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a b s t r a c t 

The paper describes a probabilistic model capturing the multiple-cracking behavior of 

unidirectional brittle-matrix composites loaded in tension. The approach to modeling of 

composite fragmentation introduces two salient features that enhance both efficiency and 

flexibility compared to existing simulation methods: First, the algorithm identifies the 

emerging cracks one by one within a minimum number of load increments. Second, the 

crack-tracing algorithm is based on an abstract description of a crack bridge behavior. 

As a result, it is possible to combine the crack-tracing algorithm with a wide variety of 

crack bridge models, i.e. non-linear, deterministic or probabilistic. In this way, specific 

phenomena of bond behavior in different types of composites can be accounted for. 

The random nature of matrix cracking is reproduced using a random field simulation of 

the matrix strength. The model is verified by reproducing analytical results available for 

constant bond-slip law. The feasibility and robustness of the algorithm is demonstrated 

using an interactive web application that is directly executable from within a public 

github.com repository. 

© 2020 Elsevier Inc. All rights reserved. 
1. Introduction 

The development of multiple cracks in the matrix of brittle-matrix composites loaded in tension increases their tough- 

ness and ductility. These favorable properties endow the composite material a higher impact resistance and stress redistri- 

bution capacity [1–5] . Gradual evolution of multiple cracks along a tensile zone leads to strain-hardening behavior of the 

composite. A detailed description of the tensile behavior is of crucial importance for the realistic evaluation of deformation, 

crack width and crack spacing in the serviceability limit state [6–10] . Adjustable strain-hardening characteristics of brittle- 

matrix composites are desirable for many newly emerging materials, e.g. in novel fibre reinforced geopolymer (cement-free) 

composites [11] , hybrid fiber-reinforced polypropylene [12] and cement-based composites [3,4,13] . 

With the enormous design space of composites opened up by the countless possible combinations of novel materials, 
efficient and robust characterization methods become essential. Uni-axial tensile test has been recommended as one of the 
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Fig. 1. Stress-strain curve of a unidirectional composite under tension: deterministic matrix strength σmu (solid line) with the characteristic values specified 

according to Aveston-Cooper-Kelly (ACK) model; random matrix strength σmu (dashed line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

standard experimental procedures for textile-reinforced concrete [14] . Specialized models of minimal necessary complexity 

and dimensionality, which capture the relevant mechanisms in standardized test setups, represent a paramount prerequisite 

for the development of reliable, realistic and widely applicable industry standards for newly developed engineering mate- 

rials. With these models, material parameters that characterize the interaction of matrix and reinforcement can be derived 

from 1D tensile tests and then applied in more complex numerical models of the composite material under 2D and 3D

loading [1,15] . 

The tensile behavior of fiber reinforced composites is dependent on the properties of the matrix, the fibers, and their 

interface [16–18] . Typically, the stress-strain response starts with an initial linear stage as depicted in Fig. 1 , the stiffness of

which can be determined by the mixtures rule as 

E c = E f V f + E m 

(1 − V f ) (1) 

with E f and E m 

denoting the fiber and matrix moduli of elasticity, respectively, and V f being the fiber volume fraction.

When the matrix strength is reached upon further loading, multiple cracks (matrix fragmentation) start to develop and the 

stiffness decreases. In the multiple cracking phase, stress redistribution occurs both between and within the constituents. 

This phase continues until the distance between cracks becomes shorter than the length needed to transfer a sufficient 

amount of stress to initiate another crack between two matrix cracks. Subsequently the composite enters the third phase 

featured again by a linear stress-strain response with stiffness reduced to E f V f . The vertical offset of the composite stress in

the third phase from the equivalent response of pure reinforcement E f V f ε c , with ε c denoting the global strain, is due to the

tensile stress accumulated in the matrix fragments (see Fig. 1 ). 

Analytical solutions to the tensile response of brittle-matrix composites are only available for a few cases based on 

specific assumptions on constituents and their interface. In particular, several models have been developed under the as- 

sumption of a constant frictional bond in the debonded interface and a linear-elastic constitutive law for both reinforcement 

and matrix, with brittle failure upon reaching their strengths. The ACK model developed by Aveston, Cooper and Kelly [19] is

the first model of this kind. It represents the composite tensile response by a trilinear law; see the solid line in Fig. 1 . The

ACK model assumes that multiple cracking occurs at a constant level of applied stress, inducing the a horizontal branch in

the stress-strain behavior. The matrix fragmentation process has been thoroughly studied in [20] based on the statistical 

theories of the ‘car parking problem’ and ‘crystal growth’ [21,22] . For its simplicity, this model has been utilized for the

simulation of tensile response of cementitious composites [23] . 

The aim to reproduce the experimentally observed smooth transition between the stiffness E c of the initial phase and the

stiffness E f V f in the saturated state (see the dashed line in Fig. 1 ) led to the development of enhanced models accounting

for the energy balance during matrix cracking and fiber debonding [24,25] . A few years later, the random matrix strength

was identified as another source of the increasing stress during the multiple cracking stage [17,26,27] . 

According to Castelier et al. [28] , the modeling approaches to multiple matrix cracking with random strength can be 

roughly classified into the following three categories: the random strength approach [29–32] ; the random crack approach 

[17,33,34] and the continuous approach [27,35,36] . The listed models are analytical or semi-analytical and incorporate the 

randomness in both matrix and fiber strength. In the present model, we extend the random strength approach in order to

account for the interaction of crack bridges that can be described by different types of crack bridge models. 

