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Textile reinforced concrete (TRC) is a novel composite building material, its structural behavior is substantially
influenced by the bond interface between the reinforcing textile fabrics and concrete. The bond interface can be
characterized by a nonlinear bond-slip law. The pull-out test is a common experimental procedure for de-
termination of the bond-slip law. In this paper, a general finite element procedure is proposed to calibrate the
bond-slip law according to the results of pull-out tests. By adopting a generic multilinear bond-slip law and
solving each piece of the law sequentially, the conventional curve fitting procedures employing optimization
algorithms, which are computationally expensive and sometimes non-convergent, can be avoided. Pull-out tests
of TRC specimens with varying anchorage lengths were carried out and the test results were used as the input
data for the calibration procedure. It is found that the calibrated bond-slip law is independent of the specimen
length. Using the calibrated bond-slip laws, the pull-out force vs. displacement curves are numerically re-

produced. The numerical results agree well with the experimental data.

1. Introduction

Compared to the conventional steel reinforcement, textile fabrics
made of carbon, aramid, glass or basalt fiber bundles have higher
strength and better corrosion resistance. These advantageous properties
enable the production of thin and lightweight TRC components [1,2].
The bond between the reinforcing textile and concrete is one of the key
factors determining the macroscopic behavior of the composite [3-6]. A
common way in modelling the composite materials for construction is
to represent the bond behavior by a bond-slip law, i.e., the shear stress
in the interface as a function of the relative slip between matrix and
reinforcement [7-16]. The pull-out test has become a quasi-standard
procedure to determine such bond-slip laws in composite materials for
construction. It has been adopted to characterize the bond in steel re-
inforced concrete [17-20], concrete reinforced by fiber reinforced
polymer (FRP) bars [21-25], textile reinforced concrete [26,27] as well
as natural fiber reinforced concrete [15]. In the case of strengthening/
retrofitting of existing structures, the test method is also referred to as
the lap pull-out test [28] or the lap shear test [29-34]. The influences of
different test setups on the bond properties were studied in [35].

In those tests, if the reinforcement is bonded externally to the ma-
trix, the surface strains can be measured [36] using, e.g., the digital
image correlation technique as documented in Refs. [35,37,38]. Taking
the externally bonded FRP sheet as an example, if its strain profile is
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known then the shear stress in the bond interface can be determined
using a difference formula, and the corresponding slip can be found by
a numerical integration of the measured axial strains [39]. However,
when the reinforcement is embedded inside the matrix as in the pull-out
tests of TRC, it is generally not possible to measure a bond-slip law
directly due to the lack of straightforward and precise measuring
techniques for the strain field along the reinforcement within the em-
bedded length.

A variety of calibration methods have been developed to identify
the constitutive laws that cannot be directly measured in experiments.
These methods can be classified into two categories: those using opti-
mization algorithms to minimize the lack of fit between the experi-
mental result and the numerical simulation [15,22,23,26,40-44]; and
those giving analytical or semi-analytical solutions [19,28,45,46]. The
procedures employing optimization algorithms, while being more in-
tuitive and easier to formulate, are usually computationally expensive
and allow only a limited number of free parameters in the assumed
constitutive models. Moreover, convergence of the optimization algo-
rithms and uniqueness of the solutions cannot be guaranteed [42]. On
the other hand, the analytical solutions are more difficult to derive and
less flexible compared to the methods in the first category. Such solu-
tions are only applicable to the given boundary conditions and to the
particular form of constitutive law.

In the present paper, we propose a novel method of inverse analysis
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Fig. 1. Schematic diagram of a double-sided pull-out specimen with the pre-defined crack
at the center, w is the pull-out displacement from each side.

to identify a multilinear bond-slip law based on a finite element for-
mulation of the pull-out problem. We describe the applied method of
implementing the procedure using modern, open-source utilities for
scientific computing and provide the executable code. At the same time,
we present an example of a calibration and validation procedure uti-
lizing a recently developed test setup shown in Fig. 1. The motivation
for development of this symmetric, double-sided pullout-test was to
appropriately reflect the condition of a typical crack bridge as it occurs
in structural TRC members under tensional or bending loads.

2. The direct and inverse pull-out problems

The idealized geometry and boundary conditions of a pull-out test
are shown in Fig. 2. The measured output of such a test is typically
provided as the relationship between the pull-out force P and the dis-
placement w. Two related problems can be formulated based on the
pull-out test, the direct pull-out problem and the inverse pull-out pro-
blem. The direct pull-out problem provides a prediction of the experi-
mental results in terms of the pull-out force vs. displacement curve for a
given bond-slip law. The inverse pull-out problem is used to determine
the unknown bond-slip law given an experimentally measured force-
displacement pull-out curve.

