gfv36unRW4CeddFKJeAAkg9WrVztuPp1ek5LfzXaEZL+26u927NghTCA5bHJVEBAEBAFHBDwxATPB9+zZs0QhbApiaMqUKeq0005zrMSvk3gD1ahRQ1144YUlikQy8NMw7Fd7pRxBQBAQBKKOgCcmwAofNUzjxo1L9Me4g/7+++8KI/E111wTWH8J1cYuYVUDmcqwEbz11luB1S0FCwKCgCAQJgKo27NxVSX3GXElXvY88cQEyJtDgW7BKhMnTtTumpkSUb81a9ZMmpuHrersTMjUV65cOfXDDz9kWr3n57CJCAkCuUYA+5dsIpPrUQiufvaLGDdunD4yJRjIbbfdpuyb4jiVl5QJ4BKKmmXWrFmaAcCdrPTRRx+p2bNnq9dff12tWbNGu5CyyQV7iR566KH698aNGxURxkT3IjHwTFFRkSpTpowuClUTAV+s9D///HNta7ASz2OApkOonKyEdLJ9+3b12WefaZsAEsuxxx6ruR9h9iNHjlS33nqrjiSmDALKevXqpf+yyTnnYUD0ES+jVBHHJjCtRCPkhyAQMgIzZ87U3xYLJ6FoIsC8xH4P77//vtq5c6dWYZP5FcKmylxIKnA8G+1000036ewL2RDzGQsFdqFr165d0qKSMoG3335bT5Bt27bVhRg3UWuJuGoSWcsEytGwYUOFZDBjxgzdWbyJRowYoQExZaC+MRk5AWbVqlWKc4gwdibA5A1nhAlYt9SjLCZzgsaQEDhgNDAGYhUIsrn77rv1PUOGDNGiFZkXqZf+AP55552nunTpovtIX3kWot2outhGrlatWpqhQTAYIUEg1wgcdthhuW6C1J8CAYJYhw0bpo4++mh1ySWX6MWmlaZNm6YdbRYvXpxQ++B1yYKZeccP+yq5ppjrWJQnWzAkZQKZpE5mAqUT/IXgSNY9OVHd2I24NLJfv356QrYTHXEjgEoFlsl3ZLiwaYuJaUASgUtbjc0MxldffaXtHEgUcHIY4E8//aQZAS6p1FuhQgW3psl5QUAQiDkCaD2QCAYNGlQKCVbpLGrHjBmjxo8fr6+jcSER5/r160vdn+kJFugsdr/88kvX+SopE8i0YjPhmuftv+3lIgE0adLE1eZgvz+d34YZpfsMkgMHXBzCJfXKK6/UEsM777yjhg4dqg488EDVqVMnLf2IlJAOwnKvIFD4CGBLRTVN8k07GdX6EUcckbiE3ZNJ26TCsT+TyW8Wt2g4UH8bjY69HN+ZAKtoDkP23/YG8BsmgK7eT6JeOm9UPKz4IfMbFRNk/nqtG1UTR58+fdT333+vPv74Y/XKK69oacEQ6qPTTz89YRvxWnZc79u1a5cqW7as5+6ne7/nguVGQcBHBGACuLQ7EZPyGWecofr375+4vHTpUjV16tRStzNnYXslNQ6LTpOpmbkLm8P555+vnyGPG0zHmrqH36jscaMPhQmgPmGlTOPWrl2rG83kC9cDEIzBHIhB3GtUM5monUohZTtBaotRo0bp+qkP28ETTzyRqBf7Ab8xJmea7+ioo45yzKgKQ6D/iHZW5oBxvWrVqurkk09WPBt32rRpk/aAQBWYTvZZxvSpp55SV111VdwhlP5HGAFUyHaPRlTh2EtRFRH3ZJxRUBsx2dtjoOgeqXmQELBpMm8a++rcuXO1CskwAeY85l7OW6lbt27qoYceckXKV0mASR0jrJXsnbrvvvtcG+PnBXvMApZ4K/kteVjLRhIwEoP1PAZw4hkwEu3evVs1b95cG4cyZUJ+4pWLsnBfQ82WLkM85JBDtGEfJj9gwIBcNF3qFASSIsBCBY/J3377Ta1cuVLfi8YDGyWqb1btVoIJOHknwhiwX1IeC+lWrVolHuO31VWYOQ3vTDuhqt6yZYv9dOK3r0zAtRa5oBGoU6eOPlAlISXh2vrNN9+oBx54IIEQL0Lt2rUL3g8cry+M6+kyAAPUxRdfrCU5ROgLLrhA3jBBIFIIoGFg4mbXw1TOKzSc+cApsAsmQLZkvCchNu8yhCrI6krKwuiss84qhQNMwO6MY71JmEApyMI5gWeRkwTwyy+/qM2bN4fTiBzWghrIiLWZNAOD/2OPPaZtScIEMkFQngkSAVRBGHi9MADaQZyUE5kAXWKk0KqYoFwm9eXLl5dQH7GotKufKBPHHBOX5VTHv36cTlfkXE4QQNWBy2wh07x587QhOFsX2/Llyyu8K1CzCQkCUUIAJoBrplfC2GucVpyeISAX25kh4gzwXrSqkNwCCLHJJvM4EibghHjMz2HMRgTFE8G+Wc/8+fOzRufpp59OBMg4FTZw4EC9ujf5oLChYD9xmuyxQ6EbFRIEooQAWZfTWczhGIFdwI2QFKyuptgbrO6lPOdkU+A8tohKlSq5FZ3eHsOupciFgkIA74XnnntOB8fhfWAIz6/Bgwdn1VcMZXhm4SVlJxgO9hGivfFwgBlQX7NmzfSqCmO/cfU1z1IOHhNCgkBUEMAdk2BTr6og2s0ETiAttgQnqlu3buJb5B5ilEizgzcQizZcTd3yt2GXsAbs2ssXm4AdkZj/5uXlheHFQsdonXRxQXMyPKUDGYbwPXv2OKqCXn31VW00h4jz2G+//XTkOcZ00n/gVWEPPMSYZk8nkk575F5BwC8EyF9mDLiPP/64Lha1EH76XqhFixbac9C6W6N5jjgBFmd8g9gJsKkRvMpvvBHxsnOSBGgT0juMwI2ECbghE9PzJriElw4yek1cWgmK69ixY1bIGPUSKxk7MckbYtJHx3niiSfqU0gDTsSLH0YGWae65ZwgYEUAvT7+/JkSKk8YARO8PWMzZZNYzkosyFItymBKuJg6GYxNWWITyHTECvQ5VhWstklshThrIh6RCiCiHLMhjLluZBL1cZ1gO8ieUND+LJJKOtHG9ufltyAQFQRIUcNCiPQRfhGRyXzLdgnaWr4wAb/QLrByyI9EBljjWoYeH8Jga9Qv2AjQ3X/33Xc6Nwlpa1EnMTEjBiO+klrDSmaFQ+qHZIReFXWQYToEu9iN1DyPR4V91ZSsXLkmCEQVAVbsqG6IofFDxQkzQbpItfdEzpkAHUa3hd7MfrRs2dLTeE2ePFmnmgZAIvHQk+FChWjmB5ieGlFAN+GJwORq9b9/6aWXdHQzgSfo7iF09Uz8ZCjEm4h0tWCOVw+h7ORPshuSCQ5j0raPCwbjO++8U0/01E8d5EE3wWSItVZJwcCN2kiYQAG9fDHvCit24meMbSFTODAeY1dLtZcA5efcJnD99ddrYyA+r0ziMAJj4HCKoLODgnWczmLMRF+NV4vRy5FSgAmC/QyEvCPA6h+vG5LjMdETlUsQGysKJusDDjhAF4Zen80xjF6SSZrfMASICRy9vp14Me0Bcbh5Tp8+Xd188806/xTucNQJIU0QDekk0rLp0KmnnmqvQn4LAnmLABIB+wpkQyzIku0hYC07p5IA4gougUzaTP54giC+GInAKQWrHRgmeFadMAOYQNOmTRO3EJFL4jih9BFgL2cCVDAQ//XXX3p1QsAJgV6MkSHc2qyTc7KgFPMMTADpwUowEnaBQw2FEfree+/VNgl20UIVZTUaW5/DVkFiLSFBQBDIDIGcSgJWdQ96ZLuKwEuXSBvAxENiOmteDZ5ldenkj27KJZKOAymEQ+g/BEyeIysmxn0zW5wIXMHgi58zGVUhjLv2rKA33HBD0qqQVJBGjAdR0pvloiAgCDgikFMmYG0RK81MdLtm5fnmm2/q7dwMESXHBN+6dWvHjnPSqJswYnKvExHJx8F19NXZpjpwqiNfz4E5OUxQ4yEdYAsgBoAU2iR4M3pNfuP6Zs1fgtqHjIes/jMhVEQEkzllTcykPHlGEIgrApFhAqiFnLZh8zIwTETonq3uhOiVoWSGEeMTn6wOvFQ4YALt27fXemrqQVWFugljqZPPe7IyC+Vao0aNFIch0kxwGEKv6abbJOQd/FH/gGG6RAZREsjJjm7pIif3CwIlEYgEE2CDBSZZN59wdMJ4+xAV52QsRu1jfxavFZiKWyi11xfB7D+MzQEvJgyjpFOA6aC+Yg9ieyoDymaDadQeGEfN4bXOuNyHLYg8QuCUzqYyBIcRxCYMIC5vSn73E29F5ih29rLvrxKFnkWCCeDWiXHRLfqN6xgI8U5x2owedQ7+5IRbo1LCZ53oumRRcpmCT7ATBxNQMv9bfOdxXyRNAi+A3V+e+lEtde7cWRvE40jgSJ6gdAkpokGDBuk+JvcLAjlBgAUumg4OPH9wve7QoYNiR0UvjhRBNzoSTACDLp4gboAQA8BBOLUTMcn26NFDc1mkhqKiIqfbQj2HJMAhJAgIAoKAQQCNAjEwHNjFWNSiscilY0okmIAXn1YiUd2AMmlbiS/AvTQoSrZPZ1B1SrmCgB0BdpRC0sRWJRQsAkGmKScgE8cGgl1xpMB+yfzlNs8F1dNIMAEvncPzxMnIS9oCDMPp6JS91Od0D2onIUEg1whgE0G9yOJHKFgE9u7dm7QCL4tON89DUzAR8kTkc0AwAdTExh7plB00aaPSvJgXTIDNFjDw2rdII9gMTo3/OnlqrJ4paeIgtwsCgoAgkDYC9qBHpwJ27NjhdNr1HEyDBScOJzCAoI3JecEEsBU42QsINvOaX8gVcY8XjjvuOI93ym2CgCAQFwQ2bdqUsqt4NZIXKxXhHIMHEYtap/3HUz2f6fW8YAKZds7P50iGxu4+QRABVuh5yYFECoS4egsFgW0hlrlu3TqdS4n9qIWCRcDLJJ9NC5j48RZC1d2mTZuMAmazqZ9nhQl4RJD8RBx+EnEGqLSIRGZ7uGrVqvlZfGTLIsaCnD8NGzb03Ebuh1HyscSdSeJ3ngsDoufBKqAbWcX7TTDwVq1a6XcZVY9TYkS/60xWnjCBZOgEeI04BqJliXr1mu0vwOaEVjSMD2mHvD/pEC7EDz/8sE4UaLLEpvO83CsI5BoBVDy4gxIfECUSJhDiaJDjmzw7TGQEi7jFPYTYpNCruv/++7UXhJONJ1VjRo0apXr37q0zxWaSZypV+XJdEAgCAd5Xdg0L2sCbaduFCWSKXBrPLVq0SPt0s+JHAiBqMI4EBkRae0kR7oQPYnPfvn01hk6bcTs9I+cEgVwjEKaRN5O+ChPIBDUPz5DFdNasWdrNi1VAELpFD82I1C2k+0afnQ2xeRBBNtgIUBEJ5RcC5Aljjwr04dWrV8+vxhdoa4UJBDCwRAGS74jValxX/XZYmbgJcPIjFTc5mxYuXChMwA5yHvzGCQJ3SQ4kQjYPsm4ElQddKLgm+soEiNzlSEVMBE77xaZ6zut1Jl907mESyeLIdMr2ikxSRDIXCtEXJBvUMXgxGcLGQToP+2Y+Tv0mp5PbNpDYSJAQkJr4n/TT1InLLOVbN7ynbCYPmECcCPyNCowASQ6njLpRx8QaXEUfbrzxRjVy5EjtHhlFwm+/0Gmf4rDo5HHRaSBAlBtiOomRcIGyZvFkJYhnCKmDu3fvrhPCBUGswtmRirz/bH0YJDHhM/HDAHD7IhlU0HUG2R+nstmXgX4yOTdr1kxvC2lSdOClg3rGOpZM5ExYRHdb1TXkXaIcKxMx9Q0fPlzr+YmOJEW02WgeRtCtWze9A5k1nwrvGAkDyRYbR8pnF1HSv6Aa5VthL+qw8+TE8X1J1WdfJQF8lzGCsHk8ufedxDws5KlyaaRqtNt1Jh8YECtIxM4gJ+QNGzaoK664Qo0fP9514xS3dubTeRg7K3EOqGLFionmk7vGvlJiMmcj+k8++USv7o0Xz7Zt2xw9ehgzPIVMfhSYTZUqVfQqF2mOScI+USBFsqeDUP4hQGxIXJl3VEfLVyZAJ03WPTcPEFaHfOhBECqCsWPHqp49e2q1lN+bjrDKxdjLxIVKa8GCBb7ouIPAwq8yzf4NfLiEsxsbB/jCCK1ub/zmwB7Cpj7WXE87d+4sNZnTRiZ/k/MJxs37g8QBUZdTgi6xs5QeXaQj3n8YJJIUUlqug5BKt1LORBEB35kAK0d2+bL6caMPNhuwMBnYdwHzAxiiSdmUxtSLisavICwkF/z7mfhY+YZtb/ADn0zLgJEysaOSQZQ3RIxDjRo1SuilsREY/O0ZX4nyZXKyk5VRwzwgvKmSEcw4rlt6OuGCxw0qNZIoMvGzSIGxmt9Oz8g5QcAg4DsTQIds3fWJD58J1DCBZLtxZTosqH+WLVumevXqpYtADUTm0WwIaYWUDmvXrtUrWCb+TAKcsmlDVJ5dsWKFjvI1K3AmYXZJ6tq1q2aMYISaCGkBhoEaCEnQKg0y2bPSdyIWBqxg2ZgeNZDVr5pxtafroM64joUTfthksJGYlT/pR8ARaQCblZAgkAwB3/c1RE+MARjjDweifdDiOytU6+qRCQkddKaEFwYJ41i90gc+pjhPOjByq2THit/s4YD6BqaLgRhDH3/By64OhJE62YLA2aiDli5dqp8z7wtlO40j5fit6sv0XYnCcytXriwlXeOoMH36dE/eelHog7Qhdwj4KgmwCsSlD90xHzOrcSYM+4RguksEKQwD1Q2RoJkS4q9Vd8yEzerSTujzWeFT38CBA+2XtS4bSQY1EobNoJlXqQZE9AR6/wkTJuhVPl5e6J6Z7GEETNRGAkvWfAKDRo8eXeIWJAPGv0mTJtqG0L59ey1hoNoz74XTHsTov932o07WhkK8xrtPQj4mfSsZF2ywhDlHlZAieYd4F3jPWFDwG+keCTCMzaKiik1Y7fKVCaAnZvXMh2u8PWAEVuMhAwxTYDLBk4fVH7rLTIgXhVwyTPqoIAzt3r1bfxhWQrUzYMAArdueMmVKqepY/bNaZeUvVBIBJnxUekw4jCsMlIOx5CP1YoDEIQA1Eu+Dkaowrm/ZskWXy8oeOwJeSOi4mbjcdlRC8otj3iWn9xLsIHvcjcm06iRJOZWTi3OkU2HyRxLk3ahdu7b+RlEH1qlTRw0dOlQNGTIkF02LVZ2+MgHETyYM68eLd4n5zUAzmcAEMBaXL19ee5CgPsiE0EFjY7A/j3+5Xf+8ceNGPcnzcdjvp+44GXszwRp1kD1pm5uE51Z+8+bNFR++FWveDaudCF12shTTLB7YX9feFrc6C/18quDMoDzxssWVcSReaP369booFhJ8szAA3gHcy2WnwGxR9va8bzYBViS8kHBzK1kZAuoYdgJDp8sqkvvxJsr0RUWUdJrQsQlYPw5UC6gyTH2pPhxv0MldVgQYUyQ6mDvSlBPGSIgwgWyId6hfv37ZFCHPRgAB7ExTp05NSJG8N7wzLCJh8HPmzHF0KY5A0wuuCb4xASZzyClADLUNHz8r9Fq1amlOz0Cjc2d1blcnoNoh8jcZ4fVgjUi23ou6gdWiIURlVA+mPtH1J0M2s2uMI3p9bEAwAaeUBow5LrYwg0wYPyo7bE5IFEL/IgDuECtrK/HNQU7jUOLGHP3ge7SqiUkfgQrIPhfkqHmxqjZrdRCTO6tsY/TjIzX6eV5MdPO4/q1atUrnkTcvppUJWBFnhYAuEF0mOWnshiHqwzD54IMPqkcffbTEblzUjYoIgzPGw0mTJumVBUZjKxOI1QhHrLMsElAjwSzScRdG0kCqHDZsWMR6lNvmoD5hUYO0a92Zzkhi6arsctEbtAg4ZGAPMMQijwWDLNiCH5GsmQAGPbg3E64T4Wlj3DetHjxO93IOG8HmzZv1S0GuGTsxEcAcOOyGQ55lZVRUVJR4LKorIXu/4vTbyb6Qqv+Mq1n1pro3TteZJOvXr68XYlYmYOJboooZWoHBgwerxYsXaxUiVK9ePf0X54ExY8bo/EJCwSOQNRPgxQtib1wYgFPEb7INGjKZXIKHWGoQBIJFABdd7DFGTYZUsGbNGjVv3rxgK86idLPDHtoCpDzmEBNRjicfNgGhcBDYr1h/e0c4Vf1XC6t8XgLcNdFd1q1bt1QTli9f7ni+1I0eTiBu8pGwwuBFI/pVSBDIVwRwqmCFb6RcYjDKli2rZs6cqfCCwz5HDi1UoVEl1FR896h9cQ0mtmjdunU6Sy3uwfa4h6j2oxDa5Wsqab8AwSjMij8f9Jl+9VnKEQS8IoDNDdVqVFU9Xvsh90UDgazVQUF0wxpbEET5UqYgIAgIAoLAvwj45iLqJ6B2g6+fZUtZgoAgIAgIAv8hEEkmIAMkCAgCgoAgEA4CwgTCwVlqEQQEAUEgkggIE4jksEijBAFBQBAIBwFhAuHgLLUIAoKAIBBJBIQJRHJYpFGCgCAgCISDgDCBcHCWWgQBQUAQiCQCwgQiOSzSKEFAEBAEwkFAmEA4OEstgoAgIAhEEoH/A+y5WMhnsPX1AAAAAElFTkSuQmCC"
+    }
+   },
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "## Idealization of the pull-out problem\n",
+    "The one-dimensional idealization of the pull-out looks as follows\n",
+    "\n",
+    "![image.png](attachment:image.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Model parameters"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "The parameters and variables involved in the are grouped according geometry, material behavior, measured response, internal state and subsidiary integration parameters that will be resolved during the model derivation. In this classification we also associate the mathematical symbols with the Python variable name introduced in the next cell."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Geometrical variables:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `A_f` | $A_\\mathrm{f}$ |  Cross section area modulus of the reinforcement |\n",
+    "| `A_m` | $A_\\mathrm{m}$ |  Cross section area modulus of the matrix |\n",
+    "| `p_b` | $p_\\mathrm{b}$ |  Perimeter of the reinforcement                  |\n",
+    "| `L_b` | $L_\\mathrm{b}$ |  Length of the bond zone of the pulled-out bar   |\n",
+    "| `x`   | $x$            |  Longitudinal coordinate |\n",
+    "\n",
+    "**Material parameters:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `E_f`     | $E_\\mathrm{f}$ |  Young's modulus of the reinforcement |\n",
+    "| `E_m`     | $E_\\mathrm{m}$ |  Young's modulus of the matrix        |\n",
+    "| `MATS`    | $\\tau(s)$      |  Multi-linear bond-slip model         |\n",
+    "\n",
+    "(`MATS` is used to denote \"Material Time Stepper\" -- equivalent to user-subroutine in Abaqus, or user material in ATENA) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Control parameter:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `P` | $P$ | Pullout force |\n",
+    "| `w` | $w$ | pullout control  displacement\n",
+    "\n",
+    "**State parameter:**\n",
+    "\n",
+    "There are no state parameters included. \n",
+    "\n",
+    " - What is the consequence? The material has no memory.\n",
+    " - What happens upon unloading?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Let's import the packages:**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "import sympy as sp # symbolic algebra package\n",
+    "import numpy as np # numerical package\n",
+    "import matplotlib.pyplot as plt # plotting package\n",
+    "sp.init_printing() # enable nice formating of the derived expressions\n",
+    "import ipywidgets as ipw"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Construct a tri-nonlinear bond-slip law  \n",
+    "To indicate how the below examples are implemented let us define a a piece-wise linear function with three branches constituting the bond-slip behavior. It can be used to exemplify how to implement material models in standard non-linear finite-element codes for structural analysis. In codes like `ANSYS, Abaques, ATENA, Diana`, the spatial integration of the stresses and stiffnesses is based on the so called **predictor**, **corrector** scheme."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "This simply means that the material model must provide two functions\n",
+    " 1. the stress evaluation for a given strain increment\n",
+    " 2. the derivative of stress with respect to the strain increment, i.e. the material stiffness.\n",
+    "In our case of a bond-slip law, we need to provide two functions\n",
+    "\\begin{align}\n",
+    " \\tau(s) \\\\\n",
+    " \\frac{\\mathrm{d} \\tau}{ \\mathrm{d} s}\n",
+    "\\end{align}."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "The tri-linear function can be readily constructed using the already known `Piecewise` function provied in `sympy`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAASIAAABYCAYAAABRcPqlAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAWRElEQVR4Ae2dX5LdNBbGb7p6AU1YADXJDiBZQZr3eQjJCgg7gErNQ3iaLrIDYAUEHuZtHiArSGAHMMUC6GQHzPdT66hlW/5v3/bte1SlK1l/jo4+W5+PJNv3zt9//70b4r7++uszlTtX+NOQ8l7GEXAEHIGhCJwMKSjyeaZy7+SfDinvZRwBR8ARGIPAaV9hkdC3KgMR/aT4Z33lPd8RcAQcgbEIdFpEIp4vJRAS+sVJaCy0Xt4RcASGItBqEYl4ziXkmyholCWkutT7S/69/KWOw7qSwns6/lH+Y/m6+1T5v9QT/dgRcARuPwKtRKSuMyXDvRRBQCiDnMpS70dIRR7CeS5vC9xfKf4IeZST/0LH7hyBg0ZA1zGzBjZzflPcb6YTzmaRiAQm1hDWC+7iKhj8S71vJANCeqUwWFMKz+Rz4rlbkqgy1KfuZ4oPJsCSLE9zBNZGQNfor2qDMfJW/lcdu2U/AfSTljpGGDD8WDLA6jEy+Z/qE9/lchSH6P4gPXdKx4KifKiT53ncEdgaArpegyWkEIufcUIIIR28U58ey0OspWWUxftXtIjUijU+ClQpDYH8ofCDGGc96LH8S/ncYSX9nCcQV53fYljP8mNHYIsIfCql7JrlxjpqLXWLHdIYhFwxJphihmWUfejZRkRmkfw+UgnIBWuK9SEIic6U5sxYRLYQrqg7R+BgEbg8WM0zxTVW2SFn7GLVfaLjsTOhTNr4aBsRjZd0VQNyYS0IVsW9UTzcMa4Or3+V3piaXed6zBFwBNZGQGPwTG2wmcSshc2j+2u32Sa/j4hGsaI68l1bQ3n6TXY418PjjsAUBHT9snTBAMay3+n4bgzTxoyOuSnbjIIBHnaSYznqsSFDPRa6uSk/lCedTZrem7TK2CMyqrL7UP5CaYPGq8pBQNSnPTaWFiOgqXqdSpHNOHWCEww4nCAA+lkeU9GdI7AZBHRNYuVDGKyB7hSmtSHFuYZJZ/csEYriXMsfy/M4DMsV9xXyoickQDmIiekR13/nDV31WAL5SqGtTwVCUZptMiladqpDOw/kIa7e8mUp5dQ5em2NiAAWX1/cLvfcUx2B7SEACfE6VCKhqCILwOxCsX4aCETHlDnXcSAEhWzydFo1ymf9ljomQ4dhcTmQIgc9jpv84m6oXiqHNfZE/gvFPzFFFiMiCR32Gr+1PDKU/Dsjq3hxR2CvCOgaxRqCKN7UG1Yej8KQ/FTeSATSSYSl/E4SorI5lcUqgnwgNnbvBjmVxZJDRywqpmfMPDotsEGCYyHJatVLeeCD9YaDkJJbkoicKBKsHjlSBBjguC5CYTDm7jI/6ItrMLMbzYzBpnE7juWxuAY5lYX8sEggg+cKWctisXryTASZsX6rXsqHgCFkFscr7qRy5AeOgCMwBwGzbip3+5pAK2PJXaRlZSqhBjLWDDd+LCHWm77UcVeblfp2oDq8aoWssFit8Hd5LKTRspCpepP1ciKys+KhIzATAQ1E7vgQS2OqpDybkrBYPMlJBiRhO3E7xUdNy7oalSysKggJ+axlYSENIiSVm61XHxF91KW85zkCR44AA7U+WB8p7YkGZ30KxnoMg93Wh4CuVJ/0NgeZVYhM8pjmfKfwfVulMemSgywIibWe14rX+1ESN1uvO6VPxapxW3j+t+L/KrXsaY7AsSIQByfEwjY4ZML0iO35sMaikLUi1myMHDjGwghvGShk4JJPSBlepSK/81EV5eeLvaoSHNOrxRabTeiYcKxeKg95YkWFKSFt9RERC1qzOykZnLTG94lQwJ0j4AgcFwIlIuqbms1GSI1iStrdAuZn+9KdI+AIOAIJgdMUWy+CWYoZBiG9UpieQqVJHQezVVH//hCAuHMEVkJAY41pJN9PGuMYl/m61pi6lbJxrPPwJlPSezqGE9ipe7kPImIu/FqeRiEk3uwNW5gKmfPelYeM3DkCjsCKCGi8sR6V1mVWbKooOo57+KDh+qZms3bN1DAEE75PpBAAIKD0MJPyebgpLOAp3Z0j4AgcKQJ9RPTnTFzYAmRnYSfCgYQgHSceAHHnCDgCCYG1p2bslg36PlHSyCOOgCNwdAisSkSygmZv/R/dGfEOOwJHiEDf1GxVSERUfJ+Fl+RYsGYhO60frdqwC3cEHIFNIbCqRdTXUxFPeBtX5Sa/9dvXxtD8SIIsntdfShwqYtVy0osXGztx2nof1gBoCC5rtOsyl0XgRi2iZbsyXZouZr6xzaPymyQheibdeE+JRyCKTnmb70NR8ZmJfbjMFO/V94TA0RORLmQe8jqUP8Xju8dsAFTc1vsg/VoJtNKR6QdFXKaL85r7RuDoiUiAM7DXHiiLnFcNaB59OI/Ek8vceh/u5couHe/AZemmXN5KCNzoGtFKfRorloFd/Ii40hngi76su4DMQEbSK39Tu7UPY8GQfpAGnyDlqfe6W8VyXKjNEi51/f14owg0iEgXBVMVc5cWuY1hHAA89t5wysNKCn8BoziD8rl8PvgbdfoSFpLJ95D58FbQpasPffq05PMIfviHT/SVL5J0S92pyUu0WcFlqiJe72YQaBCR1MjN6M0u3i4EF31tI1vyWl/Wndh+p8xIKhBg1wvAEGd+jrr6MEpNtc/Dpznx8FhFww3Us1GvlDCkTZXhsQ76yf93EaZv+yhuro6Lpa8eSj82CriB+ytLE9EuEVF4JQN5AniRt24n6raPalw8XMAl1/eybmPRuCCE7znlZN4nk4Gfk0xBZIM4W/ugtrHkBuup8gkLxc9VN9c96BJltuqpfIi03ocHSud1n9xhbVa+LKjjYpuq9L3yPqCyQvr7Tr7+Zw1tNxSqreakD2+zX8jziRs+sbrK9HW1DmxEcImI7Hu7s6YhG+lfnxoMNC7sitPFxEAKL+vGOGsm3JXtC3wQtOGkaL8bKHOncn3Cgm5ZoWIfyJes0XpmcvlcS508TCZhVvQ6qvTcogoZSuN7VEPwKrYpIen/rxSn/4kwQwNXP3Vcsqx1oupTsIQU8j9mtM+YgZAO3qk/XO8sR3yu+OoGyUmOmBpkUKIADpbfpJOeLM5yEcxyEWAuoLpb42XdpWSib/4BdS6SUh/qfRp7jHWy+gVYU6rYps5Tbplh4VW+aRVlVHCpyV3rEHINGKGjfNeUei0dFpWrPjyT5/qib6wV7uUaOK31AgbEYTLvRYGr5kb/QpgNS2a0lKsKXEB8pKl+sS/9si4DaAmZXCB1q6PUh4lwXFerYXKdsWKsq03lMe3jL2tK12YJlxU1TaIvU+yAI8KUV624rrDq+GZYyepcrYeJiNQwdxSU4aKuX+irKbABwRAE/WX9Jjj1f/GXdZeQKRmBfBXmpInOjT5c9WT6r9rY+we0utpUHn2EhHgCnk2E/Hy14TIdgCOoKQzBDeODWRAbAHs/5wZzIKKoEFMHWJA7yyin+hAYHQoXRKEyF1Dne1KFOntJkl78NxQmdd0q2kv71ojaZ2GZqQkLwQw01lXq63Rg3JiWqNze+jBQT6lZcXXirGT2HahNFoTBh/ftKI68RESKF3Gh4BouYkCbnK+djjlnhOHcKGQcQJw2hWaAh0dBFFKOet/KU+9Cnv48lCeda7EXL5VBPs+44dhNvFAa47fXqZzpR3tca4sR0FS97rx48QKlONF0fvQcNzasqmFhEzM13LlIMKcyJVPaskeHkgeDQxyLkVvsx+CTOVrpmRWkH2tiWKutH5bbeh9mQlCsPgSXYsUFEtU2mxg7henmoDiESTq7Z4lQFOdGb38ioWiox992YX2TxxiBuHr/OSfKSlNUHRuB9c5kVBYCfCDPtV6/0Sl5upuj16mapRNMy6aQEKC/yTuk+E6+QTxKg/CeyAN0vguipJt30okTi45bdfzxwPsu5Q6gD13qT83rxWWq4In1ICF20RIJRTlYcGzvY73a+KDMuY4DgSj8QL7vHDNWqWMyEI/sQIoc9LhgvfWUGZ0tfXr1UhnGF5YkjvI4duXeh/81UwQrJixWKT55fUR1IabnCtMdgpZiOoSHg4gGmYIqB3tbvVA5/hiYl3lijPNQWaX9QpmdytifSJayPe3AEdD5rT9ntHiP1EbFItIx1z+zC27qDWtDaVxzfEUhTCsVhpmIwt7r1ZRXWQYwlhOWMe1DbHXSU3K7izLQgbHF1GzymLdWhuilMpUn9TlGB4X3TxGkiFkDFOR4qmJPJQ4zs+IkD/aGIOzRgEp+24HKF03NKGfW1EwyVr9Q2/rl6bcWAbvLd1k1kFXuSjfTPL8S13XL9JwlCQyHcJPmWD6QW6VwywEylIVBECwUhRAbY3/yUgcyY/0uvZ6pTForU5sYQKR9fKJIcDpg0KMgCtXBuirU/wvRvO0v5iUcgVuJgFkmDPA2Z2Usv4u0rEwl1PjEcOBGysYSlhGL+F1tVurbgeqwA4msMENRyH+MYSGNloVM1evTC44p8kMioqicWSBD55uxWlCCuwFWSj53TfkecQRuOwLx2odYGjvPygvWi/KYjkxykgFJ2E7cTnGmZY22pgiXHKwqCAn5rGVhkAwiJJUbpJfKVV7pUTvB+FH6bxUiUgLsCpAQytgnl7GG6myvJHdbRkDnefLA2HK/9qQbA7U+WB8p7Ylwrc8qmIYw2PMbdal+l+qQWeV8SR7jrj7Au2R05kkesiAkllheK17vR6n+aL2iXHQPG1enBamvlAYJwVZj1ooeqnwFJB272z4CWLLuRiAQBxHE8kCep+XT1rzirIUyuJimcFPHgTHH4dELhQxc1nRIh7QIsUAaC9xKz93nOjhXOdZhzDG9spmMpc0Ooy59+lg7o/SSbPoLfukJ7rBrZtIIVQiQbMG5dzsxr9sXl2wYEDMuzEn7yrflRzmzFqvbZB9CuvrPSeRhNi70Sx0PvWAa3VPdQS+kLtlmQwlPOBoEdB0FElIYdgoVYnG9PykgkK/iw/hbdAxAu9tsUb/VdNKJw+q0B+NY+GOnclV3E22u2iEXfiMI6DqChLh+LyAgvOJYc5elqVm+zkPF2S4qQINYW1gyKMMK/aTtQtULJu5sxQ5TgN1RwPCVsKg8g6JjO9mjH1DtgKO1TbWHlUs+rxmEto/8/HTAeLNZOi9n0oBnl8Y4rqN8XWtM3XpZ2m7oIPlfNKZm1FSGPezHswZj1onqDftxCwLClbsBU6w+xzlIN4dY77UqcUKxCplnh/yYd1dpkFSafysenPJJhyxyh9WLZZW78NEyS+hp853yKx8t07E/o2XgeTgIgZJFNKiiF5qHgAYrd5lRW6+qA4nw4Bhrd8R5zAKLJFiWUeZOoZKaTumNRU2lda4RKb+zTbWSv65DWcjRnSMwCoGTUaW98E0jwCZCWLcTQWAFMUVde5ra2WbUw3DBwqtMFS3DQ0egCwG3iLrQ2V4eA53tYnvGixeOl5q/t/V2UJvSg2kfW9Rr69Omp6cfMAJORAd08jTI975eN6RNlYGswnMzxOUHv/d0QPC7qisi4FOzFcHdt2gRAFuiPOzGgjWEwPpRn0sL4X0FS/lqg50Q2mTRmk2OIW2WRHnaESPgu2ZHfPK9647AVhBwi2grZ8L1cASOGAEnoiM++d51R2ArCLQtVv8nKlh/0G0rersejoAjcIsQaCOif8Y+/lehb8feohPuXXEEtoiAT822eFZcJ0fgyBBwIjqyE+7ddQS2iEDb1GyLurpOjsCtQkDPXfHi8/fy9+T5kkLjXcCtdVg6oivPjvEA62IP2LpFtLUz7frcSgQ0aHn6vOKUZl9zvFQGD6EegoOIzuTzl51n691HRB/NbsEFOAJHjkC0Ihi8bW7W0+1tQtdIV194yZqvPyxqvfUR0Z9rdMZlOgJHhsCteu1FJPR+6fPXR0RLt+fyHIGjQkCDlnWgxrTsqEAY0NlFFqsFNi89PpdvMz9Z2Jr0WdgBffAijsCNIKBrmusdkrH/GuNPIdI/mSofS8i+Kc6/b9j/Bf6geOMPD5TG+otZT/wrDp95aYybWI4vHKR2lRamSgrPlc4nWVhzupBn2ocs0vlWFCF1aYs84pSlPqTJc4OMV/4zzT68hwVEOaZlpFGX/PTtKcWpi2zKGg88VXpaS1KcekW9Z7/0KuHG9nxAi0U3jmksOZXxhyITGh65DQjommbgMSg/VTyt8SjOOLA/NwhdVRqEwcAtrqvEOpRNn+hVGvLZnbqveC6fdD4VnH8iGEOgPuj5EgK7WujD+EOH8OlnyYMo3sknAyFLoz/pY3uKU7/+uWJksdAeiCjWRffKF0d1zHfpwz/2KOzU+1QCJ7soHNZO7K74Tr5CPDqm41hMOFgR97nSYU93jsAhIgAJ/aRrOJFE7AQ3Yf4pFeKpjIOeTj5Q+TSQqStPFayMfJucdtnqT+0q/lI+fPZFoY1F8rHCzFJKfw2mNP4LjXJP5e0zw6QxHiGXRESKo0dqS8e4+vEDpaE/H+3Lx7TpQp1OvecSEUAnsKUErJcrggI4QEp3A8UxHQPbh1z/cQQOCIF4nXNDfVNXW3lGIAzyNDbq5QrHbwtpJJ1ZetYuY6fuaOuhvA1+xmEiDNWtj8sflI8Vw7/q8B10poQQHtaVkRckiEXU6VQX0r1UIb5JBYlRB5IOMyOF8AJ4tep9oswlHeCXFH8mZeiUOaZvAICC7hyBQ0OAQYWrD+6r1KvfNa5ta5dpGWMqeTXJzR1yyR3kUHSqC2GhvxkID5UGcWAZ2TpVZZpWFHSdyFoQ1tVdecY30zJ0wvXqPcsiumqj8ksH0gJWlkNn2xg/K+ZRR+AgEDBL46xDWyvTKKIBygwhWAuNzO4Ek8kalFk+XTW6iJJ6r+QfS9aFwr9IkCON8TpEPuV3qg/RXCo0CwhcnsjzN9qQUa/eJyq0iIvKYOU0zFGlfSefg0JHMQcbZRdRxoU4AisiEK9brue0pmPNKc8sf7MGyMqvfSs6OszaZebRcFnbjbyWBHSERL6XN+IhjbUlpmh5H3TY6rD+7A8ddqqLVcU0D5msHTHOwaBV7z4iOlPloQ5ryJivtY6UQmnKpm291sKe4QhsF4FHUu1JvJ5zLZmWsHic32RZN3mQF6rFmc4MdbQLURjhhXo6pt18/DF2O8dv1JE6YZ0IQVkau3C5PLJzV5f9XOXraRzbwnen3m3b92zPwZRYMlgvvU7lWBVnBy2swpcqKA+ZsOySf4dcasrTHIHVEYjXM9OR97GxcH0r3QZf0kFpjA8cg5spCzMCbsoQCKSCjLfyyIO0WOIgnfIsgKclD8Vph3qX8ta2yaQOMnKZ5JnFo6xrp3QsH7NgQkYpjQylm75GquiLXhxjHcIbkA/uQ3mmkAkLxVv1biMiQHssDwCLWC6mhMIAqEI6BQBdrKsi7hwBR+C2I3DS0kGbG/L3NMZwLUX7kyUj3ClU8gICwiuOpQWju3MEHIEjR6BIRCIKzCmzVNIi1AyseH4AU5HQ/DO1Y2blDNFe1RFwBA4dgeLUjE6JJCAOngmCLP7hpCEU3DkCjsAqCBQtIloS8WAVsfDM1IztPXeOgCPgCKyCQKtFZK2JkGzhevAOmtX10BFwBByBIQi0WkRWWUTELhfbgazp2BakZXvoCDgCjsBsBHqJiBZEQEzReJ3/B47dOQKOgCOwJAL/BwUjPCWcMAnQAAAAAElFTkSuQmCC\n",
+      "text/latex": [
+       "$\\displaystyle \\begin{cases} \\frac{s \\tau_{1}}{s_{1}} & \\text{for}\\: s \\leq s_{1} \\\\\\tau_{1} + \\frac{\\left(s - s_{1}\\right) \\left(- \\tau_{1} + \\tau_{2}\\right)}{- s_{1} + s_{2}} & \\text{for}\\: s \\leq s_{2} \\\\\\tau_{2} & \\text{otherwise} \\end{cases}$"
+      ],
+      "text/plain": [
+       "⎧          s⋅τ₁                      \n",
+       "⎪          ────            for s ≤ s₁\n",
+       "⎪           s₁                       \n",
+       "⎪                                    \n",
+       "⎨     (s - s₁)⋅(-τ₁ + τ₂)            \n",
+       "⎪τ₁ + ───────────────────  for s ≤ s₂\n",
+       "⎪           -s₁ + s₂                 \n",
+       "⎪                                    \n",
+       "⎩           τ₂             otherwise "
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "s = sp.symbols('s')\n",
+    "tau_1, s_1, tau_2, s_2 = sp.symbols(r'tau_1, s_1, tau_2, s_2')\n",
+    "tau_s = sp.Piecewise(\n",
+    "    (tau_1 / s_1 * s, s <= s_1),\n",
+    "    (tau_1 + (tau_2-tau_1) / (s_2-s_1) * (s - s_1), s <= s_2),\n",
+    "    (tau_2, True)\n",
+    ")\n",