An incremental fragmentation algorithm has been also utilized in the simulation of beam bending behavior. Instead of 

one-dimensional tensile crack bridges, elastic rotational springs have been dynamically inserted into the originally contin- 

uous model [37] . Crack initiation and coalescence of multiple cracks in a sheet of material has been simulated using a

probabilistic approach in [38] . 
316 
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The development of the present model was motivated by the need to thoroughly characterize the tensile behavior of 

various types of brittle-matrix composites. In particular, it has been driven by the need to describe the behavior of textile- 

reinforced concrete (TRC), a cementitious composite with heterogeneous material structure of matrix, reinforcement and 

bond at overlapping scales of resolution. Even though the original goal was to model the tensile response of TRC, the result-

ing modeling framework is general and can be applied to various types of composites exhibiting fragmentation upon tensile 

loading. In the present paper, a generic algorithm is proposed for the multiple cracking process that can be conveniently 

combined with a variety of crack bridge models to simulate different types of composites, e.g. 

• analytical crack bridge models with constant frictional bond in the interface [23,39] ; 
• finite-element crack bridge models with nonlinear material laws for reinforcement and bond [40] ; 
• micromechanical probabilistic crack bridge models reflecting random material properties of the reinforcement and bond 

[39,41] . 

Besides the modeling approach to multiple cracking and debonding, the paper presents the model implementation ex- 

ploiting the modern concepts of scientific computing provided within the Python package ecosystem, including the NumPy 
and SciPy packages. Similar aims have been recently applied for the simulation of fragmentation of a continuum [42] . Un-

like in [43] where Python was used as a scripting language and front-end to control a finite element solver implemented

in C language, the present implementation approach exploits the features and data model provided in NumPy . Based on 

the vectorized evaluation of the mathematical expression using high-level compiled functions available in the compiled 

packages, it is possible to develop highly efficient software with a code that closely follows the original structure and ex- 

pressiveness of the mathematical model description. 

The recently emerging support for developing scientific application with the Python package ecosystem has been bun- 

dled within the Jupyter framework. In comparison with the high-level tools, like Mathematica , Maple , or Matlab , 
Jupyter enables a seamless transition between the prototyping phase of a mathematical model to scientific publications 

and courses interleaved with executable model examples. Moreover, models can be easily transformed to full-fledged inter- 

active web applications, accessible via any browser and executable on a remote computer. This feature is demonstrated at 

the end of the paper with a sample implementation of the multiple-cracking model. 

The remainder of the paper is organized as follows: Section 2 describes the probabilistic multiple cracking model 

( PMCM ) at the macroscale. The link to the crack bridge models is presented in Section 3 . Section 4 discusses the salient

features of the model in detail. The model is then verified based on available analytical solutions in Section 5 . An example

of the model application is presented in Section 6 using tensile tests published in the literature [23] . Finally, conclusions are

drawn in Section 7 . 

2. Probabilistic multiple cracking model 

2.1. Random strength approach 

Probabilistic modeling approaches for composites with brittle fragmentation in one of its constituents can be found in 

several papers, e.g. [8–10,24,27] . In the case of a brittle matrix, it can be assumed that cracks immediately run through the

entire cross-section after initiation. This behavior reveals an unstable crack propagation. Therefore an energetic treatment 

of the crack propagation is not necessary and the strength criterion captures the stress level during crack initiation and its

full development sufficiently well. The class of methods generally referred to as “random strength approach” [28] can be 

qualitatively explained with the sketched matrix stress states at several selected load levels in Fig. 2 . 

To reflect the randomness in matrix strength along the specimen, the matrix strength profile shown by the red wavy line

in Fig. 2 a–d was generated by a single realization of a random field. Under tension, the first crack appears at the minimum

point of matrix strength profile and the corresponding matrix stress profile along the specimen is shown in Fig. 2 a. Then, the

matrix stress increases upon further loading until the matrix strength is reached at other locations ( Fig. 2 b, c). Each time

the matrix strength is reached, a new crack is added into the numerical representation of the specimen. Then the stress

profile is updated according to the considered material properties. At a cracked position, the matrix stress drops to zero and

a certain length along the reinforcement is required to reach the level of the matrix strength. The segment of matrix within

this stress transfer length is in a sense shielded by the existing crack. Thus, after reaching a certain crack density the whole

specimen shall be covered by the shielded zones and no more cracks can appear ( Fig. 2 d). At this point, the saturated state

of cracking has been attained. 

In a specimen with multiple parallel cracks, each segment near a crack is subjected to similar boundary conditions so 

that it can be modeled using a representative crack bridge model. Utilizing this periodicity the computational demand and 

complexity can be drastically reduced. As a consequence, a crack bridge model accounting for local damage processes within 

the microstructure of the composite can be employed. The crack bridge model is required to deliver the matrix stress profile

σm 

and the crack width w as functions of the applied remote stress σc . A simple example of these crack bridge functions for

the basic case of a constant frictional bond model is provided in Fig. 3 . This crack bridge model will be explained in a more

detail later on in Section 3 and will be used in the verification studies in Section 5 . 

For a given composite stress level, the nominal composite strain can be determined by averaging the strain profiles of 

the reinforcement. The process of crack detection, stress profile update and nominal strain evaluation is iterated until the 
317 
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Fig. 2. Graphical representation of the random matrix strength approach: (a) – (d) development of matrix cracks in a composite specimen; (e) stress-strain 

relationship; (f) histograms of crack width at different load levels. 

Fig. 3. Analytical solution of a crack bridge with constant bond: (a) the crack bridge model; (b) the reinforcement stress σf and matrix stress σm ; (c) the 

reinforcement stain ε f and matrix strain ε m . 

318 
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Fig. 4. Schematic of the crack tracing algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

saturated state has been achieved. The algorithm delivers the composite stress-strain relationship as shown in Fig. 2 e. In the

meantime, the widths of all matrix cracks can be readily determined for any level of applied composite stress; see Fig. 2 f.