P
direct problem
inverse problem
A =W

ug(x) Ug(E)

Fig. 2. A mechanical model of the pull-out problem.
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The mathematical idealization of the direct pull-out is formulated as
an initial boundary value problem reflecting equilibrium and compat-
ibility conditions, as well as the material behavior of bond, matrix and
reinforcement. In the considered case of cementitious composites with a
negligible shear deformation the problem can be regarded as one-di-
mensional. The bond between the reinforcement and the matrix is as-
sumed in form of a general nonlinear function 7(s) coupling the shear
stress 7 with the slip s.

With the described assumptions, the equilibrium condition of an
infinitesimal segment of the reinforcement shown in Fig. 2 can be ex-
pressed as

@

where the index (.) , denotes the derivative with respect to the spatial
coordinate x. The cross-sectional area and the perimeter of the re-
inforcement are denoted as A¢ and p, respectively. Similarly, the equi-
librium of the matrix can be expressed as

Agopy — pt(s) =0,

Amom,x + PT(S) =0, (2)
where Ay, is the cross-sectional area of the matrix.

The slip in the bond interface is defined as
S =uf — Up, 3

where u; and u;, denote the reinforcement displacement and matrix
displacement, respectively. The second derivative of s reads

4

where ¢; is the reinforcement strain and ¢, is the matrix strain. The
constitutive laws of the reinforcement and the matrix are given as

Sxx = &fx — Emx>

or = D (er), Om = D (em), (5)
which in combination with Egs. (1) and (2) leads to

1 8C¢ 1 8Cy,
Ex = Xa—PT(S), mx = —A—a—PT(S) 6)

with the material compliances of the matrix and reinforcement given as
Cy= D(T)l. Substituting Eq. (6) into Eq. (4) the following second order
differential equation is obtained,

_ [ roc ]
[ o @

Af aO'f
Thus, the direct pull-out problem shown in Fig. 2 involves the so-
lution of the following boundary value problem for a given bond-slip
law 7(s),

1 dCp
Aa

=ypt(s),
S,x(_L) =0,
5(0) = 8)
where
_ 109G 1 0Cn
Af adf Am ao'm ’ (9)

Here w represents the control displacement of the reinforcement at the
end being pulled out. For special types of the bond-slip law, analytical
solutions of the problem are available [45-49]. For more general cases,
numerical procedures such as the finite difference method or the finite
element method can be employed. With the solution s(x) for a given
displacement w at hand, the corresponding pull-out force P can be
obtained as an integral of the shear stress along the interface,

P(w) = f_oLr(s(x; w))dx. (10)

The pull-out response P(w) is determined by solving Eq. (8) re-
peatedly for an increasing control displacement w and then evaluating
the corresponding pull-out force P according to Eq. (10).

The aim of the inverse pull-out problem is in turn to identify a bond-
slip law 7(s) that reproduces the experimentally measured pull-out
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curve PE(w). The conventional approach is to predefine a bond-slip law
containing several free parameters, thus the solution of the direct
problem can be expressed explicitly or implicitly in terms of those free
parameters. Then the free parameters can be identified by fitting the
solution of the direct problem to the experimentally obtained pull-out
curves. As mentioned in the introductory section, these approaches are
computationally expensive and may exhibit convergence problems.

An interesting approach to the inverse analysis has been proposed in
Ref. [19] in connection with an analytical pull-out problem formula-
tion. It exploits the fact that the maximum slip occurs at the material
point x = 0 in the bond interface and, thus, one can focus on this single
point rather than the whole bond interface. In addition, a general bond-
slip law is represented by a piecewise linear function and, thus, the
solution space is not limited to a specific form of a bond-slip law. This
concept is used and extended here to provide a numerical tool for in-
verse analysis of the pull-out problem.

3. Numerical model of the direct pull-out problem
3.1. Variational formulation

In order to provide a more general model of the pull-out problem
defined by the differential Egs. (1) and (2), we reformulate the
boundary value problem in a weak form within the domain Q:=[—-L, 0]
shown in Fig. 2. The essential and natural boundary conditions are
specified as

Up = U (6) on l—‘umy OmAm = in(6) on th:
us = ;(0) on L, op Ay = £(6) on I,

(1)

in which T, , I, T, and Ij; denote the boundary points where the
corresponding boundary conditions are applied. The essential boundary
conditions ;s and the natural boundary conditions f.,; are prescribed
as functions of the intrinsic time variable 6 which is used to control the
loading history. Denoting the integration of the product of two func-
tions u, v over the domain V as (u, v)y, the weak formulation can be
expressed as

(5ums Am Om,x + pf)g + (5uf’ Af Ofx — pf)g"'
(Sttm, —=AmOm + I (O, + (Bur, —Aror + £(O)) +

(Gttm, Um = Um (O, + (Gus, ug — 4 (), = 0.