+    "tau_s"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "The derivative is obtained as"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAABYCAYAAABGdz1FAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQf0lEQVR4Ae2dTZIVNxLHHx19AMwcwBFwAwMnoL2fBYYTGG5gR8dsWLnD3MD2CcAsZueFzQnA3MCO8AHc7hsw/59aqVFVqb6r3qvXZEZU61vKSv2VSump1Lc+fvy4G0IvXry4rXxnct8Mye95XAJbkMDJECYE6mfK94+ep0Pyex6XwFYkcNrHiMD9g/IA8Dfyf9WX39NdAluSQKcGF6C/EbOA+zcH95a6zXkZKoFWDS5An6mS72NFgzS3ytxV/p/1fBHL5c6XSv8tj3C/S2BtCbQCXA1jmkAvBcyra2/v32+V4xH59fyg53lvCc/QKgHJj9mTxf0H+V05tEqqPaEIcAkT7Y02hi6une6/KnNbTw7oO6USykO9DJ6v5B86cEpV3eg4yeZ3vSCyf6/nd4V9BpzQ4202uAEVzTEIhHk++Rkgf9b5UTymCwC3wVPP4mFJQHIKmlsuW7LIHxegHz3pnR7rYcCWzNjF36+owdWKNT5VqNjsv9a51Ut9IE5uPcnDVQl8qaDJCkUxaA1UrWJbIfU5gxYTFlMrmLH74LAN4KZh/5jIBBrcFqgTq/jki13eBAkI2OzEYREwC91XeJBFsNS7twF8dv16kYaJMrtSr+AoJKC+vy1Gz/U81sNmw71DMd4H8Emj7ZAvdChBLtGu5IZpCDCYAXcK34luMFEUBjjMjDazApyfFR92WORSjgU85VigomQe6iGeRX2v0lEe6v9bD/QvPReKG4QD5TP+aO97hRcD9lS+TnmLfZGYpAN5eToAAfyqh6nLSRKQLLC7ASK/JRBOtrf8yI54dlMSUOVHhl/oYTsXoN+TywEjwEU+AI+ZgNx/1NNKKse66Vu5Zv8HoCrONh26ytLOAz0MiN78rRUVEubwtW+AIziel4X38KhuCQBujkskcMfsLNzYleDX5gBMhclzpnAAmtzP9HRqYaWz7qKM1aFgWBSGwUagh1Bai9NQvpSP2eOJnufy3zdGFgO4Kh12LNFarrkqf6sW5cEoAckG7Q0A39WFojS2conmIJyBEzCngaD0TnBT2Eh50eKAmgHDbs4gUl5mHnhkBsDMYYbunDEGVRwzqa5WvpSGfJhtIICeaEmAO0CTWBf3AByoC6h0ck6XeaDPL5D8qYeZ1cyZHWE9zBCDSHkZVGhQQHYul7UCi8zJMzZ1xvKtfCmdgc1AZ1FboZNKyANblYBp44p2qjFreSy6azBYnoorgKB9UVRobuz5bxTuarNS3gIqw1EN6gqLTLl/6EGjj66LOlVuMl8OcOuVDbvqYDQUgG2YDEqzqZlF3iRSHYDPdmZ28o8yT7oaVV3MAgCd+lkroNEHAV35ZvPVB/DPu5j3tNUkAADqIHikuCfq9Lopgr0LiMz+hqlSeeLbiEFSGSCqj+n+R7lXbYXGxKse6gLo2NJv5a+/R6m62XzdKn2ypsZtwfid/P8ptexxy0sgdjqAZbsNkGImsA0YbFi52OLYxAY6wmjEfB+cdIBBHo5akN65Fav0fJGmIoEwMxZbJFqlY9yxfCk/gxKtH0wj2uoDOAuG0S+pMvZjAUK+VLhTwDDi5BKYKwHhrAHwPhNldJtqhKnOtA4ahO0rJ5fAQSRwukKrTJtMEwD9tdz0axxtKRymVXn9PDgCuQGkPsWc4vz6GKL/83XDmLKVvBFT/KiFaXZXYbDHzs3LNQCODfhWD40AdE6QhS0sudh6d/QAcqcbIgH1K6Zosnv3/VoRX+CuQX0myqhdFDUEcNmY/0wuLwywsYsCKZ7N+LAgsjh3XQJrSqAP4H+NbJwtIHYAdgIy4AbMDmgE4nQQCSxtorB7wreZfL0BvZN/ETvrujr/6xIYJ4FFAS4wj95SHMeu53YJjJNAn4kyrrae3BoAnFvm0AwLTRagyT7vKerJLoFJElhUg/dxIEBjrvBMPl3W14anuwRyCexVg+cNu98lsA8JOMD3IWVv42AScIAfTPTe8D4kcCMBLlufX1GdXAK7BsAFDs4VGF2a58jcu0fGr7O7kgRKuyg5OOqfQS3OhgYU7fGRK+dU6rTKhZOHaLP+YkPC4tNvlx0iqI48JYCHn9opIwHv41dIDsns+8rlQ7TZ0Q3NJMneb5dtimV0TAng9t3f6h8pqBP3fuXykDaVhx+gmFm42Qk3fTUj/+qk9tPtsvLTPn3B2fqjpyjbc73I1/KvrkArAFeD2N/26+LFWGmqPGYG51H6iC+FOHXIMctA8p/J0zCJYp2tR2yVzoISEOT0QPEc/MqJK84q3xgqXGxThX5SGicid3KRCf+Aa5/XYqBkQuerfWRSOVOv8NGR3mMTt8sysiCAMHp0xTI2A1zXNPwvnVgH5c74kFusSfGNa8IUxxdFQ/gotqmG0s1I8jN40kAsMrFO5OU61e63VvUDRzPoI2ahw90uK0boSJhBszZAo/i1CW06RPsvyUexTb1/PpPA09Fr0CWF1leX5Mesh7LEGsC8O9jHEKcwGxlCe6Kphmg+ii1O4iMH1uL1lyrsalNpmD9cOjN6Niu11RendjDxAAYDb6cwphluGGByAQ4Dzu4wATh+u6yE0EanUWis2AHX3qcQY0x87H2Ud7WpNIAEuLk+gZOPxU+ijP8lXLXBQPLbZWvClFxQvknRKGwzb6+lgQYnM+bJJj8C1sug1eARbQbQsK/7dnhmzQSqnwFPu1xdJicM/tUBTkMdxG8FfrvstYDoC+QRSH1kJhFh23Bgl+Yq3IsiD9oqLAbkn/TRgsrZZUGh0Zv6R++5+m6K2gidJ9dMEwYbgw4l1BjcikP26aJMhcOMbOWH9IXyAgxMHz4xpH2ubxulKGIdgA+FhDKahCWVTTSEL+XBzk/anLAqOJN7L138EyPZypl02U/iyD2zJaC+qAOcxRpxxV92lR+Ap/sEFQbg7+WmTle4l5TfFJ3lTYPGIoa4qsc0qi0yZ53/7+NL6bx/ko3CNljvnxjDikQYjFhGAxrDaTsSME0KcNrI8lj6lXmGuur3ybe45m2oHtYt1BXWVXLXvl0W7BZ/CEsAjwzaiA8aJGfa/YeTgADC4hPANna4lIY5ADEtTyLVgTlhOzM7+dNsMKnCrJDqYhYA6NS/yu2yqr/yA57aCcpa8R8qAFcE9heC5HYgzJWjJPE+ubM38sJoap6cHingt8teH6OoAzrJSX2P9YFpFH6sSza45YjgANxc0pP/omdZNu+K76G/ZG7qXWLnYAc/0APAUTi8i98uK0FEwvwpLl4Vj+2Ncks7giWAM+XZT+a9/7woNjrbEXN07N96mEFm3UirugYBfMk2ZwvAK5glgQhuTK185+mqYqLEFvIzEGiS1UlMMepMU7FYeLp2o4doc+13+lTrj+AGQxfyczUJZgp2+OVpQSj5ahyVvw+iHUYfTL6WWzn7oXBj6lmAqdY21R42HOkHOS67wLvttQrJC3OKrckxhBmx1BEI2m7woPqfN0wUOFSC/Wgzak9c5Rg5mBp9FI7LWqZY7q3CMImJUrqRFvA3jhKoLPGAMSdmnvq2UTgua5l62vxH6ZXjsgqv/gOP8ebuchIoafDJtQsEjMjGVlZXhSoDOMONtNHPFiUa1BZWYZQrTVFNUrxtbaZExXXa4LGd1jZVUb64hj8GndMRSuBkAzyzoA22voCHecTOAc+a1Nlm5MPaZ0aqmEyW4O72JbCoBp/4ugCIT9ds330fN9IOalM8Yf6kU2wT38+LHVACBwe4QFTc01xTJkPaVB4GAeDe23HZNd/5U617CyZKp+wFsCk30uY7QZ31lxLVJqtyTley2GTBzZrA6QglsOguyhG+v7N8wyWweQ1+w+Xvr7eyBBzgKwvYqz+sBNoWmf+NbNV/LDkst966S2CkBNoA/u9Yzy9yl/o5dSRrnt0lMF8CbqLMl6HXsGEJOMA33DnO2nwJtJkoo2vWfjE/jECc6eYTJU4HztqPpjKn8RKQ3Dn09pOeu3o4ndk4rzO+1nVLiEd45fcHflxb7Me/RTS4GIIxfmKHOQ5JcXUAB55g2mlFCUjGplhSK4qzr7EuFXknJWzbA1Zu68kPus3muA/gn/e1IGFyhoSzJG8sr/ycviPMWQ6nlSQgORso2lo4mhlU78IBO74gW3S26QP4kP9Vz0m70k7LO8Vz+Qqj0mkdCdyoIwTCCopxUeoD+JDGzpSJqbBOxizpTgtLQGAY+nHJwi0fV3WzFpkDtfOx2ICb6bkoV2xru6uERXt+iyya275bZZa0e2xeyZ9MRXshxWHKmLZ/KD/rpcZtUzEf66fUruKCySAXRYXJSX9e6MH8oS7imcVxKUtbpOEnL+UZjMzyrNG4c8U+akEJkg/zhDjKkk59geSnLHWT93aI1LsrPtnq8lOuyPdpLDDV4QUg09bXoeu/ptWNqTzN/S0SiB1KZ3MVWbKh5WfRzslKLtIBxFzECRABRJfdivwZBPaFFIDhAp7KRZ4KE89ng/nnglw+Sl7iAOE9uZyuZMDBG4Dn1CX1c1fJa/n5bxjcjhYGWhYXwK20neL4HpOPTvJPF2nDBhbZyAfv7MZVvhJTOL2v/J18n4Sa1v3Dh7tOwyUAuCvgi0XRUHQ2HTqG+HcuadtNflsvoRVzol22FPNBxaBgUJn2Jz/pANp4ZGEY6peLogPYT/UEinHEJ60ck9jpSW3FuHr4geLhH6DnlM9SnXzPBbhp6bxx89+JHvbFnQZIQB0JeO/qeVfPrjQDZgJPPU9L+H1LfAJN1i7bvXWiXUwRI8BqvOxUlnBOrxRgUPAepDM4GAD2xRZxDC40eCcpH7MGGONcPjMYMwq3rjHYd3JNXq18zzJR1ABfu9BWEhaBSBZXH5WW7m5TAgEUiq6DJs85VoPnZdv81i5mQgJizIwZUh8kgK5IKo9mh3/MCID4UGHMk2d6HutB+2J+BZDK30fY2ud6GBSsS5jFMIeov5fvWQBXAxCjzBoKEfGPaXDSnYZJwJSBKYdSKcvTSFOn0/lDgZOXtzrRkvn0n+fJ/V0DkHzY4oD5Qq7N4MQByiH1K1vQ0OCKW85MYyOXJ3qw8Rl4vXyfKNNcwgbCVqoTIw87q08Y9XKfbFiyYupHXpVFFQJRGhoMomONFpFt1u5Tqzh3s7bz6C4/PAJOjgsYoIk7U10sSvN3ULCVmK3SjKKyWAyYO9SJbW7yauW7D+CMmE6KDTLK0kJEfsox0r7uLOyJJQmMuUWW2bGkXKxem0Ut3OXSLgC0gRTyKoxZYJqSOPq2ExcqA/Aog70cymZxbPHl9Slbhep1nyt/PY6wWQadfLd9k8l2DSPQbJ0KB/VAZOBc8TYdsSjhnjhe1GmkBCQ3ZM+0fBWLEmZatk6N0UGzM4NCgIY8XGiE5gOYgJU63uuhPgYDuxnEk58ZNu1uyE87lLvUY21bnZShjrxO0kxDK+n/pHg0tWnckFCKI0Hxxq8NVviFL8LMZuARUEPsymFKJVnI38p3G8AR2mM9CABTw8klcJQSOGnh2mwktnts5LRk9WiXwHYlUAR4VP9mJyUjf7uv4Zy5BMoSKAI8ZmVLBzp3LX4tCP97fBJoBXjU4vxUi4nCdo+TS+DoJFBcZOZvIaDbgnPQjkpe1v0ugUNLoFWDG2MCONs1bA89i2C3JHddApuXQC/AeQMBG1OFI5KvCDu5BI5FAv8DAlxWPt4n3BgAAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\begin{cases} \\frac{\\tau_{1}}{s_{1}} & \\text{for}\\: s \\leq s_{1} \\\\\\frac{- \\tau_{1} + \\tau_{2}}{- s_{1} + s_{2}} & \\text{for}\\: s \\leq s_{2} \\\\0 & \\text{otherwise} \\end{cases}$"
+      ],
+      "text/plain": [
+       "⎧   τ₁               \n",
+       "⎪   ──     for s ≤ s₁\n",
+       "⎪   s₁               \n",
+       "⎪                    \n",
+       "⎨-τ₁ + τ₂            \n",
+       "⎪────────  for s ≤ s₂\n",
+       "⎪-s₁ + s₂            \n",
+       "⎪                    \n",
+       "⎩   0      otherwise "
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "d_tau_s = sp.diff(tau_s, s)\n",
+    "d_tau_s"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "Vectorized evaluation of these two functions that can run over large arrays of data can obtained using the `sympy.lambdify` method."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "get_tau_s = sp.lambdify((s, tau_1, tau_2, s_1, s_2), tau_s, 'numpy')\n",
+    "get_d_tau_s = sp.lambdify((s, tau_1, tau_2, s_1, s_2), d_tau_s, 'numpy')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "This function provides a sufficient range of qualitative shapes to demonstrate and discuss the effect of softening and hardening behavior of the interface material. Let us setup a figure `fig` with two axes `ax1` and `ax2` to verify if the defined function is implemented correctly"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "hide_input": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style>\n",
+       ".output_wrapper button.btn.btn-default,\n",
+       ".output_wrapper .ui-dialog-titlebar {\n",
+       "  display: none;\n",
+       "}\n",
+       "</style>\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "%%html\n",
+    "<style>\n",
+    ".output_wrapper button.btn.btn-default,\n",
+    ".output_wrapper .ui-dialog-titlebar {\n",
+    "  display: none;\n",
+    "}\n",
+    "</style>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"799.75\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3), tight_layout=True)\n",
+    "s_range = np.linspace(0, 3, 1050)\n",
+    "for tau_2 in [0, 0.5, 1, 1.5, 2]:\n",
+    "    ax1.plot(s_range, get_tau_s(s_range, 1, tau_2, 0.1, 2));\n",
+    "    ax2.plot(s_range, get_d_tau_s(s_range, 1, tau_2, 0.1, 2));\n",
+    "ax1.set_xlabel(r'$s$ [mm]'); ax1.set_ylabel(r'$\\tau$ [MPa]');\n",
+    "ax2.set_xlabel(r'$s$ [mm]'); ax2.set_ylabel(r'$\\mathrm{d}\\tau/\\mathrm{d}s$ [MPa/mm]');"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Numerical model of pull-out provided in BMCS Tool Suite \n",
+    "The presented function is the simplest model provided in a general-purpose nonlinear finite-element simulator `BMCS-Tool-Suite`. This code can be installed in your anaconda environment by issuing the installation command\n",
+    "\n",
+    "`pip install --upgrade bmcs`\n",
+    "\n",
+    "After the installation it should be possible to import the `PullOutModel` by issuing"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "hide_input": false,
+    "slideshow": {
+     "slide_type": "skip"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "if False: # this is the developer shortcut, ignore this\n",
+    "    import sys\n",
+    "    import os.path as op \n",
+    "    hdir = op.expanduser('~')\n",
+    "    sys.path.insert(0,op.join(hdir,'git','bmcs'))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{k_max} & k_{\\max} = 5 & \\textrm{[-]} & \\textrm{maximum number of iterations}  \\\\\n",
+       "                \\textrm{tolerance} & \\epsilon = 0.0001 & \\textrm{[-]} & \\textrm{required accuracy}  \\\\\n",
+       "                \\textrm{n_e_x} & n_\\mathrm{E} = 60 & \\textrm{[-]} & \\textrm{number of finite elements along the embedded length}  \\\\\n",
+       "                \\textrm{mats_eval_type} & \\textrm{multilinear} & & \\textrm{material model type}  \\\\\n",
+       "                \\textrm{control_variable} & \\textrm{u} & & \\textrm{displacement or force control: [u|f]}  \\\\\n",
+       "                \\textrm{w_max} & w_{\\max} = 1.0 & \\textrm{[mm]} & \\textrm{maximum pullout slip}  \\\\\n",
+       "                \\textrm{fixed_boundary} & \\textrm{non-loaded end (matrix)} & & \\textrm{which side of the specimen is fixed [non-loaded end [matrix], loaded end [matrix], non-loaded end [reinf]]}  \\\\\n",
+       "                \\hline\n",
+       "        \\textbf{loading_scenario} & \\textrm{LoadingScenario} & & \\textrm{object defining the loading scenario} \\\\\n",
+       "            \\textbf{cross_section} & \\textrm{CrossSection} & & \\textrm{cross section parameters} \\\\\n",
+       "            \\textbf{geometry} & \\textrm{Geometry} & & \\textrm{geometry parameters of the boundary value problem} \\\\\n",
+       "            \\textbf{mats_eval} & \\textrm{MATSBondSlipMultiLinear} & & \\textrm{material model of the interface} \\\\\n",
+       "            \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f483ba68a10>"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from bmcs.pullout.pullout_sim import PullOutModel\n",
+    "po = PullOutModel(n_e_x=60, k_max=5, w_max=1.0)\n",
+    "po"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{A_m} & A_\\mathrm{m} = 1.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area}  \\\\\n",
+       "                \\textrm{A_f} & A_\\mathrm{f} = 1.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area}  \\\\\n",
+       "                \\textrm{P_b} & p_\\mathrm{b} = 1.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f4839cdd710>"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po.sim.tline.step = 0.05\n",
+    "po.fixed_boundary = 'loaded end (matrix)'\n",
+    "po.loading_scenario.trait_set(loading_type='cyclic',\n",
+    "                              amplitude_type='constant',\n",
+    "                              loading_range='non-symmetric'\n",
+    "                              )\n",
+    "po.loading_scenario.trait_set(number_of_cycles=1,\n",
+    "                              unloading_ratio=0.98,\n",
+    "                              )\n",
+    "po.geometry.trait_set(L_x=1.0)\n",
+    "po.cross_section.trait_set(A_f=1, P_b=1, A_m=1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## What is inside the bond-slip law?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{E_m} & E_\\mathrm{m} = 1.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the matrix}  \\\\\n",
+       "                \\textrm{E_f} & E_\\mathrm{f} = 1.0 & \\textrm{[MPa]} & \\textrm{E-modulus of the reinforcement}  \\\\\n",
+       "                \\textrm{s_data} & s =  & \\textrm{[mm]} & \\textrm{slip values}  \\\\\n",
+       "                \\textrm{tau_data} & \\tau =  & \\textrm{[MPa]} & \\textrm{shear stress values}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f4839c26470>"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po.mats_eval_type = 'multilinear'\n",
+    "po.mats_eval.trait_set(E_m=1, E_f=1)\n",
+    "po.mats_eval.bs_law.xdata = [0,1,2]\n",
+    "po.mats_eval.bs_law.ydata= [0,1,2]\n",
+    "po.mats_eval.bs_law.replot()\n",
+    "po.mats_eval"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Run the simulation\n",
+    "The model object `po` contains the non-linear threaded simulator `sim` as its attribute. To be sure that the state arrays and history variables are zeroed and reset run the methods `stop` first. After that, the simulation can be started."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "po.sim.stop()\n",
+    "po.sim.run()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "Construct a figure to show the currently defined material model `mats` in graphic form. The data points of the bond slip law can be dfined as follows."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {
+    "hide_input": false,
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"499.9666666666667\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ax = plt.subplots(1,1,figsize=(5,2))\n",
+    "po.mats_eval.bs_law.trait_set(\n",
+    "    xdata=[0, 1, 2.0, 4.0],\n",
+    "    ydata=[0., 1, 1, 0]\n",
+    ")\n",
+    "ax.clear()\n",
+    "po.mats_eval.bs_law.plot(ax, color='green')\n",
+    "\n",
+    "# po.mats_eval.bs_law.plot(ax)\n",
+    "# def update_bond_slip(s2, s3, tau2, tau3):\n",
+    "#     po.mats_eval.bs_law.trait_set(\n",
+    "#         xdata=[0, s2, s3],\n",
+    "#         ydata=[0., tau2, tau3]\n",
+    "#     )\n",
+    "#     ax.clear()\n",
+    "#     po.mats_eval.bs_law.plot(ax, color='green')\n",
+    "#     ax.set_ylabel(r'$\\tau$ [MPa]')\n",
+    "#     ax.set_xlabel(r'$s$ [mm]')\n",
+    "# bs_sliders = dict(s2=ipw.FloatSlider(value=1e-6, min=1e-6, max=1, step=0.3),\n",
+    "#              s3=ipw.FloatSlider(value=2.0, min=1, max=3, step=0.3),\n",
+    "#              tau2=ipw.FloatSlider(value=1, min=0, max=3, step=0.3),\n",
+    "#              tau3=ipw.FloatSlider(value=1, min=0, max=3, step=0.3))\n",
+    "# ipw.interact(update_bond_slip, **bs_sliders);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {
+    "hide_input": false
+   },
+   "outputs": [],
+   "source": [
+    "po.sim.stop()\n",
+    "po.sim.run()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {
+    "hide_input": true,
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"999.9333333333334\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "933e9f5e486e443e9482615f782d4540",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0), Output()), _dom_classes=('widget-inter…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "19e950e7c98446c7b4518671336b3ece",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=1.0, description='w_max', max=3.0, min=0.1), FloatSlider(value=1.0, de…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, ((ax_geo, ax_Pw),\n",
+    "      (ax_eps, ax_s))= plt.subplots(2,2,figsize=(10,6),\n",
+    "                                   tight_layout=True)\n",
+    "po.plot_geo(ax_geo, 0)\n",
+    "po.hist.plot_Pw(ax_Pw, 0)\n",
+    "po.plot_eps_p(ax_eps, 0)\n",
+    "po.plot_sig_p(ax_eps, 0)\n",
+    "po.plot_s(ax_s, 0)\n",
+    "po.mats_eval.bs_law.plot(ax_s)\n",
+    "ax_sf = ax_s.twinx()\n",
+    "po.plot_sf(ax_sf, 0)\n",
+    "\n",
+    "def update_state(t):\n",
+    "    ax_geo.clear()\n",
+    "    po.plot_geo(ax_geo,t)\n",
+    "    ax_Pw.clear()\n",
+    "    po.hist.plot_Pw(ax_Pw,t)\n",
+    "    ax_eps.clear()\n",
+    "    po.plot_eps_p(ax_eps, t)\n",
+    "    ax_s.clear()\n",
+    "    po.plot_s(ax_s, t)\n",
+    "    ax_sf.clear()\n",
+    "    po.plot_sf(ax_sf, t)\n",
+    "\n",
+    "def update_material(w_max, L_b, A_f, A_m, E_f, E_m):\n",
+    "    po.w_max = w_max\n",
+    "    po.geometry.L_x = L_b\n",
+    "    po.cross_section.A_f = A_f\n",
+    "    po.cross_section.A_m = A_m\n",
+    "    po.mats_eval.E_f = E_f\n",
+    "    po.mats_eval.E_m = E_m\n",
+    "    po.sim.stop()\n",
+    "    po.sim.run()\n",
+    "    update_state(t_slider.value)\n",
+    "\n",
+    "t_slider = ipw.FloatSlider(value=0, min=0, max=1, step=0.1)\n",
+    "ipw.interact(update_state, t = t_slider);\n",
+    "m_sliders = dict(w_max=ipw.FloatSlider(value=1, min=0.1, max=3, step=0.1),\n",
+    "                 L_b = ipw.FloatSlider(value=1, min=0.5, max=8, step=0.1),\n",
+    "                 A_m = ipw.FloatSlider(value=1, min=0.5, max=100, step=10),\n",
+    "                 A_f = ipw.FloatSlider(value=1, min=0.5, max=10, step=1),\n",
+    "                 E_m = ipw.FloatSlider(value=1, min=0.5, max=30000, step=3000),\n",
+    "                 E_f = ipw.FloatSlider(value=1, min=0.5, max=300000, step=30000))\n",
+    "ipw.interact(update_material, **m_sliders );"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Tasks::\n",
+    " - Identify a bond slip law that leads to a constant pullout force just avoiding a rupture of an CFRP sheet with a strength of 2 GPa. I should pull-out without breaking the sheet. In such a way we can achieve zip-fastener mechanism tuned for a particular force level. Where could such a mechanism could be applied?\n",
+    " - Reproduce the RILEM pull-out test by identifying the bond-slip that can reproduce the for 16mm diameter bar. \n",
+    " - Compare the obtained bond-slip with the suggestion provided by the Model Code 2010."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## RILEM test parameters\n",
+    "Let us consider the case of the RILEM pullout test with the boundary condition with the following material parameters \n",
+    "\\begin{align}\n",
+    "d &= 16\\;\\mathrm{mm} \\\\\n",
+    "E_\\mathrm{f} &= 210\\;\\mathrm{GPa} \\\\\n",
+    "E_\\mathrm{m} &= 28\\;\\mathrm{GPa} \\\\\n",
+    "A_\\mathrm{f} &= \\pi (\\frac{d}{2})^2 \\;\\mathrm{mm}^2 \\\\\n",
+    "A_\\mathrm{m} &= (10d)^2 \\;\\mathrm{mm}^2 \\\\\n",
+    "p &= \\pi d\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "d = 16.0 # [mm]\n",
+    "E_f = 210000 # [MPa]\n",
+    "E_m = 28000 # [MPa]"
+   ]
+  },
+  {
+   "attachments": {