This detailed output facilitates the sensitivity analysis of the tensile behavior with respect to the input parameters and their 

statistical variability. The material parameters used in the present example are listed in Fig. 2 e. The statistics of the crack

widths were obtained with the model of a 30 0 0 mm long composite specimen. For brevity, the matrix strength and stress

profiles of a 100 mm long representative segment are shown in Fig. 2 (a-d). 

2.2. General crack tracing algorithm 

Detailed mathematical description as a guide for its generic implementation is exlplained based on the flowchart shown 

in Fig. 4 for a discretized tensile specimen length, L c (the length measured along the loading direction). For mathematical

rigour, the individual steps of the algorithm are described based on a continuous representation of a composite specimen 

covering the domain x ∈ [0 , L c ] . 

I. Initialization The matrix tensile strength, σmu , is generated by sampling a prescribed random field. It is represented by 

a function of the global coordinate x 

σmu = S mu (x ) . (2) 

Let the cracks be enumerated by an index K. In the initial state K = 0 without any cracks, the matrix stress is constant over

the whole specimen and can be evaluated explicitly according to the rule of mixtures. Then, the state of K = 1 is reached

with the first crack emerging at the minimum point of S mu (x ) . Its location x (1) and the corresponding cracking stress level

σ (1) 
c are identified as 

x (1) = arg min x ∈ (0 ,L c ) S mu (x ) , σ (1) 
c = 

E c 

E m 

S mu (x (1) ) . (3) 

II. Crack identification loop Now the task is to identify the tensile load levels initiating the subsequent cracks. Let the

composite stress σc , which is defined as the tensile force divided by the cross-sectional area and is thus constant over the

whole specimen, serve as the control variable. Its value at the initiation of the K 

th crack is denoted by σ (K) 
c . Given a set

of K existing cracks at the positions x x x (K) = { x (k ) } , k = 1 , 2 , . . . , K (see Fig. 5 ), we want to find the load level σ (K+1) 
c > σ (K) 

c 

initiating the next crack and the corresponding position x (K+1) . 

To find the next location where the matrix stress reaches its strength, we first need to evaluate the stress profile at the

state with K existing cracks represented by x x x (K) . To allow for a nonlinear kind of bond behavior and crack bridge represen-

tation, we assume the matrix stress at a point x is a generally nonlinear function of the load σc and can be expressed as

σ (K) = S m 

(σc , x, x x x (K) , �CB ) , (4) 
m 

319 
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Fig. 5. The state at the initiation of the K th crack: (a) stress and strength of the matrix; (b) composite specimen with a detailed representation of the K th 

crack bridge; (c) stress-strain curve. 

 

 

 

 

 

 

 

 

 

 

 

 

where �CB is a vector summarizing the parameters needed by the particular crack bridge model to quantify the interaction 

between reinforcement and matrix. Then, the level of applied remote stress σc that would initiate a new crack at any

x ∈ [0 , L c ] must meet the following criterion: the matrix stress σ (K) 
m 

introduced by σc equals the matrix strength, i.e., 

S m 

(σc , x, x x x (K) , �CB ) = S mu (x ) . (5) 

By solving this nonlinear equation at all points x ∈ [0 , L c ] we obtain the field of crack initiating loads as a function of x : 

S c (x ) := 

{
σc | S m 

(σc , x, x x x (K) , �CB ) = S mu (x ) 
}
. (6) 

It is noteworthy that for some x no solution can be found for Eq. (5) , which indicates that those material points are located

within the shielded zone of already existing cracks. Since in each step only one crack is allowed to appear, the sought load

σ (K+1) 
c initiating at the position x K+1 is obtained by finding the minimum of S c (x ) over x ∈ [0 , L c ] : 

x (K+1) = argmin 

x ∈ (0 ,L c ) 

S c (x ) , σ (K+1) 
c = S c (x (K+1) ) . (7) 

The cracking history along with the associated state variables is obtained by running a loop over Eqs. (4) – (7) with a crack

counter K = K + 1 (see Fig. 4 ). The algorithm ends if no solution to Eq. (5) can be found for any x ∈ [0 , L c ] indicating that

the saturated state with K sat cracks has been reached. 

The final point of the stress-strain curve, which corresponds to the strength of the composite specimen, is given by 

the failure of the reinforcement in a crack bridge. In case of heterogeneous, distributed reinforcement, like short fibers or 

finely structured textile fabrics, the instantaneous crack bridge strength represents a complex question including several 

interacting variables, e.g. the type of bond-slip law, the type of random variables and the distances between crack bridges. 

By combining the PMCM with a probabilistic crack bridge model ( PCBM , see e.g. [39,41] ), these interactions can be taken

into account as well. 

III. Postprocessing The identified history of the matrix cracking states K = 1 , 2 , . . . , K sat is adopted to evaluated the nominal

stress-strain curve of the composite. Two possibilities have been included in the implementation. 

In case of homogeneous reinforcement with the profile of reinforcement strain E f provided by the crack bridge model in

analytical form, the composite strain is directly evaluated as the average reinforcement strain along the specimen length at 

each stage of cracking x x x (K) 

ε (K) 
c = 

1 

L c 

L c ∫ 
0 

E f (σc ; x, x x x (K) ,�CB ) d x. (8) 

In case of a multi-scale model with fine resolution of the heterogeneous reinforcement structure like short fibers [44] or

multi-filament yarns considered in [39,41] it is more convenient to calculate the composite strain as a sum of the crack

openings and matrix elongation divided by the specimen length. To achieve this in a generic manner, for a given crack

x (k ) , k ∈ 1 . . . K, the opening needs to be expressed as a function of the remote load σc within the range σ (K) 
c ≤ σc < σ (K+1) 

c :

w 

(k,K) = W(σc ; x (k ) , x x x (K) , �CB ) . (9) 
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The particular form of W is supplied by the crack bridge model describing the debonding in the interface, which will be

explained in detail in Section 3 . With both W and S m 

at hand, the composite strains ε c corresponding to the load σc within

the range σ (K) 
c ≤ σc < σ (K+1) 

c can be evaluated as 

ε (K) 
c = 

1 

L c 

[ 

K ∑ 

k =1 

W(σc ; x (k ) , x x x (K) , �CB ) + 

1 

E m 

L c ∫ 
0 

S m 

(σc ; x, x x x (K) , �CB ) d x 

] 