12)
Here Su,, and Su; denote the test functions that are assumed to have
continuous first derivatives, are L? integrable and to implicitly fulfill the
essential boundary conditions (see e.g. Ref. [50]). Since du,, = 0 on T,
and dur = 0 on [, the last two terms in Eq. (12) vanish. Using in-
tegration by parts, the orders of the stress derivatives oy, x and ot in the
above integration can be reduced as follows

(Suey, Ao = (Bug), Ayoy)r — G Ayon)g 13)

Then, by substituting Eq. (13) for both matrix and reinforcement
into Eq. (12), the following variational formulation of the pull-out
problem is obtained

+ (Sug — dup, pr)g +
= (Oum; tn(0)ny
= 0.

(5um,x, An c”m)Q
(Sugy, Asor)g
(Bus, £ (0))n;

(14)

The obtained functional is prepared for discretization using the fi-
nite element method. By choosing linear shape functions to approx-
imate the displacement fields u,, and u; and the test functions du,, and
dus we obtain the known finite element models of a pull-out problem,
e.g. Refs. [51-53]. Higher-order shape functions with corresponding
integration schemes can used be to generate advanced models of the
pull-out problem.

In order to fully exploit the generic nature of the formulated func-
tional we applied a novel approach to implementation of the finite

113
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Fig. 3. Linear finite element with two displacement fields.

element code. In particular, we used the index notation and the Einstein
summation convention to obtain a compact form of the system equa-
tions that can be directly translated to an executable code. Similar
approaches have been reported recently by other researchers, e.g., in
Refs. [54,55]. A thorough description of the code for the direct pull-out
problem is not the primary focus of the present paper. However, to
make the paper self-contained and to demonstrate the advantages of the
coding approach we provide its detailed description including a link to
the code in Appendix A.

3.2. Finite element implementation

For the current study, we use the finite element model proposed by
Herrmann [52], which was proved to be efficient for the direct pull-out
problem [56,57]. The two-node element shown in Fig. 3 uses the linear

shape functions
N=(1-8/2, =1 +§)/2 (15)

for both displacement fields and two integration sampling points at

51 =-1, §2 =1, (16)
with the corresponding weights given as
w=w, =1 17)

By substituting these element parameters into the generic im-
plementation described in Appendix A, we obtain the executable code
of the direct pull-out problem.

The essential boundary conditions displayed in Fig. 2 read

Uy =0onx=0,

us =wonx = 0. 18

The pull-out force P, expressed as an implicit function of the dis-
placement w and bond-slip law 7 (s)

P = P(z(s), w) 19)

are then numerically evaluated using Eq. (A.17). The above equation
forms the basis for solving the inverse pull-out problem.

4. Sequential inverse analysis of the pull-out problem

With the efficient solver for the direct pull-out problem at hand, we
can implement a calibration framework for a general pull-out test. It is
applicable in combination with linear as well as nonlinear material
behavior of the matrix and reinforcement. At the same time, it can be
embedded in a two- or three dimensional discretization of the matrix.

4.1. Description of the algorithm

The calibration is formulated for generally shaped piecewise linear
bond-slip laws. It exploits three properties of a pull-out boundary value
problem (see Figs. 2 and 5):

e the maximum slip occurs at the position x = 0,
e the slip at the position x = 0 equals the pull-out control displace-
ment, i.e. s(x = 0) = w, and
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Fig. 4. Bond-slip law approximated with a multilinear function.

e at any other point within the embedded length — L < x < 0, the slip
s(x) < w.

Based on these observations, we can conclude that all values of slip
less than the current control displacement (s < w) must have occurred
during the loading history at some lower level of loading at the position
x = 0. As a consequence, the shear stress for any lower value of slip
than the current control displacement can be assumed as already
known.

In order to introduce the incremental formulation of the calibration
procedure, we assume that the bond-slip curve is known for all steps
Jj =0..i — 1 with the value pairs (z;, 5;) corresponding to a piecewise
linear function (Fig. 4)
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Now, for the next value of slip s; > s;_; we seek the new value of 7;
that would satisfy the equilibrium condition given in Eq. (19), such that
Pz w) = PE(w), w;=s; 2D
where PE (w)) represents the pull-out force measured experimentally at
the control displacement w;. The root finding algorithm, such as the
Brents method [58] can be used effectively for the solution of Eq. (21)
such that the unknown shear stress 7; is determined.

Fig. 5 shows the quantitative correspondence between three chosen
values of 7; (Fig. 5b) and the corresponding pullout forces P (Fig. 5d)
satisfying the equilibrium condition Eq. (19). Apparently, a small
change of the pull-out force requires a large change of the value of 7.
This sensitivity is natural due to the fact that the pull-out force P is
evaluated as an integral of shear stress in the interface (Eq. (10)), thus it
equals to the area below the shear stress profile shown in Fig. 5a. The
value of 7; influences only a rather small part of the area (the right part,
shaded in lighter gray). This property reveals the sensitivity of the ca-
libration procedure with respect to small perturbations in the measured
experimental response, which shall be discussed in detail in the re-
mainder of this section.