+    "image.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAAEuCAYAAAD/bsuAAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tXQd4VNUSnhASEnqT3nsv0nsRpChFsaGCNEWfKKLPgsgDRERERUQUEQQUxIo0pUmV3hWk9xp6J4WEffOfmxuWzfbs3r27mfFbw9572v3P7uycc2b+CbOwkIdSv359mjFjBpUuXdrDmlJcEBAEBAHzIJDBm6FERERQWFiYN1WljiAgCAgCpkEgzBsL0DSjl4EIAoKAIJAGBLyyANPQn1QVBAQBQcA0CIgCNM1UyEAEAUHAaAREARqNuPQnCAgCpkFAFKBppkIGIggIAkYjIArQaMSlP0FAEDANAgFVgFevXqUrV66YBgwZiCAgCKQvBAKqAL/55htat25d+kJcnlYQEARMg0BAFeCvv/5Ku3btMg0YMhBBQBBIXwi4VICvvfYa9e/f3y4qS5YsoVGjRlFsbGzK/dOnT9PQoUPp6NGjduvoFw8ePEirV6+m5cuXOy0nNwUBQUAQ8BcCLhVgUlKSw76HDRtGb731Fg0cODClDBQgrh86dMhhPdxYuXKlur9q1Sqn5eSmICAICAL+QsClArTuWLfuzpw5k3K5Y8eONHbsWNq8ebNHY9QtPxyETJ061aO6UlgQEAQEAV8g4JEC7Nu3L928eZPy58+f0nfNmjXVEnnixIkejcfa8hsxYoRHdaWwICAICAK+QMAtBQil17t3b6patSp9+OGHqfp99913aevWrbR3795U9+xdWLx4MR07dizl1oEDB+j777+3V1SuCQKCgCDgNwQyutPyzJkz6caNG3T+/Hm7xbNnz04PPfQQtW7dmmbNmmW3jPXF4cOHpyozZMgQevLJJ1NdlwuCgCAgCPgLAbcswIcffpgyZcpEc+fOdTiOTp060fHjx2n79u0Oy+AG9vxw+msrsAJjYmJsL8t7QUAQEAT8hoBbFmCuXLno33//paeeeorq1KlDVapUSTWgypUr0+uvv04TJkxIdc/6AhQgrD0IToubNWtGzZs3V++t3Wms68i/BQFBQBDwBwJuWYDoGPT33bp1o9q1a9OFCxdSjQUM0dgfvH79eqp71heKFCmi/ATxgkD56e9LlizptK7ctI8ArOd7771XsXTXq1fP4xN5+63KVUEg9BFwaQE+8MADpPsC9uzZky5dukT4wuXJk4f69etHhQoVugulcePG0Zo1a6hChQqhj54JnvD27dvUoUMHatSokfp78uRJgmvSvn37KGvWrIaPEJ+PH374geAqVa1aNercuTNlyOD276zh45UO0zkCoMQPlDD0Fl4OB6r7kOj38OHDlixZslhu3boV8OdhLwAL7xUjyVbKi5WhYePav3+/hd2yVN+FCxe2bNq0ybC+paPgREB+moP8B7BEiRJqH7VGjRpqC+LIkSMEqxAC1yRY65Bly5b5/UmxtxsfH09///038ddB/cXeMATLc4Q/+kt0SxhbARjHo48+qixhV1sy/hqPtBscCIgCDI55cjrKefPm0fjx4+mLL74g7KO2b99eKUFrBWhEzHWDBg3UOKdNm6b+Ygls78DM6cN4eRN+pfBCwCEc9pTHjBlDp06dCsg2gJePINUCgIAowACA7ususccGK3Dbtm1UtGhRWrRoEfHyz9fduGzvP//5j/Ll/OSTTyhfvnyGUp3BEuatAOWpgJBNEUHAHQREAbqDkonLIPoGfpWw+KKjo5VDOiQQLkUZM2akGTNmqKUvlOFjjz1G7733nmHowWE/c+bMBEsU3gXffvutWopPmjSJBgwYoMYBSxg8lCKCABAQBRjknwOc9jZp0oTCw8OVAvzss8+UFQh3GLgurV+/Xj2hviw14nGx9MUyFA70gwcPNqJL1UfLli1pypQpah+0adOm9Mwzz9DGjRsN6186Cj4EXLrBBN8jpa8Rw03pjz/+oA0bNlBERIRShnBWhzJs0aKFOniAMvI34w4OP3Lnzq1cccqWLatcp+bPn6+c440QWMLnzp2jhg0bKrcbHIZAAmEJG/G80oePEAjk4TU/grjBBHICfNw33E66dOmiXGHw4oOZlB4w13wi7eMe7zTHYZp3ud+gP7aELUzkYeETcHUPgr+TJ0/22zik4eBCQJbAPvohkWZIRQn98ssvFBcXp17YB9QFugdLcn9Ju3bt6KWXXkpp/sEHH1Rx6bol/MorryhXHCPcgfz1jNKu7xEIS/5V9Khl8P8hPhhSvnx56tq1K3355ZfK+x8ncNh/6tWrl8s28YGEzxaWaCKCgCAgCBiNgNd7gLZKCyFQuHbx4kUVJge3DH/+4hsNlPQnCAgCoYeAVwqwbdu2KVYbljoffPBBymYzNsJxCgnHVHcU4IoVK1LaslWqoQe3PJEgIAiYCQGvlsDWD9CjRw91wgh3B53oFEtbhGC5UoAoZy3aHrWZ4Amdsay/uJfKZC1IeSOzh85DufMkjzxC1KoV0fPPu1NayqQzBLw6BLHO+BYZGakgA20+ZMeOHVS/fv2UPUJXeGIPEIpPlJ8rpLy/v+z8Dmq55n/UYrVxPnn6aPddP0VjDs6lhNuJ3j+AtzWZe5IWLiSaM8fbFqReiCPg1RIYWeDgcAtZsGCB+gs6fFh0+vI3xHELmse7nhhHnTa8T7G3E6hvyTaGj/vLIwvp04PzqEHuClQ/Vzlj++dUDUwzThwQbGy/0lvQIOC1AoQStBbsC4oVZ755//Pc3wQlmDcyGz1fwngF+FrpTnQx4RrVyBEgsltRfub7UJpoRF4pQBONX4biAoFxh35XJV4s2Z4yhoW7KO3720Wi89C0e/v7vmFpURDwAQJe7QH6oF9pwgAEfjm1lrD/B8XXr1R7A3oMQBeJvLfYpw/R9OkB6Fy6DHYExAIM9hl0MP5z8Veo7/YvWflloBm1BoTm6S94B995h+jECaL9+4meftoBGnLZXwjs2rVLZYtE7DcOP+H/C1agYJHgGWmwIGqScSZZbtPVxFhql78WPVa4kUlG5aNhID/1s88SzZ6tNXjffdppr4+al2bcQwBBD6AeQ6ZHXZDp8X//+597DZiglChAE0yCP4ZQICoXHb//a8qWMdofzTtsc+3FPXSWrc/OBes5LJOmGx99hHyqxFz3RAUKEBP9aT5+QWR1pOn5TVT566+/Vqw7C9nVCHRsa9euTTkIhUcIskciMMLMIgrQzLOTxrFBCRopC89uo3br3qXcEVn9owA3bybm19IeKW9eoqVLiSpVMvIRpS8rBMD7OGjQIEUye//99ysOxmATOQQJthkz6Xjh6PzC3xPU6Eplye+fUcLig+M9M72wx70oP/+g7HarYODBnh/+gn0nGFMRiAJ0e7qloDMEJhxZREdunlVF4PvnFylShPhbRsRJoNTyVyTgCICMd+XKlVSE5wZBEL1796ZEnMwHiYgCDJKJMvMwEy1JNGr/LDXEVvdUpyeKNPHfcE2+p+S/Bzdny0x8q5a+EydOVCfByLdifShizlHfGZXsAZp9htwcX1xSAn3MMbeP84lvmSwF3ayV9mLo97HNH9GpuIvUJl9N+p5dbtIk7FZBixcTgcQAFp+IaRHAHmCtWrWoePHidPasZv0jKVd2hCAGiYgCDJKJcjXMzZcP0ju7Z3DYWyyNrNTNVXGf3V/MoXbzYjZRvkw5aH79QWmLNmErgvr21cZ28iTR6NE+G6c05HsE5jDJxNPsewk2KDA//fXXX9S4cWPfd+THFkUB+hFcI5tunKciza33NrXIW9XIbqkQnzQ3ZKKDviXu9075sS8Z568kzuxEzFfPeQp5V4Zz+9LAgYY+h3TmOQIlS5akNWvW2K0YLLwAogDtTl9wXuxQoI7hA6+dswytaTLSu36ZM5KPEInJI7X6hQoR/forcUiBd+1JLUHAQwREAXoImBT3IQJMocZJfLUG4df3229Edev6sANpShBwjoAoQOf4yF1/IsDJtOj4caJuvGcJJ9qoKH/2Jm0bjQAORjg6hDPWE5+MGN27W/2JAnQLJinkFwTef98vzUqjJkBgzx5tewMW/vjxxDlSTTCo1EMQP8DUmATNlZ1Xj9L5hDuB6EYM/DaTLODlliAPOfb3cNAhkj4QADMPlF1VPozjxGgEogpYgCYVUYAmnRhXw4qJv0y1Vv6XOqwf4aqoz+5D8aHPhzeOcq9NzvdCZcsSvfyye+WlVPAiwNkh6YUXiMNBiJOEE4eDaG5Mf/5JVKGCaZ9LlsCmnRrnAxu46zuVaMhIwoOb7PS8/cph1wmO8GV46SWiSZO0hwBzi0hoI/Dee0QTtFhwtZcLJcgZI80uogDNPkN2xockQ1OPLaOcEVloTJVedkr451LWjFG0oemHxDn87Hdw+TLR/PlEH36okRXkyaORlEIZioQ2AtjqQHx2ixZEb75JVL16UDyvKMCgmKY7g4yJu0QDdn6jLnQp1IBKZM5n6BPUzcVLWnuyfTsxOyYRrD8IwthAV1XO4Exw9sYm1/yPwA8/+L8PP/Qge4B+ANWfTU46ynsqLBkojJ4rfr8/u/KsbeaEU8oP/nwgLT14UJSfZwhK6QAgIBZgAEBPS5eTj2kKsHuxFuTQGktLB97WxTIXjs3Y8BZ2Zm9RNHc9HGjkzElUu7a5x+nB6MQC9ACsQBc9H3+VTsVepNZMOWXk3p9bzw2lV6WKKD+3wAqyQkxyoEhoEbbIBKjMdxVkD+B4uKIAHWNjujt5M2WnbS0+ocUNh6oDEH/L5ssHqOSSvvTF4QVaVzdvEu3c6e9upX2zIIAtDZBSNG9O9Dvnl4b1h31dk0Z1eAObKEBvUAtgnUrZ2M/KAAHJabctnyqW51UXmKMPfl3g6IOD68aNBoxAuggoAjjVrViR6IMPiG6z4ztcW2bODDmiClGAAf2UmbfzSUeW0J7rJynDbQt1XcBhTUx9RAvYEsTpbrZs5h24jCztCGzdqik6hLFlzqy5tSBmu1WrtLdtshbkEMRkE2KW4Yw68BtVOHGNfv5iN1XZdUobFvaAOAm2HHKYZZb8NA4ovVu3tHSjw4drJ/t+6irQzYoCDPQMmKz/Wxxd8szWz6jrt6vp3Zm7KWMSOz2XKaOlo2T2X1F+JpswfwwHJ/lIPh8R4Y/WTdWmKEBTTUfgB/P7mS008+RftGHDaU35gZwUWdjg3yeSfhBIB8oPkyl7gCb/SLflROPVl7/C8be8JDFAlnCOD8jqT/n0b8sWYs5zUX4G4G5YFzjQAOs2JzIPJX8+b/ETC9Bb5AyqhwxvZfkVmcGY5chLJdur/vqVak8UFm7QU0o3hiAAjr5HH73jyoStjXQuogBN/gH4vNqzho6wQrYihJdIiCGwYgVRz553UhCAuGDKlBB7SM8fR5bAnmMWGjXA3PLWW9pJX3JO19B4MHmKuxDANgZcmMDSAoJS7OlOnkx0+DBxDst0D5ZYgOnxI4Dk440aEUEJQsDbls9YVpn0CHtAnvnMGc3qQ6jiV18R9eoVkGGYtVOxAM06M/4YF6jpP/9cIy2A8oMSXLcu5Lz7/QFd0LbZnvdyjx4lunBBlJ+dSRQL0A4oIXkJfH1NmhDp7MxPPEE0bRpdDrtFHOEpEswIIDQxMpKoRg37T1GsmP3rclXcYMz2GVh9YTediOVfa1/L22/fUX4PPaTiOvfEn6WCC3sqwoM4prsXCTIEQFYwdKjG0FKnDpHs5Xo8gWIBegyZ/yrMjdlID234gDoVrEez6jKtuC8lnF1asOndpQvRs3dOluFmA2aZePYzjApnK0LE3Agk8A/VsmVEONUFOQEONqKjiR5/nCiL/xmCzA2O56MTBeg5Zn6r8cXhhXSb823cm6OU7/tANIeNwN1lR8uxtpflvVkRACMPSGdXrbozQix7oQhNnHnNrHBiXKIATTI7C89spWXn/qHcEVnpGWZ7FhEEUiEweLCm/EqU0Ja93bppeXdTFZQL7iIgCtBdpPxYDjl+H9r4Ad1iDr6xVftQ0WiJu/Uj3MHb9MiRmuJr2zZ4n8FkI/faDeYwO1I+9thj1L9/f/VIX3Ie0KG8Idu3b1/65hsta5nJntWUw7mZFK+Sm8fxHlyj3BXp6aJMOe6NgMAShKVIRL5woTctSJ1gQECUn09nyWsLsFSpUnSAv3SfffaZGtClS5eUArzIvmZ5OB9sM84dULp0aZ8ONhQbW3ZuB4F6HvJ8iTbePSI2xe+7T6sLh1eEOYkEHwLwzQQFPZiYX345+MYfhCP2ygLcyoyxX3/99V0KLjY2Vj1+7ty51d9jOJ0ScYlA5vBMqgySjt+fz4Efl7NWYmLunOoiVwMS2DjwB5twZBGV/fM/tPYiB8WLmAsBKD+4J02YQPTdd+YaWwiPxisF+DsnSOnTp49DWIoWLUo5cuRweN/6xrBhwygsLEy90qO0yFuFdrccR0dbT6R8mdzDLAWnL74gKl+e6NAhoqZNiZC2ELGedgSW5gt/T6ADN07Tzqvy42QHosBcWrSIqGNHIv7OKNcWHHCI9WfcXFi8EB4d0wTfeS1btswyYsQI1dKFCxfUPV4eu2wZ5YYMGeKynBSwg8DPP1sYaO3Vs6edAndfarN2mIVmd7ZEzX3UcinhusvyUsDPCFy7ZrE88cSdOcRcvvCCnzuV5m0R8GoPkBtJ0dA4BGnBTBNbmHUCe4Dnzp3j3DkLZP/P379hSE7UhvcMka/ViTWOYXx7fAUtZaLTvJHZ6Oc6bxiSUtPfjx/07U+cSPTDD9p+LRzTcbjRoEHQP1awPUAYNGKgBo1lL1uASnGK+AeBQzdiqPSfL6jGlzQcSq04qbqICRDAHvm4cUQvvUQksboBmxCvLMCAjVY69hiBTw/NV3UeKdRQlJ/H6PmxApTe6NF+7ECadgcBrw5B3GlYythH4GLCNXUS+/mhP+wX8PHVLZcPqhZfK80b7SLGI6BzLhrfs/ToBgKiAN0AyZdFdl07oU5iV13413WziP0EeQE4/LyU10p3ojFVelH93HxaLGIcApg7OKbjdBdO6iKmRECWwAZPS91cZWl8tecIfx3KjRva/hD7WioXl/h4on79HBZ3duPhQvbdYpzVkXtpQAAUVXBP+vhjolOcUD7ZLzYNLUpVPyIgCtCP4NprOjJDRvpPyXb2bt259uKLiqxUCdg/5mv7eM4ryd2AIzBpkhbJgaTi+tzNnUsUFRXwockA7CMgS2D7uATm6u7dRC1basovJ/M0I84aVEci5kfggQe0iBwov1q1tGgOUX6mnzexAM00RUhOBHpzRAMgV4fE9JppdpyPBRx9sPT++19i3y4mmpOvlnPAzHFXZskc86CN4sQJ7S/8w0T5mWlmXI/l55+JkGhcko27xspEJWQJbMBkHGRn5NuW2657mjWL6F8+HUZ0hxcCSv3oeY9RizVMnCliLAKI5BDlZyzmPuhNFKAPQHTWBJIclWO/v0G7Zzgrpt2rV4+oUiXX5RyUKBGdj8pkLUht8tV0UEIupwmBffvSVF0qmw8BUYB+nBMmHaBuWz9l1ggLlc1SyI89aU1Xy1GCdrQYS2+VfdjvfaWbDm6z5Q56KhxsgHknmf8y3Tx/iD+oKEA/TvCPp9bQkZtnqXqOktSreDJhKXzDPvqICP5iIuZGAPRi1Tl2unt3IubApHLlJLm4uWfM49GJAvQYMvcqYM9v0tElqvCzxdmXD5YEqOrh5vL66+Lb5x6MgSkFZde5s+aDuXOnlmZgzBiitWuZuTZrYMYkvfoFATkF9gusGgUV4nCRc7dXgSZE8BPTc3UgP6/kdvAT8mlsFpY59mIRygaBaxJO5UXxpRFYc1YXBeiHeUnk7G6D93yvWu5f6kGK+vjTO8qvWjXmpWLLUKID/IC8D5rEvNSuTQSXpN9+0/7tg2alCXMiIEtgP8wL3F5OxF6gOok5afDoxUTDh2uOsSA2mDPHZ8rvw/2/UfmlL9KGS3I66dNpXLOG6CCz6EARioQ0AmIB+mF6y2ctTPPqDaIqk36h8G9GacsnWH0O8nV4M4TLt27Q8L0/0fWkOIrnlJoiPkQgA9sFkZE+bFCaMisCogD9NDMPFmDr4aFoorM3iRMo+1T5nY2/ohKpQ/n1LHafyics4iYC2OND3uopU4jatyfipFwi6RcBUYD+nPvKlf3iN9Zl0yiV2rJYdF76pqZ3NFn+fGzTtr19O1E7ZuJBKlGI5OAw7VQZNTBRgEYh7aN+fj65hhBdAhkgLM+uUU1IIPqD2bdBKYZ43atXNd8+8CvCMhdJ1wiIAgyy6f/8sEalnzcyOz1fgrPCiThHAE7ngwZpZcDQ8s47wtbiHLF0dVdOgX0x3dOnE/3vf75oyWUbp+IuqjLDKz5JUeGyUe8aMI680eXLL++cyLusKAXSAwJiAaZ1lmFRjBhBx/JloQ+6FKYvqvdNa4tO60+s8R8+9U2k+yW9pVOcUm6+8QZRq1ZE994r6SfdQyxdlRIF6O10I1LgBc63Cxp0ljFdq1GpLPm9bc3tei3yVnW7rBRkBJB+UvLuykfBAQKiAB0A4/Tytm1ETz9NtGsXUX5Wep9+SmMef5yIE72LGIwA0k5++60Wuvbyy8LEbDD8wd6dKEBPZxB+ZAiUP3ZMqzl1qsT1eoqhr8ov5iibTp3uMOsgDaVYe75CN120I4cgnk4zWJuh/NrwCezSpaL8PMUvreWvXdMcmR9mzsOOHTXlB3++X38V5ZdWbNNhfbEAPZ30J5/UeOEMihOdemyZYpTpXJAZStK7YN8VBxpIHAXJnJkIJ7vPPUeE8DURQcBDBEQBegiYKm6Q8kNXI/f/SodunKErD8ygzOGZvBlt6NSZPfuO8oNPH1KGwgoUEQS8REAUoBfAXUy4Rp8c5ITXLIPKPULRflRML3IS9UQmU033yg9gg0dxwADtBwh8irlzezF7UkUQuIOAKEAvPg3fHl9BI/b9omp2L9qCymX1X76Pl5lPUCQZAaQK/eQTgUMQ8BkCsnHiCErEjII1BCeNVgKq+2nHl6srXQo2oDJZ+Esp4jsE/vmHaNky37UnLQkCThAQC9AROIjwABU65Nw5orx51T9h/W2/cpgKZMpJ02sPoAxh8hviCEKPr3/wAdHAgVo1i8Xj6lJBEPAUAfn22kMMdEngi4MUKZKy1wTrT1/6vsmpJ6MyRNirLdc8RQDOzNjb00kLxJfPUwSlvJcIiAK0BQ5RHjU5sfiNG0S9exPhfbKLxazT6+nAjdNUMWsR6leKyTT9IDeT4v3QqkmbRIpQZMgrXFhF01D27EQvvki0aJFJByzDCjUEZAlsO6PPP68RZnbokBLnqxeZekzb++terAVlDAu3rZnm98gjUnFZP3qp5AP0fiUOtQtlOXSIqHTpO08IS3vBAqIqVUL5qeXZTIaAKEB9QnDoASdnONlWqMDsBpwH1kYqZitCcbcTqFuRZra3fPL+owOz6XpiHF1LjPVJe6ZuJJafETjj9dJLRE2bShyvqScsNAcnClCf1/XriX7/nagQu7Rs2mQ3D+zoys/47VMQx4mNUk6XC3FoV6gL0gXs3h3qTynPZ3IERAHqE9SEk5cjrAq8cQYnwUYe4ac3jyFkemuTryY1liRHJv/ayPBCBQE5BNFnMpozuGH/r25dw+f204Pz6NfT6yhreBTNrjeQMmbw/f6i4Q+FDkEaAc5EJCMSEQRMiIBYgAGelLikhBTXmkZ5KoaOa83160SPPqrtqWbLRlSjRoCRlu4FgdQIeKUAt7FryJw5c1RrnZiPrSa7jZw+fZq++uordW3o0KGpe5IrdhFYdWGXWvpCnit+v90yQXWR45bVVgJypFzk/CU45HjggaB6BBls+kHAKwV4iF0YdCXXkdk45s6dyw78A2kqk4Nu3bqVY9Yb0+rVq4MexZj4y7TwzFZ6pFBDypoxyi/P0zB3BXqicGMOqStIDxeq75c+DGv0yBGirl2JcKAEAUv2Dz8Y1r10JAh4ioBXCrBLly6qn4v8C18l2W+rVKlS6lrFihVpzZo1ShHeiwMFMwoC6r/7jmjiRKI6dRyOsNP692nj5f1k4f96FrvPYbm03IBinVn7tbQ0YY66339P1LMnEfLwlimjRXU88YQ5xiaj8DkCFg5V3LFjBztO/E5JSUnUunVrqlevns/78XeDXinAhQsXUrt27dTYYA1Cbt26pf5G82FCo0aN6MqVK+q96QTWCaIPsFQDu7ATmcGxvkhCDgtQxAUCiOqA8sNeHyI58uVzUUFuBzMCi3iOdR2A5/iA47ivY9832IQ1eZrkhRdeUPWHDRum/t68eRNR7JYDBw64bBflrF8uK6SlwO3bFsu4cRZL9uwWS0SExTJypMWSmJiWFqWuNQK3blksJ09aLElJgks6QKBv376WGjVqqO87Gz8WVohB+dReucFMmDAhRc9nyqSxFOuW4MqVK+mVV17hKCerMCcnvwpDhgwhRk69/CqwShBxoEd8vPUWUXiIuJv4FTg3GwdDM5zIhZreTcCCu9g999zD3k3bOS3OUsrIc3///cF5gOeVAtzNHvxhnAISr6pVtTy1T/B+D94/x/kZxtgJIwv4dGO/TxfkkBARBAQBrxHA9zxHjhzUgWPmH+FsfDFgUEqW999/X/0L5wADwPJjYvFKAY4dOzbFauvVq5d6vLZMUQ4r7pieLtJMDw3lxyfVal8KeSQaBm5PL+F2Ir28YxK9u/cnMyHk3lj++EPLwSFsLe7hFcKlihYtSufPn1eHILk5NUH9+vVp//79QffEXinAoHtK+KNlyUJ8PE0U4JNJcArOPPEX/R6zObhgBF0VGHLmzdNipYNr9DJaPyCApW/79u3ZmWIiFeB0Bdj+Cjbx6hQ42B6SsN+HMLecOZ0O/cjNs9R/x2R6nP3ynizCscF+kKjwSNrRgpVJsAhOd199lejHH4ly5SJ6+WVtLzVYxi/j9AsC3bt3V0vgPHny0IULF+gI+4A2QTw9y7Vk7wrsEZpd0ocCxCy4UH4o0nPbOFpxfieVypLfbwoQ/RSIYkUSDPL55xpTM/LxQn7iZTvy8oqkewRSLy9mAAAgAElEQVSwB9ijRw86ePAg89kWpvnz51P58uUVLmXLllXnAc888wz/Zpr7sx6Gs+tAzSZAwimwGULnTsVdpMKLelMGCqO9rcaryIx0LStWELVooUGABOS//oqN3nQNiTx86CGQfixAF3P3/YlVqkT7/LVE+QEIJILCoVG5cvByJfZud4Gg3BYE7iBwPdFCO68m0a7rt2nPNX5dT6IzcRY6cvM2NcgdzqxHvCdvAglNBQiPdA85/XAwAenqp70/E8y1Z0MAkwteIoKAmwhsv5JE6y8l0Y8nE3grKclhrRo5zON/G1oKEC44zE5DyC2L2FQE47shs09vUKkuC0XlVhagrwWECjj8aJ5X8l34Gltpz3gE4pIs9A9bd/9cvU07+O+/bOHtYOV3NuHObloU+5dUzJaBKmQNpwrJf4tEh1HZLBnonkzmcT4JLQUIkgP95Cl/frc/GTj8uM1ReeOrPUc5I3xrmp9PuEoPbfyAc4ncIkun39wekxQUBMyEQEy8hb49lkAzT95iY8G+dVeGlVvjPBmpa+EIuj9fcKiW4BilO5+EZcuIJk/WEusMH07UzP3ERa+X6Uxn469QxwKOmWHcGYJtmVhOcdlpw0il/F4oYcIDhF9+Ifr4Y23Y+DfSU4qkawRusxF3iPfptlxOok38wp7d36zwDtxg8pBkiYR1lzUDYSlbOVs4VeW/1bJn4BWUeSw7dycxNBQgwnDatCGCu8bo0UT//a+7z6/KvV3uEY/Ku1v49zNbaO3FPVQkKg99Ub2vu9X8Xw5MOEhCjsMNCOJ4k2O6/d+59GBGBE7F3aZvj9+iyUcT7lJ2+lizZgyjp4pEUI9ikVQ7ZzinhTXjU3g+ptBQgPBPg/IrUcJj5ec5ZO7XWHiWk6qz3HdPNfcrGVHys8/uKD/k40V4YN68RvQsfZgIgZu8lzfrVCItOneLZp+6RXxQe5fAoGueNyM9w0rvkUIRIaP0rB8yNBSgTr4wbJhpPl6bLx+gn06u4Q9NBnqxpMadGNDBwd2TmTuYtltzaAZrCwLV332XCH5+IiGPwCFexm7kZe3GS4lqibuNl7bXkn3cI9miw5K2Flt3sPDq8Ks6vzfC0kMM8VscrQVnapCrPsApFPSUG/6elNBQgHFxRE8/TcThOWYQEB60WzdcJTh/p9yjVCdX2cAP6y9282HWXiXZs2s5kDl1gUhoIwBfvK+OJNDCs4mplrZQbrDw2vCBRY+iERyhFJg9vM854ggs8sgrlJl/jAcPHpwyKWCWefvtt/02SaGhAJFg241QN7+haNNwAh96lMh8D/+alqYhFdxzxfH72LDExcEQ/nL+Fqrle3cfvz+DdOAUgYvshrKZLTs4HW9gf7z1F5PoMB9i6M4p+TOFpVh3dXJpll4+k7ikZOPMgWCXKceO96Oxj2+QhIYC9FD5wTXl80N/UL9S7SlvJFtDPpasGaNpU7OPfNxqGpurVIkI4W0iIYfA2ouJNOZgAs2NuUUJdw5r1XMWigqjXryHd989Gakpu6hkMOHhxX/50HLatGkqlhj5hmARgl3GCAkNBeghUr+cWkfD9v5IRaPzUu/irTysLcUFgcAhcPWWbuXd5nw1ibSGrbxjsZrWi+YVbEMOMyvN/ngNcmVUIWeV2Ak50oxazwpCnVtw8eLFNHv2bMUtuGTJEkWq4G9Jlwqwe9Hm7KFemD8sFfyNr/Ht79xJhD3R2rWN71t69BsC8MP7+EA8fX/iFl3lOFtrgQPyiyUjqXvRSMqN04wgFJ1bEPyCUIDgFhQF6KeJzByeKTTD0uAOpIf/MU0RJacq9ROM0qwBCMARecQ+KL4EumnjplKFrbvXymSixzjyInO4eRUflPc0jiL581yisk6n17rb6+CNN96g3r17qyXw3r17CSk3QLFlhASfBbh2LdG33xJ17iz0TPonBFTk2DiePl27gnzM4tpixPfH530cY4W3kpe2y88n0m6OsYWrSjyvcHFWUZddUxrlCVfhZpU4EqMsv8KZUs5MEsMO1crFhuOEt/HfrTx+PJO+NXnOKl5YHzeIVRs0aECXLl0iHIZwpkmOa+DABgMk+PgAW7YkWr5cI+bkfQIzCELdBjCT9OjKPQiJzg2VzUytjxzNfIKmlB5vJnOWGkOHIJ2lHYE9TBs18N9Ymh2T7JiX3GR29lXpVTySBpSKpGKZA+Om4urpYKVOYFcbuNtc5j1KW8kZEUadC0ZQM1be+Iv3ZpHgsgA5ITvBnw0nRAYelbuarH+uHKFvji2l1vlq0MMF67sq7rv78JdCBi5YAVCCiIEW9xbf4evHlmAV/clW3lJeFi7jF8gGIEyeonzzWvCpbSWOs23A7io5TKIwECcMZYdYYbjb4LWVX3C10QWuhHCghjM1HKu1eOEMFG3SJXrwKMCEBCbr66qFvH35Jbut1/Djx9Ozpuuyo/O5ttMoe4TBERU//ECEuN6RI0nlPRExPQJQGEP2xtEfbOlZe6wg1nZI+Uz0SulMhkRfeAIUTp5/4lC5cYcSFA2WrcCie4YdqREnbCauP9tx2nsfPAqQc4zS5cvEOfiIHnzQ3rM4vfbnub8pkTOytc1X02k5b28arvwwUCR6xw8DkhaJmBYBWE7L2NqbdjyBwyPv9tWrwPt4g8pF0SN8kBGgQAyHuMHCm8++hVja6haqXhhRJNiLfKFEpDqECVYJHgU4Y4aGMaxAsJd4IKC6emzTaA5Ni6OTbSZTvkw5PKht4qLI0CZiSgRgNS3mpS1OPvE6mEwnlZmXuI14idual7itOQStOtNIRZjATy+RtTT2IdeyX+Fqdqz+64JGhQVwsfNYivcf67NfYT1ekpfjdXqtHOYiNvX2Q+CZJvG2F1/UA8MzBDG/HsqQPTPp0q0bvAFbL3SUn4cYSHFjEDjPp5xD98TR+MNsmVtJEfZSBqPKm2UiAxZza4sA3AnhTL2CrdMp7KZyLPbuA4y87FPYNn9GPoDJRPfynl4oSvAoQLh2wDPcQwff47Hn1QFFdIZIPqV9Jrjm8MQJonHjtEOO997z2PINrocNztGe4iiMVWw1/Xn2FruuaFYT9vZgNcFlpdU9EWztwXIKbBianqRoezKN/T/snrKL3WwuWp3aFuGwOVh4DXlp24xfNfkQwwTGqV8/GMGjAL10eZkXs4njIxP5Q1jdZ9nelp3bwR+MMP85U+Ngg9OFKsJS8BxGsWsNDjk8jHn26ycnnTe+mckGRuyPV3tkNoEZ9BK7rPyvfBTHmQfW3QP7dlPZsoMTMpa39qQEL21x6tyXXW2wxE1vEjwK0MuZmRfDfnIsHQvU9bKFu6utv7SXc3yMVEr1TLuplD2jj09+Ecr25ptEf/yhdcyhQTRihCg/n8yed40kMZfiv2w5aQ7KSeygnET7WKFApcBtpQ5bd/exlXcfKxK4rmQPgNvKCbZE17Eluo65/rCUtaWxh0WKuODK2TXXFESRVON/m9W30LuZ8rxWSCvAy7zv9+e57QoV7P+lVa7zIQp4/q4yz9+Q8o/7XvkhL4eeihIHPXBv8ZDeP63PKPXvIID9vIVnEmnU/jjayctFa8nNSu4/HH+LGNxA8egl8MHFHzy+MQfjaRUfWtgKTpUf5xNancYerjYidyMQ0goQCguuL7VzlqEi0XnSPPcLz25lT/cbvLTJRm+V65Lm9lI18Prr2iVw9mHJbyJfx1RjDeELWDp+sE87yLBd3oJ44AlWKoFUfLD25rPiG8uKz3ZpCyXXPG845+8IXRp7X370QloBQuktbzRcKcC0SqIliT7cP1s18xpnkYvK4AffJ5AXcEwkU+Jy2q2KaR2y1HcTAVh6K/kkdA27f6zkgwzEr+oCPr0mfCCAfTKEclXkJa7RgvhauKX8leyeYp2WsgCTnIL2Cj55iBrBclwMPfdnyNwK8OJFzfHZ/edJVdJXycgH7/6e0wTuVwSqL5d6IFU/PrmAnB0ihiAAy24SZ0ADxZR1ykd0DgXSlx183yqbiVcOgYm/1V1URvP4sMy1FowPCvl1ZoIJlvy7hkyqF52YUwEigU9fTiP5889EYDoJcMayvddOsvX3m0qavqThUKYeyuQF1FIlkAjAMRkWHg4KYElt5FNcnV5KOSfnzqisqMZsTYFUNMrg2FWkpQSF/XpQ2fNBxib+y5eUYHz12bqDJYoXLD4z018Fcp497ducCpA5wejrr/mILaspTj8LRuWiUlkKcHrAFhzrWNJTjO8uf/asZtV6GM2Stk7Tb23w6I0+kEDWy0YdjY4FNCsKii8QAt+8zzi+dtyh+FShZhgP9hv7s0vN8yXNFx8cCLz80WdgZt7Vk8ybp5UAw4kJFAXifPe3+sLVqJ3f37iRCOQFUOzw5ztyhCjc+P0k54MM7rtgKoFlh4OBdWzlIaxLZ0/GshGJgBqzpdeILShYUkazJ4MBBhYecnhgbOD60w9Z4E5TN5nGHtZefR5noP0Ig/vT4N7ozakAFyzQRu8F6YF7j21wqYkTtSU9ukU+XkR3iPLzySRAgcDZdyxbUkgBaStYzmKvrBXH3gbKDeRTPq0FqzMOW2ylK58ov8rjA32UiPEImFMB/vuvhoQXbiDrL+2j1muHMMPGo7yJ/bDxiNr2yMmeVQJyXZCSskcP21Ly3kMEdBJOxNxiKWkrD3IM65t8iNGQLalAhXPNYgqp1/6NUxx61gL/PByy/JcVX6AOWWzxSq/vzacAQXePfTLE/Fau7PG8nI27zKkAc9O1W7Ee1/V5hT59iCZPJoqM1LgMQeTQtq3Puwn1BuH3Bpr1TckknPi3tTWFcC7EsGLpWDeZrSQQy0ecJoMvb+GZW7To7J1sbUWjw5QFWoHXubBIMUazZ2oL9c+U/nzmU4BTpmhjQxSEF8vEjgXrEl4BFxAZQPlBxo8ngjIUcRsBKD3QSMHCAy+drcCKeoqzoL3ChwRVOKQrkALFN2BHrHJOtpZyfIgxrCJz/TELjPjmBXKGHPdtPgWI5WKrVkTI/REgmXVqPU08upi+rzWAN8qzeTeKIkWIwGFYgVNvgslGxCECF3lvbM91jWIdhxiw8KwjHMA4fC8zk9TifTLslYGaCVZfoJRKXJJFOSYvZedpKGmMFwJ3FcTXtmGeP/jnYaxi6TmcdlPcMJ8C7NiRmQv4FUA5dDOG1lzYzXtHaXSCffLJAD6F+buGknuX6eFncq5bW4GFB2ff/kwR35aViRkEe3rj2CIFh571tiMU8aBymegdZoAJlFI2Az7BOAavPlkHDhzgDIzT1fN26tSJatasSadPn6avvvpKXRs6dGgwYpEy5v9yqFuPoi2V47OI7xCAG8gqVh6r2QUEoWe6lQelAZ837OPBaoILCHJLBFKZgMF5Azskg/UFrisb+GWd8awqMzlDQd/Pe3st+SWOyb77nBjZklcK8O+//05Rcv369aPPP/+cBvLp5tSpU2kr5+5o3LgxrV692sjn8HlfeTNld69N+PbFxcnJrhO0kAfjzV2pT0PhlvJaae00NFAuKtbDhoKbyPkvvuSX7cktykE5gwShbf4IQgyuSPAj4JUC7NLlDhNKoUKFFArlypVTf0uUKEFr1qyhgwcPUunSpYMfIWdPsJ2ptp59luj6dSLw9uXL56x0uru3mFmS39wVnyoKAye08M17mZe3gU4EhKXsenZMRl7bH1lR2/Go4VSnEYrktCk7TwfKpSbdfXgMemCvFKA+totMVpCUpG0Ax8Zqbie5OWtb0aJF6dixY24pwBUrVqRYk94unbdePkQ9t31GPYvdx2kFO/gfunPnNNJSHHLg+TmTvcpWl44F4dsHeYmLkLMlrPj+PKfli4WHXkG2lrBcrMbL2hZM1VQnZ2AUCcZ4lE+XsZxFpMhGPrzAAUZCspsednyr8dIWjCqw9uryC0vzQBCcpuOPkqGPniYFmCdPHjp06FCqAR8/fpyKFSuW6rq9CytXrqS/+dUZN0H+ifhfD+WXU2vZ/+ooJ2w+42FNL4t360a0aJFWGezNoK5PxwI3kP7sBmLLWgLlMYQPBh4rnDGgp6Hg94NvHvLaWlNd6VOGccIx+Xl+mWEpno4/SoY/ulcKEFbbJ598Qlu2bKGSJTVygJs3b6rB79ixg+rXr0+5cuVy62GGcE7bobNmabGxEyZ4xYC8hHP+QlrmrepWn7aFZp1ez8ugvfRexaf4i+oEkjOsYKH8QFYKBY+8vOkwNSWYVVbwYQaSfC88m6gsKkh23tODBQU3EDj+wl3FaDcQLGGxf7eGx7cuOe52B9PZ6wKXGt1pWo+5xTWR9ImAk2+7Y0Cg/OYxYQFeEAuvLVq3bk1hnChIX/46rm1zZ+1aTfnhsptWo3ULR26eZUfZA+qSNwpw4dlt1GXjKM7iFUbvV3KRchOn3LryA2MNkhWlI0HI2efsBgIOPetIDOzjDWZL7w0OPQvUyS2svE94XDjAsA2Nw5jA+AJmlc68nyciCOgIeKUA586dmwrBthziBUXoqWRAEiBdqlXztDpNP7FS1WnFWd/A2uKJ3Ga6/Jf+YXYWFtBcZQxzEVGAbG2Q/v3TlfLj1BMqyffrO2NT5cboWSySPqwcuAxoiBh5d288fc3kprYCyw5KDzG3srS1RUfeAwGvFKAvoauHE1RI8+ZE5ct71PR1Tk409uA8CmeH5ZEVXVhvdlqednw5swGfVndeLeOG8zVydnTm3UovFLWd7k196TxbVIvP3VLL3Hkc4gV/OAj2y9ox0QCckxGdYXRCoIM32IeQozDA/GJNX68OMHg8oLoqlzWDIkHA+OTU1tQfs4APLqAKEAvIFjoEw4drCcA9gGQt79udT7imrLfaucp4UFMr+ikrTwjqdy3cxHX9LOwY7QVDjeuGzVMCvnCjON/t50zSydFpKQK/t3HVolVcayAELjXD92lRGNb9Y3kL3zxEYQSCACEQWEifvkMgoApwED8H86QQPfQQb9I09vipikbnZbeKqu4pL6vWsVQfvGemOjmulr04zak7MO1hbx6P3jwVsGeGQP65p8FikkgXWQkipzfo4RF/26FABONsnOtKPMfagix0F1udy3npjZSPx3ipC0E6ykacnAj5d5vz36Y8LonCMM9nKdhGEsbKwPONOx895RE+NCmBtpD3o4znFpy3w8DBScklfVVmt8P3T2SvfmZoToeC0DREaPzCMa7WDsBY3o7mfT2jWVZAMjD1+C0ayeShusLTpwVLb/D7PVkkQhReOvys+uuRA2oBPsVPNZjdStoaqPwAJPL6vlCiLVVl68+u8ktkWqMRI4jy5yd6/nl/YR+Qds/G36bZpxNpdswtWsXxuLylpgROv534hLQD58moaiC91D9s6eGABQ7US/kvTnPhlFKK2V4qs0tNMz69hfWJ2NsI2dALyGcmlDsNqAJkBxhaz7lwjaYIzZoxmr6ozlnnHAkiOyZNIipQIGQU4K5rSeysHKfom3SJ5JODfrx/Bidgo629Fax8X2e2ZFuuP/jmjWLrE2FnIoKAvxGQT5ktwojvhfKDDBliezfo3mNZCd895KSwZjNBqNfYqlHqtNRIwWnyoN1xbIXevezGIcvHVaLVEldEEDAKAWM//UY9lbf9YOkLVxfIU7xAD9LlL/z2YOnNYiUzn5e6J+O0Qw0sJUHH/nBB/DVm6qGAQRyKw5Vt7FIDWntehROyoDViK6+9cqmJUO41ssL19oMr9bxFwJhvgbejM7oelN+ff2qpOD/6yOje09wflA1YTZAhzZrOCcvKr2pEK7ZiowRJvT/aH6csTz3BN/oGa/IrzALzZplIw30IjXp26Sd4EAg6BfjXhV3UccP7VIxdYNY3HUXR4ZncQjs+6RZlCneyvEJ0y6efaqwuv/+u7f+51XLgCyHPLE5yf+PDDV3xwaLqwj57Rll7OFwB0elOjrtdef6W+rfOslKTHZJBEQ+S0/uYDeaeTGlk2g485DKCEEEg6BRg8eh7+BQ3Oy/hyrmt/BDtUX35AFra6F3OHKbxFqaav8WLtUsIc2Myh2AQZCDrvS32roOEChwFARr5PsUjDYnLRUTGKI7BBemprvB07DrzifLIytGcDU0UXjB8ntLjGINOARbLfA/tb/WFR3OVcDuRKmcrSom3rUIbbFt45RUtedGjj9reMdX7/Rye8fMpOAfzi/fW4B9cKCpMOSs/xhYf6Nn9Jdhb3Mf9r2DHZJzi/svKbzcfavDKm6JZxzVlx+SKyQ7K4P8zOkzOX88t7YYuAv77tpgIs0qs/DY2G+18RPBFNNgf0fmA7r6LzGnDeT8NIWq60zJYWN7hZDxwEPZnsD/6w2EK9vNs3VYQmfEfdqVBOJooPE9mVMqaAYF0oQDNAHRaxgAn4We23uTQvTu8dtjjm1IzWtE8+Uug+GDpDdkTR2t5T89a0P8ThSNE8fkLfGnXEAT89+0xZPih2QmCE//m5SWUzswTTACQrHywlwYygq7sK1eB/Uj84TYCdmewJ4PdeSUvs28m6z2QnYLOHktsLTLDuBPl0JxleSozICAK0AyzYDUGOCv32nZTnejqgqXu+OrR1Iu59/wliBRBXPAfMYl0x84kKsKbe4N5mf0cR4uICAKhhkDQKMAlZ7dT+ayFCYcgaZYff9Ryerz3Hp8gaFnt0txmGhqIYUc55J79nhOEz+O9NvjNwVG4AUdpYJn5GL98vceXwCcaS9g5eQEclHmJvZn7521GzoUcxvG34fQAH6q0YWuvGMfkiggCoYpAUCjAE7EXqO26d5n6qDItb8S8gW7I27umc9rFB1OTHZw4QdSnj5bK8umnA64A398Xx6Fh8Xc9Ue9iEfR59cx+SxmJ3LdIYmTtoIwl7qt8kIF0lbnBhSUiCKQDBIJCAU46uoSXZRa2TpiQ1A1B+ZH7f2UXkQQaU6XXnRoIdYObC1ioQXRQt64brfmnCJacz2y924evGC83EZ/rj7wVONCYfjyBvmLlB2tTFxCKor/hFaKoQjax9vwz29KqWREwvQLcc+0EjTk4lwk6M/KXtKtLHBfzUnnAjm9U+YcK1LtTPiaGqFMnoo0biRMWEy1b5lUKTpcDcFIAoWq/cnzuTF7qLuNYXfjwFWEfvof4YAOkBO05WsKXOWjht7ecT3F/4z4X8KHGIeb/g4B4AEtc9NeWY3GFUNTJpMmtkEbA9ApwwM5v6Crn/micuyJTNhV3OhnXE+Ooy6ZRTOUeRw/kr62WzCny/vua8sMF7P15kYHOaedObiKN5BBO3DOJE/foGctwsDGkfCa/JeyB394L/8QRkgbpUoL38+CvB789UXpOJkxupRsETK0Ad107znlnt6nJ6FCgjstJmXz0T1Ywcarc8yXa3Cn/008axVUkn2QOHKgtg122lvYCq9mNZDpbe6CaP81EnxCwsXTlQ42Hednp6wOGdRwTPJND0tZwpAZ8B6H6SrLS68zsL53Y4mvG0Rki7iNw+PBhmjZtGvXt25cKFiyYUlG/jgtP8z5yGRcO9N988w3d5oyCfbD37KYsXLiQ1q9fn1LadgxuNuO0GHJ4Dxo0iO699163niM2NpZGjRql2ixSpIjD5zlw4ABNnz6d3nzzTYqOjqZLly7R2LFjU8ZSjI2PXr2stqacjtK/N039jZgfsznl6R8sUNslEhOOLFRlGuepSHeV/5pTX/LkcSJjogcfdNlOWgvAl+7Z7bHKiViXBzku9jWO0UWImK/lEPfX26Y/LHOHV4yiHuw6E6hcvb5+TiPbgwJq166d6rJjx44pCnASc0U+++yzdOHCBcqdO7ffhrRo0SLV9pgxY/zWx6ZNm2jAgAHUokVKajKnfUH56Ypv6NChqq698ZUtW1a18/LLLysFePnyZRo2bJhXaXOdDsgHN33/bfTBoPQmtl85rP7ZqUBdqpi1iNOWvz+xivZcP8nJcorSjHsH3F0Wbi/79vmV5OA0H6n+yNYXDhh+5+UnMqoVi+b9Pbb0uhWNVMmFfCnY34PLDCw+vT/sJ4LWviEnM2rHHHu5Anyae5yX399xjg+43Bgh+HHx9Afm4sWL9Nlnn6nhbd26lb766iul7OLi4pSSg/LTBZYMlN+hQ4e8Vn4TJkxgmsk7aRZmzpxJe/fuvQseWE6O5PTp02qMkHPnztFwzqbojSLGc3/77bdUokQJWrlyZYq1hnZhsR47dixlCDly5FDKDnWg+CDdu3fnrfTS9D5vLUHJ6YIfjj+ZUq5Vq1Yp18z8D1MrwHcrdqWHC9Xn6IeGLjEsxiwx+SJz0O/130ntK4hfaj8xvOB0FfG5w3mPD9nUINjfA+fd8Aq+j9HV+/v4YELK/p4/+3MJvJMC+EEA+7OR4okCxBc6T548fB62jPAlh5WC5SC+5J2R/9lGsPRt1KgRdeM8NmvWrFF3vbEEG3MGRCgYvLp2dXyw9ynTs+EF0XOXYSk8F9RtLFhKRvK2jj0rTBVwIlCazZs3p2bNmikLEIoLVufBgwdT2retHoODxGTJmVNLJIZlsbUCbNu2rVKU9iSMk6BBgLe7Vqe9dnx5zdR+D2WyFHRL+QEQLHvPtJtKJTLn8yU+TtuCH90Tm27QgJ1xKcoPjsS/1c3M7jdRPndePs+eyg+u1/rTDzf82Z/Th3fjJixRXztwu9Gt20WOHDmiFBq+jFAqUDK45kyg+LAviLKvMIOQbj06q2N9D/t6qA8lu3z5cofVoNTQB14YI6wyCJQeBHXffvvtFAXpsCEPbmBJrCtXD6q5LFqyZMmUZ9myZQu1bNnSoZJ02ZiPC5jaAvTxs/qkObiy/MCWzdRjCYreHbGyiNp4ipe5PYpG0L281I30YZDuDTb5lrDLDKJE4M4CCxAMLE04WgNRIvDhiwo3p+MyXHuuPZDdJ7j7o5EbN25wIFAh9WXUl5HZszseb65cudQw9L+wBKHMPJH6vBLB0vHKlStqyQ2ryt4S2NqqQh+6ok1ISFD1oCB169CT/p2VxXIa4mgJXAC+s8mCfT2I9ThTbmWWigYAABt9SURBVDr5ByxsKHT80HizdHfStFe3RAF6ABtIArpuib0rudBTTEwwqabvozag6JA4aCDH5+JQRZcBpSPpE04eJJJ2BCpXrkw///yzemFfD/tcNWrUcNgwLBnIrFmz1AkoNvnfeecdh+Xt3YAFiD3A7Zx8C4rQ3lIQCrl169a0evVq1cQzzzyT0g8UZq1atZRFBSvyaxzw+VgcndBiCQvLE2PG/iH6hgLEkh51HNWDQsVSG88L5Q0rGorQDBLQxOgAdAhnXtM3Vn0CCB+/0+zZRD17Ej3wQJqbtLb41jArCxRTjRwZ6Bm2+LDfVJ3zbCRvbaS5L9DZI5kRnJYXnr2lrEvYdsiJC2uva5FIXuKbetcizRgY3cBHnPtl586d6jDA2j1jwYIFtGHDhpThwHLT97d0a0y/5mrM27ZtUwoLX/pdu3bRT+yW5cyNBO1ZW2HW/VhfL1++vNM9RFfjWrFiBRUvXpyg2OG6Eh4erv7tSKzdWaz7xphq1qypXlBw1stoKO+oqKiUgxu07dPvu6PBunk9tBQgf7iIf9WVsH+Tcnj2UnBy+T4TgCLBkJ5OEkvPj3lvrzsrP1+tcqFQf+Dl7Y+nElIxsUDZfcksMG05YkNEEBAEfI+A6b5Z3xxdSkdjz9IwF2FvcUkJ9N6+n3kPrB7VzllGQyb5xIyyZiV68kmv0ILrxgxWSN/yHh/o3iGw+HqyP92jHLJWEEeuaRSwvyxmSw/W3lJ+neK0lZDsPBtIFQkWFoSqgXRURBAQBPyHgOkU4JhDc+ls/BWXCjAm/jJTtP9CZ7hs7RqsALEp+913GlLYzK1UyWPUcLjx4t+xKSe6UECDmAvPVxYfwuD67YijaaxcrQWW3tO8lziAXWeEicXjaZMKgoDXCJhOAf5c5w1OrXjU5QPB3WVg2S6K8krJiBHE3qtaXo9+/VzWty3wDvurIeeFLj2Zkmpijcw+iaI4xRYf/AQRFqfHAqOfvOyoPIx9Bf9T0r3UnrZjlveCgCCQNgRMpwArMOkpXu7I+5WYzw/CJ2oqpy+Wvr/9piU2d6MBhJB9xk7Mi5gUdA8vdyN5xdmNLTEoJOSyTcvhBoIfFvNBxrccCQHSUX0fsTq325HD4u7nZS7cRHy1l+jG40oRQUAQsEHAdArQqxmCZzy4/rp0IapSxa0mEKf76KabBOdiSF3235tTP4uiikqr4DT3oY03FSEBBLG4iMnty7Ty9ZkMQUQQEATMgUBoKEAEc7MfF73+uktUYfVhuYsYWj7U5TjjjMqZ+HF2M4lOg0NxErs5LD+fxMmEbjHx6C06x4oVscBwXenODtKVOF+uiCAgCJgLgdBQgE2aEOHlQt7jPb5hnOIRrieQqfdmpid5yesLAbszTo91eZqV3viq0T4lOPXFOKUNQUAQuINAaChAN2b0Gz55HZwcmA9/vl85XteTwHlHXcCi7MJLaX25i3I42Phf+ShHVeS6ICAImASBgCvACwnXqN8/X3M8awQNLf84B8/bD/PawSfDr+2cQr2Lt+LlamO34bvES9Ehe+NoEufCgDTlGFqEkqWFnupM/G2VtnI9E5DO4TSSOOAomTlMpa18kP33avBBh4ggIAiYH4GAK8BZp9fTqcO8f8fydJFmrDzsh+KA7XnJub+pWo4SHinAF/6JVTx9OOH9uU5mlVjcW9GpqIaxS4t+qgtX5T7FmZLID+wv3o5T6gkCgoB7CARcAZ4qokVbVMlWzCHpKWjuZ51ap