From 0a33c5381fab8307a8085cd66a9d784c2146041c Mon Sep 17 00:00:00 2001
From: JanHab <jan.habscheid@rwth-aachen.de>
Date: Fri, 7 Mar 2025 09:58:11 +0100
Subject: [PATCH] Check with Deepl

---
 Project2/LyX/Abstract.lyx                     |  17 ++-
 Project2/LyX/DiscussionAndConclusion.lyx      |  41 +++----
 .../Figures/TrafficFlow_InitialCondition.pdf  | Bin 11265 -> 11265 bytes
 .../LyX/Figures/TrafficFlow_Solution_A.pdf    | Bin 17721 -> 17517 bytes
 .../LyX/Figures/TrafficFlow_Solution_B.pdf    | Bin 18852 -> 18623 bytes
 Project2/LyX/Implementation.lyx               |  32 ++---
 Project2/LyX/Introduction.lyx                 |  50 ++++----
 Project2/LyX/Results.lyx                      | 114 +++++++++---------
 Project2/LyX/TheoryAndMethods.lyx             | 112 ++++++-----------
 Project2/src/03_Traffic_Flow_Problem.ipynb    |  18 +--
 Project2/src/Problem_2_3.ipynb                |  26 ++--
 11 files changed, 183 insertions(+), 227 deletions(-)

diff --git a/Project2/LyX/Abstract.lyx b/Project2/LyX/Abstract.lyx
index 063a050..13aa2ba 100644
--- a/Project2/LyX/Abstract.lyx
+++ b/Project2/LyX/Abstract.lyx
@@ -93,26 +93,23 @@
 \begin_body
 
 \begin_layout Abstract
-Streets are a major part of our lives.
+Roads are an important part of our lives.
  We use them to get to work,
- to our hobbies or just to our friends by car,
+ to our hobbies or just to visit our friends by car,
  bus or by bike.
- Too crowded streets can result in traffic jams,
- stopping the flow of the street.
+ Too crowded roads can cause traffic jams that stop the flow of traffic.
  These traffic jams restrict our movement and slow us down in our everyday life.
  
 \end_layout
 
 \begin_layout Abstract
-This work will investigate reasons for traffic flows and suggests solutions on how to dissolve them,
+This work will investigate the reason for traffic jams and suggests solutions on how to solve them,
  efficiently,
  from a mathematical point of view.
  Therefore,
- a one-dimensional scalar partial differential equation will be derived to model the traffic flow on a street with a single trail.
- Methods will be discussed to solve this scalar partial differential equation,
- both,
- analytically and numerically.
- The influence of different kinds of traffic flows will be investigated to find the best way to prevent and dissolve traffic flows.
+ a one-dimensional scalar partial differential equation is derived to model the traffic flow on a street with a single lane.
+ Methods will be discussed to solve this scalar partial differential equation both analytically and numerically.
+ The influence of different kinds of traffic flows will be investigated to find the best way to prevent and resolve traffic flows.
 \end_layout
 
 \begin_layout Keywords
diff --git a/Project2/LyX/DiscussionAndConclusion.lyx b/Project2/LyX/DiscussionAndConclusion.lyx
index d8aa73f..99dd477 100644
--- a/Project2/LyX/DiscussionAndConclusion.lyx
+++ b/Project2/LyX/DiscussionAndConclusion.lyx
@@ -107,7 +107,7 @@ name "sec:Discussion-and-Conclusion"
 \end_layout
 
 \begin_layout Standard
-This work showed a simple approach to model traffic jams of cars on a road with a single trail.
+This work showed a simple approach to model traffic jams of cars on a road with a single lane road.
  
 \end_layout
 
@@ -141,39 +141,37 @@ How does the flux change over time?
 \end_layout
 
 \begin_layout Standard
-Traffic jams can be avoided when the flow of cars on a street is maximized.
+Traffic jams can be avoided if the flow of cars on a road is maximized.
  Therefore,
- the number of cars on a street has to be chosen in a way which maximizes the flux function 
+ the number of cars on a road must be chosen so that the flux function 
 \begin_inset Formula $f(u)$
 \end_inset
 
-.
+ is maximized.
 \end_layout
 
 \begin_layout Standard
-If a traffic jam occurs,
- there is a simple approach to dissolve it,
- again.
- The cars should hold a longer distance to the car ahead,
- to make sure that the density of cars at the end of the traffic flow is smaller then before,
- increasing the flux function.
+When a traffic jam occurs,
+ there is a simple approach to solving it.
+ The cars should keep a longer distance to the car in front,
+ so that the density of cars at the end of the traffic flow is lower than before,
+ thus increasing the flux function.
  With this,
  a rarefaction wave will build and the traffic flow will be dissolved over time.
- If cars hold a short distance to the cars in front,
- the density at the end of the traffic jam will probably be higher then in the beginning,
- leading to a smaller flux function at the end of the traffic flow,
- resulting in more cars entering the traffic flow than leaving it.
+ If cars keep a short distance to the car in front,
+ the density at the end of the queue is likely to be higher than in the beginning,
+ leading to a smaller flux function at the end of the queue,
+ resulting in more cars entering the queue than leaving it.
 \end_layout
 
 \begin_layout Standard
-The presented model is rather simple,
- allowing to model only streets with single trails and a linear velocity model.
+The presented model is rather simple and only allows to model roads with single lanes and a linear speed model.
  In future work,
- certain extensions should be make to make the model more realistic:
+ certain extensions should be made to make the model more realistic:
 \end_layout
 
 \begin_layout Enumerate
-Increase the complexity of the model to a system of coupled partial differential equations to model multiple trails.
+Increase the complexity of the model to a system of coupled partial differential equations to model multiple paths.
 \end_layout
 
 \begin_deeper
@@ -184,15 +182,14 @@ Cars will move from trail A to trail B,
 
 \end_deeper
 \begin_layout Enumerate
-Use a non-linear model for the velocity of cars.
+Use a non-linear model for the speed of cars.
 \end_layout
 
 \begin_deeper
 \begin_layout Enumerate
-It is unrealistic,
- that the velocity of cars is linearly proportional to the density of cars.
+It is unrealistic for the speed of cars to be linearly proportional to the density of cars.
  In a more realistic scenario,
- the velocity of cars would decrease faster for higher densities and slower for lower densities.
+ the speed of cars would decrease faster at higher densities and slower at lower densities.
 \end_layout
 
 \end_deeper
diff --git a/Project2/LyX/Figures/TrafficFlow_InitialCondition.pdf b/Project2/LyX/Figures/TrafficFlow_InitialCondition.pdf
index e99215f4b5d58a295df2fc96204c80381f8b817c..77deb96d625f05f323c5e79423a30af290feeeff 100644
GIT binary patch
delta 20
bcmZpSXpGoUuEB0@U}0)$VzIeSqnQ~1NJ|D`

delta 20
bcmZpSXpGoUuEB0-Xl!g?Y`VElqnQ~1M`;E~

diff --git a/Project2/LyX/Figures/TrafficFlow_Solution_A.pdf b/Project2/LyX/Figures/TrafficFlow_Solution_A.pdf
index bf4bb0ba71de1a0778df0f6bb12d86bb4a82a558..802999857074ba96661ac8ec36a692c1922e8c15 100644
GIT binary patch
delta 5757
zcmdnl#rU>^af2iytD&B;iP>a%#?t!Jo20i3-u<kdRvFsqmSG~*-zpv^vs%kKa#f08
z`okcV<65yhWg<7)+b?J2VSkX^HhHzTn&!$Q$v*rA7w%>-wAXw)d;9;NFVEhV>(Aq_
zui9E|R$uiw)BSMupPz*WAToEsL)L$Pb{PLC+0X5wY@N?K-_B&d#R&<ee{5O1{OkYU
zdVBBfyjou2`5(@7-#xc;qEBU-$nxHI<!=sUFl~L%F196c%f1DlAM?(L|8%+_XI8K5
z<mm^GnXp;^`Th38_J@x@yvbgDcjMuB0~4O&p2PXp#=lZDDuovvo>3j9(qqWdx9@E!
zvsvxUy|?zt)Xlt?=<xKPtXG55>SuQ{v^aM^pHbg?zij`5d}ABa4Nni~{(jJD`}<&0
zjnST+_igL<R)5pwO=-LSzO3+xz+}zOUw+Nsy`R54ZHoF~`?l-#H~;=LU1791usiMF
z@!7u_+2+-K{`Qx@{_mex?fvuT-TVLL<LBiMXU}h+zI%G5Pyg}!P0G?6&9=0dJaDVK
zen$7B^xYFlCl}N!&YJh^y2+MVGp`*_>s)jE&gPFBWy8Dko@CyAAQbFU$fKxwTtqX@
zVQS1oEq~?8$v&^#t}TdO8D+Y|W9o+tUkCr<+or2ttcshOGDX69`b6mh?Lh5kVwqiu
zUv#X_ly<Fq;XBRLx61Ph-zr!0Nn7#?I@P#~dXAscE>MeFdMfVn?D{q3ix2<5QKp=I
zVQt7-shA~Re_jY>8ZFMyU+`*H+*GBonl;9Ede=B^589elFmYANF_+F5j$38DTKkrT
z8ybt{J3raAX``cg(AK<yPOWW=TJyUEO=s+GSaojot(NvhOP(Axxh1gmhHlyx1L14u
z4L-h!j?TUJ_g_lI-+xj)?{&K+>jPWd-DBt4EuQ|d_R<_@e!c^f`#cxR&S@|9TBVu4
z^3;aw#i#c^?dY1Fyrj<9c(Jr+*4ek7uhz^}<J`L1!fTGuX(P`X=1C5mJXUXftfom-
zDErPmXzRas?`0Q3r)f0@4o&!D6!=cer81=_rRn*+6_WS7Lb40gR&6eC(>ORo=#F0f
z5{ZBDUBCCHW?yhWquk!Ng6*D1NP2;PNd9}CK+PVGy)Q1#5byl7U7;(G*+P27`A58a
zrmnd5z$YaAy-DCSR_)a;-`XxK1wIsWVZG9A_v=RbCpLr?D-zu0H*7UKwmWs%Bi<QF
zPOVc)_%F#nIQzkEnN@T3va0IkGwYKMt(yOB_iNQ<LGc|cJC|qmq^NjDbp$Rjlw6v#
z?nul#ulUZ|b5my=pLIue>)G{tfB(}nPn@BAZ6?oeGxo1CVme$W&3V(5{r7nsZGT(z
zEQbBh-R@@N`_Eo%)IA?CJBsr|%Q`#eS2|^@*tyrrNmce7YE8B|#8o`s?Q>^?diEQ`
zdbtg|4<C-5@Pt=>TcJ>Yq35JKjjOjT{i9k@dbRyx_l1d?MG`Uf<r22(Gt|5mcLu5i
z%lev})D~}8TX5t?i<?k>u<ORx25&@tWo~%4#vZtG#Bq+CvO!gJ!g)`FdwcFI-?NnQ
z{i!DRkIrG;Zt_P$WBBbaR?l_yaak1c@xh76__TWQy<V)xuc$7mos~9Mb-$?mgdI97
z&3_2?Tw+<woD|dcQKjqZE0rfauM8iYP!U?v!)ftMri97=#Z1j)rZ-G4uW{G++C>?D
zJHQ^e-9>-Hl)@V==U-`^-RWxDY^xlmy}061P)F{X9iMY1{9SXf<Os|1l{@-xd~bcT
zN#(@Zqeqn|wbyU<xjJ>O?%ji4>TK)e`C{%o|2``sX8uLJV_nTG-!vZ!Ir_J<8Y@P1
zBzPu-@8*|bn;dMc&|)AEUnt8phgH&dXL-;E3#%Odk_bnC|3#nIJ+fQidtzd1xl6XT
z+~mXmy^p-~^?%7PbGC8qU!!M>_)aUeAG%m`)VB4+wnq+zvwGa?4J2xg8tSOnJxI8w
z@~6G)xXZcf2Q$R3yqa0}f&F~L;zNEeLB22QTP@j+-7pQ2eRSe>S9Sj4L>8-;I&E(@
zbuH#!@?D1||3Hb@YsQJ^7q#D;C2nB-M5`|)#jseiU-Q|GEgx#qzs!2@t#WzHgP2*@
zOjB4QT`dmJnE8lJ%F{#pTxNZgVUJ0gw#<Yu3Cj~n+6`As4jNkda(HMTTON|5a3RJi
zL&;#{jjAMRtv(B5&ThA+?#d^}SK1n}J@;^kpVS*%y#A)<G>7gdcUu-8dS<zxhSSHb
z&wJe(gO2FgOBM-wGq=q@d@@<A_<CTp1o!->GX6?|UUwMOb*|dA3v+(*TVqh)ZSlpS
zw$ZS<^6(OiYqiU{B@S`cOcar^J*Rx;o!^FcIY%Ep2swPlP{UWWJ^0}1?+-;{c#|zM
zFTKmQP@MQ?GmE#~xzi6-Wd2MEZJA(EY{Gfx*m5pqN4K|ji#h|BUQCf|^xmbXJgbCN
z<4(12+8a-PmWc*ANr!8{T`2gZ>0+EZwSJaukwxOK*f*QqJJlC+hn<wW*5y+uT>C-N
z{bs9C`1?C~^8QgwyAvi%yZYXI&0`O)6XClShglRo2?_TU5Gk#6&tQG>J0P*&MAvf5
zgO-cCIN5ePOw17M57d&nAit-5j$W8bUR2}c1Bw&2^W0kOrtxm2y3CaRZX<ie)<<mz
zY}4xBe>0I6^S*oBTe5%G`;MJrmtw@W<R5r&t>vjigx3tdRT@8<>l<@)uIq_w1x`;o
zmSlNgUqbHLb8@CfB8sG(nb&Ytvi9y0*!--%v@~hPWF~gMs=WakPK=Az3Y)2NOg~|s
zZWaD_`t`q#)=f$0Mg2CiUkKFFI+-T0{;VaJ#I3@$^)7<%cFF~XTsHjieTBcOcqjvF
zw2VNnX=2HVIhJo2-Out)(lia3BoMIY&@0=B#4T4g&GHM}8++<bvi{EL##$#<E;zW`
z#;eq6u^wl{`g5sL%bY(OooRS_VY$B1nPtB}ANzf0Ufn(}%axlOPYMUk{cRj1yJcU*
zo6B48-j3LiQ)2VA-l6f+in=#?VLJZe=N2rtF@OJDbpE!RX8D`rpT?G5SXFv&`Tf5!
zfn|5U{dwnn_r_tfRRQ-N&sW!Gd;RjxpX)rk1+}|0r`xdpf7vs$c>UjsTYm!1y0ql%
zG>$U+ysqqc)N<GFv*y-BCC)bPU&ib&_^s~zGT8v-CvE%vj!UiBzk%^o{qpO%r)}TY
zpWr>2^t{1F*njUApK@vCuM3VYyx_R>#=N6*-v6A~tA1G}Q8-%d@tp^C^K%LpTv~WJ
z`S+_cH{PA8SrR<8aP6aWAxH0?n|f<||GWeNwR7JuUT#<$l2`XHKzsV<`x}4imw9y9
zOgSRQaVM(eap~J#2VGCfw25}+EuLBJQa>$_y~u>!XuH_mQ=e8Hbe*<w;>FGX*)^Wa
zO<aBAXUy90U0Yv-tqbGTD-va~Hvca0^3LNzRgtaFY$t#ucD`P9P<5S)|M$hU9cAwX
zcM9G0D_mceePFH6+8NPLI9WqhO!xcWT=7oO@{;eYE_17m(cO8enO7eu`76G>_g3-M
z&g1ouPdyiIDOpgKeX%!Yt#r&IE^W24qyH2??R0<Q6_Bv2K%qSQ;@X(CQZY}sqNld#
zeqjDm+<zj}Xhr@LhxgYOMemF<-EkuHO0-MWjt0JLjcuW3lgktqTBpAFo;^*b`f}C%
z#j_WztGVASeocD$n!-zmW34un>4aa=&ONm$>-<ln+x3=vb7R(6yjb=0<~<Y1Jyx6e
zHzu!c-2Ulm<Q&P@x_X7vzBHX&%yjMZoz!!ETie4Q_Ea7@c0DQoa-rGb*_PS5W^+o#
zrdwQo9aV5TPQUc6QRZ=>-K!@&`+DwX>yxTWX%)tqYmc^VIrm5@^WH1bz(o>sqMyBq
za48c#C*-BRdONRedcE<UnVYXA9ga*doVZy<`SsUn-#K@$bG_7;8gyOZ>?T*EtDCkw
z&2ifvbnVt`$=7dm1=Dh6B&{{es_t%Evt-{{p@h9J_AdDRSLnil*_sgNh<ko+vCWv2
zvNux4z~NTzHHN)wOzpfKtWaEY^5t6lPQi&!Tk9|HGTvo#Oyp_4(BwFUpId*uyZgO-
z{#TXnr+p4=%2;Pv`^Ko=PCt3|uAO>cwfj1PpT-<dymxQ&d9NMLHc~;VG3n~>@Aj+^
zddG2m^QxBYuT{RDb&NK5du@9*mdf6V{Pe(Bke@5{PS6yc<N%w@eDCVxRoUwdlp<b7
zTBpReh?UsXKfJN0sNr!!#iJfi(d7%u3r{p#<-GS<VPPhC@ENz&>z>n5imgXqOmAer
zsypL>iq8)BQsLJkDtkY#-*NBJ&%Z0W7!D*_daI=-&I-4b>A0BJb!|aTfDU8$(K*I4
z+If>LK1pt$)}7&8xZF!%-J{wcz3VNM^j5Cs*ycFv*3w4{OZe*ROm^ugoUrI^)7UN0
z=*u%B>8RjKty_&VMVwaliGCA#5bgXeR6R_qXHo>KqgHmup~?*kIVO`rbs||9jg}rd
z_p-FG&_aGmN$mTlp#??R>ur}WvU<HrvF}h=sF!5F<E9FQ$A&97Tnb&xroNVVuwrf~
zYmi98!V@gU^O~$m#13w#pD_D_LS)A5kkpfk-3vsHt&40`xLdkj`*>7i*NK*x+Lc*#
z5B`32l5#6bzG}PS-21bU@z-z7nai-gOG_Zjd!56J^sf%b95Z^&`ZsBKPZcRw2syfT
zRhn05)Z!g8I6fILDrSqeYV|3UTN&~4{L$tv5bfvelb@0)xb}wen!0|2_4PWPtCB?B
z-U}v#3YS=~GJlnOPCx%u$*=d1zQ$~k<VrrV>d48s_Y)#wj;@{Lee?Cni6>X;KQ2g?
z-gI5KD4$F8y2(1Hi7VvZ2Cv%SXId!Ob))4_?xC-{RWdg`3eig~RtvtfdqtFN;#C!?
zSyi1ntJ7!Byf-E0XP}@;{0)ao`@deQtan>kTxPcB_^GDrQ(rR74XOz#yb#?j5W+o4
zbh_Wt3k#;J9B(+fY^93g(dKhf%b4Fz)Yx<@ps-f^8QV+_<Cm+#SG!4_lQU(pxi+sx
zWr2oRa_kf@juxGTB|WKpnip?JU#|AsRy-~4(k~^8t7VBl)D)}Jr9{J1LnL%gSxGCO
zZb`1^3wb%YQcxsI^x2VBUrst7dTu1?wsmICeutxFooAj;nfG9e2ZNhG2k*P{9K0cW
ziZ_NW%)jGNd+t`;#9tk!{7!$p;TkkQ|FwAeq>Xnv^31ZT)C4(ZZo0WM#Hm=-^z^RY
z$;=r(e>PrfN!qz^rD1{F)e^7Z;tSpHynWB_d*;W;{JehcFY){<Wn~;!WrD=g?!K@2
za(TVqS%X8)_0}w*Q(oz&-+8@#S$6W01_9Qsq1?AtKAj!QoPBDIeZtj6j{BD{eI5SW
zNIv`avgGPFzSdo~U7N&HBONRgr9&RwDf+)m>`V1xUaS5G&g}2qZ|_<4@Tti5{1BNh
zHQRS^+wEFEXLtMF&icAieHkbDvX2t49#z@ZWjwMnjdj_gSG)fG^@rM`PfL!6?))8m
zJ$&2ZB`0q^t+>nYTz_l%akYt6{cHJK0-F8(V~vEYtS4o57yWQn;$!YvHk(zueMVjQ
zJBjG``_A%Z>CNNVedX`esQF)`<4QAUxHZ+(G`!3|ESvmVIq_=6_2qgglAUwPSL!Y`
zIpurBt9HVIX|@Np_*fmg#{P89ef!dh<+`j~bGr&-6PmZ|JwEAz;t89Yjy2z7WUi*`
zz52c=e(o7xwalmUwVPKypT}otYhiutTJ`(W<#Rs;i+}xpVRqcRf80&Xho()QB`C{e
zX0dsvU?0z99r?=1lJdfvcgP=LoV-L{WO9#U{p3nT;mLAJ`zCWM32%O{q|Z3{j*{?X
zLzT&s<y3?xUstJ}d_+Zfa=K~?qv_-`s;eiTR^^%eN1tPIx7v-#<!Zv4%hW3vCnu{5
zZ)ViwXPo?2Lu9gwR>x#PE#b-gwa!dlqa`|df%fUi-P*#F>vS?EXX^-0{;AV8`I(OJ
z<Vm{Klk0VbH!J9sF;3>y6P~<M-+l5leUZs52D>JI&==l((V&xY@?Hax&3Q(KjFY2{
zgePw@elmH!vGC-TCVi8qnFw$8GTq9wnbjhiwLUpNH#bqi$XvldAxJ?#H8VY<M8U`c
z$}22Q%uz71gz(Z7j1536F8#F3vQ!0QLl8$nKP|tsNWs_$!pT%HHiocr6pT$EtULu{
zGbk%FFIB-9Y!#P&zJjrZf<ZmV)_jmK)Ruz8qSU;c)U*->6R>Rx`e2bFu)|ECb{3=-
zW#*?Sn1F5N(l5v<EmkmrT3no3mYSzv0=2w2vqHhd6k>gGL1J>Mf(g_yB?>0y3I>)6
zL0tMJ8AYk73MNormz3u#m_S`qs$dFrMTLSX)bgs-qI?BYqs<HLgc%u4CvUa)VKko1
z<j}}&ZeU?*X=*gN%R!paWb!fxgJ46D9}El(3>5MdxInalp{a$Li2|63BxY$~jxJ_q
z0CEFJAwr#*fw{rtw+_maeH<l3jnH%$n3x%uO|EoQv$HTomohUn#1J#JG%!F{XKHF{
zJb9v%u%HFH%;Z2P;d%oT3sC5xILg4(5Q{m+7G`KB7@C-vqC45p#0V5ODCQX&n}ebi
zRm{}Xz*NDY9!1c=+z6B&(Zr0+F`RC0Zi#NOfw?6p#iHu9Fv0YQg(;GU<sngMU}0{G
z5t^0;=H`<PorUX-(fn;-X>5TWxdxV|2I%2qU}=WwbW2M^jKpGKY+#9IhoONP%<1)r
z)M9|?OhW@p3`-0RjSSGk$I#H&2;GZ@h9+3_ni-)cqIv@ZLn8x2^iVJ~GBm&x!{QSo
zb0ZAL7#ko(0wfL$jg2fZ%riDIH4#A%8Z#pUgUK&lWK2vH^n>#AOBA5F*fTFJU%?bo
fX4u(r6_+Fyl~fd^rg0gX8Jn7Osj9mAyKw;k_bry9

delta 5947
zcmaFc!ML-Faf2iyn~|Q0sfFQWImXg@-^n7!1^1p`|3bONH+bsIuca3pBg6!EDJK3-
zs0m1z;L5-ynfUVg@6^z*C86hizMGtW$F%Xtx!LpHtO}nQIrD0M#h<gQ|Ns5->FRg?
z`8@SMAAYE)`}*ndLB9MCpD!o0ng94%yWw!~pFbrA6<^;8==45Xq}o0`|Mqm5I}%F&
zSaWvOhyS;fiIbPB=T(;fuyA>M^9Kp1zZYJ(tgk9h;9Oks?!tCiuSAvj2gjV6pGp6<
znqzpr&0YSkgJExD+y8x1{|xuY%hmf@sY&fS%wu@lkZ-^InHQ5co}4Yf8vOobp@Bqh
z*Gkz+X0v9?KLr(Lf2{5vZn*f^b_%Pj+1ZmBTKw(m5%p8<^Y4EYZ){_<K{Zcg<D0MR
zd0di<4xcV>S3l3+zkh49>EX}U+bxPZPX5>vb^d?tkLMo_^t^lcVg19O<?Z|J*u&FI
zvM!$4zo*9hz=6g2aeIG$d@o=B<Ky3U_xE*m|34o7a902D=EIw9mPe~tT+EpCRVdm`
zszCi<^s{RmeMV7zef1gv54c%ow}l&ju6k_}`DwBFG~W#MYm2NqZ<+0Io4U1-Wxm<}
zrP@1+%1=(+zIdxz<$d3^j^B&6W)@7<KEAkAVuk02L%!?Y-2D|=w0QX(gIg<2U&O65
z<6T!IdiaIyy*p_y^=!LtD40qdiaxs}szlxUHrw?Gr47l>8}wFs=N7q^*S`vUlKN%N
zqyqD;Y<EvzU3M^Zos3b`7t_$#gIDMN3iVnny2tbG6{!;a@Y!tPJH1Y1ob=|{#hO=i
zwER{0nGKJHDsPKU<lQxSb#8NZjN!t2ru(iXhZkJ^89Mt@z}yFIc8}aLmmIp6>Rf+E
z@#*HwbhnUyfjRNp&wnVLGT&SyZB|)&{rfAni8>KaJ^##@@ORH?>sL{C9ltw;yU3n1
zyyZIE_;B^hEZ%b^rQgC{I3>P5qL$)a_PXTb-V3es126MgE$Ca%cHcW9y(n$X_8m?$
zuj*cFPqF-2dg@7?#^)0nCt1#OpGvDSPhESmZPU3&QmK5Cy+0hEkn|&IR^v?*No%2N
zQ=I+lBb(nZU1Mw+d@VX=u}-4Mi$8%<(Q!-9+~-e~Ij$k{M(MrzkGxY+lX+9;9u+;+
zAzPLzepA|S^_14%3w0_sh+NI^zuEJC*&5TE0oNj97V9iHbYT583H{e|j#fYH(bZb3
za^sx%@h0Pa(>I@cawamru+@0m4<D|r+3`<xzP8T2Rk@^ItWbN2bML2w#Imice&6n9
zuisPgW9JF?;yIod7uNhQDZF!A#(bOWjCm6|KQH27_EI?DvA_70;lyIjmH$MJyUhJw
z%Xj75eO0q*ejgt!x}H4o+U(-ub|D$@xesnkUi|g1*EZMRrWIe8N`K=1UN*Vh_{6`u
zmk-5PTsv(1X7Y`IMmOPl-%qDnT_?AxHf*=tl6Wq7l}04zJdsxGjpd@pq6EF{+ba|M
zk0o&HoOIcuRC(QRXXVC%?AH<{Nn5vwd^zZO)Uso<=K3UsHO^~xc>67@>XcdDlpG`B
zHA`%6>^{x73Z4tAEA6HH%bE=Dt4vAsYT?@QtHaUKv8(;!jt8fvG~7N=P%rc#vn1uz
z6o$nod<6}%wf)asIK&!Q;qpFV<s-wyd2+k8uNmD8c-wL@iA`dYt94ITn`W3yUQ$d;
zc9Lb%q19d1J~92bde^b<(F?Uv6+iUkkyEP8jp<v$uI$@cT-d+v%7M2z$0V;GjVRQK
z+Iz?KLU7=5#Z2DDC1-=!`7I>ErZ?2<PT@H?VZFs7_u94xAq(PS4nEeHk$vDnbB|Ks
zo{&4-o@WwUqg@tp9hQAKN%c-djV$jS&Ur8T9%=?YXF0w2K;eO<kM6ad2r1NW+YuwL
zeC)lp9Ir-zP0u}*J%JyW9FJ(&sIp?G@z)1=E-$oACpwz3#RvMbJZL!BJEP;iwj7K3
zrFx0&yBZX$S3i0ou$TY9Lyix>l4R-_@(*^;5%M`A6ehEPPwnxC9Wv8cmWx|#tYMT~
zZnJ);+2ZUS9S_tbzp9CeC-h4HP{?*N?D^v=`c2O60lWK&jUHaYJmJ^h^tB|_cunSA
z>SD~8%<Pi3@XhNPB0+)oJ`4Tfo-e%8BG|~UsHe5wrEr(b6}EMXZCmt&`__p$&vrUF
zeL_lablS>=Ela)EJz`{xH4}d>=pFLVMW{$4@z}Z+o-W2W866vCysk+a1Q!<FTVWjK
z%NbU5e6dB5Nie4>57$bQ#|iwNy_;7@M~JU7Fq-mIb4tMaWnJ#hNzVeff|Mn8s@h+?
z9AI?t%uB|^dOg;D53V{db)mqEg?y^)>p!l1B$t?Haa>3`<kIB79hNVgrC26E`*+CJ
zNzUX2o0I2c)=3=SXF4xFxm@7vlt8a%Cl01;$lG{cMs*g?rjWBT9)C{=n$Ftbm?E=O
zVA7OnKjR%NGHbOMSK22{{g(6K1ZU4|1xF1T%c51k7cZE&a8G#s>;@lsH4Bx1WeZvL
zdsIZrdZw{QTU^o!v)aW~y~H@jFYL<wwUaYHyR!CAJt9(Q`zhh0{{zp()*@|ATt@{x
z-;0)Z?<-$6y*23jr>IMd-54cRy62p0;^T{OnmJ**qUt5v1q~kz1(<dPa(Ju@Qu5-h
zO>5f1{`p4a=H1M#wJI|l>nHQ=Iq>|iut9g!xqEq%e2=)^1Te^IZdH8mGo${H{7<26
z9W{$;zKRJ(RA(BpetlB3mm?(F_1s#9Z5QUO5OEP&TbkiBX|>{ll(oxr*sndz+1St{
zq7=1p;<d$g$LlV9X@08l+fYo|ojqWQjqYr%<x3~=uHad-Eh(O1d0DtJtI4W*hhxt&
zl_Xgf$Gx18KT-NjVZ*N}{GYGvRXCa6bt&yfadOSZ*Yo77=7e8A@WQh9+-`3v*_i##
zFD}Q|nru$H`(jVl<NVKW>R!!TA|Nks)V%!D!Ar&2=PquOyIYpG-}Cl+c6%F{dHXF{
zbQ6j%&)@x#eSe5ZshdWBD%U@=$7}8~c?H$mJ(5?~UXefRbp2_AU!jkER{YXDTE8#h
z*`?h3^Udu;jBngI`Z4F<q?y-CEm}66Rk^q6^N;9R5mqzrE2}Wnr%YxG;rV&UD49iX
zmV1fz&ksBHeme1c{-@Sy7Yr1i9w|28YjEe-iEj3<LhDN(>r_Tb|Lp8-zpSLHJFg<O
zsNQFr#f^HS1)qz5zdCeBZpI%syW1--?FcJLU-jahLe!zQ)FTHw1Hz8Ea%|05JvG}$
z=V+0o^t_!%)2**Kd$$LbE-c8tIM+XOJMX%zX9l`j{Tc7$Ov-1QEH-iZzx%?@tuNwc
zne(o@q*G;f)O_N(yK0evUoz4ZOS3QTP05vtQT6^_^Kf>?^ZLArI?LN9zi6sn8{PeG
z>YhBQ80FKEQx<4w=PS(H?Yl|lIrApF$n7uUHkt9Ro3vCYaqp|(E5+MAg{9Qrv~h2Z
z?tZs4^YQ~NUq;^O1+z~)&zq>z|B++Y`M7u27FnMJH6f<C&o<<&wGXr}pPiC<TXWNe
z-CLoCsh-F>d9U8Zp?r3Vs`aAV@f`P}O7tUVvxT3$^w}dhf8B!OjQvZ)e#~F8VE5Tu
z$=l}2vpn3sZ;t(<@M&`CZx>F!^7+`(y}=ig6l|r=`Ll0L73#dWR$TsDp7++9+e~*<
zrpPDxM>M}*wr2Cq3D<7#@rnMV>@Lsya^icd+~tQ3TQBOZbg}PQmR|38yXXD#wOemq
zx^{Dq&uqK%tUG%Ss#iSI%3ofz%lgsT>N_z`lUVbO_s!paE$wu4dU30Hf4mDTzhlbW
zZNarSWG^neR8;h9#=_;f$G%^_b}J|Ib<VmA)9##D!PNZy<nhvbeyslGhoub_x31D!
zusFA^eDk%a9FNyJanE`*9!*b)*i*lx^sCz4>wOOQUQTw&`NDlEt;Rlk?b&JD&OPJG
zzt=Zok=)7IS64CbxqE%u0{)8L^OGjd+b((ke028ar)xLwJQO`CaDI=);|q7!eO41^
zDeE!u3Q;Z7;Qt%;^!u-)&Hd>iW%GA&^`3cG@JnQ~<)Sy=8f%udeM;QP&#@{Z*=1{)
zY-jzgKgB(f*4vMKTzqTiIlsI&CsvicV=4dTs&QZQ&#bJ!ToqOG%A8Man_4V>Ggx(@
zX`GRd*)E;>6B~|ysX5j<xmfhulILHY1w$4bd(6onC#q(aP{p^!Kh5cj)-I(>nbn31
z9~rWq;tFbWmpUn>?C6-W)+>}P)Mkc)p3jbJ9oyFN)~}kU(-L%N=bxoptyV9RDOh2@
zamtfZU)?$%cCm}ExxBR`^2EW7k2p1FbNd}}eajd$aqFVZ`%Znk81b`favkfD^o=r^
zlgdTI|L$}XhzjT2m?123edX#GeyQQBqBXxSy(qx7bHS|EDN`Lq)k2qUuq*nm(-+g~
z%32Y5F=NqVtH?`7>RYe7+A<oQzM9eAd}`~a!#^LKI&oOyVe6!Kce6hq{6EiuU+YE7
z@lY9^^s|n~Y*$yg6zc5O?ayuUvR!=2eN#q&Q=nLy&5F~hs)lx%sfT6?J?&zD-R&~t
zX>gY^Lx|%gTjemBbs|$`blSNjwN}L|YHi|5;XQfX?ZUaLXBGdq<gczT(OcIL{;<^H
zkj_n}gY!+<yVRHJrQKO<cS>n_kGABjS&OqScd5D82)bumtax$iaCz?0P`S10vRWR=
z3w3UV#%QR1P4zjH$r+zGU8bwcX>xEg*XxzJ0i6$Ri}waEFRpACzN+gQT)yCh>*a+z
z)~QT?!ux$w<fIiA*E(vxRclL`)C<39;;Ovzel715r=y_;i;B{GPAVM;Y84h*Xcrhz
z%c*)LU%0QN%a%bipfzkt@yw3PimOi?U&*5;=`HG}xJGII8U0D6WsC<KVx6`Y-R}-j
zv8(<xL2HgJS5uR)klV+gOZxIpWt|Fh=IgCCHD0$W=2W1AU47w>2dm;v&sJOKzOMd6
zkn7P}rMrTW-QF%<AG1TfqS+owvC8d^wo@0llqA?4eD`kan*AbfGZq&c*Su%By;pSZ
zsf9B`yjQZ!5Q$y+Lge~2*{dvFc3l(iwp3q@y5ZF0EEw}JW9udDVxj1DVOMP>)#o4l
zyzV0V+^h026GRTYu}nR*+xryD)jw}8nCs}}*PA#^f197tGRN-RivCOME^*Y(PL*C|
ztde)d%KE6o<f<dHir!~$H7{3bzPYWijH$QNK77`i?942lm<i5vg&*s<8SV{SYJA5t
z{lU>ti^bJ@#e&u>a-ID(<~`qxcOUn!o>kc5+4IX)Y0uS1ayuVZZ2cAMqViS4_xe7Y
zEjyl_|203pzH~#{fd#iCtDRM@78P3WQvOji@1$UJXmdzYj;vJ3{%=9+tna0@{keEY
za5nq@ZH&(=&u!1puuT2BRI78IOxXV7Z8e{cT;5R7AJVd1_ro`V=?>zjJ`1`CpL%Iw
z;`01f_?J5AeL)ZX%5$c++wxW}mfZTQm*aX*-1$^#ht#*+3DxyqH2P1uuan%n*W%Yp
zZN=07BV0mu`=6b0@@q%k%)HK=eyO7lf6tg6UbZzcU*zkWuMFoOyUSkOQ&%0(o)e$n
zKR5Qw{2gge-fi0bMswoD=+_%VHuE^yE^0k5baNh;R{yV=tM{az{rPrh#no7&UqR-+
z%H>;*OmO`na$C-J(%Fx};k|10SNqRBlV08LlJoliJTZYHt@#eOo87rBYhSF|sBio7
z=EMJiFHUTkd|gnM$-r#$H^Dw0W<yi6$rsg>>-)X=4jXW|e78Fqvp^```P}4Huax%w
z-<F_0Nznh>83`xW7M?v3hGzwf9-LjAH><9>SZ|k@=T+Y+p)6%>9!-`7d>=bQG&rBN
zgk8044|Qm4{l0qgy`u0q#ysnSuQ~3Q|9z9pn%r{t$ix{zbzBv9e_b@|>}soA*IL!^
z&NM=ER*Tdc);Ak@&ukIOy3e=f+NsYs|4ZHf_>(z7*zCvTS8{5TTjVMyUsMp@EFgb?
zadMKP$mAyq^^;AMgeR9N?weeuEWFuWNuP1DjEeB&PUXpy*Qf|j)>o-zG@ZOwrEKzf
zRi4TEstYFXRui85NcHAqHx1#<=hP|~CueF3Z;sU9XPnHeB{I22vt#mOEz!x6TBjx-
z))t=pP3!DrJ00Q4*R(SxU)K?y9H`SaIaOD9@++O{$?x=pH&^JEF;4c-7n#hY?>1S?
zKzMSr{_e?}4TU#r8gw#F{$?by`Iw<0<K%b7!jrj-pG@vI5uVIw(l^=Do@euHlRZpq
z7N!dNp$ePB&7)cCLlun76$})D6!eqxb8{0Fj4U9$)XemZ5(OhmD6g<IF-O7J0L0_c
zPg5{91hEwK(=y9a6^xCbocz)v1!H3fCsV=L1j5QuFgAs-@)V50c5&(FW#*+S7+WY9
z)Pro!S1^X!lb@HWU;?&9LBAleC^au9HLXO!1Zo>tqzLRV6R@3J`UR;)nfWOSCQw@o
za!QL8OrRDQr<SGWDVRVlFV3t`FfoHTq_`k4IaR^LT*1IuA&5)AM8O2=>ynJ3)Kmo%
zsB22f^A${?t|?V8g}S0b!4zz{f__zMQNDty@#dGd!i<b&lmFWJFq%yEvTsy2G&D9g
zFt*S(Fj6-#P}fwjv*Sw5OUX~l;;JZ0P2)09Fg2b0&fY-W*vLe|00b2B6u3aNfuWg!
ziN)kX2W4GDGb2z~f<%#IjZ86h7@3<+Zgo%>HAXYbz{J$Vbn-z5wR#L|49pBL3^Fja
z07V0eg$AZ3mPY8tnj0FJql=lCnwesVnOi`_>J8vNFfcX1Vu`U4L?J?*p^2H18JdBH
zCMJfK=wil}h6d<jre@|S>gqv$GB-3s5d@1F8)Epx+#Hm+L9z%(n_HTpTVh~gXn-kZ
zYG#4v7y}D)!+P{MGqA8U!iX(PBT!OBwb;_c&=B1~OH)(y&@!+zGsm#Q(gKv+LFU!N
zePU=}V1XW=h6X0)=%HX}V2<GvLjz1l8yXtIEJ4^|Xl#xeGW7-qhK44V=sq?yG{d6V
z+yXra4UG&f&_lt{$jBU142wsMEG!KI(1Os=*vJq)xD1U=%rFczHZ#HqEi+>algY9!
wGA5=9`a${mB?{1D!80!{UjdY<6oNqcy|^T?s05tb4b4nV47pTQUH#p-03WT}t^fc4

diff --git a/Project2/LyX/Figures/TrafficFlow_Solution_B.pdf b/Project2/LyX/Figures/TrafficFlow_Solution_B.pdf
index c3338352f8b03c9df42fc1d2e73946a075ca8337..9e6e212dfc8a9dd42c38a5a2a7b73f307e63e48a 100644
GIT binary patch
delta 7346
zcmZ27nQ{L_#to8;tcH5VCT5f68O!P?tGE{Jy}tg$<Ah63j!dt1k@?2pl(5Y_A*b}h
zs|{w{964>KEXqHAR-L!qq_ugM-PMxsO=l(kp7_-Dp`iYq;Kxn(YyQ3c|L?=Q+w1rL
z$@#TCzbv26e(&#8@#XR#pa0hMv43<vKX}f*BlF*vGuqeQxGM2H#)Px3YX2|I@R`|%
z?>p2VezyGoy|?>r@BJyFR(CLc-<`K!Gm}4@KNIxhLVK)UDWB=OgWt0au3D~K+}^+5
z;rFEZ%iEU~dlZMy40>Jcd-;Ej_21)PE`ND;`N+d1FVD}AT4uTZ<@VSaTib7#UI{aJ
zzBYWxxwY5sl-Rx!-63`Q-R!&Jm(QOrXW3EoU$%r{;_7Fo>Sfx5%jPGV*4_Twv;XiH
zs{>(;`J2OfBRBhTexCgDZu{Nz{PO&L9l<=8Z@(|gJ-7AigV$faz2E(RPF!oG-OPX4
zRllF#-M_ze^&y!ILz#b%@3wQY#nu0N+h70t^zr<E-!AK~xBv6u^6~g(=l>hlZvB1g
z*_V=kZ!^z12Cd3&Uvt3vZ+-RIJF5S;8Krv~K5(?Dy0t&?>9vA_*TL1AYDaH9Uyy6N
z-n44@{B_cMo~)F(9h3cD^|;t=-gT4GOQs&P%zCjfKW&@S`_ikS&Em1Dm3|A8mVA3-
z8h$jrca`4eEn((8dzjvrUJ)%8zkB7?nn;VYul1^qWq8drS$XMkRZ#X9KlNDi`ihgj
zoaZ>ZPHA&2tGF8a(sHq8=1lH?Co_#Vi&m{)y-sS+3$2SgzjzpR>)w5^>UqzqdjTH<
z(?6x9X@7|ek2S5h7;1aQ_FF{O)6Lgorp`BBRdi0{p5n1hnbP4e=C0e7_hHiNA|bPV
zdriM2JY@^dU6kcpk>NE*{P&!!<jt?sZp`qke|FyB<Fjs)oPEFkPJa2e|NO&`ds8`$
zXMG5Jw9Mar!S<iOm+Wj3lxb9FHa?fB)%9SCoyPm1=@aMa>wKS9ebA?>J6c`#g7w@j
zX4}gz9lMpOuGlQ-EGugAB31pVctOya+-VE8=FTZ`cwchq)}4Ev(%H-BicGv^`bAEq
zz2>6lQ`I^3S1!dI`nc^!!@bu_rtWN>eC^sfi<M?}K54(yU%vQ0O?aESLgtOA>K6_7
zUM}3ab8oxZHNWZ(-x)1;xL!HzeW6mzseaYqc-+>nYp3&l*qaw6ZSx~D`F+n~5#0z5
z-D!7<_rF;Ai)r2|!KwQ;ProPUBKyGFcB|oz?^mwf%k+QR@#^aL`rSvo=Vje)Yf_85
z95Kam*@-Q^rswWX`g0*rMEcaW#XmA+Sr64#r<DA-6<%MP+MhC`J92d-zxr<>$KG|Z
z;ruc^HJ{o`^lp5cdEWBj`u#RmyJKV*uD#9kCBjonDe-bTgD$7_y4<r5Znh^0EwyWq
z&UvzDA=~Y1Sw4!k4ccWIC%Wp-Zo0jUHCix}zwqUy)6-^!-+jURq2uE5pQ4t^-ltM5
ze!hOZ#q#kZiQhcWMb5Ha?~A-7*pQrV;W3AKPOqW$Ea%rhR1#Jyv_E~=^p|~GNz+-@
zh|tsnOw*2j(sY}?<#f`L)=N%vs^*v~z2fy#SfaD@kfr3glOD^hKIjCszK+^h%2Hpd
zf1aB^c=y_Jzu3})vt4@S*q3g-aMy26bpD-ky^n@(l25uONmY0Y-9Avw<&kmtqp$8)
z!GMLFYRoe44zS#6Qg@uqZmpVR!zeFT(b;vA`FPm!h5Xl4<2J8SxVYuK!lMa`9;$4L
zQp%Q$P(42D@&Ql7xz9_ROedQCX)BOCULg@#FZkqV!^Rms5sy5xHTsI*?bT1zKRRcD
zL0nMAJU-TWeU%SXudMl3b9R!Ae*?FWtHp^fTM?gWjn`wU8)bErES4`j%BP`wuzBTy
z^+8QDCW~sTs5U(-?)js!FX=&)rTBwNH=pUtnB9Loj6d(Jc~_iU?u_l04d<if)zeJ2
z-x1zaKf8WAPl~UJ*Y6vAY|%QOD>N0m>h-5>_}-|z-NCI*okz#~u;9U-vYa1jHd+Vw
ziSoK>Zhe}z`P9zi6L{VKZGP);kmCfe#Ww3cUM458X3nw~7lTYACYrXUdohMdg&p57
zd~wkv!)aG4=Y$CEIbuA`@~D^m;-(Ol-3L!p+wi{k*W{R2@36vU@w$$t;3}tmrH>*P
z)vkVK`Kg0T=IZmfiJnhqymVL@m2kO$@okt2%LgX^LtXa$2bCG5=bulIJLAQh?!x(a
zYQ>WWXW1hnTYM&^+=*~xd35-VO!WFbZjD3j@t#S6$3A;ZS4*<kHhYH1=>y$Ho9>^z
z6ZJA+Ub<k#>CA}e;O_eD0}HkWbbU0K6aA~fQ82<tD9>e{g(_2C$ND9cH_bkf6nQD(
zM@Mp6$&o2VZWA?_+ohe$mpNv!-(DnjwyCq1hb3mM$Kpn9iFo#<9Mftm_bD@;+BZ#X
zxzvTl-yXG!>olp#YFGr!vRZm%#WWK^-f#!ETa02gOFDL2eCYV++8fAJ-*LUD)8G`-
z^_e|F&MA|u`I>YUBi}vDp7l8~aYwf4GRHJ+Coi_Xdxlb%Cj@?YTKhmlO!2DiVv*uB
z-6gx5Vs|~{otboQO=;hy%NzRV))YSvk9&F4W(He4x1G6+sqmS5a|4sy4sQ5pGR@TU
zSV}@biJslRV;@y^Tzoc_$<}Gc6s3BVydbWOOVgKdu1S7&RD<=-dl^CL3el;v7Q1Ua
zKHc@X{&>g-MHjzU5_=mq>dZbM5gG0D!eHZu#EzpD9zxTuZF|Uh=gI>=Z?DV_w<+~S
zT$$4HubQ)sIFv0`E?AZ|`Jkynv01vCmZ0KXwv|T?b#+!MBph16^w{~yyg=Tvf;G~9
z^_mOBTlxaI)Y#-CuLw#o+?%toX0@@>ip3Q|5=%W^U)5|CJ^f2mnYqHLch;(<_Rd*~
zoZjceABeo`@jALhs`!7O-uejh2^%X~BG=pgSgSMnq@zB^yeCHjq!uYE`?01(B`)R_
z@w_(qYp#a<iu25Focbw(69mI_Lu4(SdPNQ{uBq4Q+8*5ys9WKhx#7#Rx4g%uuKCL5
z_sJ_aB;^9DR0WUV(HXxFz4^-F{QN1yZFM&N6^B1{$sbGKQqFBEQYEUNeQ@%ch!ve)
zQl(nw-zZID7fq7-`;x<~#a!+2S8mJ4UyoW%KJ!L-o`cOjMTHd?^xNM&<=%HP>|Ivc
zbgj%O>!)<P*H=7US-$mE_S5bhzd7uUHT(AG{It5~ms7XL^i@RYfxd(&{VXFZq1Sh~
zFZCImS6K5=bq((t)5aL4h)sI3lD|CDG!89YSe$eE@DkQ7L881I<-(O;k`-q0$rUqo
zd5a{5-N{VJF1xToH2HJw|F)fH?*yH?wEtk?L>3mAg)f(+FPvR}G-~=Oy~ERaCbPf2
z)y7=X>e-j6b(lG}v)qky<E&|X9Jd)iEW0eKdG#fGvdjBBS6*^ePjU=5=n`D<_{P?>
z`IAGrUVoUoZo*!%mv^1?j*7<a<%qs%dh)ESz%9<aWfs04RlmCkUh}-NFiSRItwtjA
zu`pfH?rA=8r<lW3L^;=9Qmx-)e#t3mqSMb~eye-tO}lG%t5}Rf*yZY;2dWDSRP;?m
zb*{1dsa;B|a1`hdlk)7g3aeS_c;TicBkKw`Ws7wtObfauGu`Rhzv}ynAJ^VpjMyoD
zT<nr3OYF%T91R<+D)#GSFIn(LJUc5t{!-5yr}@G*7bl9{%DG`<l$|kk(NlY?dY9OQ
zAH3aXr@rf4T6f?^tQNn<hT!m=;*tXz`o5=*?3JIi;`W`1yEe9o<+@JPROFwMoBv(J
zDJ$c0qq4ns>9(^clDrqrxiS5T#f?9KI(t4net6^Koz7<uojxy#;#2eIcxN|9@Xo`R
zvsJ5Sr++uoi{P7c-omffZ1sEd>x(};n9zHm-umCp!<lLypH48msrcBu>=;K<&+6b)
z;r}Hv^kyGE8UFtGMzx&JF6sUCF>6>%UbG*tH=R-LexvAi=-S8ja}0~$W!GEf)=8yZ
z*eACC=iZ!WyA5SFh&vg@Z%$6%npyg2x72}bm9BStXR2*U`u1S`>4kb`Q3=YsJEH7&
ze*eAyM)RHe426eb`yy*!&V0D8rzbhBBwaTva=y!a`Jc?v^L4semVG{IVZQUec=U-X
z`3o<1{(X7oPF(BZ#%~w4uPfc0_#&;G)q3`gz98Oc%{<?2H#aj~Z@PZ?dB5m-w<G*#
z|0jm4Oq`ozHEHF#i`K5<*LmYa_9aE>9-AJx&u-y#@8>J;OpK^6?Y;N<>1sCps+|ek
z?P{L{e_dDqBKkdGq3p}h>o4~1+m-cU(fSL)i%Tnd7{0x%Y2{`6rc|U75xe+%*R}Oh
zd!A@NysIX4(On~9{)KRx4x{ij>17P>zk=GFe_PmA>78o%t-8Vgg>p_9vucF&$yZW)
zuX~5{#(fbkvozd(JR@O#{kiZgcGkZhn|Har|8ljod3sH2S10d&J2#f!E&C4D_1xaN
zHUs3u)vMX`e|5Fb+-u{;`nzS{tHfu$*TS~$a(n+3)cCDUWq14d(J10dK+ft(mTx^c
zs!v^bfBt6C8{hTkRruEay6bdf^0%V(cfQ3;J(Si}wP>$G;cf*pJCOyp_3isNtX?Fg
z@N84z4X%CHlcl@ar|0U%eTw99dg(stT7Z?F_1e8Xmn*nKm90Lkz0CLFu3vO?jAd@}
z$3>S-&hHhIQ~4b8deN6(k><?Rm$NyaA51UTcJjYvUGZj<TFKK5x2G<AxiIW+<e#gj
z?o?cxv7OKQKzVgeZsF5Sy+^z4vL`atZ<?`sQC)0Vl;z^uGhJ_I$Ugb7%V&M)#P|Px
zy;45k{ci^A4jrGExrI4#4G)&tEKkl<dU#2DYo|2-Eit9lCwconiX~-68())SdwBJn
z;TqF`=FNe|Yghl%{ZS<R!J<7jTxQ<q*mm{}Gey?Ve6al3854<TN7k`cuw=0RZLxm7
zV2@b+gSM-yTwfZo=WO$O#43=##aAZPVAr!4^@SlkiZj_|vY#05`TT5Z{iR0bhSlA!
zTJPV9Jr??*W%ypE%13h<qxRJJ)4Ek=SD7DP`*88a<ue!G8SluScJI=Ry&2oQRXRJJ
z<}EAJ?3&s7%zv?>@3L=?OsY9n^3Tv(m16!y)VeK<SFe80p=DXDo2Rc*wA9)2{K3<G
zPiDF=D%;%k{DPOtjE5ybN4NjDJY`LU4~Li60f#FO%nnO;87y#FbBOn!iBr=lt+^W9
z{Wj;7eIirWiF!wHC*N;vSaGFzQq0G|7NJ*rxE)*a3j%zimd&ub^-JXFgFa6aL9Hnj
z&Ek^|wmPm3saW*vVSWD!-{lDnb9HjR>&oWlXerNJ;>u@UcJE*5$5w&4rYXNHU4?tY
zcK;QOd#?E1=X}eb9;LEe^{597OMUcHcNmIH*XS^7k+JLkqj99zL~!wkN84t;Iap$N
ztILyhiIEud)8%E(8e3E9_azoI3TCX@uA+D7;Ejp*5<*vfp2)pt{g(Ijs>v<|yeAKT
zI-y^+^I;zAQQpV-9G7{P-`Mjeby1YSn<>H>r}UmVK2uN&TGk}u85+F0Y<gE%iQBe9
z+n>i0nd&Pil;&O8s%WR-u!QMY-V+h~5T3r0gVu|q-W2}ew3hf|lG4N2sM@Ce{;S~2
z1CmiIXWTXknAd#VXXllw;>77ehV?6ZU&%aE(QomceqybGn|zdUV#uNY9BxGuZy)wh
zHTu|>zv`dOGNmLd1CgmQM@pi+raHboVRG2_N9N*(t)g4)o3&RS-F#AQpVs|Jfh~nA
zA};Occs}p4$UMa;PM$eFzN(U<$%U&J?*!{5<OUZi*Xib5NLoB0*o)(pPlrqT0telC
zF$s^r_KR{;&Si%j-&kO%Cces3zp_%U+RKYg(lq44tT(eQlqAn31eL~pKGBf<a)JMY
ziPOK|65kV;dxOV)!?QQd*JnP;Pz!ywO>~bK``WZ49*IRk9!kw3O6!*~&syC%X<-|y
zxuN79*N@3TYPu)3cozKb+@u=(KH}1$l+tHT8|oXhHBN_ZRr#L6T-sRE>KS_SjpeTD
zZ+Bc*`d@fse)^7n^FpSp{nOrknB^O;ap1I#O|o9_<D6OEiK4-){@U0bxO;9!##_;v
zlMfZv7I$5JDbX^?v3I8BI%92@qH~E88ZXayyzD^n+c^QZk8Q7BbySf}?ObMW)afpb
zjVkAV+&XA!Qh%$uG*L0jS1QKwXYeW!Kjo8}`@^4$Ei|yMo|Nq#rgw#@=}}<f5|$NJ
zmTIjF^fl(4QVhJ2QLxxTm&aGd=uW8ZDS0OWA(0}<*lLsXN2eW)dw21jF1#?aG@5JL
za;1%{pR4VeuxI@%k({6(J2Pz8&e`YF7k~Z7T<`B^Y&Yo{?0Hr{lSM*RKs%R9DsJYh
z2GP4cvzpo#rr3B$EWBc<81g?#a3^<<oO)1R`_%?<cd68D-2;>K8r|!bu%6E-R=)3d
z{QGC#4!eRY`KRI{n~Mym_CB6^>)j)ZS@#>m&m9Tu(SBkvX?24}z`aDywcMv#AI?!&
zJb&r2Yb&DO3K%}h+I!o}q<($!n$MiNDZOHkGXf_)7g+jq;it14$10e^BbO$w+wgBg
z3CljsCXUTAS<|{XT)NX(sz2^yP852`IQgI3zLQI|7T-HmVRq8+eu3Azo-j7fM;lDI
zqf44^9-et9uAux=!Lw}htfeP!?V2&$zW=X8Jm1HlV`gi3JB|Ki>28ji9;(?{U-|Lv
z;kmyK6${2|?p^G4o7HVsyn4vuOPlxaxw6W*I(3PNfH||>#QmuUdLJbw-aKtHIr_o8
zfZP%$`R3&A%*Qu(Cr<o1t?M_7?t@F01G|o&=ob09by4Yq2R>Z<oBy9%`{1fT#b>^g
zyJYrlcx17HL&YZL-io^`_KGFDHEQU^<vR1$*LE(w7xBb4E#act>abi*5tFNy@ok?c
zIOcs#TYorUN!-y*Lbo-}c&YTOv9H~sxk7ZVnU<Ovr@p*l`qP&5B<G*sd~{u>eZMs;
zc(3W=SNR(je*YY-cxY?%eE+wSW+p3ncCde$u&kx8R%7>+^%)aioC-1C7VsfProg4z
zF;V?jc|d*C=RMw6;}*MqPOVvVG~P@}@7mp4NelclnAd)o_a@#Z;I`}nedpv$e~z*p
zc9;Ge)ce9VyD_7G$$cZS!}qzA&xmdM8QrGf_u7+VvEcHYsojjbHXoa`p};>p*YE<<
zuIoSdS;s%i5U!HRiQP1LrK&_!tejS0g6!X3sint+WaEp9>W@DPy}d^8IMZ!u;Wv^$
z`ffIT-fq<Lw3eSsyfaz7&6a!jE_)@@yg<%*la%LPlQ{T-bMB>fV=L9H|9R7_a^>SR
zS<m0vw@Bm(=kXn}`#m*(9Ibf0lRfL@|NWB=xH`A}(y2aqk(X;vy3pa+?S(~5+QR>>
z?uewmT{gARc+rXANqZL82j<-4sQ;XKkK={F9%sAdZx-d`%w&(fSTgqk(;J0j>*v`V
zIJ5lJ-3b#^_;)ONqs#AZt>pB48{6eiPj=tsde-gqczeXUi>IdFspQ%6&nWlt&8r8#
z-PrwA=bOf9y-Ai!=Y?tPYX3X=cYaj!F7sVZ{Kggg8^3Rkt-X3me|gRCzFUXR*O!U+
zZ<jwI%XgSN!)WI5;}?F%R&(Tj`c<%g!>QN%q?F=M?kSk}|MeI3tY2o~0cL+vUxf3`
za(tBWUN`>x<p=M--%hG|{!X#1R;ea9|K}B5<IeQ-O)~do{+n%V;@q|&lC@->`;Cgf
z4>)$){Yhbz%8TnL$@~#swoFnwQ*vqIOwV)m$0h0=-#EYd<+JI^-{pBTJLmAPtTvNZ
z{lvOGchZ!Sp1t>{{t?)1r<rr(`}|#+yYy7OY^FXgYgKrC@$;MP-XAZoiS4v2dh_yl
zdY;txqdTll`r63rg(ZJizFyJu^W|B?vf3}N^j&W+&y)IJXi~fNw|&(OKPIl!yp-aS
zqSVA(u2kW?l>DSDE<+;)0|gMn)ZD;g^EL54p2?o7m6Od>g*RVSJ-|5mpsL8^mFo4A
zr>P51w$|7;Swlm3GmoY|<K&+j!jt{9CQr835}y1;t9J53E#b*6+9`~tlV57Dp8P_a
zXYvA_2a~7h2ydROE5JCpL05S4Hof-Ai}XY$2kM`hY^N_e*~sAZWLX2@$pVHMlm8kB
zPwqBsn_OWiJXyu48f4t&O-5ymljj==PqsF3pR8dbGI^TGuE|X%!kd##yBH@2m<n$)
zH(;Fn#!O_gi^Y@4h8Dt;tu6Z|Ygh_zzGJzbiN(;sh->pyn{d|p<ow*+L<J*r1p|d3
z1^v{_^o$Y(BMT_6urx78!N?NAOH(j50I|6A(=y9a6^so*90mQf{L&%?V^B~9Dd=Y^
z7#l-`a}<nCAgnwEV>1XVU%?n`50`#^UaEpI$d>vb1^t4=qSU;c)U*->W2jYNks`2L
zOu%+3=oh3GW#*?Sn1F5N(l5v<Emkmr+FG1imYSzv0=2m~vqHfHYIku#Vsfg2i7CYX
z5(N{mOStq)GKx}D6->+(bim#&DbH6h0XZi~LBCYN1nP<k1yiWyRjEb!3Z{me6`X|`
z8BHgfxcE#yX~{FW$EA$j+`z)r($r`&r>iuh@nlt3gLES^GX(<>P{>o@0?`JBW|o!)
z=wjvupr8WDBh;B2nww&%Gql7o&)mq+eDWSwbx|WU)dpsUCT5d=xT@A08ljtHU~XoL
zDP{r+U=&vvm>XCcqnm4CZeW2fW@d=tQv)+&3$SZF4GiGkGB7j4w8YHP2&@oEouR3z
zr6HOnhNhDzx(e5uSXh{&%b1ygVj0!x7Ut&Y0c~JmX^7!;OJh)qMb&F*VvZ4<mX=_b
z*Bc-^)4%}YM-(w5OZ2ccG%z#7aI}HB1$x*T8d!p|ABtlP4Glm^6($C<-@w4o&<MjP
zhK44lCg>q!Xbwv8FwG#^z|hdr06k<3jSP)29Aji`g5hYRdJ~LbH8e8AqS@RGBNU7c
zP0@qj(AWr++dvM3ClW(rEFLkoFatX#6FI0&3^7xQi3zAQK{e3C)Y1|?WXz3`Q(Z|>
zVrEWi5togPf_`vjRjPui@#I2J5qU_lVrR!yT#{H+Qc;we#${-3Vqwgss_N?R#svUr
CkgU7_