. (10) 

The resulting stress-strain diagram (see e.g. Fig. 2 e) is then evaluated piecewisely according to 

˜ S c (ε) := { σ (k ) + 

σ (k +1) − σ (k ) 

ε (k +1) − ε (k ) 
(ε − ε (k ) ) , ε (k ) ≤ ε < ε (k +1) } . (11) 

Remark 1. Load control versus displacement control. In tensile test setups, displacement control is usually used to introduce 

the load. As a result, the measured force drops upon each crack initiation and a serrated profile is obtained in the cracking

stage. The described crack tracing algorithm uses load control with a monotonically increasing composite stress so that the 

stress drops cannot be directly evaluated. 

3. Incorporation of the crack bridge models 

The above-described algorithm abstracts from the details of the debonding process in the interface such that its imple- 

mentation is independent of the particular type of crack bridge model. The crack bridge model compatible with the proposed 

PMCM must provide two interface functions S m 

and W in Fig. 4 , the former computing the matrix stress and the latter re-

turning the crack width for a prescribed level of remote load σc . By implementing specialized crack bridge models, the 

proposed PMCM can be easily adapted to describe a wide range of cementitious composites, including short-fiber compos- 

ites (engineered cementitious composites), composites with continuous, macroscopically homogeneous reinforcement (steel, 

GFRP, CFRP) bars, as well as reinforcement with multi-filament yarns (e.g. TRC) that require statistical description of the 

yarn and bond structure. 

3.1. Elementary crack bridge model with constant friction 

To verify the basic behavior of the proposed crack tracing algorithm, we formulate a simple crack bridge model consid- 

ering constant frictional stress transmitted by the interface as illustrated in Fig. 3 . For convenience the crack bridge model

is formulated based on the local coordinate z (in contrast to the global coordinate x used in the crack tracing algorithm of

PMCM ) which is equal to zero at the crack position. The local state function 

˜ S m 

required for evaluating the matrix stress

can be explicitly obtained as 

σm 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

T V f 

1 − V f 

| z| : | z| < a 

σc E m 

E c 
: | z| ≥ a 

(12) 

where T = 2 τ/r is defined as the bond intensity with τ being the magnitude of bond and r being the reinforcement radius,

and E c is the composite stiffness defined in Eq. (1) . The instantaneous debonded length a (see Fig. 3 b) is defined as the

position z at which the linearly increasing matrix stress reaches the level of the applied remote stress (equality of the two

branches in Eq. (12) ): 

a = 

σc E m 

(1 − V f ) 

E c T V f 

. (13) 

The resulting matrix strain profile ε m 

= σm 

/E m 

and the corresponding reinforcement strain profile 

ε f = (σc − σm 

) /E f (14) 

near the crack are shown in Fig. 3 (b). The other required function, crack opening W, can be easily calculated as the gray

area in Fig. 3 (c). 

3.2. Mapping between global and local domains 

To introduce an abstraction barrier between PMCM and the crack bridge model, we have to define the mapping between 

the global coordinate x of the tensile specimen and the local coordinate z centered at individual crack bridges. The defined 

mapping reflects the symmetry of stress profiles about the midpoint between adjacent cracks (see Fig. 5 b) in a multiply

cracked composite. The domain of a crack bridge is then given as z ∈ [ −L , L r ] , with L and L r being the distances from the
l l 
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midpoint to the nearest left and right cracks, respectively. At these midpoints, the reinforcement displacement equals the 

displacement of the matrix such that there is no slip in the bond interface. 

To provide a flexible mapping between x ∈ [0 , L c ] and z ∈ [ −L l , L r ] , we introduce an index function to find the crack

κ ∈ { 1 , 2 , . . . , K} having the shortest distance to a given x 

κ(x ) = argmin 

x (k ) ∈ x x x (K) 

| x − x (k ) | . (15) 

Since the local coordinate z can be viewed as the signed distance from a point to its nearest crack, a function mapping x to

z can be written as 

z(x ) = x − x (κ(x )) , (16) 

where x (κ(x )) denotes the global coordinate of the nearest crack. Negative z indicates the material point x on the left side 

from its nearest crack and positive z on its right side. The values L l and L r , delimiting the domain of a crack bridge instance

that a material point x belongs to, can be evaluated in a similar manner: 

L l (x ) = min (x (κ(x )) − x (k ) ) , ∀ x (k ) ∈ x x x (K) ∩ [0 , x (κ(x )) ) ;
L r (x ) = min (x (k ) − x (κ(x )) ) , ∀ x (k ) ∈ x x x (K) ∩ (x (κ(x )) , L c ] . 

(17) 

To avoid duplicate solutions of the incorporated crack bridge model for symmetric pairs (L l , L r ) and (L r , L l ) , for each crack

bridge its boundaries are rearranged to distinguish the shorter and longer side as (see Fig. 5 ) 

L ↓ (x ) = min (L l (x ) , L r (x )) ;
L ↑ (x ) = max (L l (x ) , L r (x )) . (18) 

Based on these mappings, the interface between the PMCM and the crack bridge model can be narrowed down to the

following locally defined crack bridge functions: 

σm 

= 

˜ S m 

(σc ; z, L ↓ , L ↑ , �CB ) , (19) 

representing the matrix stress profile, and 

w = 

˜ W (σc ; L ↓ , L ↑ , �CB ) . (20) 

evaluating the crack opening. These crack-centered functions are instantiated for each new crack identified by the PMCM 

on the fly by supplying the mapping fields z(x ) and L ↓ (x ) , L ↑ (x ) given in Eqs. (16) and (18) into Eqs (19) and (20) . Then,

the required stress and strain profiles required in Eqs. (5) and (10) are efficiently evaluated from a single, crack-centered 

crack bridge model. 