57orkRHTp4RER0vsFPzHxxXC3+7qTWjVXSFN/IPn+Z+z0r0F34d5BNe8Iy24Dhg0D3h8KQqxwOLCAKCQPAhEFgFmJ1zdNTU+PvGVO1FmXgZbE8+OjCbjsddYBeSchwqVlEr8sEHWmIjByFvj/G+HNiZwZK8qXk2r9xbwMIyjJfP3/Oprs7HguiQ72plFncWexMl1wSBIEPAKwUIpox///2XvU5eT2HE/fLLL+nMmTMEyu569eo5pMa5C59nqxGFZ6CnijSlVvdUtwvd2ot7aDQrwOgMkTSl5ktambfeIs7OQtxRqpjfhex0jJNeKL9KnOd2KlNVeeLbl8gezMvYneVrzuA265Sm+PKwyfcgp4/EifH9TDUvIggIAqGBQJrYYEBnpVOCIzcAGGp1mnHQ64D/y5mEzXmInYQz0Ll239pNen7bcpvKL+3HfHinVVa4ufXeJjp1iqhwcqQI/P4+/DClCyi/dutuqPdQfn+3yOZxKFv3LTfpOyt3FjCxTOHlcwEfkCA4w0LuCQKCgPEI+IxuBLkBIDrLq3VSFWePhUOPnBFZ7BY5cCNGKT9Iw9wVtDLJJJHaxTu5QnBAMcQq/8RgdkPxJBsa4nUbrLqeovxAULC8URZa0ICjQ0T52Z0fuSgIBDsCXi2BXT100aJFVZIZl3LjFm2ePJvCmn+siuqJX/R6uVgxIsE55GleJitJTgjDDJbEqafUpa1MTd9t603ade22svyg/B5387QXYWs/8eHG+MPxdCxWc2dBLDDo7fNm8tnvgzZ2+b8gIAiYCgGfKUA9NwCWwMePH3dPAT71u8YIPXeoXVDuyZSD5tdnYlNdEO+L3L6Q0aMV+QHYVRB3e4xPfRHPu6ZpVrctP9Bfdd18M6V5LHdn8AGHUFLdgVz+JQiEMgJeKUBrunAkS8YL6flAdY1cpbjvav/PK1DffZfo6lWN6v7hh1XODCQgv8DOzu34kOKLatFuKb+dV5MU2/Msrg+pwlYjeP+e4LhdEUHA1wjM5hQN9tJs+rofT9uzzjHcv3//lGRPnrYT1OV52RkwYeAsnBPE/f6feMJiyZrVYjl92jLzRIIl45zLFpp92fLU5htutzHv9C1L9vlXVD38xXsRQcAWAU7fiIhxC+ewvesWJwJS1/HCv90RzovhTrFUZTh7WqrvB+cHSemfDyBT1fHkAr57fFjpdhUdEzy7s2dCuxi7LmwQpYzZE9zcHlgaCgbXJhenB9y1Zhu1PJhNLV0R3QHLDZafK4G1WHPFdeqw4QbFcmpL0NuvapyFQ9e8MoJddSf3gwwBeC0g8TkEiX2QJN1Wxo0bRzt27EjJcYvMcJ4Iko8jsZArWbt2LTVo0IDKlClzV9GOHTvSm2++qfpHfl3kJbYVJChylJjctiwsQE9WahMmTFBeH+gfyZTw3lZ69Oih8LMVjBX18PIUN9u2fPk+qBRgjCWC2sXkZ9op3gtkGctsK+9VjHLKuILkRlgmW/PzTagRTT9xWBzISUXSLwJQeHDlwgvJuvWMaMjeNmfOnFTAIH/v2LFjU11398KiRYs4c4OWTxd1kIZT71//i+sNGzakdevWqXSYukCpzeP976ZNtcNAjDFPnjzqNhSOXh8K2p18u5MmTaKJEyeqekhrad2P7ZigeCHISay33alTJ5qODIw2MnXqVFNlfbMdn+37oFGAIC5t8td1ddgBQfwtyAdcydu742kSOzVDcjILDHz63Knnql257wYCmzcTFSzIuT05dtD2lYVdn/QkVvaa+uEHx3Xvucd5XXvt2bkGKw+WH6ySwuxbaq0I7BSniIiIuxSWvTKurmGvDQpGT26uW0X6X0f1kUjdkWDvHfUnT56skqVDsboSWGFQsKiH/MNoA/WAie2YkOby4MGDrpp0eh/jslbyTgsbeNOU679XmfXl6yOLaVOz0VQhWxHl5gIrDqFp1ThH7nhe8jbm7GnOZNWFREV/9deFJLVURsKht8tmcmotOmtP7nmBwL59ROfP268Iv1FYWXaWcarC/PmO67I15LSu/R5TXc2ePbtaAiI38ODBgzmN9ANq+ejIgjp69KhSDhDeG1R5hN31d9U7x1IQVhKWj2fPniUkSrcWRzlzkVvXkRQoUEDdOnnypFoaI3H6mDFjHBV3eL1bt25UsWLFVBYccgC3adPGYT1XN5BPWccNy3vgBmta9xxxVd+f951rEX/27KRtECM05pjfItH30ICdcfTpQS1ZEULa4JhcyIVj8ueHE2jAjlhFfIpY4OWNs0qKSSd4++0W4rQdxGq77BPLKztLLJf1PCiARODLly9XiqNXr14uaybCDStZcubMqdy9PBUss6Fg4TUBxYCXO1IQljQLLEFdQetWGdrCkhYK3Jml6KofLKshjpRwVuTcSZbtnIenTp06rppMdb9ChQoKNwROiAJMBY92oVfx+5imvqWy+n45Fks5427Qg+Xy0PjqmZ1acL9w7O7AXXHKUszC23vPcgLzN9jqQ1SHiCBgi0C1atXU3t/LL7+sLEC4b0G5YG9wGh+4QfA3JiaGunbtql7Y5C/BTvg4QIC15alg3+w8W8UtkMbBgWBZjnJHjhxRLygkHH5gfHzCSqVKlVJL6FdffVW1gPfPPvusuofr3ozLwVDuupw/f/4U5YjnHzlyZEroK/qEAsUhzIYNG5RljHHjNX78eOUeB9Hd5BxZ2e6Mw6dl2DQNmPCDpDrmx2AO30iy5P3jiiXDrIuWvyrWx6LDcvvXXx2OM+m2xTJkd6wlA7u2wL0Fr99jxL3FIWByQyHgqRuIWWFjBW7WoZl+XKZaAkPTLTqXSK/w8hWHHg+d2EaNd2t7JGHXr9tV/Mc4lA3LZDg15+JDjld4rw9JiMTqswuXXLRCwNFSL9hASsvJdLA9q6/HayoFOIXzdvTmZS+kCpOMfnNz253ntTqq1y+uZUr6ZqtvpCQ5+oVdW1pyvl0RQUAQEATcQcA0m2PYt3uT9+8g5bJmoHVNslDOg3u1Z+ANZ954uet5QEnfe5t20JGZ9/twOCLKz50plzKCgCCgIxBwBXg6zkK9tt2k6suvcUxvHNNeXaCFnKA8K7is+MhcyWuvEWXQhnqRl8av8pK39JJrtOe6RoCwmJUfiAxEBAFBQBDwBIGAa42J0TWIjmmkBNkz/kZrLy6kM/EfUMlzmYhpp4ng/2TlK/Y0E5YuYOJTCPJx/FA7syfPK2UFAUFAEEhBIOAWYETuAiqN5NiqUczld1QN7GYS+/1xmI6Sl5gGn/2PtrAzNGJ5ofxwwDGsQhRN4pA2EUFAEBAEvEUg4Bbg2xcW0dDmDdT4R+0/o/4Wy8yhTuyPpV5Msw/S0rZMdY+T4XtZWW5o5j7nn7fASD1BQBAIfQQCbgFaQ3w+gbn+WApFseL773+JPTppM2VTVPVQfpBx1Tyjug/9KZQnFAQEAW8RMI0CXH1hNyXcTuRlcFHKHM77fyyTwgpRIyZAiIm3UL1c4fRvy6x8SBJwo9VbrKWeICAImAwB02iTFRd2Kmha5q2q/k7nXLx92ScQ3C+IAZ7PJ8NIcC4iCAgCgoCvEDCNBbj03D/qmZrkqUQf7o9XSY6ysSvMyEpRtL9VNlF+vppxaUcQEARSEDCNBVggU06VHjOJailCA8gHlaPo+RKuOf9kPgUBQUAQ8AYB0yjAGbUGsOV3lp7eHE9RHNnxcZVoerZ4hDfPJHUEAUFAEHALAdMsgRMsGWjsocxqz2/wllnK8gsHi7CIICAICAJ+QsA0ChDszTjtjeJwuD6fvO6nx5VmBQFBQBC4g4ApFOC7e+PoowPxlCcxllYOeoDy5skucyQICAKCgN8RCLgC3MeEBkP2aJT3ff5ZRHX3M8tuMjW3359eOhAEBIF0jUDAD0Hm3dDyDID8pfsZzRWGajBBgoggECIIrFixQuXR1dNumuWxkKNYJ1Pt27cvJ/DT8o6YZXxGjCPgFuD16q3VczbNG0OVDvytPbMoQCPmXvpwggDYovU0jshzoQuSD+nX3Uk/iXpQgMjt4YkgWZOn/XjSPsr+9ttv1KxZM5W3wx3lZ51HWc8VbNun9bhtE6QDO+RUMZMEVgF2eIFzv5ZiPI7Qxosj6dr+XRo2ogDN9BlJN2NZuHAhwSqCIAE5J7RQr7/++ktd27VrF7377rt04cIFdf3XX39VSYg8kc3IleyGrFy5UvVx8+ZNh/1AsaZFkJoSKSrdFViLhw4dUuNq3bo19evX766qSCmqjxsYIfUnBAmU0M+JEyfc7cq4coHMWqInMPrt1CnLtVuxFkvWrBZLfU6CJCIIGIQA5/cFy4Z6NWrUyG6vL774orrOX2pVDnVYEah/45orQfIl1IF8+eWXdxWvz593vX/9r3UB2344M1xK+Q4dOrjq2uF96+dGv9ZiOx6MEaLjgH/r43LYgU15vRwnY3dWxfB7Ad8DrMD09531vYcpU4hq12b8RQQB/yOAJR3SYiIN5f79+6ldu3YqraNtjmA9+TlSOSIhOupAUM/T9I6wkrC0ZeVFc+fOpXXr1tl9UCwl7fWD8bGWUHXQDpaVffr0sduGs4tIy4l0oHghOTyWwcgpfPv27ZT2bet7kgQe40feZbNLYBVgYgK1zXCZMcqm4fTII2bHS8bnAQLHY8/Td8dXKJYfW8nAX96meSpT87xVbG+p95svH6AV53fSI4UaMgFuPrtlZp/eQNuvHE65h7YctWevASxHR4wYoRTADz/8oJa2w4YNSymK5S1bPfTxxx+ra1B4bMGp/Lvly5cntmZo3LhxVLNmTXvN270GJQMF9v7776ucurNmzUq1NIQygoJCOSQQf/zxxwl7bg8//DDlypVL1cNe2p9//qnG4o0CtDe4bt26qdy+ttnyihQpovrIkSOHvWqprm3btk1hg/zAZpfAKsBH8lEOnkBqMdTsOMn4vEDgx5OradDuGQ5rZs0YRdcemGn3frctn3LOl5NKeb5dzv4P47PbxzNP5LW76nuiALNly6YSdcNaqVWrVsr+HxqE8sM1KD0oSMiqVavo/vvvT1E4N27coDlz5nikAPWT4AIFCqj+XCmv6OhowmEL9tZgbcbHx9Pw4cPVNXcVkl2A7VyE8oPYKkC9aN68eVNqYf+QtwzstAIS95dUYvRgkMAqwGBASMboNQKPF26sFJg9CzCMwqhB7vIO255S8yVadn4H531p7LDM2Kp9aN/1Uyn3PVF+qFSvXj1l+WGp+cYbb6jlLywzSNeuXdXy8LvvvlPvYdHgYASWl76ZDwts6tSp6r67cvz4caVgcDBgu9TW24BihFtKpUqV1KVFixaljAOK8/vvv1fKD23o43O3/7SUK1euHPXv319ZoXrfsEbz5MnD3MVb1HWcKsMi1pUo/lq722zfvl3dM4vbTRh2HdMCSlrqYg8DJrwOVlrakrqCgDcI4DNobeV504aRdQYPHqwsQBHfICAWoG9wlFaCFIEA/v57hZgoP69gc1gpsH6AdQrQxEr7afPSH4n27HE4SLkhCAgCgoA/EAisAmxXkk5nuklH/vcqUcWKRImpTwv98dDSpiAgCAgCQCCwCrACZ39jabjnIufCZI904f+TT6UgIAgYiEBgFWDmCMp7NZ4KXWQKfPZxYs9JAx9duhIEBIH0jkBgFSCjX/R8rDYH7GYgIggIAoKAkQgEXAEWO8cKEOQHQoBg5LxLX4KAIMAIBFwB5rvCZKjNm8tkCAKCgCBgOAIBVYDR8UnUAAcgHOsoIggIAoKA0Qj4TAFakyUePHjQred48fF59HhSSaL69d0qL4UEAUEgdBD49NNPUxFBGP10PlOAX3/9tWLTQGxgmTJlCArRlXzEBT6U5a8rmEx3H6GLCCETCT4EMG9mCT0FoUPRokUV6cSrr75K8+bNo6tXrxoKqs8UYNasWRVbBQKiwRKxdOlSQx9EOhMEBIHgRADMO2PGjFGUXyB5eO6554yzDH1Fwcq8ailNPfroo5ZffvnFZdNgyuUpk5dgIJ8B+Qyk+gxUqVLF8uOPP7rUI2kp4DM2GNAIvf322+onCGY2mHNB6igiCAgCgoA9BBxto4BzEaw3jRs7pkKz154313zGBnPmzBnC4QcYb7EEFuXnzXRIHUEg/SLQuXNneu211wxRfDrKPrMAQZD41VdfqXbNssmafj9K8uSCgPkRAHlqRSZBac4HoXiB7NVo8ZkCNHrg0p8gIAgIAmlFwGenwGkdiNQXBAQBQcBoBEQBGo249CcICAKmQUAUoGmmQgYiCAgCRiMgCtBoxKU/QUAQMA0CogBNMxUyEEFAEDAaAZ/5AXo68JEjR6okz0hM3bt3b5WRXsQ8CHz22WcqrhuSKVMmGjhwYMrg4PKE/LDIW4v569ChA5UvX17lhNVz3SKPrp4E3DxPlb5GgjzHGzZsoIIFC6pE79OmTVOhqrogJzJyDCPxO0LR0qWkJYwkLXU56bSqzgmVLew4nZampK4fEHjnnXdSWmVldlcPkydPtnCkj7p26NAhFcKEvzKPfpgIL5tkYhI1L7q88sorlgULFqRqjUlMLLiXXiUgFiAiRvRfIvw6rVmzJl3++Jj5oa1ZOfLnz6+ifGApQI4dO6asPYjuvMpfIGrVqpVygmdlSPylEqs+gBOsR2TpQ0BY2alTpwIyori4OJo7dy7t2rVLfV6wOoiOjk41FlioiAaZPn06Xbt2jRo2bEj16tWjOXPm0L59+6h9+/Z3faamTJlCbdu2JY4Xplu3blGbNm3UZ/Tnn3+mkydP0hNPPJHymU3VWfKFgO8BAhyEzomYFwHMka78bEcZG6vldClVqpRSfnhB+bGFb1tU3gcQgUuXLlGhQoUCMoLx48erKLG33nqLmjRpQh9++KHdcYwaNYqKFy9ODz30kBorfmSh1PDZwjYLaLN27tyZUhefMyjIbt26KRqt6tWrExOxqHq4Dlo+KEJnEhAFiC8TJgSi/3U2SLlnPALZs2dP6RTWhLUU4xSmsAIhtveMH6n0aA8B0EpZr6z+/fdfe8UMubZ3716l/KKioqhy5crELFB2+71+/Tpt3LhRKb/u3burfeWqVatS7dq1lXLDSsRaASYlJdH27dspT5489Prrr6s2GzRooPae6yeTLB84cMBuX/rFgCyB0TlMYFgL2FD/7rvvnA5SbhqPAD6smB+IfkDVo0cPmjp1KrVr10790mLJi0MQ3selzZs30/z581V5mVPj58u2R3Bzjh49mvr27asUD36oYBmBhBRWFZaOkyZNUktTzOHMmTOpa9euts345D2WshgHlFqXLl2UUnMk5cqVS7mVN29epdx0gUVnvYzHM+IF0X+wCxcurN6DnxQSExOj/jqU9Lr5Kc8tCAgCxiHAisvy3nvvWdijwMJ7d3Y7Znbou67jUA2cobrYvrctz0rOggM6XWzf2+s0IEtgh9pYbggCgkBIIoDDzkGDBqm9wD59+pjmGUUBmmYqZCCCQGgigKX45cuX1cNhqwT5P8wi4bzPM9Qsg5FxCAKCQOghgMOLGTNm0JIlS6hGjRrKS8AeG3R4eLg6vdUF77H/jJNhCN7XrVtXJVLS31uXz5gxo9rn1F2z8P6+++6jfPnyOQRV+AAdQiM3BAFBINQRkCVwqM+wPJ8gIAg4REAUoENo5IYgIAiEOgKiAEN9huX5BAFBwCEC/wfONhHo1qveKQAAAABJRU5ErkJggg=="
+    }
+   },
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "![image.png](attachment:image.png)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "po_rilem = PullOutModel(mats_eval_type='multilinear',\n",
+    "                        n_e_x=50, k_max=200, w_max=0.1)\n",
+    "po_rilem.sim.tline.step = 0.005\n",
+    "po_rilem.mats_eval.s_tau_table = [[0, 0.0001, 0.1],\n",
+    "                                  [0, 3.0, 8.0]]\n",
+    "po_rilem.sim.run() "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"400\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, ax = plt.subplots(1,1, figsize=(4,3),tight_layout=True)\n",
+    "po_rilem.hist.plot_Pw(ax, 0)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {
+    "height": "calc(100% - 180px)",
+    "left": "10px",
+    "top": "150px",
+    "width": "203.5px"
+   },
+   "toc_section_display": true,
+   "toc_window_display": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb b/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb
index 627e8f7..41a5b66 100644
--- a/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb
+++ b/bmcs_course/3_1_PO_LF_LM_EL_FE_CB.ipynb
@@ -188,7 +188,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAASIAAABXCAYAAACgJkhwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAWe0lEQVR4Ae2dTbIcNRLHnx1eT3hMcADMDcA+gc0NwG8xa+AGEF7BzoFvAN5PhIEbACewzZzAzAEIzLuB5/+TlRqVWqqPrqru6n6pCLU+Skql/lWZlUpVVd94+/btxZjw7bfffq9295R+PKa9t3EEHAFHYCwCt4YaSvHcVZtfFO8oPhhq78cdAUfAEZiKQK8iikrotYheKX6s8h9TB/D2joAj4AgMIdBURFI6t9UZS4jw2RQlpLbfqc9foefFxR8q/0xeqVlXpGX4RMd/LSu97Ag4AuePQFMRaerPFFEYv05REGqLEvqFPoofKU85KCKlXyt+ovhG8ZmOf6Z0J6j+J1V+rhRLzIMj4AicOQJVRSQFgDX0aZw7ymNKQPl8FGlg4QRlQ1nxSyMUj1sxpKqj76Xiw84BLzgCG0VA1yzXKtf1C0Wsem60HiYicLPR/nGsvxKwvzfatKo5KVgyWDV/K+LkvhCdZN0oz8nboctYiig+LCYPjsCmEdC1yo0zWO9KuZ4fxmt703yPYU7z+ErxdZzjmC6z2lQtIlE0i2SSz0ZMY0WhTMwK4iRR91QxDxx/lVd43hE4QQS46b7U9c5NFlm5cYJzSCxrHqyEMEKQ2e9V/jAdXDnTUkTmTJ66S4Y/KPf7YNnUlBmKjueSPDgCp4wA1v5UGdncfKVwkHdWIsjld4dUQAZGSxGhGQm28/WuNPzLZHjo8Z5SaPyk/M4SDDKteo55cAQcgfURkAyigDAeSJ+onHy464/eHaGliLqtRpY0Edsd6+2hdgcz+XoZ8YOOwB4I6PrFN4TQYkFcqExCGgRZqS1x7Eb+ng6HneTYjn5JASiPVXVfkfpRj8poDPob/SvlWSJWb/o61glqB//0x6L7WuXaqqXTZ2xhX75ujR3gEO0iQJyMoKlV5uSNUm6H4M/HcARAQNckAv+lUgSZcrIklEfI8Y2yg5aWbcpzLbOb/FQRwecBYTZzuCnT7oniV4pc/z8oNoP64V/l8ZageJTyvB+vXiU+Wp1jWw6jgEYprhatsl70RvGldkERKk07jFtTRABDLJ3b5Zy97AhsFQGU0M8SsqSEIqO4LV6pnufrTAHQ5qHKpkAGnd1qy00ahWY0IA/tcjzqawGlxXiMy8PGWFOzwxi+1AYFZHNlHikspog0yLi3Z9PQ0zKiP3iSplH01o7AsghEQUPAXpSUdYzdZKovFXMlkuc5PhTe0EC0sKZ+VMQPO3pppbbc5LHKvlCKYmTFgX9orkIa5EtjMFcsSaw+YgpLKiJXFAlWz1xTBOwu3yfUWAV5CAKcV/TlURiKLGmwglAmX6iMlZWWOX397Zjas/z7QSlb9b8pfamUHbOxlpWRCqn6zeJrMUXU4coLjsD1RMCE+HbP9K2NNelTWtYmpBJ2FB3LMqyYYAUpj18JBXJXsaQd+vX9RFosJbFQsK6ggYWE9TIqqO1svm6OGskbOQKOwCACUXhRLDvWiY6ZJYQPad9AX3a7UhDd4E9VOlkJJSLKqD9WFQ7vJ4ooNpzrneVT3r7Iz+bLFVGBqBcdgQkIYPmU1g/f7HokITbFY+R4idx2zKyu1t+O1VKWcR0lp3GwiFimLRJED18WY+BUxp9TzqM2zmy+btS+0KjBzfH8b+X/VRvZ6xyB64qAZIKlCJYJ/hUCyySWNWHbPR5HOWAdEVA4yams41gaHDeLg/68UtH7qEqka2NCG7rpMzvKHyVM5SvOv/MKyZAi4lmD2VvpopE/fHV04I5ytnxQR8ARCAjUFNHqS7OohFhvotDQ/PYcQTotOsbdAu3uwRFwBM4fgR1Zv3WAObPG3Pk+EeNK+XDsUtFMVKo9OAKOwAoIxJv9byK9owh6huOVk9E7aD10kHeWtLYkZZcPJ/cLpU8PoYiwgFia2W4Bj7RfKcIYE8Q5Zuteqj04Ao7ACghIzpC7o/0Lj8ZnZ29nRcRUV12amYJRilblgUecca50QN6DI+AIJASGFNH7qeV+GSyh3Axkmy88iLUfOe/lCDgC54jA0NLsz5mTZj046vtEM8fx7o6AI3DCCAwpollT03Ks97mIWcS9syPgCJwNAkNLs1UnKkXFbhpPhuJN57Hyo/qPND58bDKA1RjGtjyHMfxPbTMWl6l0vf1hEVjVIhqaii6isGumdrMfmhwaa+i4eEERspTcamC7845i08d2AnNYA9tBXNYY1Gkui8BRLaJlp7I/NQkwjxZs+mP+4pFlLruPVavtFOaw/xlq9xzCpd3Tj2wJgWuviHQhs+ThtZNZby8f6KRisbET2Qlbn4P4s2fIOnwvWKjisiB9J7UyAtdeEQlf/sfp+co4L0JeAs0DaSxFSqto63PIH+FYBIucSA8ueTPPbxiBo/qINoILDvPqI+yqx/qwf0pY5GXdBWiiNB8q5h9Yb85hKsbiDyXHd41LZQcpPgjf9FHRYJ+w0Jg1XPZhx/scAYEhRcQd+GxDFIDq/HQMJcTLunwwiuUb5VmPI4yhqTYsY/iHhhb2LCEvFfNPTqi4WGCZw/doePj0mfjI/zAzDTKCz9R2RKZ3TI1l7yRCijzfySmX0h1cRozpTTaEwI4i0gnO74Tlyd4Q64uwwlxbc+SCx9JgWYEVUBVI1U8JTZqZsGHt9AUUFDxZ6JuDtRmVMlfF9C5QnHun7wQ+O/1ahTFjqi87muGDYHF8LLbyv/FKXFpDev0GEdhRROLxOikiTgkXcC30vayLsuAuPhTY5crp99EMjzKo/dCzVFgqd4qB8zHSIdGaxGfOa+y7s2RVfS+fOo5Fl19D8INfi/+8ygMfxuLj7Yl35eF3Z0zV5fPlxlHSh24NF+pXDZFnzusLRZaunS8orjr4GRGvKSIDkrfiW9bCuUDAxXu7nIzmjTJg/sEKUopwUWffB8ZCmuQrGaIpemMDQpmfl+ocIKYxJ/OZMcHcS+WRHa5nNeaO5ag6lrh2XdU7vqutjqm++RvjKKt8/kavxMXqV0vF10cizrXxgeI9RSy3h4qTrg3121zQHHjQGAW72GdA+iZZU0R2R8b5t8kgkOCRu+zcByFbd1f8QblAIexzL66laGIN5ILYmoOazQoI/KGfreodU+ebmwY7hDWlVuIya/IjOyOo/NUzVh3Xx0n/pVaGL/LV+ZSryquGjiISI0HANSI7RHOFfFXGlyDOBaR4oYhvJC0RRJtl19Iv6y5FE+uAu3AI8K14oVjOwZrsnYrm73t33rNja0zmJ5J8gP6B8vm5spE6uFjlyunBrbA15iM8UeJcn9wIsOpK/9saw3ZodhQRTMSjuTXQ6XCGBe76nIC0I6YTkfJLzXdBmihI7sR52JlDfnCf/DEuxtaYqkcJcW1+zlxUrr2OU8OF5h4aCAhHFBC4kvJfZuV11ei5fHVSRGKCizloRuUn3QnVnvUkJjMXTC0s8hH+GuG5deKdv3hhF2Zx5TOFN/GAvwGFGC4OeFLs8KRyMJlLuqo/2Bw01iCfJX8LlPFVgQv/bEpgOZo2C1q4hJYr/EQMEFrO14XKJKRBkJUiB8iDPYP2nvLhURCltKNfUgDKM5/7itTjk8mX3qraDWpDf6OPhcgScZTcqh3nkP5YdMjmXLeDyLwL+/IV/sUjdg7OKeXzB+WMfjONfTn+XBFAmOCTmFcSgA/Aqm0AQGltjR/ajvlR/6V8RGE40eMCwOc0ae5jeF2qjXjj4sYSqN61tjwH8Qa2g8K1D1ai24vLPjTH9tHYYYmsNK0glOcap54dtDRn5bnZoYySy0N5+/96jqEMKPOMVO91qOMoZp41C4pHKf1xp1SvDR1LIbaljAIapbhS54GM6A3ypTboB84ZNxbwgY+rW/pBqFFCHys/iTG1B3Q+fp3u3Mrjq+jQie0MJBjYVBB/PLT4qeJqArPAhLEGkhVQ0tvyHMRbEsiS7wXKvbgsQH8qCZQQf+Fczplz9yqeJ5MP2jxUncnGoLNbbZGf8kl6aJfjqaoaUFqMx7gor6tqq4mVY/hSG5QQTvDAq1Kw4mP+H9/45ptv0E5oMhhqOQJ1aDiIMIrpsdJ0h8h7qR7LY7Q3Xu1hnD5lgOc7ijXwAbc6fk5EbexPJPNqz58JAjq/g0I9d6oao2MRqcz1jyyxvEo3ZxtHdVxzLKPDDUUpbUddrxkNrn0sJ+T1R8X0x43Kjw4a2xQ4fOIfgt7eQf0H+VKb1xogWYoqG14fYhGx68KOA6D8l7xiTcDHMHmpRmjcRYL4CCesJKb62Usz0Vj9Qi359vLZI2DWfp9QI3x5eJMXhvK6bpFXXBvIBsrkC5Wx6Ce5O9Se5R8PlCJLvyl9qZSl/16yr35j+QIjG8NwuntLlRcZETQWimTf7TsmNWiNqI0HR+AcETABwzpoBWtjx00YrdxMJae2LMOKCQ5m1eFWQYHs5VZQP2ixlGTlgXUFf1hItnxUsT+o7Si+1K7UK6aUX960ISIDaFkmxA7apBCZoe/oCUwawBs7AhtHIF77KJYd60THTOjCcm7PqdAXd0UKohuc30pLBZfajMmoP1YVK6Mniig2HOs1t0iN3L58MZfgrE6KKFI3bz3mngFXG7hWhzU0C4waUa9bFwGd5zmCsS5z26eO5VNaPw9U96giP89Uj38o3yqv9e+bNcu4jpITPSyiqgujj1DrmOjxahNj4NBmB2+MHpjMl+iihFB+QZGGpZkxpUrWeQCFJuQ5iCnLLMyuyZaU+ng4LgKlIB2XmxMYXTLCUiRtpKiMO4NlDT4XBBnLItzp43TAmLItp5CvsPpQyk0femzisEzqCygHdndpc6UIXZzdQ/1oPymIJkbFWPmfxJdo49u6rZR+IXQUUazjDglQWDijQ050dCdvuBcCwhoh+Ct2XuVCLBk7xpglD1spC4teIY3Hk5CVfOs4Cim3jMom1XKkm55DqjY6QuUUvtQW3fKh0oBPLL+pKaKXNhcaKU4GzPpX0qXuvkvyVGFzu1U6Hyih8JSu8pjNlDt3RNVzM+GBN+6as0PfmJGHyzgI/GDO+xJ9NurnRyBeK1yvOMPN0EEhfVZTRPlFtIji0KCYnpiiaEMc2ggKD0Lupd3VbxEBEw+nGBD26gfbhAvHUArgvGRojqlBcGwGv0Ucf86u65I8O60CAZ0f5JkHCKfI9ZKfAbGxO35J8XW1o4ioVLQpoEBmB9FDuTVN1dkDnCABYYKyQDkPBS6EXPGCI3cVO5n45sJxtWPHEh+F3W1U/H9QPX3Kc8qNgWfI8oC/wjYuqG+OqWN3so6c55J+dtizx0RA55TrBP/VUYLG/2dr4B1F1Gro9csioJMy2U+gPiiY5gfbhjhU/x3no+pY5nV2YnI6Q2PqeH5ho1xzizon5XlHoInAzeYRP7BFBLCEcrOabdO1/WWjxpRCgi92WptKTcc8OAJVBNwiqsKy2UqWcnx3555SBJ8tY5Zja4bBMaMS4jmZWe8qrjkJp71tBFwRbfv8dLiTwHd2xzoHVyoMjRmVEFbT57CgMs7rMb6vlTh2sqeIgC/NTvGsNXiWAmA3jSdtcRijEKpO60b3fatxdPOAGm+EEw8xpobxcE4IuEV0RmdTiifsmmlKUx6LmLWbqTHLFxnPCFGfyqEQcIvoUEhvdBwpEt/l2ui5uU5suSK6Tmfb5+oIbBSB1tKMh9n+obj21vBGYXG2HAFH4JAItBQRzkfCfxTX3h4OA/mPI+AIXF8EfGl2fc+9z9wR2AwCrog2cyqcEUfg+iLQWppdX0R85o7AgRDQjiVfNeC1mLuKfK1w8w+Cikd45dkxPvSWvxitqv2DW0T7Y+c9HYHRCEhoH5aNVYf/lSfSEW7iKQReLSIu+vyYW0SncOqdx5NGQAoHweXLBzu70DrGZ3fSxwi3PtGoPBf/K64hi+j9rQPj/DkCJ4DAoxPg8agsDllEfx6VOx/cEThxBGRB8O4dfyqxmD/lmJBoPiwhsfAuonW0CDtDimjUIGKIFy1xugUGK51wbE15/6lCwqscgW0hoGua653r3v7I4D3lw/fE4VTHeR7PPhzH999RSATa7HxJQXUIub00fF/56ueUYzsc2ziN8dXQDxnjjxTwRfE1BOqeKPIKD7SoZ3lISl+Oc8wc5NYHv1X4xxHR4oue8HMV27G0ZA7QgH/ohaC2ON6phyZf7QSbS9Xb/C+UD3yqfofvG2/f7v4FvDpY5aACUVsmQHiuCMOUAYB8CGoDQNTDXAJAdanNu5b+6wicBgK6dhE8BDX9lzucq55vdqNo0o1Xef5BmV2x6gvGsQ/dw18SkVEdckI//vEivQ+oPMKOMuCv4YP8xDp4+SCr40sIPyrCDwqEMn9swF8eIYeUk3xndcwn+bKUp3/nDxFUhyJBpoMiUgo9eO98FE/l14rBqa20l++bIrB3EHFOBlqbCfEJUwDj/4pCnnKMKCG+g8yEYBaNyYe0PTgCp4oAgs9fNSclESeChcEnWJCNKYEP3qXlW0YXAc6DjZtu4mprisPeiKA9fGGFwSMO8RuKgT5lHcOiuVQMIdZRXypLk+vYMiRv8oLy94iigULKg1mA1PXyfSvvNTWvgTHjiCGoDPgJoFhNYutkq8JieqX2fLi9PJHWxlNHYJMIxOsci+VFyaCOIbhUI+RJNqgYCC05SMIdx6XMzT5XOpBGGZWy1zc+SgLLLcigUmQUucRoCEF1KEEsot6gdlh7b9Tob/JK6YMCDFahUvRCL9+zFJGIlwHwW4xz4gxsAyyvK2l52RHYKgJctwS7jt+Vur9TLSIEeSjYuDUfU7KmMiJNmigMRfjHAsKKu68yK5vHip8qYjGxTOPYmIAv6LEiygtlhlXIMhD6g3wvrYjQqsmBpXwIYqZ8+MlO0ktr46kjcEII2A2Vu3wrWJud45KHrxSTD2mnQbvCaJpgt1u+O9KnKGmBDwmlgyVkDncUGsoDRTQqqD/8vFGalJbyWGy4Y1iSDfJ9c9RIIxpFZjDz+sxBo4TGRPsOAWXtPXUENoNAvMa5djvOWRjUMbvJIoAWaHvHCkrLG3N2qJ2N4yLUrDw6QcdYrrF7PSWwPEOJPFM0xfNceXxL0Mp9PCo2AzQ6S0X1R6FB03RCL9+LKSINiDVkmk/ZehCDKCHMwn3uCHWiXusIHB6BBxryka5jUzzGAUL9VPXmQKYeyx9hXSKw4uDb5MhbHpCrfHl2W2ViM4gGRgMym3y1Wd2l8n3yXNJmSVfWUTYcevlubd+zbQhwtsZTtj+ICbQn23VNBaNjaE22HTH9PDgCJ42ArmNkhOXIVZwIgsc2tglfrA6WkllICDdLFnaUUWL4VUypYEGwTIIuMoK/BdrcuJPLQ3nGQeHhA0JWeX6J/5Nnd4w+8ERKgBfGM4snVNqP6rF86JeUWK2O9qqv8cu7cvcUsQ7hBd7gGasPX1bCQvkm3y1FhMOZiQDAjvmp+slBdKCXnF+xzLpyzFJu8njewRFwBE4HgVsNVtHeKA7i7CBlgybFdERrm/ZH4yctP3sQJ+AIOAIni0DVImI2Uhg8eYkpxUOIyWzj2NSQ0ep0Vf3ib/F2BvCCI+AInAQCLYsI5lmrYsWw3pyriP4pGh4cAUfAEagicLNaq0pZKzidbftt6rZgi6zXOwKOgCOwg0BzaWYtpZB4wQ0fz+wlmtH01BFwBByBHIGmRWSNpIh4dBvriC1AlmoeHAFHwBFYFIFBRcRoUkD4iRbZxl+UeyfmCDgCZ4HA/wBmWOsFkqX5uwAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAASIAAABYCAYAAABRcPqlAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAWRElEQVR4Ae2dX5LdNBbGb7p6AU1YADXJDiBZQZr3eQjJCgg7gErNQ3iaLrIDYAUEHuZtHiArSGAHMMUC6GQHzPdT66hlW/5v3/bte1SlK1l/jo4+W5+PJNv3zt9//70b4r7++uszlTtX+NOQ8l7GEXAEHIGhCJwMKSjyeaZy7+SfDinvZRwBR8ARGIPAaV9hkdC3KgMR/aT4Z33lPd8RcAQcgbEIdFpEIp4vJRAS+sVJaCy0Xt4RcASGItBqEYl4ziXkmyholCWkutT7S/69/KWOw7qSwns6/lH+Y/m6+1T5v9QT/dgRcARuPwKtRKSuMyXDvRRBQCiDnMpS70dIRR7CeS5vC9xfKf4IeZST/0LH7hyBg0ZA1zGzBjZzflPcb6YTzmaRiAQm1hDWC+7iKhj8S71vJANCeqUwWFMKz+Rz4rlbkqgy1KfuZ4oPJsCSLE9zBNZGQNfor2qDMfJW/lcdu2U/AfSTljpGGDD8WDLA6jEy+Z/qE9/lchSH6P4gPXdKx4KifKiT53ncEdgaArpegyWkEIufcUIIIR28U58ey0OspWWUxftXtIjUijU+ClQpDYH8ofCDGGc96LH8S/ncYSX9nCcQV53fYljP8mNHYIsIfCql7JrlxjpqLXWLHdIYhFwxJphihmWUfejZRkRmkfw+UgnIBWuK9SEIic6U5sxYRLYQrqg7R+BgEbg8WM0zxTVW2SFn7GLVfaLjsTOhTNr4aBsRjZd0VQNyYS0IVsW9UTzcMa4Or3+V3piaXed6zBFwBNZGQGPwTG2wmcSshc2j+2u32Sa/j4hGsaI68l1bQ3n6TXY418PjjsAUBHT9snTBAMay3+n4bgzTxoyOuSnbjIIBHnaSYznqsSFDPRa6uSk/lCedTZrem7TK2CMyqrL7UP5CaYPGq8pBQNSnPTaWFiOgqXqdSpHNOHWCEww4nCAA+lkeU9GdI7AZBHRNYuVDGKyB7hSmtSHFuYZJZ/csEYriXMsfy/M4DMsV9xXyoickQDmIiekR13/nDV31WAL5SqGtTwVCUZptMiladqpDOw/kIa7e8mUp5dQ5em2NiAAWX1/cLvfcUx2B7SEACfE6VCKhqCILwOxCsX4aCETHlDnXcSAEhWzydFo1ymf9ljomQ4dhcTmQIgc9jpv84m6oXiqHNfZE/gvFPzFFFiMiCR32Gr+1PDKU/Dsjq3hxR2CvCOgaxRqCKN7UG1Yej8KQ/FTeSATSSYSl/E4SorI5lcUqgnwgNnbvBjmVxZJDRywqpmfMPDotsEGCYyHJatVLeeCD9YaDkJJbkoicKBKsHjlSBBjguC5CYTDm7jI/6ItrMLMbzYzBpnE7juWxuAY5lYX8sEggg+cKWctisXryTASZsX6rXsqHgCFkFscr7qRy5AeOgCMwBwGzbip3+5pAK2PJXaRlZSqhBjLWDDd+LCHWm77UcVeblfp2oDq8aoWssFit8Hd5LKTRspCpepP1ciKys+KhIzATAQ1E7vgQS2OqpDybkrBYPMlJBiRhO3E7xUdNy7oalSysKggJ+axlYSENIiSVm61XHxF91KW85zkCR44AA7U+WB8p7YkGZ30KxnoMg93Wh4CuVJ/0NgeZVYhM8pjmfKfwfVulMemSgywIibWe14rX+1ESN1uvO6VPxapxW3j+t+L/KrXsaY7AsSIQByfEwjY4ZML0iO35sMaikLUi1myMHDjGwghvGShk4JJPSBlepSK/81EV5eeLvaoSHNOrxRabTeiYcKxeKg95YkWFKSFt9RERC1qzOykZnLTG94lQwJ0j4AgcFwIlIuqbms1GSI1iStrdAuZn+9KdI+AIOAIJgdMUWy+CWYoZBiG9UpieQqVJHQezVVH//hCAuHMEVkJAY41pJN9PGuMYl/m61pi6lbJxrPPwJlPSezqGE9ipe7kPImIu/FqeRiEk3uwNW5gKmfPelYeM3DkCjsCKCGi8sR6V1mVWbKooOo57+KDh+qZms3bN1DAEE75PpBAAIKD0MJPyebgpLOAp3Z0j4AgcKQJ9RPTnTFzYAmRnYSfCgYQgHSceAHHnCDgCCYG1p2bslg36PlHSyCOOgCNwdAisSkSygmZv/R/dGfEOOwJHiEDf1GxVSERUfJ+Fl+RYsGYhO60frdqwC3cEHIFNIbCqRdTXUxFPeBtX5Sa/9dvXxtD8SIIsntdfShwqYtVy0osXGztx2nof1gBoCC5rtOsyl0XgRi2iZbsyXZouZr6xzaPymyQheibdeE+JRyCKTnmb70NR8ZmJfbjMFO/V94TA0RORLmQe8jqUP8Xju8dsAFTc1vsg/VoJtNKR6QdFXKaL85r7RuDoiUiAM7DXHiiLnFcNaB59OI/Ek8vceh/u5couHe/AZemmXN5KCNzoGtFKfRorloFd/Ii40hngi76su4DMQEbSK39Tu7UPY8GQfpAGnyDlqfe6W8VyXKjNEi51/f14owg0iEgXBVMVc5cWuY1hHAA89t5wysNKCn8BoziD8rl8PvgbdfoSFpLJ95D58FbQpasPffq05PMIfviHT/SVL5J0S92pyUu0WcFlqiJe72YQaBCR1MjN6M0u3i4EF31tI1vyWl/Wndh+p8xIKhBg1wvAEGd+jrr6MEpNtc/Dpznx8FhFww3Us1GvlDCkTZXhsQ76yf93EaZv+yhuro6Lpa8eSj82CriB+ytLE9EuEVF4JQN5AniRt24n6raPalw8XMAl1/eybmPRuCCE7znlZN4nk4Gfk0xBZIM4W/ugtrHkBuup8gkLxc9VN9c96BJltuqpfIi03ocHSud1n9xhbVa+LKjjYpuq9L3yPqCyQvr7Tr7+Zw1tNxSqreakD2+zX8jziRs+sbrK9HW1DmxEcImI7Hu7s6YhG+lfnxoMNC7sitPFxEAKL+vGOGsm3JXtC3wQtOGkaL8bKHOncn3Cgm5ZoWIfyJes0XpmcvlcS508TCZhVvQ6qvTcogoZSuN7VEPwKrYpIen/rxSn/4kwQwNXP3Vcsqx1oupTsIQU8j9mtM+YgZAO3qk/XO8sR3yu+OoGyUmOmBpkUKIADpbfpJOeLM5yEcxyEWAuoLpb42XdpWSib/4BdS6SUh/qfRp7jHWy+gVYU6rYps5Tbplh4VW+aRVlVHCpyV3rEHINGKGjfNeUei0dFpWrPjyT5/qib6wV7uUaOK31AgbEYTLvRYGr5kb/QpgNS2a0lKsKXEB8pKl+sS/9si4DaAmZXCB1q6PUh4lwXFerYXKdsWKsq03lMe3jL2tK12YJlxU1TaIvU+yAI8KUV624rrDq+GZYyepcrYeJiNQwdxSU4aKuX+irKbABwRAE/WX9Jjj1f/GXdZeQKRmBfBXmpInOjT5c9WT6r9rY+we0utpUHn2EhHgCnk2E/Hy14TIdgCOoKQzBDeODWRAbAHs/5wZzIKKoEFMHWJA7yyin+hAYHQoXRKEyF1Dne1KFOntJkl78NxQmdd0q2kv71ojaZ2GZqQkLwQw01lXq63Rg3JiWqNze+jBQT6lZcXXirGT2HahNFoTBh/ftKI68RESKF3Gh4BouYkCbnK+djjlnhOHcKGQcQJw2hWaAh0dBFFKOet/KU+9Cnv48lCeda7EXL5VBPs+44dhNvFAa47fXqZzpR3tca4sR0FS97rx48QKlONF0fvQcNzasqmFhEzM13LlIMKcyJVPaskeHkgeDQxyLkVvsx+CTOVrpmRWkH2tiWKutH5bbeh9mQlCsPgSXYsUFEtU2mxg7henmoDiESTq7Z4lQFOdGb38ioWiox992YX2TxxiBuHr/OSfKSlNUHRuB9c5kVBYCfCDPtV6/0Sl5upuj16mapRNMy6aQEKC/yTuk+E6+QTxKg/CeyAN0vguipJt30okTi45bdfzxwPsu5Q6gD13qT83rxWWq4In1ICF20RIJRTlYcGzvY73a+KDMuY4DgSj8QL7vHDNWqWMyEI/sQIoc9LhgvfWUGZ0tfXr1UhnGF5YkjvI4duXeh/81UwQrJixWKT55fUR1IabnCtMdgpZiOoSHg4gGmYIqB3tbvVA5/hiYl3lijPNQWaX9QpmdytifSJayPe3AEdD5rT9ntHiP1EbFItIx1z+zC27qDWtDaVxzfEUhTCsVhpmIwt7r1ZRXWQYwlhOWMe1DbHXSU3K7izLQgbHF1GzymLdWhuilMpUn9TlGB4X3TxGkiFkDFOR4qmJPJQ4zs+IkD/aGIOzRgEp+24HKF03NKGfW1EwyVr9Q2/rl6bcWAbvLd1k1kFXuSjfTPL8S13XL9JwlCQyHcJPmWD6QW6VwywEylIVBECwUhRAbY3/yUgcyY/0uvZ6pTForU5sYQKR9fKJIcDpg0KMgCtXBuirU/wvRvO0v5iUcgVuJgFkmDPA2Z2Usv4u0rEwl1PjEcOBGysYSlhGL+F1tVurbgeqwA