delta 7473
zcmdl#k#Wgn#to8;Y({z}rWS^i<rvHAH^-Pxx_f>7ilv>B>r|IcnIyJ1qph*y9^<>2
zM-969%nbz0WO>dWI6uGGsC0G7>%G4=eXM3lJoNrY*t999Y-Ub6SF3OT_u2n_^?%P!
zpI^V}|MvA|`u+BM|5b{Aw|{WH{P%|cjP-SQkN<uC<MUm;2g|qbmbyI2yL;t><L00H
zgH8uY*Z<?U$f^4^|L(incTd|NK5_oXh3C6tr!BqqapBSwyRT*HJM|({oA=#Zuu{)c
zcAk#UirS0*zunJxPjHRCx%}GnS>OKuKKsx9yZyWPf0l(lng7Ml2yBkM_3wIY#Fq9O
zrdOsJeqCG4#k1{3^n7=_#>)w1@o)Ft_`jvjy}_OTzN5at&iX7p{lp)M-#NveUcc-A
zqy9#{OoH}w)#n<g{(rJtx^(*A*V}jd$GwfK6Z>xXCcbuecK4NQ&9}1l{`&oH|2O?Z
zL3X$PfB$zizU==$u6<nI3yv22IsJNjwZxAfm-Fj>+^+xg>FWKuKR+LDzyJTo>GQw+
z|8M-C^u6`$OJ=Jb%T>Ru*m<^IZsq}N*_yL=RN1%hamiF&I&0OO!h#upr26XqKFI6x
z6z2_enyYTMxZLX1u7lp|x;E;5NZ<1R67N1O|Cidm-aQLf=Pff^`2E+bRR_EGX>B^v
z)Y#UivFFw5A6p8qo?dj4BYEDfmV2*PuV&N#wd$&?=>Lkl-u{w-o=htgRsLKySt(h+
z_p<kO-ndUeP31{zH<q+r35{Q>-n(K+W#CKO(`i}4RqNNUliKrQHIrMm)rwba@wS;U
zU-up9srQ+^()Y#QeY>(gELv|Ru{L|%RMiiw)<5xl?8Q>%<u7IK`=sUG%hj*h^nZE@
z{kpqgvHb3X;j?$l(&WF(xi3I^-wOScd&}=#$oH>*@oDi(A+eHwy2o?x*R|vq|9s3=
z9I<@w#_t9;iEG?`X}-R6ur6xNqPSPqmp1QM-8|bV|KpKZ_aAZPXW9DS-MX>+!MeWv
zN3Sf^VEVRb_mjvwt?Q~a9kXxmdd+eF^}3r6F2+h%i{BBQ_`~#z9M`g{i?Kf|?_Ax$
z&d+al(fvnWxi4G2dimLJdOKGq=?nDi|EFQyu=r&QZ*L1jvUI%c!|Ga7X`5eJ$?u!i
z-`F`-K{x&F*G0R(RNe`_*!XSL+W9|Tciexw;pUSk8+(s>>jk??w25slc`05SHvee4
z&_(qxJxL`+D@u>N|9bP-lZ)xm-QqQBg7aUNzOmH*wI=tr(5;^{#6H%CZtY%L-g2|s
z_GJA2x{tT7%m0l#cl_G9IfoY3{QP+`@o7nf*>(Y&hbNWPby+U3u(#}4SU0b5%BASl
z{0TmrSLAJ)X?^{Y>X9!D>y~QX>OZ^c#x|C-i?6g-yuH!%qAh%R-e<N7mW$O^Vui8S
zHi%XHJbn3s-Q(nWKewn!^c?KyTkxgc<;{m$e%^u@rf(Yz`6YCt9P@d0ge>{+tK?GN
zwvF`++*y(ZZuN_D*GtIF(^xI2+vWd$qv=J7%LmKyB^nY~AIdqd2#<DZsXZWJUGOB4
z?dr3}^e4{W<Q#&+V?RoH9sVVJer@Z!G9|I?30wIDjoy3~QD!@H^24+bXAWdvmXclH
zRqy(m`Ms*=^Y7nW4H~bxuXwn=@#a+JW5PivnEh>>-48Um2RYZTW<D<&9sA(ajCDQw
zk4iZe56!Jp2?%QOmSJDe$lAXAn8Ff^4?O0_Gd9YoPPxDyxAUX$;e%$GKiH@4HL3Y5
z_50Poz#IG=0ox}V&eC9>J}c*SN6Ms0HsK87E9Wk*Us=Gh&xC)+q3H#ohqSon%n8%>
z(0O>$Z5gxiv=aq7fn7XoKJ3r5_a#1<CG20WY{a~E>&u4OT@Tn#ADOgUe_D|$lih~2
z75zeuo4-tO;8CA>`hw2EGaQH3u|}_MxgmJ4JoSInnuP7g1+5n@nNwr2GGnUQhpv}l
zjD0iS?q&HMRmM^uG5O7Ap_d){hglgrZ!pSPC2d&rN0Lv;v5Do;2V1qNs~+ys$WWNT
zld!yX+MjCcn@n|wzsc#W-0Jc>?qHJ`8^4!f+qG5Ij63f;Ea~_z!nLU5xZ1J!4V@L|
z6wdm|1g6BVW-?x&_29w0KA8<7ru&4e49rwx*kZ&saJmUZA56F+T;E|T*K#S-B_P*8
z({#t8%{feA3UZbupBa@IKQ6krB#b5eqvIr3r_(1t2rd2b;9_>kn&eEs<r}vI@wm&l
zKPjuv3;H&DM)c}fkxz{Kjs)cT>TYN)UAx8c2(R3G<}g<!4N3E7i_UdAO<(-wtL-(G
z-OhgwH%t`F@ON~SeAr?1u>X3!>Y<LW8&Y0K%?WB~_MaH*W~!_4DdWL|UM)XakJY!X
zJwK?o@U)kvrS-kYG*x~t&X_BW;TIN!-<Mh(bxq)%W_a?HWgV8rO<|m0<wBBsgt&g0
zOIipSilk5JNYc~pvzhp0XM0iKzmo-Go8}z}jt-1J)gT<?7Up(v`uE1`G0C<@^<HN2
z*Y=cTdbl4Cw4NI#SoWa&p`frPYv8MW$KAL}G;V6L#!Ii}-K?}GP-^w#2Ng@yKDM>4
znBijPCAg`ZcfYHe<Sc>NVM(0^5-YpzXdRVcz4BDM$%Q3Z%-2oBG)2ARhQn$JZcgn5
zJ51J0S?lq9;|#5u`-T-FjM6+el@6~>`CPv$=WX(~D|(#VEg}cF*vclYaAiwg=OHld
zjNi3m?Y|z(Y%<VDs%iQ+Rq}}qGyjrhZW=du6I$69CQN8tDkba~)8feb=2=mze)8c4
zR-0+;OTWz9eY4&E!ulm9E10(lJeqcA#r;<`9Iq~%@p?ZcC~Cc*<`2dtk$);n#1|Q9
zu$sufsjr@^qGLI~Ie16o$v61{Zl`Q}<JL{fOyN18b3^W*PwbL%_5BJplZ=@k^qrGl
z5`E%}K@!UZ=|d_D&ulE69CWkRQfKPdy!j694`v3GKG68`=6Xd^f9l6RZiBP~-wq{&
zq(^^?*ijv_Ei&V#WBkhARXlMoWO-#4=@$Q2i!0wVmrJZZkE4CUrln%`Jj*xRChb`0
zw&3QL0*6xfBO%>pB@67r-4f5f_;q9vS71w6iHr31ua8<+eO(ckaHIK3+ezuZYlc;m
z11c}{<z0R)9-|!ge$|a--ZhgO&KXuu2%n_+BEf~T<LGOJ^RHDW+s@lwH#bky%>JHK
zSy;H2p!-I?c?}Lzed||<TFXf+u}GMrzvQJHi?G9#(zmAq__Vd;4=r6-p7Z+h3%v{J
z@3S8sE$uL>GRl$Lkyt3yl`WFEnX%7#V$$YjiF0l*g8AET>fU%YWz)9;!J}<|SqoT}
z2g^5Ye|}@p{p@e^YOZ$OFZ`A^rM0qerqYfJQb!+6Im%|eHdcUXu3*NLde@|0<qoYy
z>nuzcF70gIv_aZa=ck<O3TC_2$Fkb}d%pVXM)plSRv8e`=U(^ArYH5fqItRF3(XIr
ztRjz1T6sS5O{+fEBzN=Hf~dd~Y%!scmVyQ=rZ1k$)-$Vx;r8R`2a}5onq<|&lKYkJ
zRh?K|`_ygIM&pEuuD0tpJz|w^n^3>!)|I$u`3lxsGUspXmf4m0rY7S`!I3GSn>MXo
zd3KfL_Tw|!gq@#FZ{1k(<JvpM$jGe%MvEKQzD`@PaU*N%I`36MPkvh6zI{DpLgF2{
zMeZAn*_Q0?oz2<V9(c%;=|_3&!>)}Bf{z4!KazXBLGZ$hvj^Ti;0Tn>aL;B|ddMdb
zd8I!0U7b=l?>t@2BGnTOq1MUmdY(6$%w;VOHCjhJa@w@AO}X<y-^zFUjYa+IY~%#y
z+1A>`#oDc#*nIK$l(PKunr}b+kuBQ$_A<Ni^fm0~vSk|FX5THJ{X3wdXlmC1-+zww
z)hUS&KR#Q%|F>bvBf}@%>+Nps|CPw@*IV}^bNM9w`hSK2Z!}iLue17htl)x1*{!o`
z4}a*d7R^arcKm;)!TaV7%<@_ukM7SmEPj_=UvuYA-3&+jZn*~;|K`lhKVBeICb96e
zskOen_v-0#XWl0-X_nhF^V^M}+s$^#^LBq>irX}M!OxS;_x~T2dvc6<ruombUzdyz
z&+V!Cn`E;{H_MKzUR=NTPh)TYHP=@fZ?{Q2SNncDi~Hw$=Bk>!dMo4Y;s^g7Jh!9$
zK<Tt|ZHja6K0RQ3{&LT1n?TLCDy?ZHVSD`4{8ZPwo$jwW`o3(Z;KtR5+HzJ0&%J29
zRqQ%%T*$tpsFST?{`$3lC*+-*d-qjmRH@th($AsI;&<mv<WYLB-0-)4!a1kKDzW}7
ztBtGHZw58>)|@i7sFY`Y!(I~BX>&$Tz3Zyv-tZlDS0AXRPnD<;{A4F|ga4(DoJ+$0
zZK|&&_g;?-=Zz~7YyCIto-gxn#k)srbF|cFU6tH>-4`Sg{It}$N?z~{d&xAld*084
zFTU!z_j1i^HhoKP<+7R1%=N$fw7}-cJgZq0HTPom+|sKLT+=_^S$6#U#DjGn>0fs|
zndF~>aGjdXo9cSmoP+1=`uYCPE!iNy>AS_PdH&kV&i&0(ee+ms<II>tntxXO*^!hl
z^ls9jW9^eREiaTTi}F6D>2>c{&Y|~Zw~jq~vUTm*&w1T@)}5+X{kThH@%|Uvzs1xo
zc35<bhws*}w;lK2Z@>BM&Gz22+;zc`8cQ@cetPhF(U)JD+u7Z3Z+0mzx_x)n`Qy5N
ze!JKFvib3*>|%PAMtHr_^u+6z4W??S+gU&QZk@Z$vN|{UbJJ}p{*$U+p;I=Wt~;F`
z(zA$bIiIX@R)3tf_WioQkEYkVFX?%|i)-?<!tWpCa;*N}*u#JD@2)Murpd?n6;n?2
zo9R8-=M-h!`be|Seu~Dqv^A+d6S+18&tU3U5&iS>9rim->!-85f4T9s($V5`uNA%p
z6_ph7{JS+{Udu-A(A^FXBp2T0lvp)mTc^n6DS4&J<=20fK8zLAKj7<?YVei&$Fcft
zTl!W^VGRD;uK7`Kj!@$ksr(xYXB12iFWnlpJ@3{26V`oAkLCvXF#AP(lQ_P1_l$t1
z0?v@>KTK3_U3KqV=lb&GgGEW=eyT}(W>jaC1vW{V*Uy^AKXH4^j~IT%pO^PcHag4p
zpexp8HCyn5rDcI(6}4NN_Li@mXrxq@S;il|sQ%ME<rT5p7Q~;sJKt=r!<kdrTctD}
z8A;47?Vj@a!_&w&_nK^dYtyDS%;h|K&(LjmqYjU!&vx^;LkBm!X5$W>db7ltLuJh*
zZTGGzM^zrx%CBTv5Hi7FtNq@~GX*P`PWd6(<KwwCSbEJAvxBW>@;1Utr@S&Zw*5Bk
zlgF}<?1#S5_3rg^i&xA`5zV>kdtStldrimPGY6&Kw?AI+zvpWfoA{SY3t4USoMIPh
zU+FSiBfZS2RjBaEW?O$F7HPJ9CuXeZS$VQBYpvB*jk4n&t`lw^TxM~t?f<tcatACg
zHm&|J&2z<}+n@C&imOih+A4lw?T4)jas1kcPXGGj^pRgleBnH)de!PjMe8rUO`Eg%
zRbx|c3e%-am7ObnCLftT>44R{)LmX#+B5XH7-mHHo{F>*_Yjz`7q;evO%?CPHp{Xa
zo*kKHzHgUmczlq&Dm_KxVdCyx%$6TE323wIF#Hj7dU50Pxsn%Cot7`F=(xXX;;ox=
zjy#P!(Uvz$B(IOVZRYBiD-KxI-@O(lcw3ZPaou_*8K1!AQ_L1S-TeIE#+1de8?^QH
zHC;>YO2owI>@iK{nt5rJsC!IwM%E_ooVW-4TxZ1|oOj+?rc_rwQ7dNwcWJpwNYBwu
zwFv>q!G%}LSE|`6uZfWR!|=>ULGbzffUu|He|BcL$*t`_oM7ge|ENkij3+$Aq5k44
zsc^46Uo}4))qhb!r&pb;USL$<cqlnqtK+s`<j)3g4mB;Nz8;~E2bHG_zFN^Uh5y^4
z7^8Imlp?pgtTPYHZ5CSOJ#EIO1Z$SA<q3<l^i-E6oSYV$C%d}0z$H0V^Y)LvhR<Qk
z-n5o~og%n0iRBrKmV7a9jXa|c16%LAIm-3Lf#M<|f7oW7X?0;vjC#IgN%3r5w!o>g
zB>bQHt=;!9;qVoc74GaSZgU0;t}WoW-Pw1pi77JO#HE(W_YhyUkVbKUpz5R^mwjnH
z7Uc_L7tRn2e!oo4g;8VP&yZDDu7&CxW{rQfIRArfjQFnQ7CV>l9m?d~vU1wvz{Rg$
za;;W%s^7Ef>5ej%xlf}wY9xIHgK9XJU4L~{V#!e!y;q-JI~Ybt$22l|eANCpZMS#B
z6j5Q*9T8fKi~ApiIEqaUmFg;bd#e2CqUN8G<+`Rb-(3sk%wOYdyH9P>npt+iUGd>8
z^G=s7T(dH0R@S367i=aoD9_F|XLL(AzJ!_WwfcL7t{p=4Q!?^Cv~Bni?y_x-0f%kS
zku;rk%KZ(SPiOcsMKoS4OnA1S^Tc$a8~dKF@KZaKtS@G^+HumwGs_y2qodcbG4iJ#
zmCg>+zFOcCB=DYrD?aAoH09E7db%?nZQkITHLLPUmx6H7Y*!75-u=_mclwDvoa`p{
z_1Kne7ViC%Y`V2r_3Ay_YUKYWe&^~caeRM3(coOA&cm~OPaPA)9(AO5we9)u{L|Hd
z)pOlPU7v%2g~bz+EKbSJQvJ9`K)dBpqqM*g<pqXQkJX*_ihL@%=U|H1j<P*p8@7HI
zn)M@E+~C5;D&a-<t<qQxl_HB?)i>NdJU8n|v0}fdW5dR~W}1`au4yXQw=DW~+i$Ja
zPUd5audy9|z2t*YLQY&DZ^ZW&_Y&=xjfRKU95|71Q-=Snw9w}VA|)ERx33f$PKb<r
zec<A|pk*2B`%<)2*!&hozrXkV1Fv}h(gWsql8R)0pPrHXA!MIfnL}LO#k_B()1-b)
zUg-Xu+ukhlX|;OR`m;0r=GK2+@GzxbW0usevXu3@W>Vi=WWOjJKXrd&isRvDJzsvX
zb4ZEH-@Er;VZQE~tjPOq+538z37m}kpIEa%;KoaV#5XLOZx#owUD$h`Iqh?!jMkMi
z{IU{>BEotVPv7%(E!~m(`i1eNN$bTL6lSZ(7wOiPvf5i{wTM2?|EqEGI`dm6=?zK;
zpVq%{6aKdPMw-Qw!`VDHy}o_ky7;>e`_u_LXYaW@?eKk7<uiL-B~LR>f6AD?@8F};
zjMp~*n`AJlMVD`S^LqVbjLDla7{6y6S!Gh_wKiwRh0FrW6{q_C$?=)pnlks6X>h{L
zBhyy#$mnt(U2x6%$vZBWM>mANUF~1{^+}mV#FqPxAFAt@9M@fS$UW3My~V@e_l$Wj
z-&)!VPi-n+vB*zu{*>0|Z{q{SZWSKi(Xih$^2f~1y;Ih+o?7y8cd*lrtaAbmPZ#*@
za@_dc<<ZX9W^!{6q&$jmpPe-Gu8E|D@}e4_L*+(YU*+2#_?b0XyL_B*d*S>Xn;imj
zRj$E}O+p)%M%0Hs6|7H>Gu_waTQs}i>20^ymwR>}GmkRMh?-x!cXr{v--dM`pR%#F
zA3ybZ`%mtzz3tC0${x6We5Q=SwdgGkFOI%y3EKAVyzIVb94`;vVYKG^ca}x&dF7w3
zldAlCf6e-J*uPBt{tf%R>!+1Q{NVd%*Sw4M-kV#R8$6#rzI$lOslNs$DbMSd#ut1z
z|98H|_uDb9H#b~YjJHhdvtiJ?{Ng9mH<k}?_Xt1u_2TEFd9_cbT|B;daeTa#?cb$I
zH_uruGhBS}w!%NALt;Davi8k+Fn?$2jhB};tbgNl@r=%$73&{QxB34k?RdkS`h9j~
znrH0_PoFsbvtVa>{KVwvwU@W>Smp};3%ecc_vBZI(R+z6*KYJrZ?d<Wwtmf|48>Hr
zO3&pp=10#>y6(=u$+G6vvXAjSi`{>!1-%k@{^NLB2KUc{XE;l0KWOFtz2KW{-@8P=
z>_30x?!cJIx5Z_c&CCrq{}S)xVKy{1n;dAMRBzhv&3D*<!{xi((U=87@y_QauX?4l
z_y4v8^+|&M-_A%lv9|E+i7-4XSoGlR;=EaP&Bc1V#5}M1P6=fxYx8KbEa3at8KS}Y
ztR?KKWqYVYW9#?TlkXLU$1&zv7ktfezx?l;WY*-CyGJI@2&&_%xclp(S!Y*U<+|3Y
zhIghBnzN)^*08?W$a`jsP}Y6EHP=pkzWHD3{>Pup3BqPSCcjfro7|yNIr*xZ@MaO!
z1B{c?)I}!0P^+J8p&>lEN`2qtDox?d-WvLhlNGdtC--Vjp1eUzc(SopEu-n=jap@l
zW|K9vS5MxrBRu(;_RYzUbcHux(h*>sT&pKM`KxaG<Y;}d$&>U>O|~%*o}90LcJg)u
z;mQ668IuDHg(sgfXq$Y`P<V2(VfEy6W8uvo4a*oOA2b%3Ty5+&x!**1@)hIVlXc95
zH!m{jVw_xHF1*>^%z$xnnuW;ZX7eYLIV^=IS6TEi8cjZ+BeGf6axD{=g{gvmD3_su
zk;3M4*5R!6p$bOk3I+;63i`?Uxw(l7MivlWYG!&yiGq<Olvh}qn4@590OE1!rzsd4
zf>;XrX_;lI3dTlIPJU^Tg0V4#lc`{A0%7GS7@I;^c?!l*yYdx`!S-;~>*wdCDi}kp
zDM&0z&C5wmD^V~3Tcw~67AXR|#RO_+L26NEeu{z#*j6t6f}GM~1rw;P#i?bfc?u>_
zn~O6m6ilFY7Z)TZrz)73L0nRzU;=gtmzjP^Mp0_2f(h6;3i>7G`3fdb*OV%lLS0dz
zU<$RoDzzwI!PIE8zmqT{quJzSXCFr6$s3#-l?@GzjSY+~v<-~Z4Gh#Z73}P|Qu9*s
zld`xfic-_K3=~XFCWp8fFq%w0=pq_usbByC3V8}#Alkst+z8|!5F1I%*un%uor!@d
zrkIi0<kv3hqQ+=424;qa29woYRqG8b&}}p@H#5W(GciE7(ZJlm)EwPh3o~;gbTKnS
zQ1U?Wfq|JZC<F}*>J1Fw-ZC&V!?eWA!qNcEKtoe=EMle>=$<q*HL$?YYi0pT5pc)U
zgIER@=Aa}AVj>)4VPS#c6H6mYGc?B-SehE4hr5BLnHjp6p@AVN1EAPpXkb)tjvmy8
z1|}93XqFfnSQujX#K6)V-7$uShDI3b42?jU2-RXk6GKC=9rcLdH#9T@C4Dr7mZ0p2
zDrRJ0i4oLB#)cS<F){_^RW!Y3W+-~43=9kmjV!Qeww(OXUAW#Dl)X@mFg5|@cQi39
zPB$?y!w3r#EE&hd3{+;JnrC8e366XLq~vL6Zfa~gIp0G@%tS#yC_leM0h;qY^V0Ga
WOpPZm^bp}PvozvTRdw}u;{pJ0!U+oi

diff --git a/Project2/LyX/Implementation.lyx b/Project2/LyX/Implementation.lyx
index 5b2d6a1..d587474 100644
--- a/Project2/LyX/Implementation.lyx
+++ b/Project2/LyX/Implementation.lyx
@@ -104,8 +104,8 @@ Discretization with Finite Differences and Rusanov Discretization
 \end_layout
 
 \begin_layout Standard
-The partial differential equation will be solved numerically with the finite-difference scheme and a Rusanov discretization,
- which adds a small amount of artificial diffusion to stabilize the advective term.
+The partial differential equation is solved numerically using the finite difference scheme and a Rusanov discretization,
+ which adds a small amount of diffusion to stabilize the advective term.
  
 \begin_inset Formula 
 \begin{align}
@@ -124,7 +124,7 @@ where
 \begin_inset Formula $\epsilon$
 \end_inset
 
- will be dropped for more readability.
+ will be dropped for better readability.
 \end_layout
 
 \begin_layout Standard
@@ -133,7 +133,7 @@ In the discrete terms,
 \begin_inset Formula $\cdot^{j}$
 \end_inset
 
- indicates the 
+ denotes the 
 \begin_inset Formula $j$
 \end_inset
 
@@ -142,17 +142,17 @@ In the discrete terms,
 \begin_inset Formula $\cdot_{i}$
 \end_inset
 
- indicates the i-th grid point.
+ denotes the i-th grid point.
  
 \begin_inset Formula $\Delta t$
 \end_inset
 
- is the time-step size and 
+ is the time step size and 
 \begin_inset Formula $\Delta x$
 \end_inset
 
  the distance between two grid points on an uniform grid.
- Discretizing the time with a simple explicit Euler method and the space with the aforementioned Rusanov discretization yields the discretized formulation.
+ Discretizing the time with a simple explicit Euler method and the space with the Rusanov discretization gives the discretized formulation.
 \begin_inset Formula 
 \begin{align}
 \frac{u_{i}^{j+1}-u_{i}^{j}}{\Delta t} & +\frac{1}{\Delta x}\left(F_{i+\frac{1}{2}}^{j}-F_{i-\frac{1}{2}}^{j}\right)=0\\
@@ -240,8 +240,8 @@ name "subsec:Convergence-Analysis"
 
 \begin_layout Standard
 A convergence analysis was performed to ensure the numerical implementation's correctness for the scalar conservation law.
- The solution for different grid sizes is compared to the analytical solution.
- To interpret the convergence of the numerical method a relevant error measure is introduced.
+ The solution for different grid sizes is compared with the analytical solution.
+ A relevant error measure is introduced to interpret the convergence of the numerical method.
  The 
 \begin_inset Formula $\mathcal{L}_{1}$
 \end_inset
@@ -356,11 +356,11 @@ The convergence was inspected on a domain
 \end_inset
 
 ).
- The time was discretized into 
+ time was discretized into 
 \begin_inset Formula $1.000$
 \end_inset
 
- time-steps with a final time 
+ time steps with an end time 
 \begin_inset Formula $T_{\text{end}}=0.25$
 \end_inset
 
@@ -376,20 +376,20 @@ nolink "false"
 
 \end_inset
 
- indicates that the numerical scheme converges with an order somewhat below first order.
+ shows that the numerical scheme converges with an order slightly below first order.
  Therefore,
- a refined grid results in a more accurate solution.
+ a refined grid will give a more accurate solution.
  For 
 \begin_inset Formula $\Delta x\leq10^{-3}$
 \end_inset
 
- the relative error is below 1 percent.
- For the following,
+ the relative error is less than 1 percent.
+ In following,
  a maximum grid size of 
 \begin_inset Formula $10^{-3}$
 \end_inset
 
- will be used.
+ is used.
 \end_layout
 
 \end_body
diff --git a/Project2/LyX/Introduction.lyx b/Project2/LyX/Introduction.lyx
index bab0d9a..b5c7f8b 100644
--- a/Project2/LyX/Introduction.lyx
+++ b/Project2/LyX/Introduction.lyx
@@ -100,13 +100,13 @@ name "sec:Introduction"
 \end_layout
 
 \begin_layout Standard
-Traffic jams occur in our everyday life.
+Traffic jams are part of everyday life.
  Most people use the road,
  either by car,
  bus or bike,
- to get to their job,
- meet friends,
- do grocery shopping or to get to their hobbies.
+ to get go to work,
+ to meet friends,
+ to go shopping or to enjoy hobbies.
  Through this enormous use of the road,
  traffic jams occur.
  Traffic jams lead to a smaller speed of vehicles,
@@ -114,10 +114,10 @@ Traffic jams occur in our everyday life.
 \end_layout
 
 \begin_layout Standard
-The arising question is,
- how to reduce these traffic jams to increase the quality of these.
+The question that arises is,
+ how to reduce these traffic jams to increase the traffic's quality.
  This work investigates the underlying mathematical model of traffic jams,
- which states a smaller vehicle speed at higher number densities.
+ which predicts lower vehicle speeds at higher vehicle densities.
 \begin_inset Float figure
 placement document
 alignment document
@@ -266,8 +266,7 @@ where
 \begin_inset Formula $V(u)$
 \end_inset
 
- the velocity of vehicles,
- depending on the number density and 
+ is the speed of vehicles as a function of number density and 
 \begin_inset Formula $b-a$
 \end_inset
 
@@ -281,8 +280,8 @@ u\big|_{x=a}=u_{\text{in}}
 
 \end_inset
 
-is assumed to hold true.
- This inflow boundary condition models the number of arriving cars at the beginning of the road.
+is assumed to hold.
+ This inflow boundary condition models the number of arriving cars at the start of the road.
  In this work,
  
 \begin_inset Formula $u_{\text{in}}=u(x=x_{\text{in}})$
@@ -319,9 +318,9 @@ V(u)\propto(1-u)
 
 \end_inset
 
-Increasing number densities lead to a decreased vehicle velocity and vice versa.
+Increasing number densities lead to a decrease in vehicle speed and vice versa.
  Finally,
- the velocity is scaled to its maximum value 
+ the speed is scaled to its maximum value 
 \begin_inset Formula $V_{\text{max}}=1$
 \end_inset
 
@@ -338,7 +337,7 @@ V(u) & =V_{\text{max}}(1-u)\\
 
 \end_inset
 
-Note that this model only holds for a road with a single trail.
+Note that this model only works for a road with a single lane.
  
 \end_layout
 
@@ -347,30 +346,31 @@ Arising Research Questions
 \end_layout
 
 \begin_layout Standard
-From the mathematical model and the physical background some research questions arise.
+The mathematical model and the physical background give rise to a number of research questions.
 \end_layout
 
 \begin_layout Enumerate
-How does the number density evolve over time?
- What influence has the initial distribution on the transient behavior of the number densities?
+How does the number density evolve with time?
+ What influence does the initial distribution have on the transient behavior of the number densities?
 \end_layout
 
 \begin_layout Enumerate
-What is the highest number density?
+What is the maximum number density?
  Is there a mathematical explanation for this highest number density?
 \end_layout
 
 \begin_layout Enumerate
 What is the flux of the moving vehicles?
- How does it change over time?
+ How does it change with time?
  When is it high and when is it low?
  
 \end_layout
 
 \begin_layout Enumerate
-Is it more efficient to have a high distance or short distance between the cars?
- With a higher distance a higher speed is possible,
- but less cars are on the road.
+Is it more efficient to have a large distance between cars or a small distance?
+ With a larger distance,
+ a higher speed is possible,
+ but there are fewer cars are on the road.
 \end_layout
 
 \begin_layout Subsection
@@ -389,7 +389,7 @@ nolink "false"
 
 \end_inset
 
- will introduce the theoretical background to solve the aforementioned general conservation law analytically.
+ introduces the theoretical background for the analytical solution of the general conservation law.
  In Section 
 \begin_inset CommandInset ref
 LatexCommand ref
@@ -413,9 +413,7 @@ nolink "false"
 
 \end_inset
 
- will show different examples for both,
- the analytical and numerical,
- solution.
+ will show several examples.
  Finally,
  Section 
 \begin_inset CommandInset ref
diff --git a/Project2/LyX/Results.lyx b/Project2/LyX/Results.lyx
index c1dd0f4..59cf288 100644
--- a/Project2/LyX/Results.lyx
+++ b/Project2/LyX/Results.lyx
@@ -107,7 +107,7 @@ name "sec:Results"
 \end_layout
 
 \begin_layout Standard
-In the following Section different examples will be investigated with both,
+In the following Section several examples will be investigated with both,
  analytical and numerical,
  solutions.
  Section 
@@ -469,11 +469,11 @@ Absolute error of the numerical scheme over space and time
 
 \begin_layout Plain Layout
 Visualization of the solution of the scalar PDE and its flux function over space and time.
- The numerical implementation converges almost perfectly towards the analytical solution for increasing time.
+ The numerical implementation converges almost perfectly towards the analytical solution as time increases.
  However,
- initially there are some point-wise discrepancies,
- shown by the absolute error,
- indicating problems of the numerical implementation.
+ there are some initial point discrepancies,
+ indicated by the absolute error,
+ which point to problems in the numerical implementation.
 \begin_inset CommandInset label
 LatexCommand label
 name "fig:A-Second-Model-Problem"
@@ -509,7 +509,7 @@ nolink "false"
 
 \end_inset
 
- visualizes the solution to the problem over space and time.
+ visualizes the solution of the problem in space and time.
  It can be seen,
  that the numerical solution is an almost perfect match with the analytical solution.
  However,
@@ -525,15 +525,14 @@ nolink "false"
 \end_layout
 
 \begin_layout Standard
-The initial distribution slowly dissolves towards the inflow value 
+The initial distribution dissolves slowly towards the inflow value 
 \begin_inset Formula $u_{\text{in}}=0$
 \end_inset
 
 ,
- faster at the side of the inflow condition,
- than the other side.
- The flux function behaves similar but more smooth,
- as the quadratic flux function increases non-linear with the property 
+ faster at the side of the inflow condition than on the other side.
+ The flux function behaves similarly but more smooth,
+ since the quadratic flux function increases non-linearly with the property 
 \begin_inset Formula $u$
 \end_inset
 
@@ -596,7 +595,7 @@ status open
 
 
 \backslash
-begin{tikzpicture}
+begin{tikzpicture}[scale=1.5]
 \end_layout
 
 \begin_layout Plain Layout
@@ -608,7 +607,7 @@ begin{tikzpicture}
 
     
 \backslash
-draw[->] (-2,0) -- (2,0) node[right] {$x$};
+draw[->] (-0.5,0) -- (2,0) node[right] {$x$};
   % x-axis
 \end_layout
 
@@ -645,7 +644,7 @@ draw (-0,0.05) -- (-0,-0.05) node[below] {$0$};
 
 \begin_layout Plain Layout
 
-    
+    % 
 \backslash
 draw (-1,0.05) -- (-1,-0.05) node[below] {$-1$};
 \end_layout
@@ -683,7 +682,7 @@ frac{3}{4}$};
 \backslash
 draw[red,
  thick,
- solid] (-2,0) -- (0,0);
+ solid] (-0.5,0) -- (0,0);
 \end_layout
 
 \begin_layout Plain Layout
@@ -778,7 +777,7 @@ status open
 
 
 \backslash
-begin{tikzpicture}
+begin{tikzpicture}[scale=1.5]
 \end_layout
 
 \begin_layout Plain Layout
@@ -940,7 +939,7 @@ status open
 
 
 \backslash
-begin{tikzpicture}
+begin{tikzpicture}[scale=1.5]
 \end_layout
 
 \begin_layout Plain Layout
@@ -983,6 +982,13 @@ draw (0,0.05) -- (0,-0.05) node[below] {$0$};
 \begin_layout Plain Layout
 
     
+\backslash
+draw (0.5,0.05) -- (0.5,-0.05) node[below] {$0.5$};
+\end_layout
+
+\begin_layout Plain Layout
+
+    
 \backslash
 draw (1,0.05) -- (1,-0.05) node[below] {$1$};
 \end_layout
@@ -1075,7 +1081,7 @@ name "fig:Example3_Velocity"
 \begin_layout Plain Layout
 The initial distribution is piecewise constant,
  indicating a discontinuous solution.
- The flux function shows a parabolic behavior with its maximum of 
+ The flux function shows a parabolic behavior with its maximum at 
 \begin_inset Formula $\frac{1}{2}$
 \end_inset
 
@@ -1084,8 +1090,8 @@ The initial distribution is piecewise constant,
 \end_inset
 
 .
- The velocity decreases linearly for increasing values of u (representing the density of cars),
- connecting this model to the initial traffic flow model.
+ The speed decreases linearly for increasing values of u (representing the density of cars),
+ which links this model to the initial traffic flow model.
 \end_layout
 
 \end_inset
@@ -1131,9 +1137,9 @@ nolink "false"
 
 \end_inset
 
- the velocity of cars for different densities.
- The velocity decreases linearly for an increasing number of cars,
- connecting this problem to the traffic flow model.
+ shows the velocity of cars for different densities.
+ The velocity decreases linearly as the number of cars increases,
+ linking this problem to the traffic flow model.
  The initial distribution shows a traffic flow on the area 
 \begin_inset Formula $x\in[0,1]$
 \end_inset
@@ -1152,34 +1158,35 @@ The flux has its maximum for a density of
 \end_inset
 
 .
- Recapping the boundaries for the density 
+ Recapping the limits for the density 
 \begin_inset Formula $u\in[0,1]$
 \end_inset
 
 ,
- the highest flux is reached for a balance between the number of cars and velocity of those.
+ the highest flux is reached for a balance between the number of cars and their speed.
  For a very small number of cars (
 \begin_inset Formula $u\to0$
 \end_inset
 
 ),
- those cars can dry very fast,
- but the total number of cars passing the street is very small.
+ those cars can dry very quickly,
+ but the total number of cars passing the road is very small.
  On the other hand,
  for a very high number of cars (
 \begin_inset Formula $u\to1$
 \end_inset
 
-) the cars drive very slow,
- but many cars are on the street.
+) the cars will move very slowly,
+ but there will be many cars are on the road.
  Therefore,
- to reach the highest number of cars going from place A to place B,
+ to reach the highest number of cars going from point A to point B,
  the distance from one car to the next car is mandatory.
  It should neither be too large,
- decreasing the total number of cars on the street,
- nor should it be too small,
- decreasing the velocity of those cars on the street.
- A traffic flow can finally be avoided by maximizing the flow of cars on a street.
+ which reduces the total number of cars on the road,
+ nor too small,
+ which reduces the speed of the cars on the road.
+ Finally,
+ traffic jams can be avoided by maximizing the flow of cars on a street.
  This can be achieved by choosing the number of cars such that the flux function 
 \begin_inset Formula $f(u)=uV(u)$
 \end_inset
@@ -1578,7 +1585,7 @@ name "fig:Problem_2_3_3D"
 
 \begin_layout Plain Layout
 The numerical implementation shows an almost perfect match with the analytical solution.
- For two time-points at 
+ For two time points at 
 \begin_inset Formula $x=0$
 \end_inset
 
@@ -1652,22 +1659,22 @@ Relating the solutions to the physical setup of a traffic flow yields
 \end_layout
 
 \begin_layout Enumerate
-If a traffic flow occurs on the center of a road,
+If a traffic flow occurs at the center of a road,
  with an empty road elsewhere,
  this traffic flow will dissolve from itself
 \end_layout
 
 \begin_layout Enumerate
-The traffic flows density will decrease at the front cars
+The density of the traffic flow will decrease at the front cars
 \end_layout
 
 \begin_layout Enumerate
 The back cars will slowly move until they reach a point,
- where the density in front of them is lower then behind them
+ where the density in front of them is lower than behind them
 \end_layout
 
 \begin_layout Enumerate
-The maximum flux is neither reached for the highest nor the smallest number density,
+The maximum flux is reached neither for the highest nor the smallest number density,
  but for 
 \begin_inset Formula $u=0.5$
 \end_inset
@@ -1718,8 +1725,7 @@ u_{0}^{A}(x) & =\begin{cases}
 0.6 & ,x\in(0.5,1.5]\\
 0.8 & ,x\in(1.5,2.5]\\
 0.9 & ,x\in(2.5,3.5]
-\end{cases}\\
-u_{0}^{B}(x) & =\begin{cases}
+\end{cases} & u_{0}^{B}(x)=\begin{cases}
 0.2 & ,x\in[0.5,0]\\
 0.4 & ,x\in(0,0.5]\\
 0.6 & ,x\in(0.5,1.5]\\
@@ -1743,7 +1749,7 @@ Both distributions are similar on a major part of the domain
 
  indicating a further significance of the traffic flow,
  while it dissolves for initial data B.
- Initial data B also allows the initial flux to take its maximum on 
+ Initial data B also allows the initial flux to reach its maximum on 
 \begin_inset Formula $x\in(2.5,3.5]$
 \end_inset
 
@@ -1753,7 +1759,7 @@ Both distributions are similar on a major part of the domain
 
 \begin_layout Standard
 The traffic flow model is again satisfied,
- as the velocity decreases for increasing densities of cars (see Section 
+ as the speed decreases with increasing density of cars (see Section 
 \begin_inset CommandInset ref
 LatexCommand ref
 reference "sec:Introduction"
@@ -1948,12 +1954,12 @@ nolink "false"
 
 \end_inset
 
- indicates the solution for both initial distribution for 
+ shows the solution for both initial distributions for 
 \begin_inset Formula $t\in[0,1,2,5,10,12,15]$
 \end_inset
 
 .
- Notice that the traffic flow is successfully dissolved for initial distribution B,
+ Note that the traffic flow is successfully solved for initial distribution B,
  while its significance is even increased for distribution A.
 \end_layout
 
@@ -1964,7 +1970,7 @@ The flux function is concave (
 
 ) and the initial distribution shows several Riemann problems,
  at each step.
- Each Riemann problem in initial data A results in a shock solution,
+ Each Riemann problem in the initial data A leads to in a shock solution,
  as 
 \begin_inset Formula $u_{l}<u_{r}$
 \end_inset
@@ -1986,7 +1992,7 @@ The flux function is concave (
 \end_layout
 
 \begin_layout Standard
-The right-most Riemann problem for initial distribution B,
+The right-most Riemann problem for the initial distribution B,
  on the other hand,
  shows a rarefaction wave,
  as 
@@ -1995,27 +2001,27 @@ The right-most Riemann problem for initial distribution B,
 
 .
  This rarefaction wave decreases the density of cars over time,
- resulting in a full dissolution of the traffic flow.
+ resulting in a complete dissolution of the traffic flow.
 \end_layout
 
 \begin_layout Standard
-Note that the flux function maximizes for 
+Note that the flux function maximizes at 
 \begin_inset Formula $u\sim0.5$
 \end_inset
 
 ,
- indicating a balance between number of cars and velocity of cars on the street.
- As initial distribution A is dominated by the shock solution moving from the right to the left with 
+ indicating a balance between the number of cars and the speed of cars on the road.
+ As the initial distribution A is dominated by the shock solution moving from the right to the left with 
 \begin_inset Formula $u_{r}=0.9$
 \end_inset
 
- the flux reaches its highest value at the initial distribution and decreases after.
+ the flux reaches its highest value at the initial distribution and then decreases.
  This results in the increasing significance of the traffic jam,
  as more cars enter the traffic flow than leave it.
  Problem B,
  on the other hand,
- is initialized in a way that the flux of cars is maximized at the end of the traffic flow.
- This results in a step-wise dissolution from the traffic jam,
+ is initialized so that the flux of cars is maximized at the end of the traffic flow.
+ This results in a step-wise dissolution of the traffic jam,
  as more cars leave the traffic jam than enter it.
 \begin_inset Note Note
 status open
diff --git a/Project2/LyX/TheoryAndMethods.lyx b/Project2/LyX/TheoryAndMethods.lyx
index e0d067e..4647a83 100644
--- a/Project2/LyX/TheoryAndMethods.lyx
+++ b/Project2/LyX/TheoryAndMethods.lyx
@@ -425,21 +425,19 @@ Rarefaction waves
 \end_layout
 
 \begin_layout Standard
-Two different classes of waves can be identified,
- based on the characteristics of the original PDE problem;
+Based on the characteristics of the original PDE problem,
+ two different classes of waves can be identified;
  rarefaction waves and compression waves.
 \end_layout
 
 \begin_layout Standard
-Rarefaction waves,
- on the one hand,
- occur when characteristics diverge and yield smooth and continuous solutions to the PDE.
- The shape of rarefaction waves is determined by the flux function.
+Rarefaction waves occur when the characteristics diverge and give smooth and continuous solutions to the PDE.
+ The shape of the rarefaction waves is determined by the flux function.
  Compression waves,
  on the other hand,
  occur when characteristics converge to each other and will cross.
  This crossing results in the formation of a shock wave,
- yielding a discontinuity in the PDE solution.
+ which produces a discontinuity in the PDE solution.
 \end_layout
 
 \begin_layout Standard
@@ -458,7 +456,7 @@ status open
 
 
 \backslash
-begin{tikzpicture}
+begin{tikzpicture}[scale=4]
 \end_layout
 
 \begin_layout Plain Layout
@@ -500,7 +498,8 @@ draw[->] (0,0) -- (0,1.5) node[above] {$t$};
 
     
 \backslash
-draw[thick] (0,
+draw[thick,
+ color=blue] (0,
  0) -- (0,
  1);
  % Vertical line at x=0
@@ -510,7 +509,7 @@ draw[thick] (0,
 
     
 \backslash
-node[scale=0.5] at (0,-0.2) {$x_0=0$};
+node at (0,-0.1) {$x_0=0$};
 \end_layout
 
 \begin_layout Plain Layout
@@ -528,7 +527,8 @@ node[scale=0.5] at (0,-0.2) {$x_0=0$};
 
 	
 \backslash
-draw[thick] (1/4,0) -- (1/3,1);
+draw[thick,
+ color=blue] (1/4,0) -- (1/3,1);
 \end_layout
 
 \begin_layout Plain Layout
@@ -561,7 +561,7 @@ draw[thick] (1/2,0) -- (3/4,1);
 
     
 \backslash
-node[scale=0.5] at (1/2,-0.4) {$x_0=
+node at (1/2,-0.1) {$x_0=
 \backslash
 frac{1}{2}$};
 \end_layout
@@ -580,7 +580,8 @@ frac{1}{2}$};
 
 	
 \backslash
-draw[thick] (3/4,0) -- (9/10,1);
+draw[thick,
+ color=purple] (3/4,0) -- (9/10,1);
 \end_layout
 
 \begin_layout Plain Layout
@@ -606,14 +607,15 @@ frac{3}{4}$};
 
 	
 \backslash
-draw[thick] (1,0) -- (1,1);
+draw[thick,
+ color=purple] (1,0) -- (1,1);
 \end_layout
 
 \begin_layout Plain Layout
 
     
 \backslash
-node[scale=0.5] at (1,-0.2) {$x_0=1$};
+node at (1,-0.1) {$x_0=1$};
 \end_layout
 
 \begin_layout Plain Layout
@@ -629,7 +631,9 @@ node[scale=0.5] at (1,-0.2) {$x_0=1$};
 
     
 \backslash
-draw [decorate,decoration={brace,amplitude=8pt}] (0,1.0) -- (3/4,1.0) node[midway,above=25pt] {Rarefaction Wave};
+draw [decorate,decoration={brace,amplitude=8pt},
+ color=blue] (0,1.0) -- (3/4,1.0) node[midway,above=20pt,
+ color=blue] {Rarefaction Wave};
 \end_layout
 
 \begin_layout Plain Layout
@@ -645,7 +649,9 @@ draw [decorate,decoration={brace,amplitude=8pt}] (0,1.0) -- (3/4,1.0) node[midwa
 
     
 \backslash
-draw [decorate,decoration={brace,amplitude=8pt}] (3/4,1.0) -- (1,1.0) node[midway,above=5pt] {Compression Wave};
+draw [decorate,decoration={brace,amplitude=8pt},
+ color=purple] (3/4,1.0) -- (1,1.0) node[midway,above=5pt,
+ color=purple] {Compression Wave};
 \end_layout
 
 \begin_layout Plain Layout
@@ -791,25 +797,6 @@ wide false
 sideways false
 status open
 