The crack tracking algorithm described in Section 2.2 , the simple crack bridge model presented in Section 3.1 and the

mapping technique constitute a minimal working configuration of the proposed modeling framework. All the three com- 

ponents can be efficiently implemented using the Python based open source tools such as the NumPy library for vector- 

ized manipulation of n -dimensional arrays [45] . The implementation of the framework along with the obtained executable 

Python code is explained in Appendix A and provided as an interactive web application [46] . 

Let us remark, that the mapping introduced between the local state in the vicinity of a crack bridge and the global state

of a tensile specimen represents a novel feature of crack-tracing algorithms. Indeed, the distinct crack-centered coordinate 

z and the global position x can be used to separate the scales of resolution of strains and stresses at the local and global 

levels. The algorithm is able to incorporate the crack bridge instances with detailed crack-bridge resolution at newly initiated 

cracks on-the-fly . This feature has been already exploited by the authors using a probabilistic model of a crack bridge in

combination with the presented adaptive crack-tracing approach to simulate the strain-hardening response of TRC composite 

reinforced with non-penetrated multi-filament yarns [39] . 

3.3. Numerical inversion of crack bridge models 

The example of a crack bridge model shown in Section 3.1 represents a special case with analytically derived state func-

tions. In general, however, it is not possible to express the matrix stress σm 

and the crack opening w as explicit functions of

the composite stress σc . Available crack bridge models from the literature [39,41,44,47,48] usual provide an inverse mapping, 

i.e. the crack bridging force F as a function of the crack opening w, the bridge lengths L ↓ , L ↑ and other relevant parameters

summarized in the vector �CB . Using these models the composite stress at the crack can be obtained as 

σc = 

F (w ; L ↓ , L ↑ , �CB ) 

A c 
, (21) 

where A c is the area of the composite section. 
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Fig. 6. A compatible crack bridge response surface obtained with numerical inversion and interpolation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To use these models in combination with the PMCM controlled by the applied composite stress σc we need to invert the

bridging function σc (w ; L ↓ , L ↑ , �CB ) in Eq. (21) into the form of Eq. (20) . Since a general analytical inversion is not possible

a numerical inversion has been implemented as sketched in Fig. 6 . First, the crack bridge response up to the maximum

bridging force is evaluated for each pair of crack bridge lengths L ↓↑ that might be encountered during the fragmentation 

process. Second, the inversion of the response surface is performed by swapping the array axes σc and w . Finally, the

response surface for crack opening w is transformed to a regular interpolation grid σ inp 
c × L ↓↑ of the input parameters to 

obtain the numerical approximation of Eq. (20) . In this way, it is prepared as a plug-in into the open slot W of the PMCM

shown in Fig. 4 . 

The second required response surface, S m 

delivering the matrix stress profile near the crack is constructed by performing 

a numerical substitution. In particular, the crack bridge models controlled by the crack opening provide the matrix stress 

profile as a function σm 

(w ; z, L ↓ , L ↑ , �CB ) , in which z is the local coordinate ( Fig. 3 ), see e.g. [39] . The plug-in delivering

the stress profile S m 

is constructed by substituting the inverted W response surface into σm 

as indicated in the last step of

Fig. 6 . 

The numerical inversion technique is applicable to many types of crack bridge models. In [49] it has been used in com-

bination with a deterministic, finite element crack bridge model with generally non-linear bond-slip law, with which the 

tensile behavior of TRC reinforced by styrene-butadiene penetrated textile fabrics was studied. In [39] , we used it with

the probabilistic crack bridge model [50] to simulate TRC with non-impregnated carbon yarns exhibiting a high degree of 

heterogeneity. 

4. Salient features of the crack tracing algorithm 

Compared to existing models, the proposed PMCM introduces two important extensions. It is robust with respect to 

algorithmic parameters and it accepts nonlinear bond-slip laws with softening. 

4.1. Adaptive load control 

In the crack tracing models based on the “random strength approach” [8,28,44,51] , small constant load increments are 

used to control the computation. In each load step, the matrix cracking criterion is checked to decide whether or not the

matrix stress exceeds the strength. As a result, in a single increment several material points along the specimen may exceed 

the matrix strength. If these material points are far enough from each other to avoid interaction through their adjacent 

debonding zones, simultaneous insertion of several cracks in one load increment is possible. However, if interaction cannot 

be excluded a decision must be made how to treat the simultaneous appearance of several cracks. In such a case, the order

of appearance of interacting cracks is important. A possible solution is to reduce the load increment such that only one

crack would appear. However, if the scatter of the matrix strength is very small, this approach is not robust with respect

to the algorithmic parameters and, moreover, becomes computationally demanding. In contrast, the procedure described in 

Section 2 calculates the load increment such that only one crack can appear in a single load step. This feature is preserved

for any kind of bond-slip law defining the crack bridge behavior. 