4msMENRyH+MYSGNloVM1evTC44p8kMioqicWSBD55uxWlCCuwFWSj53TfkecQRuOwLx2odYGjvPygvWi/KYjkxykgFJ2E7cTnGmZY22pgiXHKwqCAn5rGVhkAwiJJUbpJfKVV7pUTvB+FH6bxUiUgLsCpAQytgnl7GG6myvJHdbRkDnefLA2HK/9qQbA7U+WB8p7Ylwrc8qmIYw2PMbdal+l+qQWeV8SR7jrj7Au2R05kkesiAkllheK17vR6n+aL2iXHQPG1enBamvlAYJwVZj1ooeqnwFJB272z4CWLLuRiAQBxHE8kCep+XT1rzirIUyuJimcFPHgTHH4dELhQxc1nRIh7QIsUAaC9xKz93nOjhXOdZhzDG9spmMpc0Ooy59+lg7o/SSbPoLfukJ7rBrZtIIVQiQbMG5dzsxr9sXl2wYEDMuzEn7yrflRzmzFqvbZB9CuvrPSeRhNi70Sx0PvWAa3VPdQS+kLtlmQwlPOBoEdB0FElIYdgoVYnG9PykgkK/iw/hbdAxAu9tsUb/VdNKJw+q0B+NY+GOnclV3E22u2iEXfiMI6DqChLh+LyAgvOJYc5elqVm+zkPF2S4qQINYW1gyKMMK/aTtQtULJu5sxQ5TgN1RwPCVsKg8g6JjO9mjH1DtgKO1TbWHlUs+rxmEto/8/HTAeLNZOi9n0oBnl8Y4rqN8XWtM3XpZ2m7oIPlfNKZm1FSGPezHswZj1onqDftxCwLClbsBU6w+xzlIN4dY77UqcUKxCplnh/yYd1dpkFSafysenPJJhyxyh9WLZZW78NEyS+hp853yKx8t07E/o2XgeTgIgZJFNKiiF5qHgAYrd5lRW6+qA4nw4Bhrd8R5zAKLJFiWUeZOoZKaTumNRU2lda4RKb+zTbWSv65DWcjRnSMwCoGTUaW98E0jwCZCWLcTQWAFMUVde5ra2WbUw3DBwqtMFS3DQ0egCwG3iLrQ2V4eA53tYnvGixeOl5q/t/V2UJvSg2kfW9Rr69Omp6cfMAJORAd08jTI975eN6RNlYGswnMzxOUHv/d0QPC7qisi4FOzFcHdt2gRAFuiPOzGgjWEwPpRn0sL4X0FS/lqg50Q2mTRmk2OIW2WRHnaESPgu2ZHfPK9647AVhBwi2grZ8L1cASOGAEnoiM++d51R2ArCLQtVv8nKlh/0G0rersejoAjcIsQaCOif8Y+/lehb8feohPuXXEEtoiAT822eFZcJ0fgyBBwIjqyE+7ddQS2iEDb1GyLurpOjsCtQkDPXfHi8/fy9+T5kkLjXcCtdVg6oivPjvEA62IP2LpFtLUz7frcSgQ0aHn6vOKUZl9zvFQGD6EegoOIzuTzl51n691HRB/NbsEFOAJHjkC0Ihi8bW7W0+1tQtdIV194yZqvPyxqvfUR0Z9rdMZlOgJHhsCteu1FJPR+6fPXR0RLt+fyHIGjQkCDlnWgxrTsqEAY0NlFFqsFNi89PpdvMz9Z2Jr0WdgBffAijsCNIKBrmusdkrH/GuNPIdI/mSofS8i+Kc6/b9j/Bf6geOMPD5TG+otZT/wrDp95aYybWI4vHKR2lRamSgrPlc4nWVhzupBn2ocs0vlWFCF1aYs84pSlPqTJc4OMV/4zzT68hwVEOaZlpFGX/PTtKcWpi2zKGg88VXpaS1KcekW9Z7/0KuHG9nxAi0U3jmksOZXxhyITGh65DQjommbgMSg/VTyt8SjOOLA/NwhdVRqEwcAtrqvEOpRNn+hVGvLZnbqveC6fdD4VnH8iGEOgPuj5EgK7WujD+EOH8OlnyYMo3sknAyFLoz/pY3uKU7/+uWJksdAeiCjWRffKF0d1zHfpwz/2KOzU+1QCJ7soHNZO7K74Tr5CPDqm41hMOFgR97nSYU93jsAhIgAJ/aRrOJFE7AQ3Yf4pFeKpjIOeTj5Q+TSQqStPFayMfJucdtnqT+0q/lI+fPZFoY1F8rHCzFJKfw2mNP4LjXJP5e0zw6QxHiGXRESKo0dqS8e4+vEDpaE/H+3Lx7TpQp1OvecSEUAnsKUErJcrggI4QEp3A8UxHQPbh1z/cQQOCIF4nXNDfVNXW3lGIAzyNDbq5QrHbwtpJJ1ZetYuY6fuaOuhvA1+xmEiDNWtj8sflI8Vw7/q8B10poQQHtaVkRckiEXU6VQX0r1UIb5JBYlRB5IOMyOF8AJ4tep9oswlHeCXFH8mZeiUOaZvAICC7hyBQ0OAQYWrD+6r1KvfNa5ta5dpGWMqeTXJzR1yyR3kUHSqC2GhvxkID5UGcWAZ2TpVZZpWFHSdyFoQ1tVdecY30zJ0wvXqPcsiumqj8ksH0gJWlkNn2xg/K+ZRR+AgEDBL46xDWyvTKKIBygwhWAuNzO4Ek8kalFk+XTW6iJJ6r+QfS9aFwr9IkCON8TpEPuV3qg/RXCo0CwhcnsjzN9qQUa/eJyq0iIvKYOU0zFGlfSefg0JHMQcbZRdRxoU4AisiEK9brue0pmPNKc8sf7MGyMqvfSs6OszaZebRcFnbjbyWBHSERL6XN+IhjbUlpmh5H3TY6rD+7A8ddqqLVcU0D5msHTHOwaBV7z4iOlPloQ5ryJivtY6UQmnKpm291sKe4QhsF4FHUu1JvJ5zLZmWsHic32RZN3mQF6rFmc4MdbQLURjhhXo6pt18/DF2O8dv1JE6YZ0IQVkau3C5PLJzV5f9XOXraRzbwnen3m3b92zPwZRYMlgvvU7lWBVnBy2swpcqKA+ZsOySf4dcasrTHIHVEYjXM9OR97GxcH0r3QZf0kFpjA8cg5spCzMCbsoQCKSCjLfyyIO0WOIgnfIsgKclD8Vph3qX8ta2yaQOMnKZ5JnFo6xrp3QsH7NgQkYpjQylm75GquiLXhxjHcIbkA/uQ3mmkAkLxVv1biMiQHssDwCLWC6mhMIAqEI6BQBdrKsi7hwBR+C2I3DS0kGbG/L3NMZwLUX7kyUj3ClU8gICwiuOpQWju3MEHIEjR6BIRCIKzCmzVNIi1AyseH4AU5HQ/DO1Y2blDNFe1RFwBA4dgeLUjE6JJCAOngmCLP7hpCEU3DkCjsAqCBQtIloS8WAVsfDM1IztPXeOgCPgCKyCQKtFZK2JkGzhevAOmtX10BFwBByBIQi0WkRWWUTELhfbgazp2BakZXvoCDgCjsBsBHqJiBZEQEzReJ3/B47dOQKOgCOwJAL/BwUjPCWcMAnQAAAAAElFTkSuQmCC\n",
       "text/latex": [
        "$\\displaystyle \\begin{cases} \\frac{s \\tau_{1}}{s_{1}} & \\text{for}\\: s \\leq s_{1} \\\\\\tau_{1} + \\frac{\\left(s - s_{1}\\right) \\left(- \\tau_{1} + \\tau_{2}\\right)}{- s_{1} + s_{2}} & \\text{for}\\: s \\leq s_{2} \\\\\\tau_{2} & \\text{otherwise} \\end{cases}$"
       ],
@@ -242,7 +242,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAABXCAYAAAC3IY+QAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQn0lEQVR4Ae2dTZIdNRLHnzt6TXhMcAB6boDtE9jcANOLWdvcAMI77zrwDcB7IgzcADhBN8wJzByAoOkbeP4/tVKhV1Wq76r3qp2K0JNKn6nUX6mUSqV37/3797s+5tWrV98p3SO5D/uk9zTOgWPgwGkXEQL0mdL8IvtA9klXeo93DhwTB1oBHsH9TgTfyD7U85/HRLzT4hzo4kAR4ALzfWVGcmOe9QF3HBDkQepXzeeK/7Ua6M/OgSU5UAS4Kn0jC1B/HQDMb5T+c9lr2TfK90xuzSj8JwU+l8vM4MY5sBgHGgEu4CG9v4i1AtpOQx7ZryxhLMMeg6uwz+Q5l326F+EPNQ6IV/AIfl7KMvshONwM5MBJIf3LGH4jxv5RSLMXrHRJGsfOqeWjLFkGDBLeTYED4hGCIMxycuHj08jTQo7tBKsdX8u+i21cnPBGCQ5DY81jdWZUk98Xp/7uVoDkvhIIEBr0wb0tN1XtQCNAaKIVfKfnf6/VnhLAbZE4dteEAcK+uZtxHGBLdizvx9W4QC4BGRwxY4OHb9cEtjWnBHBGHObvW2f4rxpTU1GGl+I5tsiBCOxvRTsAv9BzWput3Z4SwCfRcYiROongI8ksvqF7AwYk3k7POLgBIHJtqjfB87Gif1F4UCXlki8BS35mgceyhPfd6iW/lY+KhKrUS1gpHfSTnxnoG6NL/slGZY2i63RyzQMKiAyA2Yxspiw65+cBRdzppOIFQPpKLgDZyU2ST37Aw8KTHZWkvsgPDz+TfS0L0Hkh949c9FzSXch+LQvfv5ctGuVj3cT2bQC0XN5pcDQj0VHKHNMSDbB7DYhSWdVwldeLLqULA0xu2nFaG+A0HPu62gh/7uQA4P5ZnZfAHXOg4/6ucN5XGLBIw86LAbNzkaq0CB0GipVB8ZRdrY/wJsNgoD7q/VMW6T/Z9KFLaQC2tZV2JDMbwFVJv1Nbqep9j/J3dsJ+jg/nKXYgHcee+J5RHFuvhJ3L5uDM/cR3mWsSqCyk/4+yP8nfexdNaRFazCIv5DLgmJnRv6cCvZMu1UFbmfmYpbDJzAlwB2hi6+wek0ptYEGK5SYAIw9o8wNEWaZ2pDYgfaFnZoU03bfltzilRw36Xi5bgr/JvZKLOtp3JrCigqt8k+iaDeB7VPnD3BwwcNxvKdjSWJK2wWBpgisQMYBQT5C6tmBFbweYZ7LVskO+tp9YFioVEpXZgDKQ6EjbXkZpJ9N10qsmT3RQDkRQANiaNFWcSW509LGGvOxSJKNywzpJ7mBwp0LkUX5mARaqF7K2sbCnRuTpK/7JdDnAKxw9kkckdVVacxb/S4HFAG2kcijOdlAsrCm/xTW5qDN7g0f1IMFRV2YxKo+1AnWwGERfrrajqZ7JdN1r+qJHlduC8Qf5/9NUs4fNzwHxmikZSWoH3VAXmN7D9l6MB3RIcwxATotBxSMZiTcJSX5ejbduxcZyrU7Kplx2QlrzKc2iZihdSk+7944CdAGcPc3BW3rKk2/KH5xRi/aCF340HGgC+OwqSgQ3Lx8YGEgQ259MjFAcUgcp4cY5MCcHapg6nbP0WBa6FStyKgPg6aMHhRF3LmtTqLxuts6B2Ne/qR01gLW0jaMDvXdUWsrZqRxUO1PN2PVhcXop9/USAEdio6LYqp5XxjeyEEKDWGyYvkewm41zQP1J/x7stgXVz05PTVOArbOqKAZcuYxOXvywSHEww2k3B+FAF8A/GUgVkjufptjmQU1x4xw4CAe6VJS/BlKFHsTlQI/kAnQWk7PoWQPp8OTOgcCBLoAPYpPAfNB900HEeuIPggNdKsqsTNAAYHeFN2Ssenlt6/r5rBz2wqocmFWCVwuvPgvQYRdF4YNfHlXL8mfnQB8OrCrB+xDkaZwDc3LAAT4nN72so+OAA/zousQJmpMDdxLg0vXtLeqcvPKyNsiBLoCHV+wbbFf+smmD5DvJc3Ggtosi6XeWFT7pa46snKI31scX2Xm9lp4rEmZ/E3qIOq1B7q7LgRrAVX0OtMUBrvp4+8mXHrzWfyPwpdOHek5G4agd3Nkxx6zSWqfqsFOP1I+fL1DW4AX1BaP6nsrDAaJLWQb63hc3IZH/dHKgCeDGSE79LdqpKn/1K5f71Cmu8RIq8EEuAGeGWe3CyFgnA/pTWY49QA/3jcw+m6nsVY3awIs+Bu5sx2XbGtAEcHu7+LYtY1McnaBwpGOXoXFcB5CkccxbO7ei8PBySK7RtVe2wgFCPusQz5lgbkPKDZ8ycZ1BZ53K9CDLyCCvlp9FL+IFAH677Ays3QO4Oh8Q0Zl8Zjb4baPyIGHGShlUkyooFdRuVGdNpVEYXxTZTNRWQGOdypufbWbQLjqTNRDIAFu7zgYypgWJj2AJgQcPmYVWmwWN8j2AQ0SMqIHGMizowoS1r1xurVMdwm4M91r3GSwLsmZbRUdggyUAzl0ojR8jrNGqBHARAbjCiJO/piqsQcwh6i3VqXDAzZUMT+RPas2SfFA9YUGrOhh4Oz3j4AaAyLUB93eI2O0+lstsFWZNueRLwJKfWeCxLOGohZ2zgtKQ38qn3du/XTY2iuu62C1ovYFUaRYxqnf16atUp8IBEh39nMbqmem1z9qC5KON6kCw0AdhDSA3ST75AT/rDXZUElDlB+Cc0rS7UT7I22XVfvqLfgsqtlxuhLg51Q96NytbGHMQya26i0Y00bFIIAgHaHTo0ufOWQtQH4MeA6AWB3ioqfwDuP122Vv+0Bf5IAfcbCKEMLnwio+gH57qh+mNiDeKGD0dK69dFqSiFjN2KWRnBTPTw65MaJ/c1S8ZVZ0McgbcZbXhimM7l+Bz2VxA5X7iu8w1CVTW5m6XFdkI6Xz9dqFnbrg9Q4KzXceuAVLrf/hl0+hQWC+jPKt3fC/C7kYiwI1BJy4ZBkFuAmDzgDa/+m/SLa5Wtso51O2y8Mhwa3w6Q4Lvssbxt92rvtSgfjedHLCOQ8csGUtj8dbJ9lx01f+AY7O3y4r+6vrNBvvVibVaiWAQug3TcS7uLYm7B+KA+gN1A8DWtisVZ52J3jnWkBc9NhmVG96DyK0OnJSmj0f5D3G7LG0Ji8wE8Eis7aC8yBjXpx1HlUa0T+nsY2gLkroqrZ8ozG+X7bj1Vn0PuBlUYYDWLt9UBCoKuxas2A/xwkdVTzO0QbYm7aaVunxu0YyqQAfZsQQ2ALh6w2+XvZ3BGPTFy1zFJzYhWEOm7dUmgJMoqChKuNrCUXXRsfaCodgIpek0KqsXwOess5MoT7AoB9SXCGXeEYTt3Ph8HRaZlZqv7JlEsmPPllgxna7qANyAkqkFnZLnvb1uhaN2zHVcdqfyinVGGth2w0DP6sdlQ83+04sDsb/oT44F2OyHFH/WBPB8UVHVA3tVOCIRIFr7RtpinaKFF0pBxYnM852llk4Vj8DJwW6XzereW3uJrpsawAmUteagE/Y2yvdUicMU0ZEpHJfN0jDaGIFGINs+N8SrTHYQijfSKp48VTqLx2UpM5pinYp/YInkMuCr5WfR7lUf0Ff5CcxVmaL6/1WqsAbwUsI+4aoIdWaQSqM8TCkAOCxo5QJYwnod17V8Sp+Mwlp1cMW31qn4vLMYtPmslupxz/Fz4OQISERy56oQb+AGDZIRbehVp4AOXS9lN7cjM4IndzLLrBJ8JIdQada+kbazzgjuVY/LjuSfZ2vhwMEBLiDt7Za00DpbVFedEdxI+edUqudVjsvO1kAvKHHgGFSUREyTR+A6xI20HDzjfQAn67C29SSvmy1x4OASvItZAnjYRVG6XovOWF56k9VVflO86qwe3mlK5mEb4MDRS/AxPBRAfddjDOPuYJ47CfA72E/epJEcKKkoHO75SHbp7bqRZHs250A/DpQAzgIL819ZdGA3zoFNcsBVlE12mxPdlwMO8L6c8nSb5EBJRRncGO1c8GKE89wcvGGb7W3c4pPXzZocEN85KckRgzNZjiD3OQC3Jom1ukQjtPL+gU/N7MuyWrqhAbNIcBEEYZdyuXwG4i5k+RIFot0syAHx+Gm1eIWxbuItLPzfSh9w7gc76zuIyQAXM1mQcjw1vXKXHynOsx1/ldfN3BwQnwFE42eFsQ+u5q5zqfJELydK78nOOtt0AfyTHg2CwU3biZcKt48YehTjSUZw4MsReT6oLF06+F89uMEUmaR3lh4pjinF38b67ygOSNJxPoZvZ2fTV0cRMlMmtQdVihlpJ/9sW9NdAG8lX4QEgpTouiXhVnTAliasGxX5yiKRRTumeossaqF9lMF3swAdw4ceNWGjMPrADow9lj+sl8iQm5gOFYE1Fbow+Vj08RE4goqNBMJYY3EcgrIIZxbHJS/xxJmqYXkALWWx6LWPWhCCpEMDoA2UAf2UF4zSsmAmnDL50grMnSvc2r+TP9Cp8BrdpwqcYuzTLgitmjbQV9P6c+RA7FAA0HaLbJDaSkvHA5i2w2UAgkFgF/kAhnd63rvIM5YFyLh2IfRnDOOOv09lASFxnK4E/AAOoHNxK+Xz7xk/yk88F2GGgSaXfIQFcMvdKYxPFvnONf+Ym/YC0GT0DO3p+1iLUHhqr/zwoEj3iWWa6EJIySB93PTnAODeA1/MiqSjs5FoQwwfkyQ1Rn6AiQEYubF6A7iJUFpbW9mbbYLJD6Chke93WRjagCMvwD6XDYY08mATKG9jwmeKRksMqmkCjxQB/fctQXRtxuKxle6pErxNSpt0t2m2QqM/VjmgjgS8SNjLhrjSLbLVpNXnKogsPoEm1svzfflzMJMWkAPQ3KBulAzgQ1ViZw3VBtUISY+qEozCGFxI8FajdMxOYOwf/HLJw8Cy2Qh+tdI9CeCqyL7ANzCrvmSMgSUGp4TuSRwA3JgqoG5Db3/p1CGmTQhZOVZvkw6fpL8lllssEyCCC6VBYjPrPNYz6slL2S9kkfDpgh75uwy69ktZBgWDhFkMdYjyO+k+UaKphpFlYM7LMtDbNJfHub+ZAyYMmvhpOSyNPSdXnY4+PMZYmQaYrjLaBiB50cUBM+2wGZyBUlVTFFQ2yh/okcsAQf/npjXKeCE/gO+kew6AowOhK1UNCxGm1S5mVPN9sM/iFVM//Kp9xa84k9zw2wxpTZAQNuotYKwXsCTdmcIwikNtGTpwUFMAJx9th8Wm3Ley6O6UlevQeiwaythTmZSfgUKZqEDwq5XuyQCPFV7LtW2onfyMXAgLH+3KddOfA0+UtO8tsldKCwjmMGzN8WIu9WMsFLUgV1PoW2zRqAwDXtDDSZiFscVnkrepjGrZqDbVMJ5NM2ilu3b5ZiSGi/BhnOk6BBdNJAA9yaajx/JzTxwNdTOQA+IbvEd/vYlZ6VDO9linxuAAHJPogCb8T43SIe3pDwMrEu9ClnKZ4pneKRt9Od9zph6k7rUsGGAHjH5krUUeaMLFQEvaDgwh2Y/SI6nJlwZHUxhZFN5EL8IRzYDZDFqgDZqZpVgrJF7IX6S7BHBWqzQEBtSmS4W7cQ5sggMnBSpNKthoLSTzYOfAcXOgEeCS2kwrTAc7+feU/ONujlPnHNjnQCPAYxJ0Ngx6lxvnwCY5UAS4JDdvi2w7Zug20SaZ4UTfPQ40LjLzZgroHIBhlcvBmLQiztO43zlwrBwoSnAjWKDmVSnSnC2hdJ7A4t11DhwzBzoBDvECNnq4bxcec086bY0c+D8/byGHa9mrtQAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAABYCAYAAABGdz1FAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQf0lEQVR4Ae2dTZIVNxLHHx19AMwcwBFwAwMnoL2fBYYTGG5gR8dsWLnD3MD2CcAsZueFzQnA3MCO8AHc7hsw/59aqVFVqb6r3qvXZEZU61vKSv2VSump1Lc+fvy4G0IvXry4rXxnct8Mye95XAJbkMDJECYE6mfK94+ep0Pyex6XwFYkcNrHiMD9g/IA8Dfyf9WX39NdAluSQKcGF6C/EbOA+zcH95a6zXkZKoFWDS5An6mS72NFgzS3ytxV/p/1fBHL5c6XSv8tj3C/S2BtCbQCXA1jmkAvBcyra2/v32+V4xH59fyg53lvCc/QKgHJj9mTxf0H+V05tEqqPaEIcAkT7Y02hi6une6/KnNbTw7oO6USykO9DJ6v5B86cEpV3eg4yeZ3vSCyf6/nd4V9BpzQ4202uAEVzTEIhHk++Rkgf9b5UTymCwC3wVPP4mFJQHIKmlsuW7LIHxegHz3pnR7rYcCWzNjF36+owdWKNT5VqNjsv9a51Ut9IE5uPcnDVQl8qaDJCkUxaA1UrWJbIfU5gxYTFlMrmLH74LAN4KZh/5jIBBrcFqgTq/jki13eBAkI2OzEYREwC91XeJBFsNS7twF8dv16kYaJMrtSr+AoJKC+vy1Gz/U81sNmw71DMd4H8Emj7ZAvdChBLtGu5IZpCDCYAXcK34luMFEUBjjMjDazApyfFR92WORSjgU85VigomQe6iGeRX2v0lEe6v9bD/QvPReKG4QD5TP+aO97hRcD9lS+TnmLfZGYpAN5eToAAfyqh6nLSRKQLLC7ASK/JRBOtrf8yI54dlMSUOVHhl/oYTsXoN+TywEjwEU+AI+ZgNx/1NNKKse66Vu5Zv8HoCrONh26ytLOAz0MiN78rRUVEubwtW+AIziel4X38KhuCQBujkskcMfsLNzYleDX5gBMhclzpnAAmtzP9HRqYaWz7qKM1aFgWBSGwUagh1Bai9NQvpSP2eOJnufy3zdGFgO4Kh12LNFarrkqf6sW5cEoAckG7Q0A39WFojS2conmIJyBEzCngaD0TnBT2Eh50eKAmgHDbs4gUl5mHnhkBsDMYYbunDEGVRwzqa5WvpSGfJhtIICeaEmAO0CTWBf3AByoC6h0ck6XeaDPL5D8qYeZ1cyZHWE9zBCDSHkZVGhQQHYul7UCi8zJMzZ1xvKtfCmdgc1AZ1FboZNKyANblYBp44p2qjFreSy6azBYnoorgKB9UVRobuz5bxTuarNS3gIqw1EN6gqLTLl/6EGjj66LOlVuMl8OcOuVDbvqYDQUgG2YDEqzqZlF3iRSHYDPdmZ28o8yT7oaVV3MAgCd+lkroNEHAV35ZvPVB/DPu5j3tNUkAADqIHikuCfq9Lopgr0LiMz+hqlSeeLbiEFSGSCqj+n+R7lXbYXGxKse6gLo2NJv5a+/R6m62XzdKn2ypsZtwfid/P8ptexxy0sgdjqAZbsNkGImsA0YbFi52OLYxAY6wmjEfB+cdIBBHo5akN65Fav0fJGmIoEwMxZbJFqlY9yxfCk/gxKtH0wj2uoDOAuG0S+pMvZjAUK+VLhTwDDi5BKYKwHhrAHwPhNldJtqhKnOtA4ahO0rJ5fAQSRwukKrTJtMEwD9tdz0axxtKRymVXn9PDgCuQGkPsWc4vz6GKL/83XDmLKVvBFT/KiFaXZXYbDHzs3LNQCODfhWD40AdE6QhS0sudh6d/QAcqcbIgH1K6Zosnv3/VoRX+CuQX0myqhdFDUEcNmY/0wuLwywsYsCKZ7N+LAgsjh3XQJrSqAP4H+NbJwtIHYAdgIy4AbMDmgE4nQQCSxtorB7wreZfL0BvZN/ETvrujr/6xIYJ4FFAS4wj95SHMeu53YJjJNAn4kyrrae3BoAnFvm0AwLTRagyT7vKerJLoFJElhUg/dxIEBjrvBMPl3W14anuwRyCexVg+cNu98lsA8JOMD3IWVv42AScIAfTPTe8D4kcCMBLlufX1GdXAK7BsAFDs4VGF2a58jcu0fGr7O7kgRKuyg5OOqfQS3OhgYU7fGRK+dU6rTKhZOHaLP+YkPC4tNvlx0iqI48JYCHn9opIwHv41dIDsns+8rlQ7TZ0Q3NJMneb5dtimV0TAng9t3f6h8pqBP3fuXykDaVhx+gmFm42Qk3fTUj/+qk9tPtsvLTPn3B2fqjpyjbc73I1/KvrkArAFeD2N/26+LFWGmqPGYG51H6iC+FOHXIMctA8p/J0zCJYp2tR2yVzoISEOT0QPEc/MqJK84q3xgqXGxThX5SGicid3KRCf+Aa5/XYqBkQuerfWRSOVOv8NGR3mMTt8sysiCAMHp0xTI2A1zXNPwvnVgH5c74kFusSfGNa8IUxxdFQ/gotqmG0s1I8jN40kAsMrFO5OU61e63VvUDRzPoI2ahw90uK0boSJhBszZAo/i1CW06RPsvyUexTb1/PpPA09Fr0CWF1leX5Mesh7LEGsC8O9jHEKcwGxlCe6Kphmg+ii1O4iMH1uL1lyrsalNpmD9cOjN6Niu11RendjDxAAYDb6cwphluGGByAQ4Dzu4wATh+u6yE0EanUWis2AHX3qcQY0x87H2Ud7WpNIAEuLk+gZOPxU+ijP8lXLXBQPLbZWvClFxQvknRKGwzb6+lgQYnM+bJJj8C1sug1eARbQbQsK/7dnhmzQSqnwFPu1xdJicM/tUBTkMdxG8FfrvstYDoC+QRSH1kJhFh23Bgl+Yq3IsiD9oqLAbkn/TRgsrZZUGh0Zv6R++5+m6K2gidJ9dMEwYbgw4l1BjcikP26aJMhcOMbOWH9IXyAgxMHz4xpH2ubxulKGIdgA+FhDKahCWVTTSEL+XBzk/anLAqOJN7L138EyPZypl02U/iyD2zJaC+qAOcxRpxxV92lR+Ap/sEFQbg7+WmTle4l5TfFJ3lTYPGIoa4qsc0qi0yZ53/7+NL6bx/ko3CNljvnxjDikQYjFhGAxrDaTsSME0KcNrI8lj6lXmGuur3ybe45m2oHtYt1BXWVXLXvl0W7BZ/CEsAjwzaiA8aJGfa/YeTgADC4hPANna4lIY5ADEtTyLVgTlhOzM7+dNsMKnCrJDqYhYA6NS/yu2yqr/yA57aCcpa8R8qAFcE9heC5HYgzJWjJPE+ubM38sJoap6cHingt8teH6OoAzrJSX2P9YFpFH6sSza45YjgANxc0pP/omdZNu+K76G/ZG7qXWLnYAc/0APAUTi8i98uK0FEwvwpLl4Vj+2Ncks7giWAM+XZT+a9/7woNjrbEXN07N96mEFm3UirugYBfMk2ZwvAK5glgQhuTK185+mqYqLEFvIzEGiS1UlMMepMU7FYeLp2o4doc+13+lTrj+AGQxfyczUJZgp2+OVpQSj5ahyVvw+iHUYfTL6WWzn7oXBj6lmAqdY21R42HOkHOS67wLvttQrJC3OKrckxhBmx1BEI2m7woPqfN0wUOFSC/Wgzak9c5Rg5mBp9FI7LWqZY7q3CMImJUrqRFvA3jhKoLPGAMSdmnvq2UTgua5l62vxH6ZXjsgqv/gOP8ebuchIoafDJtQsEjMjGVlZXhSoDOMONtNHPFiUa1BZWYZQrTVFNUrxtbaZExXXa4LGd1jZVUb64hj8GndMRSuBkAzyzoA22voCHecTOAc+a1Nlm5MPaZ0aqmEyW4O72JbCoBp/4ugCIT9ds330fN9IOalM8Yf6kU2wT38+LHVACBwe4QFTc01xTJkPaVB4GAeDe23HZNd/5U617CyZKp+wFsCk30uY7QZ31lxLVJqtyTley2GTBzZrA6QglsOguyhG+v7N8wyWweQ1+w+Xvr7eyBBzgKwvYqz+sBNoWmf+NbNV/LDkst966S2CkBNoA/u9Yzy9yl/o5dSRrnt0lMF8CbqLMl6HXsGEJOMA33DnO2nwJtJkoo2vWfjE/jECc6eYTJU4HztqPpjKn8RKQ3Dn09pOeu3o4ndk4rzO+1nVLiEd45fcHflxb7Me/RTS4GIIxfmKHOQ5JcXUAB55g2mlFCUjGplhSK4qzr7EuFXknJWzbA1Zu68kPus3muA/gn/e1IGFyhoSzJG8sr/ycviPMWQ6nlSQgORso2lo4mhlU78IBO74gW3S26QP4kP9Vz0m70k7LO8Vz+Qqj0mkdCdyoIwTCCopxUeoD+JDGzpSJqbBOxizpTgtLQGAY+nHJwi0fV3WzFpkDtfOx2ICb6bkoV2xru6uERXt+iyya275bZZa0e2xeyZ9MRXshxWHKmLZ/KD/rpcZtUzEf66fUruKCySAXRYXJSX9e6MH8oS7imcVxKUtbpOEnL+UZjMzyrNG4c8U+akEJkg/zhDjKkk59geSnLHWT93aI1LsrPtnq8lOuyPdpLDDV4QUg09bXoeu/ptWNqTzN/S0SiB1KZ3MVWbKh5WfRzslKLtIBxFzECRABRJfdivwZBPaFFIDhAp7KRZ4KE89ng/nnglw+Sl7iAOE9uZyuZMDBG4Dn1CX1c1fJa/n5bxjcjhYGWhYXwK20neL4HpOPTvJPF2nDBhbZyAfv7MZVvhJTOL2v/J18n4Sa1v3Dh7tOwyUAuCvgi0XRUHQ2HTqG+HcuadtNflsvoRVzol22FPNBxaBgUJn2Jz/pANp4ZGEY6peLogPYT/UEinHEJ60ck9jpSW3FuHr4geLhH6DnlM9SnXzPBbhp6bxx89+JHvbFnQZIQB0JeO/qeVfPrjQDZgJPPU9L+H1LfAJN1i7bvXWiXUwRI8BqvOxUlnBOrxRgUPAepDM4GAD2xRZxDC40eCcpH7MGGONcPjMYMwq3rjHYd3JNXq18zzJR1ABfu9BWEhaBSBZXH5WW7m5TAgEUiq6DJs85VoPnZdv81i5mQgJizIwZUh8kgK5IKo9mh3/MCID4UGHMk2d6HutB+2J+BZDK30fY2ud6GBSsS5jFMIeov5fvWQBXAxCjzBoKEfGPaXDSnYZJwJSBKYdSKcvTSFOn0/lDgZOXtzrRkvn0n+fJ/V0DkHzY4oD5Qq7N4MQByiH1K1vQ0OCKW85MYyOXJ3qw8Rl4vXyfKNNcwgbCVqoTIw87q08Y9XKfbFiyYupHXpVFFQJRGhoMomONFpFt1u5Tqzh3s7bz6C4/PAJOjgsYoIk7U10sSvN3ULCVmK3SjKKyWAyYO9SJbW7yauW7D+CMmE6KDTLK0kJEfsox0r7uLOyJJQmMuUWW2bGkXKxem0Ut3OXSLgC0gRTyKoxZYJqSOPq2ExcqA/Aog70cymZxbPHl9Slbhep1nyt/PY6wWQadfLd9k8l2DSPQbJ0KB/VAZOBc8TYdsSjhnjhe1GmkBCQ3ZM+0fBWLEmZatk6N0UGzM4NCgIY8XGiE5gOYgJU63uuhPgYDuxnEk58ZNu1uyE87lLvUY21bnZShjrxO0kxDK+n/pHg0tWnckFCKI0Hxxq8NVviFL8LMZuARUEPsymFKJVnI38p3G8AR2mM9CABTw8klcJQSOGnh2mwktnts5LRk9WiXwHYlUAR4VP9mJyUjf7uv4Zy5BMoSKAI8ZmVLBzp3LX4tCP97fBJoBXjU4vxUi4nCdo+TS+DoJFBcZOZvIaDbgnPQjkpe1v0ugUNLoFWDG2MCONs1bA89i2C3JHddApuXQC/AeQMBG1OFI5KvCDu5BI5FAv8DAlxWPt4n3BgAAAAASUVORK5CYII=\n",
       "text/latex": [
        "$\\displaystyle \\begin{cases} \\frac{\\tau_{1}}{s_{1}} & \\text{for}\\: s \\leq s_{1} \\\\\\frac{- \\tau_{1} + \\tau_{2}}{- s_{1} + s_{2}} & \\text{for}\\: s \\leq s_{2} \\\\0 & \\text{otherwise} \\end{cases}$"
       ],
@@ -908,7 +908,7 @@
        "};\n",
        "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
        "\n",
        "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
        "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
@@ -1129,7 +1129,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"800\">"
+       "<img src=\"\" width=\"799.75\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -1214,7 +1214,7 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f486ea28540>"
+       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f483ba68a10>"
       ]
      },
      "execution_count": 8,
@@ -1251,7 +1251,7 @@
        "        "
       ],
       "text/plain": [
-       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f486e688950>"
+       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f4839cdd710>"
       ]
      },
      "execution_count": 9,
@@ -1286,7 +1286,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 14,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1308,10 +1308,10 @@
        "        "
       ],
       "text/plain": [
-       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f486e78d810>"
+       "<ibvpy.mats.mats1D5.vmats1D5_bondslip1D.MATSBondSlipMultiLinear at 0x7f4839c26470>"
       ]
      },
-     "execution_count": 10,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1319,6 +1319,8 @@
    "source": [
     "po.mats_eval_type = 'multilinear'\n",
     "po.mats_eval.trait_set(E_m=1, E_f=1)\n",
+    "po.mats_eval.bs_law.xdata = [0,1,2]\n",
+    "po.mats_eval.bs_law.ydata= [0,1,2]\n",
     "po.mats_eval.bs_law.replot()\n",
     "po.mats_eval"
    ]
@@ -1337,7 +1339,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 15,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -1362,9 +1364,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 22,
    "metadata": {
-    "hide_input": true,
+    "hide_input": false,
     "scrolled": false,
     "slideshow": {
      "slide_type": "fragment"
@@ -1930,7 +1932,7 @@
        "};\n",
        "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
        "\n",
        "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
        "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
@@ -2151,7 +2153,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"500\">"
+       "<img src=\"\" width=\"499.9666666666667\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -2159,48 +2161,37 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "476c2489f43b4f0eadea4af92a0cd3c1",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatSlider(value=1e-06, description='s2', max=1.0, min=1e-06, step=0.3), FloatSlider(va…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
     }
    ],
    "source": [
     "fig, ax = plt.subplots(1,1,figsize=(5,2))\n",
     "po.mats_eval.bs_law.trait_set(\n",
-    "    xdata=[0, 1e-6, 2.0],\n",
-    "    ydata=[0., 1, 1]\n",
+    "    xdata=[0, 1, 2.0, 4.0],\n",
+    "    ydata=[0., 1, 1, 0]\n",
     ")\n",
-    "po.mats_eval.bs_law.plot(ax)\n",
-    "def update_bond_slip(s2, s3, tau2, tau3):\n",
-    "    po.mats_eval.bs_law.trait_set(\n",
-    "        xdata=[0, s2, s3],\n",
-    "        ydata=[0., tau2, tau3]\n",
-    "    )\n",
-    "    ax.clear()\n",
-    "    po.mats_eval.bs_law.plot(ax, color='green')\n",
-    "    ax.set_ylabel(r'$\\tau$ [MPa]')\n",
-    "    ax.set_xlabel(r'$s$ [mm]')\n",
-    "bs_sliders = dict(s2=ipw.FloatSlider(value=1e-6, min=1e-6, max=1, step=0.3),\n",
-    "             s3=ipw.FloatSlider(value=2.0, min=1, max=3, step=0.3),\n",
-    "             tau2=ipw.FloatSlider(value=1, min=0, max=3, step=0.3),\n",
-    "             tau3=ipw.FloatSlider(value=1, min=0, max=3, step=0.3))\n",
-    "ipw.interact(update_bond_slip, **bs_sliders);"
+    "ax.clear()\n",
+    "po.mats_eval.bs_law.plot(ax, color='green')\n",
+    "\n",
+    "# po.mats_eval.bs_law.plot(ax)\n",
+    "# def update_bond_slip(s2, s3, tau2, tau3):\n",
+    "#     po.mats_eval.bs_law.trait_set(\n",
+    "#         xdata=[0, s2, s3],\n",
+    "#         ydata=[0., tau2, tau3]\n",
+    "#     )\n",
+    "#     ax.clear()\n",
+    "#     po.mats_eval.bs_law.plot(ax, color='green')\n",
+    "#     ax.set_ylabel(r'$\\tau$ [MPa]')\n",
+    "#     ax.set_xlabel(r'$s$ [mm]')\n",
+    "# bs_sliders = dict(s2=ipw.FloatSlider(value=1e-6, min=1e-6, max=1, step=0.3),\n",
+    "#              s3=ipw.FloatSlider(value=2.0, min=1, max=3, step=0.3),\n",
+    "#              tau2=ipw.FloatSlider(value=1, min=0, max=3, step=0.3),\n",
+    "#              tau3=ipw.FloatSlider(value=1, min=0, max=3, step=0.3))\n",
+    "# ipw.interact(update_bond_slip, **bs_sliders);"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 23,
    "metadata": {
     "hide_input": false
    },
@@ -2212,7 +2203,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 44,
+   "execution_count": 24,
    "metadata": {
     "hide_input": true,
     "scrolled": false,
@@ -3001,7 +2992,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"1000\">"
+       "<img src=\"\" width=\"999.9333333333334\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -3013,7 +3004,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "5afd8c96f04545eb9aee9f608bd2ad22",
+       "model_id": "933e9f5e486e443e9482615f782d4540",
        "version_major": 2,
        "version_minor": 0
       },
@@ -3027,7 +3018,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "f17652ac8f3e4cdba2728be43ab10c53",
+       "model_id": "19e950e7c98446c7b4518671336b3ece",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/bmcs_course/5_3_BS_DP_A.ipynb b/bmcs_course/5_3_BS_DP_A.ipynb
index 1c4ee91..29c2021 100644
--- a/bmcs_course/5_3_BS_DP_A.ipynb
+++ b/bmcs_course/5_3_BS_DP_A.ipynb
@@ -15,13 +15,6 @@
     "to describe the material behavior, once it crosses the elastic limit."