-\begin_layout Plain Layout
-\begin_inset Box Frameless
-position "t"
-hor_pos "c"
-has_inner_box 1
-inner_pos "t"
-use_parbox 0
-use_makebox 0
-width "40text%"
-special "none"
-height "1in"
-height_special "totalheight"
-thickness "0.4pt"
-separation "3pt"
-shadowsize "4pt"
-framecolor "foreground"
-backgroundcolor "none"
-status open
-
 \begin_layout Plain Layout
 \begin_inset ERT
 status open
@@ -818,7 +805,7 @@ status open
 
 
 \backslash
-begin{tikzpicture}
+begin{tikzpicture}[scale=1.5]
 \end_layout
 
 \begin_layout Plain Layout
@@ -1020,11 +1007,6 @@ end{tikzpicture}
 \end_inset
 
 
-\end_layout
-
-\end_inset
-
-
 \end_layout
 
 \begin_layout Plain Layout
@@ -1125,25 +1107,6 @@ wide false
 sideways false
 status open
 
-\begin_layout Plain Layout
-\begin_inset Box Frameless
-position "t"
-hor_pos "c"
-has_inner_box 1
-inner_pos "t"
-use_parbox 0
-use_makebox 0
-width "40text%"
-special "none"
-height "1in"
-height_special "totalheight"
-thickness "0.4pt"
-separation "3pt"
-shadowsize "4pt"
-framecolor "foreground"
-backgroundcolor "none"
-status open
-
 \begin_layout Plain Layout
 \begin_inset ERT
 status open
@@ -1152,7 +1115,7 @@ status open
 
 
 \backslash
-begin{tikzpicture}
+begin{tikzpicture}[scale=3]
 \end_layout
 
 \begin_layout Plain Layout
@@ -1172,7 +1135,7 @@ draw[->] (-1,0) -- (1,0) node[right] {$x$};
 
     
 \backslash
-draw[->] (0,0) -- (0,1.5) node[above] {$u_0(x)$};
+draw[->] (0,0) -- (0,1) node[above] {$u_0(x)$};
   % u_0-axis
 \end_layout
 
@@ -1206,14 +1169,14 @@ node[] at (0,-0.2) {$x=0$};
     
 \backslash
 draw[thick,
- color=blue] (-1,3/4) -- (0,3/4);
+ color=blue] (-1,1/2) -- (0,1/2);
 \end_layout
 
 \begin_layout Plain Layout
 
 	
 \backslash
-node[color=blue] at (-0.5,0.85) {$u_l$};
+node[color=blue] at (-0.5,1/2+0.05) {$u_l$};
 \end_layout
 
 \begin_layout Plain Layout
@@ -1231,14 +1194,14 @@ node[color=blue] at (-0.5,0.85) {$u_l$};
     
 \backslash
 draw[thick,
- color=purple] (0,1) -- (1,1);
+ color=purple] (0,3/4) -- (1,3/4);
 \end_layout
 
 \begin_layout Plain Layout
 
 	
 \backslash
-node[color=purple] at (0.5,1.1) {$u_r$};
+node[color=purple] at (0.5,3/4+0.05) {$u_r$};
 \end_layout
 
 \begin_layout Plain Layout
@@ -1251,11 +1214,6 @@ end{tikzpicture}
 \end_inset
 
 
-\end_layout
-
-\end_inset
-
-
 \end_layout
 
 \begin_layout Plain Layout
@@ -1523,7 +1481,7 @@ Weak solutions can simplify mathematical problems by introducing some test funct
 \end_inset
 
 .
- The original problem will be multiplied by the test function and integrated over the domain 
+ The original problem is multiplied by the test function and integrated over the domain 
 \begin_inset Formula $\Omega$
 \end_inset
 
@@ -1545,7 +1503,7 @@ No Derivatives:
 \begin_inset Formula $f(u)$
 \end_inset
 
- as they are moved to the test function.
+ as they are shifted to the test function.
 \end_layout
 
 \begin_layout Enumerate
@@ -1554,8 +1512,8 @@ No Derivatives:
 Solution Space:
 
 \series default
- The solution space of weak solutions is much larger then the solution space for strong solutions.
- Weak solutions can even include more then one solution for a given problem.
+ The solution space of weak solutions is much larger than the solution space of strong solutions.
+ Weak solutions can even contain more than one solution for a given problem.
 \end_layout
 
 \begin_layout Standard
@@ -1563,7 +1521,7 @@ For a weak solution consider a smooth test function
 \begin_inset Formula $\Phi(x,t)$
 \end_inset
 