4.2. Nonlinear crack bridge response 

To demonstrate the ability of the model to handle a general type of bond behavior, let us compare the development

of matrix stress in the vicinity of a crack for the cases of constant and nonlinear bond-slip laws shown in Figs. 7 a and b,

respectively. Consider an imaginary tensile specimen with one crack bridge that exhibits constant bond-slip law at the left 

side and non-linear bond-slip law with softening at the right side of the crack as indicated in Fig 7 c. The matrix stress

profiles corresponding to a series of applied composite stress levels 1 , 2 , . . . , 12 MPa are sketched below. We remark that all
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Fig. 7. Comparison of local matrix stress development for two types of bond-slip laws: (a) constant bond-slip law; (b) bond-slip law with softening; (c) 

matrix stress profiles for increasing loading levels, each stress profile is marked by the corresponding applied stress level; (d) matrix stress development 

for constant bond stress law at points r : z = −175 mm and s : z = −100 mm; (e) matrix stress development for slip-softening law at point t : z = 150 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the profiles of matrix stresses in Fig. 7 are quantitatively evaluated using an efficient finite element model of a crack bridge

implemented using open source scientific computing Python package numpy [18] . 

Let us assume that the first crack has emerged at the applied composite stress of σc = 5 MPa at the position z = 0 mm.

Up to this load level, the matrix stress was constant along the whole specimen as depicted by the horizontal lines for the

composite stress levels σc = 1 , 2 , . . . , 5 MPa in Fig. 7 (c). During this phase, the matrix stress has been increasing linearly in

the whole domain of the specimen. After the appearance of the first crack, the matrix stress dropped to zero at the crack

position z = 0 and debonding started in its vicinity. Within the debonded zone, the stress transfer from the reinforcement

to the matrix was governed by the bond-slip law. 

Considering the constant bond-slip law shown in Fig. 7 (a) and follow the stress development at two selected material

points r : z = −175 mm and s : z = −100 mm . The relationships between matrix stress and applied load at these two points

are shown in Fig. 7 (d). Assuming that the matrix strength at the considered points is σmu = 1 . 5 MPa (thick dashed line),

we see that the matrix stress at the point r approaches the strength linearly and will achieve this value before r being

reached by the shielded zone develops from the crack. On the other hand, the point s will exhibit a drop in the matrix

stress upon the initiation of the first crack shown as the gray line in Fig. 7 (d). From that moment on, the matrix stress at s

stays constant and no crack can be initiated there. In this sense, s is shielded by the crack. 

In case of a nonlinear bond-slip law with a descending branch shown in Fig. 7 (b), the matrix stress profiles at the right

hand side of the crack ( Fig. 7 c) have been calculated using a finite element crack bridge model [49] and numerically inverted

to associate them with the levels of applied composite stress σc (see Fig. 6 ). Regarding a material point t : z = 150 mm and
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following its matrix stress evolution for the increasing level of composite stress in Fig. 7 (e) we observe a drop of the matrix

stress at the appearance of the first crack and its subsequent growth in correspondence to the nonlinear bond slip law up

to the point when the maximum level of bond stress has been reached. The intersection of the curve describing the matrix

stress evolution (solid line) with the level of the local matrix strength (dashed line) represents the cracking level of the next

crack at the point t . This intersection is sought using a non-linear root-finding algorithm, i.e. the Newton method. 

Fig. 7 (e) considers three possible levels ( A , B , C ) of matrix strength at t . Given a load increment of the composite stress

indicated on the horizontal axis, the intersections between the strength levels A or B with the matrix stress evolution 

curve exist, and will be identified by the root finding algorithm within a few iterations. In case of the strength level C , the

material point enters the bond-slip softening regime before reaching the matrix strength and no intersection exists. This 

case indicates that the material point is within the shielded zone of the crack. All the three configurations are correctly

handled by the proposed PMCM algorithm. 

However, if discrete load increments were explicitly prescribed as in the existing models, the algorithm could not handle 

the considered cases in a robust way. Since the matrix cracking criterion is checked only for the load steps indicated by the

vertical lines in Fig. 7 (e), the crack at the point t would be overlooked for matrix strength levels levels A and B . 

To conclude, the algorithms employing prescribed constant load steps, even with refined increments, is only able to 

handle the non-softening laws as shown in Fig. 7 (a). The proposed PMCM can treat the complex material laws including

softening behavior correctly in a more robust manner. 

5. Verification 

Let us document the validity of PMCM by testing its behavior in two elementary configurations. First, we consider the 

limiting case of a constant matrix strength and frictional bond law, analytically covered by the ACK model. In the second

step, we study the effect of increasing scatter of random matrix strength on the final crack spacing and compare the ob-

tained response with the analytical results presented by Curtin [52] . The reader can easily reproduce these two studies using

the interactive online web application [46] with the material parameters adjusted according to the cases described below. 

5.1. Constant matrix strength and constant bond 

The first study applies the PMCM algorithm to a reinforced tensile specimen with assumed constant matrix strength 

and constant frictional bond. The stress-strain response for such a composite can be evaluated analytically using the ACK 

model. The stress-strain diagram is characterized by the points defined by σ2 , ε 2 , ε 3 , σ4 and ε 4 shown in Fig. 1 . It has three

branches, the first one describes the initial uncracked stage. As mentioned before, the stiffness E c can be evaluated using

the mixture rule in Eq. (1) . The starting point of the second phase (ε 2 , σ2 ) , which indicates the matrix strength reaches the

strength σmu , can be calculated as follows 

ε 2 = 

σmu 

E m 

, σ2 = 

σmu 

E m 

E c . (22) 

Since we assume a constant matrix strength, all the cracks appear at the same stress level, thus the second branch in ACK

model is horizontal. The strain ε 3 marking the end of the fragmentation process is obtained as 

ε 3 = 

(
1 + 0 . 6 6 6 

E m 

(1 − V f ) 

E f V f 

)
σmu 

E m 

. (23) 

In the third branch the applied load is only carried by the reinforcement. Thus, the stiffness of this branch reads 

E r = E f V f . (24) 

The failure of the tensile specimen occurs when the reinforcement strength is reached so that the last point in the stress-

strain curve is given as 

σ4 = σfu V f , 

ε 4 = ε 3 + 

σ4 − σ2 

E r 
(25) 

with σfu being the reinforcement strength. 