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
   {
    "cell_type": "markdown",
    "metadata": {
diff --git a/bmcs_course/7_1_PO_LF_LM_EL_FE_Energy.ipynb b/bmcs_course/7_1_PO_LF_LM_EL_FE_Energy.ipynb
new file mode 100644
index 0000000..6cdcb04
--- /dev/null
+++ b/bmcs_course/7_1_PO_LF_LM_EL_FE_Energy.ipynb
@@ -0,0 +1,4513 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Example 7.1: Fitting a test response and energy dissipation \n",
+    "# PO-LF-LM-EL-SH\n",
+    "\n",
+    "@author: rosoba"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {
+    "hide_input": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style>\n",
+       ".output_wrapper button.btn.btn-default,\n",
+       ".output_wrapper .ui-dialog-titlebar {\n",
+       "  display: none;\n",
+       "}\n",
+       "</style>\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "%%html\n",
+    "<style>\n",
+    ".output_wrapper button.btn.btn-default,\n",
+    ".output_wrapper .ui-dialog-titlebar {\n",
+    "  display: none;\n",
+    "}\n",
+    "</style>"
+   ]
+  },
+  {
+   "attachments": {
+    "image.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAABnCAYAAADmM/4PAAAABHNCSVQICAgIfAhkiAAAH+JJREFUeF7tnQm0VdMfx7cpKtMKUSHzSqUkylT9F1ZFk1qtZkMStaRoVBSeUCpllSkJTUSqpcJKxiYKGSpSCqEkQxkS0v99trWv8847595z7z3n3HPv+f3WOuu9e4Y9fPc5+7d/495nbzEpIUFAEBAEBIFYIrBvLHstnRYEBAFBQBDQCAgTkBdBEBAEBIEYIyBMIMaDL10XBAQBQUCYgLwDgoAgIAjEGIH9Y9x36boPCOzcuVPNnj1bl3TMMceoH3/8Uf3555+qcuXKqnHjxj7UIEVEEYE33nhDffHFF+rwww9XZcqUUdu2bZMxj+JAeWiTSAIeQJJb3BEoV66c+t///qcWLFigLr30Uj0h8PvMM890f0iu5D0CNWvWVFu3blWtW7dWEyZMUPXq1ZMxz9NRFUkgTwcuKs3ef//91ZFHHqnmz5+vTjjhBNW2bduoNE3aESACjPnPP/+sa2jXrp2qXr16gLVJ0UEiIJJAkOjGpOzVq1erP/74Q9WuXTsmPZZugsAHH3yggRCpL7/fB2EC+T1+kWi9TAaRGIbQG/Hhhx9qm0C1atVCr1sq9A8BYQL+YRnbkjASQtgChOKBwKeffqptAn369FEHHXRQPDpdoL0UJlCgAxtmt1gRQqIWCBP13NZlpL+rr746tw2R2rNGQJhA1hDGu4Bff/1VbdiwQUsBqAbcaMaMGapBgwZul+V8niEAE8ARgCMZbd++XfXu3Vv16tVLj//ff/+d7Ha5lgMEhAnkAPRCqnLJkiX6w7799tsdu2VURZ06dVIwDKHCQGDhwoWqUaNGjp35+uuv1bfffquvdezYUcePFBUVqVGjRim8yYSihYAwgWiNR961hkme1aCTPYAAIqQEO7E6JMhMKD8RYExRATqNOT169tln9cQPcS+xJBUqVFDnnntufna4wFstbLnABzjo7qEWcHMNnThxourQoUOiCUgM6JArVaqkMCw2adJE9ejRI+gmSvk+IzBt2jT1zz//ONqAiB347LPP1L777qvGjRunYwlefvllrSoU+4HPA+FXcewnICQIZIpA8Ypvb7EqqNTjixcv3lscRbp3z549iWvcu2nTJv2b88XRpnvHjh1b6lk5EV0EGLdTTjllb7FH0N5du3aVaChjXhxJvHfq1KmJ88VSooxxdIdTt0wkAb+4aYzKYXU3adIknTsG90D+3nHHHRoBcgetX79erwa7d++uV4SGuNcYEjl/2WWX6Xu6dOmio46Foo3ACy+8oLAFINERGzBixIhEg9euXavee+89rfq5/PLLo90RaV0JBIQJyAuRNgKI9v3799fPkTcmUzJGQjEWZopguM+1bNlScWQz5uG2WGrzgoAYhr2gJPf4ggDZRU2+GQp87bXX1KBBg5K6lvpSsRQiCAgCrgiIJOAKjVzwGwGiS+fOnatVSKiN2rRpI6oDv0GOUHmoj6pWraqdAFAXSZK5CA2OpSn7YBiIZtOi3yomNNF/Rn+cCq2FeOZYbS3o6PHAad68eaF1Nef9Ibbl4IMPTrQD+xd4FxvHc942vxog6iCPSD755JMl7sQ/PlmErMdi5TZBIG0E8MMnIMsQRvqzzz477XLkgdQIjB49usRNzAOFxADonDCB1O+BvoMVgCGzq5JbsIzHIuU2QSAjBEjbzWqU45FHHtEeVyY4K6MC5SFPCMAACjHWQWwCnob/v5t4EfjoCvFlSBMKuT2HCMAA8NIhGE8YQLADwQLQMADj4hxsjeGWLkwgDbyTpUhIoxi5VRDIGoHJkyfrxGzCALKGMmUBMAATB5Py5jy8QQzDLoNm8qWby7wI2ADEEOwCmJwODYE5c+boRGwtWrQIrc64VsTkj9RvlQDwbiukPEhiE3B5u63+7EgA5MgRBuAClpwOBQFUQBiBMQqfc845odQZ10qMCghJy64CIt6FsSgU8qwOIlzcpIdN1vnifDGh+gMzGEzObHTuJxlOjwRgDMBiCPYTYSkrHQSMDQBvFdxBeT/tk1M65cm97gjAAAwTQBIo9O/esyRQsWJFxYq4a9eu2kjCC2gO8r48//zz+hq6yjBp+PDhasGCBYHkqhcbQJgjKXUlQwAJQIzAyRDy75oxAvtXYrRL8iwJsHWg2VD6uuuuK8UdSQbWt29fBbMIi9599101ffp0XR0RqNagjmzbYNxAxQsoWyTl+WwQMCogFlxiBM4GSW/Pxo0BgIpnSYCbmRihiy66SP+1EhGMqGWOP/54+6VAfhM1iYrqrrvu0uV7UVV5bYjppzAAr4jJfUEhwKTEd9W0adOgqpByixHABmhUP3FTs3mWBHhT2E3IviJBP2le0K1bt4a2Wlm2bJnC/mBSEFsNudm+1YWuA8wWH3k+PASuvfba8CqLcU14/hWyG2iyofUsCTDBc3Tu3DlRHlvHPfPMM4nfrFjCcp1atGiRlkhQUSGFoA4SEgQEAUFAEEgPAc+SgFGRoHdHRDUh61YmgP9sGPTiiy9qmwSTP3VWrlzZV3VQGH2QOgQBQUAQiAICaTGBRo0aqVtuuUXvL4oL1YoVK0JPpkRWvyVLlqh77rkngV+VKlUUm5oLCQKCgCAgCKSHgGcmgD2gfv36unRW4CeddFKJeAAkg9WrVztuPp1ek5LfzXaEZL+26u927NghTCA5bHJVEBAEBAFHBDwxATPB9+zZs0QhbApiaMqUKeq0005zrMSvk3gD1ahRQ1144YUlikQy8NMw7Fd7pRxBQBAQBKKOgCcmwAofNUzjxo1L9Me4g/7+++8KI/E111wTWH8J1cYuYVUDmcqwEbz11luB1S0FCwKCgCAQJgKo27NxVSX3GXElXvY88cQEyJtDgW7BKhMnTtTumpkSUb81a9ZMmpuHrersTMjUV65cOfXDDz9kWr3n57CJCAkCuUYA+5dsIpPrUQiufvaLGDdunD4yJRjIbbfdpuyb4jiVl5QJ4BKKmmXWrFmaAcCdrPTRRx+p2bNnq9dff12tWbNGu5CyyQV7iR566KH698aNGxURxkT3IjHwTFFRkSpTpowuClUTAV+s9D///HNta7ASz2OApkOonKyEdLJ9+3b12WefaZsAEsuxxx6ruR9h9iNHjlS33nqrjiSmDALKevXqpf+yyTnnYUD0ES+jVBHHJjCtRCPkhyAQMgIzZ87U3xYLJ6FoIsC8xH4P77//vtq5c6dWYZP5FcKmylxIKnA8G+1000036ewL2RDzGQsFdqFr165d0qKSMoG3335bT5Bt27bVhRg3UWuJuGoSWcsEytGwYUOFZDBjxgzdWbyJRowYoQExZaC+MRk5AWbVqlWKc4gwdibA5A1nhAlYt9SjLCZzgsaQEDhgNDAGYhUIsrn77rv1PUOGDNGiFZkXqZf+AP55552nunTpovtIX3kWot2outhGrlatWpqhQTAYIUEg1wgcdthhuW6C1J8CAYJYhw0bpo4++mh1ySWX6MWmlaZNm6YdbRYvXpxQ++B1yYKZeccP+yq5ppjrWJQnWzAkZQKZpE5mAqUT/IXgSNY9OVHd2I24NLJfv356QrYTHXEjgEoFlsl3ZLiwaYuJaUASgUtbjc0MxldffaXtHEgUcHIY4E8//aQZAS6p1FuhQgW3psl5QUAQiDkCaD2QCAYNGlQKCVbpLGrHjBmjxo8fr6+jcSER5/r160vdn+kJFugsdr/88kvX+SopE8i0YjPhmuftv+3lIgE0adLE1eZgvz+d34YZpfsMkgMHXBzCJfXKK6/UEsM777yjhg4dqg488EDVqVMnLf2IlJAOwnKvIFD4CGBLRTVN8k07GdX6EUcckbiE3ZNJ26TCsT+TyW8Wt2g4UH8bjY69HN+ZAKtoDkP23/YG8BsmgK7eT6JeOm9UPKz4IfMbFRNk/nqtG1UTR58+fdT333+vPv74Y/XKK69oacEQ6qPTTz89YRvxWnZc79u1a5cqW7as5+6ne7/nguVGQcBHBGACuLQ7EZPyGWecofr375+4vHTpUjV16tRStzNnYXslNQ6LTpOpmbkLm8P555+vnyGPG0zHmrqH36jscaMPhQmgPmGlTOPWrl2rG83kC9cDEIzBHIhB3GtUM5monUohZTtBaotRo0bp+qkP28ETTzyRqBf7Ab8xJmea7+ioo45yzKgKQ6D/iHZW5oBxvWrVqurkk09WPBt32rRpk/aAQBWYTvZZxvSpp55SV111VdwhlP5HGAFUyHaPRlTh2EtRFRH3ZJxRUBsx2dtjoOgeqXmQELBpMm8a++rcuXO1CskwAeY85l7OW6lbt27qoYceckXKV0mASR0jrJXsnbrvvvtcG+PnBXvMApZ4K/kteVjLRhIwEoP1PAZw4hkwEu3evVs1b95cG4cyZUJ+4pWLsnBfQ82WLkM85JBDtGEfJj9gwIBcNF3qFASSIsBCBY/J3377Ta1cuVLfi8YDGyWqb1btVoIJOHknwhiwX1IeC+lWrVolHuO31VWYOQ3vTDuhqt6yZYv9dOK3r0zAtRa5oBGoU6eOPlAlISXh2vrNN9+oBx54IIEQL0Lt2rUL3g8cry+M6+kyAAPUxRdfrCU5ROgLLrhA3jBBIFIIoGFg4mbXw1TOKzSc+cApsAsmQLZkvCchNu8yhCrI6krKwuiss84qhQNMwO6MY71JmEApyMI5gWeRkwTwyy+/qM2bN4fTiBzWghrIiLWZNAOD/2OPPaZtScIEMkFQngkSAVRBGHi9MADaQZyUE5kAXWKk0KqYoFwm9eXLl5dQH7GotKufKBPHHBOX5VTHv36cTlfkXE4QQNWBy2wh07x587QhOFsX2/Llyyu8K1CzCQkCUUIAJoBrplfC2GucVpyeISAX25kh4gzwXrSqkNwCCLHJJvM4EibghHjMz2HMRgTFE8G+Wc/8+fOzRufpp59OBMg4FTZw4EC9ujf5oLChYD9xmuyxQ6EbFRIEooQAWZfTWczhGIFdwI2QFKyuptgbrO6lPOdkU+A8tohKlSq5FZ3eHsOupciFgkIA74XnnntOB8fhfWAIz6/Bgwdn1VcMZXhm4SVlJxgO9hGivfFwgBlQX7NmzfSqCmO/cfU1z1IOHhNCgkBUEMAdk2BTr6og2s0ETiAttgQnqlu3buJb5B5ilEizgzcQizZcTd3yt2GXsAbs2ssXm4AdkZj/5uXlheHFQsdonXRxQXMyPKUDGYbwPXv2OKqCXn31VW00h4jz2G+//XTkOcZ00n/gVWEPPMSYZk8nkk575F5BwC8EyF9mDLiPP/64Lha1EH76XqhFixbac9C6W6N5jjgBFmd8g9gJsKkRvMpvvBHxsnOSBGgT0juMwI2ECbghE9PzJriElw4yek1cWgmK69ixY1bIGPUSKxk7MckbYtJHx3niiSfqU0gDTsSLH0YGWae65ZwgYEUAvT7+/JkSKk8YARO8PWMzZZNYzkosyFItymBKuJg6GYxNWWITyHTECvQ5VhWstklshThrIh6RCiCiHLMhjLluZBL1cZ1gO8ieUND+LJJKOtHG9ufltyAQFQRIUcNCiPQRfhGRyXzLdgnaWr4wAb/QLrByyI9EBljjWoYeH8Jga9Qv2AjQ3X/33Xc6Nwlpa1EnMTEjBiO+klrDSmaFQ+qHZIReFXWQYToEu9iN1DyPR4V91ZSsXLkmCEQVAVbsqG6IofFDxQkzQbpItfdEzpkAHUa3hd7MfrRs2dLTeE2ePFmnmgZAIvHQk+FChWjmB5ieGlFAN+GJwORq9b9/6aWXdHQzgSfo7iF09Uz8ZCjEm4h0tWCOVw+h7ORPshuSCQ5j0raPCwbjO++8U0/01E8d5EE3wWSItVZJwcCN2kiYQAG9fDHvCit24meMbSFTODAeY1dLtZcA5efcJnD99ddrYyA+r0ziMAJj4HCKoLODgnWczmLMRF+NV4vRy5FSgAmC/QyEvCPA6h+vG5LjMdETlUsQGysKJusDDjhAF4Zen80xjF6SSZrfMASICRy9vp14Me0Bcbh5Tp8+Xd188806/xTucNQJIU0QDekk0rLp0KmnnmqvQn4LAnmLABIB+wpkQyzIku0hYC07p5IA4gougUzaTP54giC+GInAKQWrHRgmeFadMAOYQNOmTRO3EJFL4jih9BFgL2cCVDAQ//XXX3p1QsAJgV6MkSHc2qyTc7KgFPMMTADpwUowEnaBQw2FEfree+/VNgl20UIVZTUaW5/DVkFiLSFBQBDIDIGcSgJWdQ96ZLuKwEuXSBvAxENiOmteDZ5ldenkj27KJZKOAymEQ+g/BEyeIysmxn0zW5wIXMHgi58zGVUhjLv2rKA33HBD0qqQVJBGjAdR0pvloiAgCDgikFMmYG0RK81MdLtm5fnmm2/q7dwMESXHBN+6dWvHjnPSqJswYnKvExHJx8F19NXZpjpwqiNfz4E5OUxQ4yEdYAsgBoAU2iR4M3pNfuP6Zs1fgtqHjIes/jMhVEQEkzllTcykPHlGEIgrApFhAqiFnLZh8zIwTETonq3uhOiVoWSGEeMTn6wOvFQ4YALt27fXemrqQVWFugljqZPPe7IyC+Vao0aNFIch0kxwGEKv6abbJOQd/FH/gGG6RAZREsjJjm7pIif3CwIlEYgEE2CDBSZZN59wdMJ4+xAV52QsRu1jfxavFZiKWyi11xfB7D+MzQEvJgyjpFOA6aC+Yg9ieyoDymaDadQeGEfN4bXOuNyHLYg8QuCUzqYyBIcRxCYMIC5vSn73E29F5ih29rLvrxKFnkWCCeDWiXHRLfqN6xgI8U5x2owedQ7+5IRbo1LCZ53oumRRcpmCT7ATBxNQMv9bfOdxXyRNAi+A3V+e+lEtde7cWRvE40jgSJ6gdAkpokGDBuk+JvcLAjlBgAUumg4OPH9wve7QoYNiR0UvjhRBNzoSTACDLp4gboAQA8BBOLUTMcn26NFDc1mkhqKiIqfbQj2HJMAhJAgIAoKAQQCNAjEwHNjFWNSiscilY0okmIAXn1YiUd2AMmlbiS/AvTQoSrZPZ1B1SrmCgB0BdpRC0sRWJRQsAkGmKScgE8cGgl1xpMB+yfzlNs8F1dNIMAEvncPzxMnIS9oCDMPp6JS91Od0D2onIUEg1whgE0G9yOJHKFgE9u7dm7QCL4tON89DUzAR8kTkc0AwAdTExh7plB00aaPSvJgXTIDNFjDw2rdII9gMTo3/OnlqrJ4paeIgtwsCgoAgkDYC9qBHpwJ27NjhdNr1HEyDBScOJzCAoI3JecEEsBU42QsINvOaX8gVcY8XjjvuOI93ym2CgCAQFwQ2bdqUsqt4NZIXKxXhHIMHEYtap/3HUz2f6fW8YAKZds7P50iGxu4+QRABVuh5yYFECoS4egsFgW0hlrlu3TqdS4n9qIWCRcDLJJ9NC5j48RZC1d2mTZuMAmazqZ9nhQl4RJD8RBx+EnEGqLSIRGZ7uGrVqvlZfGTLIsaCnD8NGzb03Ebuh1HyscSdSeJ3ngsDoufBKqAbWcX7TTDwVq1a6XcZVY9TYkS/60xWnjCBZOgEeI04BqJliXr1mu0vwOaEVjSMD2mHvD/pEC7EDz/8sE4UaLLEpvO83CsI5BoBVDy4gxIfECUSJhDiaJDjmzw7TGQEi7jFPYTYpNCruv/++7UXhJONJ1VjRo0apXr37q0zxWaSZypV+XJdEAgCAd5Xdg0L2sCbaduFCWSKXBrPLVq0SPt0s+JHAiBqMI4EBkRae0kR7oQPYnPfvn01hk6bcTs9I+cEgVwjEKaRN5O+ChPIBDUPz5DFdNasWdrNi1VAELpFD82I1C2k+0afnQ2xeRBBNtgIUBEJ5RcC5Aljjwr04dWrV8+vxhdoa4UJBDCwRAGS74jValxX/XZYmbgJcPIjFTc5mxYuXChMwA5yHvzGCQJ3SQ4kQjYPsm4ElQddKLgm+soEiNzlSEVMBE77xaZ6zut1Jl907mESyeLIdMr2ikxSRDIXCtEXJBvUMXgxGcLGQToP+2Y+Tv0mp5PbNpDYSJAQkJr4n/TT1InLLOVbN7ynbCYPmECcCPyNCowASQ6njLpRx8QaXEUfbrzxRjVy5EjtHhlFwm+/0Gmf4rDo5HHRaSBAlBtiOomRcIGyZvFkJYhnCKmDu3fvrhPCBUGswtmRirz/bH0YJDHhM/HDAHD7IhlU0HUG2R+nstmXgX4yOTdr1kxvC2lSdOClg3rGOpZM5ExYRHdb1TXkXaIcKxMx9Q0fPlzr+YmOJEW02WgeRtCtWze9A5k1nwrvGAkDyRYbR8pnF1HSv6Aa5VthL+qw8+TE8X1J1WdfJQF8lzGCsHk8ufedxDws5KlyaaRqtNt1Jh8YECtIxM4gJ+QNGzaoK664Qo0fP9514xS3dubTeRg7K3EOqGLFionmk7vGvlJiMmcj+k8++USv7o0Xz7Zt2xw9ehgzPIVMfhSYTZUqVfQqF2mOScI+USBFsqeDUP4hQGxIXJl3VEfLVyZAJ03WPTcPEFaHfOhBECqCsWPHqp49e2q1lN+bjrDKxdjLxIVKa8GCBb7ouIPAwq8yzf4NfLiEsxsbB/jCCK1ub/zmwB7Cpj7WXE87d+4sNZnTRiZ/k/MJxs37g8QBUZdTgi6xs5QeXaQj3n8YJJIUUlqug5BKt1LORBEB35kAK0d2+bL6caMPNhuwMBnYdwHzAxiiSdmUxtSLisavICwkF/z7mfhY+YZtb/ADn0zLgJEysaOSQZQ3RIxDjRo1SuilsREY/O0ZX4nyZXKyk5VRwzwgvKmSEcw4rlt6OuGCxw0qNZIoMvGzSIGxmt9Oz8g5QcAg4DsTQIds3fWJD58J1DCBZLtxZTosqH+WLVumevXqpYtADUTm0WwIaYWUDmvXrtUrWCb+TAKcsmlDVJ5dsWKFjvI1K3AmYXZJ6tq1q2aMYISaCGkBhoEaCEnQKg0y2bPSdyIWBqxg2ZgeNZDVr5pxtafroM64joUTfthksJGYlT/pR8ARaQCblZAgkAwB3/c1RE+MARjjDweifdDiOytU6+qRCQkddKaEFwYJ41i90gc+pjhPOjByq2THit/s4YD6BqaLgRhDH3/By64OhJE62YLA2aiDli5dqp8z7wtlO40j5fit6sv0XYnCcytXriwlXeOoMH36dE/eelHog7Qhdwj4KgmwCsSlD90xHzOrcSYM+4RguksEKQwD1Q2RoJkS4q9Vd8yEzerSTujzWeFT38CBA+2XtS4bSQY1EobNoJlXqQZE9AR6/wkTJuhVPl5e6J6Z7GEETNRGAkvWfAKDRo8eXeIWJAPGv0mTJtqG0L59ey1hoNoz74XTHsTov932o07WhkK8xrtPQj4mfSsZF2ywhDlHlZAieYd4F3jPWFDwG+keCTCMzaKiik1Y7fKVCaAnZvXMh2u8PWAEVuMhAwxTYDLBk4fVH7rLTIgXhVwyTPqoIAzt3r1bfxhWQrUzYMAArdueMmVKqepY/bNaZeUvVBIBJnxUekw4jCsMlIOx5CP1YoDEIQA1Eu+Dkaowrm/ZskWXy8oeOwJeSOi4mbjcdlRC8otj3iWn9xLsIHvcjcm06iRJOZWTi3OkU2HyRxLk3ahdu7b+RlEH1qlTRw0dOlQNGTIkF02LVZ2+MgHETyYM68eLd4n5zUAzmcAEMBaXL19ee5CgPsiE0EFjY7A/j3+5Xf+8ceNGPcnzcdjvp+44GXszwRp1kD1pm5uE51Z+8+bNFR++FWveDaudCF12shTTLB7YX9feFrc6C/18quDMoDzxssWVcSReaP369booFhJ8szAA3gHcy2WnwGxR9va8bzYBViS8kHBzK1kZAuoYdgJDp8sqkvvxJsr0RUWUdJrQsQlYPw5UC6gyTH2pPhxv0MldVgQYUyQ6mDvSlBPGSIgwgWyId6hfv37ZFCHPRgAB7ExTp05NSJG8N7wzLCJh8HPmzHF0KY5A0wuuCb4xASZzyClADLUNHz8r9Fq1amlOz0Cjc2d1blcnoNoh8jcZ4fVgjUi23ou6gdWiIURlVA+mPtH1J0M2s2uMI3p9bEAwAaeUBow5LrYwg0wYPyo7bE5IFEL/IgDuECtrK/HNQU7jUOLGHP3ge7SqiUkfgQrIPhfkqHmxqjZrdRCTO6tsY/TjIzX6eV5MdPO4/q1atUrnkTcvppUJWBFnhYAuEF0mOWnshiHqwzD54IMPqkcffbTEblzUjYoIgzPGw0mTJumVBUZjKxOI1QhHrLMsElAjwSzScRdG0kCqHDZsWMR6lNvmoD5hUYO0a92Zzkhi6arsctEbtAg4ZGAPMMQijwWDLNiCH5GsmQAGPbg3E64T4Wlj3DetHjxO93IOG8HmzZv1S0GuGTsxEcAcOOyGQ55lZVRUVJR4LKorIXu/4vTbyb6Qqv+Mq1n1pro3TteZJOvXr68XYlYmYOJboooZWoHBgwerxYsXaxUiVK9ePf0X54ExY8bo/EJCwSOQNRPgxQtib1wYgFPEb7INGjKZXIKHWGoQBIJFABdd7DFGTYZUsGbNGjVv3rxgK86idLPDHtoCpDzmEBNRjicfNgGhcBDYr1h/e0c4Vf1XC6t8XgLcNdFd1q1bt1QTli9f7ni+1I0eTiBu8pGwwuBFI/pVSBDIVwRwqmCFb6RcYjDKli2rZs6cqfCCwz5HDi1UoVEl1FR896h9cQ0mtmjdunU6Sy3uwfa4h6j2oxDa5Wsqab8AwSjMij8f9Jl+9VnKEQS8IoDNDdVqVFU9Xvsh90UDgazVQUF0wxpbEET5UqYgIAgIAoLAvwj45iLqJ6B2g6+fZUtZgoAgIAgIAv8hEEkmIAMkCAgCgoAgEA4CwgTCwVlqEQQEAUEgkggIE4jksEijBAFBQBAIBwFhAuHgLLUIAoKAIBBJBIQJRHJYpFGCgCAgCISDgDCBcHCWWgQBQUAQiCQCwgQiOSzSKEFAEBAEwkFAmEA4OEstgoAgIAhEEoH/A+y5WMhnsPX1AAAAAElFTkSuQmCC"
+    }
+   },
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "## Idealization of the pull-out problem\n",
+    "The one-dimensional idealization of the pull-out looks as follows\n",
+    "\n",
+    "![image.png](attachment:image.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Model parameters"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "The parameters and variables involved in the are grouped according geometry, material behavior, measured response, internal state and subsidiary integration parameters that will be resolved during the model derivation. In this classification we also associate the mathematical symbols with the Python variable name introduced in the next cell."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Geometrical variables:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `A_f` | $A_\\mathrm{f}$ |  Cross section area modulus of the reinforcement |\n",
+    "| `A_m` | $A_\\mathrm{m}$ |  Cross section area modulus of the matrix |\n",
+    "| `p_b` | $p_\\mathrm{b}$ |  Perimeter of the reinforcement                  |\n",
+    "| `L_b` | $L_\\mathrm{b}$ |  Length of the bond zone of the pulled-out bar   |\n",
+    "| `x`   | $x$            |  Longitudinal coordinate |\n",
+    "\n",
+    "**Material parameters:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `E_f`     | $E_\\mathrm{f}$ |  Young's modulus of the reinforcement |\n",
+    "| `E_m`     | $E_\\mathrm{m}$ |  Young's modulus of the matrix        |\n",
+    "| `MATS`    | $\\tau(s)$      |  Multi-linear bond-slip model         |\n",
+    "\n",
+    "(`MATS` is used to denote \"Material Time Stepper\" -- equivalent to user-subroutine in Abaqus, or user material in ATENA) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Control parameter:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `P` | $P$ | Pullout force |\n",
+    "| `w` | $w$ | pullout control  displacement\n",
+    "\n",
+    "**State parameter:**\n",
+    "\n",
+    "There are no state parameters included. \n",
+    "\n",
+    " - What is the consequence? The material has no memory.\n",
+    " - What happens upon unloading?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Let's import the packages:**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "import sympy as sp # symbolic algebra package\n",
+    "import numpy as np # numerical package\n",
+    "import matplotlib.pyplot as plt # plotting package\n",
+    "sp.init_printing() # enable nice formating of the derived expressions\n",
+    "import ipywidgets as ipw"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Numerical model of pull-out provided in BMCS Tool Suite \n",
+    "The presented function is the simplest model provided in a general-purpose nonlinear finite-element simulator `BMCS-Tool-Suite`. This code can be installed in your anaconda environment by issuing the installation command\n",
+    "\n",
+    "`pip install --upgrade bmcs`\n",
+    "\n",
+    "After the installation it should be possible to import the `PullOutModel` by issuing"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "metadata": {
+    "scrolled": true,
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{k_max} & k_{\\max} = 5 & \\textrm{[-]} & \\textrm{maximum number of iterations}  \\\\\n",
+       "                \\textrm{tolerance} & \\epsilon = 0.0001 & \\textrm{[-]} & \\textrm{required accuracy}  \\\\\n",
+       "                \\textrm{n_e_x} & n_\\mathrm{E} = 60 & \\textrm{[-]} & \\textrm{number of finite elements along the embedded length}  \\\\\n",
+       "                \\textrm{mats_eval_type} & \\textrm{multilinear} & & \\textrm{material model type}  \\\\\n",
+       "                \\textrm{control_variable} & \\textrm{u} & & \\textrm{displacement or force control: [u|f]}  \\\\\n",
+       "                \\textrm{w_max} & w_{\\max} = 1.0 & \\textrm{[mm]} & \\textrm{maximum pullout slip}  \\\\\n",
+       "                \\textrm{fixed_boundary} & \\textrm{non-loaded end (matrix)} & & \\textrm{which side of the specimen is fixed [non-loaded end [matrix], loaded end [matrix], non-loaded end [reinf]]}  \\\\\n",
+       "                \\hline\n",
+       "        \\textbf{loading_scenario} & \\textrm{LoadingScenario} & & \\textrm{object defining the loading scenario} \\\\\n",
+       "            \\textbf{cross_section} & \\textrm{CrossSection} & & \\textrm{cross section parameters} \\\\\n",
+       "            \\textbf{geometry} & \\textrm{Geometry} & & \\textrm{geometry parameters of the boundary value problem} \\\\\n",
+       "            \\textbf{mats_eval} & \\textrm{MATSBondSlipMultiLinear} & & \\textrm{material model of the interface} \\\\\n",
+       "            \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7fed81126470>"
+      ]
+     },
+     "execution_count": 40,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from bmcs.pullout.pullout_sim import PullOutModel\n",
+    "po = PullOutModel(n_e_x=60, k_max=5, w_max=1.0)\n",
+    "po"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{A_m} & A_\\mathrm{m} = 1.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area}  \\\\\n",
+       "                \\textrm{A_f} & A_\\mathrm{f} = 1.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area}  \\\\\n",
+       "                \\textrm{P_b} & p_\\mathrm{b} = 1.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.CrossSection at 0x7fed813c6bf0>"
+      ]
+     },
+     "execution_count": 41,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po.sim.tline.step = 0.05\n",
+    "po.fixed_boundary = 'loaded end (matrix)'\n",
+    "po.loading_scenario.trait_set(loading_type='cyclic',\n",
+    "                              amplitude_type='constant',\n",
+    "                              loading_range='non-symmetric'\n",
+    "                              )\n",
+    "po.loading_scenario.trait_set(number_of_cycles=1,\n",
+    "                              unloading_ratio=0.98,\n",
+    "                              )\n",
+    "po.geometry.trait_set(L_x=1.0)\n",
+    "po.cross_section.trait_set(A_f=1, P_b=1, A_m=1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Define the bond-slip law"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "Construct a figure to show the currently defined material model `mats` in graphic form. The data points of the bond slip law can be dfined as follows."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1065.75\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "po.mats_eval_type = 'multilinear'\n",
+    "po.mats_eval.trait_set(E_m=1, E_f=1)\n",
+    "po.mats_eval.bs_law.trait_set(\n",
+    "    xdata=[0, 0.1, 0.5, 1],\n",
+    "    ydata=[0., 1, 0.2, 0]\n",
+    ")\n",
+    "po.mats_eval.bs_law.replot()\n",
+    "fix, ax = plt.subplots(1,1, figsize=(8,3),tight_layout=True)\n",
+    "po.mats_eval.bs_law.plot(ax, color='green')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Run the simulation\n",
+    "The model object `po` contains the non-linear threaded simulator `sim` as its attribute. To be sure that the state arrays and history variables are zeroed and reset run the methods `stop` first. After that, the simulation can be started."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 56,
+   "metadata": {
+    "hide_input": false,
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1332.75\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d6c93d21dcf5451cb14996022bae7a59",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0), Output()), _dom_classes=('widget-inter…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a82cbaf97dba4466b8caab0fb6bd71b9",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatText(value=1.0, description='w_max'), FloatText(value=10.0, description='L_b'), Flo…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, ((ax_geo, ax_Pw, ax_G),\n",
+    "      (ax_eps, ax_s, ax_dG))= plt.subplots(2,3,figsize=(10,6),\n",
+    "                                   tight_layout=True)\n",
+    "\n",
+    "po.sim.stop()\n",
+    "po.sim.run()\n",
+    "\n",
+    "po.plot_geo(ax_geo, 0)\n",
+    "po.hist.plot_Pw(ax_Pw, 0)\n",
+    "po.plot_eps_p(ax_eps, 0)\n",
+    "po.plot_sig_p(ax_eps, 0)\n",
+    "po.plot_s(ax_s, 0)\n",
+    "po.mats_eval.bs_law.plot(ax_s)\n",
+    "ax_sf = ax_s.twinx()\n",
+    "po.plot_sf(ax_sf, 0)\n",
+    "\n",
+    "def update_state(t):\n",
+    "    ax_geo.clear()\n",
+    "    po.plot_geo(ax_geo,t)\n",
+    "    ax_Pw.clear()\n",
+    "    po.hist.plot_Pw(ax_Pw,t)\n",
+    "    ax_eps.clear()\n",
+    "    po.plot_eps_p(ax_eps, t)\n",
+    "    ax_s.clear()\n",
+    "    po.plot_s(ax_s, t)\n",
+    "    ax_sf.clear()\n",
+    "    po.plot_sf(ax_sf, t)\n",
+    "    ax_G.clear()\n",
+    "    po.hist.plot_G_t(ax_G,0.9)\n",
+    "    ax_dG.clear()\n",
+    "    po.hist.plot_dG_t(ax_dG,1)\n",
+    "\n",
+    "def update_material(w_max, L_b, A_f, A_m, E_f, E_m, k_max, step):\n",
+    "    po.w_max = w_max\n",
+    "    po.geometry.L_x = L_b\n",
+    "    po.cross_section.A_f = A_f\n",
+    "    po.cross_section.A_m = A_m\n",
+    "    po.mats_eval.E_f = E_f\n",
+    "    po.mats_eval.E_m = E_m\n",
+    "    po.k_max = k_max\n",
+    "    po.sim.tloop.k_max = k_max\n",
+    "    po.sim.tline.step = step\n",
+    "    po.sim.stop()\n",
+    "    po.sim.run()\n",
+    "    update_state(t_slider.value)\n",
+    "\n",
+    "t_slider = ipw.FloatSlider(value=0, min=0, max=1, step=0.1)\n",
+    "m_sliders = dict(w_max=ipw.FloatText(value=1),\n",
+    "                 L_b = ipw.FloatText(value=10),\n",
+    "                 A_m = ipw.FloatText(value=1),\n",
+    "                 A_f = ipw.FloatText(value=1),\n",
+    "                 E_m = ipw.FloatText(value=1),\n",
+    "                 E_f = ipw.FloatText(value=1),\n",
+    "                 k_max = ipw.IntSlider(value=100, min=10, max=1000, step=20, continuous_update=False), \n",
+    "                 step = ipw.FloatSlider(value=0.05, min=0.001, max=0.2, step=0.005, continuous_update=False))\n",
+    "ipw.interact(update_state, t=t_slider);\n",
+    "ipw.interact(update_material, **m_sliders );"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Rendering individual outputs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 57,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1065.75\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, ax = plt.subplots(1,1, figsize=(8,3),tight_layout=True)\n",
+    "po.hist.plot_Pw(ax,1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "All plot functions accept the scalar parameter between the start and end state in the range (0,1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 58,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1065.75\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAAVCAYAAAD2D7+zAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAN6ElEQVR4Ae2d4ZEUtxLHhysCOOMIHmRgjgyODABHgMnAr/gE3yg7g2ciADsD7AjAZGAcAefNgPf/adUqjVYzau3N3q256SqNNJpWq/uvVkua2YNbX758GXJ6+fLlXaVPed1aXhFYEVgRWBFYEbjJCNTWxpMcEDH8qPvv8rqvqRwB+EH56ZxdXj5k9PDO9XlMz2TTjg+o7hRb99XzEDK9unj6xjalpm94+1z5VgRA4FB+JbmLztHr1PM6++70UmIEa2Si21bSg0cqf6v8Z6tbMpdcBvxXpfsqb7yyxUvQfhb5Wfi4/0n1v8e6kOmeZ8+VPit9q8T9rwUfOvyPpHplO7RR/Teq9fIhoId3kHz6N7qjwlPVNfEQD/08U25YmIxRPsWnenD7b2Q+U37Bveo/xro8+0P14GfPKEP3t9n2egiZSJbcJkaxb8MC/ap+sdV08NjTNY5R7lFlwgQbmnNMfD8Vir9RnY118Wj/26wf5uQ9Jeat++2WeJt+YNplfVnVrE3ib86nlkw9x++eKy0Rc0zvIet3DjePTweZkufB0e3/krd0LHH3jUFOfGB1YRTtacYS8f2u9J3SI6Xf6CAsoLoJjqB8FCBhuAxFua8lg2BN0AZ4N8X2BHkzblD5Bwl4p/yxUjAiCmRyJj7qdM8CysnJ+B6omkDBJEannM51YwuMl4/2Ll70EO+fSizeYZOiHMf5WzmbilZgITB6gtwOn2Tb4vJYMgKpjiD6p/KHSqPNiOrBhoR+6AV+r8S3UR5I5UPIdGGkvuHz+gX6Nu0Rj2scEXZMFLFwzbE4Zu+kPxuxMObK8RcSC9xiJLn4Oj4T5p7yMLbK8bdZXzdetW/OFfHih/vYtDNPzPgOmUvGnNC9+vbi1vTpHhzVucv/IzbYvVgs8fYNQOrXiw/sXozcsUT9/4wOSiymGzuBEkzzXQqdX5roQEIC0Crv83qYxZLXaiyYtgi+VR26svOzyQkfwJb0VBV/KFlbFtOdTYLqwsKe9eHloz8vL0HujvpIJ3yVPyp9UD0L92jx130i8YxeG6QHRWGGj/EFi0TixWnAjUDCqTsn9EoTJH+QlQ8h04uRyy8yXT32eMcxE3v9RY1TzxxjrJn4+YaJhW12Qeu1MvoVeNq8G1TexHvm7sOGTK8fIKbbJunRmk9NmZKxdMwZokwvbh6f7sHR6/+HmPeuvjvxwTc8GPXGEuTiw+Dw7IQ70RMp98u2eFTXj9KGAEEKJD1T2eqUs3tuBXzY33GpULmT9PIhysvLK/JaoMJGBrFKspdT4AiDGmODj9P1P+I5LdoSSHHesIEonrVuDyHTi5HXL1o25M+945i3+deUNcZgiy/ZW5agu+o5EbYWtF47mYuMUUnvVXGu/ko/LPlcfrCPTWozO586ZC4dc8DgsrjthWNs5PX/Q8x7b99L44Pp3bFEPsJayZp5eqILgNQCO8KvlaQbu+VvyE0RlZlcELsAIwaAiclJNZ+c7BISn56lHbE1VB08r+ye3Mvn5ZU80+ki7yeWP0c5TOwafa/2ns3NHB/4fZKcTa0D1Zl+E4+r1YvK7MFIvF6/qCpeq5RMl2/U2v5L6p5Lz82MDyxpBjGl5uvmfzyvUo8fSMA+Ns3NE3Tyylw05kQw9sYttk9ZJ46D+L3+v+i8R+GOvhfDx4BS3/vGEtbMJ7d1YVVPC5QJPsZcxgJgODqrnBaVCAIOwOLKSYtdNjvE/NWvbsckPk5efBQe7crHXGGAXXy0q8lUHYGLx3e4FMQPnqCdZ2rDq6a0AQhclUuLT88Z4xqFRVvPd04LquNUbAsrWPI9KvEtLVPy9sIIo9S26hc8MxLPrD3GZ7n4Z8dcz8GGYBs2QMrBiNfitkjo9qiIseaVFvn3SuiNzuUP7VS1P0VcWgJ2fN0agJ8StzWecq502SS5nvnkkilZBN7FYo5k2VwzKGr5CBO1mfRpPevBcacvta/6v+oXjyVl57W+VdeND3LVbhKjst/I34wlsR1r5sMTXc6U/oqVR5kJBBY5nJ/vhATxD6Wies7A2vdFFlnsSgG/5I/38JFa5OVDzhQvkw2nLIkJC42eyR7umQSzbwe8fKGH7KJ29Esftc0DzvpWPHwwB1Ns4sM5zjVJC8jsxajpF1HZfeyZGsch4sA39zcqG0ZsdFhQj46kYx58znTPQo/ezCcWUHurs4TuFuQ3FWEXsS7Xp8I2NP1AOucymjaJvzmf9pC5ZMzpxQ37W3O0iWMN/Fg36f9lG+G2dCyp9d2LD2p6MArmYIPS7BpT2M2aefckdmKOXfAcx60MY+fMhMdh3ygRzEeTPrtnV83ugEH9S/XVoK96JhQ/R549fXv5JGto8IYf8Ygn6aMyOm5oKyrHgF9KplP2lqV69fKVjfmhxC/qwzYd6bnq+C5meg0qs4iDU+s0fFmZXRhJr6ZfYJT4uuwR/6RvxGe8vuO7eb5BY1ynvuWgxjEQQaL0qbdS7LXqCTZXRXaSnOqvxw+8NvXME5dMYWYxaNGYMwWK6hNu6tvj0z04pm4le9L/E9O4cNl5n6Tt0Xdqq0LCh0onRqG9eF2xJDBvL8Tr09u6sLKnYLl9tr1KKJOKX7H2TC7+vCQPLLnIS5cl+zcl9GXnzPdRTmkc0/lTEPslK86FczOw8P1HqbTRTrNimSUvH0ImeekfPcRD4GXhZLDfx4Su6aSp59jTWqwGL59kjUjtkM0rKMNr9HziBv3O1ab6L1UtIVMy3BiVOqrtjl+UPMX9nD2T4ygZNi6n6pMdq01aPhfMbsboXzxXPqfUJ7jSffIxbiJxksbfzpSa+sc2c1m5Ecx5iTWQvfbe3hXXqO/sXOmxSbze+eTGKcpcMuZcGjfBOPJpD44F9HY75//GE3L1sXQsmep7CXzQeYTRyJh4I5s8sQQ5d1lAJ4kB0MP7kwwHfqD+WWgG5eWC/EHV7PhJvKbgyM+ES6Q2gMDOkKO28aXnKowWrfxBUfby0WyWV/qA52jRUp0F5BDcdM/uj+Ac7hFaIy9f2VbtCCaD8pEexqd6TlF3lE+NOwvAiMS7mEzJ8mDk9YtB8rrtkXFz4xh8SXJ3Tu4jUCZuon1T2E60WqQafwLbKcLvLk3Yp4ScHT/J6mZ9m8YRp5GPqm40V8TWtEltXPOJPiM1ZUa+RWMO9iohuomb+Nw+jVzJbOFIvznN+X/ik+zF5n0SOjH3sEMJtiY+MInXhZH43LEEuRmxGdzc1gWHqSmV8V59UYahE7tjwAgnzZoWkY8FB0cZker45SkLLMYmim2YWOXCnHgoePl6eUedxJ2/+jL90euB7jk958RAc/qjnjHDQZp84k/fOFVmYtxTniaUyiFwKkcmdKZU2+0FDMU3wkz3i8sMWowv6MSJmUnk8ousea89yG/5hmGVdXP0RXQOYz2h6ZI2cZKt9WXzcN+TbvKDaIPHJvTomSdNmdEHDxFzvLh1+XRlvEscE0u0reX/g/geqdHSsaQ197z4YE8To2hrc41J4IwL6HrBAkqwrDn7mP2K72QcwXKjbkPgLLoHHMiCKrzVV4viwdBywlr72kKBXCMvH/yzvNLvkXheK6XXyeisexbGdCJRHbqW+g6q/4d65fmv4Lx8tKcfAklaUHUPoVf+XYzvoiUPfOdKo/6Wlil5TYzE4/ILFI7ktifyz46jeCYXGvRXYsN2jMSJiU1XSfgemKaxVflUibm3L7HJo7+S6ItvTbOy9bzpB1Gw16ZkmymkPmrziccumdigtHTM8eLm8ukOHA0W8pb/D5K7eCyJCrT69uKDuCZGsqM3lkQ1Q8Zm8NOJLpwoHoSqa7rIECbsF6WwG8jUIJCPJr14mFwsivwowCYiiwrfOqlPpHteMfBtqgx6xmftU5ui4OWjWYuXxbJcsHklhR2MQYuQb33M8e7wST5943zgzJ+jWKIuxxG54RkFI/HzrQ9Ki/chZEq+FyOvX6Czyx4YIxnGG6socgIsm4lEwiLgqgrPOKZ2V1mQjiwibMDSwobeqnuiFH5sgj6xjj8FK+cij12ktmzILpQzVwNFuTt9qb42711+oLYum0yHIt+ZJzzvkLl4zFHfLtykptenXThWcKGq6v/ScfFYkvXPmEBTfXvxQYYXo55YglwjNoPvbr148YJgQGd8L1ycJDcEbglmdwFALGYEmvd6lr4jqcy3SiZ4er2o+0H36JcCt8oMID/EGe0qdc+u6LlSvkixqI749HxQHTIIEE9VnjwxePm8MiUvBS+1AYuqfsgzUhsWWbDDPgh72BQk7Kic49MzbLX2sOfEiSCdgHmge/CxUyg7LTAd/Y3jIWSqD/p2YSQ+l19EmU174IMkt+kb4rEfD33etgrtRuNh9VeRSx/XHEMX8YKvBSrG9pXqRgu/7pmLUNd//LBtsr1KBn0wHw2jBypP9VWb9y4/oDf11bQJPki83vnUlClZzKmlY44XN5dPR2yC7bo0Y474Z/1fzxePJaZcq2/4xOPCJ/J6MXLHkkxX5sjDW/x/oFKKm8fKRxPJmNd8RWBF4GYhoFjA6ZGFbXOzLF+tXRGYR0BzgoWZQ8y9k8jKbmt08psXsT5dEVgR+MoR4Hv5unh+5YO8mrcXArydC29IwgKqicK7ZT6Is7KutCKwInCDEVAc4DWZvXq9wUispq8IjBGIayRrJWvmYCdQynxn5PvASisCKwI3GwH+p4lr+6Z7s6FfrT9yBFgj029ywjdQUziurue2ulr9mq8IrAisCKwIrAjcZAS0LvJXHfwuIP1Vx/8B/VQtLPQwWo0AAAAASUVORK5CYII=\n",
+      "text/latex": [
+       "$\\displaystyle \\left( -1.3877794425259357e-16, \\  0.9646870597257053\\right)$"