4.2. Verification for elementary use cases

To verify the proposed inverse analysis procedure, we check whe-
ther or not it is able to reproduce an a-priori given bond-slip law. We
consider three types of a given bond-slip law 7(s) with analytically or
numerically calculated pull-out response curves P(w). Then, we test the

T =7+ kils - 5), (20) ability of the proposed inverse analysis to reproduce the original bond-
where slip laws. ' . . o
In the first case (a), the linear bond-slip law is given as 7 = 2s,
8§ <S = Sj1, So=7 =0 shown as the solid line in the bottom diagram of Fig. 6a. The input data
shown in the top diagram of Fig. 6a is the analytically obtained pull-out
ki = (tj11 = 1)/(85401 — 3. response curve, using the solution [45].
T T ( b) Fig. 5. Solution step i of the inverse pull-out problem: (a) the
(a) A A shear stress profile in the interface; (b) the bond-slip law for an
T3 intermediate state with three possible values of 7; (c) the slip
=_, P 1 profile in the interface; (d) numerically evaluated pull-out
— Ti—1 curves.
il
€T » » S
A S1 Si—1 Si
> 5
P s P
/P(Tl- ;W = 8;) t
A A 9
~—P (175w =s;)
Y\ 1
P(r; 5w =s;)
. - AS,‘
(d) » W
Si—1 84 €T
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Fig. 6. Verification examples: (a) constant bond; (b) linear bond-slip law; (c) nonlinear bond-slip law; (d) nonlinear bond-slip law and perturbed pull-out response curve.

_ ktanh(aL) w,
a

P(w) 22)

in which k is the slope of the linear bond-slip law, L is the embedded
length, and the coefficient a can be written as

5 1 1
a=|pk + ,
\/ ( EfAf EmAm)

where p denotes the perimeter of the interface. The other geometrical
and material parameters of the pull-out problem are summarized in
Table 1. The result of the sequential inverse analysis reproduces the
prescribed bond-slip law exactly as documented by the dashed line in
the bottom diagram of Fig. 6a.

In the second case (b), a constant bond-slip law is prescribed as
7 =4 (Fig. 6b, bottom) and the analytical solution with infinite em-
bedded length [59].

(23)

EtAtEpnAm

»
P(w) = [2wpt
VP EAr + EnAn (24)

is used as the input data. Apparently, the calibrated bond-slip law (gray
dashed line) exhibits oscillations. This is due to the fact that the cali-
brated bond-slip law implicitly starts at the point 7(0) = 0 (Fig. 5b) and,
thus, cannot exactly reproduce the constant curve starting at 7(0) = 4.

This example indicates that the calibration might be sensitive to non-
smooth data obtained from the experimental measurement, an issue
that deserves attention as we discuss later on.

In the third case (c), a general, nonlinear bond-slip law is assumed
(Fig. 6¢, bottom), for which no analytical solution exists. In particular,
the used bond-slip law is given as

_J—6s2+125,0<5<105
B {— 0.6s + 6.615, 1.05 < s < 3. (25)

The corresponding pull-out curve is calculated using the direct pull-
out problem solver described in Eq. (19) and serves as synthetic input
data for the inverse analysis. The calibrated bond-slip law fits exactly
the given curve.

Based on these verification tests, the calibration procedure seems to
be well suited for processing the general pull-out test results. However,
regarding the oscillations observed in Fig. 6b we need to consider the
fact that experimentally measured data is not perfectly smooth. Thus it
is worth examining the sensitivity of the algorithm with respect to
perturbed input data.

In Fig. 6d, the pull-out curve from Fig. 6c is artificially perturbed
and the calibration of the bond-slip law is repeated. The result shown as
the gray dashed line in the corresponding bottom diagram

Table 1

Parameters used in the verification examples.
case# @ (b) (© (@
matrix area [mm?] 1543.35 1543.35 1543.35 1543.35
matrix modulus [MPa] 28484 28484 28484 28484
reinforcement area [mm?] 16.65 16.65 16.65 16.65
reinforcement modulus [MPa] 170000 170000 170000 170000
bond interface perimeter [mm] 10 10 10 10
specimen length [mm] 2000 infinite 700 700

linear constant nonlinear nonlinear

bond-slip law type

input data analytical solution

analytical solution synthetic data perturbed data
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Fig. 7. Averaging procedure: (a) experimental
pull-out force with and without error at the step

u o
PE PF . i1t T 70 i — 1; (b) the calibrated bond-slip law.
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demonstrates that the introduced perturbations result in large oscilla-
tions of the obtained bond-slip law. This reveals the well known ill-
posed nature of the inverse problems as summarized in Ref. [60]. In
order to deal with this problem, two approaches are possible:

e smooth the experimental data using regression techniques,
o regularize the calibrated bond-slip law on-the-fly.