- with compact support (the test function is zero outside some finite box).
+ with compact support (the test function is zero outside a finite box).
  To derive the weak form of the problem multiply the PDE with the test function and integrate over the domain 
 \begin_inset Formula $\Omega=\underbrace{[x_{1},x_{2}]}_{\mathcal{R}}\times\underbrace{[t_{1},t_{2}]}_{\mathcal{R}^{+}}$
 \end_inset
diff --git a/Project2/src/03_Traffic_Flow_Problem.ipynb b/Project2/src/03_Traffic_Flow_Problem.ipynb
index ec88d32..70102ee 100644
--- a/Project2/src/03_Traffic_Flow_Problem.ipynb
+++ b/Project2/src/03_Traffic_Flow_Problem.ipynb
@@ -45,7 +45,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_20837/1087313283.py:65: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57808/1087313283.py:65: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -180,9 +180,9 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_20837/344054577.py:15: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57808/344054577.py:15: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig_1.show()\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_20837/344054577.py:16: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57808/344054577.py:16: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig_2.show()\n"
      ]
     },
@@ -235,15 +235,15 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_20837/3372220154.py:38: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57808/1700834435.py:38: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig_1.show()\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_20837/3372220154.py:40: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57808/1700834435.py:40: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig_2.show()\n"
      ]
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAILCAYAAAD13v8AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACm1UlEQVR4nOzdeXxTZdo38N9Jmm6UQqHQ0looiIKsRUorbjBaQOuGKyqv1I7iWrc+o9gZpeJWRB6s4zDghswzLjDO6DijFamVulEBWxABQZHVQlvKVmghTZPz/pEmNGRpmpw1+X0/Hy05OblzJTnJfV/nXo4giqIIIiIiIiIiIpKcQe0AiIiIiIiIiEIVk24iIiIiIiIimTDpJiIiIiIiIpIJk24iIiIiIiIimTDpJiIiIiIiIpIJk24iIiIiIiIimTDpJiIiIiIiIpIJk24iIiIiIiIimUSoHUCos1qtsFgsaodBREREREQUdkwmE4xGo6oxMOmWiSiKqKurw5EjR9QOhYiIiIiIKGz17NkTycnJEARBledn0i0TR8Ldt29fxMbGqvYBExERERERhSNRFNHS0oKGhgYAQL9+/VSJg0m3DKxWqzPh7t27t9rhEBERERERhaWYmBgAQENDA/r27avKUHMupCYDxxzu2NhYlSMhIiIiIiIKb468TK21tph0y4hDyomIiIiIiNSldl7GpJuIiIiIiIhIJky6iYiIiIiIiGTCpJucJk6ciIcfflj25xFFEbNnz0a/fv0QExODnJwc/PLLL50+buHChUhPT0d0dDSys7Oxdu1al/tPnjyJ+++/H71790ZcXByuv/561NfXy/UydE2pz/qDDz7A5MmT0bt3bwiCgA0bNvj1uPfffx9Dhw5FdHQ0Ro4cibKyMpf7Az2GwpUSn7fFYsGsWbMwcuRIdOvWDSkpKZgxYwb27dvX6WP53ZaOUt/t22+/HYIguPx32WWXdfo4ftbS0dLveCCfmz+/44cOHcL06dMRHx+Pnj174o477sDx48elfHkhQyvHw6FDh/DAAw9gyJAhiImJQf/+/fHggw/i6NGjPsvl8SAtrRwPjlhOry/uuecen+WG4vHApJsUN2/ePPz5z3/G4sWLsWbNGnTr1g1TpkzByZMnvT5m+fLlKCwsRHFxMWpqajB69GhMmTLFufw/ADzyyCP473//i/fffx9ffvkl9u3bh+uuu06Jl0ReNDc348ILL8QLL7zg92NWr16NW265BXfccQfWr1+PqVOnYurUqdi0aZNzn0COIZJXS0sLampq8OSTT6KmpgYffPABtm3bhquvvtrn4/jd1q/LLrsM+/fvd/733nvv+dyfn7U++fM7Hsjn5s/v+PTp07F582aUl5fj448/xldffYW77rpLstdGXdfZ8bBv3z7s27cP8+fPx6ZNm7B06VKsWLECd9xxh89yeTzok7/tvJkzZ7rUF/PmzfO5f0geDyJJ7sSJE+KWLVvEEydOqB2K3/Ly8kQALv/t3LlT8uex2WxicnKy+OKLLzq3HTlyRIyKihLfe+89r4/LysoS77//fudtq9UqpqSkiCUlJc4yTCaT+P777zv3+emnn0QAYlVVleSvQ8+U+qw72rlzpwhAXL9+faf73nTTTeIVV1zhsi07O1u8++67RVEM/BgKV2p83g5r164VAYi7d+/2ug+/29JR8rPOy8sTr7nmmi49hp+1dLT0Ox7I5+bP7/iWLVtEAOK6deuc+3z66aeiIAhibW2thK9M/7R0PHjyj3/8Q4yMjBQtFovH+3k8SEtrx8OECRPEhx56yO+y5Doe1M7P2NOtAFEEmpvV+U8U/Yvx5Zdfxvjx413ORKWlpXnc95577kFcXJzP/7zZuXMn6urqkJOT49zWo0cPZGdno6qqyuNjWltbUV1d7fIYg8GAnJwc52Oqq6thsVhc9hk6dCj69+/vtVy5iKKI5tZmxf8T/fywlfqsA1VVVeXyOQLAlClTnJ9jIMeQbHTw5Vbz8z569CgEQUDPnj093q+r77YoAm3N6vyn0c+6srISffv2xZAhQ3Dvvffi4MGDXvfV02ctiiJam1tV+U+Pv+OBfG7+/I5XVVWhZ8+eyMzMdO6Tk5MDg8GANWvWBBVzV4gAmlX6z88mnKaOB0+OHj2K+Ph4REREeLxfT8eDHg4ILR4P77zzDhITEzFixAgUFRWhpaXF6766Oh66wPPRT5JqaQFk+A3zy/HjQLdune/Xo0cPREZGIjY2FsnJyT73ffrpp/GHP/whoHjq6uoAAElJSS7bk5KSnPedrrGxEVar1eNjtm7d6iw3MjLSrXHvq1y5tFhaEFei/Ad+vOg4ukV2/mEr9VkHqq6uzufxEcgxJBsdfLnV+rxPnjyJWbNm4ZZbbkF8fLzHfXT13ba2AP9Q6bO+6TgQoa3P+rLLLsN1112HgQMH4tdff8Uf//hHXH755aiqqoLRaHTbX0+ftaXFgpK4EsWer6Oi40WI7BbZ6X5a+h0P5HPz53e8rq4Offv2dbk/IiICvXr1UvR4aAGg0jcfxwH40YTT1PFwusbGRjzzzDM+h/3q6XjQwwGhtePh1ltvxYABA5CSkoKNGzdi1qxZ2LZtGz744AOP++vqeOgCJt3UZX379nU70Ck08bMOL1J93haLBTfddBNEUcSiRYskiIykFuxnffPNNzv/PXLkSIwaNQpnnnkmKisrcemll0oRIkmEv+PUkZLHQ1NTE6644goMGzYMTz31lCLPSV2jxPHQ8YTLyJEj0a9fP1x66aX49ddfceaZZ8r63FrCpFsBsbH2Tim1nltq99xzD95++22f+3hbPdBxxq2+vh79+vVzbq+vr0dGRobHxyQmJsJoNLqthFpfX+8sLzk5Ga2trThy5IjL2faO+ygl1hSL40XKf+CxJuk/7GA+60AlJyd3+lk7tvl7DMkmxL7cUnzejoR79+7d+OKLL7z2cgM6+24bY+09zmowavOz7mjQoEFITEzE9u3bPSbdevqsTbEmFB0vUuz5Tn9uqcn9Ox7I5+bP73hycrLLInsA0NbWhkOHDil6PMTC3sGoBhmacIrV68eOHcNll12G7t2748MPP4TJ5P3Y1tPxEGoHhBrtvOzsbADA9u3bPSbdujoeuoBJtwIEwb8h3mqLjIyE1WrtdL9ghqIMHDgQycnJqKiocH5xmpqasGbNGtx7771e4xo7diwqKiowdepUAIDNZkNFRQUKCgoAAGPHjoXJZEJFRQWuv/56AMC2bduwZ88ejB8/PqBYAyUIgl/DvNWkxGcdqPHjx6OiosLlUhfl5eXOzzGQY0g2OvlyK/V5OxLuX375BatWrULv3r07jUs3321B8GuIt9rU+m7/9ttvOHjwoEsD6fS49PJZC4Lg1xBvtWnldzyQz82f3/Hx48fjyJEjqK6uxtixYwEAX3zxBWw2m7PRrgQB/g3xVptWjgfA/llOmTIFUVFR+M9//oPo6Gif++vpeNDLAaGl4+F0jsuKeasvdHU8dIUqy7eFOLVXxwvUzJkzxXHjxok7d+4UDxw4IFqtVlmeZ+7cuWLPnj3Fjz76SNy4caN4zTXXiAMHDnR5vy655BLxlVdecd5etmyZGBUVJS5dulTcsmWLeNddd4k9e/YU6+rqnPvcc889Yv/+/cUvvvhC/P7778Xx48eL48ePl+U16J1Sn/XBgwfF9evXi5988okIQFy2bJm4fv16cf/+/c59brvtNvHxxx933v7222/FiIgIcf78+eJPP/0kFhcXiyaTSfzxxx+d+/hzDNEpSnzera2t4tVXXy2eccYZ4oYNG8T9+/c7/zObzc79+N2WlxKf9bFjx8Q//OEPYlVVlbhz507x888/F88991zxrLPOEk+ePOncj5+1vLT0O+7P5zZkyBDxgw8+cN7253f8sssuE8eMGSOuWbNG/Oabb8SzzjpLvOWWW2R5nXqnlePh6NGjYnZ2tjhy5Ehx+/btLnVBW1ubsxweD/LSyvGwfft28emnnxa///57cefOneJHH30kDho0SLz44otdylHieFA7P2PSLQO1P9RAbdu2TTzvvPPEmJgYWS8vYLPZxCeffFJMSkoSo6KixEsvvVTctm2byz4DBgwQi4uLXba98sorYv/+/cXIyEgxKytL/O6771zuP3HihHjfffeJCQkJYmxsrHjttde6NAroFKU+67feesvtshUAXD7bCRMmiHl5eS6P+8c//iGeffbZYmRkpDh8+HDxk08+cbnfn2OITlHi83ZcLsTTf6tWrXLux++2vJT4rFtaWsTJkyeLffr0EU0mkzhgwABx5syZLsmzKPKzlpuWfsf9+dwAiG+99Zbztj+/4wcPHhRvueUWMS4uToyPjxfz8/PFY8eOyfI69U4rx8OqVau81gUdY+LxIC+tHA979uwRL774YrFXr15iVFSUOHjwYPHRRx8Vjx496lKOEseD2vmZIIr+XlSK/HXy5Ens3LkTAwcO7HRIDREREREREclH7fyM1+kmIiIiIiIikgmTbiIiIiIiIiKZMOkmIiIiIiIikgmTbiIiIiIiIiKZMOmWEdeoIyIiIiIiUpfaeRmTbhmYTCYAQEtLi8qREBERERERhTdHXubI05QWocqzhjij0YiePXuioaEBABAbGwtBEFSOioiIiIiIKHyIooiWlhY0NDSgZ8+eMBqNqsTB63TLRBRF1NXV4ciRI2qHQkREREREFLZ69uyJ5ORk1TpCmXTLzGq1wmKxqB0GERERERFR2DGZTKr1cDsw6SYiIiIiIiKSCRdSIyIiIiIiIpIJk24iIiIiIiIimTDpJiIiIiIiIpIJk24iIiIiIiIimTDpJiIiIiIiIpIJk24iIiIiIiIimTDpJiIiIiIiIpIJk26idkuXLoUgCNi1a5cuypXaunXrcP7556Nbt24QBAEbNmxQO6QusdlsePbZZ3HmmWfCZDLhzDPPBADMmzcPQ4cOhc1m63KZixcvRv/+/WE2m6UOl4iIQpDadb4cdaGDFGUEwltdzDqa9IRJN+najz/+iBtuuAEDBgxAdHQ0UlNTMWnSJLzyyiuKxrF69Wo89dRTOHLkiKLPKxWLxYIbb7wRhw4dwksvvYS///3vGDBggNphdclf//pXzJ49G9dddx2WLFmCV199FU1NTXjhhRcwa9YsGAxd/7m7/fbb0draildffVWGiLvGbDZj1qxZSElJQUxMDLKzs1FeXq52WEREYcORUHv67/HHH1c7PADy1IUAJCmjM6Io4umnn8bXX3/tst1bXaylOpqoMxFqB0AUqNWrV+N3v/sd+vfvj5kzZyI5ORl79+7Fd999h5dffhkPPPCAorHMmTMHt99+O3r27Oly32233Yabb74ZUVFRisXTVb/++it2796N119/HXfeeafa4QTkrbfewqRJk/Diiy86t5WWlqKtrQ233HJLQGVGR0cjLy8PCxYswAMPPABBEKQKt8tuv/12/POf/8TDDz+Ms846C0uXLkVubi5WrVqFCy+8ULW4iIjCzdNPP42BAwe6bBsxYoRK0biSoy4EgCVLlgRdRmd+/vlnFBcXY+jQoS7bvdXFWqqjiTrDpJt067nnnkOPHj2wbt06t0S3oaFBnaA8MBqNMBqNaofhk+P9Ov19VMPEiRORnp6OpUuX+v2YkydP4ocffsCcOXNctr/11lu4+uqrER0dHXA8N910E+bNm4dVq1bhkksuCbicYKxduxbLli3Diy++iD/84Q8AgBkzZmDEiBF47LHHsHr1alXiIiIKR5dffjkyMzPVDsONnHWhFGV0prq6GgBw7rnnut3nrS7WQh1N5A8OLyfd+vXXXzF8+HCPiWLfvn1dbq9fvx6XX3454uPjERcXh0svvRTfffddp89x++23Iz093W37U0895Tyj+tRTT+HRRx8FAAwcONA51Mwxn8vb/C5/YnI8z/bt25296D169EB+fj5aWlo6jd+f57n99tsxYcIEAMCNN94IQRAwceJEn2X26dMHBQUFbtszMzNxxRVX+BWXVO644w7ExMTAarXiiSeegCAIGD9+PHbu3ImNGzciJyfH7TFdiX/s2LHo1asXPvroI9leQ2f++c9/wmg04q677nJui46Oxh133IGqqirs3btXtdiIiMg3f9oSJ06cwNChQzF06FCcOHHCuc+hQ4fQr18/nH/++bBarV6fI5C6EPCvPvRVRm1tLaKjo/H73//eZfvnn38Ok8mERx55xGvMHWVlZWH69OkAgLPOOguCILi077zVxVqoo4n8wZ5u0q0BAwagqqoKmzZt8jmsa/PmzbjooosQHx+Pxx57DCaTCa+++iomTpyIL7/8EtnZ2UHFcd111+Hnn3/Ge++9h5deegmJiYkA7BWZVDHddNNNGDhwIEpKSlBTU4M33ngDffv2xQsvvOAzNn+e5+6770Zqaiqef/55PPjggxg3bhySkpK8lrlv3z40NjZi9OjRLtutVis2b96MSZMmdfaWSWr69OnO1/Xyyy+jV69eGDBggLP39/Qz5oHEf+655+Lbb78NKD6LxYKjR4/6tW+vXr08zpVbv349zj77bMTHx7tsz8rKAgBs2LABaWlpAcVHRERdc/ToUTQ2Nrpsc9T9gYqJicHf/vY3XHDBBfjTn/6EBQsWAADuv/9+HD16FEuXLvU5aq6rdSHgf33oq4zU1FTceeedeO2111BcXIwBAwZg69atuPHGG3H55Zfjf//3f/16/bNmzcJTTz0Fs9mM2bNnA3AffeetLg6mjiZSjEikUytXrhSNRqNoNBrF8ePHi4899pj42Wefia2trS77TZ06VYyMjBR//fVX57Z9+/aJ3bt3Fy+++GLntrfeeksEIO7cudO5LS8vTxwwYIDbcxcXF4sdvz4vvvii22N9letvTI7n+f3vf+9S5rXXXiv27t3b63vT1edZtWqVCEB8//33Oy3z008/FQGIa9ascdm+adMmEYD4zjvvdFqGLxMmTBDz8vK69Jg//vGPYrdu3USr1erc9sQTT4gAxGPHjrnsG0j8d911lxgTE9OlmBwc760//3k6fkRRFIcPHy5ecsklbts3b94sAhAXL14cUGxEROQ/R33u6b/T9wmkLSGKolhUVCQaDAbxq6++Et9//30RgFhaWupXfF2pC0XR//rQVxmiKIq//fabGBUVJd57771iY2OjeOaZZ4oZGRni8ePH/YrboX///uLtt9/u9X5vdXEwdTSRUtjTTbo1adIkVFVVoaSkBJ999hmqqqowb9489OnTB2+88QauvvpqWK1WrFy5ElOnTsWgQYOcj+3Xrx9uvfVWvP7662hqanLrQZRTIDHdc889LmVcdNFF+PDDD33GLtdr37hxIwwGg9vogh9++AEAMHLkSL/L8tQLbLFYYDab3XoRvPUCO2IaPny4y/0HDx5EREQE4uLigo4/ISEBJ06cQEtLC2JjY/1+fQAwevRov1cZT05O9rj9xIkTHhfic8yt6zgUkYiI5LVw4UKcffbZspT91FNP4eOPP0ZeXh6OHz+OCRMm4MEHH/TrsV2pCx37+1Mf+ioDsPd2z5w5E6+//jpqampw4sQJfPnll+jWrZtfcQP20QN79uzBqFGjvO7jrS4Opo4mUgqTbtK1cePG4YMPPkBrayt++OEHfPjhh3jppZdwww03YMOGDejVqxdaWlowZMgQt8eec845sNls2Lt3L4YPH65YzAcOHOhyTP3793fZLyEhAQBw+PBhr0lzIM/jjx9++AGDBw92q9g2bNgAk8nkXHVUFEV0794dO3bscJtj7/Dtt9/id7/7ndv21atXY9myZS7bdu7c6XFOnCOmKVOmSBp/R6IoAkBAK6MmJCR4nUvnr5iYGI/XIT158qTzfiIiUkZWVpZsC6lFRkZiyZIlGDduHKKjo/HWW2/5Xfd0pS507N/V+tCbP/zhD/jLX/6CjRs34uuvv0ZqaqrfjwXsJwAA+Ey6vdXFwdTRREph0k0hITIyEuPGjcO4ceNw9tlnIz8/H++//z7uvvvuoMr19gPuazETOXibx+WoaJT0448/us3/AoB169ZhyJAhMJlMAOxJcmxsrNeEG/DcC/w///M/SE5Odi5O5+CtF/jIkSPYu3evWw9179690dbWhmPHjqF79+5djr+jw4cPIzY2NqDktrW1FYcOHfJr3z59+nj8rPv164fa2lq37fv37wcApKSkdDkuIiJSRlfbEp999hkA+4nVX375xe3yZJ50tS4E/K8PfZXh8NxzzwEA2tra0KtXr07jPZ0j6fYUj4O3ujiYOppIKVy9nEKO4+zz/v370adPH8TGxmLbtm1u+23duhUGg8HnAlQJCQk4cuSI2/bdu3e73O7K2dVgY1LzeWw2G7Zt24ZzzjnHZXtDQwO++eYb5xnqn376CcOGDcPhw4cRFxeHcePGeSzP0Qvc8b+EhAT069fPbbu3y5R4OzvuOEO/c+fOLsd/up07d7o8pqCgwHlCx2az4ZprrvG6Quvq1avRr18/v/7ztgp5RkYGfv75ZzQ1NblsX7NmjfN+IiLSJn/bEoC9Tnv66aeRn5+PMWPG4M477/RrMc6u1IVA1+pDb2U4vPjii3jjjTfwl7/8BREREc4EvCs2btyIfv36+VyQ7vS6uLPtRFrCpJt0a9WqVR57esvKygAAQ4YMgdFoxOTJk/HRRx+5XLKrvr4e7777Li688EKfc5rPPPNMHD161FmZAfZk/sMPP3TZzzFvyVOlerpgY/KXHM9jtVphsVhcLlfW1taGu+++G21tbc4z7Oeccw6Ki4tx77334vjx41i3bl3Qr8cbx9yz0xsa48ePBwB8//33XY7/dDU1NTj//POdt4uKirBs2TLU1tbi0UcfhSiKXldodfTm+/Oft978G264AVarFa+99ppzm9lsxltvvYXs7GyuXE5EpGH+tiUsFgtuv/12pKSk4OWXX8bSpUtRX1/v12W3ulIXAl2rD72VAQD//ve/8fjjj+OZZ57B/fffj7vuugv/93//5zVB92bPnj0444wzfO5zel3c2XYiLeHwctKtBx54AC0tLbj22msxdOhQtLa2YvXq1Vi+fDnS09ORn58PAHj22WdRXl6OCy+8EPfddx8iIiLw6quvwmw2Y968eT6f4+abb8asWbNw7bXX4sEHH0RLSwsWLVqEs88+GzU1Nc79xo4dCwD405/+hJtvvhkmkwlXXXWV10VEgompK6R+HpPJhFGjRmHRokWIiYlBTEwM3n//feeQro6V9MaNG3HJJZdI9lq82bhxI1JTU92Gsw0aNAgjRozA559/7rx+aFfid6iursahQ4dwzTXXOLelpqbitttuw5VXXgkA+Oabb7wu8ibFnO7s7GzceOONKCoqQkNDAwYPHoy//e1v2LVrF958882gyiYiInn525Z49tlnsWHDBlRUVKB79+4YNWoUZs+ejSeeeAI33HADcnNzvT5HV+pCoGv1obcyqqurMX36dEyfPh1/+tOfAACPPfYYFi9ejOeeew5vvPGGSyyCIGDChAmorKx0i3/gwIH44osvMG/ePKSkpOCcc85xtq0cz3V6XexrO5HmqLhyOlFQPv30U/H3v/+9OHToUDEuLk6MjIwUBw8eLD7wwANifX29y741NTXilClTxLi4ODE2Nlb83e9+J65evdplH0+X+RBF+6XJRowYIUZGRopDhgwR3377bY+X+XjmmWfE1NRU0WAwuJTjrVx/YnI8z4EDB/yK1RN/nqcrlwyrqakRx44dK0ZHR4vDhw8XX3vtNfHNN98UAYi7d+927jds2DDxu+++67S803X1kmFZWVni5Zdf7vG+BQsWiHFxcWJLS0uX43eYNWuW2L9/f9Fms7lsf+2110QAbu+lXE6cOCH+4Q9/EJOTk8WoqChx3Lhx4ooVKxR5biIiOlX3rlu3rtN9utqWqK6uFiMiIsQHHnjA5XFtbW3iuHHjxJSUFPHw4cNen7erdaEodq0+PL2MvXv3iv369RMvuOAC8eTJky773nvvvaLJZBJ37Njh3Hbs2DERgHjzzTd7jLG2ttbZVgEg/vnPf3a531td7G07kdYIoqjCSkxEFNJaW1sRFxeHw4cPd+mSIVI7evQoBg0ahHnz5uGOO+7o8uPNZjPS09Px+OOP46GHHnJuX7NmDW644QZkZ2cjMTERixcvljJsIiIiyQRbF0pRRllZGa688kr88MMPXbq0KOC9Lva2nUiLOKebiCR37NgxAPbkW009evTAY489hhdffBE2m63Lj3/rrbdgMplcrpO+Z88e3HjjjXj77bfx8ssv491338WePXukDJuIiEgywdaFUpSxatUq3HzzzV1OuAHPdbGv7URaxJ5uIpJFXl4ePvjgAwwfPhzfffed2uFI4tixY7jgggvw0EMPOc/033vvvRBFkb3dREREROQRk24iIiIiIiIimXB4OREREREREZFMmHQTERERERERyYRJNxEREREREZFMItQOQGk2mw379u1D9+7dIQiC2uEQEVGYE0URx44dQ0pKCgwGngv3hXU4ERFpib91eNgl3fv27UNaWpraYRAREbnYu3cvzjjjDLXD0DTW4UREpEWd1eFhl3R3794dgP2NiY+PD6osi8WClStXYvLkyTCZTFKEpyjGry7Gry7Gry7Gf0pTUxPS0tKc9RN5xzr8FMavLsavLsavLsZ/ir91eNgl3Y7haPHx8ZJU2LGxsYiPj9ftAcf41cP41cX41cX43XG4dOdYh5/C+NXF+NXF+NXF+N11Vodz8hgRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTFRPuhcuXIj09HRER0cjOzsba9eu9bqvxWLB008/jTPPPBPR0dEYPXo0VqxYoWC0RERERERERP5TNelevnw5CgsLUVxcjJqaGowePRpTpkxBQ0ODx/2feOIJvPrqq3jllVewZcsW3HPPPbj22muxfv16hSMnIiIiIiIi6pyqSfeCBQswc+ZM5OfnY9iwYVi8eDFiY2OxZMkSj/v//e9/xx//+Efk5uZi0KBBuPfee5Gbm4v//d//VThyIiIiIiIios5FqPXEra2tqK6uRlFRkXObwWBATk4OqqqqPD7GbDYjOjraZVtMTAy++eYbWWP1JWFbAgy7DYBRujJFAD8BOCBReScOtuDE4RP2gjs+jyiiqWkE/vvFUQiCINGzyaCtGbC2uG8XRZw42R8ff7od0HL83nQlfksbYD6pTFz+EgGLpS8+fv8HQMG33ybaYLFaJChJhNWagH8tWwNFX4BEbDYRbW0JWP62PuMHRNhs+o6/TewO5KodB5GGHTwIfPMNkJsLmExqR0NEpBrVku7GxkZYrVYkJSW5bE9KSsLWrVs9PmbKlClYsGABLr74Ypx55pmoqKjABx98AKvV6vV5zGYzzGaz83ZTUxMA+/xwiyW4hrulzoILiy6EwSbtgAEBwDBJS4xt/8+TREmfSR691Q6AiMjN4R4iLJYTQZcTbF1EpFnnnQds3w48+yzwpz9JWrS5zYzGlkakxqdKWi4RkRxUS7oD8fLLL2PmzJkYOnQoBEHAmWeeifz8fK/D0QGgpKQEc+bMcdu+cuVKxMZ6S0T90313d1xiuwQAUHt+bVBlddQQG4tfEhIAAL1PeOjh7QKxTUTbkTYAgCFS9XXzukyADQbYG6Si+uv+qUMEBNFm/6cee/QlJ3a+SzgQHccC3w+1tEZaYCn3vvinv1pagvudp9C17T/b8Pnjn+O6d65DvzH91A6n67Zvt//95z8lT7rHvDoGPzX+hA13b8Do5NGSlk1EJDXVku7ExEQYjUbU19e7bK+vr0dycrLHx/Tp0wf//ve/cfLkSRw8eBApKSl4/PHHMWjQIK/PU1RUhMLCQuftpqYmpKWlYfLkyYiPjw/qNVi/sfew2wba0Leyb1BldfQPgwGFRuAGmw3vWoMbjrWrchfenfwueg/tjbs33u1yn8ViQXl5OSZNmgSTRod9CXUrEfH1lRB7jkbbpHUu9+khfl/8jd/wxBMwzpsH6z33wPbnPysYoW9qvP+Lqxfjwc8exNVnX41/3vDPoMrS+/EzcKARtbUGfPPNCWRl6er8KQD9v/9Sxu8YgUV0umXXLAMALJ+6HA/vfljdYDTmp8afAAD/2PwPJt1EpHmqtdQiIyMxduxYVFRUYOrUqQAAm82GiooKFBQU+HxsdHQ0UlNTYbFY8K9//Qs33XST132joqIQFRXltt1kMgXdUBJO2nuahG6CpI1Gx/Rwo8EAkyG43t2ICPtHbDAYvMYoxXshG8HewysYo/QZvx86jf/YMQCAMSkJRg2+TiXf//oW+0m6M+LPkOw59Xv82Hu4IyIidBq/nX7ffzsp4tfz6ydltB5vVTsEIiIKgqrdI4WFhcjLy0NmZiaysrJQWlqK5uZm5OfnAwBmzJiB1NRUlJSUAADWrFmD2tpaZGRkoLa2Fk899RRsNhsee+wxdV5A+zQ8MUqEoMuFgHTA1j4f3xCpbhxqam1vbEWG8XvQrsViH4YbFxmnciTqE9tHlXPGAREREZG2qZp0T5s2DQcOHMDs2bNRV1eHjIwMrFixwrm42p49e2Do0NN78uRJPPHEE9ixYwfi4uKQm5uLv//97+jZs6dKr0Aeks7Q1Pt0T1t7wmlwH60QNph0OzlWLY808r0govAhinqvzImIwpvqEwELCgq8DievrKx0uT1hwgRs2bJFgai0QdIOLL32hjmT7jBOsph0O7Va7e+FycjhuOzpJiICRN33LhBROAjT5aBJN2z2ldchSHghdL1h0u1ksbGn24EdX0ThQ+DZNSIiXWPSHQyZGr1SFhsyQ9LCucHhuIYvk25nTzeTbvZ0E5GOyNgW4Zo6RKQHTLqlINPvvZTF8iy5jrGn28nR020ycHi5A7/aRKEvZE6gy4DDy4lID5h0k8axMnUm3bysEHu6O2BPNxHpBn+oiCjMMekOdSGTs4Zxhc2ebifH6uVcSI1zuom0ok2B59D9aDX+YBFRmGPSrUGyVE06r6/DGpNuJ/Z0n8KebqLgCBUCJj40EcK6wL9E/wAQDeBfkkVFREShSPVLhumazCdu2ZYmAEy6O3BeMoxzup2YdBMFJuLyCPRAD4iXiUBTYGVMa/97A+RtEnBONxGRvrGnWwps9MqIDQ2uXn4KLxl2Cnu6iaQhHOOXSHb8oSKiMMekW4N4yTAPwrnCZk+3k7Onm3O6OUWSiPSDP1hEFOaYdGsYLxlGALh6eQeOhdTY082ebiIiIiK9YNIdDJ64JSWwp9uJc7rdMekmooAd2QSsvQdoqVU7EiKikMakWwoSN3olzeX1fmKAQ9KYdHfAOd2nsKeblLBw4UKkp6cjOjoa2dnZWLt2rdd9X3/9dVx00UVISEhAQkICcnJyfO5/zz33QBAElJaWyhA5+eXTDGD7q8C3t8j7PPyhIqIwx6RbwyStonRf3+n+BQSOSbcT53SfwvNRJLfly5ejsLAQxcXFqKmpwejRozFlyhQ0NDR43L+yshK33HILVq1ahaqqKqSlpWHy5MmorXXvRf3www/x3XffISUlRe6XQb6IVvvfIz/I/Dzy/WCFzNo1RBTSmHQTaR1XL3finO5T2NNNcluwYAFmzpyJ/Px8DBs2DIsXL0ZsbCyWLFnicf933nkH9913HzIyMjB06FC88cYbsNlsqKiocNmvtrYWDzzwAN555x2YuFYFERGFAV6nO8TxDLDOiSJ7ujvgnG53TLpJDq2traiurkZRUZFzm8FgQE5ODqqqqvwqo6WlBRaLBb169XJus9lsuO222/Doo49i+PDhkscdburrY7B1a+DrbA5t/2u1Ar9slSwst/JPmoFdp5VvsQC//RYXVPwAcOiQgK0yxN4ZqeJXi8UCnDxpVDsMorDBpDsYMuWzchSr39XLw/ykQVvbqX/rsVaXGOd0n8KebpJTY2MjrFYrkpKSXLYnJSVhq58ZzqxZs5CSkoKcnBznthdeeAERERF48MEH/SrDbDbDbDY7bzc1NQEALBYLLI5RQAEy4dRvasBlmSQow0+nlz9vnognnpgcVJniO/a/x44JOOecoIryXH77361bgTFu5ZsAXBp44U/Z/7z2mojXKnzuKZMg41edCQkJOZg82YK4OLVj6TrH90Hu751cGL+6pIzf3zKYdEtBpkYv29Idhem74ejlBtjTDc7p7oiDWEjL5s6di2XLlqGyshLR0dEAgOrqarz88suoqanx+0RwSUkJ5syZ47Z95cqViI2NDSrGa3CN899lZWUBFiJBGX6wWCxu5ZeXnwsgDZGRbYiKsgX3BALQvXtr5/t11TH7H4NBRPdu0pbfXjQiI62IkiP2EHfsWCQOH47GBx98hsTEk2qHE7Dy8nK1QwgK41eXFPG3tLT4tR+TbiItY9LtwpF0s6ebPd0kr8TERBiNRtTX17tsr6+vR3Jyss/Hzp8/H3PnzsXnn3+OUaNGObd//fXXaGhoQP/+/Z3brFYr/ud//gelpaXYtWuXW1lFRUUoLCx03m5qanIu0BYfHx/gq3OXm5uriTJOtwEbAAAmk8mt/Pfes3/5n37ahsLCAH8I3rf/6dEDOHhQhh+T9p/qkSOAg9+7lm+xWFBeXo5JkyYFNLc/8nn734ceBp77SPkfwmDjV1tcnIjWVgEXX3wx0tP1lw7o/f1n/OqSMn7HCKzO6O9bFgZkuWSYbhvmYd6d1zHpjgjvr6vVZoVNtPfmMOk+hUk3ySEyMhJjx45FRUUFpk6dCgDORdEKCgq8Pm7evHl47rnn8NlnnyEzM9Plvttuu81lqDkATJkyBbfddhvy8/M9lhcVFYWoqCi37SaTSdKGnhRlyd3wPL18g8H+e2g0GmEyBTc3V/BQvpQEQfBafrCfpdFgVLXRL/WxqBx7+yoiIkKn8dvp9/23Y/zqkiJ+fx8f3q34YMmcD7It3UG4ZhYdVy4P1/egnWM+N8CF1AD2dJP8CgsLkZeXh8zMTGRlZaG0tBTNzc3OBHnGjBlITU1FSUkJAPt87dmzZ+Pdd99Feno66urqAABxcXGIi4tD79690bt3b5fnMJlMSE5OxpAhQ5R9cURERApi0k2kZVy53MlxuTCAPd0A53ST/KZNm4YDBw5g9uzZqKurQ0ZGBlasWOFcXG3Pnj0wGE5deXTRokVobW3FDTfc4FJOcXExnnrqKSVDDwv8DSAp8DgiUgaTbilI3NMk5e8fLxmmc46kW8dDd6TimM8NcCE1gD3dpIyCggKvw8krKytdbnuak92ZQB5DcuAPCRGRnAyd70JqkbIK1O0lw8L9pAF7up0cw8sFCDAKvLaog16/2kQkDWl+A8K8rg1DrDuIlMWkm3QiTGsHJt1OHS8XptuTSBJiTzcRERGRPjDpDoYeTgzrIUbyjkm3k2NON+dz24X7IBCisCL7951n74iI5MSkWwoyzemWtFjWp/rUcfXyMOfs6ebK5QDY000U7njijaTA44hIGUy6SePCvDZgT7eTY043e7pdMekmCgNyf8/5Q0JEJCsm3aQTYdogYNLt1HFON7F3gojswj1fFsP95HyAwv24IVIak24NkuOSYVx4Sqd4yTAnR9LNnm47Di8nCiPMK4mIdI1JdzBkrgTZlib2dJ/iWEiNc7pdMekmCk8c7WInsLUUFB5HRMpg0i0F/t7LJ9xrAybdTuzpdsWebiLSDRnrcg4vJyI9YNKtQZJWH6FSF4VrZsHVy50cC6lxTrdduJ+PIgorPqrAcK0eKTg8boiUxaRbw3jJMOKc7lPMbWYA7Ol2EEX7l5oNJ6IwwOt0ExHpGpPuYLCnSQFh/iab7YkmoqPVjUMDzFb7exEdwfeiIybdRKR5/KEiojDHpDvEiSEzBjVMK+yTJ+1/o6LUjUMDHD3dUUa+Fx2xLUsUnnRVvesq2PDCj4ZIGUy6pSBxo9fx+ydlsbxkmE45km72dLOnuwM2koiIiIj0g0k3kZYx6XY62WZ/L6Ii2NPdMenm+TSi8MbfAAoEjxsiZTHpJo0L8y49Jt1OjuHl7Ol2xYYTEWkef6iIKMwx6Q6GTPmgLJcM0319p/sXEBgupObkGF7OOd3s6SYiicn9Q8I5MUQU5ph0S0GmuoptaeJCaqc4h5cz6Wb7lYj4O0CS4HFEpAwm3URa1tJi/xsTo24cGtDc2gwA6BbZTeVI1MeebiIiIiL9UD3pXrhwIdLT0xEdHY3s7GysXbvW5/6lpaUYMmQIYmJikJaWhkceeQQnHb2BIULKk46OS4bpdvXycD8Fe+SI/W/PnmpGoQmHTx4GACREJ6gcibbo9atNRNLQxW+ALoIML/xIiJSlatK9fPlyFBYWori4GDU1NRg9ejSmTJmChoYGj/u/++67ePzxx1FcXIyffvoJb775JpYvX44//vGPCkfeTuZ8kL+HHYRr7XDokP1vr17qxqEBR04eAQD0jO6pahxawJ5uItIVGU+gi+F+cp6IdEHVpHvBggWYOXMm8vPzMWzYMCxevBixsbFYsmSJx/1Xr16NCy64ALfeeivS09MxefJk3HLLLZ32jhPpliPpTmDv7sETBwEACTF8L9jGJCL+DpAUeBwRKSNCrSdubW1FdXU1ioqKnNsMBgNycnJQVVXl8THnn38+3n77baxduxZZWVnYsWMHysrKcNtttykVtmda7mnij2nXHDwIHDhwqhYSxVP/dXa7i/sIFgt6bd4MIT4eMBrd9zlxAvj1VwCAOS0Fuxq3wSba3EIW2z9kx9l+b7f92acrj2m1WPDt7t1o+uY7REREuD7Ga3lentfX80GEKNpQtdf+u2A4ciZ++sntbegyiwXYuzcOP/0EmEzBl6ek1tZT/2ZPNxEFT78/JLqdPkdEYUW1pLuxsRFWqxVJSUku25OSkrB161aPj7n11lvR2NiICy+8EKIooq2tDffcc4/P4eVmsxlmx2WXADQ1NQEALBYLLBZLUK/BZrUhAhEQRTHosjpqMxgAoxGi1QqLzT3J6lJZbW0A7InL6TE6bksZu9QM1jYYAdhsNlhljl94/30Yb78dgkLvRwSAi/zYr+2MVAz54HfY3bRH7pAC85WCz2XujhsnDgPapCjMBOBSKQpSVVubBRr+Cnulh98fX6SMX6/vAWmDNDmnfs/Qc3h5YHiugkhZqiXdgaisrMTzzz+Pv/71r8jOzsb27dvx0EMP4ZlnnsGTTz7p8TElJSWYM2eO2/aVK1ciNjY2qHj6beyHLGTh8OHD+Lbs26DK6ujns88GzjkHe/buRdkPPwRV1pHqIwCAw4cPo6yszOM+5eXlQT2HnAZZtmAkgH379qNa5vjPLylBn/bGb2v37qeaIILgrJ3E024DgBjMbUe5Xm5bo6Px9yuHYHfTxwCA7sbuHmMX2nspPJ3xd953Wk9Gx33d7vPymI6PO3woBhaLwb6PIAKi4FJC+wtxue1S3mn3ud0+fZs1CpHrCmGKMQA4dSItnI0a1Yjvvvte140nLf/++EOK+FscVykgIiKikKRa0p2YmAij0Yj6+nqX7fX19UhOTvb4mCeffBK33XYb7rzzTgDAyJEj0dzcjLvuugt/+tOfYDC4T1EvKipCYWGh83ZTUxPS0tIwefJkxMfHB/UabMfsvdAJCQnIzc0NqqyO1re/jv5pachNTQ2qrG2t27ALuzzGaLFYUF5ejkmTJsGk0fG1hp+3Az8AKSkpSDpP3vgj7r0XANC2ejWEzEzZB9v5G/+Ozx8F1gKPZD+CFy59Qeao/DdxogGrVxvxzrtm3HCD6hdC6DI9HP++2OP/Xufx6/39lyZ+xwgsIm/k783V75k7Di8nIj1QLemOjIzE2LFjUVFRgalTpwKwDyGuqKhAQUGBx8e0tLS4JdZGoxGA9wopKioKUVFRbttNJlPQDaU2o32MqyAIkjYaHa/QYDTC1P76AmWMsD/eYDB4jVGK90I2Rvu7YTAYYJA7/qNHAQARycmKTvLtLP5jrccAAH269dHY52Q/6WQ0GmEy6WrQjAtNH/9+YPzqkiJ+Pb9+Ug9HVdtxeHlw+PYRKUPVlnJhYSHy8vKQmZmJrKwslJaWorm5Gfn5+QCAGTNmIDU1FSUlJQCAq666CgsWLMCYMWOcw8uffPJJXHXVVc7kWxUynWTluduOZH43RBFwDPEMctqB1Fra7HHFmrQVFxERKYO9uURE+qZq0j1t2jQcOHAAs2fPRl1dHTIyMrBixQrn4mp79uxx6dl+4oknIAgCnnjiCdTW1qJPnz646qqr8Nxzz6n1EihUdFhsT3NJt0XbSTfbgkRE8vLVmyvNbzB/yMMN624iZak+JrSgoMDrcPLKykqX2xERESguLkZxcbECkalH0pE+jsL44+pbx4WMYmLUi8OD5tZmAEC3yG4qR+KKQ9KIiEIFf9CJiOSkv9WPtETmOop5MpTL7BxJt8kERKh+LsqF1nu6iYiIiIjIOybdUmB2LD+5x0E5km6N9XIDwMm2kwCA6IholSNx5TgfwiFqRETy8jSnW9pz0vwhD1cctUakDCbdIY6revrJarX/1eAqwjaxfZVwQcXFAomISDWsy4mI9I1JtwbJMQ2bK592wmZPbOHhWu9qcyTdBkF7sQHs6SYiUhN/gykQPG6IlKXNVrxe8MSzAhR6kzWcdFtFey+81pJudrwQEYUIZmBERLLSViuepBcyiZHMDQLH8HINJt1a7+kmotC1cOFCpKenIzo6GtnZ2Vi7dq3XfV9//XVcdNFFSEhIQEJCAnJyclz2t1gsmDVrFkaOHIlu3bohJSUFM2bMwL59+5R4Kbom/5xuClc8joiUwVa8FCTOB2X5/eNJbN803NOt9aSbHSREoWn58uUoLCxEcXExampqMHr0aEyZMgUNDQ0e96+srMQtt9yCVatWoaqqCmlpaZg8eTJqa2sBAC0tLaipqcGTTz6JmpoafPDBB9i2bRuuvvpqJV+WLnFOt3di6PQuEFEI09a1kcgFcxkFOZJuo/YWK3MupGbQVmxsAxKFtgULFmDmzJnIz88HACxevBiffPIJlixZgscff9xt/3feecfl9htvvIF//etfqKiowIwZM9CjRw+Ul5e77POXv/wFWVlZ2LNnD/r37y/fiwlhPPFJgeBxQ6QsbXadETlxTrfWe7qJKPS0traiuroaOTk5zm0GgwE5OTmoqqryq4yWlhZYLBb06tXL6z5Hjx6FIAjo2bNnsCGTlvEsLRGFOfZ0B0OmOkTKYh1D0vS/ernM8TPp7jJep5sodDU2NsJqtSIpKclle1JSErZu3epXGbNmzUJKSopL4t7RyZMnMWvWLNxyyy2Ij4/3uI/ZbIbZbHbebmpqAmCfH26xWPyKwxsTTl0iMuCyTBKU4afTyxdFAYABVqsVFostoDId0YuigDYZ4j9VvuhWvuP1BPu+WW1W2d97T6SKXz32FKCtrQ16fAl6f/8Zv7qkjN/fMph0axhzGQUx6SYikszcuXOxbNkyVFZWIjo62u1+i8WCm266CaIoYtGiRV7LKSkpwZw5c9y2r1y5ErGxsUHFeA2ucf67rKwswEIkKMMPFovFrfz6+nEAUvDTTz+hrGxXQOU6oje3mvGZDPE7ym86fhyVXso/fcpBV+3YsQNlJ+V77zsTbPxqsVhyAZjwzTffYufOZrXDCZhe338Hxq8uKeJvaWnxaz8m3VJgdqx/Gk66rTZtXjLMgT3dRKEnMTERRqMR9fX1Ltvr6+uRnJzs87Hz58/H3Llz8fnnn2PUqFFu9zsS7t27d+OLL77w2ssNAEVFRSgsLHTebmpqci7Q5utxXZWbm6uJMk63ARsAACaTya38JUvsP77nnHMOcnOHBfYE79v/REVGyRK/Q3z37m7lWywWlJeXY9KkSTB1GDHgtw32P4MGDULuJfLF7k3Q8avMZLKnABdccAGGDdNfOqD395/xq0vK+B0jsDqjv28ZdY1jrLpeEyOl5oFpOOnWak83p+gRha7IyEiMHTsWFRUVmDp1KgDAZrOhoqICBQUFXh83b948PPfcc/jss8+QmZnpdr8j4f7ll1+watUq9O7d22ccUVFRiIqKcttuMpkkbehJUZbcDc/TyxcEe90QEWGEyRTcQpuCIG/8AryXH+xnaTQYVW30S30sKkUQ7JV4RESELuN30Ov778D41SVF/P4+nkl3MGSe063XPFkWcnenMukmInJRWFiIvLw8ZGZmIisrC6WlpWhubnauZj5jxgykpqaipKQEAPDCCy9g9uzZePfdd5Geno66ujoAQFxcHOLi4mCxWHDDDTegpqYGH3/8MaxWq3OfXr16ITIyUp0XSkREJDMm3UQAYLUP4WbS3XUcXk4UmqZNm4YDBw5g9uzZqKurQ0ZGBlasWOFcXG3Pnj0wdPjNXLRoEVpbW3HDDTe4lFNcXIynnnoKtbW1+M9//gMAyMjIcNln1apVmDhxoqyvh4iISC1MuqWg4aRD1P0YYA4vd16nW+B1uolIWQUFBV6Hk1dWVrrc3rVrl8+y0tPTQ6BO0g5p30qZGzI8O6tZ/EoSKUN7GQbJMryclwzrhA6Sbq32dBMREfnEzI6Iwhxb8UTAqaTbqK3eZEC7STev001EpBAfOatjQSyirmDdTaQsbbXi9Yb1XOhgTzcREZHucMoCEekBW/EaJGn1oful0Dmn2yryOt1ERGHNw+8sc02SAo8jImVosxWvNzIlHcxlOuAlwzSXdIsij1AiIlKX/tesIaJwoK1WPJFamHQTEZFW+ZzTLUH5Ok5cObw8MDr+yIl0ia34EOeojHgmuBM6uE630aC9Rd4AVtxERLrHxJWISFbayzD0RKY6SvfTsKWkVEOAPd1dxjYaEZFC2CAgItI1bbXiibzinG6tJd1ERKQQDyc5JT3xySFLYYsn0ImUwVa8FLRcV7Hb3D8aTbo7zlXTWtLN63QTEREREXVOW614AsA8WRUaTbodlwsDtJd0ExGR+njikwLB44ZIWWzFB4NDchSg8Jxuo7YWK3MMLQe0m3Sz4iYikpnsv7P8IScikpM2W/FEbsJzTreWk27OAyMiUojsv7f8QScikpO2WvF6peETxLxkmJ+YdBMRkY7wxCdJgccRkTLYitcgzunuKLwvGdYx6TYK2hr67sDzOUREescfciIiOWkrwyDyRu7Mztq+YJmGk26t9XTz7DgRkfp44pMCweOGSFnaasXrjR6SDnab+0cHPd1aS7qJiIiIiKhzbMVrEPNkFWg06bbatHvJMF6nm4hIPdKONuIPebjiqDUiZWirFa9XrKvko1RtoNGkmz3dREQkP5nrWmZ2RBTm2IoPcaGzejkvGabVz1CjYRERhQX+BlMgeNwQKUtbGYbeyHTilsPLVaDxpFuLvdzsuCAiChUytzhkzPBEXSywQ0ThTnsteSI1OJJuo7Yuy6XlpJuIiIiIiDrHlnyo0/0JYM7pBrR5jW4upEZERH6RcWiUwHGBQeGoNSJlaCvD0Cs9/N7rIUafwntON3u6iYjClyh3ZqTjs6ccXk5EesCWvAZxTrcKrO2X5tJY0m0V7XEx6SYiIk90kS/rIsjwwo+ESFlsyQeDJ1dDB3u6u4zDy4mIlKHVq1cQEZF/NNGSX7hwIdLT0xEdHY3s7GysXbvW674TJ06EIAhu/11xxRUKRqwfur9kGK/TDUCbSTcREZFfOHGYiMKc6i355cuXo7CwEMXFxaipqcHo0aMxZcoUNDQ0eNz/gw8+wP79+53/bdq0CUajETfeeKPCkXcgcT7L4eUeyH3SgEl3wPR6PoeISC88zelmHktS4HFEpAzVW/ILFizAzJkzkZ+fj2HDhmHx4sWIjY3FkiVLPO7fq1cvJCcnO/8rLy9HbGysukk36R+T7i5jRU1EFCr0e51uIiI9iFDzyVtbW1FdXY2ioiLnNoPBgJycHFRVVflVxptvvombb74Z3bp183i/2WyG2Wx23m5qagIAWCwWWCyWIKIHbFYbIhAB0SYGXZZLuQYDYDTCarXC4kgGA2Rtsy/EJcI9RsdtKWOXmsHWBiMAq80Gm4zxGywW+/MAbs8jF3/iN7faj12DYNDg52QEIKCtrQ0Wi/4ycD0c/74wfnVJGb9e3wNSjq8pYtLks/r7Dafg8DwIkbJUTbobGxthtVqRlJTksj0pKQlbt27t9PFr167Fpk2b8Oabb3rdp6SkBHPmzHHbvnLlSsTGxnY96A7SNqXhXJyLxsZGfFf2XVBldfTr8OHA4MHYuWMHyrZsCaqsgz8cBAA0NDSgrKzM4z7l5eVBPYeczm79BecA2LNnLzbWyxf/Ob/8grMB7Nq9G5u8vE9y8RX/rhO7AABtrW1ePz+1HD9+CYDuqK7+HmbzQbXDCZiWj39/MH51SRF/S0uLBJEQaRiHRhFRmFM16Q7Wm2++iZEjRyIrK8vrPkVFRSgsLHTebmpqQlpaGiZPnoz4+Pignt9WZ++FTkxMRG5ublBldVTZPsR50KBByE1PD6qsjY0bsRd70bdvX7cYLRYLysvLMWnSJJhMpqCeRy6GLTXAZqB///44Y6x88Ru++QYAkD54MPpL+Fn64k/86+vWA9uAmOgYSY8xKXTrZgQAZGZm4pJLjCpH03V6OP59YfzqkjJ+xwgsIm/kn9PNbs9wxfMhRMpQNelOTEyE0WhEfX29y/b6+nokJyf7fGxzczOWLVuGp59+2ud+UVFRiIqKcttuMpmCbii1RbQBAASjIGmj0TF712g0wmQMLpkxtCfwBoPBa4xSvBeyMdhfv9FggFGB+I0REV6fRy6+4je2f/6+Pj/12GtqkykCJpN+z99p+vj3A+NXlxTx6/n1ExERUedUXZ0pMjISY8eORUVFhXObzWZDRUUFxo8f7/Ox77//PsxmM/7f//t/codJquIlwwAupEZEFM50e9lPIiICoIHh5YWFhcjLy0NmZiaysrJQWlqK5uZm5OfnAwBmzJiB1NRUlJSUuDzuzTffxNSpU9G7d281wraTKengJcM84SXDiIgoPHkaXi4ttjjCDc/jEClL9Zb8tGnTMH/+fMyePRsZGRnYsGEDVqxY4Vxcbc+ePdi/f7/LY7Zt24ZvvvkGd9xxhxohUyhi0h0wVtxEoWvhwoVIT09HdHQ0srOzsXbtWq/7vv7667jooouQkJCAhIQE5OTkuO0viiJmz56Nfv36ISYmBjk5Ofjll1/kfhnUKf0OXZL/hAQRUfA00ZIvKCjA7t27YTabsWbNGmRnZzvvq6ysxNKlS132HzJkCERRxKRJkxSOVIfYbe4fJt1dxnYOUWhbvnw5CgsLUVxcjJqaGowePRpTpkxBQ0ODx/0rKytxyy23YNWqVaiqqnIuWlpbW+vcZ968efjzn/+MxYsXY82aNejWrRumTJmCkydPKvWyQgZ/g0kKPI6IlKG9lrweSZzQMk/uQKnagEk3EZGLBQsWYObMmcjPz8ewYcOwePFixMbGYsmSJR73f+edd3DfffchIyMDQ4cOxRtvvOFcpwWw90iWlpbiiSeewDXXXINRo0bh//7v/7Bv3z78+9//VvCVkTv9tjg4352I9ED1Od1EfpG7UtVo0m0VrQAAo6C9S3I5zoewvUMUelpbW1FdXY2ioiLnNoPBgJycHFRVVflVRktLCywWC3r16gUA2LlzJ+rq6pCTk+Pcp0ePHsjOzkZVVRVuvvlmtzLMZjPMZrPztuPyahaLBRaLJaDX5mDCqVXjAy7LJEEZfjq9fJvN0P7XCoslsBPUjuhFAG0yxO8sXxTdyne8nmDfN6vVKvt774lU8avHCEBAW1sb9PgS9P7+M351SRm/v2Uw6Q6GDobkOOY68UxwJzSadLOnm4jU0NjYCKvV6lxfxSEpKQlbt271q4xZs2YhJSXFmWTX1dU5yzi9TMd9pyspKcGcOXPctq9cuRKxsbF+xeHNNbjG+e+ysrIAC5GgDD+0tbW5lX/w4HkAkrB582aUle0NqFxH9CdOnEC5DPE7yj927BhWeSm/vLw8qOfYsXOHrO99Z4KNXy1m8xQA0fjuu+9QX9+kdjgB0+v778D41SVF/C0tLX7tx6Rbgzi8XAVMugPG8zlEdLq5c+di2bJlqKysRHR0dMDlFBUVobCw0Hm7qanJOVc8Pj5eilABALm5uZoo43QbsAEAEBER4Vb+woX2emH48OHIzR0Z2BO8b/8TExMrS/wO3bt3dyvfYrGgvLwckyZNCuxa9RvsfwYNHITcHPli9ybo+FUWFWUfQXfeeedh7Fj9pQN6f/8Zv7qkjN8xAqsz+vuWUZhRaDiB1T6MG0ZtDePWQ9JNRKEnMTERRqMR9fX1Ltvr6+uRnJzs87Hz58/H3Llz8fnnn2PUqFHO7Y7H1dfXo1+/fi5lZmRkeCwrKioKUVFRbttNJpOkDT0pypK74Xl6+YJgrx+MRiNMpuCacwJEWeMXBMFr+cF+lgaDQdVGv9THolIEwd6+MhojdBm/g17ffwfGry4p4vf38WzJh7qQ6TYPzzndTLqJSA2RkZEYO3ascxE0AM5F0caPH+/1cfPmzcMzzzyDFStWIDMz0+W+gQMHIjk52aXMpqYmrFmzxmeZREREesee7mDI3Amr+zxZT5h0B4zDy4lCU2FhIfLy8pCZmYmsrCyUlpaiubkZ+fn5AIAZM2YgNTUVJSUlAIAXXngBs2fPxrvvvov09HTnPO24uDjExcVBEAQ8/PDDePbZZ3HWWWdh4MCBePLJJ5GSkoKpU6eq9TJ1T5LfYP6Qhx1+5ETKYtKtQTpYn01BvGQYoM2km9f2JApt06ZNw4EDBzB79mzU1dUhIyMDK1ascC6EtmfPHhg6/GYuWrQIra2tuOGGG1zKKS4uxlNPPQUAeOyxx9Dc3Iy77roLR44cwYUXXogVK1YENe+bdIAVBhGFOSbdpBPhObzcarPPNddi0k1Eoa+goAAFBQUe76usrHS5vWvXrk7LEwQBTz/9NJ5++mkJogsjHnJW5rF2IrsqgsLjiEgZbMlLQcNDdHjJMD9pNOl29HQbDdpa4A3gdbqJiEKHzD/krCiIKMxpK8MgACG09pmeaDzpZk83EVEYk71BoN/uToGtJSLSAbbkg6HfOko/lBr3xKQ7YOzAICJSjy5+g2Wsyzm8PDC6OG6IQoh2W/IkjVDpNpe7dtB40q3FM/mcB0ZEpBDZf2+1V8cQEYUSbWUYBCB08mRdsdoXLNNa0m0V7XFpcU43ERGpR1cnPtmtSkRhTlsZhl6xLtE/R0+3UVvJrWP1cqOgrbg6YluKiEhm/J0lItI1Jt0hTv+rlyt0Kl+jPd16WL2ciIjUo4vqnRWG5ujiuCEKIdrKMPRG5jqEv4cdyfxuOJJurfV0i7xONxFR2GPOSkSka2zJaxDrVhVoNenW8PByXqebiIj8woqCiMIck24p6KEu0UOMatJo0q3l4eVERKQeaUdss5EQrjjyn0gZTLpDne5/TBW+TrfGkm7n6uUa7Ol2YAcGEZHM9P47y8yOiMIck+5gyFSH8JJhnig0p1tjC6k5hpdrcU4321BERHay19c+fm8lOfHJs6dhhx85kbK015InUgOHlxMRUbiS+ywqMzwiCnNMukOc/i8ZphCNJt0cXk5ERJ7oarSRroINL6LISpxICUy6pSDx7xWHl3egVEWt1aSbw8uJiEhuPHtKRCQr7bXkiTyRu0Gg0YXUOLyciIiIiEjfmHQHQdDDkBx2m/tHqwupaXh4+anrdLPLm4hILeykpkDwuCFSlrYyDHLB30NAsUuGcXg5EREFSP/1tX5fgci5TkSkA2zJaxCrD08UumSYxpJu5/ByDfZ0O/BsORGR8qTNNdnyCFc8Z0GkDCbdUtBB0sHVyzuh0aTbObxcg3O6WVETEZHa2L4hIj1g0h0MHSQdHHblJ40upOYYXq7lnm4iIlKPNDmnfhNXtnMCw3MVRMpi0q1BXPusI4XndGtsITXH8HLO6SYiIrJjok1EesOWfLjQfQYfnnO6ObyciIiIiEjfmHRLQcsJLRMj/2g16ebwciIizVOjGSDtiU8tN2RITjyBTqQMJt0axOHlKtBo0q3l4eWnrtOtbhxERBQsfWVeos7iJSLSXkteT/ibLz+lTsFqdSE1DQ8vJyIiZfiaw8wTnxQIHjdEymLSHeIcFbXuL6khd/wWi/1vRIS8z9NFrdZWAECUMUrlSLzT+6FFRET8IScikhOTbg1jFaggs9n+N0pbya3Zao8r0hipciTuOA+MiEgZuj9xLjGuXk5EesOkWwoS14WsSlTQau9R1lrS7ezpjtBWXEREpC7mnSQFHkdEymDSHep0vyqbArVBW9upOd2R2upRNrdpt6fbgR0wRBTu5P4ZZM8uEZG+MekOButABcnYpHEMLQc029OtxaSbbUAiIvWF44lPrl4evHA8bojUxKRbg3TfOa03jqHlgOaSbsecbi0vpEZERERERN6pnnQvXLgQ6enpiI6ORnZ2NtauXetz/yNHjuD+++9Hv379EBUVhbPPPhtlZWUKRatf+l2ERYGz2ceP2/+aTJpbvfyY+RgAIC4yTuVI3PE63UREyvBUh0s62kjuH3IZh0ax1zs4HLVGpAxVM4zly5ejsLAQixcvRnZ2NkpLSzFlyhRs27YNffv2ddu/tbUVkyZNQt++ffHPf/4Tqamp2L17N3r27Kl88B1pOOkImXlgcjYIjh61/+3RQ3MZZJO5CQDQI7qHypEQEZFaQqYulwjfDyLSG1WT7gULFmDmzJnIz88HACxevBiffPIJlixZgscff9xt/yVLluDQoUNYvXo1TCYTACA9PV3JkF3J9JvP4eUKO3TI/lftkzceHDxxEADQI0q7SbfGzlMQEYUVXfwGyxikwNZSQHRx3BCFENWS7tbWVlRXV6OoqMi5zWAwICcnB1VVVR4f85///Afjx4/H/fffj48++gh9+vTBrbfeilmzZsFoNHp8jNlshrnDQllNTfaeQ4vFAovFEtRrEK0ijDDCJtpgtViDKqsjm9EIGAywWq2wOFbVDpDVao/LZrO5vV7H7WDfBzkZrDYYAVitNthOi/PHH9vw0l8Hoaj8KbRE7oK/Z0FEiBh4uAkzq7ci1mLFiIbDOAvA161NmP4/N3UoR3TuDwAQvGz3tL8f+4oAzOaTiPrmr6f26/A4m9CGA7F1AIDnHu2PqCCPBakdPWqvsdva2qDhQ8grPRz/vjB+dUkZv1bfg4ULF+LFF