+      ],
+      "text/plain": [
+       "(-1.3877794425259357e-16, 0.9646870597257053)"
+      ]
+     },
+     "execution_count": 58,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "fix, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.plot_eps_p(ax1, 0.2)\n",
+    "po.plot_s(ax2, 0.2)\n",
+    "ax22 = ax2.twinx()\n",
+    "po.plot_sf(ax22, 0.2)\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "To use the plots of the simulations in documents, the diagrams of the above simulation\n",
+    "are replotted here with the goal to show the code snippets producing individual diagrams."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"1065.75\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.hist.plot_G_t(ax1,0.9)\n",
+    "po.hist.plot_dG_t(ax2,1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {
+    "height": "calc(100% - 180px)",
+    "left": "10px",
+    "top": "150px",
+    "width": "203.5px"
+   },
+   "toc_section_display": true,
+   "toc_window_display": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/bmcs_course/PullOut-InteractiveApp.ipynb b/bmcs_course/PullOut-InteractiveApp.ipynb
new file mode 100644
index 0000000..a651a73
--- /dev/null
+++ b/bmcs_course/PullOut-InteractiveApp.ipynb
@@ -0,0 +1,618 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Seminar work\n",
+    "# Adjust to the material parameters in the PO-LF-LM-EL-SH app\n",
+    "\n",
+    "\n",
+    "@author: rosoba"
+   ]
+  },
+  {
+   "attachments": {
+    "image.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAABnCAYAAADmM/4PAAAABHNCSVQICAgIfAhkiAAAH+JJREFUeF7tnQm0VdMfx7cpKtMKUSHzSqUkylT9F1ZFk1qtZkMStaRoVBSeUCpllSkJTUSqpcJKxiYKGSpSCqEkQxkS0v99trWv8847595z7z3n3HPv+f3WOuu9e4Y9fPc5+7d/495nbzEpIUFAEBAEBIFYIrBvLHstnRYEBAFBQBDQCAgTkBdBEBAEBIEYIyBMIMaDL10XBAQBQUCYgLwDgoAgIAjEGIH9Y9x36boPCOzcuVPNnj1bl3TMMceoH3/8Uf3555+qcuXKqnHjxj7UIEVEEYE33nhDffHFF+rwww9XZcqUUdu2bZMxj+JAeWiTSAIeQJJb3BEoV66c+t///qcWLFigLr30Uj0h8PvMM890f0iu5D0CNWvWVFu3blWtW7dWEyZMUPXq1ZMxz9NRFUkgTwcuKs3ef//91ZFHHqnmz5+vTjjhBNW2bduoNE3aESACjPnPP/+sa2jXrp2qXr16gLVJ0UEiIJJAkOjGpOzVq1erP/74Q9WuXTsmPZZugsAHH3yggRCpL7/fB2EC+T1+kWi9TAaRGIbQG/Hhhx9qm0C1atVCr1sq9A8BYQL+YRnbkjASQtgChOKBwKeffqptAn369FEHHXRQPDpdoL0UJlCgAxtmt1gRQqIWCBP13NZlpL+rr746tw2R2rNGQJhA1hDGu4Bff/1VbdiwQUsBqAbcaMaMGapBgwZul+V8niEAE8ARgCMZbd++XfXu3Vv16tVLj//ff/+d7Ha5lgMEhAnkAPRCqnLJkiX6w7799tsdu2VURZ06dVIwDKHCQGDhwoWqUaNGjp35+uuv1bfffquvdezYUcePFBUVqVGjRim8yYSihYAwgWiNR961hkme1aCTPYAAIqQEO7E6JMhMKD8RYExRATqNOT169tln9cQPcS+xJBUqVFDnnntufna4wFstbLnABzjo7qEWcHMNnThxourQoUOiCUgM6JArVaqkMCw2adJE9ejRI+gmSvk+IzBt2jT1zz//ONqAiB347LPP1L777qvGjRunYwlefvllrSoU+4HPA+FXcewnICQIZIpA8Ypvb7EqqNTjixcv3lscRbp3z549iWvcu2nTJv2b88XRpnvHjh1b6lk5EV0EGLdTTjllb7FH0N5du3aVaChjXhxJvHfq1KmJ88VSooxxdIdTt0wkAb+4aYzKYXU3adIknTsG90D+3nHHHRoBcgetX79erwa7d++uV4SGuNcYEjl/2WWX6Xu6dOmio46Foo3ACy+8oLAFINERGzBixIhEg9euXavee+89rfq5/PLLo90RaV0JBIQJyAuRNgKI9v3799fPkTcmUzJGQjEWZopguM+1bNlScWQz5uG2WGrzgoAYhr2gJPf4ggDZRU2+GQp87bXX1KBBg5K6lvpSsRQiCAgCrgiIJOAKjVzwGwGiS+fOnatVSKiN2rRpI6oDv0GOUHmoj6pWraqdAFAXSZK5CA2OpSn7YBiIZtOi3yomNNF/Rn+cCq2FeOZYbS3o6PHAad68eaF1Nef9Ibbl4IMPTrQD+xd4FxvHc942vxog6iCPSD755JMl7sQ/PlmErMdi5TZBIG0E8MMnIMsQRvqzzz477XLkgdQIjB49usRNzAOFxADonDCB1O+BvoMVgCGzq5JbsIzHIuU2QSAjBEjbzWqU45FHHtEeVyY4K6MC5SFPCMAACjHWQWwCnob/v5t4EfjoCvFlSBMKuT2HCMAA8NIhGE8YQLADwQLQMADj4hxsjeGWLkwgDbyTpUhIoxi5VRDIGoHJkyfrxGzCALKGMmUBMAATB5Py5jy8QQzDLoNm8qWby7wI2ADEEOwCmJwODYE5c+boRGwtWrQIrc64VsTkj9RvlQDwbiukPEhiE3B5u63+7EgA5MgRBuAClpwOBQFUQBiBMQqfc845odQZ10qMCghJy64CIt6FsSgU8qwOIlzcpIdN1vnifDGh+gMzGEzObHTuJxlOjwRgDMBiCPYTYSkrHQSMDQBvFdxBeT/tk1M65cm97gjAAAwTQBIo9O/esyRQsWJFxYq4a9eu2kjCC2gO8r48//zz+hq6yjBp+PDhasGCBYHkqhcbQJgjKXUlQwAJQIzAyRDy75oxAvtXYrRL8iwJsHWg2VD6uuuuK8UdSQbWt29fBbMIi9599101ffp0XR0RqNagjmzbYNxAxQsoWyTl+WwQMCogFlxiBM4GSW/Pxo0BgIpnSYCbmRihiy66SP+1EhGMqGWOP/54+6VAfhM1iYrqrrvu0uV7UVV5bYjppzAAr4jJfUEhwKTEd9W0adOgqpByixHABmhUP3FTs3mWBHhT2E3IviJBP2le0K1bt4a2Wlm2bJnC/mBSEFsNudm+1YWuA8wWH3k+PASuvfba8CqLcU14/hWyG2iyofUsCTDBc3Tu3DlRHlvHPfPMM4nfrFjCcp1atGiRlkhQUSGFoA4SEgQEAUFAEEgPAc+SgFGRoHdHRDUh61YmgP9sGPTiiy9qmwSTP3VWrlzZV3VQGH2QOgQBQUAQiAICaTGBRo0aqVtuuUXvL4oL1YoVK0JPpkRWvyVLlqh77rkngV+VKlUUm5oLCQKCgCAgCKSHgGcmgD2gfv36unRW4CeddFKJeAAkg9WrVztuPp1ek5LfzXaEZL+26u927NghTCA5bHJVEBAEBAFHBDwxATPB9+zZs0QhbApiaMqUKeq0005zrMSvk3gD1ahRQ1144YUlikQy8NMw7Fd7pRxBQBAQBKKOgCcmwAofNUzjxo1L9Me4g/7+++8KI/E111wTWH8J1cYuYVUDmcqwEbz11luB1S0FCwKCgCAQJgKo27NxVSX3GXElXvY88cQEyJtDgW7BKhMnTtTumpkSUb81a9ZMmpuHrersTMjUV65cOfXDDz9kWr3n57CJCAkCuUYA+5dsIpPrUQiufvaLGDdunD4yJRjIbbfdpuyb4jiVl5QJ4BKKmmXWrFmaAcCdrPTRRx+p2bNnq9dff12tWbNGu5CyyQV7iR566KH698aNGxURxkT3IjHwTFFRkSpTpowuClUTAV+s9D///HNta7ASz2OApkOonKyEdLJ9+3b12WefaZsAEsuxxx6ruR9h9iNHjlS33nqrjiSmDALKevXqpf+yyTnnYUD0ES+jVBHHJjCtRCPkhyAQMgIzZ87U3xYLJ6FoIsC8xH4P77//vtq5c6dWYZP5FcKmylxIKnA8G+1000036ewL2RDzGQsFdqFr165d0qKSMoG3335bT5Bt27bVhRg3UWuJuGoSWcsEytGwYUOFZDBjxgzdWbyJRowYoQExZaC+MRk5AWbVqlWKc4gwdibA5A1nhAlYt9SjLCZzgsaQEDhgNDAGYhUIsrn77rv1PUOGDNGiFZkXqZf+AP55552nunTpovtIX3kWot2outhGrlatWpqhQTAYIUEg1wgcdthhuW6C1J8CAYJYhw0bpo4++mh1ySWX6MWmlaZNm6YdbRYvXpxQ++B1yYKZeccP+yq5ppjrWJQnWzAkZQKZpE5mAqUT/IXgSNY9OVHd2I24NLJfv356QrYTHXEjgEoFlsl3ZLiwaYuJaUASgUtbjc0MxldffaXtHEgUcHIY4E8//aQZAS6p1FuhQgW3psl5QUAQiDkCaD2QCAYNGlQKCVbpLGrHjBmjxo8fr6+jcSER5/r160vdn+kJFugsdr/88kvX+SopE8i0YjPhmuftv+3lIgE0adLE1eZgvz+d34YZpfsMkgMHXBzCJfXKK6/UEsM777yjhg4dqg488EDVqVMnLf2IlJAOwnKvIFD4CGBLRTVN8k07GdX6EUcckbiE3ZNJ26TCsT+TyW8Wt2g4UH8bjY69HN+ZAKtoDkP23/YG8BsmgK7eT6JeOm9UPKz4IfMbFRNk/nqtG1UTR58+fdT333+vPv74Y/XKK69oacEQ6qPTTz89YRvxWnZc79u1a5cqW7as5+6ne7/nguVGQcBHBGACuLQ7EZPyGWecofr375+4vHTpUjV16tRStzNnYXslNQ6LTpOpmbkLm8P555+vnyGPG0zHmrqH36jscaMPhQmgPmGlTOPWrl2rG83kC9cDEIzBHIhB3GtUM5monUohZTtBaotRo0bp+qkP28ETTzyRqBf7Ab8xJmea7+ioo45yzKgKQ6D/iHZW5oBxvWrVqurkk09WPBt32rRpk/aAQBWYTvZZxvSpp55SV111VdwhlP5HGAFUyHaPRlTh2EtRFRH3ZJxRUBsx2dtjoOgeqXmQELBpMm8a++rcuXO1CskwAeY85l7OW6lbt27qoYceckXKV0mASR0jrJXsnbrvvvtcG+PnBXvMApZ4K/kteVjLRhIwEoP1PAZw4hkwEu3evVs1b95cG4cyZUJ+4pWLsnBfQ82WLkM85JBDtGEfJj9gwIBcNF3qFASSIsBCBY/J3377Ta1cuVLfi8YDGyWqb1btVoIJOHknwhiwX1IeC+lWrVolHuO31VWYOQ3vTDuhqt6yZYv9dOK3r0zAtRa5oBGoU6eOPlAlISXh2vrNN9+oBx54IIEQL0Lt2rUL3g8cry+M6+kyAAPUxRdfrCU5ROgLLrhA3jBBIFIIoGFg4mbXw1TOKzSc+cApsAsmQLZkvCchNu8yhCrI6krKwuiss84qhQNMwO6MY71JmEApyMI5gWeRkwTwyy+/qM2bN4fTiBzWghrIiLWZNAOD/2OPPaZtScIEMkFQngkSAVRBGHi9MADaQZyUE5kAXWKk0KqYoFwm9eXLl5dQH7GotKufKBPHHBOX5VTHv36cTlfkXE4QQNWBy2wh07x587QhOFsX2/Llyyu8K1CzCQkCUUIAJoBrplfC2GucVpyeISAX25kh4gzwXrSqkNwCCLHJJvM4EibghHjMz2HMRgTFE8G+Wc/8+fOzRufpp59OBMg4FTZw4EC9ujf5oLChYD9xmuyxQ6EbFRIEooQAWZfTWczhGIFdwI2QFKyuptgbrO6lPOdkU+A8tohKlSq5FZ3eHsOupciFgkIA74XnnntOB8fhfWAIz6/Bgwdn1VcMZXhm4SVlJxgO9hGivfFwgBlQX7NmzfSqCmO/cfU1z1IOHhNCgkBUEMAdk2BTr6og2s0ETiAttgQnqlu3buJb5B5ilEizgzcQizZcTd3yt2GXsAbs2ssXm4AdkZj/5uXlheHFQsdonXRxQXMyPKUDGYbwPXv2OKqCXn31VW00h4jz2G+//XTkOcZ00n/gVWEPPMSYZk8nkk575F5BwC8EyF9mDLiPP/64Lha1EH76XqhFixbac9C6W6N5jjgBFmd8g9gJsKkRvMpvvBHxsnOSBGgT0juMwI2ECbghE9PzJriElw4yek1cWgmK69ixY1bIGPUSKxk7MckbYtJHx3niiSfqU0gDTsSLH0YGWae65ZwgYEUAvT7+/JkSKk8YARO8PWMzZZNYzkosyFItymBKuJg6GYxNWWITyHTECvQ5VhWstklshThrIh6RCiCiHLMhjLluZBL1cZ1gO8ieUND+LJJKOtHG9ufltyAQFQRIUcNCiPQRfhGRyXzLdgnaWr4wAb/QLrByyI9EBljjWoYeH8Jga9Qv2AjQ3X/33Xc6Nwlpa1EnMTEjBiO+klrDSmaFQ+qHZIReFXWQYToEu9iN1DyPR4V91ZSsXLkmCEQVAVbsqG6IofFDxQkzQbpItfdEzpkAHUa3hd7MfrRs2dLTeE2ePFmnmgZAIvHQk+FChWjmB5ieGlFAN+GJwORq9b9/6aWXdHQzgSfo7iF09Uz8ZCjEm4h0tWCOVw+h7ORPshuSCQ5j0raPCwbjO++8U0/01E8d5EE3wWSItVZJwcCN2kiYQAG9fDHvCit24meMbSFTODAeY1dLtZcA5efcJnD99ddrYyA+r0ziMAJj4HCKoLODgnWczmLMRF+NV4vRy5FSgAmC/QyEvCPA6h+vG5LjMdETlUsQGysKJusDDjhAF4Zen80xjF6SSZrfMASICRy9vp14Me0Bcbh5Tp8+Xd188806/xTucNQJIU0QDekk0rLp0KmnnmqvQn4LAnmLABIB+wpkQyzIku0hYC07p5IA4gougUzaTP54giC+GInAKQWrHRgmeFadMAOYQNOmTRO3EJFL4jih9BFgL2cCVDAQ//XXX3p1QsAJgV6MkSHc2qyTc7KgFPMMTADpwUowEnaBQw2FEfree+/VNgl20UIVZTUaW5/DVkFiLSFBQBDIDIGcSgJWdQ96ZLuKwEuXSBvAxENiOmteDZ5ldenkj27KJZKOAymEQ+g/BEyeIysmxn0zW5wIXMHgi58zGVUhjLv2rKA33HBD0qqQVJBGjAdR0pvloiAgCDgikFMmYG0RK81MdLtm5fnmm2/q7dwMESXHBN+6dWvHjnPSqJswYnKvExHJx8F19NXZpjpwqiNfz4E5OUxQ4yEdYAsgBoAU2iR4M3pNfuP6Zs1fgtqHjIes/jMhVEQEkzllTcykPHlGEIgrApFhAqiFnLZh8zIwTETonq3uhOiVoWSGEeMTn6wOvFQ4YALt27fXemrqQVWFugljqZPPe7IyC+Vao0aNFIch0kxwGEKv6abbJOQd/FH/gGG6RAZREsjJjm7pIif3CwIlEYgEE2CDBSZZN59wdMJ4+xAV52QsRu1jfxavFZiKWyi11xfB7D+MzQEvJgyjpFOA6aC+Yg9ieyoDymaDadQeGEfN4bXOuNyHLYg8QuCUzqYyBIcRxCYMIC5vSn73E29F5ih29rLvrxKFnkWCCeDWiXHRLfqN6xgI8U5x2owedQ7+5IRbo1LCZ53oumRRcpmCT7ATBxNQMv9bfOdxXyRNAi+A3V+e+lEtde7cWRvE40jgSJ6gdAkpokGDBuk+JvcLAjlBgAUumg4OPH9wve7QoYNiR0UvjhRBNzoSTACDLp4gboAQA8BBOLUTMcn26NFDc1mkhqKiIqfbQj2HJMAhJAgIAoKAQQCNAjEwHNjFWNSiscilY0okmIAXn1YiUd2AMmlbiS/AvTQoSrZPZ1B1SrmCgB0BdpRC0sRWJRQsAkGmKScgE8cGgl1xpMB+yfzlNs8F1dNIMAEvncPzxMnIS9oCDMPp6JS91Od0D2onIUEg1whgE0G9yOJHKFgE9u7dm7QCL4tON89DUzAR8kTkc0AwAdTExh7plB00aaPSvJgXTIDNFjDw2rdII9gMTo3/OnlqrJ4paeIgtwsCgoAgkDYC9qBHpwJ27NjhdNr1HEyDBScOJzCAoI3JecEEsBU42QsINvOaX8gVcY8XjjvuOI93ym2CgCAQFwQ2bdqUsqt4NZIXKxXhHIMHEYtap/3HUz2f6fW8YAKZds7P50iGxu4+QRABVuh5yYFECoS4egsFgW0hlrlu3TqdS4n9qIWCRcDLJJ9NC5j48RZC1d2mTZuMAmazqZ9nhQl4RJD8RBx+EnEGqLSIRGZ7uGrVqvlZfGTLIsaCnD8NGzb03Ebuh1HyscSdSeJ3ngsDoufBKqAbWcX7TTDwVq1a6XcZVY9TYkS/60xWnjCBZOgEeI04BqJliXr1mu0vwOaEVjSMD2mHvD/pEC7EDz/8sE4UaLLEpvO83CsI5BoBVDy4gxIfECUSJhDiaJDjmzw7TGQEi7jFPYTYpNCruv/++7UXhJONJ1VjRo0apXr37q0zxWaSZypV+XJdEAgCAd5Xdg0L2sCbaduFCWSKXBrPLVq0SPt0s+JHAiBqMI4EBkRae0kR7oQPYnPfvn01hk6bcTs9I+cEgVwjEKaRN5O+ChPIBDUPz5DFdNasWdrNi1VAELpFD82I1C2k+0afnQ2xeRBBNtgIUBEJ5RcC5Aljjwr04dWrV8+vxhdoa4UJBDCwRAGS74jValxX/XZYmbgJcPIjFTc5mxYuXChMwA5yHvzGCQJ3SQ4kQjYPsm4ElQddKLgm+soEiNzlSEVMBE77xaZ6zut1Jl907mESyeLIdMr2ikxSRDIXCtEXJBvUMXgxGcLGQToP+2Y+Tv0mp5PbNpDYSJAQkJr4n/TT1InLLOVbN7ynbCYPmECcCPyNCowASQ6njLpRx8QaXEUfbrzxRjVy5EjtHhlFwm+/0Gmf4rDo5HHRaSBAlBtiOomRcIGyZvFkJYhnCKmDu3fvrhPCBUGswtmRirz/bH0YJDHhM/HDAHD7IhlU0HUG2R+nstmXgX4yOTdr1kxvC2lSdOClg3rGOpZM5ExYRHdb1TXkXaIcKxMx9Q0fPlzr+YmOJEW02WgeRtCtWze9A5k1nwrvGAkDyRYbR8pnF1HSv6Aa5VthL+qw8+TE8X1J1WdfJQF8lzGCsHk8ufedxDws5KlyaaRqtNt1Jh8YECtIxM4gJ+QNGzaoK664Qo0fP9514xS3dubTeRg7K3EOqGLFionmk7vGvlJiMmcj+k8++USv7o0Xz7Zt2xw9ehgzPIVMfhSYTZUqVfQqF2mOScI+USBFsqeDUP4hQGxIXJl3VEfLVyZAJ03WPTcPEFaHfOhBECqCsWPHqp49e2q1lN+bjrDKxdjLxIVKa8GCBb7ouIPAwq8yzf4NfLiEsxsbB/jCCK1ub/zmwB7Cpj7WXE87d+4sNZnTRiZ/k/MJxs37g8QBUZdTgi6xs5QeXaQj3n8YJJIUUlqug5BKt1LORBEB35kAK0d2+bL6caMPNhuwMBnYdwHzAxiiSdmUxtSLisavICwkF/z7mfhY+YZtb/ADn0zLgJEysaOSQZQ3RIxDjRo1SuilsREY/O0ZX4nyZXKyk5VRwzwgvKmSEcw4rlt6OuGCxw0qNZIoMvGzSIGxmt9Oz8g5QcAg4DsTQIds3fWJD58J1DCBZLtxZTosqH+WLVumevXqpYtADUTm0WwIaYWUDmvXrtUrWCb+TAKcsmlDVJ5dsWKFjvI1K3AmYXZJ6tq1q2aMYISaCGkBhoEaCEnQKg0y2bPSdyIWBqxg2ZgeNZDVr5pxtafroM64joUTfthksJGYlT/pR8ARaQCblZAgkAwB3/c1RE+MARjjDweifdDiOytU6+qRCQkddKaEFwYJ41i90gc+pjhPOjByq2THit/s4YD6BqaLgRhDH3/By64OhJE62YLA2aiDli5dqp8z7wtlO40j5fit6sv0XYnCcytXriwlXeOoMH36dE/eelHog7Qhdwj4KgmwCsSlD90xHzOrcSYM+4RguksEKQwD1Q2RoJkS4q9Vd8yEzerSTujzWeFT38CBA+2XtS4bSQY1EobNoJlXqQZE9AR6/wkTJuhVPl5e6J6Z7GEETNRGAkvWfAKDRo8eXeIWJAPGv0mTJtqG0L59ey1hoNoz74XTHsTov932o07WhkK8xrtPQj4mfSsZF2ywhDlHlZAieYd4F3jPWFDwG+keCTCMzaKiik1Y7fKVCaAnZvXMh2u8PWAEVuMhAwxTYDLBk4fVH7rLTIgXhVwyTPqoIAzt3r1bfxhWQrUzYMAArdueMmVKqepY/bNaZeUvVBIBJnxUekw4jCsMlIOx5CP1YoDEIQA1Eu+Dkaowrm/ZskWXy8oeOwJeSOi4mbjcdlRC8otj3iWn9xLsIHvcjcm06iRJOZWTi3OkU2HyRxLk3ahdu7b+RlEH1qlTRw0dOlQNGTIkF02LVZ2+MgHETyYM68eLd4n5zUAzmcAEMBaXL19ee5CgPsiE0EFjY7A/j3+5Xf+8ceNGPcnzcdjvp+44GXszwRp1kD1pm5uE51Z+8+bNFR++FWveDaudCF12shTTLB7YX9feFrc6C/18quDMoDzxssWVcSReaP369booFhJ8szAA3gHcy2WnwGxR9va8bzYBViS8kHBzK1kZAuoYdgJDp8sqkvvxJsr0RUWUdJrQsQlYPw5UC6gyTH2pPhxv0MldVgQYUyQ6mDvSlBPGSIgwgWyId6hfv37ZFCHPRgAB7ExTp05NSJG8N7wzLCJh8HPmzHF0KY5A0wuuCb4xASZzyClADLUNHz8r9Fq1amlOz0Cjc2d1blcnoNoh8jcZ4fVgjUi23ou6gdWiIURlVA+mPtH1J0M2s2uMI3p9bEAwAaeUBow5LrYwg0wYPyo7bE5IFEL/IgDuECtrK/HNQU7jUOLGHP3ge7SqiUkfgQrIPhfkqHmxqjZrdRCTO6tsY/TjIzX6eV5MdPO4/q1atUrnkTcvppUJWBFnhYAuEF0mOWnshiHqwzD54IMPqkcffbTEblzUjYoIgzPGw0mTJumVBUZjKxOI1QhHrLMsElAjwSzScRdG0kCqHDZsWMR6lNvmoD5hUYO0a92Zzkhi6arsctEbtAg4ZGAPMMQijwWDLNiCH5GsmQAGPbg3E64T4Wlj3DetHjxO93IOG8HmzZv1S0GuGTsxEcAcOOyGQ55lZVRUVJR4LKorIXu/4vTbyb6Qqv+Mq1n1pro3TteZJOvXr68XYlYmYOJboooZWoHBgwerxYsXaxUiVK9ePf0X54ExY8bo/EJCwSOQNRPgxQtib1wYgFPEb7INGjKZXIKHWGoQBIJFABdd7DFGTYZUsGbNGjVv3rxgK86idLPDHtoCpDzmEBNRjicfNgGhcBDYr1h/e0c4Vf1XC6t8XgLcNdFd1q1bt1QTli9f7ni+1I0eTiBu8pGwwuBFI/pVSBDIVwRwqmCFb6RcYjDKli2rZs6cqfCCwz5HDi1UoVEl1FR896h9cQ0mtmjdunU6Sy3uwfa4h6j2oxDa5Wsqab8AwSjMij8f9Jl+9VnKEQS8IoDNDdVqVFU9Xvsh90UDgazVQUF0wxpbEET5UqYgIAgIAoLAvwj45iLqJ6B2g6+fZUtZgoAgIAgIAv8hEEkmIAMkCAgCgoAgEA4CwgTCwVlqEQQEAUEgkggIE4jksEijBAFBQBAIBwFhAuHgLLUIAoKAIBBJBIQJRHJYpFGCgCAgCISDgDCBcHCWWgQBQUAQiCQCwgQiOSzSKEFAEBAEwkFAmEA4OEstgoAgIAhEEoH/A+y5WMhnsPX1AAAAAElFTkSuQmCC"
+    }
+   },
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "## Idealization of the pull-out problem\n",
+    "The one-dimensional idealization of the pull-out looks as follows\n",
+    "\n",
+    "![image.png](attachment:image.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Model parameters"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "The parameters and variables involved in the are grouped according geometry, material behavior, measured response, internal state and subsidiary integration parameters that will be resolved during the model derivation. In this classification we also associate the mathematical symbols with the Python variable name introduced in the next cell."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Geometrical variables:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `A_f` | $A_\\mathrm{f}$ |  Cross section area modulus of the reinforcement |\n",
+    "| `A_m` | $A_\\mathrm{m}$ |  Cross section area modulus of the matrix |\n",
+    "| `p_b` | $p_\\mathrm{b}$ |  Perimeter of the reinforcement                  |\n",
+    "| `L_b` | $L_\\mathrm{b}$ |  Length of the bond zone of the pulled-out bar   |\n",
+    "| `x`   | $x$            |  Longitudinal coordinate |\n",
+    "\n",
+    "**Material parameters:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `E_f`     | $E_\\mathrm{f}$ |  Young's modulus of the reinforcement |\n",
+    "| `E_m`     | $E_\\mathrm{m}$ |  Young's modulus of the matrix        |\n",
+    "| `MATS`    | $\\tau(s)$      |  Multi-linear bond-slip model         |\n",
+    "\n",
+    "(`MATS` is used to denote \"Material Time Stepper\" -- equivalent to user-subroutine in Abaqus, or user material in ATENA) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Control parameter:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `P` | $P$ | Pullout force |\n",
+    "| `w` | $w$ | pullout control  displacement\n",
+    "\n",
+    "**State parameter:**\n",
+    "\n",
+    "There are no state parameters included. \n",
+    "\n",
+    " - What is the consequence? The material has no memory.\n",
+    " - What happens upon unloading?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Let's import the packages:**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib widget\n",
+    "import numpy as np # numerical package\n",
+    "import matplotlib.pyplot as plt # plotting package\n",
+    "import ipywidgets as ipw"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Numerical model of pull-out provided in BMCS Tool Suite \n",
+    "The presented function is the simplest model provided in a general-purpose nonlinear finite-element simulator `BMCS-Tool-Suite`. This code can be installed in your anaconda environment by issuing the installation command\n",
+    "\n",
+    "`pip install --upgrade bmcs`\n",
+    "\n",
+    "After the installation it should be possible to import the `PullOutModel` by issuing"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "A_f = 0.5**2 * np.pi\n",
+    "A_m = 10 * 10.\n",
+    "P_b = np.pi * 1.0\n",
+    "E_f = 280000.\n",
+    "E_m = 28000.\n",
+    "L_b = 200.\n",
+    "s_data = '0, 0.06, 0.3, 1, 2'\n",
+    "tau_data = '0., 1, 0.0, 0.0, 0.0'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": true,
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{k_max} & k_{\\max} = 200 & \\textrm{[-]} & \\textrm{maximum number of iterations}  \\\\\n",
+       "                \\textrm{tolerance} & \\epsilon = 0.0001 & \\textrm{[-]} & \\textrm{required accuracy}  \\\\\n",
+       "                \\textrm{n_e_x} & n_\\mathrm{E} = 60 & \\textrm{[-]} & \\textrm{number of finite elements along the embedded length}  \\\\\n",
+       "                \\textrm{mats_eval_type} & \\textrm{multilinear} & & \\textrm{material model type}  \\\\\n",
+       "                \\textrm{control_variable} & \\textrm{u} & & \\textrm{displacement or force control: [u|f]}  \\\\\n",
+       "                \\textrm{w_max} & w_{\\max} = 1.0 & \\textrm{[mm]} & \\textrm{maximum pullout slip}  \\\\\n",
+       "                \\textrm{fixed_boundary} & \\textrm{non-loaded end (matrix)} & & \\textrm{which side of the specimen is fixed [non-loaded end [matrix], loaded end [matrix], non-loaded end [reinf]]}  \\\\\n",
+       "                \\hline\n",
+       "        \\textbf{loading_scenario} & \\textrm{LoadingScenario} & & \\textrm{object defining the loading scenario} \\\\\n",
+       "            \\textbf{cross_section} & \\textrm{CrossSection} & & \\textrm{cross section parameters} \\\\\n",
+       "            \\textbf{geometry} & \\textrm{Geometry} & & \\textrm{geometry parameters of the boundary value problem} \\\\\n",
+       "            \\textbf{mats_eval} & \\textrm{MATSBondSlipMultiLinear} & & \\textrm{material model of the interface} \\\\\n",
+       "            \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f06ad382410>"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from bmcs.pullout.pullout_sim import PullOutModel\n",
+    "po = PullOutModel(n_e_x=60, k_max=200, w_max=1.0)\n",
+    "po"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{A_m} & A_\\mathrm{m} = 100.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area}  \\\\\n",
+       "                \\textrm{A_f} & A_\\mathrm{f} = 0.7853981633974483 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area}  \\\\\n",
+       "                \\textrm{P_b} & p_\\mathrm{b} = 3.141592653589793 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f06aa128a10>"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po.sim.tline.step = 0.05\n",
+    "po.sim.tloop.k_max = 200\n",
+    "po.fixed_boundary = 'non-loaded end (matrix)'\n",
+    "po.loading_scenario.trait_set(loading_type='cyclic',\n",
+    "                              amplitude_type='constant',\n",
+    "                              loading_range='non-symmetric'\n",
+    "                              )\n",
+    "po.loading_scenario.trait_set(number_of_cycles=1,\n",
+    "                              unloading_ratio=0.98,\n",
+    "                              )\n",
+    "po.geometry.trait_set(L_x=1.0)\n",
+    "po.cross_section.trait_set(A_f=A_f, P_b=P_b, A_m=A_m)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Run the simulation\n",
+    "The model object `po` contains the non-linear threaded simulator `sim` as its attribute. To be sure that the state arrays and history variables are zeroed and reset run the methods `stop` first. After that, the simulation can be started."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "hide_input": false,
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3c268ef872a14dcba43a0643b66360a6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "bf4f6101ae42472c83991baf3e934221",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "8e7306d6d31149f29c0a04477ab09ee8",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1aa172122d114d6799470f45fc76b468",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "VBox(children=(Tab(children=(HBox(children=(VBox(children=(Button(description='Run simulation', icon='check', …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig1, (ax_geo, ax_bs) = plt.subplots(2,1, figsize=(4,5), \n",
+    "                                   tight_layout=True)\n",
+    "fig2, ((ax_Pw, ax_s),\n",
+    "      (ax_eps, ax_sig))= plt.subplots(2,2,figsize=(10,6),\n",
+    "                                   tight_layout=True)\n",
+    "fig3, (ax_G, ax_dG) = plt.subplots(1,2, figsize=(10,4), \n",
+    "                                   tight_layout=True)\n",
+    "ax_sf = ax_s.twinx()\n",
+    "\n",
+    "fig1.canvas.header_visible = False\n",
+    "fig2.canvas.header_visible = False\n",
+    "fig3.canvas.header_visible = False\n",
+    "fig2.canvas.layout.min_height = '400px'\n",
+    "\n",
+    "po.sim.stop()\n",
+    "po.sim.run()\n",
+    "\n",
+    "def update_bs_law(change):\n",
+    "    s = slip_values.value\n",
+    "    tau = tau_values.value\n",
+    "    ax_bs.clear()\n",
+    "    po.mats_eval.s_data = s\n",
+    "    po.mats_eval.tau_data = tau\n",
+    "    po.mats_eval.update_bs_law = True\n",
+    "    po.mats_eval.bs_law.replot()\n",
+    "    po.mats_eval.bs_law.plot(ax_bs, color='green')\n",
+    "    fig1.canvas.draw()\n",
+    "    fig1.canvas.flush_events()\n",
+    "\n",
+    "slip_values = ipw.Text(\n",
+    "    value=s_data,\n",
+    "    placeholder='Type something',\n",
+    "    description='slip values',\n",
+    "    disabled=False\n",
+    ")\n",
+    "\n",
+    "tau_values = ipw.Text(\n",
+    "    value=tau_data,\n",
+    "    placeholder='Type something',\n",
+    "    description='tau values:',\n",
+    "    disabled=False\n",
+    ")\n",
+    "\n",
+    "update_bs_button = ipw.Button(\n",
+    "    description='Update bond-slip',\n",
+    "    disabled=False,\n",
+    "    button_style='', # 'success', 'info', 'warning', 'danger' or ''\n",
+    "    tooltip='Update bond-slip law',\n",
+    "    icon='check'\n",
+    ")\n",
+    "\n",
+    "update_bs_button.on_click(update_bs_law)\n",
+    "bs_input = ipw.VBox([update_bs_button, slip_values, tau_values])\n",
+    "\n",
+    "update_bs_law(True)\n",
+    "\n",
+    "def clear_plots():\n",
+    "    print('cleared plots')\n",
+    "    ax_geo.clear()\n",
+    "    ax_Pw.clear()\n",
+    "    ax_eps.clear()\n",
+    "    ax_sig.clear()\n",
+    "    ax_s.clear()\n",
+    "    ax_sf.clear()\n",
+    "    ax_G.clear()\n",
+    "    ax_dG.clear()\n",
+    "\n",
+    "def plot_state(t):\n",
+    "    clear_plots()\n",
+    "    po.plot_geo(ax_geo,t)\n",
+    "    po.hist.plot_Pw(ax_Pw,t)\n",
+    "    po.plot_eps_p(ax_eps, t)\n",
+    "    po.plot_sig_p(ax_sig, t)\n",
+    "    po.plot_s(ax_s, t)\n",
+    "    po.plot_sf(ax_sf, t)\n",
+    "    po.hist.plot_G_t(ax_G,0.9)\n",
+    "    po.hist.plot_dG_t(ax_dG,1)\n",
+    "    fig2.canvas.draw()\n",
+    "    fig2.canvas.flush_events()\n",
+    "\n",
+    "def update_material(w_max, support_at, L_b, P_b, A_f, A_m, E_f, E_m, k_max, step):\n",
+    "    print('updating material')\n",
+    "    po.w_max = w_max\n",
+    "    po.geometry.L_x = L_b\n",
+    "    po.cross_section.A_f = A_f\n",
+    "    po.cross_section.P_b = P_b\n",
+    "    po.cross_section.A_m = A_m\n",
+    "    po.mats_eval.E_f = E_f\n",
+    "    po.mats_eval.E_m = E_m\n",
+    "    po.k_max = k_max\n",
+    "    po.sim.tloop.k_max = k_max\n",
+    "    po.sim.tline.step = step\n",
+    "\n",
+    "@run_output.capture(clear_output=True)\n",
+    "def run_sim(run_state):\n",
+    "    print('running simulation')\n",
+    "    po.sim.stop()\n",
+    "    po.sim.run()\n",
+    "    print('simulation finished')\n",
+    "    plot_state(t_slider.value)\n",
+    "    tab.selected_index = 1\n",
+    "\n",
+    "support_dd = ipw.Dropdown(\n",
+    "    options=[('non-loaded end (matrix)'), ('loaded end (matrix)')],\n",
+    "    value='loaded end (matrix)',\n",
+    "    description='support at:',\n",
+    "    disabled=False,\n",
+    ")\n",
+    "\n",
+    "t_slider = ipw.FloatSlider(description='history slider', \n",
+    "                           value=0, min=0, max=1, step=0.1, continuous_update=False)\n",
+    "m_sliders = dict(w_max=ipw.FloatText(description='w_max', value=1),\n",
+    "                 support_at = support_dd,\n",
+    "                 L_b = ipw.FloatText(description='L_b', value=L_b),\n",
+    "                 P_b = ipw.FloatText(description='P_b', value=P_b),\n",
+    "                 A_m = ipw.FloatText(description='A_m', value=A_m),\n",
+    "                 A_f = ipw.FloatText(description='A_f', value=A_f),\n",
+    "                 E_m = ipw.FloatText(description='E_m', value=E_m),\n",
+    "                 E_f = ipw.FloatText(description='E_f', value=E_f),\n",
+    "                 k_max = ipw.IntSlider(description='iter n', value=300, min=10, max=1000, step=20, continuous_update=False), \n",
+    "                 step = ipw.FloatSlider(description='step size',value=0.05, min=0.001, max=0.2, step=0.005, continuous_update=False))\n",
+    "\n",
+    "run_button = ipw.Button(\n",
+    "    description='Run simulation',\n",
+    "    disabled=False,\n",
+    "    button_style='', # 'success', 'info', 'warning', 'danger' or ''\n",
+    "    tooltip='Start the simulation',\n",
+    "    icon='check'\n",
+    ")\n",
+    "\n",
+    "run_button.on_click(run_sim)\n",
+    "out1 = ipw.interactive_output(plot_state, {'t':t_slider});\n",
+    "out2 = ipw.interactive_output(update_material, m_sliders );\n",
+    "out_area = ipw.HBox([out1, out2, run_output])\n",
+    "s_list = [ val for val in m_sliders.values() ]\n",
+    "\n",
+    "\n",
+    "# Layout\n",
+    "input_param_area = ipw.VBox(s_list)\n",
+    "input_area = ipw.VBox([run_button, input_param_area, bs_input])\n",
+    "plot_area1 = ipw.HBox([input_area, fig1.canvas])\n",
+    "plot_area2 = ipw.VBox([fig2.canvas, t_slider])\n",
+    "plot_area3 = ipw.VBox([fig3.canvas, t_slider])\n",
+    "tab = ipw.Tab()\n",
+    "tab.children = [plot_area1, plot_area2,plot_area3]\n",
+    "tab.set_title(0,'Input')\n",
+    "tab.set_title(1,'Plot response')\n",
+    "tab.set_title(2,'Plot energy')\n",
+    "app_area = ipw.VBox([tab, out_area])\n",
+    "display(app_area)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Rendering individual outputs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "fix, ax = plt.subplots(1,1, figsize=(8,3),tight_layout=True)\n",
+    "po.hist.plot_Pw(ax,1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "All plot functions accept the scalar parameter between the start and end state in the range (0,1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fix, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.plot_eps_p(ax1, 0.2)\n",
+    "po.plot_s(ax2, 0.2)\n",
+    "ax22 = ax2.twinx()\n",
+    "po.plot_sf(ax22, 0.2)\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "hide_input": false
+   },
+   "source": [
+    "To use the plots of the simulations in documents, the diagrams of the above simulation\n",
+    "are replotted here with the goal to show the code snippets producing individual diagrams."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": false,
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "fix, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.hist.plot_G_t(ax1,0.9)\n",
+    "po.hist.plot_dG_t(ax2,1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {
+    "height": "calc(100% - 180px)",
+    "left": "10px",
+    "top": "150px",
+    "width": "203.5px"
+   },
+   "toc_section_display": true,
+   "toc_window_display": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/bmcs_course/SeminarWorkHowTo.ipynb b/bmcs_course/SeminarWorkHowTo.ipynb
new file mode 100644
index 0000000..68a2bf4
--- /dev/null
+++ b/bmcs_course/SeminarWorkHowTo.ipynb
@@ -0,0 +1,4489 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Seminar work - how to adapt the PO-LF-LM-EL-SH\n",
+    "\n",
+    "@author: rosoba\n",
+    "\n",
+    "This notebook is an adapted version of the notebook [3_1_PO_LF_LM_EL_FE_CB.ipynb](3_1_PO_LF_LM_EL_FE_CB.ipynb) and is prepared for adjustments needed to simulate the pull-out tests with parameters relevant for tasks specified within the seminar work."