The smoothing techniques are easy to implement, however they
cannot handle the problem observed in Fig. 6b. The deviation of the
calibrated bond value at one point (s = 0) propagates to further steps,
causing oscillation of the calibrated law within a wide range. Hence, we
propose to include the on-the-fly regularization technique within the
sequential calibration procedure.

4.3. Regularization technique

In order to regularize the calibration, let us first take a closer look at
the reason for the oscillations. Suppose that at the step i — 1 there is an
error ¢ in the experimental pull-out force PF(w = s;_,) (the gray line in
Fig. 7a) leading to an underestimated bond value %_; as shown in
Fig. 7b. At the next step, the algorithm delivers an overestimated value
7, as a compensation in order to reproduce the same pull-out force
PE(w = s;). This explains the oscillations observed in Fig. 6b and
Fig. 6d.

The regularization technique exploits the fact that the over-
estimation of 7; at one step leads to the underestimation at the next step,
and vice versa. Considering two points [s;_1, %_1] and [s;, 7] we calculate
their average [§ = (s;—1 + 51)/2, T = (f-1 + %)/2] as shown in Fig. 7b.
The obtained bond-slip law (the gray solid line) is close to that derived
from the experimental data without any error (the black solid line). The
averaged data point is directly used in the next load increment so that
we refer to this type of regularization as on-the-fly averaging.

In a general case, the regularization involves R data points in each
step. Assuming that the in the averaged bond-slip law will conssit of K
value pairs [5, %], k € (1, K), each of which is averaged using R cal-
culated data points, we can write the general averaging formula as

1 kR 1 kR
Se=— Z S Tk = — z .
i=(k—=1)R+1 i=(k—=1)R+1 (26)

The averaged values [, 7] are used in the subsequent calculation
step k + 1 of the pull-out force. In other words, the incremental cali-
bration of the bond-slip law incorporates the averaged values right after
every R steps. Let us remark, that this kind of interleaved, on-the-fly
averaging is essencial for a robust calibration procedure that is in-
sensitive to data perturbations.

The proposed technique has been verified using the cases (b) and (d)
in Fig. 6. As shown by the black dashed lines in Fig. 6b and Fig. 6d, the
oscillations are drastically reduced and the regularized results are close
to the given bond-slip laws. In general, the more severe the oscillations
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are, the larger the value of R should be. The regularized bond-slip laws
for the cases (b) and (d) are obtained with R = 2 and R = 4, respec-
tively.

5. Application to calibration of the bond-slip law in TRC

Driven by the need for an approach to test textile reinforcement
with low bond stress and long anchorage characteristics, a novel test
setup with hydraulic clamping to investigate the behavior of TRC under
uniaxial tensile loading has been recently developed at the Institute for
Structural Concrete, RWTH Aachen University [61]. Using a similar test
setup, double-sided pull-out tests of thin TRC specimens with styrene-
butadiene impregnated carbon textile reinforcement have been carried
out.

In the test setup shown in Fig. 8, a TRC specimen with a notch on
both faces at the middle section is clamped using hydraulic cylinders.
The proposed test setup induces high transversal stress into the an-
chorage zone of the specimen. For non-impregnated yarns and yarns
with a flexible impregnation, e.g. styrene-butadiene, the bond char-
acteristics are not influenced by transversal pressure if the concrete
remains uncracked in longitudinal direction. This effect was studied by
utilizing specimens where the steel plates were adhesively bonded in-
stead of hydraulically clamped. There, no difference between the pull-
out behavior of the clamped and the adhesively fixed specimens was
observed. Due to the low stiffness of the yarns in comparison to the
concrete in transversal direction, the transversal pressure is transferred
by small concrete vaults, forming around the yarn channels (Fig. 8c).
The horizontal force components resulting from the vault action were
low and did not lead to formation of longitudinal cracks in the clamping
zone.

The cross section of the specimens has the dimensions of 120 x 13
mm?, the specimen length was chosen as an experimental parameter
ranging from 200 mm to 700 mm. The specimens were cut from one
large TRC plate, which guaranteed the homogeneity of the material
properties of all specimens and avoided the influence of boundary ef-
fects. In total, 15 specimens were produced. Table 2 summarizes the
number of the specimens for each tested length. At the beginning of the
test a crack through the full cross-section in the matrix was provoked at
the position of the notch. The reinforcement was then pulled out from
both sides during the loading process.