19EXV0dRo8ejVdeeQVZWVke9928eTNmz56N6upq7N69Gy+99BIefvhhl32sViueeuopvP3226irq0NKSgpuv/12PPHEEzqeAmWn7+j1jcPLiUgPVEu6GxsbYbVakZSU5LI9KSkJW7du9fiYHTt24IsvvsD06dNRVlaG7du347777oPFYkFxcbHHx5SUlGDOnDlu21euXInY2NigXsPArQMxCqNQX1+P78u+D6qsjvZmZAADBmDbtm0o++WXoMpq2NwAANi3f5/Xue/l5eVBPYechpt/xWAAO3buwJZa1/gXLhyNL6NfAfq83uVySz8Frj3tMFs2ogF7498PItoA+DNVe/dF+PDdPrKHEqgff/wK+/adVDuMgGn5+PcH41eXFPG3tLRIEIm0ujr9q6WlBYMGDcKNN96IRx55xGOZL7zwAhYtWoS//e1vGD58OL7//nvk5+ejR48eePDBB+V+Sbqm95MSUk8cZqJNRHqjrVWjOmGz2dC3b1+89tprMBqNGDt2LGpra/Hiiy96TbqLiopQWFjovN3U1IS0tDRMnjwZ8fHxQcUj7rD/6CclJyE3Nzeosjr6qL3XfuiQIcg966ygylq7fS32YR9SUlLcYrRYLCgvL8ekSZOcw/W1xvDDl8DPwKBBg5A+yjX+994TgH6fAQCyIn6PJMMwv8s9v/55AIfw7YjR2Jw+CLV9klA7+GxcI9jXFjw1XE3o0u2O2zt7jCiKqKvbj+TkFBgEw6n7hVP7RyAKQ86ZgqgXpRtJIRWr1YoTJ77HzTdfpNnjxxc9HP++MH51SRm/YwSWlnR1+te4ceMwbtw4APB4PwCsXr0a11xzDa644goA9ulh7733XqcLqJLnOcyc1kxS4HFEpAzVku7ExEQYjUbU19e7bK+vr0dycrLHx/Tr1w8mk8llKPk555yDuro6tLa2IjLS/VrGUVFRiPJwGSiTyRR0Q8lqtCdCBsEAg0m6heAdqZnRaITJy7B5fzneK4PB4PX1SvFeyMZgf1+NBiOMp8UoGNqA7vsAAP8seAppPdL8L3f+8wCAC/7xHi445xxpYu0ii8WCsrIy5Obmavf998FisaGs7IC2jx8/MH51MX5o7vUHMv3LH+effz5ee+01/Pzzzzj77LPxww8/4JtvvsGCBQu8PkbOKWImnHrfAy7L8dmJIixtbUHF05nTYxRFe/1otVphsQSWOTneAVEE2mSY5uAsH+7lBzNFw2I99RhP0+eUoPcpMqJoBCC0TxHTX+at9/ef8atLjSliqiXdkZGRGDt2LCoqKjB16lQA9h/OiooKFBQUeHzMBRdcgHfffRc2mw2G9mTs559/Rr9+/Twm3LLTwW+U4+y47oemeWA2HAKM9kZOUlxSJ3ufxtE40tglwoiI1BbI9C9/PP7442hqasLQoUNhNBphtVrx3HPPYfr06V4fI+cUsWtwjfPfAV969Bp7GaIoynr5UqvV6lb+4cMXAEjEjz/+gO7d9wdUruMdaG5uRoUM8TvKP3bsGFZJOMXNYjvVyN25c6eql47V6xSZEycuBRCHtWvXoqnpsNrhBEyv778D41eXklPEVM04CgsLkZeXh8zMTGRlZaG0tBTNzc3O4WwzZsxAamoqSkpKAAD33nsv/vKXv+Chhx7CAw88gF9++QXPP/98yM4FC700ORDez2xYDPbra5sQg0hjF0+6OM5KaayHiYgoVP3jH//AO++8g3fffRfDhw/Hhg0b8PDDDyMlJQV5eXkeHyPnFLGOgp0iJgiCpNPMHDZgAwD7qLXTy58/3975MGrUaOTmjgnsCdqXMenWrRtyL5c+fofucXGSTnEzt5mBjfZ/Dxw4ELmT5IvdG71PkYmNtY+EzMrKwoUXBjeqUg16f/8Zv7rUmCKmatI9bdo0HDhwALNnz0ZdXR0yMjKwYsUK59n1PXv2OHu0ASAtLQ2fffYZHnnkEYwaNQqpqal46KGHMGvWLLVegix00IGuAvdTEFacAABEILrrxbGnm4jIo0Cmf/nj0UcfxeOPP46bb74ZADBy5Ejs3r0bJSUlXpNuOaeInV5eMARBkL3heXr5gmC/ooXRaITJFFxdJnf8vsoP5LO0Caeu5uFr+pwS9DpFRmi/WkpERETQx4+a9Pr+OzB+dSk5RUz1b1lBQYHX4eSVlZVu28aPH4/vvvtO5qi6SA9d0nqIsYusgn3FbJMQ0/UHM+kmIvIokOlf/mhpaXE5kQ7YE0abxi6HqBe6WgBL4iluXL1cOro6joh0jBlHMPTwQ6WHGANkNbQn3V3t6bZaT9UyTLqJiNx0dfpXa2srtmzZ4vx3bW0tNmzYgLi4OAwePBgAcNVVV+G5555D//79MXz4cKxfvx4LFizA73//e3VeJCmHmR0RhTlmHBrkqJpCsHO663xU1FbYk+4IoYtJd8cVZnU8JIaISC5dnf61b98+jBlzal7x/PnzMX/+fEyYMME5au2VV17Bk08+ifvuuw8NDQ1ISUnB3XffjdmzZyv62kKNJJ3IIbjYKvnGj5xIWUy6w4TuVy/3EL/VYJ/TbUIXh5d3TLrZ001E5FFXpn+lp6d7vJZ0R927d0dpaSlKS0slipDCVWfHGhGR1kh3cWnSpFCumE7N6XZfZMcnJt1ERKRz0lbvMp+Y1/uJ/xAWws1EIk1h0i0FmeoSVlGAr0npNtgv+2VAF4eId7yIPYeXExFRkPRfX8uceTGzI6Iwx6Q7GDLVIayaPHFv0oiCFQBgQBevL+no6RYEwMCvABER6Vc4diJz9XIi0htmHKEuhFdls6E96RYCTLo5tJyIiAgh2UggItIQJt0axirQNxEB9nQ7hpcz6SYiItK1UF67hohChyRJt9lslqIY/ZI4O2b10ZH3dyPo4eVMuomISA88VIW6yjXDcQy8TujqOCLSsYCS7k8//RR5eXkYNGgQTCYTYmNjER8fjwkTJuC5557Dvn37pI6TgqT7S4Z5OLNhE63t93Qx6XYWqff3hIiISAr6qg/Zu01EetOlrr4PP/wQs2bNwrFjx5Cbm4tZs2YhJSUFMTExOHToEDZt2oTPP/8czzzzDG6//XY888wz6NOnj1yxq08Hv/mhXDE5e7qFLp47CuH3hIjCm9lsxpo1a7B79260tLSgT58+GDNmDAYOHKh2aCFNzZRVmvPHrBfDDfsdiJTVpaR73rx5eOmll3D55ZfD4GHV55tuugkAUFtbi1deeQVvv/02HnnkEWkiDSMhvPaZpETYAAQwvNyRdLPGIaIQ8e233+Lll1/Gf//7X1gsFvTo0cN5QtxsNmPQoEG46667cM8996B79+5qh0tdpffqivUtEYW5LiXdVVVVfu2XmpqKuXPnBhQQyUSv9Z2PXmnHQmocXk5E4ezqq69GTU0Nbr31VqxcuRKZmZmIiYlx3r9jxw58/fXXeO+997BgwQL83//9HyZNmqRixNRV8k8R01d9yEuGEZHeBLyS1MmTJxEdHe3xvv3796Nfv34BB6U7Wq6rQqVe8tDgODW8PMCebiKiEHDFFVfgX//6F0wmk8f7Bw0ahEGDBiEvLw9btmzB/v37FY6Q5KCrqownuTVLV8cRkY4FvHr5ueeeiw0bNrht/9e//oVRo0YFE5N+yPxDxSrKN1uglwzj8HIiCiF3332314T7dMOGDcOll14qc0QkOVZXRES6FnDSPXHiRJx33nl44YUXAADNzc24/fbbcdttt+GPf/yjZAGGI5509E/AlwxzYNJNREQ6p4uqTOIgQ3mRWKXo4rghCiEBDy//61//iiuuuAJ33nknPv74Y+zfvx9xcXFYu3YtRowYIWWMFARHxaTfS4b5qljbF1Lj8HIiIgCAwWDw+XtvtVoVjCZ8yD7jWrd1OBERAUEk3QBw+eWX47rrrsOiRYsQERGB//73v0y4JcQqtiMP1+nm8HIiIhcffvihy22LxYL169fjb3/7G+bMmaNSVCQHnj+246JqweFxRKSMgJPuX3/9Fbfeeivq6urw2Wef4csvv8TVV1+Nhx56CM8995zf88tCgsS5G3///OMYXs7Vy4mI7K655hq3bTfccAOGDx+O5cuX44477lAhKgqa/F3puiqfiTYR6U3Ac7ozMjIwcOBA/PDDD5g0aRKeffZZrFq1Ch988AGysrKkjFG79PSbr9v8svNLhnF4ORGRb+eddx4qKirUDoMC5Gt4eTieP+44p1vQbwNHVeF43BCpKeCk+69//SuWLVuGnj17Oredf/75WL9+Pc4991wpYiMphEx+6eGSYYEOL3cWyRqHiELfiRMn8Oc//xmpqalqh0IkCZtoc/6b892JSA8CHl5+2223edzevXt3vPnmmwEHRKfyZFYjvp26TncXzx1xTjcRhaiEhASXJEQURRw7dgyxsbF4++23VYyMwpqMw8vZ001EetClpPu7777Deeed59e+LS0t2LlzJ4YPHx5QYLqih997PcTYRQH3dHN4ORGFqNLSUpfbBoMBffr0QXZ2NhISEtQJKgzIXsV6eAJdVWUyXjKMPd3B0dVxRKRjXUq6b7vtNgwaNAh33nkncnNz0a1bN7d9tmzZgrfffhtvvfUWXnjhhdBOunXwQ6X7a1n6iN+RdAuBzpJgRU1EISYvL0/tEEgGTCxdcSE1ItKbLiXdW7ZswaJFi/DEE0/g1ltvxdlnn42UlBRER0fj8OHD2Lp1K44fP45rr70WK1euxMiRI+WKOyywiu3AQ4Pj1PBy9nQTUfjas2cP+vfv7/f+tbW1nN8dQqTJx/XV4uBCasHjeRwiZXWpi9BkMuHBBx/Etm3bUFVVhZkzZ2LEiBFITU3FxIkT8eqrr2Lfvn147733mHAHQY6UMBTPkgc9vDwE3xMiCj/jxo3D3XffjXXr1nnd5+jRo3j99dcxYsQI/Otf/1IwOiLwkmFEFPYCXkgtMzMTmZmZUsZCcgjheingnm4HJt1EFAJ++uknPPvss5g0aRKio6MxduxYl1FoW7ZswebNm3Huuedi3rx5yM3NVTtk6ipWVy50P3WOiMJOlyfDJiQkoFevXm7/DRw4EFOmTEF5ebkccWqbTJUh61jA11kDGxdSIyLCb7/9hhdffBH79+/HwoULcdZZZ6GxsRG//PILAGD69Omorq5GVVUVE26d8jRaTdKqrKtXAVFZx0uGsdc7OGwSESmjyz3dp6+M6nDkyBFUV1fjyiuvxD//+U9cddVVwcamfTL9UPH3zxMPpyDY001EhDFjxqCurg59+vTBo48+inXr1qF3795qhxVW9JWyeiJzfcjh5UQU5rqcdHe2MmpGRgZKSkrCI+nWkxDMLzmnm4gI6NmzJ3bs2IE+ffpg165dsNlsnT+IJKXGJcOcd+lhITUZLxlGgWETiEhZAc/p9ubKK6/Es88+K3WxFKBQrphs7T3dQleHxYXwe0JE4ef666/HhAkT0K9fPwiCgMzMTBiNnk9G7tixQ+HowoPu8xedDS/v2NMdyu0cIgodkifdZrMZkZGRUhcbVhzVh+4rcUn4qkztvTkGXqebiMLYa6+9huuuuw7bt2/Hgw8+iJkzZ6J79+5qhxVW5E5ZZZ/TrbMWBxNt6fCtJFKG5En3m2++iYyMDKmL1TYd1FX6v2SYhwZHe9JtDPQ63bp/T4iI7C677DIAQHV1NR566CEm3QrTVz+xB3L3dMs4p5vzu4lID7qcdBcWFnrcfvToUdTU1ODnn3/GV199FXRguqCH33k9xBggR9ItdLW5w9O6RBSi3nrrLbVDCEuc060s9nQHj/0ORMrqctK9fv16j9vj4+MxadIkfPDBBxg4cGDQgZHeqkCZ+KpYhQCTbufj+Q4TEVHw9N/Tra+F1DpeMoyISA+6nHSvWrVKjjioA1nO3+o9v/Q0n80xp5sLqRERkYrkrmLlnyImc/kGaU9LcCE1ItIb3Z+c1QQNJ7QhXRkF2tPNOd1ERCQhuRtThgj3Z5C0epd7TneEtEsIWW1WScsLZ6HcTCTSEibdwZD5h4opoW8B93Q7MOkmIiIJyF2beEq6pSXzK/ByCbtAtdnaJC2PiEhuTLo1SI5cXr+rl3t/N7iQGhGRfBYuXIj09HRER0cjOzsba9eu9brv5s2bcf311yM9PR2CIKC0tNTjfrW1tfh//+//oXfv3oiJicHIkSPx/fffy/QKlCN7Smz0XodLUr3L3UaQeHh5x6S71doqadnhQrfNQiKdYtId6kImv/RQO3AhNSIiWSxfvhyFhYUoLi5GTU0NRo8ejSlTpqChocHj/i0tLRg0aBDmzp2L5ORkj/scPnwYF1xwAUwmEz799FNs2bIF//u//4uEhAQ5X4oipO3HdWcwyn1JL5O85cvY093S1iJp2UREcpD8Ot0kHaaEvomwz+nidbqJiKS1YMECzJw5E/n5+QCAxYsX45NPPsGSJUvw+OOPu+0/btw4jBs3DgA83g8AL7zwAtLS0lwuaxYqVzuJkbl8Xz3dkjBG+7z79PVhTr82tsf7RdHZyLQZjbBaLS77tFpbYbFZ0GpthWgQu/QcR81Hnf9usTDpJiLt00TSvXDhQrz44ouoq6vD6NGj8corryArK8vjvkuXLnU2AhyioqJw8uRJJUL1TOK6MGQ6p2XmHF7O1cuJiCTT2tqK6upqFBUVObcZDAbk5OSgqqoq4HL/85//YMqUKbjxxhvx5ZdfIjU1Fffddx9mzpzp9TFmsxlms9l5u6mpCQBgsVhgsVi8PcwvJpzq3Y05csL5b7HjCdkO//S4PS7KHtf6fXj+vIUQXR7Q4Z+i54aCp+3ObSLgGJAYZd4A8U3X5197b/u/DwLiEg+Fd9Y2EQAh0v5P239WwJrj/gDBQ3XprdiO+wpwHUr5/m+f4eZnIz0/cGMncXbin1v+icR5iTAZTIgwRCDCEIFYUyz+Z/z/4LaRtwVXuA+O4y/Y41AtomgEIOC664wwmfTYLoqAxXI5TKYI6LPlHIGxYzMwaZI+jx+9H/9Sxu9vGaon3Y4hbIsXL0Z2djZKS0sxZcoUbNu2DX379vX4mPj4eGzbts15W7X5ynr6juu2U9fHnO72Gp7Dy4mIpNPY2Air1YqkpCSX7UlJSdi6dWvA5e7YsQOLFi1CYWEh/vjHP2LdunV48MEHERkZiby8PI+PKSkpwZw5c9y2r1y5ErGxsQHHAgDX4Brnv0/2DK6vusfOo7C0ekkqJRCXcByCjN3phmOAQcZLX7fIPHr94ImDbtvu+fgeRO2MQlxEnKzPXV5eLmv5cunb91xs2ZKG5mY9t4Xk+84p4Ysv+qO8/D9qhxEUvR7/DlLE39Li32gb1ZPurg5hA+xJtrc5Y+QqdC4Z5v063bxkGBGR9tlsNmRmZuL5558HAIwZMwabNm3C4sWLvSbdRUVFKCwsdN5uampCWloaJk+ejPj4+KDi+eXa7Tjrw8H4bUQtlr5VCQAQHHWN46Su0GEb7DWR47YA4MNRw/H+mFFIGhWFi/+Sat9u6Fi3nNq3w/9c9hEcT+T8Kzj33bPyCLb/4yCORGRiXcy1LvGLVht2127C+KyRMJgMp8XveF7X+vH0Toq4+rfQ7fB/0HzDtTj6SJHrPs4yTqsrBcGtHAGCS53quD+29C/o9tfXcPPwabjikT+7PKatrQ2rVq3C7373O5hMJvfn8RBvx32MBiNara2ob66H1WaFxWZx/r1i2RVoMjcheXQyLh5wsVu5UrBYLCgvL8ekSZNgMsl8VkEGl15qwd///jnGj78AERJf0k0JbW1tWL16Nc4//3zdxd/YKOB3v7PHrNfjR+/Hv5TxO0ZgdUbVozTQIWzHjx/HgAEDYLPZcO655+L555/H8OHDlQhZUUwJO9G+kJqBq5cTEUkmMTERRqMR9fX1Ltvr6+uDOuHdr18/DBs2zGXbOeecg3/9619eHxMVFYWoqCi37SaTKeiG0qALBwIfAinD+yEvf3pAZRwE8D6AvoMH4XeDBwUVjyfft32P7f/4BAkpZ2DctTe53GexWLC/LAZJmbmBvxebNgGH/4NuCYnoNnycBBGfZsCZAIAYUwxi4l1HL1osFsRFxKFP9z5BfZZ9uvdx23beGedh5a8rsefYHtkTAimORbWkpDRj+PAIXcZvsQC7dx/XZfx1daf+refjB2D8jjL8oWrSHcgQtiFDhmDJkiUYNWoUjh49ivnz5+P888/H5s2bccYZZ7jtL+d8MNEqwggjbDYbrBZrUGV1ZDUaAYMBVqsVFltw471sVvvjRVF0e716mI9hsNlgBGC1WWE7LU5RtLb/7dprENra4JgB1Kbia9fD++8L41cX41eXGvPBlBIZGYmxY8eioqICU6dOBWDvpa6oqEBBQUHA5V5wwQUuU8MA4Oeff8aAAQOCCZeCotDpfYVPdifGJgIAjpw8oujzEhF5o6/xGADGjx+P8ePHO2+ff/75OOecc/Dqq6/imWeecdtfzvlgg38ZjOEYjn3792F92fqgyuqobtw4ICUFmzZtQtmuXUGVtf/n/QCA3bt3o6yszOM+Wp6PMdq8G+mwN8x+3uUav6XNfm3O3/b+5vW1edJr82ZcBKC5pQUVXXicXLT8/vuD8auL8atLyflgSiosLEReXh4yMzORlZWF0tJSNDc3O6eCzZgxA6mpqSgpKQFgH7m2ZcsW579ra2uxYcMGxMXFYfDgwQCARx55BOeffz6ef/553HTTTVi7di1ee+01vPbaa+q8SD3hAK0u6R7ZHQDQZPZv2CeRGrwtsEihSdWkW4ohbCaTCWPGjMH27ds93i/nfDBxo70WTElJQb/cfkGV1dHf2q9nOXLECOSeNhSvq776/ivUox4DBgzAZbmXudynh/kYxu//C+wEzj57CAYPy3W5L+Ire2NvQFo6cnNzPT3cI6H9c+/WrVuXHic1Pbz/vjB+dTF+dakxH0xJ06ZNw4EDBzB79mzU1dUhIyMDK1ascI5M27NnDwyGU1N79u3bhzFjxjhvz58/H/Pnz8eECRNQWVkJwH5ZsQ8//BBFRUV4+umnMXDgQJSWlmL69MCGdmuJXDmxagvFSkWl+B1J97HWY6o8PxHR6VRNuqUYwma1WvHjjz96TZ7knA9mNdqHNxsMBuciJlJwVFFGoxEmYxevQX0aY/vjDUaD19er6fkY7Y06o9EI42kxOlYvj4joYvzt74lg8P6eKEnT778fGL+6GL+6lJwPprSCggKvdbEjkXZIT0/3a+HOK6+8EldeeaUU4UkniIxZ5ylxyIqPsp9cZ083aZHez6VRYFQfXt7VIWxPP/00zjvvPAwePBhHjhzBiy++iN27d+POO+9U82VoVuisXu4JF1IjIqIA6ajhq/u6XOH4Y0326YMn2k50sicRkTJUT7q7OoTt8OHDmDlzJurq6pCQkICxY8di9erVbiuiKkqmiltH7QEZ+bpOt32kAa/TTUREIUmxakrnSf1pTEb76BGLVVuLFBJR+FI96Qa6NoTtpZdewksvvaRAVH4IrTpK47xfp9sg8DrdREREXSZ3PahSPWsytCfdNibdRKQN0k1EJsnIkcvrfjEWT9qv093lnm69D9MjIiLSE4XrXfZ0k5aFYpOcOsekO9TpPr/0Mbw80J5uB/7qERGRBGSvanVflysr0hgJAGi1tqocCRGRHZNuDWNK2IGHBFkMtqebSTcREQVB7lokJEepKYDDy0kvOPgyfDDploLEdaIs37+QrLeD7OkmIiJio1c+as3p5vByItIYZivB0EFFrfvLjPjAhdSIiChgrAI6kLmtoPScbvZ0k4ax+RmemHRrGL+T8F1RC7xONxERhT75TqCHZkuDc7qJSGuYdGsQVy/3xPslw3idbiIiCkmspgLC4eWkF+wHCh9MuqWg5UoxlL/MAoeXExGR+kK5qg0Kr9NNRASASXdwZK5lmRL6JsIKABACTbqJiIiCoFg9rfdqi9fpJnJin094YtIdLnT7Bfdxne5Ae7od+KtHREQaptjUsBA7Ge1oF9hEm8qREBHZMenWoNCq+qTiqeHB63QTEVGQwrrSlbkeVKmeNQpGAEy6SftC7HwX+cCkO8SF9CXDuHo5EREFiuddQxZ7uolIa5h0S0Gmipvtgc7YK1OjwRjYw9nTTUREOqD7E+gKx+9Iuq2iVdHnJfIHm5/hiUl3MGSqQ3jJsI46n9PN4eVERKQm2VJKVlMBcZyMZ083EWkFk+5Qp/OT404eE+Qgr9NNREQUBObEnVDp5Lazp9vGnm7SNr0PYiH/MVvRMFbmvgW8ejl7uomIiDqQueWvcGbBhdSISGuYdGuQLFWTXvNLnxU1k24iIgqSHnqa5IoxROtBLqRGWhaiXzvqBJNuKWj4y6P7xVec3N/koK/TTURE4UvDdbeDftdjURcXUiMirWG2EgyZ81lWtb6JsFemXEiNiIjUFCqntyWn1nW6uZAa6UTI9I1Rp5h0hwn9ni338WsU7OrlREREQdBrzao4lS4ZxqSbiLSCSbcGMSX0xMPwcl6nm4iIwkDoTBVTBlcvJy1j8zM8MemWgChouDLUcGhB43W6iYgolClWTcnUWFBreDlXLycijWHSHQzO6Zafl7P7oigC7Sc7DDyMiYiIAhCaLQ0upEZ6wUEs4YPZigbxkmEenHa2XOzwLhkM7OkmIqIA6aHRq4cYfeGcbiIKc0y6Q1yozgPrWJFyeDkREXWZhFWAfJfRZj0ViI5rvYRqO4j0i1/r8MSkW8P4nQS8NWU6Lo5i5HW6iYhIBaynO6FSdmHo0C7gEHMi0gJmK1KQuE6R45ys/s+Wu8ZvsVmc/zYKpq4VxZ5uIiIi5Sjc2+xYSA3gEHPSNg7ECB9MuoOhhy+KHmIMQJutzflvJt1ERBTKZB8iHWIt/4493Uy6iUgLmHRrGFNC71yT7gCv001ERKRlsjcEQrOl4TK8nNfqJo1hn094YtIdLnT7BXecfT9teLm1fXi5zeBSufpXJHu6iYiIZKfWdboNHF5ORNrCpFuDQmuQlzycPd02E3NnIiIKnASVLuvtTqh0yTCASTdpW4jN7CAfmHQHw3MnrGSkKDZUL5VxKumO6PqD2dNNROSXhQsXIj09HdHR0cjOzsbatWu97rt582Zcf/31SE9PhyAIKC0t9Vn23LlzIQgCHn74YWmD9pcEVYBitUhoVuWy4erlRKQ1TLrDhG5XL/eSIDtXL2fSTUQki+XLl6OwsBDFxcWoqanB6NGjMWXKFDQ0NHjcv6WlBYMGDcLcuXORnJzss+x169bh1VdfxahRo+QIPWQoV3fLlNWrNbycq5eThrH5GZ6YdGsQT2h3ztnTbeXwciIiOSxYsAAzZ85Efn4+hg0bhsWLFyM2NhZLlizxuP+4cePw4osv4uabb0ZUVJTXco8fP47p06fj9ddfR0JCglzhkz9CtALteLKCC6kRkRYw6Q51IZrBn1pIjT3dRERSa21tRXV1NXJycpzbDAYDcnJyUFVVFVTZ999/P6644gqXssk33U8VUyF+xxBzMVQbQkSkKwFkLORGw3O69c9zZck53URE8mlsbITVakVSUpLL9qSkJGzdujXgcpctW4aamhqsW7fOr/3NZjPMZrPzdlNTEwDAYrHAYrEEHAcAiFYRRhhhE22wWgLrDbUKAhARAZvNBotV+h5Va3uZoii6vV7H7WDeB4PVCiMAm80Ga5DvZ1fLlyJ+n88tGGATbTC3mmV5DrnjlxvjV489ZBMAoLXVAh2+BF2//4C08ftbBpPuYMh08lSWYnWfX7q+AK5eTkSkL3v37sVDDz2E8vJyREdH+/WYkpISzJkzx237ypUrERsbG1Q86T+lYzRGo6G+AevK/DsJcLofBwwAMjJQX1+PMh+LzAXq0A+HAACNBxpRVlbmcZ/y8vKAyz/TshUjAPxWW4v1XsoPRvrmzRgNYH9dHb6XIX6f2htTn1d8jsTIRHmeAzLGrxDGr7yWlggAVwAAKioqEBWl33UH9Pj+dyRF/C0tLX7tx6Q7xOl+SJoXXEiNiEg+iYmJMBqNqK+vd9leX1/f6SJp3lRXV6OhoQHnnnuuc5vVasVXX32Fv/zlLzCbzTAajS6PKSoqQmFhofN2U1MT0tLSMHnyZMTHxwcUh4O4y14X9O3bF7m5uQGVUddej/RNSgq4DF82HdmEPdiDxD6JbuVbLBaUl5dj0qRJMJlMAZVv2LYV2AickZqKflnSx2/YswcA0C85WZb4fTH+aESbtQ2/u+R3SItPk7x8ueOXG+NXz7Fjp/596aWXIj5eX/ED+n7/AWnjd4zA6gyTbg1jSgh46/fvOKe7y7kzk24iIp8iIyMxduxYVFRUYOrUqQDsQ4QrKipQUFAQUJmXXnopfvzxR5dt+fn5GDp0KGbNmuWWcANAVFSUx0XZTCZT0A0la4R96LZBMMBgCmyJG0fEBoMBJoP0y+QYI+zPIEDw+nqDei/a33ODIMAgR8PZj/Kl+Cw9cczpNhqNsiYFcsWvFMavvI7h6jH+jhg//H48k+4wodtLhjm5xn+y7aT9H5YYFWIhIgp9hYWFyMvLQ2ZmJrKyslBaWorm5mbk5+cDAGbMmIHU1FSUlJQAsC++tmXLFue/a2trsWHDBsTFxWHw4MHo3r07RowY4fIc3bp1Q+/evd22k538dbfe2wbeOZJuXjKMtCxEB6SSB0y6pSBxnSXp9y9Ev8wtlvb5E5YA5vSxp5uIqFPTpk3DgQMHMHv2bNTV1SEjIwMrVqxwLq62Z88eGDr07u7btw9jxoxx3p4/fz7mz5+PCRMmoLKyUunwSQtUrGeZdBORlmjikmELFy5Eeno6oqOjkZ2djbV+LkaybNkyCILgHPqmOJkTWqaE3nVMupk7ExHJo6CgALt374bZbMaaNWuQnZ3tvK+yshJLly513k5PT4coim7/+Uq4KysrUVpaKt8LIG1QoTvPMUqASTdpDdut4Un1pHv58uUoLCxEcXExampqMHr0aEyZMgUNDQ0+H7dr1y784Q9/wEUXXaRQpDqn1y+4l17p463H7f9gTzcREalM7pQyVBdFlRN7uolIS1RPuhcsWICZM2ciPz8fw4YNw+LFixEbG4slS5Z4fYzVasX06dMxZ84cDBo0SMFolcGqtXONLY32f7QEcBkQJt1ERCQB2WsRvVdTGhheLrJVRRrG82nhQ9U53a2traiurkZRUZFzm8FgQE5ODqqqqrw+7umnn0bfvn1xxx134Ouvv1YiVN3q7Oz4kSOR2LXLdSVFrbDYLOh5tAV9AGzf14jdJ7eizdaGNpsFn2370r7T8WTmzkREFDg2ehGKbwJ7uolIS1RNuhsbG2G1Wp2LsjgkJSVh69atHh/zzTff4M0338SGDRv8eg6z2Qyz2ey87biWmsVigcViCSxwBytghBE20QabRbofddFoBAwGWNvaYAnyFJjNZo9LtIlur3fJEhvuuefyoMqXTfxeIP9iLDtnF6Z1B17+4Rn85egz7vvtPxdWaxssFv/fJ8FiQQQAGwBrsMdAEByfR9DHoUoYv7oYv7qkjF+v74Hu6emErWw5sUJvggrdeUy6SavYWRSedLV6+bFjx3Dbbbfh9ddfR2Kif8OKS0pKMGfOHLftK1euRGxsAPOBOxi6YyiGYAj27t2LH8t+7PwBfjpw/vlAnz7YsGEDetTWBlVW7U7747f/uh0tZS0u9/3nPyMBDILRaENEhLYqpbZz/wZrwq4OGyKBE90AmwmwRQBWEwx7JiD5+EQcP74KZWWtfped9sMPOBfAgcZGfFdWJnnsXVVeXq52CEFh/Opi/OqSIv6WlpbOdyKiLmHSTURaomrSnZiYCKPRiPr6epft9fX1SE5Odtv/119/xa5du3DVVVc5tzl6ciMiIrBt2zaceeaZLo8pKipCYWGh83ZTUxPS0tIwefJkxMfHB/cCvrP/SUtLQ1puWnBldfBnoxEAkJGRgdzRo4Mqq7yiHAdwAIPPHIyJuRNd7vv0U/vfxx6zwsN5CVXlfbQF720GRvQdAZzYhNLcF7DgrPtd9rFYLCgvL8ekSZO6dGF74eBBAECfPn2Qm5sradxdEWj8WsH41cX41SVl/I4RWESnk/863TJTMX4BXL2ctI9zusOHqkl3ZGQkxo4di4qKCudlv2w2GyoqKlBQUOC2/9ChQ/Hjj649yk888QSOHTuGl19+GWlp7olvVFQUoqKi3LabTKagG0pWgxWAfR660WQMqqyOHFWUKSICwTZFHddQNRgNbq9XEE7Fb5IwfikcOnkIANDNFAOcAIzGCBi9fF5d/izbT2oYDAYYNNDYl+JYVBPjVxfjV5cU8ev59ZMd283a41xIjVkNEWmA6sPLCwsLkZeXh8zMTGRlZaG0tBTNzc3Iz88HAMyYMQOpqakoKSlBdHQ0RowY4fL4nj17AoDbdkXp4US0HmLsoNnSDAAwGmQ8RPXeg0BERKpSqhbRfeLIOd1ETmx+hifVk+5p06bhwIEDmD17Nurq6pCRkYEVK1Y4F1fbs2ePs7dWc2SqQ6Qs1p+KWotffsd1uCMEGXrg9d54ISIi6Wi5SlCsftbymxAYJt1EpCWqJ90AUFBQ4HE4OQBUVlb6fOzSpUulD0gj5K5rtZx7Nrfae7ojDO1Jt5RnBnidbiKisCcKGq4ElSJ3PaiB63Qz6SYt03JbnKSl0S5kkpreFmNxDC+PkHN4OREREYUkR7uHSTcRaQGTbg1S6qSXljt8zW32a6sb5BxersUXTkREuiN7va333jAV53SLun/zKNSw+RmemHQHw/E7ruUvj07rGqtoX1n91FvL4eVERKQtctciehulpiUcXk5EWsKkW8MkrWp9FKbFOt1RSbLBQUREpFOc003kE+d0hw8m3Rqk9PByLXIm3XIUzp5uIiKiU+RuEPCSYUQU5ph0hzi9XtvzVNLdnhjLkSAz6SYiIh1Uk/LV5aFbDzraD0y6SWvY/AxPTLo1TKnvpBa//FabVb7CdXoigoiIJKTBus+NHmL0RQPDy/Xa+UBEoYVJdzD0sJBaO09zo7VcD8k6p5vDy4mISEIark7DFoeXkx5ouS1O0mLSrUGSfv90+mV2G14uBybdREQUBMVqEZ3W5U6c001EYY5Jt4bJXZmLov0ZtJh7nkq6ZRhOwNOKRESkA8pdwSP06kUm3aRVWmx3k/yYdIcLHX3BRVGECBmHgHN4OREREWRvHKhYzzpOWDDpJiItYNItBYnrFKXPN2st9+xYQco6vJyIiIhCknMhtRDsxafQwcGX4YNJdzB08EXxtWqnVr/orkm3+7+Cxp5uIiJy0Ghd2JHuV+DmnG4iCnNMujVMypRQuXlhwfOcdEuISTcREUl5Lle6olyxmgoYk27SKjY/wxOTbg3i8PIOFaTWgiMiImrHGqoTGrhON5NuItICJt2hzkcGr9XRah57uqWsuNnTTURE1IHMDQIVGhyONWGYdJOWabUtTtJj0h0MGa5m1ZGkxeoov7SKVue/ZQ2bSTcREemBXA3zEK4H2dNNRFrCpDuMabXD16WnW85LhhEREWmYntZj8UgDw8t1vwgdhRy9f60pMEy6NUjK6kGPlY3ns9IcXk5ERET+YU83EWkJk24NUyol1FruKfvq5c7CNfbCiYhIeRKcm5b79LYeT6C74CXDiDzS+1eb/MekO0x4GqKm1S+6awXJ4eVERCQDCaoX2U/d8txwwBztHibdRKQFTLqDIdNCauGeElpt9oXUDIKhw1vL4eVERESykOtktAbmdDPpJq1h8zM8MenWMEm+k37Uo1r78jsqSHuFKeMpCK29cCIiIkWFbj3oXEgt7LsyiEgLmHSHCw/1qlZHWbsm3TLQ6gsnIiLyRO/VFud0E3nEJmn4YNKtQeH+/fOYdMvRK82ebiIi0jDdXzJMRUy6iUhLmHQHQ6Y53VLyteKpVqc2W0X7nG6jYJTnFCBPKxIR+WXhwoVIT09HdHQ0srOzsXbtWq/7bt68Gddffz3S09MhCAJKS0vd9ikpKcG4cePQvXt39O3bF1OnTsW2bdtkfAV+0MHq5brFOd1EbrTW7iZlMOnWMCm/k3o6W67Y8HIdvSdEREpbvnw5CgsLUVxcjJqaGowePRpTpkxBQ0ODx/1bWlowaNAgzJ07F8nJyR73+fLLL3H//ffju+++Q3l5OSwWCyZPnozm5mY5X4pneli9nAImgKuXE5F2RKgdAKlPa7mn56Sbw8uJiJS0YMECzJw5E/n5+QCAxYsX45NPPsGSJUvw+OOPu+0/btw4jBs3DgA83g8AK1ascLm9dOlS9O3bF9XV1bj44oslfgWhQ/7rdMtcvopzunV/jXMKaTw8wwd7ujVI0u+fj8K0+kWXffVyrb5wIiKNaG1tRXV1NXJycpzbDAYDcnJyUFVVJdnzHD16FADQq1cvycoMKXq/EDiHlxMRAWBPt6ZJWlXpqFOXw8uJiNTV2NgIq9WKpKQkl+1JSUnYunWrJM9hs9nw8MMP44ILLsCIESM87mM2m2E2m523m5qaAAAWiwUWiyW452+zIQIREEUx4LLaBAGIiIBos8FitQYVjyfWNnuZnmJ03A7mfTDYrDDC/llYg3w/PRHa2hABwCaKbuVLEb9P7VW9pS34Y8UT2eOXGeNXj/2nwgTA8VumajgB0fP7D0gbv79lMOkOhg4WUvOH1nJPq619ITWDscNWCYNk0k1EpLr7778fmzZtwjfffON1n5KSEsyZM8dt+8qVKxEbGxvU8/ff0h9jMAYHDhzAmrI1AZXxwxlnAGPH4kBjI8okHAHgcLTaPhLg8OHDKCsr87hPeXl5wOUPtGzGKAD79+/H917KD0baxo04F8CBhgZ8J0P8vtTtrwMAbNqyCWUHpH9tDnLFrxTGrzybDQCuAWBf5yI+vlXVeIKhx/e/Iynib2lp8Ws/Jt0apNTgZ62OspZ9eLkDk24iIo8SExNhNBpRX1/vsr2+vt7rImldUVBQgI8//hhfffUVzjjjDK/7FRUVobCw0Hm7qakJaWlpmDx5MuLj44OKwbbPXtf06dMHubm5AZVxqL0eSUxMDLgMX35u+xk7sRMJPRPcyrdYLCgvL8ekSZNgMpkCKt+wfRewHujXrx9yx0sfv3DwIADP77EU8fuy7KNlwBFg6DlDkZsl/WuTO365MX712DrMeJgwYQL69dNX/IC+339A2vgdI7A6w6Rbw6RICfW4gIhiw8uJiMijyMhIjB07FhUVFZg6dSoA+xDkiooKFBQUBFyuKIp44IEH8OGHH6KyshIDBw70uX9UVBSioqLctptMpqAbSm0RbQDsV/cItCzHowSDASaD9HVWhMneTPMVY1DvRfuIMoNBgEGOhnN7mQbBe/lSfJaeRBjt753BYJA1KZArfqUwfuV1TLojIvQXf0d6fP87kiJ+fx/PpDtMeLpkmFZHWXNONxGR+goLC5GXl4fMzExkZWWhtLQUzc3NztXMZ8yYgdTUVJSUlACwL762ZcsW579ra2uxYcMGxMXFYfDgwQDsQ8rfffddfPTRR+jevTvq6uxDgHv06IGYmBhlXyCrgJCuB7mQGhFpCZNuDQr3flhHBWkUjPImyCHc2CAiCta0adNw4MABzJ49G3V1dcjIyMCKFSuci6vt2bMHhg69u/v27cOYMWOct+fPn4/58+djwoQJqKysBAAsWrQIADBx4kSX53rrrbdw++23y/p69EyPo9ZcqHjJMCbdpDVsfoYnJt1S0PKXx496TmtffqtoX0iNw8uJiNRVUFDgdTi5I5F2SE9P7zQ51H3yqDSN1c96YgCTbiLSDl6nW8PkvmSYVts+HF5ORER6otHqVH0q1rOOaXVMuknLtNoWJ+kx6SbN8Zx085JhRESkLaxFtMvRhuDoCiLSAibdGiRl9eBPZaO13NM5p9tgBC8ZRkREYU/uvFHuxJRzuomc2PwMT0y6gyFzHSLld9LX6uVaY7VxTjcRESlEw1WCp7pb4meQuXj1sgsm3USkJUy6SXM4vJyIiGTHKiCkMekmPWA/UPhg0q1Bkn7/fBSm1dzTNemW4ddIqy+ciIiIJCGAC6kRkXZoIuleuHAh0tPTER0djezsbKxdu9brvh988AEyMzPRs2dPdOvWDRkZGfj73/+uYLTKCdeUUPbVyx2YdBMRkQTkn3Kt8+4wFed0i1qeP0BEYUP1pHv58uUoLCxEcXExampqMHr0aEyZMgUNDQ0e9+/Vqxf+9Kc/oaqqChs3bkR+fj7y8/Px2WefKRy5zvjIL7WWezoXUhOMpzZKGaTeGy9ERKQJslefGqufu4xzuomIAGgg6V6wYAFmzpyJ/Px8DBs2DIsXL0ZsbCyWLFnicf+JEyfi2muvxTnnnIMzzzwTDz30EEaNGoVvvvlG4chx6tS2xHWKUimhVnNPq9hhITU5guTwciIiog402iAIApNu0gOttsVJehFqPnlrayuqq6tRVFTk3GYwGJCTk4OqqqpOHy+KIr744gts27YNL7zwgsd9zGYzzGaz83ZTUxMAwGKxwGKxBPcCrIARRthsNtgs0v2oi0YjYDCgra0NliC/jTarzfn39NdrswkADLBarbBIGH+wWi2tAOzzsWyiCAOANmsbxNPid7yern6OhrY2GAFYRRG2YI+BIAQav1YwfnUxfnVJGb9e3wNSkFwNc6VOPvOSYUQU5lRNuhsbG2G1WpGUlOSyPSkpCVu3bvX6uKNHjyI1NRVmsxlGoxF//etfMWnSJI/7lpSUYM6cOW7bV65cidjY2KDiH757OAZjMHbt2oUtZVuCKqujoxdfDCQk4Pt16wAvw+z99dtvvwEAtm7bisNlh13uq6sbC+AM/PzzNpSV7QjqeaS07sg6AMDRI0fR2NiKvgB++GEjfttc5nH/8vLyLpU/5JdfMBTAnj17sLHMc5lK6mr8WsP41cX41SVF/C0tLRJEQgHTcE+T/JcMC12O945JN2mRIIgQRX6/w4mqSXegunfvjg0bNuD48eOoqKhAYWEhBg0ahIkTJ7rtW1RUhMLCQuftpqYmpKWlYfLkyYiPjw8ukAr7n/T0dKTnpgdXVgfPGO1zmceNG4fLgzw7/PEHH+MQDmHo0KEYnzve5b6337Z/2YcMGYLc3KFBPY+UzFvNwC4gsVciEhNjgHpg9OjRGDUg12U/i8WC8vJyTJo0CSaTye/yDevsSX3/AQNwRm5uJ3vLJ9D4tYLxq4vxq0vK+B0jsIhCDud0ExEBUDnpTkxMhNFoRH19vcv2+vp6JCcne32cwWDA4MGDAQAZGRn46aefUFJS4jHpjoqKQlRUlNt2k8kUdEPJarA64zGajJ3s3XUREREItinqONNrNBrdXq8g2DrcJ338gTIY7RWl0WiEoT3+CGME4OXz6vJnaThVvlEDjX0pjkU1MX51MX51SRG/nl8/2Wm4szxsOVcv56RZ0jAenuFD1YXUIiMjMXbsWFRUVDi32Ww2VFRUYPz48T4e6cpms7nM21acTCdyJS3WQ2FaXU/MauuwkJqTDKuXa+2FExGRrihVi+g+ceScbiIKc6oPLy8sLEReXh4yMzORlZWF0tJSNDc3Iz8/HwAwY8YMpKamoqSkBIB9jnZmZibOPPNMmM1mlJWV4e9//zsWLVqk5ssgCSl2nW4iIiItU+zcsM6Teg+YdJOWCQJ7ucON6kn3tGnTcODAAcyePRt1dXXIyMjAihUrnIur7dmzBwbDqeSrubkZ9913H3777TfExMRg6NChePvttzFt2jS1XoLkJP0O+lGY1jp8XZNuXjKMiIhIHjLXgyrWswK4kBoRaYfqSTcAFBQUoKCgwON9lZWVLrefffZZPPvsswpEpT4pqypPK6Bq9Qybo4I0CkYA9qHmklbcTLqJiIhCGnu6SQ+02hYn6XH8bjAcXxTmbpJSbHg5k24iItJDo1cPMfqi4pxuUfdvHhGFAibdGqRU9aDVDl+r2GEhNTkqap5WJCIiKQdQSVeUC91fp5uXDCPySO9fbeo6Jt0hTo8rnsre063Vsw1ERKQrIVOL6LCt0Bkm3USkJUy6NUzuS4Y579JYq8E5p9vQ8drhnNNNREQkLYXqQV4yjMijEDzfRV4w6Q5jWv2iy756uQOTbiIi0gE9jlpTm2NoPpNuItICJt3BkGkhNaUvGaY1VluHOd1yYOOFiIj0QO/nhjUwp5sLqZEWsd8n/DDp1jC5Lxl26j4Jn0gCnud0c3g5ERHJgDlZSOLwciLSEibdIc7XkDStdvi6XqdbxtXLmXQTEYUvHaxertwTyIxzuok80mpbnKTHpFuDZBlerqP8ktfpJiIiPZC7FlHukmGh1/Jn0k1EWsKkOxgy11FyDy/Xaoevx6RbyiB5WpGIiEj+BoCKDQwBXEiNtEtrbW+SH5NuKWh4ITU9rnhqFTsspCZH/Fo920BERESScC6kpsN2EBGFHibdGiTpiHA/CtNa7in78HIm3UREpCO6Txw5p5vII71/tcl/TLo1TKnh5VrjupCagwwJMpNuIiLSMr1XUxq4ZBiTbiLSAibdGhTuw8sV6+kmIiKSoEpgraI9TLpJy9jvE36YdAdDppXBZSnW5/BybTUXXJNuzukmIiIZSFAFhE4toq12gBQcI/yYdBORFjDp1jBJ53R7ukujdazV1mEhNQc5EmQm3UREpAey1dcK1YMqzukWQ/CEAoUOrbbFSXpMujVIjuHlyl3rM3jOOd0GYyd7Boi/cEREpAN6qrs94pxuIiIATLo1Sanh5VodZc3h5URERBQMJt2kZWyChh8m3cGQucNU7uHlWuV5ITUJf52YdBMR+WXhwoVIT09HdHQ0srOzsXbtWq/7bt68Gddffz3S09MhCAJKS0uDLpPs9LgoqgteMoyIwhyTbinItJCaJGX5Mbxca7mnVfQwp1sOWnvhREQasnz5chQWFqK4uBg1NTUYPXo0pkyZgoaGBo/7t7S0YNCgQZg7dy6Sk5MlKVMv9D7lOhQJ4EJqpH16P59G/mPSrUFKDy/XGsdCakbBKE+QWn3hREQasmDBAsycORP5+fkYNmwYFi9ejNjYWCxZssTj/uPGjcOLL76Im2++GVFRUZKUqYggqoSQyYnlqhc1MKdb96MEiCgkMOnWIEmTbh3WNY6ebteF1Di8nIhIKa2traiurkZOTo5zm8FgQE5ODqqqqjRTZlBYBSCU3wQOLyctYxM0/ESoHQB5J+X3UU/Dy9tsbQDae7rlwKSbiMinxsZGWK1WJCUluWxPSkrC1q1bFSvTbDbDbDY7bzc1NQEALBYLLBZLQHE42Kw2RCACok0MuKw2QQAiIiDabLBYrUHF47H8Nnt96ClGx+1g3gfBakUE7ImpNcj302P5bW328m3u5UsRvy82mz3ZttqssjyH3PHLjfGrzZ6CtbW1QY8vQe/vv5Tx+1sGk+5gyNSLLMecbs/3SfhEEnIOLzcYAauMQTLpJiLStJKSEsyZM8dt+8qVKxEbGxtU2WdsOgNjMRYHDx5EVVlgPe3rU1KAceNw6NAhlH37bVDxeHJs4zH732PHUFZW5nGf8vLygMvvb/kRYwDU1zdgrZfyg9Fv/XpkATh8+DC+kSF+XzYc2QAAaDzY6PW9k4Jc8SuF8avDZrsSgBFfffU1tm07oXY4AdPr++8gRfwtLS1+7cekWwoyLaQm6fByHeWXjuHlEYYOh6eUCbJWzzYQEWlEYmIijEYj6uvrXbbX19d7XSRNjjKLiopQWFjovN3U1IS0tDRMnjwZ8fHxAcXhYDto7wnt3bs3cnNzAyqjpb1uSujVK+AyfNkVswu/4ld0797drXyLxYLy8nJMmjQJJpMpoPKFHXVANZCU1Be5F0gfv9DaCgBISEiQJX5fzFvNwC6gZ0JPWT4bueOXG+NXl8Fgn/5w0UUXYfBg/aVjen//pYzfMQKrM/r7lMNIuA4vd1lITQ4cXk5E5FNkZCTGjh2LiooKTJ06FYB9uG5FRQUKCgoUKzMqKsrjomwmkynohlKb0T50WzAIAZfleJRgMMBkkH6ZnIgIezNNELzHGNR7YbTXswZBgEGOhnN7/L7Kl+Kz9CTSFAkAECHKmhTIFb9SGL9a7G3RiIgIncZvp9/3306K+P19PJNuDVJqeLlWuS6kJuPq5Uy6iYi8KiwsRF5eHjIzM5GVlYXS0lI0NzcjPz8fADBjxgykpqaipKQEgH2htC1btjj/XVtbiw0bNiAuLg6DBw/2q0zyTI91uQsVr9Mt6nFFWQp5bIKGHybdGqT08HKtffGdSbdcPd0OWnvhREQaMm3aNBw4cACzZ89GXV0dMjIysGLFCudCaHv27HEOkQSAffv2YcyYMc7b8+fPx/z58zFhwgRUVlb6VaYqtJyTyV1NyV0PauCSYVy9nIi0gEl3MGSeLy338HKtnjh3WUjNScJ3w8YKmIjIHwUFBV6HfjsSaYf09HS/emR9lakonncNaUy6SQ+02hYn6fE63RrE4eUy93Q7km6jzD3pREREpAqh/awKk24i0gIm3RokSwe6joaXO6/TbTDKcwrQcS1VJt1ERCQB2U9v6+/8uSsV53Qz6SYt0lrbm+THpFvDJJ3T7ekujVbinlcvl/DXiUk3ERFJQP4p1wq1zOVqEGhgTrceR/wRUehh0h0MmX7H5RherljFLQHX1cvleAIm3URERKE8sZ093aQHPCcUPph0S0HiOkup4eVa/aK79nTLOLxchmuqEhGRzmi0LuxI9721HF5ORGGOWYeGyT28XKtcerodlaWUi6pxITUiInK0gLSck+m9I1oDw8uZdJMW6WgAKkmESbcGKT28XGtffJeebmfSLeGhyuHlRETkqAKsqkZBMnG0e5h0E5EWMOnWIEmHl7cXJhh0dJ1ulzndTLqJiEgGEe1/2wIvwlGzMq3THvZ0kx5otS1O0mPSHQyZviiO6kGKD8dmtZfmKenWKo893VIeqpzTTUREEvR0O/J22TvLZWuYK3TaQIXMIiYiBgBwsu2k4s9NRHQ6Zh1SkDifdVTeUvTDitb24eVG/Qwvb7W2AgAijZEcXk5ERPKQoKfbUYQl2Fi8kP3KI4b2V2AL4k3wRcUGRozJnnS3WFpUi4HIG621vUl+TLo1SNKk22ZPug1G949aq0NaTrSdAOCoMGVIurmQGhERtVcBgjXw1q+p/a9MKav8hPZXIMp12kA9saZYAEy6iUgbmHRrkJRJtx6HlzuGgkVHRAPt87vZ001ERJLSQU+37AztSbdNt6/AK0fSfaLthP4vuUYhi4dm+NBE0r1w4UKkp6cjOjoa2dnZWLt2rdd9X3/9dVx00UVISEhAQkICcnJyfO4vK5m+KEoNL3d80bU2xOWEpb2nOyKGc7qJiEgeEszpVqqnW7akUamkW8U53QDndROR+lTPOpYvX47CwkIUFxejpqYGo0ePxpQpU9DQ0OBx/8rKStxyyy1YtWoVqqqqkJaWhsmTJ6O2tlbhyDvQ8pxuH8PLtcoxFCzG1CHplvLMQFt78ygiwvd+REQUuiTo6XYk3bKlrHKfFJc76VbxrL6jpxsAjrceVy0OIk+01uFF8lM9E1uwYAFmzpyJ/Px8DBs2DIsXL0ZsbCyWLFnicf933nkH9913HzIyMjB06FC88cYbsNlsqKioUDhy+Ug6vLytfXi5ThZSs9qsOHzyMACgd0xvwGa232GIku5JWtrnd8XG+t6PiIhCl6OSDWLhbgnydnUZQndOt9FgtLcjAOw/vl/laIgo3Kna1dfa2orq6moUFRU5txkMBuTk5KCqqsqvMlpaWmCxWNCrVy+P95vNZpjNZuftpqYmAIDFYoHFElwl892P23ARRuBvP+/G0n/vBgCI7RmsKAiAIJy63XEbBIgC2v+NU/sJgNVoxMlLMgEAH4+fibijx08bxt5enmj/l+g4DS46/gjte4kQIWDfz2cBAI4uuxq/Ve09dd1uAXgzExDHApE7RBx4Bi73edchGMH15uln5D0XI7o9R8frkttEG/bCBkEAkl4bA/SrBwDYHv0T0NTDtXxRxLi6OghLl8LmKWgvw9kMNTUAgLbYWIhBHgPBcBx/wR6HamH86mL86pIyfr2+B7rnWEhthwDc4eF+P05IDwTwevu/v/L/YX6znOiHURfeDwD49MpjbvcLlovx+esnAQQ4fFrMBNp+s//7Fc8jDINiGwdc0l7+JPfE1ySOw+d/aZT+edv9TfwBALD3a2AvpB8RGYFMrJTjfVMI41fPe1n2vzseAHaoG0rA9Pz+A4AlagiQq9zzqZp0NzY2wmq1IikpyWV7UlIStm7d6lcZs2bNQkpKCnJycjzeX1JSgjlz5rhtX7lyJWKD7Ok0xJ0LANh1ziB8PXVQUGWdLuZgC+rXpaHRGvw8KMFgw1mZdejZR28reNoTbrQChn9UAKeFbwCQEmDJbZGRWPnbb7CUlQUToCTKy8vVDiEojF9djF9dUsTf0qK33+bQIKaIEA0iBJsAeB5c16leAO6UNKrTRQJIlPUZgJ4yl09EpD27z7AiqKFOXaTrSa1z587FsmXLUFlZiejoaI/7FBUVobCw0Hm7qanJOQ88Pj4+qOd/5z+f4L2rG2BoOoBbFtU7twuiCEEU7V24ggiDiPZe1/btENr/iu37tj8OIiDa+6qH/rgFaRfuPvVkwqluZXunruBcWEUQTutwduzafrq9W69j2LIzDdjZH4BrB3Bb20kk94uGc3HzDj3GIgTnGXsRAETBYy+4eNp5fcejRMHxP9d7PXcDnNpoNETgjPg0mNqvHyq2pQIlZ7h1wVutVvz00084Z9gwGL2tRO6l217MzMSkc8/1/BiFWCwWlJeXY9KkSTCZTJ0/QGMYv7oYv7qkjN8xAosUlgqsnrMa5+E873WIH/YC+FW6qNy0NDbD3NSK01dvFUWgubkZ3bp1C26aWNsJwCbjQmOtrafWUulAhL0eNxqNsk1dFwFYRatsC9HZbDYYdLwoK+NXjyi2X2FIyqvzKE3Ud/ytEcdwK8Yr9nyqJt2JiYkwGo2or6932V5fX4/k5GSfj50/fz7mzp2Lzz//HKNGjfK6X1RUFKKi3OcDm0ymoBtK0xdfgbKyMvwpN1e3jcaysjKcr9P4bRYLdpWVYVhuLoxdjF9LFwuT4lhUE+NXF+NXlxTx6/n1613jyEbYcm0wmgKvFdLa/5NPt/b/XNnr8K+Rq9M63NEGYfzqYPzqYvzqcsSvJFVPT0RGRmLs2LEui6A5FkUbP977mYd58+bhmWeewYoVK5CZmalEqERERERERERdpvrw8sLCQuTl5SEzMxNZWVkoLS1Fc3Mz8vPzAQAzZsxAamoqSkpKAAAvvPACZs+ejXfffRfp6emoq6sDAMTFxSEuLk6110FERERERER0OtWT7mnTpuHAgQOYPXs26urqkJGRgRUrVjgXV9uzZ4/LfI1FixahtbUVN9xwg0s5xcXFeOqpp5QMnYiIiIiIiMgn1ZNuACgoKEBBQYHH+yorK11u79q1S/6AiIiIiIiIiCSg3yXniIiIiIiIiDSOSTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREcmESTcRERERERGRTJh0ExEREREREckkQu0AlCaKIgCgqakp6LIsFgtaWlrQ1NQEk8kUdHlKY/zqYvzqYvzqYvynOOojR/1E3rEOP4Xxq4vxq4vxq4vxn+JvHR52SfexY8cAAGlpaSpHQkREdMqxY8fQo0cPtcPQNNbhRESkRZ3V4YIYZqfWbTYb9u3bh+7du0MQhKDKampqQlpaGvbu3Yv4+HiJIlQO41cX41cX41cX4z9FFEUcO3YMKSkpMBg468sX1uGnMH51MX51MX51Mf5T/K3Dw66n22Aw4IwzzpC0zPj4eF0ecA6MX12MX12MX12M34493P5hHe6O8auL8auL8auL8dv5U4fzlDoRERERERGRTJh0ExEREREREcmESXcQoqKiUFxcjKioKLVDCQjjVxfjVxfjVxfjJ7Xp/TNk/Opi/Opi/Opi/F0XdgupERERERERESmFPd1EREREREREMmHSTURERERERCQTJt1EREREREREMmHS3UWHDh3C9OnTER8fj549e+KOO+7A8ePHfT5m4sSJEATB5b977rlHkXgXLlyI9PR0REdHIzs7G2vXrvW5//vvv4+hQ4ciOjoaI0eORFlZmSJxetOV+JcuXer2PkdHRysYrauvvvoKV111FVJSUiAIAv797393+pjKykqce+65iIqKwuDBg7F06VLZ4/Smq/FXVla6vf+CIKCurk6ZgDsoKSnBuHHj0L17d/Tt2xdTp/7/9u43psr6D+P4BerBGgNjKuAsFlqnEhWT4Q5tYknR8oE8qqg5+mtruMlqFD1y1VbZnNqaMzeXbazNmovaLDMEpRRkiJBHJBZE9k+0v2RoWvD5PWCeiXKOnKP3ue+fvV8bD7jP98ZrH79w7cvhQIm6uroueZ9X9n8s+b20/zdu3Kg5c+aE/v5lIBDQjh07It7jldlL0ef30uwRGR0eX3T4O47nDIcOp8NjRYc7M3sO3VF6+OGH1dHRodraWm3fvl2ff/65li9ffsn7nnzySR07diz09vrrrzue9b333tMzzzyjVatW6eDBg5o7d66Ki4t14sSJUdc3NjaqtLRUjz/+uNra2lRSUqKSkhIdPnzY8ayjiTa/NPxH7s+f89GjR+OYeKSBgQHNnTtXGzZsGNP63t5eLVmyRHfeeafa29tVUVGhJ554Qjt37nQ46eiizX9OV1fXiP+DqVOnOpQwvIaGBpWXl2v//v2qra3VP//8o3vuuUcDAwNh7/HS/o8lv+Sd/T99+nS99tpram1t1YEDB3TXXXdp6dKl6ujoGHW9l2YvRZ9f8s7sERkdHj90OB0eKzqcDr8cnu1ww5gdOXLEJFlLS0vo2o4dOywhIcF+/PHHsPcVFhbaypUr45BwpPz8fCsvLw+9Pzg4aNOmTbNXX3111PX333+/LVmyZMS1BQsW2FNPPeVoznCizb9lyxZLTU2NU7roSLKampqIa5577jmbNWvWiGsPPPCAFRcXO5hsbMaSf/fu3SbJfv/997hkisaJEydMkjU0NIRd47X9f76x5Pfy/jczu+6662zz5s2jPubl2Z8TKb/XZ49hdHh80eF0+JVCh7uPDr98PNMdhaamJk2aNEl5eXmha0VFRUpMTFRzc3PEe999911NnjxZOTk5euGFF3Tq1ClHs549e1atra0qKioKXUtMTFRRUZGamppGvaepqWnEekkqLi4Ou95JseSXpL/++ktZWVm6/vrrL/ldLa/x0vwvR25urjIzM3X33Xdr3759bseRJPX390uS0tLSwq7x8vzHkl/y5v4fHBzU1q1bNTAwoEAgMOoaL89+LPklb84eI9Hh8UOHD/PK17Fo0OFXHh3uHi91+Pgr/hGvYn19fRf9mM348eOVlpYW8TUvDz30kLKysjRt2jQdOnRIzz//vLq6uvTBBx84lvWXX37R4OCg0tPTR1xPT0/XV199Neo9fX19o6534/U8seT3+/16++23NWfOHPX392vNmjUqKChQR0eHpk+fHo/YlyXc/P/880+dPn1a11xzjUvJxiYzM1NvvfWW8vLydObMGW3evFmLFi1Sc3Ozbr/9dtdyDQ0NqaKiQnfccYdycnLCrvPS/j/fWPN7bf8Hg0EFAgH9/fffSk5OVk1NjW677bZR13px9tHk99rsMTo6PH7o8GF0+OWjw+nwWHixwzl0S6qqqtLq1asjruns7Iz545//erHZs2crMzNTixcvVk9Pj2bMmBHzx8VIgUBgxHexCgoKdOutt2rTpk16+eWXXUz23+D3++X3+0PvFxQUqKenR+vWrVN1dbVrucrLy3X48GHt3bvXtQyXY6z5vbb//X6/2tvb1d/fr23btqmsrEwNDQ1hS89rosnvtdn/19DhVwc+j9xFhzuDDneHFzucQ7ekZ599Vo888kjENdnZ2crIyLjoF4D8+++/+u2335SRkTHmf2/BggWSpO7ubscKe/LkyRo3bpyOHz8+4vrx48fDZs3IyIhqvZNiyX+hCRMmaN68eeru7nYi4hUXbv4pKSme/w55OPn5+a4W5YoVK0K/LOlS36300v4/J5r8F3J7//t8Ps2cOVOSNH/+fLW0tOiNN97Qpk2bLlrrxdlHk/9Cbs/+v4YOH+alzyM6fBgdfnnocDo8Vl7scF7TLWnKlCm65ZZbIr75fD4FAgH98ccfam1tDd1bX1+voaGhUAmPRXt7u6ThH+Vxis/n0/z581VXVxe6NjQ0pLq6urCvaQgEAiPWS1JtbW3E10A4JZb8FxocHFQwGHR0zleSl+Z/pbS3t7syfzPTihUrVFNTo/r6et14442XvMdL848l/4W8tv+HhoZ05syZUR/z0uzDiZT/Ql6b/dWODh/mpc8jOnyY176ORYsOjw0d7r2974kOd/xXtV1l7r33Xps3b541Nzfb3r177aabbrLS0tLQ4z/88IP5/X5rbm42M7Pu7m576aWX7MCBA9bb22sfffSRZWdn28KFCx3PunXrVktKSrJ33nnHjhw5YsuXL7dJkyZZX1+fmZktW7bMqqqqQuv37dtn48ePtzVr1lhnZ6etWrXKJkyYYMFg0PGsVyL/iy++aDt37rSenh5rbW21Bx980CZOnGgdHR2u5D958qS1tbVZW1ubSbK1a9daW1ubHT161MzMqqqqbNmyZaH133zzjV177bVWWVlpnZ2dtmHDBhs3bpx9+umn/xf5161bZx9++KF9/fXXFgwGbeXKlZaYmGi7du2Ke/ann37aUlNTbc+ePXbs2LHQ26lTp0JrvLz/Y8nvpf1fVVVlDQ0N1tvba4cOHbKqqipLSEiwzz77bNTsXpp9LPm9NHtERofHDx1Oh8eKDqfD45k/XrPn0B2lX3/91UpLSy05OdlSUlLs0UcftZMnT4Ye7+3tNUm2e/duMzP77rvvbOHChZaWlmZJSUk2c+ZMq6