To show that PMCM can reproduce the analytical results given the assumptions of the ACK model, we adopt the material

parameters used in [53] that were used to roughly reproduce the tensile tests performed there. It is emphasized that our

goal is not to reproduce the tests themselves, as we do not have sufficient data, but rather the ACK curves showing the

stress-strain relationships for three considered reinforcement ratios. 

The adopted material parameters are summarized in Table 1 . The stress-strain curves obtained using PMCM and ACK 

models for the considered reinforcement ratios are shown in Fig. 8 (a). In PMCM , the matrix strength was generated with a
325 
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Table 1 

Parameters adopted from [53] . 

parameter notation value unit 

reinforcement ratio V f 0 . 7 − 1 . 4 % 

reinforcement modulus E f 67 GPa 

matrix modulus E m 8.25 GPa 

matrix strength σmu 2.48 MPa 

PMCM PMCM

Fig. 8. Results given by PMCM and the ACK model for different reinforcement ratios: (a) stress-strain relationship; (b) final crack spacing as a function 

of T . 

 

 

 

 

 

 

 

 

 

 

very small coefficient of variance 0.01% to mimic the constant matrix strength. The length of the simulated specimen was 

50 0 0 mm to get representative results on crack spacing. 

Let us remark, that in ACK model the stress-strain relationship does not depend on the bond intensity as documented by

the Eqns. 22 –(25) . On the other hand, for the PMCM simulation using the crack bridge model with the matrix stress profile

given in Eq. (12) the bond intensity had to be specified, even though it has no effect on the stress-strain response. 

The effect of the bond intensity can be studied using both models in terms of the crack spacing at the saturated state.

In ACK model, the effect of bond intensity T on the final average crack spacing � CS is given as [22] 

� CS = 1 . 337 

V m 

σmu 

V f T 
. (26) 

In Fig. 8 (b), the final crack spacings given by the PMCM are compared to the Eq. (26) for T ∈ { 5 , 10 , 15 , 20 , 25 } showing

that the analytical results can be accurately reproduced. 

5.2. Random matrix strength and constant bond 

Semi-analytical model of stochastic cracking considering random matrix strength has been introduced by Curtin et al. 

[35] . Given a Weibull distribution of matrix strength with the scale parameter σR and shape parameter m they related

the matrix strength distribution to the probability distribution of the crack spacing for a given level of load σc in form of

a differential equation and initial conditions. By solving the resulting initial value problem, one could evaluate the crack 

spacing at the saturated state for given parameters of the random strength distribution. The comparison this model to 

PMCM is performed in terms of the relation between the shielded length and final crack spacing �, which has been

derived analytically in [22] to yield the value 1.337 for the so-called car parking problem. This result can be expected for the

composite fragmentation assuming constant matrix strength. The relation between the final crack spacing and the scatter of 

matrix strength expressed by Weibull modulus m is shown in terms of the dimensionless variable � in Fig. 9 a. Apparently,

in case of m → ∞ (quasi constant matrix strength), � equals 1.337 and the model is equivalent to the ACK model. The

average crack spacing of a composite with given volume fractions and bond properties is then obtained as 

� S = �(m ) 
V m 

σR 

V f T 
. (27) 
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PMCM PMCM

Fig. 9. Reproduction of the analytical solution in [55] : (a) � as a function of m ; (b) the crack development and the stress-strain curve for m = 5 . 

Table 2 

Parameters used in the PMCM. 

parameter notation value unit 

bond intensity T 9.0 N/mm 

3 

reinforcement ratio V f 10% –

reinforcement modulus E f 67 000 MPa 

matrix modulus E m 8 250 MPa 

scale parameter σR 1.0 MPa 

reference length L R 2.0 mm 

slice length l e 0.083 mm 

 

 

 

 

 

 

 

 

With the final value of crack spacing at hand, the average crack spacing �̄ at a stress level σc is related to the probability

distribution of the matrix strength by the equality [54] 

�̄ (σc ) 

� S 
= 1 − exp 

[ 
−
(

σc 

σR 

)m 

] 
. (28) 

An example of evaluated average crack spacing evolution for m = 5 is shown in Fig. 9 (b) as a green solid curve. Using the

average crack spacing, the stress-strain curve shown as a pink solid curve in Fig. 9 (b) can be obtained using the relation

(see e.g. [23] ) 

ε c (σc ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

σc 

E f V f 

− T �̄ (σc ) 

4 E f 
, �̄ (σc ) ≤ 2 δc (σc ) 

σc 

E c 

(
1 + 

E m 

V m 

δc ( σc ) 

E f V f �̄ ( σc ) 

)
, �̄ ( σc ) > 2 δc (σc ) 

(29) 

where δc represents the stress recovery length defined as 

δc (σc ) = 

V m 

E m 

σc 

V f E c T 
. (30) 

To obtain a consistent discretization with the random matrix field used in PMCM , the scale parameter of the Weibull

distribution has been adjusted for the length of the discretization element l e using the scaling 

σe = σR 

(
l e 

l R 

)−1 /m 

, (31) 

where L R is the reference length for the Weibull distribution parameters σR and m . With the parameters summarized in

Table 2 , the value of � is evaluated for m ∈ { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 , 15 , 10 0 0 0 } ( m = 10 , 0 0 0 mimics the case of constant

matrix strength), the results are depicted in Fig. 9 (a) along with the analytical solution derived in [55] . The analytical and

numerical values fit well with each other. To demonstrate the ability of the model to reproduce also the evolution of crack
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Table 3 

Relevant material parameters extracted from [23] . 

parameter notation value unit 

bond intensity T 126.4 N/mm 

3 

reinforcement ratio V f 10.4% –

reinforcement modulus E f 72 000 MPa 

matrix modulus E m 18 000 MPa 

scale parameter σR 14.8 MPa 

Weibull modulus m 1.4 –

Fig. 10. Simulation of experimental results in [23] : (a) stress-strain curves; (b) crack development. 