The material behavior of the matrix and reinforcement was assumed
linear-elastic. In each specimen there were 9 parallel 3300 tex yarns
with the cross-sectional area of 1.85 mm? in the loading direction, the
Youngs modulus of the yarns was determined as high as 170 GPa using
the single yarn tensile test. The applied fine-grained concrete had
Youngs modulus of 28.48 GPa. The relevant material and geometrical
parameters are summarized in Table 3.

Fig. 9 shows the results of the double-sided pull-out tests, i.e., the
relationship between the pull-out force and the crack opening at the
middle. Fig. 10 shows the final failure modes of one representative
specimen for each length. From Fig. 9 one can observe that the pull-out
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Table 2
Number of specimens tested for each length.

Length [mm] 200 300 400 500 600 700
Amount 2 3 3 2 3 2
Table 3
The measured geometrical and material parameters.
matrix area [mm®] 1543.35
matrix stiffness [GPa] 28.48
reinforcement area [mm?] 16.65
reinforcement stiffness [GPa] 170
specimen length [mm] 200-700

(c) section A-A

yarn
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Fig. 8. Test setup for double-sided pull-out
tests: (a) front view; (b) side view; (c) cross
section; (d) a clamped specimen.

(d) a clamped specimen

curves generally consist of three branches, and the achieved maximum
pull-out force in the first branch increases monotonically with the
specimen length. It is important to note that the peak at the end of the
first branch of the pull-out curve is induced by the bond-slip interaction
between the penetrated yarn and the matrix and does not represent an
initiation of the matrix crack within the notched section. Indeed, the
cracking of the remaining matrix section at the notch occurred at lower
levels of tensile loading (2-3 kN). The event of emerging matrix crack
has been subtracted from the pull-out response as it has no effect on the
measured bond behavior and should not enter the calibration of the
bond-slip law.

As shown in Fig. 10, the failure of the shorter specimens was caused
by the pull-out of the yarns. In case of longer specimens, the failure was
initiated by the rupture of one of the yarns. This explains the sudden
drop of the pull-out forces observed in the latter parts of the pull-out
curves for the longer specimens. For the 70 cm specimens, a virtually
brittle failure mode was observed.

Fig. 9. Crack opening vs. pull-out force curves.

30 ' ' ' '
specimen length:
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Fig. 10. Examples of specimens showing the amount of pulled-out and ruptured yarns.

The failure of parallel multiple yarn systems represents a rather
complex phenomena [62] that can be addressed using a stochastic
treatment. However, this issue goes beyond the scope of the current
paper. In the tests of shorter specimens (20 cm, 30 cm and 40 cm), yarn
rupture was not observed before the peak load. Furthermore, after the
peak load, the assumed symmetric double-sided pull-out condition is no
longer provided. Each yarn is pulled-out only from the side with slightly
weaker bond properties (see e.g. the 30 cm specimen in Fig. 10).

In order to determine the bond-slip law, we used only the ascending
branches of the measured response for which the symmetry of the un-
derlying double-sided pullout boundary value problem can be assumed.
Then, we can set the half of the measured crack opening equal to the
pull-out displacement on each side (Fig. 1). As has been pointed out in
Ref. [47], the cross section of an embedded yarn is not always of regular
circular shape, so it is difficult to determine the perimeter of the bond
interface. Hence, we normalized the bond intensity to shear force per

12 - - - - -

_.
© o

bond [N/mm]
N

4 20 cm 40 cm
+—42() cm average x - x40 cm average
) 30 cm —average of all |
— =30 cm average
00 1 2 3 4 5 6

slip [mm]

Fig. 11. The calibrated bond-slip laws based on test results of 20 cm, 30 cm and 40 cm
specimens.
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3
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Fig. 12. Verification of the calibration procedure: comparison of the numerically re-
produced pull-out curves with the original experimental curves.

yarn per unit length.

Fig. 11 shows the calibrated bond-slip law obtained with the test
results of 20 cm, 30 cm and 40 cm specimens, the gray lines show the
bond-slip laws derived from the test results of each individual spe-
cimen, the black lines show the averages. It can be observed that the
bond-slip law is independent of the specimen length. Fig. 12 compares
the numerically reproduced pull-out curves using the calibrated bond-
slip law with the experimental ones. This study only verifies that the
pull-out curves used for calibration are reproduced with the calibrated
bond-slip laws.

The identified average bond-slip law has then been used to nu-
merically predict the pull-out curves of the longer (50 cm, 60 cm and
70 cm) specimens as shown in Fig. 13. As yarn rupture has not been
considered in the numerical model, the predicted pull-out force is larger
than the experimental value at the latter stage of the test where yarn
rupture occurs. Nevertheless, the initial parts of the predicted pull-out
curves agree well with the experimental data, which demonstrates that
the calibrated bond-slip law can well represent the mechanical behavior
of the bond. The discrepancies at the latter stage were mainly caused by
the yarn rupture. Fig. 12 and Fig. 13 validate that the proposed pro-
cedure can accurately identify the bond-slip law of the investigated
TRC.