ystP7+/rjkffPNN+2GG24wn89n+fn5tn///tBjhYWFVlZWNmL9+++/bzfffLP5fD6bNWuWffzxx3HJGU40+SsqKkJr09PT7b777rODBw+6kHrYuT+/ceHbucxlZWVWWFh40T25ubnm8/ksOzvbtmzZEvfc52eJJv/q1attxowZNnHiREtLS7NFixZZfX29K9lHyy1pxDy9vP9jye+l/f/YY49ZVlaW+Xw+mzJlii1evDhUdmbenr1Z9Pm9NHtERofHFx2+Je65z89Ch9PhsaDDnZl9gpnZlX3uHAAAAAAASLymGwAAAAAAx3DoBgAAAADAIRy6AQAAAABwCIduAAAAAAAcwqEbAAAAAACHcOgGAAAAAMAhHLoBAAAAAHAIh24AAAAAABzCoRsAAAAAAIdw6AYAAAAAwCEcugEAAAAAcAiHbgBj9vPPPysjI0OvvPJK6FpjY6N8Pp/q6upcTAYAACKhwwH3JJiZuR0CwP+PTz75RCUlJWpsbJTf71dubq6WLl2qtWvXuh0NAABEQIcD7uDQDSBq5eXl2rVrl/Ly8hQMBtXS0qKkpCS3YwEAgEugw4H449ANIGqnT59WTk6Ovv/+e7W2tmr27NluRwIAAGNAhwPxx2u6AUStp6dHP/30k4aGhvTtt9+6HQcAAIwRHQ7EH890A4jK2bNnlZ+fr9zcXPn9fq1fv17BYFBTp051OxoAAIiADgfcwaEbQFQqKyu1bds2ffnll0pOTlZhYaFSU1O1fft2t6MBAIAI6HDAHfx4OYAx27Nnj9avX6/q6mqlpKQoMTFR1dXV+uKLL7Rx40a34wEAgDDocMA9PNMNAAAAAIBDeKYbAAAAAACHcOgGAAAAAMAhHLoBAAAAAHAIh24AAAAAABzCoRsAAAAAAIdw6AYAAAAAwCEcugEAAAAAcAiHbgAAAAAAHMKhGwAAAAAAh3DoBgAAAADAIRy6AQAAAABwCIduAAAAAAAc8j/CO44LaGO+mwAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAILCAYAAAD13v8AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACq9UlEQVR4nOzdeXxU1dkH8N9s2QhhJ4EYCJsgOwaS4obVABrbinVByyuYKtYlLs1bi2mViEuDSGmspeKGtnWj9tVuRiRGUqtEwARc2BRl0UACQSGQQDLLff+YzCRDZpJZ7nLOzO/7+SjJzZ0zz8zcuec89yzXpCiKAiIiIiIiIiJSndnoAIiIiIiIiIiiFZNuIiIiIiIiIo0w6SYiIiIiIiLSCJNuIiIiIiIiIo0w6SYiIiIiIiLSCJNuIiIiIiIiIo0w6SYiIiIiIiLSCJNuIiIiIiIiIo1YjQ4g2jmdTtjtdqPDICIiIiIiijk2mw0Wi8XQGJh0a0RRFNTV1eHo0aNGh0JERERERBSzevfujbS0NJhMJkOen0m3RjwJ98CBA5GUlGTYB0xERERERBSLFEVBc3MzDh06BAAYNGiQIXEw6daA0+n0Jtz9+vUzOhwiIiIiIqKYlJiYCAA4dOgQBg4caMhQcy6kpgHPHO6kpCSDIyEiIiIiIoptnrzMqLW2mHRriEPKiYiIiIiIjGV0Xsakm4iIiIiIiEgjTLqJiIiIiIiINMKkm7wuvPBC3H333Zo/j6IoWLx4MQYNGoTExETk5ubiiy++6PZxK1euRGZmJhISEpCTk4NNmzb5/P3UqVO4/fbb0a9fPyQnJ+PKK69EfX29Vi9Danp91q+//jpmzZqFfv36wWQyYevWrUE97rXXXsOYMWOQkJCACRMmoKyszOfv4R5DsUqPz9tut2PRokWYMGECevTogcGDB2P+/Pk4cOBAt4/ld1s9en23b7jhBphMJp//Lrnkkm4fx89aPSKdx8P53II5j3/77beYN28eUlJS0Lt3b9x44404ceKEmi8vaohyPHz77be44447MHr0aCQmJmLIkCG48847cezYsS7L5fGgLlGOB08sp9cXt9xyS5flRuPxwKSbdLds2TL8/ve/x6pVq7Bx40b06NEDs2fPxqlTpwI+Zs2aNSgsLERxcTFqamowadIkzJ4927v8PwD8/Oc/x7/+9S+89tpr+M9//oMDBw7gxz/+sR4viQJoamrCeeedh0cffTTox2zYsAHXXXcdbrzxRmzZsgVz5szBnDlz8Nlnn3n3CecYIm01NzejpqYG999/P2pqavD6669j165d+NGPftTl4/jdltcll1yCgwcPev975ZVXutyfn7WcgjmPh/O5BXMenzdvHrZt24by8nL8+9//xnvvvYebb75ZtddGoevueDhw4AAOHDiA5cuX47PPPsMLL7yAtWvX4sYbb+yyXB4Pcgq2nbdw4UKf+mLZsmVd7h+Vx4NCqjt58qSyfft25eTJk0aHErQFCxYoAHz+27Nnj+rP43K5lLS0NOWxxx7zbjt69KgSHx+vvPLKKwEfl52drdx+++3e351OpzJ48GClpKTEW4bNZlNee+017z47duxQAChVVVWqvw6Z6fVZd7Rnzx4FgLJly5Zu973mmmuUyy67zGdbTk6O8rOf/UxRlPCPoVhlxOftsWnTJgWAsm/fvoD78LutHj0/6wULFiiXX355SI/hZ60ekc7j4XxuwZzHt2/frgBQNm/e7N3nrbfeUkwmk1JbW6viK5OfSMeDP3/961+VuLg4xW63+/07jwd1iXY8zJgxQ7nrrruCLkur48Ho/Iw93TpQFKCpyZj/FCW4GB9//HFMnz7d50pURkaG331vueUWJCcnd/lfIHv27EFdXR1yc3O923r16oWcnBxUVVX5fUxrayuqq6t9HmM2m5Gbm+t9THV1Nex2u88+Y8aMwZAhQwKWqxVFUdDU2qT7f0qQH7Zen3W4qqqqfD5HAJg9e7b3cwznGNKMBF9uIz/vY8eOwWQyoXfv3n7/LtV3W1EAR5Mx/wn6WVdWVmLgwIEYPXo0br31Vhw5ciTgvjJ91oqioLWp1ZD/ZDyPh/O5BXMer6qqQu/evTF16lTvPrm5uTCbzdi4cWNEMYdCAdBk0H9BNuGEOh78OXbsGFJSUmC1Wv3+XabjQYYDQsTj4aWXXkL//v0xfvx4FBUVobm5OeC+Uh0PIfB/9JOqmpsBDc5hQTlxAujRo/v9evXqhbi4OCQlJSEtLa3LfR988EH84he/CCueuro6AEBqaqrP9tTUVO/fTtfQ0ACn0+n3MTt37vSWGxcX16lx31W5Wmm2NyO5RP8P/ETRCfSI6/7D1uuzDlddXV2Xx0c4x5BmJPhyG/V5nzp1CosWLcJ1112HlJQUv/tI9d12NgN/NeizvuYEYBXrs77kkkvw4x//GMOGDcOXX36JX/3qV7j00ktRVVUFi8XSaX+ZPmt7sx0lySW6PV9HRSeKENcjrtv9RDqPh/O5BXMer6urw8CBA33+brVa0bdvX12Ph2YABn3zcQJAEE04oY6H0zU0NOChhx7qctivTMeDDAeEaMfDT37yEwwdOhSDBw/GJ598gkWLFmHXrl14/fXX/e4v1fEQAibdFLKBAwd2OtApOvGzji1qfd52ux3XXHMNFEXBk08+qUJkpLZIP+trr73W+/OECRMwceJEjBgxApWVlbj44ovVCJFUwvM4daTn8dDY2IjLLrsMY8eOxQMPPKDLc1Jo9DgeOl5wmTBhAgYNGoSLL74YX375JUaMGKHpc4uESbcOkpLcnVJGPbfabrnlFrz44otd7hNo9UDPFbf6+noMGjTIu72+vh6TJ0/2+5j+/fvDYrF0Wgm1vr7eW15aWhpaW1tx9OhRn6vtHffRS5ItCSeK9P/Ak2zqf9iRfNbhSktL6/az9mwL9hjSTJR9udX4vD0J9759+/Duu+8G7OUGJPtuW5LcPc5GsIj5WXc0fPhw9O/fH7t37/abdMv0WduSbCg6UaTb853+3GrT+jwezucWzHk8LS3NZ5E9AHA4HPj22291PR6S4O5gNIIGTTjd6vXjx4/jkksuQc+ePfHGG2/AZgt8bMt0PETbAWFEOy8nJwcAsHv3br9Jt1THQwiYdOvAZApuiLfR4uLi4HQ6u90vkqEow4YNQ1paGioqKrxfnMbGRmzcuBG33nprwLiysrJQUVGBOXPmAABcLhcqKipQUFAAAMjKyoLNZkNFRQWuvPJKAMCuXbuwf/9+TJ8+PaxYw2UymYIa5m0kPT7rcE2fPh0VFRU+t7ooLy/3fo7hHEOakeTLrdfn7Um4v/jiC6xfvx79+vXrNi5pvtsmU1BDvI1m1Hf7m2++wZEjR3waSKfHJctnbTKZghribTRRzuPhfG7BnMenT5+Oo0ePorq6GllZWQCAd999Fy6Xy9to14MJwQ3xNpooxwPg/ixnz56N+Ph4/POf/0RCQkKX+8t0PMhyQIh0PJzOc1uxQPWFVMdDKAxZvi3KGb06XrgWLlyoTJs2TdmzZ49y+PBhxel0avI8S5cuVXr37q384x//UD755BPl8ssvV4YNG+bzfl100UXKE0884f391VdfVeLj45UXXnhB2b59u3LzzTcrvXv3Vurq6rz73HLLLcqQIUOUd999V/noo4+U6dOnK9OnT9fkNchOr8/6yJEjypYtW5Q333xTAaC8+uqrypYtW5SDBw9697n++uuVe++91/v7Bx98oFitVmX58uXKjh07lOLiYsVmsymffvqpd59gjiFqp8fn3draqvzoRz9SzjjjDGXr1q3KwYMHvf+1tLR49+N3W1t6fNbHjx9XfvGLXyhVVVXKnj17lHfeeUc5++yzlVGjRimnTp3y7sfPWlsinceD+dxGjx6tvP76697fgzmPX3LJJcqUKVOUjRs3Ku+//74yatQo5brrrtPkdcpOlOPh2LFjSk5OjjJhwgRl9+7dPnWBw+HwlsPjQVuiHA+7d+9WHnzwQeWjjz5S9uzZo/zjH/9Qhg8frlxwwQU+5ehxPBidnzHp1oDRH2q4du3apXzve99TEhMTNb29gMvlUu6//34lNTVViY+PVy6++GJl165dPvsMHTpUKS4u9tn2xBNPKEOGDFHi4uKU7Oxs5cMPP/T5+8mTJ5XbbrtN6dOnj5KUlKRcccUVPo0CaqfXZ/388893um0FAJ/PdsaMGcqCBQt8HvfXv/5VOfPMM5W4uDhl3Lhxyptvvunz92COIWqnx+ftuV2Iv//Wr1/v3Y/fbW3p8Vk3Nzcrs2bNUgYMGKDYbDZl6NChysKFC32SZ0XhZ601kc7jwXxuAJTnn3/e+3sw5/EjR44o1113nZKcnKykpKQo+fn5yvHjxzV5nbIT5XhYv359wLqgY0w8HrQlyvGwf/9+5YILLlD69u2rxMfHKyNHjlTuuece5dixYz7l6HE8GJ2fmRQl2JtKUbBOnTqFPXv2YNiwYd0OqSEiIiIiIiLtGJ2f8T7dRERERERERBph0k1ERERERESkESbdRERERERERBph0k1ERERERESkESbdGuIadURERERERMYyOi9j0q0Bm80GAGhubjY4EiIiIiIiotjmycs8eZrerIY8a5SzWCzo3bs3Dh06BABISkqCyWQyOCoiIiIiIqLYoSgKmpubcejQIfTu3RsWi8WQOHifbo0oioK6ujocPXrU6FCIiIiIiIhiVu/evZGWlmZYRyiTbo05nU7Y7XajwyAiIiIiIoo5NpvNsB5uDybdRERERERERBrhQmpEREREREREGmHSTURERERERKQRJt1EREREREREGmHSTURERERERKQRJt1EREREREREGmHSTURERERERKQRJt1EREREREREGmHSTdTBCy+8AJPJhL1790pRrto2b96Mc845Bz169IDJZMLWrVuNDikkLpcLDz/8MEaMGAGbzYYRI0YAAJYtW4YxY8bA5XKFXOaqVaswZMgQtLS0qB0uERFFIaPrfC3qQg81yghHoLqYdTTJgkk3Se/TTz/FVVddhaFDhyIhIQHp6emYOXMmnnjiCV3j2LBhAx544AEcPXpU1+dVi91ux9VXX41vv/0Wv/vd7/CXv/wFQ4cONTqskPzxj3/E4sWL8eMf/xirV6/GU089hcbGRjz66KNYtGgRzObQT3k33HADWltb8dRTT2kQcWhaWlqwaNEiDB48GImJicjJyUF5ebnRYRERxQxPQu3vv3vvvdfo8ABoUxcCUKWM7iiKggcffBD//e9/fbYHqotFqqOJumI1OgCiSGzYsAHf//73MWTIECxcuBBpaWn4+uuv8eGHH+Lxxx/HHXfcoWssS5YswQ033IDevXv7/O3666/Htddei/j4eN3iCdWXX36Jffv24ZlnnsFNN91kdDhhef755zFz5kw89thj3m2lpaVwOBy47rrrwiozISEBCxYswIoVK3DHHXfAZDKpFW7IbrjhBvztb3/D3XffjVGjRuGFF15AXl4e1q9fj/POO8+wuIiIYs2DDz6IYcOG+WwbP368QdH40qIuBIDVq1dHXEZ3Pv/8cxQXF2PMmDE+2wPVxSLV0URdYdJNUnvkkUfQq1cvbN68uVOie+jQIWOC8sNiscBisRgdRpc879fp76MRLrzwQmRmZuKFF14I+jGnTp3Cxx9/jCVLlvhsf/755/GjH/0ICQkJYcdzzTXXYNmyZVi/fj0uuuiisMuJxKZNm/Dqq6/isccewy9+8QsAwPz58zF+/Hj88pe/xIYNGwyJi4goFl166aWYOnWq0WF0omVdqEYZ3amurgYAnH322Z3+FqguFqGOJuoOh5eT1L788kuMGzfOb6I4cOBAn9+3bNmCSy+9FCkpKUhOTsbFF1+MDz/8sNvnuOGGG5CZmdlp+wMPPOC9ovrAAw/gnnvuAQAMGzbMO9TMM58r0PyuYGLyPM/u3bu9vei9evVCfn4+mpubu40/mOe54YYbMGPGDADA1VdfDZPJhAsvvLDLMgcMGICCgoJO26dOnYrLLrssqLjUcuONNyIxMRFOpxP33XcfTCYTpk+fjj179uCTTz5Bbm5up8eEEn9WVhb69u2Lf/zjH5q9hu787W9/g8Viwc033+zdlpCQgBtvvBFVVVX4+uuvDYuNiIi6Fkxb4uTJkxgzZgzGjBmDkydPevf59ttvMWjQIJxzzjlwOp0BnyOcuhAIrj7sqoza2lokJCTgpz/9qc/2d955BzabDT//+c8DxtxRdnY25s2bBwAYNWoUTCaTT/suUF0sQh1N1B32dJPUhg4diqqqKnz22WddDuvatm0bzj//fKSkpOCXv/wlbDYbnnrqKVx44YX4z3/+g5ycnIji+PGPf4zPP/8cr7zyCn73u9+hf//+ANwVmVoxXXPNNRg2bBhKSkpQU1ODZ599FgMHDsSjjz7aZWzBPM/PfvYzpKen4ze/+Q3uvPNOTJs2DampqQHLPHDgABoaGjBp0iSf7U6nE9u2bcPMmTO7e8tUNW/ePO/revzxx9G3b18MHTrU2/t7+hXzcOI/++yz8cEHH4QVn91ux7Fjx4Lat2/fvn7nym3ZsgVnnnkmUlJSfLZnZ2cDALZu3YqMjIyw4iMiotAcO3YMDQ0NPts8dX+4EhMT8ac//Qnnnnsufv3rX2PFihUAgNtvvx3Hjh3DCy+80OWouVDrQiD4+rCrMtLT03HTTTfh6aefRnFxMYYOHYqdO3fi6quvxqWXXorf/va3Qb3+RYsW4YEHHkBLSwsWL14MoPPou0B1cSR1NJEuFCKJrVu3TrFYLIrFYlGmT5+u/PKXv1TefvttpbW11We/OXPmKHFxccqXX37p3XbgwAGlZ8+eygUXXODd9vzzzysAlD179ni3LViwQBk6dGin5y4uLlY6foUee+yxTo/tqtxgY/I8z09/+lOfMq+44gqlX79+Ad+bUJ9n/fr1CgDltdde67bMt956SwGgbNy40Wf7Z599pgBQXnrppW7L6MqMGTOUBQsWhPSYX/3qV0qPHj0Up9Pp3XbfffcpAJTjx4/77BtO/DfffLOSmJgYUkwenvc2mP/8HT+Koijjxo1TLrrook7bt23bpgBQVq1aFVZsREQUPE997u+/0/cJpy2hKIpSVFSkmM1m5b333lNee+01BYBSWloaVHyh1IWKEnx92FUZiqIo33zzjRIfH6/ceuutSkNDgzJixAhl8uTJyokTJ4KK22PIkCHKDTfcEPDvgeriSOpoIj2wp5ukNnPmTFRVVaGkpARvv/02qqqqsGzZMgwYMADPPvssfvSjH8HpdGLdunWYM2cOhg8f7n3soEGD8JOf/ATPPPMMGhsbO/UgaimcmG655RafMs4//3y88cYbXcau1Wv/5JNPYDabO40u+PjjjwEAEyZMCLosf73AdrsdLS0tnXoRAvUCe2IaN26cz9+PHDkCq9WK5OTkiOPv06cPTp48iebmZiQlJQX9+gBg0qRJQa8ynpaW5nf7yZMn/S7E55lb13EoIhERaWvlypU488wzNSn7gQcewL///W8sWLAAJ06cwIwZM3DnnXcG9dhQ6kLP/sHUh12VAbh7uxcuXIhnnnkGNTU1OHnyJP7zn/+gR48eQcUNuEcP7N+/HxMnTgy4T6C6OJI6mkgPTLpJetOmTcPrr7+O1tZWfPzxx3jjjTfwu9/9DldddRW2bt2Kvn37orm5GaNHj+702LPOOgsulwtff/01xo0bp1vMhw8fDjmmIUOG+OzXp08fAMB3330XMGkO53mC8fHHH2PkyJGdKratW7fCZrN5Vx1VFAU9e/bEV1991WmOvccHH3yA73//+522b9iwAa+++qrPtj179vidE+eJafbs2arG35GiKAAQ1sqoffr0CTiXLliJiYl+70N66tQp79+JiEgf2dnZmi2kFhcXh9WrV2PatGlISEjA888/H3TdE0pd6Nk/1PowkF/84hf4wx/+gE8++QT//e9/kZ6eHvRjAfcFAABdJt2B6uJI6mgiPTDppqgRFxeHadOmYdq0aTjzzDORn5+P1157DT/72c8iKjfQCbyrxUy0EGgel6ei0dOnn37aaf4XAGzevBmjR4+GzWYD4E6Sk5KSAibcgP9e4P/93/9FWlqad3E6j0C9wEePHsXXX3/dqYe6X79+cDgcOH78OHr27Bly/B199913SEpKCiu5bW1txbfffhvUvgMGDPD7WQ8aNAi1tbWdth88eBAAMHjw4JDjIiIifYTalnj77bcBuC+sfvHFF51uT+ZPqHUhEHx92FUZHo888ggAwOFwoG/fvt3GezpP0u0vHo9AdXEkdTSRHrh6OUUlz9XngwcPYsCAAUhKSsKuXbs67bdz506YzeYuF6Dq06cPjh492mn7vn37fH4P5epqpDEZ+Twulwu7du3CWWed5bP90KFDeP/9971XqHfs2IGxY8fiu+++Q3JyMqZNm+a3PE8vcMf/+vTpg0GDBnXaHug2JYGujnuu0O/Zsyfk+E+3Z88en8cUFBR4L+i4XC5cfvnlAVdo3bBhAwYNGhTUf4FWIZ88eTI+//xzNDY2+mzfuHGj9+9ERCSmYNsSgLtOe/DBB5Gfn48pU6bgpptuCmoxzlDqQiC0+jBQGR6PPfYYnn32WfzhD3+A1Wr1JuCh+OSTTzBo0KAuF6Q7vS7ubjuRKJh0k9TWr1/vt6e3rKwMADB69GhYLBbMmjUL//jHP3xu2VVfX4+XX34Z5513XpdzmkeMGIFjx455KzPAncy/8cYbPvt55i35q1RPF2lMwdLieZxOJ+x2u8/tyhwOB372s5/B4XB4r7CfddZZKC4uxq233ooTJ05g8+bNEb+eQDxzz05vaEyfPh0A8NFHH4Uc/+lqampwzjnneH8vKirCq6++itraWtxzzz1QFCXgCq2e3vxg/gvUm3/VVVfB6XTi6aef9m5raWnB888/j5ycHK5cTkQksGDbEna7HTfccAMGDx6Mxx9/HC+88ALq6+uDuu1WKHUhEFp9GKgMAPj73/+Oe++9Fw899BBuv/123Hzzzfjzn/8cMEEPZP/+/TjjjDO63Of0uri77USi4PByktodd9yB5uZmXHHFFRgzZgxaW1uxYcMGrFmzBpmZmcjPzwcAPPzwwygvL8d5552H2267DVarFU899RRaWlqwbNmyLp/j2muvxaJFi3DFFVfgzjvvRHNzM5588kmceeaZqKmp8e6XlZUFAPj1r3+Na6+9FjabDT/84Q8DLiISSUyhUPt5bDYbJk6ciCeffBKJiYlITEzEa6+95h3S1bGS/uSTT3DRRRep9loC+eSTT5Cent5pONvw4cMxfvx4vPPOO977h4YSv0d1dTW+/fZbXH755d5t6enpuP766/GDH/wAAPD+++8HXORNjTndOTk5uPrqq1FUVIRDhw5h5MiR+NOf/oS9e/fiueeei6hsIiLSVrBtiYcffhhbt25FRUUFevbsiYkTJ2Lx4sW47777cNVVVyEvLy/gc4RSFwKh1YeByqiursa8efMwb948/PrXvwYA/PKXv8SqVavwyCOP4Nlnn/WJxWQyYcaMGaisrOwU/7Bhw/Duu+9i2bJlGDx4MM466yxv28rzXKfXxV1tJxKKgSunE0XsrbfeUn76058qY8aMUZKTk5W4uDhl5MiRyh133KHU19f77FtTU6PMnj1bSU5OVpKSkpTvf//7yoYNG3z28XebD0Vx35ps/PjxSlxcnDJ69GjlxRdf9Hubj4ceekhJT09XzGazTzmByg0mJs/zHD58OKhY/QnmeUK5ZVhNTY2SlZWlJCQkKOPGjVOefvpp5bnnnlMAKPv27fPuN3bsWOXDDz/strzThXrLsOzsbOXSSy/1+7cVK1YoycnJSnNzc8jxeyxatEgZMmSI4nK5fLY//fTTCoBO76VWTp48qfziF79Q0tLSlPj4eGXatGnK2rVrdXluIiJqr3s3b97c7T6htiWqq6sVq9Wq3HHHHT6PczgcyrRp05TBgwcr3333XcDnDbUuVJTQ6sPTy/j666+VQYMGKeeee65y6tQpn31vvfVWxWazKV999ZV32/HjxxUAyrXXXus3xtraWm9bBYDy+9//3ufvgeriQNuJRGJSFANWYSKiqNfa2ork5GR89913Id0yRG3Hjh3D8OHDsWzZMtx4440hP76lpQWZmZm49957cdddd3m3b9y4EVdddRVycnLQv39/rFq1Ss2wiYiIVBNpXahGGWVlZfjBD36Ajz/+OKRbiwKB6+JA24lEwzndRKSJ48ePA3An30bq1asXfvnLX+Kxxx6Dy+UK+fHPP/88bDabz33S9+/fj6uvvhovvvgiHn/8cbz88svYv3+/mmETERGpJtK6UI0y1q9fj2uvvTbkhBvwXxd3tZ1INOzpJiLNLFiwAK+//jrGjRuHDz/80OhwVHH8+HGce+65uOuuu7xX+m+99VYoisLebiIiIiLqhEk3ERERERERkUY4vJyIiIiIiIhII0y6iYiIiIiIiDTCpJuIiIiIiIhII1ajAzCKy+XCgQMH0LNnT5hMJqPDISKiGKYoCo4fP47BgwfDbOb18K6w/iYiIlEEW3/HbNJ94MABZGRkGB0GERGR19dff40zzjjD6DCExvqbiIhE0139HbNJd8+ePQG436CUlJSIyrLb7Vi3bh1mzZoFm82mRni6YvzGYvzGkTl2gPEbTc34GxsbkZGR4a2bKDDW3+0Yv7EYv3Fkjh1g/EYzov6O2aTbMyQtJSVFlUo7KSkJKSkp0h54jN84jN84MscOMH6jaRE/h0t3j/V3O8ZvLMZvHJljBxi/0YyovzlxjIiIiIiIiEgjTLqJiIiIiIiINMKkm4iIiIiIiEgjTLqJiIiIiIiINMKkm4iIiIiIiEgjTLqJiIiIiIiINMKkm4iIiIiIiEgjTLqJiIiIiIiINMKkm4iIiIiIiEgjTLqJiIiIiIiINMKkm4iIiIiIiEgjwiTdK1euRGZmJhISEpCTk4NNmzYF3Ndut+PBBx/EiBEjkJCQgEmTJmHt2rU6RktERERERETUPSGS7jVr1qCwsBDFxcWoqanBpEmTMHv2bBw6dMjv/vfddx+eeuopPPHEE9i+fTtuueUWXHHFFdiyZYvOkRMREREREREFJkTSvWLFCixcuBD5+fkYO3YsVq1ahaSkJKxevdrv/n/5y1/wq1/9Cnl5eRg+fDhuvfVW5OXl4be//a3OkRMREREREREFZjU6gNbWVlRXV6OoqMi7zWw2Izc3F1VVVX4f09LSgoSEBJ9tiYmJeP/99zWNtSt9t/eFeZ8ZsKhXpgvApwCOqlTeibrjaD3e2mm7oihobByPf717DCaTSaVn00DrUUCxd96uKDh5agj+/dZuQOT4Awkl/pOnAKdDn7iCpQB2+0D8+7WPAb3efgWwu+xwKa6IC3I6++D/Xt0I/YJXj6IosNv7YM2LcsYPKHC55I7fqfQG8oyOg0hgO3YAhw8DF1xgdCRERIYxPOluaGiA0+lEamqqz/bU1FTs3LnT72Nmz56NFStW4IILLsCIESNQUVGB119/HU6nM+DztLS0oKWlxft7Y2MjAPf8cLvdTyIXAsdeB87/1fkRleGPGcAkVUvs2cXf+qv6TNroZ3QAREQ+Wm0K7PaTEZcTaT1EJKyxY93/fvEFMHKkqkUfajqEJFsSkuOSVS2XiEhthifd4Xj88cexcOFCjBkzBiaTCSNGjEB+fn7A4egAUFJSgiVLlnTavm7dOiQlJUUUT59dfXAB3Fdwa8+pjaisjmp7JmNvSi8AQL+TzRGVpbS44DjuvihhjhNiVkFITHDADHf8ihizInRncikAFAAmKDJ2CqpKMToAMSiAu4eY74dRXGYFJ8s3RFxOc3Nk53iKXptWbkLN0zWYt3Yeeg7q6uK54HbtUjXpPtJ8BKnLU2GCCa7iSEc9ERFpy/Cku3///rBYLKivr/fZXl9fj7S0NL+PGTBgAP7+97/j1KlTOHLkCAYPHox7770Xw4cPD/g8RUVFKCws9P7e2NiIjIwMzJo1CykpKRG9BqfZnQy6xrkwsHJgRGV19LjZjMcswB1OJ37rskVU1pbntuCtW9/CqB+MwtWvX+3zN7vdjvLycsycORM2W2TPoxXzJ0Ww7PotnGfeDdekZT5/kyH+rgQbv3XAAJiOHYO9pgYYP17HCLum9/vvUlxIfjQZDpcDXxZ8iYyUjLDLkv3YuekmE/78ZyseeKAVv/qVfFdiZH//1YzfM/qK6HRvFbwFAHj3vndx+XOXGxyNOGoO1gAAFF50JCIJGJ50x8XFISsrCxUVFZgzZw4AwOVyoaKiAgUFBV0+NiEhAenp6bDb7fi///s/XHPNNQH3jY+PR3x8fKftNpst4saS6VRbYzcZqjYcPdPDLRYLbJbIJotb2h5vtpgDxqjGe6Ed94UNizUBFinj716X8SsKcOyYe7/BgwEBX6de7/+hpkNwuNzz2jN6Z8Bmifw5ZT12TCZ3747VaoHNpuKCEjqT9f33UCN+mV8/6cN5KvAUOiIiEpvhSTcAFBYWYsGCBZg6dSqys7NRWlqKpqYm5OfnAwDmz5+P9PR0lJSUAAA2btyI2tpaTJ48GbW1tXjggQfgcrnwy1/+0pgX4JmK1zmnJ7W42ubjm+OMjcMojg6Lp8XF6HvQptnuHoabYE1QJeGWmcIOHiIiIiLhCZF0z507F4cPH8bixYtRV1eHyZMnY+3atd7F1fbv3w+zuX0e76lTp3Dffffhq6++QnJyMvLy8vCXv/wFvXv3NugVaEPV9rTsjXNX26rrlhi9stHaYdX5GE+67U73Va44S2y/Dx3JuGg/EYVG4VU2IiJpCZF0A0BBQUHA4eSVlZU+v8+YMQPbt2/XISoxqNmeFvqWYF1xtiWdsdrTzaTbq7XtWLCZY7uXG2jv6Zb1a01EREQUC2JzGWiSj9I2vNok77zViHRMuq3CXCszhN3Fnm4PJt1EsUPai+Ya4ftBRDJh0q0GjUZ8qVls9AxLi9FK1nMP37i4mM+wPD3dTLo5p5uIJKLyCSt62jVEFAuYdKtJo1xI1WJjO1+Tl6enO8aHlgPtc7pjfRG1jmL8OgxRTGCSSUQkLybdJIkYb2x4km7eVog93R1weDkRSUPlExWHlxORTJh0x4qoyVljtJJlT7eXZ043F1Jj0k0kCkf3u0RM+iSTPfVEFMOYdAtMi+pJ+ko7VjHp9mJPdzu2YYkiY/q3CRfedSHwcfhlrASQCKBSnZCIiCgKMelWg8YNX6bJxKS7Hed0d8ZraUThsf7Yil77esE6N/y7QhTA3dM9T7Wo/OOcbiIieTHpVhMbvtqJ9cZGx9XLYxx7uttxeDmRShqNDiAG8ERFRDGMSbfAeMswP2K10mZPtxfndLdj0k1E0oiWdggRURiYdEuAtwwjrl7ejj3d7diGJSIiIhIfk241sOFLWmNPtxfndHfGnm6iCKlQj0v7NTzwFlB9N9B2QZOIiNTHpFtNKte4quby0l8YkP4FRIZJtxd7uttxeDnpYeXKlcjMzERCQgJycnKwadOmgPs+88wzOP/889GnTx/06dMHubm5Xe5/yy23wGQyobS0VIPI9SVtLVWZB+x6HNj9lNGREBFFLSbdElCzPS3/LcNkjz9MTLq9OKe7HZNu0tqaNWtQWFiI4uJi1NTUYNKkSZg9ezYOHTrkd//Kykpcd911WL9+PaqqqpCRkYFZs2ahtra2075vvPEGPvzwQwwePFjrl0HBaN5vdARERFGLSTeRDLh6uRd7uttxTjdpbcWKFVi4cCHy8/MxduxYrFq1CklJSVi9erXf/V966SXcdtttmDx5MsaMGYNnn30WLpcLFRUVPvvV1tbijjvuwEsvvQRblKxVwWtfREQUSPg3piSpRM3q5bGKPd1e3jnd7On2Yk83aaG1tRXV1dUoKirybjObzcjNzUVVVVVQZTQ3N8Nut6Nv377ebS6XC9dffz3uuecejBs3TvW4wyJpFakowIEDPbBzZ/jrbI5p+/fIEeDwTtVC61T+118DTaeVb7cD33yTHFb8++vaf96pQdzBiCR+EViZBRDphl83NWhUWWtSrLSNc0lbRGrh6uVe7Olux+HlpKWGhgY4nU6kpqb6bE9NTcXOILOcRYsWYfDgwcjNzfVue/TRR2G1WnHnnXcGVUZLSwtaWlq8vzc2um+qbbfbYfeMAgqTDe3n1LDL8pyXFQV2hyOieLricrk6xXjTTSb85S+5AR4RHOUl97/PrTZh0SsRFeW//LZ/b70NeLPTX20ALg6v4OEA5rt/POus8IqIXATxC8GGm24ajpkzI/seGcHzXYj0HGAUxm8sNeMPtgwm3WrSqOHL9nRHMfpusKfbyzunm6uXM+kmoS1duhSvvvoqKisrkZCQAACorq7G448/jpqamqDXGCkpKcGSJUs6bV+3bh2SkpIiivFyXA4AaLW3Ym3Z2jALcZdx6tQplK1bF1E8XTlw4ADKysp8tn3wwQwAvZGQ4IDN5oqo/Lg4J3r21GAF8+Puf5IS7ehpVa98R6IdJ9t+1iTuKNfSYkZrqxV796agvLzc6HDCJnPsAOM3mhrxNzc3B7Ufk24iGTDp9mJPdzsm3aSl/v37w2KxoL6+3md7fX090tLSunzs8uXLsXTpUrzzzjuYOHGid/t///tfHDp0CEOGDPFuczqd+N///V+UlpZi7969ncoqKipCYWGh9/fGxkbvAm0pKSlhvjpfcXFxyMvLi6iMhISEiMvwZyu2AgAGDx7cqfwHHrAAAF55xYHLLrOE9wSvuf+54w7g9mc0OJm0napfftkE5TLf8u12O8rLyzFz5syQ5/ZX7DHh0rae+SNHjDkJRhK/0R591IT773f/LGP8Mr/3AOM3mprxe0ZfdYdJt8B4yzDyYtLt5ZnTzaSbSFtxcXHIyspCRUUF5syZAwDeRdEKCgoCPm7ZsmV45JFH8Pbbb2Pq1Kk+f7v++ut9hpoDwOzZs3H99dcjPz/fb3nx8fGIj4/vtN1ms6nX2FMQeVkmk6aNT7PZ3Kl8k8lduVutVthskTXpLGYLLBrGb7VaA06RCueztFnb9ze60a/qsagTS4drNDLG7yFz7ADjN5oa8Qf7eCbdEuAtw8AuPa5e7uXp6eZCavxakPYKCwuxYMECTJ06FdnZ2SgtLUVTU5M3QZ4/fz7S09NRUlICwD1fe/HixXj55ZeRmZmJujr3alfJyclITk5Gv3790K9fP5/nsNlsSEtLw+jRo/V9cSrj11BfCnsTiEgiTLrV4Dnvs8YlrbCn26vVxeHlHu1JNxufpI25c+fi8OHDWLx4Merq6jB58mSsXbvWu7ja/v37YTa33330ySefRGtrK6666iqfcoqLi/HAAw/oGXpM4I1JKFI8hoj0waRbYGqeB3nLMMlx9XIv7y3DuJAae7pJFwUFBQGHk1dWVvr87m9OdnfCeQxpQa4TiUmyeIkotpm734WMpmq1wjpKTuzp9uJCakSkOhWuSxtZvapz4Y0X52MJL9YS6YtJN0kixsfwM+n28t4yjHO62dNNJBCmrN3giDsiimFMutUgQz0iQ4wUGJNuL/Z0t2PSTRRDNK/HeSIhItIKk241qVxfaVG/Srt6eazj6uVenNPdGb/WRMYz4msoVecxT1REFMOYdEuA1RQQ81317On2Yk83EcUkrRsDTIqJiDTDpJvkEquNAibdXpzT3Y7Dy4kIkOQcIFW3fPST4pghiiJMugXGW4aRF28Z5sWe7nZMuonEofnXkNW4j47T5djGISLRMelWg8bnet4yjNjT3Y5zuolIREakfVLlmipfHWSirQ5FYcOQSA9MutXE85Z2Yr1yZdLtxZ7udrH+tSBSjQzfJdnbGBqesBQpPkAiimVMugWmahUSNfWR7K2OMHH1ci/O6W7H4eVE4jDyaxiL5wDejSUyfPuI9MWkWwJqnhdZSUmKc7q9WhwtANjTDTDpJoopvE83EZG0mHQTyaDFnWgiIcHYOATQ4nS/FwlWvhceTLqJSHganqg4v5uIRMekWw2ec73ADV/5KyQJ3mQtnTrl/jc+3tg4BODp6Y638r2Q/mtNJAoVvkua105+nkCqc4BUwcYOfixE+mDSLTBNzoMxmrNKz5N0s6cbpxzu94I93RxeTiQSzXMXJkcBcSE1IhIdk24JsD1NHF7upiiKd3h5vIU93Uy6iVQi+XeI5wAKFY8ZIn0x6SaSAXu6AbTfLgxgT3dHbDwRGY9fQyIiCoRJtxo0GtXEW4Z1FMNdeorCpLuNp5cb4JxugHPxiFTD7xJkvmwg/7o1RBTtmHSrSaP6ircMi3Gt7b27sb6Qmmc+N8BbhgEcXk4U65hrEhHJgUk3kehOnmz/OcZ7uptamwAAidZEmE08fTHpJhIHv4ZERBSIMK3WlStXIjMzEwkJCcjJycGmTZu63L+0tBSjR49GYmIiMjIy8POf/xynTp3q8jGyUfMCNodeSey779z/JibGfE/30VNHAQB9EvsYG4hgmHQTGc/IWjbWzwFcvTx0sX7MEOlNiKR7zZo1KCwsRHFxMWpqajBp0iTMnj0bhw4d8rv/yy+/jHvvvRfFxcXYsWMHnnvuOaxZswa/+tWvdI5cH6qeF2U9ySoxfJ9uT9Ldt6+xcQjAk3T3TuhtaByiYE83kUqYsxERkYaESLpXrFiBhQsXIj8/H2PHjsWqVauQlJSE1atX+91/w4YNOPfcc/GTn/wEmZmZmDVrFq677rpue8c1x4YvaeHIEfe/fdi7e+Sk+71g0u3GASxE4jCiCRDL5wBTh3eco/nCpyhsvBLpwWp0AK2traiurkZRUZF3m9lsRm5uLqqqqvw+5pxzzsGLL76ITZs2ITs7G1999RXKyspw/fXX6xW2fFgfBU9RgH373CuGeypyRfH97/RtwewT4HEmux19t22DqWdPwGLpvM8rr7i3ZWbicNNhNDQ3dA65wwfsaXx4tnX3eziP6djAOfKtHe99tR+N738Iq9Xavk/A5+vieQM9X9u/f/1yDQCgn3k4duzo9DaEzG4Hvv46GTt2ADZb5OXprck9xZ093UQUOclOJBxSTkQyMTzpbmhogNPpRGpqqs/21NRU7Ny50+9jfvKTn6ChoQHnnXceFEWBw+HALbfc0uXw8paWFrS0tN9uqLGxEQBgt9tht9sjeg0uhwtWWKG4lIjL6shpNgMWC5xOJ+wuV2RlOZ0A3MnM6TF6flczdrVZXE6YATicTigax2/56U9hfvFFVcoKhhXA+UHstynDgnN+OwhOxal1SOF5T7+n+tcfp+Nf+WqUZANwsRoFGcQ9WMnlcsJul68BKsO5pytqxi/rexA15Mo3O1ElX9a6t5i90UKR7BoLkfQMT7rDUVlZid/85jf44x//iJycHOzevRt33XUXHnroIdx///1+H1NSUoIlS5Z02r5u3TokJSVFFE/GtgycjbPR0NCAD8s+jKisjvZNnAgMG4bdX3yBsl27Iirr0E73/Phvar9BWVmZ333Ky8sjeg4tZZ86hEEAPv30M+zfqV38thMnkNeWcNuTkqBYLO3X0k0mwGTq9LuHEu7vQexz/Iwz8NO0Ld6Eu6elZ6fYOw61O/3WcJ6/mfy0LD37+v1bgMd5HmNvteC77xLatnmD9j7a9/f2baZOf+uwT8DHu/81H5qEhC/mwdSz/SJaLOvb9xRaW6tQVibv+yHyuScYasTf3NysQiQUNhXyQeYw+vIZXs5ebyISnOFJd//+/WGxWFBfX++zvb6+HmlpaX4fc//99+P666/HTTfdBACYMGECmpqacPPNN+PXv/41zObOU9WLiopQWFjo/b2xsREZGRmYNWsWUlJSInoNrjqX97Xk5eVFVFZHb7W9jlGjRiFvxIiIyvpwx4c4gAM4I/2MTjHa7XaUl5dj5syZsAk6xtby/jPAQfdnPX64dvGbNm4EAChnnAF89RVM0L4hFUz8iQC+XJYCOIAdt+7AiD6RHQ9qefddEy65xIqhQ49h+3absMdPIDIc+11xx18pefyyv//qxO8ZfUXykj7t07rrU+XymWgTkUwMT7rj4uKQlZWFiooKzJkzBwDgcrlQUVGBgoICv49pbm7ulFhb2ubCBlpMIz4+HvF+brdks0WeKDgsDgCAyWJSteHoqZ4sFgtsnrm+YTJbzN5/A8WoxnuhmbbP22qxBJx8q0r8bZNkTf376/5edBV/q7MVpxzuW+KlpaQJ8zl1PCyFPn66IXPsAOM3mhrxy/z6yTgcse3GhdTCx7eOSB+GJ90AUFhYiAULFmDq1KnIzs5GaWkpmpqakJ/vnrQ5f/58pKeno6SkBADwwx/+ECtWrMCUKVO8w8vvv/9+/PCHP/Qm39GEQ9ag372RPEM8I5xyoLZme/vQ0ySbWLERERHr6m6pnN35mxJFRCQqIZLuuXPn4vDhw1i8eDHq6uowefJkrF271ru42v79+316tu+77z6YTCbcd999qK2txYABA/DDH/4QjzzyiFEvgaLFyZPufwVNui0mC2xm8XrEuCALEUlNgt6+rnpz1TkH80QeS1hvE+lLiKQbAAoKCgIOJ6+srPT53Wq1ori4GMXFxTpEZhxV2wASNCiE4OnpTkw0No7TNLW6h733iOvRaZE0I3FYGhFRtND4hK5h3cX53UQkus4rjlHotK6n1CxLoIRNSIIPL+fQciIiMWldu7L+JiKSF5NuNbE+1JDnyoZOc7oF6+n2LKKWYE0wOBJf7OkmInIz4nSo7jlY4/pVwwqDC6kRkeiYdMcIVkhBcrrvgx1ohXSjuBT3bekspuhbKJCIiLrHepyISF5MugWmSfXK3viuudzJLfzc691InqTbbBIrLg+TiY1BIoptRlavUow8lyLI2MGPg0hfYrbgyQfPizpi0h0SdrwQEelD+zndcrU2Or4fXEiNiEQnVgteVjKc62WIsUs6zen2DC8XLOl2Ku64REu6iSj6rVy5EpmZmUhISEBOTg42bdoUcN9nnnkG559/Pvr06YM+ffogNzfXZ3+73Y5FixZhwoQJ6NGjBwYPHoz58+fjwIEDeryUqCPVhU+Vg+Vwe3XwbSTSB1vwAuPwcgOwpzssHKZGFJ3WrFmDwsJCFBcXo6amBpMmTcLs2bNx6NAhv/tXVlbiuuuuw/r161FVVYWMjAzMmjULtbW1AIDm5mbU1NTg/vvvR01NDV5//XXs2rULP/rRj/R8WZrQ+jTIJDMwvjdEJDph7tNNgTGf0ZEn6baItWCZdyE1s1hxsZ1DFN1WrFiBhQsXIj8/HwCwatUqvPnmm1i9ejXuvffeTvu/9NJLPr8/++yz+L//+z9UVFRg/vz56NWrF8rLy332+cMf/oDs7Gzs378fQ4YM0e7FdEWFc5mRp8NYvPDJW6hFhm8fkb7E7DYjMgp7uomIAACtra2orq5Gbm6ud5vZbEZubi6qqqqCKqO5uRl2ux19+/YNuM+xY8dgMpnQu3fvSEOOakwyiYjkxZ5ugal51Vz6oVee+LVudDDpDonshxURBdbQ0ACn04nU1FSf7ampqdi5c2dQZSxatAiDBw/2Sdw7OnXqFBYtWoTrrrsOKSkpfvdpaWlBS0uL9/fGxkYA7vnhdrs9qDgCsaH99pBhl9V2i0mTosDucEQUT1ecTqefGC0ATHA4HLDbwzshe94Bp8sFV4TvZ1flOxwOKKeV73k94bz3jg7vdau9FXaz+rF3J5L4jeZ0muE+fuSMX+b3HmD8RlMz/mDLYNKtBp3W+FIDr5R3g0k3EZEqli5dildffRWVlZVISEjo9He73Y5rrrkGiqLgySefDFhOSUkJlixZ0mn7unXrkJSUFFGMl+NyAIDT4URZWVmYhbjLaGpqQllFRUTxdOXgwYOdYjxx4iIAPfHRRx/h1KkjYZV7edu/u3fvxs79Yb4HQZRfXV2NugBTt06fchCMT49/6v153bp1SLJEdixEIpz4jbZ9+3AAE6AoJinj95A5doDxG02N+Jubm4Paj0m3BJgm64hJd1h4LYco+vTv3x8WiwX19fU+2+vr65GWltblY5cvX46lS5finXfewcSJEzv93ZNw79u3D++++27AXm4AKCoqQmFhoff3xsZG7wJtXT0uFBaLBXl5eRGV0aNHj4jL8GcrtgIABg0a1Kn8Hj3cSezUqVNx0UVhrvnxmvufkSNHYvh49eP3yMrKgnJa/Ha7HeXl5Zg5cyZsNluAR/rXY18P4Ev3z7NmzUJKvDrHQigiid9ou3e3tydkjF/m9x5g/EZTM37P6KvuMOmOFRwGHBwm3SHh8HKi6BUXF4esrCxUVFRgzpw5AACXy4WKigoUFBQEfNyyZcvwyCOP4O2338bUqVM7/d2TcH/xxRdYv349+vXr12Uc8fHxiI+P77TdZrOp2tiLtCyTyaRp49Nisfgp330SttmssNkia9JZLBZYNIzfarV6h+KfLpzP0mq1+vxsZMNf7WNRDx3ePinj95A5doDxG02N+IN9PJNugfGWYR3pNIZf0KTb6eJ9uolIf4WFhViwYAGmTp2K7OxslJaWoqmpybua+fz585Geno6SkhIAwKOPPorFixfj5ZdfRmZmJurq6gAAycnJSE5Oht1ux1VXXYWamhr8+9//htPp9O7Tt29fxMXFGfNCVahatL4GKf3aLEREMYxJtxo0zgelzZNlJGjSLWpPt4fJxMYgUTSaO3cuDh8+jMWLF6Ourg6TJ0/G2rVrvYur7d+/H+YO58snn3wSra2tuOqqq3zKKS4uxgMPPIDa2lr885//BABMnjzZZ5/169fjwgsv1PT1UHRSOJyPiATHpDtG8Ap5kJzuHmVRk26LiffpJiJ9FRQUBBxOXllZ6fP73r17uywrMzNTzPpIhZCMuECu7lupwSsQ8bMmIjKAWJkF+dCiqpJ39fLYHl4uek83ERERERH5xxa8BGRNk6XkSboD3NbEKKIm3XrdPp2IiAKL9XOwkKMnBBfrxwyR3sRqwRMZjT3dREQUBuYwREQUCFvwatBo5LOq1215ETg4TLqJiGKPCnWkEdWsVB28Kgdr6tDo4kJq4ZPqGCKSGFvwsUbWS/F6jWNm0h0SVtZERBSQhpUEE20ikolYLXjyS9Y8WUqCJt1OhffpJiISmZF1tTrXozV+BZxELBR+HET6Ygs+RnCRkSAJmnR7bxlmFmuBNw/ep5uISHZyncd9hpezjUNEghMrsyAfvGWYAQRPukXr6WY7h4iIgsIKg4himFgteEmZlLZEVqN8lmkywPt0i5l0ExGRmxF1tbp5rAavQKdEm/O7w6cobGUS6YEt+FjB+ig4TLpDwvt0ExG5sZrtBisKIophYrXgyYcmFTjrvK453QuWMekmIiJZMJ+lUPGYIdIXW/AS4HlRR56ebotYC5Yx6SYi0pAKV7mlr6u1zsK0vH0Y54sTkeDYgleDTtONYxvndAPiJd1s5xAR6UTr8y1P6EREmhGrBU+a4VXgIAmadDtdvE83ERFJhm0P4fEjItIHW/AC4y3DDCBo0u29T7dJrGHvHrxPNxHFOs1rV62fQOv2gYblc/VyIhKdWJkF+cU0uQOtGwWCJ92i9XTzCjkRRQUVzmVGng6luJ7OCkMoUhwzRFFErBY8aUf2uk6vyppJNxFR7JEhAZG9HtcQp9ARkejYgleDRmt88ZZhBmDSHRLep5uIyM2I06C6uaYGr0DLFct5FYKIJCJWC578Yj6jIybdREQkIs0bA0xiiYi0whZ8jIieoVec001ERDGoi2o81kcbsdc7dLF+zBDpjS14gXH18o50qlCd7ltzMekOTtRcyyEiipCstWs7uV5B9HQmEFEsEKsFLzuN6iu5qkHJeXq6LWLdmsup8D7dREQiYwroh06JMRNwIhIdW/BqkOFcL0OMIhB8eLlo9+luX0iNBxgRSUyGU5ifK/DMNSlSisKuHSI9iJVZEAWk0RLxpxM86WZPNxGRmORf50yu5IvzuIlIJmzBC4y3DDMAk24iIpKMtMu1qIQJeOhi/Zgh0htb8BLgeVFHTLpDwvt0ExERERF1TagW/MqVK5GZmYmEhATk5ORg06ZNAfe98MILYTKZOv132WWX6RhxG51GPkeCi4wEiUk3EVHsUaH+FrgJYBwN2x4d2zVs4xCR6IRpwa9ZswaFhYUoLi5GTU0NJk2ahNmzZ+PQoUN+93/99ddx8OBB73+fffYZLBYLrr76ap0j1w5vGdaBXl2qTLqJiCgMRqR9zDUpUjyGiPQhTAt+xYoVWLhwIfLz8zF27FisWrUKSUlJWL16td/9+/bti7S0NO9/5eXlSEpKiqqk20PSNFlOTLpDwsqaiKICz2WcJ0REpCGr0QEAQGtrK6qrq1FUVOTdZjabkZubi6qqqqDKeO6553DttdeiR48efv/e0tKClpYW7++NjY0AALvdDrvdHkH0gOJUYIEFLsUFp90ZUVkduSwWwGyG0+mE3ZMMhsnpcMflcrk6vV7P75G+D1qyKArMABxOBxQN47c6nTABcLhcnZ5HK8HEb3e4/6YoilCfk8Nhguc0IlJcwZLh2O8K4zeWmvHL+h5QOyNTVlXyZcmuonZcPI0LqYWO11iI9CVE0t3Q0ACn04nU1FSf7ampqdi5c2e3j9+0aRM+++wzPPfccwH3KSkpwZIlSzptX7duHZKSkkIPuoNhO4dhIiaivr4eH5V9FFFZHdVmZQFnnIEd27ej7KuvIirr4JcHAQB79+1FWVmZ333Ky8sjeg4tnXPyCAYA2LJlKw58mux3HzXiv6ixET0BfLhpE440NUVcXii6in/v13sBAF/t/gplJ/x/fkbYsmUwgGkwmRShj5/uyBw7wPiNpkb8zc3NKkRCJBjJEnkiIq0IkXRH6rnnnsOECROQnZ0dcJ+ioiIUFhZ6f29sbERGRgZmzZqFlJSUiJ5f+dJdqaSmpSIvLy+isjp6xWIBAIwdOxZ5Y8ZEVFblh5WoRz0yMzMxK2+Wz9/sdjvKy8sxc+ZM2Gy2iJ5HK5bKFcBhYMqUKZic4fseqxm/NTERAPC9c8+Fcs45EZUVrGDi/3fZv4EjwOgzRyPvPPWOsUidONF+qVzk4ycQGY79rjB+Y6kZv2f0FVEoVM1p2fVJRKQZIZLu/v37w2KxoL6+3md7fX090tLSunxsU1MTXn31VTz44INd7hcfH4/4+PhO2202W8SNJafFPXTbbDLDbFNvzq2nJIvFAltbAh52WW1zlM1mc8DXq8Z7oZm2xoDVYgW0jL+tBWONiwv4PFrpMv62tpDNKtZnZG07g5hMgh8/3ZA5doDxG02N+GV+/eTGlFVfXL2ciGQixKpMcXFxyMrKQkVFhXeby+VCRUUFpk+f3uVjX3vtNbS0tOB//ud/tA4zKki7erleuJBaSNjOISJy4+mwG6wwiCiGCdHTDQCFhYVYsGABpk6diuzsbJSWlqKpqQn5+fkAgPnz5yM9PR0lJSU+j3vuuecwZ84c9OvXz4iwNcXqyY9YvWUYxEy6iYjIeOpUjRrUrzol2lxILXTsgyHSlzAt+Llz52L58uVYvHgxJk+ejK1bt2Lt2rXexdX279+PgwcP+jxm165deP/993HjjTcaEXJnGp3AeF4EdLsEIWrSLWhPNxFFv5UrVyIzMxMJCQnIycnBpk2bAu77zDPP4Pzzz0efPn3Qp08f5ObmdtpfURQsXrwYgwYNQmJiInJzc/HFF19o/TI0J39drXE9q3KWx0SbiGQiVAu+oKAA+/btQ0tLCzZu3IicnBzv3yorK/HCCy/47D969GgoioKZM2fqHOlpZDjvyxCjCJh0h4SjBYmi25o1a1BYWIji4mLU1NRg0qRJmD17Ng4dOuR3/8rKSlx33XVYv349qqqqvAuW1tbWevdZtmwZfv/732PVqlXYuHEjevTogdmzZ+PUqVN6vayowXMwRUpR5L9cRCQDsVrw5EOTupTn1q4JmnQ7Xe2L9RER6WXFihVYuHAh8vPzMXbsWKxatQpJSUlYvXq13/1feukl3HbbbZg8eTLGjBmDZ5991rtGC+Du5S4tLcV9992Hyy+/HBMnTsSf//xnHDhwAH//+991fGXUmcYNBA2vEHAhNSISnTBzuikw5skdxeic7raebospslXs1eZp53BuGFH0aW1tRXV1NYqKirzbzGYzcnNzUVVVFVQZzc3NsNvt6Nu3LwBgz549qKurQ25urnefXr16IScnB1VVVbj22ms7ldHS0oKWlhbv757bq9ntdtjt9rBem4cN7avGh11W28rziqLA7nBEFE9XXC5XpxgVxQLABKfTAbs9vMTT8w44XU64Inw/O7HbveU7HA4op5XveT3hvPd2h93n50iPhXBEEr/RXC4TPGmAjPHL/N4DjN9oasYfbBlMumOE9FeB9Ypf8KSbPd1EpJeGhgY4nU7v2ioeqamp2LlzZ1BlLFq0CIMHD/Ym2XV1dd4yTi/T87fTlZSUYMmSJZ22r1u3DklJSUHFEcjluByAO6EtKysLsxB3GSeOH0fZ+vURxdOVgwcPdorx5MmZAJKwceNGfPvt0bDKvbzt3893fY7P94T5HgRgaWnBD9p+rq6uRl2AW+OVl5eHXPaWxi3en999912kxqd2sbe2wonfaJ9+OhTAZAByxu8hc+wA4zeaGvE3NzcHtR+TbjV48kGVe/u0SDN5y7BuON3DuJl0h8ZkkvyiDhGpbunSpXj11VdRWVmJhISEsMspKipCYWGh9/fGxkbvXPGUlBQ1QoXZbEZeXl5EZST37BlxGf5sxVYAwKBBgzqVn5joHv2Uk5OD730vzJFQr7n/OXP0aIw8S+X4OzRGs6ZOhXJa/Ha7HeXl5Zg5c2bI96q3fmUFvnL//P3vfx+ZvTMjjTZkkcRvtAMH2tuDMsYv83sPMH6jqRm/Z/RVd5h0S4Bpso48Pd0WsYZxi5p0yz6AgogC69+/PywWC+rr632219fXIy0trcvHLl++HEuXLsU777yDiRMnerd7HldfX49Bgwb5lDl58mS/ZcXHxyM+Pr7TdpvNpmpjL9KyzCaTpo1Ps9nsp3z3SdhqtcJmi6xJZzGbYVE7/g7lWS0Wn999dwv9s7R0qKfVPhZCZfTzh8Pz9imKnPF7yBw7wPiNpkb8wT5erBY8aSdqkqPYntMtWtJNRNErLi4OWVlZ3kXQAHgXRZs+fXrAxy1btgwPPfQQ1q5di6lTp/r8bdiwYUhLS/Mps7GxERs3buyyTM1JUEdKP01MQ3xviEh07OmONdJ2m3NON8Ckm4j0VVhYiAULFmDq1KnIzs5GaWkpmpqakJ+fDwCYP38+0tPTUVJSAgB49NFHsXjxYrz88svIzMz0ztNOTk5GcnIyTCYT7r77bjz88MMYNWoUhg0bhvvvvx+DBw/GnDlzjHqZ0lNl5pgW08+YDAuLsw2J9MWkW00SzOmmbgiadDsVMW8ZxvYUUXSbO3cuDh8+jMWLF6Ourg6TJ0/G2rVrvQuh7d+/H+YO58snn3wSra2tuOqqq3zKKS4uxgMPPAAA+OUvf4mmpibcfPPNOHr0KM477zysXbs2onnfsYBrsgSmsMVERIJj0q0Gjc/1rGY70LrRIWjSzZ5uIjJKQUEBCgoK/P6tsrLS5/e9e/d2W57JZMKDDz6IBx98UIXoVCJBRetvCHUsX/jkkHIikglb8DFC/sqJw8sBwGIWa4E33qebiCha8ERORKQVsTIL8sFbhhlA8KSbPd1ERKQNeS/Oy9+xQETRji14CTBN1hGT7rDwPt1EJDUVTmFa19VdXTQX9hysYTLMedyRYR8Mkb7EbMHLSuQTWNTUTbE9p9sk2EHGzgUiIn1o35srVv1CRBRNxMosZKVRPahJsbLWqXpkd56EGxAu6Xa63KuXizanm4iIjMMLn27s9Q4fjyEifYiVWZBfsubJ0umYdFvESm49twyzmMSKy4PD1IiISE+cx01EMmHSHSNYOQXB6Wz/WbCebtFXLyciIm11Padbx0BCoVMlwTZO6IQ9ZoiilFiZBWlO/tXLNYy/Y9ItWk932/ByURdSIyIibTGxJCKSF1vwavDUgyrng6xeO9Lh3RA56RZ0eDnbgEREbrJf0pYN53ETkUyYdEuAFblORE66uZAaERGdRt0Ln/K2NpiAh09R5P3ciWTCpDtWsD7qnsALqXnndAvW0+0h7D1iiYjIOBwORUQEgEm30HjLMD+0nJMu8EJqnuHlos3pZnuKiChKSLbmS8c57pzvHjrJPm4i6YnVgpedRicwnhehT3bnSbpNJuFqIw4vJyIiTTFxJSLSDJNuNUhQT/EqcBA8SbdgQ8sBGYaXGx0BEVHskapqlypYIiJ1MekWmBbVk/y3DNOQwEk3h5cTEYlN+tpVsvZBx8XTuJAaEYlOrBY8+SVXNag1Dd8Nz0JqIibdHF5ORKQd5mza4JVZIiIATLpjh/T1no5zugVbRA3gfbqJiCgwKTqpNQySU+hCJ8UxQxRFxMsuZCbDCUyGGI0i8PByz5xu0YaXExFRtNC4gaByYsxEm4hkwha8GjQ677M68UeHW4YJmHSLPryc9+kmItKfunknz+OxiNcuiPTBpFsC7JzWichJN4eXExFphxWtNnSqJLiQGhGJjkl3jJB/GJYO8Qu8kJr3lmGC9nQTEcU6I/N2debnavwKVJ5EzEQ7MpzTTaQvJt1qUvkExluG6UzkhdRcYt4yzIOHFRERdUnDi//ydywQUbQTswUvG43P9cxnOtAyu+Pw8pCxnUNEUUGGc5kMMRIRkV9MumOF7JW1HtmdyEm34AupERGR/tStGjW4qM3ebeEpCrt2iPTApFtgmlQnPLcGJnDSLeotw9jmISLSieb1t9bD9jS8T7f0PQtEFO3EasGTX8yTdSLwQmqiDi8nIiKddJFXSrGuBq/SCkWKY4YoijDpVpPAJ7DoGYal4Ztst7v/tVq1e44wuBQXHC4HACDeGm9wNP6x8iaiWCf/aVCuV8DebSKSCZNuNUh03pd39XId3uSWFve/8WIltq3OVu/PcZY4AyPpLGqu5RARkbSip2OBiKIVk26BsQrRWWtbchsnVmIrctJNRBQVZLge7SdG4XNN4QMkItIHk24JqNIWYL3XPfZ0h81k4gFGRBKT4RQmQ4wG4VBzIhIdk26SjIbdEYIn3VazlauXExFRJ9LOHIsAh5RHJhaPGSIjidWCl53KJzDeMqwjHSpXQYeXtzjcFwNE7eUmIiIiIqLAhEm6V65ciczMTCQkJCAnJwebNm3qcv+jR4/i9ttvx6BBgxAfH48zzzwTZWVlOkV7Gq1vbalt8eRx4oT73x49jI3jNMdbjwMAkuOSDY6kM3Y0EBG5aV5Xaz2nW4uuT50qCfZ6h49vHZE+hLg30po1a1BYWIhVq1YhJycHpaWlmD17Nnbt2oWBAwd22r+1tRUzZ87EwIED8be//Q3p6enYt28fevfurX/wkoiaCknL8VDHjrn/7dVLu+cIQ2NLIwCgV7xYcRERkY6ipBpXC+dxE5FMhEi6V6xYgYULFyI/Px8AsGrVKrz55ptYvXo17r333k77r169Gt9++y02bNgAm80GAMjMzNQzZF1oUZ3Ie8swHXz7rftfwS7eHGk+AgDondDb2EC6wMOKiMg4sX4OZgIeulg/Zoj0ZnjS3draiurqahQVFXm3mc1m5Obmoqqqyu9j/vnPf2L69Om4/fbb8Y9//AMDBgzAT37yEyxatAgWi8XvY1paWtDiWSgLQGOju/fQbrfDbrdH9BoUpwILLHApLjjtzojK8inXYgHMZrgcDtgj7Kl2uVwAAKfT2en1en6P9H3QktXlggmAw+GAclqcf/+7C4+uTsYv3r0LdsvRoMtUoGDW7m8w+8tvYHW5MGt3LZIA/Lr6Hfzlf6/27uXZFwDgXaX7tO0IsD2I/RUALS2nEP/+H9v36/C4bxOqAQtQt3MorrvOFfTr08MXXwCeWSoiHz+ByHDsd4XxG0vN+EV