+   ]
+  },
+  {
+   "attachments": {
+    "image.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAABnCAYAAADmM/4PAAAABHNCSVQICAgIfAhkiAAAH+JJREFUeF7tnQm0VdMfx7cpKtMKUSHzSqUkylT9F1ZFk1qtZkMStaRoVBSeUCpllSkJTUSqpcJKxiYKGSpSCqEkQxkS0v99trWv8847595z7z3n3HPv+f3WOuu9e4Y9fPc5+7d/495nbzEpIUFAEBAEBIFYIrBvLHstnRYEBAFBQBDQCAgTkBdBEBAEBIEYIyBMIMaDL10XBAQBQUCYgLwDgoAgIAjEGIH9Y9x36boPCOzcuVPNnj1bl3TMMceoH3/8Uf3555+qcuXKqnHjxj7UIEVEEYE33nhDffHFF+rwww9XZcqUUdu2bZMxj+JAeWiTSAIeQJJb3BEoV66c+t///qcWLFigLr30Uj0h8PvMM890f0iu5D0CNWvWVFu3blWtW7dWEyZMUPXq1ZMxz9NRFUkgTwcuKs3ef//91ZFHHqnmz5+vTjjhBNW2bduoNE3aESACjPnPP/+sa2jXrp2qXr16gLVJ0UEiIJJAkOjGpOzVq1erP/74Q9WuXTsmPZZugsAHH3yggRCpL7/fB2EC+T1+kWi9TAaRGIbQG/Hhhx9qm0C1atVCr1sq9A8BYQL+YRnbkjASQtgChOKBwKeffqptAn369FEHHXRQPDpdoL0UJlCgAxtmt1gRQqIWCBP13NZlpL+rr746tw2R2rNGQJhA1hDGu4Bff/1VbdiwQUsBqAbcaMaMGapBgwZul+V8niEAE8ARgCMZbd++XfXu3Vv16tVLj//ff/+d7Ha5lgMEhAnkAPRCqnLJkiX6w7799tsdu2VURZ06dVIwDKHCQGDhwoWqUaNGjp35+uuv1bfffquvdezYUcePFBUVqVGjRim8yYSihYAwgWiNR961hkme1aCTPYAAIqQEO7E6JMhMKD8RYExRATqNOT169tln9cQPcS+xJBUqVFDnnntufna4wFstbLnABzjo7qEWcHMNnThxourQoUOiCUgM6JArVaqkMCw2adJE9ejRI+gmSvk+IzBt2jT1zz//ONqAiB347LPP1L777qvGjRunYwlefvllrSoU+4HPA+FXcewnICQIZIpA8Ypvb7EqqNTjixcv3lscRbp3z549iWvcu2nTJv2b88XRpnvHjh1b6lk5EV0EGLdTTjllb7FH0N5du3aVaChjXhxJvHfq1KmJ88VSooxxdIdTt0wkAb+4aYzKYXU3adIknTsG90D+3nHHHRoBcgetX79erwa7d++uV4SGuNcYEjl/2WWX6Xu6dOmio46Foo3ACy+8oLAFINERGzBixIhEg9euXavee+89rfq5/PLLo90RaV0JBIQJyAuRNgKI9v3799fPkTcmUzJGQjEWZopguM+1bNlScWQz5uG2WGrzgoAYhr2gJPf4ggDZRU2+GQp87bXX1KBBg5K6lvpSsRQiCAgCrgiIJOAKjVzwGwGiS+fOnatVSKiN2rRpI6oDv0GOUHmoj6pWraqdAFAXSZK5CA2OpSn7YBiIZtOi3yomNNF/Rn+cCq2FeOZYbS3o6PHAad68eaF1Nef9Ibbl4IMPTrQD+xd4FxvHc942vxog6iCPSD755JMl7sQ/PlmErMdi5TZBIG0E8MMnIMsQRvqzzz477XLkgdQIjB49usRNzAOFxADonDCB1O+BvoMVgCGzq5JbsIzHIuU2QSAjBEjbzWqU45FHHtEeVyY4K6MC5SFPCMAACjHWQWwCnob/v5t4EfjoCvFlSBMKuT2HCMAA8NIhGE8YQLADwQLQMADj4hxsjeGWLkwgDbyTpUhIoxi5VRDIGoHJkyfrxGzCALKGMmUBMAATB5Py5jy8QQzDLoNm8qWby7wI2ADEEOwCmJwODYE5c+boRGwtWrQIrc64VsTkj9RvlQDwbiukPEhiE3B5u63+7EgA5MgRBuAClpwOBQFUQBiBMQqfc845odQZ10qMCghJy64CIt6FsSgU8qwOIlzcpIdN1vnifDGh+gMzGEzObHTuJxlOjwRgDMBiCPYTYSkrHQSMDQBvFdxBeT/tk1M65cm97gjAAAwTQBIo9O/esyRQsWJFxYq4a9eu2kjCC2gO8r48//zz+hq6yjBp+PDhasGCBYHkqhcbQJgjKXUlQwAJQIzAyRDy75oxAvtXYrRL8iwJsHWg2VD6uuuuK8UdSQbWt29fBbMIi9599101ffp0XR0RqNagjmzbYNxAxQsoWyTl+WwQMCogFlxiBM4GSW/Pxo0BgIpnSYCbmRihiy66SP+1EhGMqGWOP/54+6VAfhM1iYrqrrvu0uV7UVV5bYjppzAAr4jJfUEhwKTEd9W0adOgqpByixHABmhUP3FTs3mWBHhT2E3IviJBP2le0K1bt4a2Wlm2bJnC/mBSEFsNudm+1YWuA8wWH3k+PASuvfba8CqLcU14/hWyG2iyofUsCTDBc3Tu3DlRHlvHPfPMM4nfrFjCcp1atGiRlkhQUSGFoA4SEgQEAUFAEEgPAc+SgFGRoHdHRDUh61YmgP9sGPTiiy9qmwSTP3VWrlzZV3VQGH2QOgQBQUAQiAICaTGBRo0aqVtuuUXvL4oL1YoVK0JPpkRWvyVLlqh77rkngV+VKlUUm5oLCQKCgCAgCKSHgGcmgD2gfv36unRW4CeddFKJeAAkg9WrVztuPp1ek5LfzXaEZL+26u927NghTCA5bHJVEBAEBAFHBDwxATPB9+zZs0QhbApiaMqUKeq0005zrMSvk3gD1ahRQ1144YUlikQy8NMw7Fd7pRxBQBAQBKKOgCcmwAofNUzjxo1L9Me4g/7+++8KI/E111wTWH8J1cYuYVUDmcqwEbz11luB1S0FCwKCgCAQJgKo27NxVSX3GXElXvY88cQEyJtDgW7BKhMnTtTumpkSUb81a9ZMmpuHrersTMjUV65cOfXDDz9kWr3n57CJCAkCuUYA+5dsIpPrUQiufvaLGDdunD4yJRjIbbfdpuyb4jiVl5QJ4BKKmmXWrFmaAcCdrPTRRx+p2bNnq9dff12tWbNGu5CyyQV7iR566KH698aNGxURxkT3IjHwTFFRkSpTpowuClUTAV+s9D///HNta7ASz2OApkOonKyEdLJ9+3b12WefaZsAEsuxxx6ruR9h9iNHjlS33nqrjiSmDALKevXqpf+yyTnnYUD0ES+jVBHHJjCtRCPkhyAQMgIzZ87U3xYLJ6FoIsC8xH4P77//vtq5c6dWYZP5FcKmylxIKnA8G+1000036ewL2RDzGQsFdqFr165d0qKSMoG3335bT5Bt27bVhRg3UWuJuGoSWcsEytGwYUOFZDBjxgzdWbyJRowYoQExZaC+MRk5AWbVqlWKc4gwdibA5A1nhAlYt9SjLCZzgsaQEDhgNDAGYhUIsrn77rv1PUOGDNGiFZkXqZf+AP55552nunTpovtIX3kWot2outhGrlatWpqhQTAYIUEg1wgcdthhuW6C1J8CAYJYhw0bpo4++mh1ySWX6MWmlaZNm6YdbRYvXpxQ++B1yYKZeccP+yq5ppjrWJQnWzAkZQKZpE5mAqUT/IXgSNY9OVHd2I24NLJfv356QrYTHXEjgEoFlsl3ZLiwaYuJaUASgUtbjc0MxldffaXtHEgUcHIY4E8//aQZAS6p1FuhQgW3psl5QUAQiDkCaD2QCAYNGlQKCVbpLGrHjBmjxo8fr6+jcSER5/r160vdn+kJFugsdr/88kvX+SopE8i0YjPhmuftv+3lIgE0adLE1eZgvz+d34YZpfsMkgMHXBzCJfXKK6/UEsM777yjhg4dqg488EDVqVMnLf2IlJAOwnKvIFD4CGBLRTVN8k07GdX6EUcckbiE3ZNJ26TCsT+TyW8Wt2g4UH8bjY69HN+ZAKtoDkP23/YG8BsmgK7eT6JeOm9UPKz4IfMbFRNk/nqtG1UTR58+fdT333+vPv74Y/XKK69oacEQ6qPTTz89YRvxWnZc79u1a5cqW7as5+6ne7/nguVGQcBHBGACuLQ7EZPyGWecofr375+4vHTpUjV16tRStzNnYXslNQ6LTpOpmbkLm8P555+vnyGPG0zHmrqH36jscaMPhQmgPmGlTOPWrl2rG83kC9cDEIzBHIhB3GtUM5monUohZTtBaotRo0bp+qkP28ETTzyRqBf7Ab8xJmea7+ioo45yzKgKQ6D/iHZW5oBxvWrVqurkk09WPBt32rRpk/aAQBWYTvZZxvSpp55SV111VdwhlP5HGAFUyHaPRlTh2EtRFRH3ZJxRUBsx2dtjoOgeqXmQELBpMm8a++rcuXO1CskwAeY85l7OW6lbt27qoYceckXKV0mASR0jrJXsnbrvvvtcG+PnBXvMApZ4K/kteVjLRhIwEoP1PAZw4hkwEu3evVs1b95cG4cyZUJ+4pWLsnBfQ82WLkM85JBDtGEfJj9gwIBcNF3qFASSIsBCBY/J3377Ta1cuVLfi8YDGyWqb1btVoIJOHknwhiwX1IeC+lWrVolHuO31VWYOQ3vTDuhqt6yZYv9dOK3r0zAtRa5oBGoU6eOPlAlISXh2vrNN9+oBx54IIEQL0Lt2rUL3g8cry+M6+kyAAPUxRdfrCU5ROgLLrhA3jBBIFIIoGFg4mbXw1TOKzSc+cApsAsmQLZkvCchNu8yhCrI6krKwuiss84qhQNMwO6MY71JmEApyMI5gWeRkwTwyy+/qM2bN4fTiBzWghrIiLWZNAOD/2OPPaZtScIEMkFQngkSAVRBGHi9MADaQZyUE5kAXWKk0KqYoFwm9eXLl5dQH7GotKufKBPHHBOX5VTHv36cTlfkXE4QQNWBy2wh07x587QhOFsX2/Llyyu8K1CzCQkCUUIAJoBrplfC2GucVpyeISAX25kh4gzwXrSqkNwCCLHJJvM4EibghHjMz2HMRgTFE8G+Wc/8+fOzRufpp59OBMg4FTZw4EC9ujf5oLChYD9xmuyxQ6EbFRIEooQAWZfTWczhGIFdwI2QFKyuptgbrO6lPOdkU+A8tohKlSq5FZ3eHsOupciFgkIA74XnnntOB8fhfWAIz6/Bgwdn1VcMZXhm4SVlJxgO9hGivfFwgBlQX7NmzfSqCmO/cfU1z1IOHhNCgkBUEMAdk2BTr6og2s0ETiAttgQnqlu3buJb5B5ilEizgzcQizZcTd3yt2GXsAbs2ssXm4AdkZj/5uXlheHFQsdonXRxQXMyPKUDGYbwPXv2OKqCXn31VW00h4jz2G+//XTkOcZ00n/gVWEPPMSYZk8nkk575F5BwC8EyF9mDLiPP/64Lha1EH76XqhFixbac9C6W6N5jjgBFmd8g9gJsKkRvMpvvBHxsnOSBGgT0juMwI2ECbghE9PzJriElw4yek1cWgmK69ixY1bIGPUSKxk7MckbYtJHx3niiSfqU0gDTsSLH0YGWae65ZwgYEUAvT7+/JkSKk8YARO8PWMzZZNYzkosyFItymBKuJg6GYxNWWITyHTECvQ5VhWstklshThrIh6RCiCiHLMhjLluZBL1cZ1gO8ieUND+LJJKOtHG9ufltyAQFQRIUcNCiPQRfhGRyXzLdgnaWr4wAb/QLrByyI9EBljjWoYeH8Jga9Qv2AjQ3X/33Xc6Nwlpa1EnMTEjBiO+klrDSmaFQ+qHZIReFXWQYToEu9iN1DyPR4V91ZSsXLkmCEQVAVbsqG6IofFDxQkzQbpItfdEzpkAHUa3hd7MfrRs2dLTeE2ePFmnmgZAIvHQk+FChWjmB5ieGlFAN+GJwORq9b9/6aWXdHQzgSfo7iF09Uz8ZCjEm4h0tWCOVw+h7ORPshuSCQ5j0raPCwbjO++8U0/01E8d5EE3wWSItVZJwcCN2kiYQAG9fDHvCit24meMbSFTODAeY1dLtZcA5efcJnD99ddrYyA+r0ziMAJj4HCKoLODgnWczmLMRF+NV4vRy5FSgAmC/QyEvCPA6h+vG5LjMdETlUsQGysKJusDDjhAF4Zen80xjF6SSZrfMASICRy9vp14Me0Bcbh5Tp8+Xd188806/xTucNQJIU0QDekk0rLp0KmnnmqvQn4LAnmLABIB+wpkQyzIku0hYC07p5IA4gougUzaTP54giC+GInAKQWrHRgmeFadMAOYQNOmTRO3EJFL4jih9BFgL2cCVDAQ//XXX3p1QsAJgV6MkSHc2qyTc7KgFPMMTADpwUowEnaBQw2FEfree+/VNgl20UIVZTUaW5/DVkFiLSFBQBDIDIGcSgJWdQ96ZLuKwEuXSBvAxENiOmteDZ5ldenkj27KJZKOAymEQ+g/BEyeIysmxn0zW5wIXMHgi58zGVUhjLv2rKA33HBD0qqQVJBGjAdR0pvloiAgCDgikFMmYG0RK81MdLtm5fnmm2/q7dwMESXHBN+6dWvHjnPSqJswYnKvExHJx8F19NXZpjpwqiNfz4E5OUxQ4yEdYAsgBoAU2iR4M3pNfuP6Zs1fgtqHjIes/jMhVEQEkzllTcykPHlGEIgrApFhAqiFnLZh8zIwTETonq3uhOiVoWSGEeMTn6wOvFQ4YALt27fXemrqQVWFugljqZPPe7IyC+Vao0aNFIch0kxwGEKv6abbJOQd/FH/gGG6RAZREsjJjm7pIif3CwIlEYgEE2CDBSZZN59wdMJ4+xAV52QsRu1jfxavFZiKWyi11xfB7D+MzQEvJgyjpFOA6aC+Yg9ieyoDymaDadQeGEfN4bXOuNyHLYg8QuCUzqYyBIcRxCYMIC5vSn73E29F5ih29rLvrxKFnkWCCeDWiXHRLfqN6xgI8U5x2owedQ7+5IRbo1LCZ53oumRRcpmCT7ATBxNQMv9bfOdxXyRNAi+A3V+e+lEtde7cWRvE40jgSJ6gdAkpokGDBuk+JvcLAjlBgAUumg4OPH9wve7QoYNiR0UvjhRBNzoSTACDLp4gboAQA8BBOLUTMcn26NFDc1mkhqKiIqfbQj2HJMAhJAgIAoKAQQCNAjEwHNjFWNSiscilY0okmIAXn1YiUd2AMmlbiS/AvTQoSrZPZ1B1SrmCgB0BdpRC0sRWJRQsAkGmKScgE8cGgl1xpMB+yfzlNs8F1dNIMAEvncPzxMnIS9oCDMPp6JS91Od0D2onIUEg1whgE0G9yOJHKFgE9u7dm7QCL4tON89DUzAR8kTkc0AwAdTExh7plB00aaPSvJgXTIDNFjDw2rdII9gMTo3/OnlqrJ4paeIgtwsCgoAgkDYC9qBHpwJ27NjhdNr1HEyDBScOJzCAoI3JecEEsBU42QsINvOaX8gVcY8XjjvuOI93ym2CgCAQFwQ2bdqUsqt4NZIXKxXhHIMHEYtap/3HUz2f6fW8YAKZds7P50iGxu4+QRABVuh5yYFECoS4egsFgW0hlrlu3TqdS4n9qIWCRcDLJJ9NC5j48RZC1d2mTZuMAmazqZ9nhQl4RJD8RBx+EnEGqLSIRGZ7uGrVqvlZfGTLIsaCnD8NGzb03Ebuh1HyscSdSeJ3ngsDoufBKqAbWcX7TTDwVq1a6XcZVY9TYkS/60xWnjCBZOgEeI04BqJliXr1mu0vwOaEVjSMD2mHvD/pEC7EDz/8sE4UaLLEpvO83CsI5BoBVDy4gxIfECUSJhDiaJDjmzw7TGQEi7jFPYTYpNCruv/++7UXhJONJ1VjRo0apXr37q0zxWaSZypV+XJdEAgCAd5Xdg0L2sCbaduFCWSKXBrPLVq0SPt0s+JHAiBqMI4EBkRae0kR7oQPYnPfvn01hk6bcTs9I+cEgVwjEKaRN5O+ChPIBDUPz5DFdNasWdrNi1VAELpFD82I1C2k+0afnQ2xeRBBNtgIUBEJ5RcC5Aljjwr04dWrV8+vxhdoa4UJBDCwRAGS74jValxX/XZYmbgJcPIjFTc5mxYuXChMwA5yHvzGCQJ3SQ4kQjYPsm4ElQddKLgm+soEiNzlSEVMBE77xaZ6zut1Jl907mESyeLIdMr2ikxSRDIXCtEXJBvUMXgxGcLGQToP+2Y+Tv0mp5PbNpDYSJAQkJr4n/TT1InLLOVbN7ynbCYPmECcCPyNCowASQ6njLpRx8QaXEUfbrzxRjVy5EjtHhlFwm+/0Gmf4rDo5HHRaSBAlBtiOomRcIGyZvFkJYhnCKmDu3fvrhPCBUGswtmRirz/bH0YJDHhM/HDAHD7IhlU0HUG2R+nstmXgX4yOTdr1kxvC2lSdOClg3rGOpZM5ExYRHdb1TXkXaIcKxMx9Q0fPlzr+YmOJEW02WgeRtCtWze9A5k1nwrvGAkDyRYbR8pnF1HSv6Aa5VthL+qw8+TE8X1J1WdfJQF8lzGCsHk8ufedxDws5KlyaaRqtNt1Jh8YECtIxM4gJ+QNGzaoK664Qo0fP9514xS3dubTeRg7K3EOqGLFionmk7vGvlJiMmcj+k8++USv7o0Xz7Zt2xw9ehgzPIVMfhSYTZUqVfQqF2mOScI+USBFsqeDUP4hQGxIXJl3VEfLVyZAJ03WPTcPEFaHfOhBECqCsWPHqp49e2q1lN+bjrDKxdjLxIVKa8GCBb7ouIPAwq8yzf4NfLiEsxsbB/jCCK1ub/zmwB7Cpj7WXE87d+4sNZnTRiZ/k/MJxs37g8QBUZdTgi6xs5QeXaQj3n8YJJIUUlqug5BKt1LORBEB35kAK0d2+bL6caMPNhuwMBnYdwHzAxiiSdmUxtSLisavICwkF/z7mfhY+YZtb/ADn0zLgJEysaOSQZQ3RIxDjRo1SuilsREY/O0ZX4nyZXKyk5VRwzwgvKmSEcw4rlt6OuGCxw0qNZIoMvGzSIGxmt9Oz8g5QcAg4DsTQIds3fWJD58J1DCBZLtxZTosqH+WLVumevXqpYtADUTm0WwIaYWUDmvXrtUrWCb+TAKcsmlDVJ5dsWKFjvI1K3AmYXZJ6tq1q2aMYISaCGkBhoEaCEnQKg0y2bPSdyIWBqxg2ZgeNZDVr5pxtafroM64joUTfthksJGYlT/pR8ARaQCblZAgkAwB3/c1RE+MARjjDweifdDiOytU6+qRCQkddKaEFwYJ41i90gc+pjhPOjByq2THit/s4YD6BqaLgRhDH3/By64OhJE62YLA2aiDli5dqp8z7wtlO40j5fit6sv0XYnCcytXriwlXeOoMH36dE/eelHog7Qhdwj4KgmwCsSlD90xHzOrcSYM+4RguksEKQwD1Q2RoJkS4q9Vd8yEzerSTujzWeFT38CBA+2XtS4bSQY1EobNoJlXqQZE9AR6/wkTJuhVPl5e6J6Z7GEETNRGAkvWfAKDRo8eXeIWJAPGv0mTJtqG0L59ey1hoNoz74XTHsTov932o07WhkK8xrtPQj4mfSsZF2ywhDlHlZAieYd4F3jPWFDwG+keCTCMzaKiik1Y7fKVCaAnZvXMh2u8PWAEVuMhAwxTYDLBk4fVH7rLTIgXhVwyTPqoIAzt3r1bfxhWQrUzYMAArdueMmVKqepY/bNaZeUvVBIBJnxUekw4jCsMlIOx5CP1YoDEIQA1Eu+Dkaowrm/ZskWXy8oeOwJeSOi4mbjcdlRC8otj3iWn9xLsIHvcjcm06iRJOZWTi3OkU2HyRxLk3ahdu7b+RlEH1qlTRw0dOlQNGTIkF02LVZ2+MgHETyYM68eLd4n5zUAzmcAEMBaXL19ee5CgPsiE0EFjY7A/j3+5Xf+8ceNGPcnzcdjvp+44GXszwRp1kD1pm5uE51Z+8+bNFR++FWveDaudCF12shTTLB7YX9feFrc6C/18quDMoDzxssWVcSReaP369booFhJ8szAA3gHcy2WnwGxR9va8bzYBViS8kHBzK1kZAuoYdgJDp8sqkvvxJsr0RUWUdJrQsQlYPw5UC6gyTH2pPhxv0MldVgQYUyQ6mDvSlBPGSIgwgWyId6hfv37ZFCHPRgAB7ExTp05NSJG8N7wzLCJh8HPmzHF0KY5A0wuuCb4xASZzyClADLUNHz8r9Fq1amlOz0Cjc2d1blcnoNoh8jcZ4fVgjUi23ou6gdWiIURlVA+mPtH1J0M2s2uMI3p9bEAwAaeUBow5LrYwg0wYPyo7bE5IFEL/IgDuECtrK/HNQU7jUOLGHP3ge7SqiUkfgQrIPhfkqHmxqjZrdRCTO6tsY/TjIzX6eV5MdPO4/q1atUrnkTcvppUJWBFnhYAuEF0mOWnshiHqwzD54IMPqkcffbTEblzUjYoIgzPGw0mTJumVBUZjKxOI1QhHrLMsElAjwSzScRdG0kCqHDZsWMR6lNvmoD5hUYO0a92Zzkhi6arsctEbtAg4ZGAPMMQijwWDLNiCH5GsmQAGPbg3E64T4Wlj3DetHjxO93IOG8HmzZv1S0GuGTsxEcAcOOyGQ55lZVRUVJR4LKorIXu/4vTbyb6Qqv+Mq1n1pro3TteZJOvXr68XYlYmYOJboooZWoHBgwerxYsXaxUiVK9ePf0X54ExY8bo/EJCwSOQNRPgxQtib1wYgFPEb7INGjKZXIKHWGoQBIJFABdd7DFGTYZUsGbNGjVv3rxgK86idLPDHtoCpDzmEBNRjicfNgGhcBDYr1h/e0c4Vf1XC6t8XgLcNdFd1q1bt1QTli9f7ni+1I0eTiBu8pGwwuBFI/pVSBDIVwRwqmCFb6RcYjDKli2rZs6cqfCCwz5HDi1UoVEl1FR896h9cQ0mtmjdunU6Sy3uwfa4h6j2oxDa5Wsqab8AwSjMij8f9Jl+9VnKEQS8IoDNDdVqVFU9Xvsh90UDgazVQUF0wxpbEET5UqYgIAgIAoLAvwj45iLqJ6B2g6+fZUtZgoAgIAgIAv8hEEkmIAMkCAgCgoAgEA4CwgTCwVlqEQQEAUEgkggIE4jksEijBAFBQBAIBwFhAuHgLLUIAoKAIBBJBIQJRHJYpFGCgCAgCISDgDCBcHCWWgQBQUAQiCQCwgQiOSzSKEFAEBAEwkFAmEA4OEstgoAgIAhEEoH/A+y5WMhnsPX1AAAAAElFTkSuQmCC"
+    }
+   },
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "## Idealization of the pull-out problem\n",
+    "The one-dimensional idealization of the pull-out looks as follows\n",
+    "\n",
+    "![image.png](attachment:image.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Model parameters"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "The parameters and variables involved in the are grouped according geometry, material behavior, measured response, internal state and subsidiary integration parameters that will be resolved during the model derivation. In this classification we also associate the mathematical symbols with the Python variable name introduced in the next cell."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Geometrical variables:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `A_f` | $A_\\mathrm{f}$ |  Cross section area modulus of the reinforcement |\n",
+    "| `A_m` | $A_\\mathrm{m}$ |  Cross section area modulus of the matrix |\n",
+    "| `p_b` | $p_\\mathrm{b}$ |  Perimeter of the reinforcement                  |\n",
+    "| `L_b` | $L_\\mathrm{b}$ |  Length of the bond zone of the pulled-out bar   |\n",
+    "| `x`   | $x$            |  Longitudinal coordinate |\n",
+    "\n",
+    "**Material parameters:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `E_f`     | $E_\\mathrm{f}$ |  Young's modulus of the reinforcement |\n",
+    "| `E_m`     | $E_\\mathrm{m}$ |  Young's modulus of the matrix        |\n",
+    "| `MATS`    | $\\tau(s)$      |  Multi-linear bond-slip model         |\n",
+    "\n",
+    "(`MATS` is used to denote \"Material Time Stepper\" -- equivalent to user-subroutine in Abaqus, or user material in ATENA) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Control parameter:**\n",
+    "\n",
+    "| Python | Parameter | Description | \n",
+    "| :- | :-: | :- |\n",
+    "| `P` | $P$ | Pullout force |\n",
+    "| `w` | $w$ | pullout control  displacement\n",
+    "\n",
+    "**State parameter:**\n",
+    "\n",
+    "There are no state parameters included. \n",
+    "\n",
+    " - What is the consequence? The material has no memory.\n",
+    " - What happens upon unloading?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "**Let's import the packages:**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "import numpy as np # numerical package\n",
+    "import matplotlib.pyplot as plt # plotting package"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Numerical model of pull-out provided in BMCS Tool Suite \n",
+    "The presented function is the simplest model provided in a general-purpose nonlinear finite-element simulator `BMCS-Tool-Suite`. This code can be installed in your anaconda environment by issuing the installation command\n",
+    "\n",
+    "`pip install --upgrade bmcs`\n",
+    "\n",
+    "After the installation it should be possible to import the `PullOutModel` by issuing"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from bmcs.api import PullOutModel "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Example test parameters\n",
+    "Let us consider the case of the RILEM pullout test with the boundary condition with the following material parameters \n",
+    "\\begin{align}\n",
+    "d &= 16\\;\\mathrm{mm} \\\\\n",
+    "E_\\mathrm{f} &= 210\\;\\mathrm{GPa} \\\\\n",
+    "E_\\mathrm{m} &= 28\\;\\mathrm{GPa} \\\\\n",
+    "A_\\mathrm{f} &= \\pi (\\frac{d}{2})^2 \\;\\mathrm{mm}^2 \\\\\n",
+    "A_\\mathrm{m} &= (10d)^2 \\;\\mathrm{mm}^2 \\\\\n",
+    "p &= \\pi d\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 62,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{A_m} & A_\\mathrm{m} = 25600.0 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{matrix area}  \\\\\n",
+       "                \\textrm{A_f} & A_\\mathrm{f} = 201.06192982974676 & \\textrm{[$\\mathrm{mm}^2$]} & \\textrm{reinforcement area}  \\\\\n",
+       "                \\textrm{P_b} & p_\\mathrm{b} = 44.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{perimeter of the bond interface}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.CrossSection at 0x7f7bfb21d170>"
+      ]
+     },
+     "execution_count": 62,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po = PullOutModel(mats_eval_type='multilinear',\n",
+    "                        n_e_x=50, k_max=200, w_max=0.1)\n",
+    "d = 16.0 # [mm]\n",
+    "E_f = 210000 # [MPa]\n",
+    "E_m = 28000 # [MPa]\n",
+    "P_b = 44 # [mm]\n",
+    "A_f = np.pi*(d/2)**2\n",
+    "A_m = (10*d)**2\n",
+    "po.cross_section.trait_set(A_f=A_f, A_m=A_m, P_b=P_b)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 63,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{L_x} & L = 80.0 & \\textrm{[$\\mathrm{mm}$]} & \\textrm{embedded length}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.Geometry at 0x7f7bfb21d0b0>"
+      ]
+     },
+     "execution_count": 63,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po.geometry.trait_set(L_x=5*d)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Adapt the bond-slip law"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "po.mats_eval.s_tau_table = [[0, 0.0001, 0.01, 0.1],\n",
+    "                            [0, 3.0, 3.0, 8.0]]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"500\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ax = plt.subplots(1,1,figsize=(5,2))\n",
+    "po.mats_eval.bs_law.plot(ax, color='green')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Load specification"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 76,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{loading_type} & option = monotonic & \\textrm{[-]} & \\textrm{possible values: [monotonic, cyclic]}  \\\\\n",
+       "                \\textrm{number_of_cycles} & n_\\mathrm{cycles} = 1 & \\textrm{[-]} & \\textrm{for cyclic loading}  \\\\\n",
+       "                \\textrm{maximum_loading} & \\phi_{\\max} = 1.0 & \\textrm{[-]} & \\textrm{load factor at maximum load level}  \\\\\n",
+       "                \\textrm{unloading_ratio} & \\phi_{\\mathrm{unload}} = 0.98 & \\textrm{[-]} & \\textrm{fraction of maximum load at lowest load level}  \\\\\n",
+       "                \\textrm{number_of_increments} & n_{\\mathrm{incr}} = 20 & \\textrm{[-]} & \\textrm{number of values within a monotonic load branch}  \\\\\n",
+       "                \\textrm{amplitude_type} & option = constant & \\textrm{[-]} & \\textrm{possible values: [increasing, constant]}  \\\\\n",
+       "                \\textrm{loading_range} & option = non-symmetric & \\textrm{[-]} & \\textrm{possible values: [non-symmetric, symmetric]}  \\\\\n",
+       "                \\hline\n",
+       "        \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.time_functions.loading_scenario.LoadingScenario at 0x7f7bfbf046b0>"
+      ]
+     },
+     "execution_count": 76,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po.sim.tline.step = 0.05\n",
+    "po.fixed_boundary = 'loaded end (matrix)'\n",
+    "po.loading_scenario.trait_set(loading_type='monotonic',\n",
+    "                              amplitude_type='constant',\n",
+    "                              loading_range='non-symmetric'\n",
+    "                              )\n",
+    "po.loading_scenario.trait_set(number_of_cycles=1,\n",
+    "                              unloading_ratio=0.98,\n",
+    "                              )"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 77,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "\n",
+       "        \\begin{array}{lrrl}\\hline\n",
+       "        \\textrm{k_max} & k_{\\max} = 200 & \\textrm{[-]} & \\textrm{maximum number of iterations}  \\\\\n",
+       "                \\textrm{tolerance} & \\epsilon = 0.0001 & \\textrm{[-]} & \\textrm{required accuracy}  \\\\\n",
+       "                \\textrm{n_e_x} & n_\\mathrm{E} = 50 & \\textrm{[-]} & \\textrm{number of finite elements along the embedded length}  \\\\\n",
+       "                \\textrm{mats_eval_type} & \\textrm{multilinear} & & \\textrm{material model type}  \\\\\n",
+       "                \\textrm{control_variable} & \\textrm{u} & & \\textrm{displacement or force control: [u|f]}  \\\\\n",
+       "                \\textrm{w_max} & w_{\\max} = 0.1 & \\textrm{[mm]} & \\textrm{maximum pullout slip}  \\\\\n",
+       "                \\textrm{fixed_boundary} & \\textrm{loaded end (matrix)} & & \\textrm{which side of the specimen is fixed [non-loaded end [matrix], loaded end [matrix], non-loaded end [reinf]]}  \\\\\n",
+       "                \\hline\n",
+       "        \\textbf{loading_scenario} & \\textrm{LoadingScenario} & & \\textrm{object defining the loading scenario} \\\\\n",
+       "            \\textbf{cross_section} & \\textrm{CrossSection} & & \\textrm{cross section parameters} \\\\\n",
+       "            \\textbf{geometry} & \\textrm{Geometry} & & \\textrm{geometry parameters of the boundary value problem} \\\\\n",
+       "            \\textbf{mats_eval} & \\textrm{MATSBondSlipMultiLinear} & & \\textrm{material model of the interface} \\\\\n",
+       "            \\hline\n",
+       "        \\end{array}\n",
+       "        "
+      ],
+      "text/plain": [
+       "<bmcs.pullout.pullout_sim.PullOutModel at 0x7f7bfbf04e90>"
+      ]
+     },
+     "execution_count": 77,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "po"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Run the simulation\n",
+    "The model object `po` contains the non-linear threaded simulator `sim` as its attribute. To be sure that the state arrays and history variables are zeroed and reset run the methods `stop` first. After that, the simulation can be started."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 71,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "#po.sim.stop()\n",
+    "po.sim.run()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Postprocessing"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Pull-out curve"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 72,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"400\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, ax = plt.subplots(1,1, figsize=(4,3),tight_layout=True)\n",
+    "po.hist.plot_Pw(ax, 0.4)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Fiber and matrix stress at time $t$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 73,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"800\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.plot_eps_p(ax1, 0.6) # last argument between 0 and 1 defines the selected state during the simulation\n",
+    "po.plot_sig_p(ax2, 0.6);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Slip and shear flow "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 74,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"800\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, (ax3, ax4) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.plot_s(ax3, 0.6)\n",
+    "po.plot_sf(ax4, 0.6);"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Energy dissipation"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 75,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "\n",
+       "mpl.get_websocket_type = function() {\n",
+       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert('Your browser does not have WebSocket support. ' +\n",
+       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "              'Firefox 4 and 5 are also supported but you ' +\n",
+       "              'have to enable WebSockets in about:config.');\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent = (\n",
+       "                \"This browser does not support binary websocket messages. \" +\n",
+       "                    \"Performance may be slow.\");\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = $('<div/>');\n",
+       "    this._root_extra_style(this.root)\n",
+       "    this.root.attr('style', 'display: inline-block');\n",
+       "\n",
+       "    $(parent_element).append(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen =  function () {\n",
+       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
+       "            fig.send_message(\"send_image_mode\", {});\n",
+       "            if (mpl.ratio != 1) {\n",
+       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
+       "            }\n",
+       "            fig.send_message(\"refresh\", {});\n",
+       "        }\n",
+       "\n",
+       "    this.imageObj.onload = function() {\n",
+       "            if (fig.image_mode == 'full') {\n",
+       "                // Full images could contain transparency (where diff images\n",
+       "                // almost always do), so we need to clear the canvas so that\n",
+       "                // there is no ghosting.\n",
+       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "            }\n",
+       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "        };\n",
+       "\n",
+       "    this.imageObj.onunload = function() {\n",
+       "        fig.ws.close();\n",
+       "    }\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function() {\n",
+       "    var titlebar = $(\n",
+       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
+       "        'ui-helper-clearfix\"/>');\n",
+       "    var titletext = $(\n",
+       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
+       "        'text-align: center; padding: 3px;\"/>');\n",
+       "    titlebar.append(titletext)\n",
+       "    this.root.append(titlebar);\n",
+       "    this.header = titletext[0];\n",
+       "}\n",
+       "\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = $('<div/>');\n",
+       "\n",
+       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "\n",
+       "    function canvas_keyboard_event(event) {\n",
+       "        return fig.key_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
+       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
+       "    this.canvas_div = canvas_div\n",
+       "    this._canvas_extra_style(canvas_div)\n",
+       "    this.root.append(canvas_div);\n",
+       "\n",
+       "    var canvas = $('<canvas/>');\n",
+       "    canvas.addClass('mpl-canvas');\n",
+       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "\n",
+       "    this.canvas = canvas[0];\n",
+       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "\n",
+       "    var backingStore = this.context.backingStorePixelRatio ||\n",
+       "\tthis.context.webkitBackingStorePixelRatio ||\n",
+       "\tthis.context.mozBackingStorePixelRatio ||\n",
+       "\tthis.context.msBackingStorePixelRatio ||\n",
+       "\tthis.context.oBackingStorePixelRatio ||\n",
+       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "\n",
+       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband = $('<canvas/>');\n",
+       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "\n",
+       "    var pass_mouse_events = true;\n",
+       "\n",
+       "    canvas_div.resizable({\n",
+       "        start: function(event, ui) {\n",
+       "            pass_mouse_events = false;\n",
+       "        },\n",
+       "        resize: function(event, ui) {\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "        stop: function(event, ui) {\n",
+       "            pass_mouse_events = true;\n",
+       "            fig.request_resize(ui.size.width, ui.size.height);\n",
+       "        },\n",
+       "    });\n",
+       "\n",
+       "    function mouse_event_fn(event) {\n",
+       "        if (pass_mouse_events)\n",
+       "            return fig.mouse_event(event, event['data']);\n",
+       "    }\n",
+       "\n",
+       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
+       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "\n",
+       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
+       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "\n",
+       "    canvas_div.on(\"wheel\", function (event) {\n",
+       "        event = event.originalEvent;\n",
+       "        event['data'] = 'scroll'\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        mouse_event_fn(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.append(canvas);\n",
+       "    canvas_div.append(rubberband);\n",
+       "\n",
+       "    this.rubberband = rubberband;\n",
+       "    this.rubberband_canvas = rubberband[0];\n",
+       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
+       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "\n",
+       "    this._resize_canvas = function(width, height) {\n",
+       "        // Keep the size of the canvas, canvas container, and rubber band\n",
+       "        // canvas in synch.\n",
+       "        canvas_div.css('width', width)\n",
+       "        canvas_div.css('height', height)\n",
+       "\n",
+       "        canvas.attr('width', width * mpl.ratio);\n",
+       "        canvas.attr('height', height * mpl.ratio);\n",
+       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
+       "\n",
+       "        rubberband.attr('width', width);\n",
+       "        rubberband.attr('height', height);\n",
+       "    }\n",
+       "\n",
+       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
+       "    // upon first draw.\n",
+       "    this._resize_canvas(600, 600);\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus () {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            // put a spacer in here.\n",
+       "            continue;\n",
+       "        }\n",
+       "        var button = $('<button/>');\n",
+       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
+       "                        'ui-button-icon-only');\n",
+       "        button.attr('role', 'button');\n",
+       "        button.attr('aria-disabled', 'false');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "\n",
+       "        var icon_img = $('<span/>');\n",
+       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
+       "        icon_img.addClass(image);\n",
+       "        icon_img.addClass('ui-corner-all');\n",
+       "\n",
+       "        var tooltip_span = $('<span/>');\n",
+       "        tooltip_span.addClass('ui-button-text');\n",
+       "        tooltip_span.html(tooltip);\n",
+       "\n",
+       "        button.append(icon_img);\n",
+       "        button.append(tooltip_span);\n",
+       "\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker_span = $('<span/>');\n",
+       "\n",
+       "    var fmt_picker = $('<select/>');\n",
+       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
+       "    fmt_picker_span.append(fmt_picker);\n",
+       "    nav_element.append(fmt_picker_span);\n",
+       "    this.format_dropdown = fmt_picker[0];\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = $(\n",
+       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
+       "        fmt_picker.append(option);\n",
+       "    }\n",
+       "\n",
+       "    // Add hover states to the ui-buttons\n",
+       "    $( \".ui-button\" ).hover(\n",
+       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
+       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
+       "    );\n",
+       "\n",
+       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1]);\n",
+       "        fig.send_message(\"refresh\", {});\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
+       "    var x0 = msg['x0'] / mpl.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
+       "    var x1 = msg['x1'] / mpl.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch(cursor)\n",
+       "    {\n",
+       "    case 0:\n",
+       "        cursor = 'pointer';\n",
+       "        break;\n",
+       "    case 1:\n",
+       "        cursor = 'default';\n",
+       "        break;\n",
+       "    case 2:\n",
+       "        cursor = 'crosshair';\n",
+       "        break;\n",
+       "    case 3:\n",
+       "        cursor = 'move';\n",
+       "        break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message(\"ack\", {});\n",
+       "}\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = \"image/png\";\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src);\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data);\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "}\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function(e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e)\n",
+       "        e = window.event;\n",
+       "    if (e.target)\n",
+       "        targ = e.target;\n",
+       "    else if (e.srcElement)\n",
+       "        targ = e.srcElement;\n",
+       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "\n",
+       "    // jQuery normalizes the pageX and pageY\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    // offset() returns the position of the element relative to the document\n",
+       "    var x = e.pageX - $(targ).offset().left;\n",
+       "    var y = e.pageY - $(targ).offset().top;\n",
+       "\n",
+       "    return {\"x\": x, \"y\": y};\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys (original) {\n",
+       "  return Object.keys(original).reduce(function (obj, key) {\n",
+       "    if (typeof original[key] !== 'object')\n",
+       "        obj[key] = original[key]\n",
+       "    return obj;\n",
+       "  }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event)\n",
+       "\n",
+       "    if (name === 'button_press')\n",
+       "    {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * mpl.ratio;\n",
+       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "\n",
+       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
+       "                             step: event.step,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "\n",
+       "    // Prevent repeat events\n",
+       "    if (name == 'key_press')\n",
+       "    {\n",
+       "        if (event.which === this._key)\n",
+       "            return;\n",
+       "        else\n",
+       "            this._key = event.which;\n",
+       "    }\n",
+       "    if (name == 'key_release')\n",
+       "        this._key = null;\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which != 17)\n",
+       "        value += \"ctrl+\";\n",
+       "    if (event.altKey && event.which != 18)\n",
+       "        value += \"alt+\";\n",
+       "    if (event.shiftKey && event.which != 16)\n",
+       "        value += \"shift+\";\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, {key: value,\n",
+       "                             guiEvent: simpleKeys(event)});\n",
+       "    return false;\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
+       "    if (name == 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function() {\n",
+       "        comm.close()\n",
+       "    };\n",
+       "    ws.send = function(m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function(msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data'])\n",
+       "    });\n",
+       "    return ws;\n",
+       "}\n",
+       "\n",
+       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = $(\"#\" + id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "\n",
+       "    function ondownload(figure, format) {\n",
+       "        window.open(figure.imageObj.src);\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy,\n",
+       "                           ondownload,\n",
+       "                           element.get(0));\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element.get(0);\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "\n",
+       "    var output_index = fig.cell_info[2]\n",
+       "    var cell = fig.cell_info[0];\n",
+       "\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
+       "    var width = fig.canvas.width/mpl.ratio\n",
+       "    fig.root.unbind('remove')\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable()\n",
+       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    fig.close_ws(fig, msg);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message(\"ack\", {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var nav_element = $('<div/>');\n",
+       "    nav_element.attr('style', 'width: 100%');\n",
+       "    this.root.append(nav_element);\n",
+       "\n",
+       "    // Define a callback function for later on.\n",
+       "    function toolbar_event(event) {\n",
+       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    }\n",
+       "    function toolbar_mouse_event(event) {\n",
+       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "    }\n",
+       "\n",
+       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) { continue; };\n",
+       "\n",
+       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
+       "        button.click(method_name, toolbar_event);\n",
+       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
+       "        nav_element.append(button);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
+       "    nav_element.append(status_bar);\n",
+       "    this.message = status_bar[0];\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
+       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
+       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
+       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
+       "    buttongrp.append(button);\n",
+       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
+       "    titlebar.prepend(buttongrp);\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function(el){\n",
+       "    var fig = this\n",
+       "    el.on(\"remove\", function(){\n",
+       "\tfig.close_ws(fig, {});\n",
+       "    });\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.attr('tabindex', 0)\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "    else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager)\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which == 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "}\n",
+       "\n",
+       "\n",
+       "mpl.find_output_cell = function(html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i=0; i<ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code'){\n",
+       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] == html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "}\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel != null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"800\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fix, (ax5, ax6) = plt.subplots(1,2, figsize=(8,3),tight_layout=True)\n",
+    "po.hist.plot_G_t(ax5, 1)\n",
+    "po.hist.plot_dG_t(ax6, 1);"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.6"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": true,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {
+    "height": "calc(100% - 180px)",
+    "left": "10px",
+    "top": "150px",
+    "width": "203.5px"
+   },
+   "toc_section_display": true,
+   "toc_window_display": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/environment.yml b/environment.yml
index dde1760..4d87599 100644
--- a/environment.yml
+++ b/environment.yml
@@ -15,6 +15,7 @@ dependencies:
 - traitsui
 - pyqt
 - pyface
+- ipyml
 - mayavi
 - pip
 - pip:
diff --git a/index.ipynb b/index.ipynb
index 9d55001..f62bd42 100644
--- a/index.ipynb
+++ b/index.ipynb
@@ -9,6 +9,9 @@
     "\n",
     "@author: rosoba\n",
     "\n",
+    "## Seminar work\n",
+    " - [J0000 - How to set the pullout model parameters](bmcs_course/SeminarWorkHowTo.ipynb)\n",
+    "\n",
     "## Rule of mixtures for elastic composites\n",
     " - [J0101 - Elastic mixture rule](bmcs_course/1_1_elastic_stiffness_of_the_composite.ipynb)\n",
     " \n",
-- 
GitLab