Interestingly enough, the identified bond-slip law exhibits slip-
hardening behavior. A possible source of this unusual behavior can be
sought in the applied penetration material, styrene-butadiene with a
relatively low stiffness. A similar type of slip-hardening behavior has
been observed in pull-out of PVA fibers from concrete [63] and ex-
plained by a jamming effect increasing the lateral pressure in the in-
terface zone between the fiber and matrix.

6. Conclusions

The bond-slip law in the bond interface is an important material
parameter for cementitious composites such as TRC. In this paper, we
proposed a finite element method based procedure to solve the inverse
pull-out problem, i.e., to identify the bond-slip law from the pull-out
tests. The bond-slip law is represented as a multilinear function without
any restriction on its shape.

Due to the fact that the pull-out force is evaluated as the integral of
the shear flow in the bond interface, the inverse pull-out problem is
inherently ill-posed and, therefore, delivers oscillating results. The
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Fig. 13. Predicted pull-out curves for: (a) 50 cm specimen; (b) 60 cm specimen; (¢) 70 cm specimen.
sources for the oscillations have been analyzed and a regularization sequence of analysis steps. In particular, finite element models focused
technique has been proposed as a remedy. on specific effects of the direct pull-out, reported e.g. in Refs. [64-69]
The verification examples performed for elementary cases of bond- can be readily included in the described approach to inverse analysis.
slip laws demonstrate the feasibility of the calibration procedure. We remark that the proposed procedure is not limited to the cali-
Double-sided pull-out tests with varied length of the TRC specimens bration of bond-slip laws but can be easily extended to more general
were performed to obtain the data necessary for the validation of the inverse problems. The described concept and the implementation of the
bond characterization approach. It was possible to identify an objective inverse pull-out problem can be applied to two- or three-dimensional
bond-slip law that could reproduce the pull-out response for all tested boundary value problems. An example of a similar inverse analysis is
specimen lengths. In other words, the obtained bond-slip law is in- provided by the cohesive crack-opening law describing the strain-soft-
dependent of the specimen length, so that it can be regarded as a local ening behavior within a fracture process zone in quasi-brittle materials.
material parameter.
Besides the formulation of the direct pull-out problem and inverse Acknowledgements
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plementation of the finite element code utilizing the current open- This work was supported by the German Federal Ministry of
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Appendix A. Index-based finite element code

As mentioned in Sec. 3.2, we have implemented the direct pull-out problem using a novel approach exploiting the currently available open-
source libraries for scientific computing. In order to make the paper self-contained and to share the concept with the broader scientific community,
we briefly describe the implementation method here and provide the corresponding code in the open-source github. com repository [70]. The
implementation approach utilizes two new features provided by current tools for scientific computing that have become available during the recent
decade:

e multi-dimensional arrays, and
o highly efficient multi-dimensional index operators based on the Einstein summation rule.

In order to exploit these two concepts, we need to formulate the finite element model of the direct pull-out problem in index form. Then, it can be
directly translated into an efficient, executable code that is conceptually identical with the underlying mathematical description. In this way, the
implementation process becomes very straightforward and almost faultless. At the same time, we do not have to compromise efficiency in relation to
the traditional, loop-based, compiled finite element implementations. Finally, the code is easily portable and installable on any platform.

Appendix A.1Index notation

To allow for the Einstein summation rule not only for spatial dimensions, nodes, elements and integration points, but also for individual material
components, we replace the subscripts (.), and (.); with the indexes 1 and 2. In the present case of the pull-out problem, index 1 represents the matrix
m and index 2 the reinforcement f. The convention implies summation over repeated indexes, for example the slip between the matrix and re-
inforcement given in Eq. (3) can be rewritten as

S=—up + up = (=D + (=% = (—DCu, (A1)

with ¢ = 1,2. To avoid ambiguity, we note that here the upper index ¢ means both exponent and index, alternatively, (—1)° can be understood as the
c-th component of the vector {—1,1}. Using this convention, the variational formulation in Eq. (14) can be rewritten as

(6uc,x’ E:)Q + (Suc(-1), pT)g - (Ouc, fc(e))nc =0, (A.2)

where F. is the component of the vector {4;0, A;0,}, and the term éu.(—1)° = § (u, — w;) = s renders the virtual slip between the components.
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Appendix A.2Finite element discretization

Fig. A.14. Index-based finite element discretization.

The displacement field of the material component c is approximated using the shape functions shown in Fig. A.14a,

ue = Ny def, Sue = Ny 8d,;

with the index I = 1,2, ...,M representing the I-th node.