9D1auXInHHnsMdXV1mDRpEp544glkZ2f73Xfbtm1YvHgxqqursW/fPvzud7/D3Xff7bOP0+nEAw88gBdffBF1dXUYPHgwbrjhBtx3333GXhRmzkZERBoyPOluaGiA0+lEamqqz/bU1FTs3LnT72O++uorvPvuu5g3bx7Kysqwe/du3HbbbbDb7SguLvb7mJKSEixZsqTT9nXr1iEpKSmi1zDyi5EYh3E4cOAAtpRtiaisjg7l5ABpafjk009Rtn9/RGV9s/cbAMDu3bvRVNbkd5/y8vKInkNLM04eQ28AmzdvxiGrb+J52+0Xo+EnNwF99oZUZpwDeKIMSOhwneSUBXhl/BZ8naLe5xiUIKZrf11+BV79VJhlGHz07Nkq9PHTHZljBxi/0dSIv7m5WYVI1BXq1K/m5mYMHz4cV199NX7+85/7LfPRRx/Fk08+iT/96U8YN24cPvroI+Tn56NXr1648847tX5JcpO9Z1LlaW5RM22OiGKC4Ul3OFwuFwYOHIinn34aFosFWVlZqK2txWOPPRYw6S4qKkJhYaH398bGRmRkZGDWrFlISUmJKB7lE/eJf/DgwRiUNyiisjp6qq3XfuKECcgbPz6ist5++200oAGjRo3CBXkX+PzNbrejvLwcM2fO9A7XF421fAlwFJiWnQ0lbbbP3xy9vvQm3JfZlsJsCu6wzjxyAAnOFQCA5/J+hFZbHD4bNhITB6ZiIkwweVs4prb/B/d7qI9TFAV1dQeRljYYZpO5/e+m9v37mjIx9PrpMJnUG0mhFqvVib59dwh9/AQiw7HfFcZvLDXj94y+EkmoU7+mTZuGadOmAYDfvwPAhg0bcPnll+Oyyy4D4J4a9sorr3S7eCrBb2+88HknF1ITnqLIfjWHSA6GJ939+/eHxWJBfX29z/b6+nqkpaX5fcygQYNgs9l8hpKfddZZqKurQ2trK+L83PIpPj4e8X7uv2yz2SJuLDkt7kTIbDbDbFO/J9JitSLS5qjZ7I7LbDEHfL1qvBeaaUtArRYrcFqMSnItAGBY8hj8+38XBV/mBx8AT6wARo3CjW/+Q7VQQ2W321FWVoa8vDxx3/8u2O0ulJW1in38dEPm2AHGbzQ14hft9Ycz9SsY55xzDp5++ml8/vnnOPPMM/Hxxx/j/fffx4oVKwI+RsvpYTZP7WqKYIi/57NTFNgdjoji6YrL5eoUo6K4m3EOhwNhh9/2r9PpgkvtaQ52u7d8h9PZaXpYJFM0HM7299ruiPxYCIfMU2QcDhM8aYCM8cv83gOM32hGTA8zPOmOi4tDVlYWKioqMGfOHADuiqWiogIFBQV+H3Puuefi5Zdfhsvl8iaTn3/+OQYNGuQ34ZadGtcg5b8KHDh+Z1IdAGBAQoijDDyNI6vhXwMiIqGEM/UrGPfeey8aGxsxZswYWCwWOJ1OPPLII5g3b17Ax2g5PexyXA7A3e4I+7ajl7vLOHbsGMr+85+I4unKwbqDnWK02y8BEI8PP6zCgQPHwyr38rZ/d+zcgS+/VPfWq3GNjbi07eea6mocDNBGC2eKRs13Nd6f33//fRxMOhhOiKqQcYrMJ5+cASALgJzxe8gcO8D4jabn9DAhso3CwkIsWLAAU6dORXZ2NkpLS9HU1OQd0jZ//nykp6ejpKQEAHDrrbfiD3/4A+666y7ccccd+OKLL/Cb3/zG+PlgEozQicrVy23u+2v3sPYM7XGeK1OC9TAREUWrv/71r3jppZfw8ssvY9y4cdi6dSvuvvtuDB48GAsWLPD7GC2nh3mYzWbk5eVFVEavXr0iLsOfrdgKABiUNqhT+Tabuxk3ffp0TJoURpNOUYC/uX88a8xZGD1a5fgbGrw/nn322VBOiz+SKRpN25uAfe6fzzvvPExJmxJxuKGSeYrMd9+1twdljF/m9x5g/EYzYnqYEEn33LlzcfjwYSxevBh1dXWYPHky1q5d673Cvn//fm+PNgBkZGTg7bffxs9//nNMnDgR6enpuOuuu7BoUQhDi9WkUSey7H3T2uh80cBlOQkAiLckhFYUe7qJiPwKZ+pXMO655x7ce++9uPbaawEAEyZMwL59+1BSUhIw6dZyetjp5UXCZDJp2vg0mztPDzO13enCarWG99wdRsFZLBZY1I6/Q/1qtXaeHuYRzmdpPa1sIxv+Mk6R6dj0kTF+D5ljBxi/0fScHiZMtlFQUBBwOHllZWWnbdOnT8eHH36ocVRiiMK+aXVZTgEA4ph0ExGpIpypX8Fobm72uYgOuJM9z20tDSPpVW6pZo6pPNKu47Q5+afQGYdvHZE+mG3ECulPqoFfgGJ1J90JlsTQivQML2fSTUTUSahTv1pbW7F9+3bvz7W1tdi6dSuSk5MxcuRIAMAPf/hDPPLIIxgyZAjGjRuHLVu2YMWKFfjpT39qzIuMeTo2DpjdEVEMY7ahJpW7pDWpnqKw21zx9HSbw+zplnhYDBGRVkKd+nXgwAFMmdI+r3b58uVYvnw5ZsyY4R2x9sQTT+D+++/HbbfdhkOHDmHw4MH42c9+hsWLF+v62rRgZPWqTidyFDYQKKBoXOKHSGRMuiXA82IHfmoJxTunu/Ocvy5xeDkRUZdCmfqVmZnZ7TDfnj17orS0FKWlpSpFSBHRuvdZw/KVDl0TivzD+Ygoyql/U+lYJMG5Xvr5Tl3F3za8nAupERFRLFG1amfXJxGRZph0x5hovGWYYnbPzbaaQxwmzluGERERucnc6y17xwIRRT0m3QJjFeKPn4sGJveqt2aTJbSi2NNNRERRIPzr6fK2NJhoRyYK+2CIhMakW00ancBUKTaa6yaTEwBgZdJNREQUHmZhRESaiSjbsNvtqKurQ3NzMwYMGIC+ffuqFZdcZEpopa1Tu7hlWFvSHXJPN28ZRkREKpG2etWSTr3RXEiNiEQXck/38ePH8eSTT2LGjBlISUlBZmYmzjrrLAwYMABDhw7FwoULsXnzZi1ijTmsQoJkDjPpZk83ERFJwt9w6shzWh3ncaucgDPRVoei8HIRkR5CSrpXrFiBzMxMPP/888jNzcXf//53bN26FZ9//jmqqqpQXFwMh8OBWbNm4ZJLLsEXX3yhVdwxhafDDvzdMswzvNwcYtLtaQBwSB0REcU8DepCvXq6Ob+biAQXUhff5s2b8d5772HcuHF+/56dnY2f/vSnWLVqFZ5//nn897//xahRo1QJlCIT1RVSW9Jt4hIFRERoaWnBxo0bsW/fPu/0rylTpmDYsGFGh0YaUefacRS3E6gT9jcQ6SukpPuVV17x/nz8+HH07NnT737x8fG45ZZbIotMRiqfwLSo/uS9ZVgX70Zb0m1hTzcRxbAPPvgAjz/+OP71r3/BbrejV69eSExMxLfffouWlhYMHz4cN998M2655ZaA9TeJS5P6W8/bhKk9vDyaOxOIKOqE3TV4/vnno66uTs1Y5KXxeZ8pYTc8SXeoc7q9j+c7TERy+9GPfoS5c+ciMzMT69atw/Hjx3HkyBF88803aG5uxhdffIH77rsPFRUVOPPMM1FeXm50yGKRIX/TvKqSMKn3PI0UHyARxbKwk+4pU6YgJycHO3fu9Nm+detW5OXlRRwYqSxq6iM/c7q9C6mFeDjzKjkRRYnLLrsMe/bswbJly3D++ecjMTHR5+/Dhw/HggULsHbtWlRUVMBs5nQctRlx+ZbVGEWKxxCRPsKudZ9//nnccMMNOO+88/D+++/j888/xzXXXIOsrCxYLGH2OJL2orFTl8PLiSjG/exnP4PNZgtq37Fjx+Liiy/WOCKSg47DyzV9GmaORCS2iO6VtGTJEsTHx2PmzJlwOp24+OKLUVVVhezsbLXik4sEc7ql1VWFyuHlREQUCQmqga7mdAtbjfGWYcIS9pghilJh93TX19fjrrvuwsMPP4yxY8fCZrPhhhtuiN2EW0NqnBej+iqwyQUgjPt0R/N7QkQxy2w2w2KxBPyPJCVjksR6logIQAQ93cOGDcPo0aPx2muv4bLLLsPatWsxd+5c7N+/H/fcc4+aMYpPojpF3tXLPbq4T3e4Sbf07wkRUbs33njD53e73Y4tW7bgT3/6E5YsWWJQVKSFyHNaiRowXWCvNxGJLuyke/Xq1bj22mu9v19yySVYv349fvCDH2Dv3r1YuXKlKgHGMlYhQTJ5FlLj8HIiossvv7zTtquuugrjxo3DmjVrcOONNxoQFYlPrtXLo3oEHxFFnbCHl3dMuD3OPvtsbNiwAe+++25EQZEvpoRAl5cgzBEupEZEFAO+973voaKiwugwxKRCdaB1Xc053acVza6JiAh7zBBFKdXvGZKZmYkNGzaoXawUFJPAFYDAoYXEXy0R7kJqHF5ORDHi5MmT+P3vf4/09HSjQ6FwaVFVaX3xWcPyXYqrw9NESyOHiKJVSMPL9+/fjyFDhnS7X58+fQAAtbW1sVHBa3Su16TYaMwvIx1eTkQURfr06ePTK6ooCo4fP46kpCS8+OKLBkZGpB4m2kQkk5CS7mnTpmHOnDm46aabMG3aNL/7HDt2DH/961/x+OOP4+abb8add96pSqCxLBrz5NAFrlyVtuHlVt6nm4gIpaWlPr+bzWYMGDAAOTk53oviFB2Ezzu1nNPdoV3AoebhE/4YIooSISXd27dvxyOPPIKZM2ciISEBWVlZGDx4MBISEvDdd99h+/bt2LZtG84++2wsW7YMeXl5WsVNIYrqK8JtPd2mcGdLMOkmoiiyYMECo0MgDWhz9xEdh5erPac7mts1RBR1QspS+vXrhxUrVuDgwYP4wx/+gFGjRqGhoQFffPEFAGDevHmorq5GVVUVE25BReMtw7xzurmQGhHFqP3794e0f21trUaRSEryqlGVql2L9oFOPd0UOumbg0SSCeuWYYmJibjoootw1VVXqR2P3FQ+gbE6CZKZC6kRUWzj9K8ISbB6uewXBtTWsaebvd5EJLqw79Pdv39/pKenY9KkST7/nXnmmVHQmxoijc/1qrybstdHXVWo4a5e7n18jB2vRBR1duzYgYcffpjTv6IYh5efVrT0DRsiiiVhJ92ffvoptm7dio8//hibN2/G008/jW+//RYJCQkYP348Nm7cqGacpJZozC/DXb2cV8aJKEp88803eOyxx/DII4+grKwM//3vf7Fv3z6cPHkS/fv3x7x58zB79myMHz/e6FCjlhE1SsTVWIfbbmlwF1n9bhnGBDxsihKNDUMi8YSddI8bNw7jxo3DvHnzALiH9qxduxZ33HEHLr74YtUCjGWsQvzpXDkoJq5eTkSxbcqUKairq8OAAQNwzz33YPPmzejXr5/RYcUUDVJWHXRoaUhWF3JIORHJRLU6wmQy4dJLL8WLL76Iuro6tYqVi0b1lVzVoAHMnp5uOZs8RESR6t27N7766isAwN69e+Fyubp5BKnNyDndYefLPj3dXEgtlkh2jYVIemH3dAfyve99D9ddd53axVKkpK+bgpjTbQ4x6WZPNxFFiSuvvBIzZszAoEGDYDKZMHXqVFgs/kf/eJJzUpfWl301n9OtxYVrnW4Zxl5vIhJd2El3cnIyJkyYgEmTJmHixImYNGkSxowZg82bN+P48eNqxig+jc71WhQblYvcmdxX6sOe0x2N7wkRxZSnn34aP/7xj7F7927ceeedWLhwIXr27Gl0WDHFiLFW6s7pZk83EZFWwk66//a3v2Hr1q3YunUrHn/8cXz55ZdQFAUmkwkPPfSQmjHGPKaEHfhLkNuS7rBXLyciigKXXHIJAKC6uhp33XUXk+5QqJC/STnBqWPSLdkULZ+ebibgRCS4sJPuSy65xFvBA0BzczP27NmDfv36IS0tTZXgSD1RPfTKk3RzeDkREZ5//nmjQ4hJUs7p1vOWYWoXzUQ7Imz6EOlLtTndSUlJGDdunFrFyUmGE5gMMfrV1Zxud9JtCrefgTUPEVFsU6EakLImUTRecE/DOd0urWMnIlKRXGOJRCXRnG75BR5eHvLq5dHc+09ERLrSokHVcZSa5gupacHp1KxoLqRGRDJh0i0BVarZaK6POLyciIgMpknS7eqQdFs711XqLqSmAYdDs6KdinYJfSzh9QoifTDpjjHRvHp52MPLiYiIIqRF7epytCfFZqsWt/TSOOnu2NOtcnbncGmX0BMRqY1ZippUrnF58bGDrirrSIeXR+OFCCIiFaxcuRKZmZlISEhATk4ONm3aFHDfbdu24corr0RmZiZMJhNKS0v97ldbW4v/+Z//Qb9+/ZCYmIgJEybgo48+0ugVBEnQ1csVZ3tgZkvgZ1BnITUNWh0aDi/vmHS3Ols1e55oxaYPkb6YdEtAjfNi9Mx36uKWYRxeTkSkmjVr1qCwsBDFxcWoqanBpEmTMHv2bBw6dMjv/s3NzRg+fDiWLl0a8C4m3333Hc4991zYbDa89dZb2L59O37729+iT58+Wr4UXWhx08qOPd0miwZ1lUvjZFWnpLvZ3qzZ8xARqUG11ctjmkz5bDTml2Z3pR5yTzcREQW0YsUKLFy4EPn5+QCAVatW4c0338Tq1atx7733dtp/2rRpmDZtGgD4/TsAPProo8jIyPC5rdmwYcM0iF4fHav/BA3K9xle3kVPd9icLUHvevrF+9Nv2eXv76aWU96LEQ6XA4rT7vN3u9MOu8uOVmcrXKbOQ927eo5jp455f2bSTUSiEyrpXrlyJR577DHU1dVh0qRJeOKJJ5Cdne133xdeeMHbEPCIj4/HqVOn9AhVFzLl8kbpWAFbzCH2M7Cnm4jIr9bWVlRXV6OoqMi7zWw2Izc3F1VVVWGX+89//hOzZ8/G1Vdfjf/85z9IT0/HbbfdhoULFwZ8TEtLC1pa2pPDxsZGAIDdbofdbg/0sKDYYAMAOAH0PHrSu13pWC90+NG7ve0fp80CxLubUl++uAW/ufFvUHwe0PaP4r+e6W674mpPtM07lkN57hKfuBofb/v5A0D5wE9B3VRvpvj2nx23/AzK+p/5/j1AQyRQsR33N8F3OGX+3/Px4p780x/i9knXcXbnf974H/z87Z/DarbCarbCZrYhvWc6Vl66EmP6j4ms8C54jr9Ij0MjOBwmAFbs3NkXAweaIF+r0wq7/VLYbFbIFzsAWNGnzwxkZ9vRv7/RsYRO5mMfUDf+YMsQJun2DGNbtWoVcnJyUFpaitmzZ2PXrl0YOHCg38ekpKRg165d3t+jcpEwauP/hNrxPp3mUGdLMOkmIvKroaEBTqcTqampPttTU1Oxc+fOsMv96quv8OSTT6KwsBC/+tWvsHnzZtx5552Ii4vDggUL/D6mpKQES5Ys6bR93bp1SEpKCjsWALgcl7f9ZMKp3okRlRX3nR321riIyuiSxQRTZCF2yeoCIPGtrw83H/b5/aujX+Gnr/4U9w2/T/PnLi8v1/w51Hb4cDKs1u/D4TDj6FGjowmXht83HRw92hvPPPMBJk1qMDqUsMl47HekRvzNzcGNtBEm6Q51GBvgTrIDzRszhEa5G28Z1sFpCbJP0s3h5UREQnO5XJg6dSp+85vfAACmTJmCzz77DKtWrQqYdBcVFaGwsND7e2NjIzIyMjBr1iykpKREFM+emXsxrDwTX5+9Fy887+4qNnlq3bZuW5Opwza462RThy3P52ShfMyZGDyjBy74Q7p7H3PHusrkLcf7u6m9o6B9s6ntF5N3H8CEnX8+hAPvHUed7YfYnHiTT/yKS0Ft7SeYNm0izDZze/ymjvF2qBtPey0A0GffrxF3cjuOPlCE5ieuaAvF8x54YvR9jMnPGiqdnrft595zr4dty8dYeckf8Ntrr/Z5jMPhwPr16/H9738fNput8/P4uSjecZ94azwONx/G8ZbjcLgccCgOOF1OVB+sRsHaAuy170VeXl6nMtRit9tRXl6OmTNnwmazafY8Wrn88lP417+qcM4558BqFSYlCIrD4cCGDRukjB0ArrjCgt27zcjKysKsWVqsCKEt2Y99NeP3jL7qjhBHabjD2E6cOIGhQ4fC5XLh7LPPxm9+8xuMGzdOj5B9SZTQRttoAJ+kmwupERGpon///rBYLKivr/fZXl9fH9HF7kGDBmHs2LE+28466yz83//9X8DHxMfHIz4+vtN2m80WcWNpyHkZQDkwdOIQLMjPDKuMHQDKAZwxcRy+P1H9NsjJHetw4L0qpI0ag2lXzPT5m91ux8GyBKROzQv/vTjxJ+Cb7eg9aCh6j5qmQsSnGZgG4GOkJKYgJcV35KLdbkeyNRkDeg4IO/4eCT06bRuXOg4FawvQcLIBp1yn0DO+Z1hlB0uNY9EIaWlAevoJjBtnlS5+ux3Yt0/O2AEgIcHdBrVarW1D5OUk67HvoUb8wT5eiE85nGFso0ePxurVqzFx4kQcO3YMy5cvxznnnINt27bhjDPO6LS/lnPC4AIssMDlcsFlV29slstiAcxmOBwO2CNcfdzlcsfldDo7vV4Z5mVYFfcsOYfDAaVDnC329s/U6ej82rpidjphAeBUFLgMfO0yvP9dkTl+mWMHGL/RjJgTppe4uDhkZWWhoqICc+bMAeCuRyoqKlBQUBB2ueeee67PtDAA+PzzzzF06NBIwo2cChfPJbr+fhqdLjzreBeVnvE9EWeJQ6uzFUdPHdU86SYi6o4QSXc4pk+fjunTp3t/P+ecc3DWWWfhqaeewkMPPdRpfy3nhI35agxGYzS+/vprfFr2aURldfTdeecB/fphS00N4g8ejKis2tpaAMCOHTtwpOyI331EnpdxcXMTkgFUVVXhW8tR7/ZTzvaF86o+qMLeXcE3HsZ+9RVGwT3HcHtZmXrBhknk9z8YMscvc+wA4zeannPC9FRYWIgFCxZg6tSpyM7ORmlpKZqamrzTwObPn4/09HSUlJQAcI9a2759u/fn2tpabN26FcnJyRg5ciQA4Oc//znOOecc/OY3v8E111yDTZs24emnn8bTTz9tzIuUiLS3/jRoNFnPuJ44cvIIGluCG/pJZARZv9YUOiGSbjWGsdlsNkyZMgW7d+/2+3ct54ThQ/c/GRkZyMjLiKysDh61uOd4nH322ciL8Fv5jzX/wHf4DmPHjkV2nu+K8DLMy7C+1QM4AUyffg6U/u0XW463HAfarnNccP75GDUs+M/S/J//AACGDx+OTA3nfHVHhve/KzLHL3PsAOM3mhFzwvQ0d+5cHD58GIsXL0ZdXR0mT56MtWvXekel7d+/32daz4EDBzBlyhTv78uXL8fy5csxY8YMVFZWAnDfVuyNN95AUVERHnzwQQwbNgylpaWYN2+erq9NKpwBFZae8e6k+3jrcaNDISISI+lWYxib0+nEp59+GnDBDC3nhDk994m2mGGxqb8YgtVqRaTNUU/DyGwxB3y9MszLsFqtQIcYLc729zsuLj60+NveE4vFAosAr1uG978rMscvc+wA4zeannPC9FZQUBCwHvYk0h6ZmZlB9cb+4Ac/wA9+8AM1whMCc2IxpcS7L8Kzp5tExOWEYo8QSTcQ+jC2Bx98EN/73vcwcuRIHD16FI899hj27duHm266qaun0YbGQ0O4ejkQzC3DLFxIjYiIQiHT6V/2elzncbRJNvfUwZP2k93sSUSkPWGS7lCHsX333XdYuHAh6urq0KdPH2RlZWHDhg2dVkUlX9G2erlTcXp/5n26iYjIKFqllPrV2xq9AoPqWJvZPXrE7hJrkUKijjinO3YIk3QDoQ1j+93vfoff/e53OkRFYuF9uomIiFQTpReebZa2pNvJpJuIjMcsRU0q11u8+NU9b9KtmGA2h/gBsKebiIgAVrh60LlLjz3dJDI2PWMPk24JqPG9lPZWI17dzOlWwjiUmXQTEZEkpK3HDapj4yxxAIBWZ6shz09E1BGTbjXIVA/Knl+aAgwvDyfpJiIiipDm1ars9bZBOLycZCDrtTQKHTMVgfF72L2OSXfIF9PZ001ERBSVOLyciETCpFsCvGVYYE4Xe7qJiChMKl5zlb+a1fgV6D2nmz3dJDD298QeZipqkuALJO0twwJU1pzTTUREMUGznFXjOtCoOd1mzukmInEw6VaDRhWh/FfNteBbeXfs6ebwciIiCovAFa60F8sN5u3p5vByEhjndMcOJt0S4OrlgXEhNSIiIjqdd043h5cTkQCYqcSaKLtg7nQ53T+wp5uIiAygVw0i/cVzo+Z0s6ebBMSmZ+xh0q0mfoE05L+ydnp6ul2WMIpk0k1ERILTL6vXplyD6lizyd3E9Y6IIyIyEJNugUl+TVsjvE83ERGJR946OzovPFtM7ovxTLpJZLIPYKHgMVNRg8ZfGN4yLDDep5uIiMLG03/UYk83EYmESXeMibZVUCO6TzeTbiIikoXsF8917tLzJN3etV+IBMKmZ+xh0i0w2etXdWlwn24iIiJA6ApX+ovlBsVvMXN4ORGJg5mKmjSqV3jLsA5Oq7xdvE83EREZiDWImLw93Qp7uklc0dI8p+4x6Y41UdY6iKinm2c6IiKiNhrXiTrXuVxIjYhEwqRbDRrVI0wJOwhQWUe0kJoHe7qJiChCWtfZmo1Y07oO5C3DiDoxmdjKjzVMuiXA1cs78n03nGr0dDPpJiKKTTKc/mWIUUBcSI2IRMKkO8ZIvyDLabyVKRdSIyIiojbehdTAnm4SF2c6xg5mKmqKrnxWMN0NL7dwITUiItIda5AgGXTLMA4vJyIRMOlWA+d06+e0BJn36SYioojJUOHKEKM/Bs/p5vByEhGbnrGHSbcEeMuwwLzDxji8nIiIopBu08KirJ3A1cuJSCTMVGKNtFfWNFi9nD3dRESkEnlT1uisA3mfbpJBlF3roi4w6VaTyvUWv4f++L7JLjWGlxMREQlO+hFrnNNNRDGMSbcEeMuwwFyR3DLMgz3dRESxSYbTvwwxdsWgOta7ejmTbhIQm56xh0m3GiRKaKW9ZViAK+SODrcM4/ByIiLSG2sQMXEhNSISCZNugUmUy+vIt3njcDncPzhtoRcl+1A9IiJSB6sD7elc53IhNZIBm6Kxg0m3BLh6eWAOl939g8sWfoc1e7qJiEh0mlfjGj2BwbcMY9JNRCJg0q0mGXI3GWIMgd3Z1tPtsob+YA4vJyIilWiVE2s/LSw660CuXk4iY9Mz9jDpJkkEmtMdQdJNREREUYkLqRGRSJh0q0Gjy9vROSA8QqbT53S3DS93hjG8nD3dRERE+uAtw4g6idLZn+QHk24J8JZhgdkj6enmmY6IqFsrV65EZmYmEhISkJOTg02bNgXcd9u2bbjyyiuRmZkJk8mE0tLSLsteunQpTCYT7r77bnWDDpYKFaxel22lXZvF4DndXL2ciETApFtNEnSYSnvLMC2Hl0v7nhARaWvNmjUoLCxEcXExampqMGnSJMyePRuHDh3yu39zczOGDx+OpUuXIi0trcuyN2/ejKeeegoTJ07UIvTooVsVJWlSHwBXLyeRsekZe5h0Cyy6qj+1+J6l7M4IVi/n8HIioi6tWLECCxcuRH5+PsaOHYtVq1YhKSkJq1ev9rv/tGnT8Nhjj+Haa69FfHx8wHJPnDiBefPm4ZlnnkGfPn20Cj94sVzhRmkdyIXUiEgkTLolwFuGBRZRT3eUvidERGpobW1FdXU1cnNzvdvMZjNyc3NRVVUVUdm33347LrvsMp+yZSfrHb10Y9Cc7mht/xCRXLjkc6yR9YJ2gEqTw8uJiLTR0NAAp9OJ1NRUn+2pqanYuXNn2OW++uqrqKmpwebNm4Pav6WlBS0tLd7fGxsbAQB2ux12uz3sOABAcSqwwAKXywWnPbweUafZDFjcZdid6vequlwu77+nv17P75G8DxaXC2YATqcTrgjfT7/lK0rA8tWIPxDP++Z0OTUpH9A2fj3IHL/MsQOAorgvCjkcTtjt8l0Ykv39VzP+YMtg0i0w+b6Cejh99fK2pJurlxMRCe/rr7/GXXfdhfLyciQkJAT1mJKSEixZsqTT9nXr1iEpKSmieEZ+MRLjMA4HDh7AlrItYZXx+ZlnAmedha/370fZxx9HFI8/B784CADYt28fysrK/O5TXl4edvlZpw7iDADbt2/HV1/4Lz8S0+rqMBjAZ599hr0axB9IzbEaAMC3330b8H1Tixbx60nm+GWN/dix8wH0xdatWxEXV2d0OGGT9f33UCP+5ubmoPZj0i0Brl4emN1zyzAOLyciUlX//v1hsVhQX1/vs72+vr7bRdICqa6uxqFDh3D22Wd7tzmdTrz33nv4wx/+gJaWFlgsFp/HFBUVobCw0Pt7Y2MjMjIyMGvWLKSkpIQVh4fymbseGDxoMAblDQqrjE/M7h6rjCFDkJeeHlE8/rz30XuoRz2GDh2KS/Iu8fmb3W5HeXk5Zs6cCZvNFlb5lg9fBr4Gxo4dizGj8tQI2bf8P/0JADB+/HiMzfMtX434A1G+UIA9QK/evZCXp/7rArSNXw8yxy9z7ADwm9+4zxuTJ09GXp58s31lf//VjN8z+qo7TLpjTPStXt6edIf90qR9T4iItBMXF4esrCxUVFRgzpw5ANxDdisqKlBQUBBWmRdffDE+/fRTn235+fkYM2YMFi1a1CnhBoD4+Hi/i7LZbLaIG0tOq3s4uNlshtkWXsPXE7HZbIbNrH7j2fOemEymgK83oveiLWaL2QyLFo3nIMpX47M8XZwtDgCgQNE8KdAifj3JHL+ssZtM7ukPFosFNpu86Zis77+HGvEH+3h5P2WRsMNUP6clyKccp9w/OBJDL4vDy4mIulRYWIgFCxZg6tSpyM7ORmlpKZqampCfnw8AmD9/PtLT01FSUgLAvfja9u3bvT/X1tZi69atSE5OxsiRI9GzZ0+MHz/e5zl69OiBfv36ddquK5Hrcc2rKI2fwOD7dPOWYSQyDrqMHUy6Babm9zBaV+9strfNo2jtYWwgRERRaO7cuTh8+DAWL16Muro6TJ48GWvXrvUurrZ//36YO/TuHjhwAFOmTPH+vnz5cixfvhwzZsxAZWWl3uHrKjprWXkx6SYikQg1iWDlypXIzMxEQkICcnJysGnTpqAe9+qrr8JkMnmHv0UbVa8RR1mn7klHW9JtT+JCakREGigoKMC+ffvQ0tKCjRs3Iicnx/u3yspKvPDCC97fMzMzoShKp/+6SrgrKytRWlqq3QsgMeh88d/U1uBh0k0iYtMz9giTdK9ZswaFhYUoLi5GTU0NJk2ahNmzZ+PQoUNdPm7v3r34xS9+gfPPP1+nSLvAL5CG/FfWJ1pPuH+wh7GCbZT2/hMRURSStcri8HIiInGS7hUrVmDhwoXIz8/H2LFjsWrVKiQlJWH16tUBH+N0OjFv3jwsWbIEw4cP1zFafchav2rLt/I+cqrB/cPJfhEUyaslREQUHq1rEHkXQDWWJ+mO1ul1FB14eMYOIeZ0t7a2orq6GkVFRd5tZrMZubm5qKqqCvi4Bx98EAMHDsSNN96I//73v3qE6p/GXxg9bhl25EgC9u4FRFyAsNnehJEOF+IAbP58P47FWWB32eFUHNha574PJ06kcXg5ERFR2KKr9c+ebiISiRBJd0NDA5xOp3dhFo/U1FTs3LnT72Pef/99PPfcc9i6dWtQz9HS0oKWlhbv7557qtntdtjt9vAC93ACFljgcrngsqt3clesVsBkgsPhgD3CS2Eul8v77+mv9957gRUrZkdUvmZGrAOunYP6M09ioBXIr7gM21pP28dlAeontH2WwRdtcTphhnvEhCvSYyACns8j4uPQIDLHL3PsAOM3mprxy/oeSE+ia67a9djq9Cbo3KXHpJtExv6e2CNE0h2q48eP4/rrr8czzzyD/v37B/WYkpISLFmypNP2devWISkpjPnAHYzbNw4jMRJ79+3F9rLtEZXV0fHvfx9IScHGjRtxsqEhorI8c+M/+eQT1JbV+vytvPwcAANgtTphsYh1pbv1vMeg2E56f1dak4CTCYDTBrhsMDkSYNl8B7LPbsZ//vNeSGVPq6vDYACfbduGvWVlKkceuvLycqNDiIjM8cscO8D4jaZG/M3NzSpEQmFToeoTq/YUiEHZhWdYPpNuIhKBEEl3//79YbFYUF9f77O9vr4eaWlpnfb/8ssvsXfvXvzwhz/0bvP05FqtVuzatQsjRozweUxRUREKCwu9vzc2NiIjIwOzZs1CSkpKZC+gwv1PZmYmMvMyIyurgyKr++P5Xk4OLozwCvFfn/4rGtGIiRMnYlLeJJ+//e537qvBzz7rwE9+Isw0fwDAsCd2oPY40DuhN+A4iq23fwD0Guezj91uR3l5OWbOnBnSDe4tbSvujp8wAWPz8lSMOjThxi8KmeOXOXaA8RtNzfg9o6+IOmGPWFjY000y4Jzu2CFE0h0XF4esrCxUVFR4b/vlcrlQUVGBgoKCTvuPGTMGn376qc+2++67D8ePH8fjjz+OjIyMTo+Jj49HfHx8p+02my3ixpLT7ATgnodusVkiKqsjTz1rtVoRaXPUc8XXYrV0er0mk7tCslgssNmEOCS8GprdPfyWtvvA2qy2gBPPQ/4sPe+JxQKLAA1+NY5FI8kcv8yxA4zfaGrEL/PrJxKRdyE1jkEgIgEIk2EVFhZiwYIFmDp1KrKzs1FaWoqmpibk5+cDAObPn4/09HSUlJQgISEB48eP93l87969AaDTdpKXw+VAi9M9D99zv01NhqlxYg0REYVJtxpE9tyRc7qJvNj0jD3CJN1z587F4cOHsXjxYtTV1WHy5MlYu3atd3G1/fv3w2wWa+iz1lStnoIoTLQTQFNrk/dnTW6ZwjE9REQkOP1uGaZRncj7dBMRiZN0A0BBQYHf4eQAUFlZ2eVjX2ibn2sojeoVNYv1V3mLmns22d1Jt9lk1jZI0a42EBGRPnj6j9o60DNCjkk3iUzUNjipL7a6jkkqnp7u5LjkDm0CFRsHvE83ERGphG1nsbCnm4hEwqRbDRrVtHpV4KLmnp753PGWzgvgqYKXF4mICJAiY9buPt06MWhOt/TvG0Ul0drcpD0m3RJQ43spY6XjdLlXhbeYLRxeTkREQtK8BpG9iuKcbiIiJt2qkqFi7CJG0XJPT0VpMXW8DRuHlxMREVHXmHSTDCTsE6MwMekWmN7Dy0XjqSg9FafqRH3hREREetO6TtS5zvUsHMukm4hEwKRbAqr0w0qYX2qedHuwp5uIiESnWT2ucR3I4eVEnbDpGXuYdKtBooS2q/t9inYCcCruOd3uilODN5k93UREsU3NGUvqFeVDv/t0RxfvQmoyNdKIKGox6SZhc0+/Pd1qNj44p5uIiACpLp5TcNjTTTIQtQ1O6mPSrSaVczc1v4cyrl7uXUjNbOlmzwgx6SYiojDpVYPIWI/7MOiWYUy6iUgETLoloGqF7qcwUTt8fXq6taisZW/AEBFR9NOtbtaoTjSocWECF1IjcYnW5ibtMelWA3M3TfhfSI3Dy4mIiNQTnXUge7qJSCRMugWmdy4vWu7pdHVcSE1Dor1wIiIiioh3ITWOaiOB8fCMHUy6JaD1LcNE/cL79nRzeDkREYlL8xpF9iqLc7qJKIYx6VaTBB2mMt16xLuQmqnjQmoaxC/Re0JERCqS4PQvU73tF+/TTdSJ7F9rCh2TboHF+vBy/3O6VcQ53UREBERU4bIGEZPnYgWTbiISAZNuNWicHatRoXc1p0nUUdYcXk5ERKQXjetEg4aXK1A4r5uExUMzdjDpjjUSXZJ3Kn4WUtOiV5o93UREJDqtGuda14EGDy8H3Ik3EZGRmHSrSdLcTdRR1roNLyciIhKVYHWzLHySbtb3JBjR2tykPSbdAlO1ipCwvvEupGa2aJMgi3q1gYiIpCNhNRvVOibdnNdNREZj0i0BNVPCrlZBFS339N/TzeHlREQUe6TvrdU5flOH9gKTbhKV7F9rCh6TbjVI/oUR9QvP4eVERKQpT14m8OrlvGVYeNjTTUQiYdItsFhPCZ0uPwupqYnDy4mIiNyi7EI0k24SGZuesYdJt5o0+gJpfcsw7/MIdgLQ/JZhHqK9cCIiIt1EZx3I1cuJSCRMumONn7pV1Ivb3oXUTJb2jWomyKK+cCIiotPJXmUZdJ9ugD3dJC42RWMHk241aPSFifXvoeZzuj3Y001ERBHSrM6WvYoyqI7tOBeeSTcRGY1JtwRUqa66aA2IOrXZqXSc063hLcOIiCiglStXIjMzEwkJCcjJycGmTZsC7rtt2zZceeWVyMzMhMlkQmlpaad9SkpKMG3aNPTs2RMDBw7EnDlzsGvXLg1fAcUi9nSTyERrc5P2mHSrSYIvkEyroGp+yzBRrzYQEQlizZo1KCwsRHFxMWpqajBp0iTMnj0bhw4d8rt/c3Mzhg8fjqVLlyItLc3vPv/5z39w++2348MPP0R5eTnsdjtmzZqFpqYmLV+Kfyqc/lmDiIlJNxGJxGp0ACQO0XJPDi8nIjLWihUrsHDhQuTn5wMAVq1ahTfffBOrV6/Gvffe22n/adOmYdq0aQDg9+8AsHbtWp/fX3jhBQwcOBDV1dW44IILVH4FQZJg4JP29+nWuHwD79Mt/T3OKWrx0Iwd7OkWmJrfw64qHFG/8N6F1MwWbYIU9YUTEQmgtbUV1dXVyM3N9W4zm83Izc1FVVWVas9z7NgxAEDfvn1VKzOaaD5CTfbyAz4t53QTkTjY060GjXM3VasriTp1fXq6ve8xh5cTEemhoaEBTqcTqampPttTU1Oxc+dOVZ7D5XLh7rvvxrnnnovx48f73aelpQUtLS3e3xsbGwEAdrsddrs9oudXnAossMCluOC0O8Mqw2k2AxYLXC4X7M7wyuiy/LYyXS5Xp9fr+T2S98HicsHc9jyuCN/PUMtXI/6umE1muBQXWuwtmjyH1vFrTeb4ZY4dAFwud7+n0+mE3S5fJ5Ds77+a8QdbBpNu8hIt93S6Oi6kpgEm3UREhrr99tvx2Wef4f333w+4T0lJCZYsWdJp+7p165CUlBTR8w/fNRwTMAF1dXWoLqsOq4wdI0YA48fjm9palNXURBSPP4d2uufP19bWoqyszO8+5eXlYZc/peUbDAGwc+dO7P7Kf/mRmPJNW/k7dmC3BvF3xaS46/d33nkH/eL6afIcgHbx60Xm+GWN/bvvzgEwAJ9++inKymqNDidssr7/HmrE39zcHNR+TLrVpHLuptd1L1FHWfvO6dYwSCbdRESd9O/fHxaLBfX19T7b6+vrAy6SFoqCggL8+9//xnvvvYczzjgj4H5FRUUoLCz0/t7Y2IiMjAzMmjULKSkpEcWgfOGuW9LS0pCXlxdWGbvM7gvD6enpyFPhfTndhzs/xAEcQPrg9E4x2u12lJeXY+bMmbDZbGGVb9n8OrAXGDNmDM4cE9570GX5r78OoK18DeLv8rk/tcDpdOLCiy5ERkqG6uVrHb/WZI5f5tgBoLTUfd6YMGEC8vImGRxN6GR//9WM3zP6qjtMuiWg9S3DROV3ITU1E2RRrzYQEQkgLi4OWVlZqKiowJw5cwC4hzhXVFSgoKAg7HIVRcEdd9yBN954A5WVlRg2bFiX+8fHxyM+Pr7TdpvNFnFjyWlpH1FltoU3qsrTkDKbzbCZ1R+ZZbFa2ssP8Hojei/aYrZYzLBo0Xj2lm8JWL4an6Xfp25rP1itVk0TA63i14vM8csau9nc1sY1W2CzyZuOyfr+e6gRf7CPl/dTprD4W5BF1FHWmq9eLuoLJyISRGFhIRYsWICpU6ciOzsbpaWlaGpq8q5mPn/+fKSnp6OkpASAe/G17du3e3+ura3F1q1bkZycjJEjRwJwDyl/+eWX8Y9//AM9e/ZEXV0dAKBXr15ITEzU9wXy9I9ofhM8K5hzITUiMhqTbjVo1GEa6/2w3tXLTRZweDkRkf7mzp2Lw4cPY/Hixairq8PkyZOxdu1a7+Jq+/fvh7lD7+6BAwcwZcoU7+/Lly/H8uXLMWPGDFRWVgIAnnzySQDAhRde6PNczz//PG644QZNX09AElS40t/2yoD4PRftmXSTaNj0jD1MuiWgxvcymMpatBOAU/G3kBqHlxMR6amgoCDgcHJPIu2RmZnZbX0jffKoM81vGaY1A+Nn0k1EouB9utUkQ73oJ0ZFETNwDi8nIiJZ8FKCeJh0k+h4DTJ2MOkmYTHpJiIi0bEGEZen/cDRFURkNCbdapBhTncQhYmWe/ok3VpWmKK9cCIiotNpnTdqnZgakPh6huazp5tEw6Zn7GHSLQE1v5ddrV4uGqfLPafbvZCaB+d0ExFRDNG8ca7xE3BONxERk25V8aqVqji8nIiINOU5/fMabFRi0k2iY/9P7GDSLTA1v4ddzWcSNff0Tbo1OCuJ+sKJiIgoYky6iUgUQiXdK1euRGZmJhISEpCTk4NNmzYF3Pf111/H1KlT0bt3b/To0QOTJ0/GX/7yFx2j1Y+qKaFE+aXfnm4tEmQm3UREFCHtp1xL3iVm4H26FQ5lIMGw6Rl7hEm616xZg8LCQhQXF6OmpgaTJk3C7NmzcejQIb/79+3bF7/+9a9RVVWFTz75BPn5+cjPz8fbb7+tc+SImmFpop0AdBteTkREFCatq07epzuCpwYXUiMiMQiTdK9YsQILFy5Efn4+xo4di1WrViEpKQmrV6/2u/+FF16IK664AmeddRZGjBiBu+66CxMnTsT777+vc+Ta0SslFDX3dCptC6mZLeDwciIiIi0J2hiIAIeXk+hEbYOT+qxGBwAAra2tqK6uRlFRkXeb2WxGbm4uqqqqun28oih49913sWvXLjz66KN+92lpaUFLS4v398bGRgCA3W6H3W6P7AW4AAsscCpOuOwqntitVsBkgtNuR4QRwuVyx+V0ODu9XkWxADDB4XDAbhfn2+9wOgC4P19Fcfcm2B0O4LT4Pa8n1M/R6nLBBMDhdEKJ9BiIQLjxi0Lm+GWOHWD8RlMzflnfA9KRVtWzXheeDRxezqSbiIwmRNLd0NAAp9OJ1NRUn+2pqanYuXNnwMcdO3YM6enpaGlpgcViwR//+EfMnDnT774lJSVYsmRJp+3r1q1DUlJSRPFP/GYihmEYvtz9JT4v+zyisjo6NWsWkJiI9z/4AAePHYuorO++/Q4AULOlBl8lfOXzt+PHLwTQC1u21EBRDkf0PGr68psvAQB7vtwDpZcCE4B3K97FKXM/v/uXl5eHVP6Mxkb0BrDpo49w2OmMLFgVhBq/aGSOX+bYAcZvNDXib25uViESikqyD8biLcOIOuEgy9gjRNIdrp49e2Lr1q04ceIEKioqUFhYiOHDh+PCCy/stG9RUREKCwu9vzc2NiIjIwOzZs1CSkpKZIH8y/3PiJEjMDJvZGRldZBgdX885517LqZEWNafH/szmtCEs88+G2Pyxvj87b773PfBPvvss3HJJRZ/DzdE+bpyoAEYNXIUTA0AFOCiiy8CEtN99rPb7SgvL8fMmTNhs9mCLt+6eDEAIHvaNCizZqkZekjCjV8UMscvc+wA4zeamvF7Rl+RzlS8ZZg448TIg0k3EYlCiKS7f//+sFgsqK+v99leX1+PtLS0gI8zm80YOdKd5E6ePBk7duxASUmJ36Q7Pj4e8fHxnbbbbLaIG0tOU/vcY4tNvaTVU4FbbTZE2hz1LCZitVo7vV6TSenwNyEOCbe2xpDNavO2i2zWOCDA5xXuZ2m12QKWqSc1jkUjyRy/zLEDjN9oasQv8+snEpVnETrpV36nqMVDM3YIsZBaXFwcsrKyUFFR4d3mcrlQUVGB6dOnB12Oy+XymbetO42Gimh9yzBR1xNzutouZpg06n0X9YUTEZE09KpBpE8cOaebiGKYMN2ahYWFWLBgAaZOnYrs7GyUlpaiqakJ+fn5AID58+cjPT0dJSUlANxztKdOnYoRI0agpaUFZWVl+Mtf/oInn3zSyJdBKtL8lmFERESC0++WYRolxZzTTdQJ+3tijzBJ99y5c3H48GEsXrwYdXV1mDx5MtauXetdXG3//v0wm9uTr6amJtx222345ptvkJiYiDFjxuDFF1/E3LlzjXoJqlO1+guiMNFOAL5JN28ZRkREpL7orQOZdBORKIRJugGgoKAABQUFfv9WWVnp8/vDDz+Mhx9+WIeoumdStK2w1Czd3xVzUUes+e3pVjNBZtJNREQUtZh0k+hEbYOT+jhul4Tlgk7Dy5l0ExHFNhlWL5e9cW5AduFZRFaR/s0jItkx6VaTyrmbXlWEqB2+3oXUzBZoOryciIhik2D1nl8yxNgVzukm6kS0Njdpj0m3BNT4Xsq46qn/hdQ4vJyIiMQRNTWIhO2E7jDpJiJRMOmONV20DkTLPTVfvZxJNxERxTyd6kDeMoyIYhiTbjVIfnFY1IvbPkm3lkEy6SYiIsHJOGINAIeXExGBSbfQ9L5lmGicintOt+bDy4mIiASl3326o4/nvZP2ggVFLX6tYw+TbjVp9AXS+pZh7X9T8YlU4LkybTFZtHkCDi8nIiKVMK0TD3u6iUgUTLpjRFdXeUW9AOw7p1vD1cuZdBMRxSbP6V/QetCHDDF2hXO6iToRtQ1O6mPSLTBNhpdLlF/6XUhNiwSZSTcREYVJ8xpEtypKo9Y/53QTETHpVoXGV6m0Hl4uaoevbquXExERxSrRKn8VMekmUUXx144CYNKtJpW/QGqmhDIuIuJ0+VtITUWiXm0gIiKiiJnaGmaK9GPziUh2TLoFpuqI8CAKEy339C6kZu64kJoGq5eL9sKJiIhOI+PFcx+c003Uiexfawoek24J6DW8XDSaDy/3YNJNREQR0qoqlf6WYZzTTUTEpFsVGtW0avZ0y3iFnHO6iYiIKFxMuolIFEy6Bab36uWiXUz3Jt1aLd3K4eVERLFNhVuGRU0NEoUXopl0E5EomHSrSaOaN1aHlzsVfwup8ZZhREQUgzSrq3WqAw1obHjaPDKO9qPYwEMzdjDpFhiHl7ctpGaydLNnmCR8T4iIKMbIfl2Yc7qJiJh0i0yv4eWijrJun9PN4eVEREQUGibdJCo2PWMPk241aNxhqvXwclH5XUhNzfiZdBMRdWvlypXIzMxEQkICcnJysGnTpoD7btu2DVdeeSUyMzNhMplQWloacZmy0HrslIwj1nzwlmFEFMOYdKtJ5dxN7+HlouWeTpe/Od0aEO2FExEJYs2aNSgsLERxcTFqamowadIkzJ49G4cOHfK7f3NzM4YPH46lS5ciLS1NlTJjnUwXy/3i8HKigGS/lkbBY9ItMDWTbnUL04dnITWLmbcMIyIywooVK7Bw4ULk5+dj7NixWLVqFZKSkrB69Wq/+0+bNg2PPfYYrr32WsTHx6tSpi64ejm076vXn6nt01Gi8LURkVyYdAtMiypCpivmnp5u34XUOLyciEgPra2tqK6uRm5urneb2WxGbm4uqqqqhCkzIjz9I5rfBPZ0k6jY9Iw9VqMDoO7F7PDytp5uq1mjw5RJNxFRQA0NDXA6nUhNTfXZnpqaip07d+pWZktLC1paWry/NzY2AgDsdjvsdntYcXgoTgUWWOBSXHDanWGV4TSbAYsFLpcLdmd4ZXRZfluZLqer0+v1/B7J+2B2uWCB+0K3K8L3s8vyHY5O5asRf5faqnm7I/JjxR/N49eYzPHLHDsAKIoJgBlOpxN2u3wjMWR//9WMP9gymHSrQaPvil7Dy0UdZe3p6baaNbplmAeTbiIiYZWUlGDJkiWdtq9btw5JSUkRlT10x1BMxmQcPnQYm8rCW8xt27BhwMSJOHjwIMo++iiiePxp2NYAAKivr0dZWZnffcrLy8Muf2LLfgwD8PnnX+Dzvf7Lj8SEffswHMDu3buxU4P4u1JfVw8A+GzbZyg7pP5r89Aqfr3IHL+ssR8+nA1gELZt24Gysn1GhxM2Wd9/DzXib25uDmo/Jt1q0mghNTXJNLzc4XIA0GH1ciIi6qR///6wWCyor6/32V5fXx9wkTQtyiwqKkJhYaH398bGRmRkZGDWrFlISUkJKw4PZb+7HhgwcADy8vLCKmNf27ojaYMGhV1GV2pqa/ANvkFqamqn8u12O8rLyzFz5kzYbLawyjdXlwFfAWeeOQojx6ofv3ndOgDAyJEjMVyD+Lvyyt9fAY4CY84ag7xs9V+b1vFrTeb4ZY4dAJ55xt2eHTv2LOTljTM4mtDJ/v6rGb9n9FV3mHRLQOvh5aKOsm5fSE2jnm5RXzgRkQDi4uKQlZWFiooKzJkzBwDgcrlQUVGBgoIC3cqMj4/3uyibzWaLuLHktLTfJcNsC2+ZG09Dymw2w6bBwp8Wi6W9/ACvN6L3oi1mi9kMixaNZ0/5FkvA8tX4LP3xvHcms0nTxECr+PUic/yyxm4yudcZsFgssNnkTcdkff891Ig/2MfL+ynHgJhfvdwzvBxMuomIjFBYWIgFCxZg6tSpyM7ORmlpKZqampCfnw8AmD9/PtLT01FSUgLAvVDa9u3bvT/X1tZi69atSE5OxsiRI4Mqk/zjfbpD5xkpJ/17R1GHTc/Yw6RbDTLM6faU1cW3XLQTgP+ebg2CFO2FExEJYu7cuTh8+DAWL16Muro6TJ48GWvXrvUuhLZ//36YO/TuHjhwAFOmTPH+vnz5cixfvhwzZsxAZWVlUGUaQuCcTPNpYbKX3wWuXk5EomDSHSOCGV4uGk9Pt8+cbjW52iphJt1ERAEVFBQEHPrtSaQ9MjMzg+pV7KpMPSkmQStAUgWTbhKdqG1wUh/v060mjRZSi9nh5VrP6fYk3RaNV0cnIiIi3ZnBpJuIxMCkW2AxP7xc61uGee6nqsHCN0REFFs077CSvUfMgC49T5uHSTeJRrQ2N2mP2UaMkHJ4uaen26TRnG5P0s2ebiIiCpPmbWe9GudaNQYEmNOtSH/Fgohkx6RbDTIspCbj8HIXh5cTERFpS6KGQYg4p5tEpyjR+/0jX0y61STynG5PWX6uOIt65yxvT7dWhyl7uomICJBi6Lb0t70y8JZhTLqJyGhMuiWgRi4sY2XdPqe7w2FqUjFBZtJNRBTbPNWLwDmZ5rcM05oAw8uZdJNoZP9aU+iYdAtM1TQ5iG5z0U4A7T3dHQJT8/ZhXEiNiCi2ea65MieLSiZwITUiEgOzDYGpObzc09NtMgceXi6a9jndGiXdnNNNRBTbPKd/R+RFMa0TD3u6SXSitsFJfUy61aDRF8ZTRajxISnOwEm3iBRF8a426tPTrdYh6+pQATPpJiKKTZ7TvzP8IqyRFxEczRrnnjpW48TUgOwi0ZYIADjlOKX7cxMRdcSkW00q5rMK2utXNVJCxeUuzWwJ/JGLNLy81dnq/dlmtrb/Qa2ebmeH5hGTbiKi2KRCxmxr+9ceaSyBaF03e+pYlwrd/f4Y2LhItLqT7mZ7s2ExEPkjUpub9MGkW1Ad6381UkKX030FW5bh5ScdJ70/J1rj2v/ApJuIiNSiwvByT96uUcqqPXPbZQNFs8sGhkmyJQHwbVMQERmBSbeg1E66PT3dJoscl9Y8Q8FMMMHmk2irFH/H4eVcSI2IKDbJ0NOtNVPbK3BJ+woC8iTd7OkmUYnY8UXaECrbWLlyJTIzM5GQkICcnBxs2rQp4L7PPPMMzj//fPTp0wd9+vRBbm5ul/trSoMvjOpJdxdzutvv0y3ON/+k3X1VOtGWCFPHJeXUGo/Dnm4iIlKxp1vrlFWzW3+adUq6DZzT7WlTEBEZRZike82aNSgsLERxcTFqamowadIkzJ49G4cOHfK7f2VlJa677jqsX78eVVVVyMjIwKxZs1BbW6tz5B2o2ImsVU93V3O6ReK5Kp1oTQQ8q46quXK5o0MLi0k3EVFsasuYTc7wK3BPT7dWw8s1v0+31km3gZNXPT3dJ1pPGBYDkT+c0x17hMnAVqxYgYULFyI/Px9jx47FqlWrkJSUhNWrV/vd/6WXXsJtt92GyZMnY8yYMXj22WfhcrlQUVGhc+TaUDvpdtrdJXY1vFykE8CRk0cAAP2S+gGuFvdGc7x6T9DcNtTMYgFstq73JSKi6CRRT7dmonhOd2qPVADAwRMHDY6EiGKdtftdtNfa2orq6moUFRV5t5nNZuTm5qKqqiqoMpqbm2G329G3b1+/f29paUFLS4v398bGRgCA3W6H3R5ZRVO96yt8D6OxavtXWPP3bwAASlsGq5jcQ6K9v3fcBhMUE9p+Rvt+JuDb1H7AxJGw2B14edL17k50n5FZbeUp7p8UTze74vmnQwatAC3HRgEAjqwch1MpJwClPcl+/3/c+yS8peDw2+1ldJ2EdwjGdFpsJr8/+n28yXT6FvdjRrvsqDUB8Uf3QHllPEw9AKXZAeXKKzuVZFIUTKurg+mFF+DyF7SfIW2mL790h52SAofD2OVvPMdfpMehUWSOX+bYAcZvNDXjl/U9kF5b0m36zATc6OfvQVyMngTgmbaf3wv+YUE7dewsTDwvAzgGvPWD453+brJfgHeeOQUgzNtiOW8CXP/j/tnsf3RhRBz3ABf9L7AJwMzOya9NmYZ3/tCg/vMCAEbj34q7Xfbm37UZCWnFVKx7QoP3TScyxy9z7DcCuPFiAH8H3vy7sbGES+b3HwBctvFAnn7PJ0TS3dDQAKfTidTUVJ/tqamp2LlzZ1BlLFq0CIMHD0Zubq7fv5eUlGDJkiWdtq9btw5JSUmhB91BfM/vAQC+nDAK/50zKqKyTtdn93fYt2OMKmXFJ53CiKwjsNo0v5uoiuzw9B+Y9rXC9PrrnfYwAxgcZumHhw5FVVlZ2NGpqby83OgQIiJz/DLHDjB+o6kRf3MzF3oygnJGh4uy/gfWdSsdwE2qRBNIQtt/RESklsP9XYhoFc0QCZF0R2rp0qV49dVXUVlZiYQE/xVTUVERCgsLvb83NjZ654GnpKRE9PwvvfEWXvlROpIO1eG6J9uv1poUBSZF8fYqu39234HbpChwr83t3ubet+1xbdvMioLx1R8jbUaHK8Om9m5ld6euybu4isl0WoezZ9e2S+690r7Fpi1noWMvuYfTdQppqQneMn07yk3eXxXF1OG5OzJ1Wk/O8yjF5Pmf71/9dwW0b0y0JWFQ8mCYTSZ3+f3PBB7v3enJnU4nduzYgbPGjoUl0PxsPz3gitWKPnl5yEtL8/8YndjtdpSXl2PmzJmwSTjUXeb4ZY4dYPxGUzN+z+gr0tkoYEPxBuRYcwLXH0H4EsDX6kXVyYm647A3dx4NoShAU1MTevToEdkUMfsJ7YaXKwrQ0uJ71xDPn+Cuwy0Wi2a3I1cAOF0OLda8BQC4XC6YJb4Liszxyxy7orTdzlfN9Yr0psgdv8N8Etdimm7PJ0TS3b9/f1gsFtTX1/tsr6+vR1o3CdHy5cuxdOlSvPPOO5g4cWLA/eLj4xEf33lOsM1mi7ixNO+ZS1FWVobivDxpG45lZWWYLmn8Lrsde8vKMDYvDxYJ4/dQ41g0kszxyxw7wPiNpkb8Mr9+2R2echiuPBcstvCT7hFt/2mnp9+t7vr7v8iLuP72PzVPa572R+TxG4PxG0fm2AHGbzRP/HoS4vJEXFwcsrKyfBZB8yyKNn369ICPW7ZsGR566CGsXbsWU6dO1SNUIiIiIiIioqAJ0dMNAIWFhViwYAGmTp2K7OxslJaWoqmpCfn5+QCA+fPnIz09HSUlJQCARx99FIsXL8bLL7+MzMxM1NXVAQCSk5ORnJxs2OsgIiIiIiIi8hAm6Z47dy4OHz6MxYsXo66uDpMnT8batWu9i6vt37/fZ97Gk08+idbWVlx11VU+5RQXF+OBBx7QM3QiIiIiIiIiv4RJugGgoKAABQUFfv9WWVnp8/vevXu1D4iIiIiIiIgoAkLM6SYiIiIiIiKKRky6iYiIiIiIiDTCpJuIiIiIiIhII0y6iYiIiIiIiDTCpJuIiIiIiIhII0y6iYiIiIiIiDTCpJuIiIiIiIhII0y6iYiIiIiIiDTCpJuIiIiIiIhII0y6iYiIiIiIiDTCpJuIiIiIiIhII1ajAzCKoigAgMbGxojLstvtaG5uRmNjI2w2W8Tl6Y3xG4vxG0fm2AHGbzQ14/fURZ66iQJj/d2O8RuL8RtH5tgBxm80I+rvmE26jx8/DgDIyMgwOBIiIiK348ePo1evXkaHITTW30REJJru6m+TEqOX1V0uFw4cOICePXvCZDJFVFZjYyMyMjLw9ddfIyUlRaUI9cP4jcX4jSNz7ADjN5qa8SuKguPHj2Pw/7d39zFV1m8cxz+gHrAZGlNBsiy1juUTouEONaHUbLkmf7TKnDOzLIebrmbRH41VW2ozrTmXbk7ZWsvSpW3m8wOYT6QIifiwJLQn0coin9KC6/eH8yQKR875cZ/7Pvh+becP7vO9D59dfDnXrnO4D2lpio/nyq9Q6N//Ib+7yO+eWM4ukd9tbvTvm/ad7vj4eHXv3r1FHzMpKSkmN94V5HcX+d0Ty9kl8rutpfLzDnfz0L+vR353kd89sZxdIr/botm/eTkdAAAAAACHMHQDAAAAAOAQhu4WkJCQoIKCAiUkJLgdJSLkdxf53RPL2SXyuy3W8yP2f4bkdxf53RPL2SXyu82N/DftB6kBAAAAAOA03ukGAAAAAMAhDN0AAAAAADiEoRsAAAAAAIcwdEfo9OnTGjdunJKSktSpUydNmjRJZ8+eDXlOTk6O4uLiGtxefvnlqORdsGCB7rrrLiUmJmro0KH65ptvQq5fvny5+vTpo8TERPXv319r1qyJSs6mhJO/sLDwujonJiZGMe1/tm3bpieeeEJpaWmKi4vTqlWrbnhOUVGRMjIylJCQoN69e6uwsNDxnE0JN39RUdF1tY+Li1NNTU10Al9j5syZeuCBB3Trrbeqa9euys3N1ZEjR254nhf2fyTZvbT3P/roIw0YMCD4PzADgYDWrl0b8hwv1P2KcPN7qfYIjf4dXfRvd8Ry/47l3i3Rv91+3vFq/2bojtC4ceNUWVmpjRs3avXq1dq2bZsmT558w/NefPFFnThxInh77733HM/62Wef6ZVXXlFBQYH27dungQMHatSoUTp16lSj63fu3KmxY8dq0qRJKisrU25urnJzc3XgwAHHszYm3PzS5X92f3Wdjx8/HsXE/zl37pwGDhyoBQsWNGt9dXW1Ro8erYcffljl5eWaPn26XnjhBa1fv97hpI0LN/8VR44caVD/rl27OpQwtOLiYuXl5Wn37t3auHGj/vnnHz366KM6d+5ck+d4Zf9Hkl3yzt7v3r27Zs2apdLSUu3du1ePPPKIxowZo8rKykbXe6XuV4SbX/JO7REa/Tt66N/070jEcu+W6N9uP+94tn8bwnbw4EGTZHv27AkeW7t2rcXFxdnPP//c5HnZ2dk2bdq0KCRsKDMz0/Ly8oJf19XVWVpams2cObPR9U899ZSNHj26wbGhQ4faSy+95GjOpoSbf+nSpdaxY8copWs+SbZy5cqQa1577TXr27dvg2NPP/20jRo1ysFkzdOc/Fu3bjVJ9scff0QlU7hOnTplkqy4uLjJNV7b/1c0J7tX9/4Vt912my1evLjR+7xa96uFyu/12uMy+nd00b/p3y0hlnu3Gf3bC7zQv3mnOwK7du1Sp06dNGTIkOCxESNGKD4+XiUlJSHP/eSTT9S5c2f169dPb7zxhs6fP+9o1kuXLqm0tFQjRowIHouPj9eIESO0a9euRs/ZtWtXg/WSNGrUqCbXOymS/JJ09uxZ9ejRQ3fccccNX93yEi/V/v+Rnp6ubt26aeTIkdqxY4fbcYJqa2slScnJyU2u8erPoDnZJW/u/bq6Oi1btkznzp1TIBBodI1X6y41L7/kzdqjIfp39NC/vfMcFg4v9u9Y7t0S/dtNXurfbVv8EW8CNTU11/25Tdu2bZWcnBzy2pdnn31WPXr0UFpamvbv36/XX39dR44c0RdffOFY1t9++011dXVKSUlpcDwlJUWHDx9u9JyamppG17txXU8k+f1+v5YsWaIBAwaotrZWc+bMUVZWliorK9W9e/doxI5YU7X/66+/dOHCBbVv396lZM3TrVs3LVy4UEOGDNHFixe1ePFi5eTkqKSkRBkZGa5mq6+v1/Tp0/Xggw+qX79+Ta7z0v6/ornZvbb3KyoqFAgE9Pfff6tDhw5auXKl7r///kbXerHu4eT3Wu3ROPp39NC/6d8tIZZ7t0T/dosX+zdD91Xy8/M1e/bskGsOHToU8eNffc1Y//791a1bNw0fPlxVVVXq1atXxI+LhgKBQINXs7KysnTfffdp0aJFeuedd1xM1vr5/X75/f7g11lZWaqqqtK8efP08ccfu5hMysvL04EDB7R9+3ZXc0Siudm9tvf9fr/Ky8tVW1urFStWaMKECSouLm6y8XlNOPm9VvubDf27deD3yD1e7d+x3Lsl+rdbvNi/Gbqv8uqrr+q5554LuaZnz55KTU297kNA/v33X50+fVqpqanN/n5Dhw6VJB09etSxpt25c2e1adNGJ0+ebHD85MmTTWZNTU0Na72TIsl/rXbt2mnQoEE6evSoExFbVFO1T0pK8vyr5E3JzMx0vVlOnTo1+IFJN3rV0kv7Xwov+7Xc3vs+n0+9e/eWJA0ePFh79uzRhx9+qEWLFl231mt1l8LLfy23a3+zoX9f5qXfI/o3/fv/Fcu9W6J/078b4pruq3Tp0kV9+vQJefP5fAoEAvrzzz9VWloaPHfLli2qr68PNuLmKC8vl3T5T3qc4vP5NHjwYG3evDl4rL6+Xps3b27y2oZAINBgvSRt3Lgx5LUQTokk/7Xq6upUUVHhaJ1bipdq31LKy8tdq72ZaerUqVq5cqW2bNmiu++++4bneOVnEEn2a3lt79fX1+vixYuN3ueVuocSKv+1vFb71o7+fZmXfo/o3957DguXW/07lnu3RP+WvLf3PdG/Hf+otlbqscces0GDBllJSYlt377d7rnnHhs7dmzw/p9++sn8fr+VlJSYmdnRo0ft7bfftr1791p1dbV9+eWX1rNnTxs2bJjjWZctW2YJCQlWWFhoBw8etMmTJ1unTp2spqbGzMzGjx9v+fn5wfU7duywtm3b2pw5c+zQoUNWUFBg7dq1s4qKCseztkT+t956y9avX29VVVVWWlpqzzzzjCUmJlplZWXUs585c8bKysqsrKzMJNncuXOtrKzMjh8/bmZm+fn5Nn78+OD677//3m655RabMWOGHTp0yBYsWGBt2rSxdevWRT17JPnnzZtnq1atsu+++84qKips2rRpFh8fb5s2bXIl/5QpU6xjx45WVFRkJ06cCN7Onz8fXOPV/R9Jdi/t/fz8fCsuLrbq6mrbv3+/5efnW1xcnG3YsKHR7F6pe6T5vVR7hEb/jh76N/07ErHcuyPN76W9T/92pvYM3RH6/fffbezYsdahQwdLSkqyiRMn2pkzZ4L3V1dXmyTbunWrmZn98MMPNmzYMEtOTraEhATr3bu3zZgxw2pra6OSd/78+XbnnXeaz+ezzMxM2717d/C+7OxsmzBhQoP1n3/+ud17773m8/msb9++9tVXX0UlZ1PCyT99+vTg2pSUFHv88cdt3759LqT+719wXHu7knfChAmWnZ193Tnp6enm8/msZ8+etnTp0qjnvjpLOPlnz55tvXr1ssTEREtOTracnBzbsmWLO+HNGs0uqUFNvbr/I8nupb3//PPPW48ePczn81mXLl1s+PDhwYZn5t26XxFufi/VHqHRv6OL/u2OWO7fsdy7zejfbj/veLV/x5mZtex75wAAAAAAQOKabgAAAAAAHMPQDQAAAACAQxi6AQAAAABwCEM3AAAAAAAOYegGAAAAAMAhDN0AAAAAADiEoRsAAAAAAIcwdAMAAAAA4BCGbgAAAAAAHMLQDQAAAACAQxi6AQAAAABwCEM3gLB9+umnat++vU6cOBE8NnHiRA0YMEC1tbUuJgMAAE359ddflZqaqnfffTd4bOfOnfL5fNq8ebOLyYDWLc7MzO0QAGKLmSk9PV3Dhg3T/PnzVVBQoCVLlmj37t26/fbb3Y4HAACasGbNGuXm5mrnzp3y+/1KT0/XmDFjNHfuXLejAa0WQzeAiKxevVpPPvmk3nzzTb3//vv6+uuv1bdvX7djAQCAG8jLy9OmTZs0ZMgQVVRUaM+ePUpISHA7FtBqMXQDiFhGRoYqKyu1YcMGZWdnux0HAAA0w4ULF9SvXz/9+OOPKi0tVf/+/d2OBLRqXNMNICLr1q3T4cOHVVdXp5SUFLfjAACAZqqqqtIvv/yi+vp6HTt2zO04QKvHO90AwrZv3z7l5ORo0aJFKiwsVFJSkpYvX+52LAAAcAOXLl1SZmam0tPT5ff79cEHH6iiokJdu3Z1OxrQajF0AwjLsWPHFAgENG3aNOXn56ukpESBQEB79+5VRkaG2/EAAEAIM2bM0IoVK/Ttt9+qQ4cOys7OVseOHbV69Wq3owGtFkM3gGY7ffq0srKylJOTo4ULFwaPjx49WnV1dVq3bp2L6QAAQChFRUUaOXKktm7dqoceekjS5RfTBw4cqFmzZmnKlCkuJwRaJ4ZuAAAAAAAcwgepAQAAAADgEIZuAAAAAAAcwtANAAAAAIBDGLoBAAAAAHAIQzcAAAAAAA5h6AYAAAAAwCEM3QAAAAAAOIShGwAAAAAAhzB0AwAAAADgEIZuAAAAAAAcwtANAAAAAIBDGLoBAAAAAHDI/wBpZj/9Pqai0gAAAABJRU5ErkJggg==",