 

 

 

 

 

 

 

 

spacing and stress-strain relationship, these curves have been calculated for m = 5 and plotted in Fig. 9 (b) as well. The

results of the PMCM match exactly the analytical solution. 

6. Application to cementitious composites 

To demonstrate the applicability of PMCM to practical engineering composites, we use the model to numerically repro- 

duce the experimental results reported in [23] . Specimens of inorganic phosphate cement reinforced by glass fiber fabrics 

were tested under uni-axial tensile loads. During the testing, the stress-strain relationships and the average crack spacing 

were recorded. All the relevant material parameters required by PMCM to reproduce these data were provided in [23] as

summarized by Table 3 . We directly use them as inputs for PMCM to simulate the experiments. The numerically reproduced

results are plotted in Fig. 10 along with the experimental data. 

As Fig. 10 shows, the simulation agrees well with the experiments in terms of both the stress-strain relationship and the

crack spacing evolution. Since the parameters are directly taken from [23] , we note that the purpose here is not to validate

the model through a rigorous calibration-validation program, but to demonstrate that the model can correctly reproduce 

the tensile behavior of practical engineering materials. The calibration and validation method is described in [39] with crack 

bridge tests and uni-axial tensile tests on textile reinforced concrete. 

7. Conclusions 

The paper presents a general modeling framework for the uniaxial tensile behavior of brittle-matrix composites. A robust 

crack tracing algorithm is proposed to identify the multiple crack process. It is formulated in such a way that it can be com-

bined with a variety of crack bridge models at the meso scale to consider different types of materials. The model can well

capture the strain-hardening and multiple cracking behavior. To demonstrate the efficiency and robustness of the algorithm 

an interactive open-source web application has been provided in a github.com repository [46] that can be launched by 

following the launch link provided in the repository. 

In combination with the simple crack bridge model considering a constant bond, the PMCM is verified against the 

analytical ACK model and the Curtin model. Good agreements between the PMCM and the analytical models have been 

observed, which demonstrate that the PMCM can capture the random cracking process in composite when a constant bond 

in bond interface is considered. 

We also qualitatively demonstrated the difference between the proposed crack tracking algorithm and the existing mod- 

els, it can properly handle the possible non-monotonic variations in the matrix stress introduced by complex bond interface 

behavior. This feature is important for the application presented in [39] , where the PMCM is used in combination with the

probabilistic crack model [50] to simulate tensile behavior of non-impregnated carbon textile reinforced concrete. A sys- 
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tematic calibration-validation procedure of the model parameters is presented in [39] to fully demonstrate the capability of 

PMCM . 
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Appendix A. Implementation 

For the reader’s convenience, the code is provided in a directly executable form in a public github.com repository 

[46] and can be started without local installation by following the launch link . The material parameters can be easily con- 

trolled in the provided range providing the result in terms of an immediately updated stress-strain curve and crack distri- 

bution along the tensile specimen. 

The code can also be installed and executed within a standard Python -based computing environment that contains two 

standard numerical packages: numpy (line 1) providing efficient operators on multi-dimensional arrays and scipy (line 2) 

offering a broad infrastructure for scientific computing [56] . The whole bundle of the Python packages can be easily installed

using the open-source distribution of anaconda suite ( www.anaconda.com ) on any current computer platform. To complete 

the picture, the core part of the code reflecting abstract description of the algorithm is printed and briefly explained here. 

The crack bridge model with constant bond described by Eqs. (12) and (14) is implemented in the two functions on

lines 14 and 18, respectively. 

The tensile specimen of 500 mm length is discretized into a series of 50 0 0 material elements (line 23) and the coor-

dinates of the mid points of the material elements are stored in the array x . The spatial randomness in matrix strength

( Eq. 2 ) is simply represented by a sequence of independent draws from the Weibull random variable a large shape parame-

ter m = 10 0 0 0 (corresponding to nearly zero scatter) on line 23. In this way the verification to the ACK model discussed in

Section 5.1 can be performed. 

The function get_z_x defined at line 26 implements the mapping between the global and local coordinates x and z

given Eq. (15) . It returns an array of distances between each material point and its closest crack. 

The function get_sig_c_z delivers the load initiating a crack at a material point with the distance z from its clos-

est crack, see Eq. (5) . The newton method from the scipy [56] package is adopted to solve this nonlinear equa-

tion. It starts the search at the load level that initiated the previous crack, i.e., σ (K−1) . When no solution can be found

a RuntimeWarning is issued or a RuntimeError is raised. This indicates the current material point is within the 

shielded zone, and the function simply returns the composite strength to mark that no further crack can emerge at this

position. To enable the possible RuntimeWarning handled by the except mechanism, it must be treated as an Error as 

done on lines 30 and 31. The function get_sig_c_K utilizes the function get_sig_c_z to evaluate the crack initiating 

loads in every material point of the specimen and to identify their minimum as the crack initiating load of the current step,

see Eqs. (6) and (7) . 

The function get_cracking_history implements the loop identifying all cracks (see Fig. 4 ). In line 62, if the program

find that the cracking load equals the composite strength, meaning that each material point is covered by the shielded zone,

it determines all the cracks are found and the loop should end. In the present simple case, the average strains are directly

computed in each step according to Eq. (14) by the line 67, no further post-processing is required. 

Finally, the stress-strain shown in Fig. 8 is calculated and plotted on lines 73-75. 
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