For brevity, we use globally defined shape functions, centered at the node I and covering two neighboring elements throughout this appendix. In
the standard finite element implementation, an element-wise, parametric specification of the shape function is usual. The present mathematical
expressions related to node I can be easily transformed into such kind of element-centered expressions using an index function [e, i] — I that defines
the mapping of the local elemental degrees of freedom to the global nodal degrees of freedom (Fig. A.14b). This mapping function was used in the
supplied code [70] to obtain an efficient, “loopless” assembly procedure of system matrix and force vectors.

The strain field and virtual strain field in each material component c are then expressed as

Uex = Brder, Sucy = By édy (A.3)

where B, = Ny, x is the global coordinate.’ The slip field is approximated as

s = (=Duc = (-1)°Ndar, A4

so that, after substitutions, Eq. (A.2) reads

8der (Br, Fo)a + 8der ((—1)°Ny, pr)g — 6der (N1, 7 (0))r,, = 0. (A.5)
Since dd,; is arbitrary, and (N, £(6))y, can be simplified to nodal loads as #;(6), Eq. (A.5) can be reduced to

R = (Br, E)a + (-1)'Np, pr)g — 1 (6) = 0, (A.6)

with Rc(,s) representing the residuum.
Appendix A.3lterative solution algorithm

In case of nonlinear material behavior assumed either for the matrix, reinforcement or bond, Eq. (A.6) needs to be linearized using the Taylor
expansion:
0

© (70 © (k-1 , ORL
R/ (dlﬂ ) ® R (ddj )+ —
daJ

Ad® = 0.
k=D (A7)

Since we do not consider geometrical nonlinearity and the nodal loads #.; are assumed independent of the displacements, the derivative in Eq.
(A.7) can be written as

5
R (g, 2 4 [—vem, p2E)
ddys dda ), ddys ),

(A.8)
In case of nonlinear material behavior of the components c, the derivative of the cross-sectional component force F. with respect to d.; reads

OF _ O b _ OR
ody  Oeq0dy e | (A.9)

Similarly, for nonlinear bond-slip law, the derivative of shear flow with respect to the nodal displacement can be written as

1 The supplied code element-wise mapping also includes the usual geometry mappings of the local coordinate & (Fig. A.14b) and the global coordinate x using the Jacobian matrix.
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ot =ﬁ os =EN](—1)"I.
ddg; 9sddg;  Os (A.10)

Thus, the tangential stiffness in Eq. (A.7) reads

o _ p(Ok-1) _ 3R,
gy | g edr = B, By, .
ddy ddr - /q.
+ (=1)+ (N,Nal _)
(=D p( Ny Jasldcllcll , (A1D)
The integrals in Eq. (A.11) are evaluated using the numerical quadrature,
(u, vV)a = wiX;, (A.12)

in which w; is the weight factor and X; = u(&)v (&) the value of the product uv at the integration point ;. Finally, by rewriting Eq. (A.7) the following
incremental form of equilibrium is obtained

K Vadgy) = =R (™). (A.13)

Appendix A.4Displacement control procedure

To introduce the boundary conditions u,, (x = 0) = 0 and u¢(x = 0) = w we need to rearrange the system of nonlinear equilibrium conditions Eq.
(A.6) into two parts [71]:
Rch (Jco, dch) =0, (A.14)

Reo (ECOa dcll) =Pk (A.15)

where I; = 1..M counts the non-constrained nodes located within Q— I, i. e — L < x < 0. The two equations indexed cO = [mO0, f0] represent the
reaction forces at the constrained boundary x = 0. The iterative scheme for the direct pull-out displacement control is obtained by performing the
linearization of the unconstrained residuum equation (A.14) and rewriting the iterative scheme given in Eq. (A.13) as

6,k—1 k) _ G} k—1 8,k—1) A (k)
K "Adg) = =R (di7) = Ko ¥ Adgg’. (A.16)
This equation is solved iteratively until the convergence is reached. With the obtained nodal displacement vector d.;, the pullout force can be

evaluated by substituting it back to Eq. (A.15)

P = Ryp(dmo =0, dpp = w, dop,). (A.17)

Appendix A.5Implementation

To indicate how to transform the mathematical description into an executable code let us specify the code evaluating the first integral in the
expression (A.6)
(B, F)a (A.18)
using the numerical quadrature mentioned in Eq. (A.12) as
R = wiByFy (A.19)

with automatic summation over the index i using the numpy. einsum method. Let us assume that w;, B; and E; are available as multidimensional
numpy arrays w_i, B_li and F_ci, respectively. Then, resulting residual force in every node and material component of the finite element discretization
is evaluated using the code

import numpy as np 1

R1 cI = np.einsum( '1i,li,ci—>cl ' ,w_i,B_li,Fci) 2

Detailed description of the mapping between the mathematical formulation and the code is available in Ref. [70].
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