       "text/plain": [
        "<Figure size 1000x500 with 2 Axes>"
       ]
@@ -253,7 +253,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAILCAYAAAD13v8AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjDklEQVR4nOzdd3wT9f/A8VeSpotSoKy27L33EhBB9lAZIjJEQEFFQRQH4gDHz4WooF8VRcGBAxEQBGSDopS9RPbeIKuDrjS53x9HCqUrSZPcXft+Ph59JE1uvJO73Ofzvs/nPmdSFEVBCCGEEEIIIYQQXmfWOgAhhBBCCCGEECK/kqRbCCGEEEIIIYTwEUm6hRBCCCGEEEIIH5GkWwghhBBCCCGE8BFJuoUQQgghhBBCCB+RpFsIIYQQQgghhPARSbqFEEIIIYQQQggfkaRbCCGEEEIIIYTwkQCtA8jv7HY7NptN6zCEEEIIIYQQosCxWq1YLBZNY5Ck20cUReHcuXNcvXpV61CEEEIIIYQQosAqWrQokZGRmEwmTdYvSbePOBPuUqVKERoaqtkGFkIIIYQQQoiCSFEUEhMTuXDhAgBRUVGaxCFJtw/Y7fb0hLt48eJahyOEEEIIIYQQBVJISAgAFy5coFSpUpp0NZeB1HzAeQ13aGioxpEIIYQQQgghRMHmzMu0GmtLkm4fki7lQgghhBBCCKEtrfMySbqFEEIIIYQQQggfkaRbCCGEEEIIIYTwEUm6Rbp27drx1FNP+Xw9iqIwYcIEoqKiCAkJoWPHjhw8eDDX+T755BMqVqxIcHAwLVq0YNOmTRneT05O5oknnqB48eKEhYVx7733cv78eV99DEPz17aeN28enTt3pnjx4phMJnbs2OHSfHPmzKFmzZoEBwdTr149lixZkuF9T/ehgsof29tmszFu3Djq1atHoUKFiI6O5sEHH+TMmTO5ziu/be/x12976NChmEymDH9du3bNdT7Z1t6jp+O4J9vNleP45cuXGTRoEOHh4RQtWpSHH36YhIQEb368fEMv+8Ply5cZPXo0NWrUICQkhPLly/Pkk08SGxub43Jlf/AuvewPzlhuLS8ee+yxHJebH/cHSbqF302aNImPPvqIadOmsXHjRgoVKkSXLl1ITk7Odp7Zs2czduxYJk6cyLZt22jQoAFdunRJH/4f4Omnn+a3335jzpw5/PHHH5w5c4Y+ffr44yOJbFy7do3bb7+dd9991+V51q9fz4ABA3j44YfZvn07vXr1olevXuzevTt9Gk/2IeFbiYmJbNu2jVdeeYVt27Yxb9489u/fzz333JPjfPLbNq6uXbty9uzZ9L8ff/wxx+llWxuTK8dxT7abK8fxQYMG8e+//7JixQoWLVrEn3/+ySOPPOK1zybcl9v+cObMGc6cOcPkyZPZvXs3X3/9NUuXLuXhhx/OcbmyPxiTq/W8ESNGZCgvJk2alOP0+XJ/UITXJSUlKXv27FGSkpK0DsVlQ4YMUYAMf0ePHvX6ehwOhxIZGam899576a9dvXpVCQoKUn788cds52vevLnyxBNPpP9vt9uV6Oho5e23305fhtVqVebMmZM+zd69exVAiYmJ8frnMDJ/beubHT16VAGU7du35zptv379lB49emR4rUWLFsqjjz6qKIrn+1BBpcX2dtq0aZMCKMePH892Gvlte48/t/WQIUOUnj17ujWPbGvv0dNx3JPt5spxfM+ePQqgbN68OX2a33//XTGZTMrp06e9+MmMT0/7Q1Z+/vlnJTAwULHZbFm+L/uDd+ltf2jbtq0yZswYl5flq/1B6/xMWrr9QFHg2jVt/hTFtRinTp1Ky5YtM5yJKleuXJbTPvbYY4SFheX4l52jR49y7tw5OnbsmP5akSJFaNGiBTExMVnOk5qaytatWzPMYzab6dixY/o8W7duxWazZZimZs2alC9fPtvl+oqiKFxLveb3P8XFje2vbe2pmJiYDNsRoEuXLunb0ZN9yGcM8OPWcnvHxsZiMpkoWrRolu8b6retKJB2TZs/nW7rtWvXUqpUKWrUqMHIkSO5dOlSttMaaVsrikLqtVRN/ox4HPdku7lyHI+JiaFo0aI0bdo0fZqOHTtiNpvZuHFjnmJ2hwJc0+jPxSqcrvaHrMTGxhIeHk5AQECW7xtpfzDCDqHH/eH777+nRIkS1K1bl/Hjx5OYmJjttIbaH9yQ9d4vvCoxEXxwDHNJQgIUKpT7dEWKFCEwMJDQ0FAiIyNznPb111/n2Wef9Siec+fOAVC6dOkMr5cuXTr9vVtdvHgRu92e5Tz79u1LX25gYGCmyn1Oy/WVRFsiYW/7f4MnjE+gUGDuG9tf29pT586dy3H/8GQf8hkD/Li12t7JycmMGzeOAQMGEB4enuU0hvpt2xPhZ422db8ECNDXtu7atSt9+vShUqVKHD58mBdffJFu3boRExODxWLJNL2RtrUt0cbbYW/7bX03G58wnsBCgblOp6fjuCfbzZXj+Llz5yhVqlSG9wMCAoiIiPDr/pAIaPTLJwFwoQqnq/3hVhcvXuSNN97IsduvkfYHI+wQetsfBg4cSIUKFYiOjmbXrl2MGzeO/fv3M2/evCynN9T+4AZJuoXbSpUqlWlHF/mTbOuCxVvb22az0a9fPxRF4bPPPvNCZMLb8rqt+/fvn/68Xr161K9fnypVqrB27Vo6dOjgjRCFl8hxXNzMn/tDXFwcPXr0oHbt2rz66qt+Wadwjz/2h5tPuNSrV4+oqCg6dOjA4cOHqVKlik/XrSeSdPtBaKjaKKXVur3tscceY9asWTlOk93ogc4zbufPnycqKir99fPnz9OwYcMs5ylRogQWiyXTSKjnz59PX15kZCSpqalcvXo1w9n2m6fxl1BrKAnj/b/BQ63e39h52daeioyMzHVbO19zdR/ymXz24/bG9nYm3MePH2f16tXZtnKDwX7bllC1xVkLFn1u65tVrlyZEiVKcOjQoSyTbiNta2uolfEJ4/22vlvX7W2+Po57st1cOY5HRkZmGGQPIC0tjcuXL/t1fwhFbWDUgg+qcH4r1+Pj4+natSuFCxdm/vz5WK3Z79tG2h/y2w6hRT2vRYsWABw6dCjLpNtQ+4MbJOn2A5PJtS7eWgsMDMRut+c6XV66olSqVInIyEhWrVqV/sOJi4tj48aNjBw5Mtu4mjRpwqpVq+jVqxcADoeDVatWMWrUKACaNGmC1Wpl1apV3HvvvQDs37+fEydO0LJlS49i9ZTJZHKpm7eW/LGtPdWyZUtWrVqV4VYXK1asSN+OnuxDPmOQH7e/trcz4T548CBr1qyhePHiucZlmN+2yeRSF2+tafXbPnXqFJcuXcpQQbo1LqNsa5PJ5FIXb63p5TjuyXZz5TjesmVLrl69ytatW2nSpAkAq1evxuFwpFfa/cGEa128taaX/QHUbdmlSxeCgoJYuHAhwcHBOU5vpP3BKDuEnvaHWzlvK5ZdeWGo/cEdmgzfls9pPTqep0aMGKE0a9ZMOXr0qPLff/8pdrvdJ+t55513lKJFiyoLFixQdu3apfTs2VOpVKlShu+rffv2yscff5z+/08//aQEBQUpX3/9tbJnzx7lkUceUYoWLaqcO3cufZrHHntMKV++vLJ69Wply5YtSsuWLZWWLVv65DMYnb+29aVLl5Tt27crixcvVgDlp59+UrZv366cPXs2fZrBgwcrL7zwQvr/f//9txIQEKBMnjxZ2bt3rzJx4kTFarUq//zzT/o0ruxD4gZ/bO/U1FTlnnvuUcqWLavs2LFDOXv2bPpfSkpK+nTy2/Ytf2zr+Ph45dlnn1ViYmKUo0ePKitXrlQaN26sVKtWTUlOTk6fTra1b+npOO7KdqtRo4Yyb9689P9dOY537dpVadSokbJx40blr7/+UqpVq6YMGDDAJ5/T6PSyP8TGxiotWrRQ6tWrpxw6dChDWZCWlpa+HNkffEsv+8OhQ4eU119/XdmyZYty9OhRZcGCBUrlypWVO+64I8Ny/LE/aJ2fSdLtA1pvVE/t379fue2225SQkBCf3l7A4XAor7zyilK6dGklKChI6dChg7J///4M01SoUEGZOHFihtc+/vhjpXz58kpgYKDSvHlzZcOGDRneT0pKUh5//HGlWLFiSmhoqNK7d+8MlQJxg7+29cyZMzPdtgLIsG3btm2rDBkyJMN8P//8s1K9enUlMDBQqVOnjrJ48eIM77uyD4kb/LG9nbcLyepvzZo16dPJb9u3/LGtExMTlc6dOyslS5ZUrFarUqFCBWXEiBEZkmdFkW3ta3o6jruy3QBl5syZ6f+7chy/dOmSMmDAACUsLEwJDw9Xhg0bpsTHx/vkcxqdXvaHNWvWZFsW3ByT7A++pZf94cSJE8odd9yhREREKEFBQUrVqlWV5557TomNjc2wHH/sD1rnZyZFcfWmUsJVycnJHD16lEqVKuXapUYIIYQQQgghhO9onZ/JfbqFEEIIIYQQQggfkaRbCCGEEEIIIYTwEUm6hRBCCCGEEEIIH5GkWwghhBBCCCGE8BFJun1IxqgTQgghhBBCCG1pnZdJ0u0DVqsVgMTERI0jEUIIIYQQQoiCzZmXOfM0fwvQZK35nMVioWjRoly4cAGA0NBQTCaTxlEJIYQQQgghRMGhKAqJiYlcuHCBokWLYrFYNIlD7tPtI4qicO7cOa5evap1KEIIIYQQQghRYBUtWpTIyEjNGkIl6fYxu92OzWbTOgwhhBBCCCGEKHCsVqtmLdxOknQLIYQQQgghhBA+IgOpCSGEEEIIIYQQPiJJtxBCCCGEEEII4SOSdAshhBBCCCGEED4iSbcQQgghhBBCCOEjknQLIYQQQgghhBA+Ikm3EEIIIYQQQgjhI5J0CyGEEEIIIYQQPiJJtxDXff3115hMJo4dO2aI5Xrb5s2badWqFYUKFcJkMrFjxw6tQ3KLw+Hg//7v/6hSpQpWq5UqVaoAMGnSJGrWrInD4XB7mdOmTaN8+fKkpKR4O1whhBD5kNZlvi/KQidvLMMT2ZXFUkYLI5GkWxjaP//8Q9++falQoQLBwcGUKVOGTp068fHHH/s1jvXr1/Pqq69y9epVv67XW2w2G/fddx+XL1/mww8/5LvvvqNChQpah+WWTz/9lAkTJtCnTx9mzJjB559/TlxcHO+++y7jxo3DbHb/cDd06FBSU1P5/PPPfRCxe1JSUhg3bhzR0dGEhITQokULVqxYoXVYQghRYDgT6qz+XnjhBa3DA3xTFgJeWUZuFEXh9ddfZ926dRlez64s1lMZLURuArQOQAhPrV+/njvvvJPy5cszYsQIIiMjOXnyJBs2bGDq1KmMHj3ar7G89tprDB06lKJFi2Z4b/DgwfTv35+goCC/xeOuw4cPc/z4caZPn87w4cO1DscjM2fOpFOnTrz33nvpr02ZMoW0tDQGDBjg0TKDg4MZMmQIH3zwAaNHj8ZkMnkrXLcNHTqUX375haeeeopq1arx9ddf0717d9asWcPtt9+uWVxCCFHQvP7661SqVCnDa3Xr1tUomox8URYCzJgxI8/LyM2BAweYOHEiNWvWzPB6dmWxnspoIXIjSbcwrDfffJMiRYqwefPmTInuhQsXtAkqCxaLBYvFonUYOXJ+X7d+j1po164dFStW5Ouvv3Z5nuTkZHbu3Mlrr72W4fWZM2dyzz33EBwc7HE8/fr1Y9KkSaxZs4b27dt7vJy82LRpEz/99BPvvfcezz77LAAPPvggdevW5fnnn2f9+vWaxCWEEAVRt27daNq0qdZhZOLLstAby8jN1q1bAWjcuHGm97Iri/VQRgvhCuleLgzr8OHD1KlTJ8tEsVSpUhn+3759O926dSM8PJywsDA6dOjAhg0bcl3H0KFDqVixYqbXX3311fQzqq+++irPPfccAJUqVUrvaua8niu767tcicm5nkOHDqW3ohcpUoRhw4aRmJiYa/yurGfo0KG0bdsWgPvuuw+TyUS7du1yXGbJkiUZNWpUptebNm1Kjx49XIrLWx5++GFCQkKw2+28/PLLmEwmWrZsydGjR9m1axcdO3bMNI878Tdp0oSIiAgWLFjgs8+Qm19++QWLxcIjjzyS/lpwcDAPP/wwMTExnDx5UrPYhBBC5MyVukRSUhI1a9akZs2aJCUlpU9z+fJloqKiaNWqFXa7Pdt1eFIWgmvlYU7LOH36NMHBwTz00EMZXl+5ciVWq5Wnn34625hv1rx5cwYNGgRAtWrVMJlMGep32ZXFeiijhXCFtHQLw6pQoQIxMTHs3r07x25d//77L23atCE8PJznn38eq9XK559/Trt27fjjjz9o0aJFnuLo06cPBw4c4Mcff+TDDz+kRIkSgFqQeSumfv36UalSJd5++222bdvGl19+SalSpXj33XdzjM2V9Tz66KOUKVOGt956iyeffJJmzZpRunTpbJd55swZLl68SIMGDTK8brfb+ffff+nUqVNuX5lXDRo0KP1zTZ06lYiICCpUqJDe+nvrGXNP4m/cuDF///23R/HZbDZiY2NdmjYiIiLLa+W2b99O9erVCQ8Pz/B68+bNAdixYwflypXzKD4hhBDuiY2N5eLFixlec5b9ngoJCeGbb76hdevWvPTSS3zwwQcAPPHEE8TGxvL111/n2GvO3bIQXC8Pc1pGmTJlGD58OF988QUTJ06kQoUK7Nu3j/vuu49u3brx/vvvu/T5x40bx6uvvkpKSgoTJkwAMve+y64szksZLYTfKEIY1PLlyxWLxaJYLBalZcuWyvPPP68sW7ZMSU1NzTBdr169lMDAQOXw4cPpr505c0YpXLiwcscdd6S/NnPmTAVQjh49mv7akCFDlAoVKmRa98SJE5Wbfz7vvfdepnlzWq6rMTnX89BDD2VYZu/evZXixYtn+924u541a9YogDJnzpxcl/n7778rgLJx48YMr+/evVsBlO+//z7XZeSkbdu2ypAhQ9ya58UXX1QKFSqk2O329NdefvllBVDi4+MzTOtJ/I888ogSEhLiVkxOzu/Wlb+s9h9FUZQ6deoo7du3z/T6v//+qwDKtGnTPIpNCCGE65zleVZ/t07jSV1CURRl/PjxitlsVv78809lzpw5CqBMmTLFpfjcKQsVxfXyMKdlKIqinDp1SgkKClJGjhypXLx4UalSpYrSsGFDJSEhwaW4ncqXL68MHTo02/ezK4vzUkYL4S/S0i0Mq1OnTsTExPD222+zbNkyYmJimDRpEiVLluTLL7/knnvuwW63s3z5cnr16kXlypXT542KimLgwIFMnz6duLi4TC2IvuRJTI899liGZbRp04b58+fnGLuvPvuuXbswm82Zehfs3LkTgHr16rm8rKxagW02GykpKZlaEbJrBXbGVKdOnQzvX7p0iYCAAMLCwvIcf7FixUhKSiIxMZHQ0FCXPx9AgwYNXB5lPDIyMsvXk5KSshyIz3lt3c1dEYUQQvjWJ598QvXq1X2y7FdffZVFixYxZMgQEhISaNu2LU8++aRL87pTFjqnd6U8zGkZoLZ2jxgxgunTp7Nt2zaSkpL4448/KFSokEtxg9p74MSJE9SvXz/babIri/NSRgvhL5J0C0Nr1qwZ8+bNIzU1lZ07dzJ//nw+/PBD+vbty44dO4iIiCAxMZEaNWpkmrdWrVo4HA5OnjxJnTp1/Bbzf//953ZM5cuXzzBdsWLFALhy5Uq2SbMn63HFzp07qVq1aqaCbceOHVit1vRRRxVFoXDhwhw5ciTTNfZOf//9N3feeWem19evX89PP/2U4bWjR49meU2cM6YuXbp4Nf6bKYoC4NHIqMWKFcv2WjpXhYSEZHkf0uTk5PT3hRBC+Efz5s19NpBaYGAgM2bMoFmzZgQHBzNz5kyXyx53ykLn9O6Wh9l59tln+d///seuXbtYt24dZcqUcXleUE8AADkm3dmVxXkpo4XwF0m6Rb4QGBhIs2bNaNasGdWrV2fYsGHMmTOHRx99NE/Lze4AntNgJr6Q3XVczoLGn/75559M138BbN68mRo1amC1WgE1SQ4NDc024YasW4GfeeYZIiMj0wenc8quFfjq1aucPHkyUwt18eLFSUtLIz4+nsKFC7sd/82uXLlCaGioR8ltamoqly9fdmnakiVLZrmto6KiOH36dKbXz549C0B0dLTbcQkhhPAPd+sSy5YtA9QTqwcPHsx0e7KsuFsWguvlYU7LcHrzzTcBSEtLIyIiItd4b+VMurOKxym7sjgvZbQQ/iKjl4t8x3n2+ezZs5QsWZLQ0FD279+fabp9+/ZhNptzHICqWLFiXL16NdPrx48fz/C/O2dX8xqTlutxOBzs37+fWrVqZXj9woUL/PXXX+lnqPfu3Uvt2rW5cuUKYWFhNGvWLMvlOVuBb/4rVqwYUVFRmV7P7jYl2Z0dd56hP3r0qNvx3+ro0aMZ5hk1alT6CR2Hw0HPnj2zHaF1/fr1REVFufSX3SjkDRs25MCBA8TFxWV4fePGjenvCyGE0CdX6xKglmmvv/46w4YNo1GjRgwfPtylwTjdKQvBvfIwu2U4vffee3z55Zf873//IyAgID0Bd8euXbuIiorKcUC6W8vi3F4XQk8k6RaGtWbNmixbepcsWQJAjRo1sFgsdO7cmQULFmS4Zdf58+f54YcfuP3223O8prlKlSrExsamF2agJvPz58/PMJ3zuqWsCtVb5TUmV/liPXa7HZvNluF2ZWlpaTz66KOkpaWln2GvVasWEydOZOTIkSQkJLB58+Y8f57sOK89u7Wi0bJlSwC2bNnidvy32rZtG61atUr/f/z48fz000+cPn2a5557DkVRsh2h1dma78pfdq35ffv2xW6388UXX6S/lpKSwsyZM2nRooWMXC6EEDrmal3CZrMxdOhQoqOjmTp1Kl9//TXnz5936bZb7pSF4F55mN0yAH799VdeeOEF3njjDZ544gkeeeQRvv3222wT9OycOHGCsmXL5jjNrWVxbq8LoSfSvVwY1ujRo0lMTKR3797UrFmT1NRU1q9fz+zZs6lYsSLDhg0D4P/+7/9YsWIFt99+O48//jgBAQF8/vnnpKSkMGnSpBzX0b9/f8aNG0fv3r158sknSUxM5LPPPqN69eps27YtfbomTZoA8NJLL9G/f3+sVit33313toOI5CUmd3h7PVarlfr16/PZZ58REhJCSEgIc+bMSe/SdXMhvWvXLtq3b++1z5KdXbt2UaZMmUzd2SpXrkzdunVZuXJl+v1D3YnfaevWrVy+fJmePXumv1amTBkGDx7MXXfdBcBff/2V7SBv3rimu0WLFtx3332MHz+eCxcuULVqVb755huOHTvGV199ladlCyGE8C1X6xL/93//x44dO1i1ahWFCxemfv36TJgwgZdffpm+ffvSvXv3bNfhTlkI7pWH2S1j69atDBo0iEGDBvHSSy8B8PzzzzNt2jTefPNNvvzyywyxmEwm2rZty9q1azPFX6lSJVavXs2kSZOIjo6mVq1a6XUr57puLYtzel0I3dFw5HQh8uT3339XHnroIaVmzZpKWFiYEhgYqFStWlUZPXq0cv78+QzTbtu2TenSpYsSFhamhIaGKnfeeaeyfv36DNNkdZsPRVFvTVa3bl0lMDBQqVGjhjJr1qwsb/PxxhtvKGXKlFHMZnOG5WS3XFdicq7nv//+cynWrLiyHnduGbZt2zalSZMmSnBwsFKnTh3liy++UL766isFUI4fP54+Xe3atZUNGzbkurxbuXvLsObNmyvdunXL8r0PPvhACQsLUxITE92O32ncuHFK+fLlFYfDkeH1L774QgEyfZe+kpSUpDz77LNKZGSkEhQUpDRr1kxZunSpX9YthBDiRtm7efPmXKdxty6xdetWJSAgQBk9enSG+dLS0pRmzZop0dHRypUrV7Jdr7tloaK4Vx7euoyTJ08qUVFRSuvWrZXk5OQM044cOVKxWq3KkSNH0l+Lj49XAKV///5Zxnj69On0ugqgfPTRRxnez64szu51IfTGpCgajMQkhMjXUlNTCQsL48qVK27dMsTbYmNjqVy5MpMmTeLhhx92e/6UlBQqVqzICy+8wJgxY9Jf37hxI3379qVFixaUKFGCadOmeTNsIYQQwmvyWhZ6YxlLlizhrrvuYufOnW7dWhSyL4uze10IPZJruoUQXhcfHw+oybeWihQpwvPPP897772Hw+Fwe/6ZM2ditVoz3Cf9xIkT3HfffcyaNYupU6fyww8/cOLECW+GLYQQQnhNXstCbyxjzZo19O/f3+2EG7Iui3N6XQg9kpZuIYRPDBkyhHnz5lGnTh02bNigdTheER8fT+vWrRkzZkz6mf6RI0eiKIq0dgshhBBCiCxJ0i2EEEIIIYQQQviIdC8XQgghhBBCCCF8RJJuIYQQQgghhBDCRyTpFkIIIYQQQgghfCRA6wD8zeFwcObMGQoXLozJZNI6HCGEEAWcoijEx8cTHR2N2SznwnMiZbgQQgg9cbUML3BJ95kzZyhXrpzWYQghhBAZnDx5krJly2odhq5JGS6EEEKPcivDC1zSXbhwYUD9YsLDw/O0LJvNxvLly+ncuTNWq9Ub4fmVxK8tiV9bEr+2JP4b4uLiKFeuXHr5JLInZfgNEr+2JH5tSfzakvhvcLUML3BJt7M7Wnh4uFcK7NDQUMLDww27w0n82pH4tSXxa0viz0y6S+dOyvAbJH5tSfzakvi1JfFnllsZLhePCSGEEEIIIYQQPiJJtxBCCCGEEEII4SOSdAshhBBCCCGEED4iSbcQQgghhBBCCOEjknQLIYQQQgghhBA+Ikm3EEIIIYQQQgjhI5J0CyGEEEIIIYQQPiJJtxBCCCGEEEII4SOSdAshhBBCCCGEED4iSbcQQgghhBBCCOEjknQLIYQQQgghhBA+onnS/cknn1CxYkWCg4Np0aIFmzZtynH6KVOmUKNGDUJCQihXrhxPP/00ycnJfopWCCGEEEIIIYRwnaZJ9+zZsxk7diwTJ05k27ZtNGjQgC5dunDhwoUsp//hhx944YUXmDhxInv37uWrr75i9uzZvPjii36OXAghhBBCCCGEyJ2mSfcHH3zAiBEjGDZsGLVr12batGmEhoYyY8aMLKdfv349rVu3ZuDAgVSsWJHOnTszYMCAXFvHhRBCCCGEEEIILQRoteLU1FS2bt3K+PHj018zm8107NiRmJiYLOdp1aoVs2bNYtOmTTRv3pwjR46wZMkSBg8e7K+wRX6mKLBoEZw8qT6/mcl04/Hm51m9ltv71x9Ndjtld+7EdOUKBATkuJyTsSfZd2k/dhzOgNSQTdeXZTKhOOczm4mPLEZchUjSggMxXZ9Wfdt0fW7XXrv59Vtfu3QpjcV/nGHOgSuYzeab5s88L9ks2/m6Kbd5cnitiDmasgGNsJqCcIfdbubffytx/LgZi8WtWXXBbjdjsxXVOgwhhBAizw6vOExE1QiKVSqmdSguUxwKaclp2BJt2JJs2K6lknYtAUdSAo7UZOwpyTiSr+GIj8eREI8jIYG0a9dITrjKpf8SuHgqlp8/n4dJsWNS7KDYMSkOQCElKJBNt7ckKTQ4izVfrwspCjfXi/xLwW63s+CzmZrEEJxspemOSgTaPE1lFVJNwdDdq2HlSLOk++LFi9jtdkqXLp3h9dKlS7Nv374s5xk4cCAXL17k9ttvR1EU0tLSeOyxx3LsXp6SkkJKSkr6/3FxcQDYbDZsNluePoNz/rwuRysSf0bmd97BMmGCV5bligCgiYvTlrv+545UM6yuBJ81g4U18M0xsQiQ6IPluiupKPz1Aqx/DhRXO/BYgPo+DMrXLAQHt+ahh1IJC9M6FvfJ8SfzsoQQoiA6GXOSWZ1nATBRmejz9aWlpJF4MZHEi4kkX0kmOTaZlNiUG49Xk0m5Gk/KlThSrl4jOTaJ1IRUbIlppCU7sCUr2JJN2G2edhgOvf5XKtspVr7Znr/GtfFw+fnfdw/AAz/mbRnHy9ohvTHL9zRLuj2xdu1a3nrrLT799FNatGjBoUOHGDNmDG+88QavvPJKlvO8/fbbvPbaa5leX758OaGhoV6Ja8WKFV5ZjlYkftXtP/5IcSAhOprYihUzvW9SlAwt4Cbn85tbxa8/N93y2q3/Zzf/retAUbhsu8TZ5LOYTCbCLYUxXX/bhALO58r1/4GANIXoyykUSUyj62Hoehh2VQzjjYFVOFkyGOXWVnxAuT6v8zHL926Zb/+BYly7FkBoIRuBVnum6dMDu/7qzUsEUEyZX8tquvQTulm+5yAp9ChpIZeh0wsUr/c31Xf9DxMGbLp2g8NhYsOGaJKTA1i6dBmhoWlah+QxOf5AYqIezlwJUYAoyo3eZHrmsIM9CawGPLPqhjNbzuR5GakJqcSdiiP2ZCxxp+K4duGamlj/l5jh8dp/10iNT83DmrJOtC0BaQQEpmENtGG2OLCY7ZjNDswmh/podmAyOTCb7ZiuPzeZFUwmB2AC000N1wpcbdM7fdlNl27MtD4TZO6V6XfatbS3/Ks+EMqF4qnsqhXv0TISQxOIJtq7geVAs6S7RIkSWCwWzp8/n+H18+fPExkZmeU8r7zyCoMHD2b48OEA1KtXj2vXrvHII4/w0ksvYTZn/iGMHz+esWPHpv8fFxdHuXLl6Ny5M+Hh4Xn6DDabjRUrVtCpUyesVmuelqUFiT+jgMcfByB47lyCmrjaBu05V+N/c+VzTN00lbEtnuadDu+4vvx9+zB/9x3mzz6j/rEEfp56CPv336N0905fmnbtzKxfb+HLH1Lo21e74SHsDjvf7vqW0ctGcynyN9r2qcPr7V7PdT4j7//JyeA8fN15550UL26s+MHY3z94N35nDywhhOvsDjtxKXEUC3GzO/LTT8Nvv8G2bTcOpHq1rClc2QF9/oPgElpH4zNB4TcuD7Pb7FisGU+cp8SnEHcyjrhTcemJdeyJWA7vOMwXL35B/Ol4UmJTbl1sjkxmB6FhiYSEJREUkkJwaDJBoSkEhSQTHJpCUGgywUGpBCnJBDuSCbSlYrXZCEi2YU2yYU1JI8Bmw1q4CJaSkVwuXIgtaRdYnXCIo1YH58LgfBiYihenftXWNK/Ymjol61C9eHUqFq1I8WIBxMeb2LPHRq1amcuQr68//gzc17WFm9+o79lsNpYsWUL37t01LcNLLQmkY/Pibs+nxv8XFISkOzAwkCZNmrBq1Sp69eoFgMPhYNWqVYwaNSrLeRITEzMl1pbrF2Nm1XoHEBQURFBQ5ms9rVar13YSby5LCxL/ddcrvgGlSoEfv4/c4r9muwZARGiEe5+zXj2YNAlGj4YHH8S0di0B994LX38NDzyQx6jB2SXHYrFgtWrXacaKlUeaPUJYcBiD5g1iUswk7q1zL02jm7o2vwH3f/uNjgWGjP9mEj+G/vxCaKX9t+358/if7HtiHzVK1HB9xilT1McZM+Cpp3wRmvdc2aE+nl0GlQZpGoov3Zx0Lx65GCA9wY47GUdKXPYJdTw3WjmDwhTCSyYTXuQKYYUvEFo4Uf0Lv0ZoWCKFwm/8HxwejKlwebBGwiXg8BXYeQp2n1X/vwI4r/wJCIAaNaB+C7itHtStC9Wro5Qvz28nVvDaH6+x7exf6XE0KN2APrX60LNGT+qXrn/LWDZOObdSO/uvGapLsj8Z8AvSNNSxY8cyZMgQmjZtSvPmzZkyZQrXrl1j2LBhADz44IOUKVOGt99+G4C7776bDz74gEaNGqV3L3/llVe4++6705NvITyWlKQ+Bmc1aIV2ktLUuEKsIZ4toFw5WL4chg+Hb7+FIUMgLAyun+zKLwbWG8hvB37jp90/8fSyp/lz6J/ZFHRCCCGM7s/jfwLw7c5vebPDm+4v4Oazl7rnv+tOtWAy3yirt3+1PctpgosGE14mjPDSCuHF4yhc+CyBAXspVfwERYpdITwijqCQW7qNB0ZA4apQuDaEVYXC1SC0Iuy9Asv+hpUrYeuKzN20q1WDLrdBy5Zw221Quzbc0oC3+uhqnv12ANvPqfGGWkMZVG8QjzZ5lCbRee8tmZ7v53lJ+ZQk3e65//77+e+//5gwYQLnzp2jYcOGLF26NH1wtRMnTmRo2X755ZcxmUy8/PLLnD59mpIlS3L33Xfz5pseHGyFuFla2o0COMTD5NZH0pPugDzEZbWqLdwBAerZ/f79YcUKaJP3QTr0lNe+3/l9ft33K3+d+Itlh5fRtWpXrUPyOc0v6RJCCCMy0sFTyd9J982Nvo0faUx42XDCo0MpUuQ84YUOER64g8DkzRC3L+vvIqAwFG0CRepC0bo3HoOvD1SWmKjWeX79Vb1LzcWLGeevXRs6dYL27aFVKyiRfVf+E7EneGb5M/yy5xcAwgLDGN18NGNbjqVEqPcuAXDmlNIPKhuSdLtv1KhR2XYnX7t2bYb/AwICmDhxIhMn+n5kQ1HAJCffeK63lm5bHlu6nUwm+PxzuHxZLXjuvRe2bIHy5T1anB7rK9GFo3mi2RO8H/M+r/3xWoFIuoUQQnhAj4VYdhQjtcp7rlzTQtw98m/47y+4tAVSU+DWMc9CoiGiKfaiDdl8yE6TjsOwhlfO3AKQkgLz5sEPP8CSJTd6MwJERED37tC5M3ToANG5X9erKAqfbfmM51Y8R6ItEbPJzONNH+fVdq9SPNT9a4pzY8Cc0r8M+AUZKFQhfOjmg3EWYwBoydnSHRzghZMBAQHw/ffQujXs2AF9+sC6dbpr3c+L51o9x8ebPmbDqQ1sOr2J5mWaax2S1+mpd4EQQhiSJN3aSjwN51fDhT9RNh8DbofYvbBnxo1pgkpA8RYQ0RSKN4WIJhASBYDDZuP8sSUQWv5GoehwqHWaWbPgl1/g6tUby6pQQb2srlcvuP12tT7kolNxp3h44cMsP7wcgDbl2/C/7v+jfmnf3XZUupfnQpJuIQzK2dIdFARZjIKvpeQ0NbY8dS+/WWgozJ8PTZvC1q0wahR89ZXHi9NbAlg6rDT96/bn253fMnXjVL7v873WIQkhhPCRrG516dqMRkq680H38tQrcH4NnFsF51dB3P4b7yXWVB8DQqDKw1CiNZRsrV6D7Uol4/RptR7z1Vdw4sSN18uUgYED1UvqGjXyqMKy/PByBswdwOWkywQHBDOp4ySeaP4EZpNv64oGzCn9y4BfkIFCFcKHbk66dSYlTR21MyjAi7FVrAizZ6tdq2bMgI4dYcAAtxah5/rKmBZj+Hbnt/z8789M7jSZqMJRWofkM3reDkIIoVuGOngaMOm2p8LFv+HMUjXJvryNjCN2m9SW69J3wrW6wFGIaAwtHnJt+Q4HpbZtwzJjBixefGNcnvBwuO8+GDQI7rgDPBxo2aE4eOevd3h59csoKDSJasKsPrOoWaKmR8u7VW67n7R050KSbiEMKu36r1eHt+5xXD/DbTF5eYT+Dh3gpZfgjTfgscfUETorVfLuOjTSOKoxrcq1Yv3J9Xy781vG3T5O65CEEEL4gAkPu1sZKel2GKR7edI5OLNE/Tu7HNLiM74fXgsiO0Dp9lC6HQRev8f60b3AUdfuOBIXB19+ScDHH9Py2LEbr7dpA48+qo5Xk8exeZJsSQyeP5i5e+cCMKLxCD7q9pF3LvNzkQFzSv9RAOdPwkBfkIFCFcKHHNfPIuutrzQ3km6f3P5qwgRYtQrWr1e7YP35p9snHnT4lQHwcKOHWX9yPTN2zOD51s/nq9uH5aOPIoQQ2nAYqfVYp7EqDnXAszOL1ET78taM7weXgqiuENlJTbRDsx6wTHHlBMiJE/DRR/DFFxAfjwlILVQIy0MPYXnsMXUEci+4lHiJu3+8m5hTMQRaAvmk+ycMbzzcK8t2h/Mb0dcFjzpx8zkoA90xWpJuIeBG4auz67nhRtLtk+uHAgLUkT0bNIANG+DVVyGf3ILvvtr3Mfr30Ry4dICYUzG0KtdK65CEEEJ4mcfXdBuJngZSc6TBf+vg5Dw4OR+STmd8P6IpRPeAMj3U7uPu1F2yOqG8YwdMmgQ//3yjC3nNmqSNGcOyiAi69u6NxUu9FI9eOUq377ux/9J+igUXY0H/BbSpkPdbq+ZETqJ74OafvP6q7dmSpFsIuNHNTIdJt7NC4bNBOypUgOnToV8/eOcduPtutat5bnHpvJ5TOKgw/er04+sdXzNj+wxJuoUQQtyg90LsZloPpGZPUUcaPzkXTi2AlJvucx0QprZml+mhPoZEur/8rDbFtm3w+uuwYMGN1+68E555Brp1Q7HbcSxZ4v66snHw0kHafdOOM/FnKF+kPEsHLaVWyVpeW767DLR3ChfpL8MQQgsFtaXb6b774IEH1O9hyBBITPTduvxoWMNhAMz+dzbXUq9pHI1vGKneKIQQumGk7uVaJN0OG5z5HdYPhnmlYG13OPyVmnAHRkDlYdD2N7j3P2gzByoP9SzhvonJZFLvqnLPPdCkiZpwm0zq6ONbt8Lq1dCjh9fravsv7qft1205E3+GOiXrEPNwjKYJ982kITwLBq33SEu3ECBJN6jXSq1eDQcOwIsvwpQpLs2m565Rbcq3oXKxyhy5coTfDvxG/7r9tQ5JCCGEFxWIgdT81b1cUeDiejj2A5z4OWOLdkgUlO0N5fpAqTvA7L2BZ9Ov6d69G5qqJ8sxm9W7qrz8MtT0zojhWdl3cR/tv2nP2YSz1C1Vl1UPrqJUoVI+W5+rDLR3akvHddBb6S/DEEILBhhIzedJd7FiN+7XPXUqrFmT4+RGqK+YTCYG1FVvhfbDPz9oHI336HA3FUIIYzFCIebk66T76m7Y8SIsrAwrboeDn6oJd3ApqD4aOv0FvU5Bs0/U0ce9mHBz8iR8+qn6/PIlNdkePBj27IFZs3yacB+/epwO33bgbMJZ6pWqx+oHV+si4b6ZFPdZMNBP92aSdAsBhmjp9vhsvju6doVHHlGfDxsG8fE5T28AA+sNBGDpoaVcTrqscTRCCCG8yeOB1AyVdPuge3nKJSrZFhGwohksqQd73oZrx9RrtCs9CO2WQq/T0PQjKNnavQHRXHH1KrzwAlSvDmv/UF8rURL27oVvv4UaNby7vltcTLxI51mdORN/htola7N6yGpKFirp03UKHzDQWQn9ZRhCaEHHA6n5raXbafJkqFgRjh9XByzJhd5bXWuXrE390vWxOWzM2ztP63CEEELogZGSbm/dMsxhhzPL4K/7CVhUgfqpX2K6uhPMgVC2F9z+M/S5AC2/geguYPbBVahpafC//0GVKvDuu5CcDLXU66dNdeuoSbiPJaQm0P377hy4dIBy4eVY9sAySoSW8Pl63WGkvVO4Rn8ZhhBa0HFLt/NaJ78l3YULw9dfq9n09OmwbFk2cfknHG/Ij13MnYy0HYQQQnggr93L4w/DzldgYUVY2xVO/IzJkcpVc2XsjaZC77Nwx3wofx8EhHgl5CytW6cOkDZ6NFy+DHXqwG+/oUyY6Lt13iLNkUbfn/uy+cxmIkIiWPbAMsqGl/Xb+p1cLbt13q6hDYPWe/SXYQihBR0n3X5v6QZo2xaefFJ9/sgjhu9m7hxAbe2xtZyJP6NxNEIIITRnpDOWnnQvVxxwehGs7gy/VYV//w8ST0FgMag+GlunTfwR8gGOqiMhKML7Md/szBkYNAjuuAN27VLHkPn0U/Ue3HfddSOz9EOG+cyyZ1h2eBmh1lCWDFyim1HKb2WgvVNbBjorob8MQwgtyEBqmb35JlSqBCdOwPjx2U6mw68sk4pFK9KqXCsUFGbvnq11OHlmhO9cCCF0zVBJtxst3amxsG8K/FYd/rgbzq0ATBDVBVrPht5n1Ou0izb0UbA3SUtTL1mrUQN++EEtvB59VL1LysiREHC9+7qfNsX0rdP5aNNHAHzX+ztalG3hnxXnILfyXIr7LBjop3szSbqFAGnpzkqhQmr3coBPPlG7hd3ESPUVuNHF/MfdP2ociRBCCOEGV1q64/bD5lHwaxnY9jQkHAZrUaj1HNxzBO5cChX6gSXY5+ECsG0bNG8Ozz0HCQnQsiVs2QLTpkGJrK+fNvnwjPKfx//k8SWPA/B6u9fpU6uPz9Yl/MhAZyX0l2EIoQUDJN2+LIyy1aEDDB+uPn/4YUhK8n8MXtKvTj/MJjObz2zmyJUjWofjNUY7+SGEEMJd2STdigNOL4E13WBRTTj4CaRdgyJ1oPnn0PsUNJoEYRX9F2pioppoN28O27erXclnzIC//oLGjbP+GD4uyE7GnuTen+8lzZFGvzr9ePmOl326Pm+Qoj3/0V+GIYQWZPTy7E2eDNHRcPAgTMw82IlRujqXKlSKdhXbAfDLnl+0DUYIIYS2jHTG0p6c8X9bHOz/WE20/+gBZ5cCJihzD7RfCd3/gaqPQEAh/8a5ciXUq6fWG+x26N9fvQXYsGGu1a98UJ+w2W3c/8v9XEy8SKPIRszsOVObRgwPGSdSPzLQT/dm+sswhNCCjlu6nfcg1SzpLlIEPv9cff7++7B5sxqXAQ9699W+D4A5e+ZoHEneGKi+IIQQ+mSkQiw1Vn2MOwhbxsD8srD1SYg/CNYiUHMs3HMI2i6AyA7+LyQSEtRrtTt1giNHoFw5WLQIfvwRSpfOfX4fborxq8YTcyqGIkFFmNtvLqHWUN+tzIsMtHdqy0D1If1lGEJoQQZSy9ldd8HAger39NBDkJqqXSx50KdWH8wmM1vObOHY1WNahyOEEELk7sRsWNsDFlWHAx9BWjyE14Rmn0KvU9D4fQirrE1sf/0FDRrAF1+odahRo+Dff6FHD7cX5e0W6IX7F/J+zPsAzOw5k0rFKnl1+f6gv1qpDhj0jIQk3UKArlu6dZF0A0ydCiVLwu7d8NZb6S/r8DxFtkoVKkXbCm0BmLdvnsbRCCGEEC5wpMKZJYAJou+CO5dBj3+h2kiwhmkTU0oKjBun3gbsyBEoXx5Wr4aPP4bChd1alC+u6T529RhDfh0CwFMtnqJ3rd5eX4fQAQPVQfWXYQihBQMk3SatjywlSqiFKcCbb1Il8R9t4/FQ39p9AZi7b67GkXiHkXpICiGEbhjt4FljDNx9ANr9BlGdQcsT8Tt3QrNmMGmS+j0OHQr//APt2uVtuV6q5tgddgbPH8zV5Ks0L9Ocdzu9650Fe1Fuu5/B9k7hAv1lGEJoQQZSc02/ftCrF6SlMeH4cCykaR2R2/rU6oMJE5vPbOZC6gWtwxFCCCGyFnC9xbj7P9BkChSuqmk4KAp89JE6Mvk//6i93+bPh5kzITw8D8v1XogA78e8z18n/iIsMIyf7v2JQEugd1fgRwZqyPUfg56R0EEtXggdMEBLty6SbpMJPv0UihalTuIWnuZDQ3UvB4gMi+SOCncAEHM1RuNoPGO071wIIXzF467JRmrptoRoHQFcvgy9e8OYMeq4LnffrV5u1quX11bhjWu6d57bycur1VuCTe06VffXcWf3kQ20d2rLQPUhHdTihdABHQ+k5qxQ6CLpBoiKgg8+AOB1JhB65pDGAbnPOYr5+qvrNY5ECCGEyI5OUq+//4aGDWHBAggMVMd4WbAASpXyyuK9dU13SloKg+cPxuaw0bNGT4Y1HOaV5WpJf7VS4Smd1OKF0Ji0dLtn6FA2hnUghGTqf/aEsVoMuNHFfH/ifk7GndQ6HCGEEB4y0j2XPabVZ3Q41IFT27aFkyehalWIiYEnn/RNTHlc5CtrXuGfC/9QqlApvrj7i4KxbxREN1c5DbSJdVSLF0JDknS7x2TizfLTSCKYkjtXwzffaB2RW6IKR9G6XGvA+KOYG+x8hxBC6IMcPHN2+bJ626+XXgK7HQYNgm3boHFj76/LC5ti8+nN6bcHm373dEoV8k4rvFZk78x/dFSLF0JDBhhITW9nbE8GVmECr6v/jB0L589rG5Cb7q15L2D8pFsIIYQHDJF0axTjjh3QtCksXQohITBjBnz3ndu3AnOXp/Ucm93G8N+G41AcDKo3iHtq3OPlyLSjr5qfThjhp5sF/WUYQmhBWro98iFPE1u5IVy5og6uYiC9a6r37Iw5FcOpuFMaR+MenZ1/EUIIzfjiHs/648eD/nffQcuWcPQoVK4MGzbAsGE+LXjyug0nr5/MrvO7KB5SnA+7fOilqIQhGKg+pL9avBBa0PNAauhsILWb2Alg15Ofg8UCs2fDb79pHZLLogtHU6tQLQDm7skf9+wWQgghPJKaCqNHw4MPQnIydOsGW7ZA/fr+i8GDKtiBSwd47Y/XAJjSdQolC5X0clDacJ6G0F+tVHhKf7V4IbSg05bum8/+6i3pdoYWV7Wx2r0c4PHHIS5Ou6Dc1KpoKwDm7JmjcSSeKxCNPEIzn3zyCRUrViQ4OJgWLVqwadOmbKedPn06bdq0oVixYhQrVoyOHTvmOP1jjz2GyWRiypQpPohcFBQeX3plhIOnv2I8dw7at4f//U/9f8IEWLQIihXzz/o9/JgOxcHjvz9Oij2FLlW6MKjeIO/GJfRJBlITwsB0mnQ7u5aD/pLuDF59Ve2GduqUOuiKQbQs0hKA9SfXczb+rMbRCKEvs2fPZuzYsUycOJFt27bRoEEDunTpwoULF7Kcfu3atQwYMIA1a9YQExNDuXLl6Ny5M6dPn8407fz589mwYQPR0dG+/hhC5AM+zCx27oTmzdXbghUpAgsXwmuvaVIfcvcEyprLa/jzxJ+EWkOZdtc03Y19k5PczqcY4JSQcJOOa/FC+JEk3R4zmYDQUPjiC/WFTz6B9ca4/3WJwBK0KNMCBYVf9/2qdTguM1C9QhjYBx98wIgRIxg2bBi1a9dm2rRphIaGMmPGjCyn//7773n88cdp2LAhNWvW5Msvv8ThcLBq1aoM050+fZrRo0fz/fffY7Va/fFRRD7m8fXARmjp9rHITZsIaNdOvR1Y9eqwaRPcfbff4/BkG15Nvsq3Z78F4LV2r1GxaEUvR6UPUtxnwaA/3QCtAxBCF3Q6evnNSbdJZ4feTGVkhw7qYCszZ8Lw4bB9OwQFaRKbO3rV6MXG0xuZu3cuI5uN1DocIXQhNTWVrVu3Mn78+PTXzGYzHTt2JCYmxqVlJCYmYrPZiIiISH/N4XAwePBgnnvuOerUqZPrMlJSUkhJSUn/P+765Ss2mw2bzebqx8mSc/68Lkcr69bZeeWVVrz9thmTyZH7DDqjKGauXm3jefxd1Ydvv1NY+4rr8zv33h9+cPDx355/b3mO3wVrHlMItkLvPg7OxXtxHYrCoDPv8/jJtzGh4GjfHvuPP6rdyTX4PdjtdjUsFJd/jxPXTiQ2LZYaETUY2XikAX/Hagpmt6dl/ZUHBIDJpB7r/BuYSzQ9ftrAinrC1pZm86gJ2Zvxu7oMSbqFAN0OpGaElu4MJk+GxYth71545x2YOFHriHLVq0Yvxq8ez9pja7mUeIniocW1DkkIzV28eBG73U7p0qUzvF66dGn27dvn0jLGjRtHdHQ0HTt2TH/t3XffJSAggCeffNKlZbz99tu89tprmV5fvnw5oaGhLi0jNytWrPDKcvxt6tRG/PNPea3DyKOI3CfJzvWk+8xpE2c2uF8+nj1rYsPZvJareYjfBY5H1Mdt2y2cuOidOkAgKUzjMYbxNQB77+zBwceHobh4Ms0XLu28BMCFCxdYsmRJrtMfSzrG5/s/B2BAsQGsXLbSp/H5gt3eAwhg3bp1HDiQlOn91O7dwWrlzz/+4PC1a/4P0EVaHD8DEgLoQQ8Afv/9dxSr503f3og/MTHRpekk6RYCpHt5HmQ4TxERAR99BP37w5tvwn33Qe3amsXmiirFqtCgdAN2nt/Jwv0LGdZomNYhuUV6SAo9euedd/jpp59Yu3YtwcHBAGzdupWpU6eybds2l6+9HD9+PGOdAzWitnQ7rxUPDw/PU4w2m40VK1bQqVMnQ3Zz//FH9Tt84IE0evbUOBgP2O12duzYQcOGDbFYLG7Pf9+/6mPv3goDH0tzY0b14e67HFQY4sZ8t8hr/K4ITFUfP/s0jUST57E6WeMv0+q9eym59y/smBnDVMZ8/jDdKmqbDuy8sJOTnKRUqVJ07949x2kVRaHT951w4KBlkZY81+c5Q/5+nftMmzZtqFo18/dvDVBfa9u2LdX9GplrND1+XrnxtFv3buDB6r0Zf5yLAwhL0i0E6DbpVtDv6OXZ6tcPZs1SRz4dMQLWrdPd93qrPrX6sPP8Tubtm2e4pFsIXyhRogQWi4Xz589neP38+fNERkbmOO/kyZN55513WLlyJfVvut3QunXruHDhAuXL32idtdvtPPPMM0yZMoVjx45lWlZQUBBBWVymYrVavVbR8+ay/MlsVsutBg1M9O3rm6TPl2w2heDgc3TvbsZq9aA6ej3prlnTTN8O7s9fvZqJ6n09rwbnOX5XzFbADt27B0ChPK7j+HH1NmB790J4OD0TZ7M4rSvPBNg03//N1+sIZrM511h+2v0Tf574k5CAEIaVGWbY36/zwuSAgIAs43fW/qxWqyc5pd9o8v3ftDqr1epR0n3z/HmN39X59V0TFsJfdJp067mlO9sWVpMJPv0UwsLUAdWmTfNrXJ64t9a9ACw/vJy4FOPc8kwIXwkMDKRJkyYZBkFzDorWsmXLbOebNGkSb7zxBkuXLqVp06YZ3hs8eDC7du1ix44d6X/R0dE899xzLFu2zGefReRvHg+kZih5vPRt505o2VJNuMuWhb//ZoW5i3dC86ZcPmaiLZFnlz8LwPOtnqdUYCk/BKUtfV30qBMG/cnrqxYvhFaMMJCazq43z1G5cvD22+rzF15QR0bVsdola1O9eHVS7aksOZj79WRCFARjx45l+vTpfPPNN+zdu5eRI0dy7do1hg1Te4M8+OCDGQZae/fdd3nllVeYMWMGFStW5Ny5c5w7d46EhAQAihcvTt26dTP8Wa1WIiMjqVGjhiafURRgBSJZB1atgjZt4OxZqFsXYmLURz1xcVN8GPMhp+NPU6FIBZ657RnfxiSMwUBVY31lGEJoRQZS81i2X9nIkeqZ9fh4ePxxXVdwTCZTemv33L1zNY5GCH24//77mTx5MhMmTKBhw4bs2LGDpUuXpg+uduLECc6evXF/+88++4zU1FT69u1LVFRU+t/kyZO1+ghCGFtey83vv1e7lMfHQ7t26uVeZct6JTRfyKlx4cK1C7z797sAvNXhLYIDgv0VliacW15ftVKRF3JNtxAg3cs9kGtdwGKB6dOhUSP1+u45c9TrvXWqT60+vP3X2yw5uIQkWxIh1hCtQ3KJjs9liHxg1KhRjBo1Ksv31q5dm+H/rK7Jzo0n8whR8HiQer33Hjz/vPq8Xz/49lvd3sbTlUsEXlv7GvGp8TSJakL/uv2xp9n9EJnvSNmdBwb97vRVixdCKwZIuvV2n26X1KkDL76oPh89Gi5f1jaeHDSJakL5IuVJtCWy7LBcXyqEEPlafs16FAXGj7+RcI8dCz/+qNuEO4Nsqjn7L+7n863qLcImd56su0YIX8ine6f3GahqnP/3WiFcodOk23n214RJt9d05xrW+PFQqxZcuADPPeeXmDxhMpnoU7MPAPP2ztM4mtyZTFIkC1GQ5dec0W8M8QW6GaPDAU88Ae+8o/7/7rvw/vs51m108TXkEsO4leOwK3buqn4X7Sq280tI/pJbHUqfNT+N6WGf9YC+MgwhtKLzgdT0eFbX5YI6KEjtZg4wY4Y6qItO3Vtbva574f6FpNpTNY5GCCGEwLXxZmw2ePBB+Owzdfpp0260dhtEVo0L646vY8H+BVhMFiZ1nKRBVELXDHRWQn81eSG0oPOB1PTayu2y1q3VwdQAHn0UEhO1jScbLcu2pHSh0sSmxLLm6Bqtw3GJLlophBCaMXrxILwgORnuu08dOM1iUR8ffTTHWfS032R3TbeiKLyw6gUAhjceTq2StfwZlqZkILX8R5JuIUC33cv13NLt5HLB/fbbUKYMHD4Mr73m05g8ZTFb6F2zN2CMLuZCCCE8ZIgzli7EmJAAd90FCxaoPcvmz4cBA3wfmi/cUp9YdngZ60+uJzggmIltJ2oTk9AfI/x0s6DfmrwQ/iRJt9vcrq+Eh8Onn6rP338ftm/3ekze0KeWel33r/t/xe7Q7+ioemqlEEII4UvZHPDj4qBLF/WyrbAw+P13uPtu/4bmI4qi8MqaVwB4otkTRBWO0jgi/zJoXul/BqoL6a8mL4QWJOn2j3vuUbvA2e0wfDikpWkdUSbtKrajWHAxLly7wN8n/9Y6HCGEEL5ghJbunGKMjVUT7vXroVgxNfG+807/xeZNWXzMhfsXsuXMFgpZCzGu9Tj/x6QTBsopRS7ySU1eiDySgdQ85naL60cfQdGisG0bTJ3qi5DyxGqxck+NewCYu2euxtEIIYQQtxS0zoR7wwaIiFAT7ubNtQnNi5zj1zgUR3or95gWYyhZqKSWYQm9ufkkjYHOSui3Ji+EP+l0IDWFG7cM0xuPGwkiI2HyZPX5K6/AkSNei8lbnF3M5+2bl+0AL3qh8/CEEEJ409Wr0LkzbNx4I+Fu1EjrqPLk1nL2lz2/8M+FfygSVIRnWz2rUVS+lVvZLQOp5T+6SLo/+eQTKlasSHBwMC1atGDTpk3ZTtuuXTtMJlOmvx49evgxYpHvSPdy/3roIWjXDpKS4LHHdJc5dq7SmULWQpyKO8XmM5u1DkcIITLR2WFTM4qnV78a4gu8JcYrV6BTJ9i0CYoXh9WroWHDvK1BT1+DCewOOxPXqoOmjW05lmIhxTQOSuiOnvZZN2hek589ezZjx45l4sSJbNu2jQYNGtClSxcuXLiQ5fTz5s3j7Nmz6X+7d+/GYrFw3333+Tlyka9I0u0xjzoHmEzwxRfqSKsrVsCsWV6PKy+CA4LpUV09kafXUcx11ilDCCGMRVfZZi5MphsJ95YtUKKEmnA3aKB1ZN5x06b4afdP7Lu4j4iQCJ667SnNQvKX7MpyA+2dwkWa1+Q/+OADRowYwbBhw6hduzbTpk0jNDSUGTNmZDl9REQEkZGR6X8rVqwgNDRUkm6RN5J0uy3P9ZVq1WDCBPX500/Df//lOSZvurfWvQDM3TtX913MhRAFV0E/AafHy6+8Li5O7VK+deuNhLt+/TwtUpf7jQneXPcmAM+2fJbwoHCNA9KeHjeT8IymNfnU1FS2bt1Kx44d018zm8107NiRmJgYl5bx1Vdf0b9/fwoVKuSrMEVBIEm3Np57DurVg0uXYOxYraPJoFvVbgRZgjh0+RC7L+zWOhwhhBAFzvUTvoMH32jhXrNGLTfzEeeJ7dNxp9l7cS9FgorweLPHNY5K6JZBL3gP0HLlFy9exG63U7p06Qyvly5dmn379uU6/6ZNm9i9ezdfffVVttOkpKSQkpKS/n9cXBwANpsNm83mYeSkL+PmR6OR+G8wp6VhAeyKgsNP34cr8afY1H3XbDLrcDtZABN2exo2m+ctwaZp07DcfjumWbNI698fpXNn74WYg9y+/2BzMJ0qd2LRwUX8vPtnakbU9EtcrlMP3zZbGrrbNVwgx5/MyxJC+JERejA5Q9y0Wb3rx4oVULeulhH51N6LewF4ssWTFAkuonE02jJoXilyoGnSnVdfffUV9erVo3kOt0l4++23ee211zK9vnz5ckJDQ70Sx4oVK7yyHK1I/FDr0CGqA8eOH2f3kiV5D8oNOcV/NOkoAKkpqSzxc1y5SUhoDxRmy5YtJCdfytOy6vboQZVFi0h56CHWfPQR9uBg7wTpgpy+/8oplQH4bst3NE1o6q+QXKIodwMm/vzzT4oXT9Y6HI/J8QcSExO9EIkQBZPHA6npXWqq2gvPDBQKhXlL8zxomm5d34RXk69SyFqIMS3GaBuP0DeD/uQ1TbpLlCiBxWLh/PnzGV4/f/48kZGROc577do1fvrpJ15//fUcpxs/fjxjb+q2GhcXR7ly5ejcuTPh4Xm7VsRms7FixQo6deqE1WrN07K0IPHfYF63DoCKVapQvnt3b4SXK1fi335uO+yHkOAQuvspLlcVKmQBoGnTprRvb8nbwu64A6VhQwqdOEG3DRtwTJrkhQhz5sr3f1vSbXw69VOOJx+n2m3VqBZRzedxucpsNuFwwB133EGFCsY7fyrHnxucPbCEEH6k55butDR44AG45/r/330HLVpoGpIvObuXKyaFx5o+RvHQ4hpHpD0d7536YbBuAJrW1AIDA2nSpAmrVq2iV69eADgcDlatWsWoUaNynHfOnDmkpKTwwAMP5DhdUFAQQUFBmV63Wq1eq+h5c1lakPhJH1HEEhCAxc/fRU7xWyxqMms2m3W4jdQiwWoNwGrN46GkWDGYNg26d8fy0UdYBg6EZs28EGPucvr+S1tLc2fFO1lxZAW/HfyNcbeP80tMrlG//4CAAB3uG66T4w+G/vxCaM3jgdT0mnQ7HDB8OMyZcyPpbtla05B87dClQ4B6Kd0zLZ/ROBp9MVheKXKg+ehMY8eOZfr06XzzzTfs3buXkSNHcu3aNYYNGwbAgw8+yPjx4zPN99VXX9GrVy+KF5ezYcILZCA1t3m9vtKtGwwYoG6LESPQy4XKN49irkd6rTcKIYRwk6LA6NHwzTdgsYDZ9ymXHsqQZYeXAVC5WGWiCkdpHI3QPYNe8K55Tf7+++9n8uTJTJgwgYYNG7Jjxw6WLl2aPrjaiRMnOHv2bIZ59u/fz19//cXDDz+sRcgiP3KWOjq7h4aek26fmDIFIiJg50744AOtowGgZ82emDCx+cxmTsSe0DocIYQA9JEs6UG+uqb7tdfg00/Vusi331IQOhlvPr2ZAxcPAFCzhN4GLPWd3H6/Bs0rRQ50UZMfNWoUx48fJyUlhY0bN9LiputW1q5dy9dff51h+ho1aqAoCp06dfJzpCLfkpZuj3n1PEWpUjeS7VdfhUOHvLhwz0SGRdK6vNq1b/7e+RpHc4POzg8JIYSx6O2sxWefqUk3wCefwMCBN97Lxwf8yTGT05+HBYVpGIkwDJ39dF2l35q8EP6k06TbeQbf42vWfMhn9ZUHH4SOHSE5GR59VBcVI2cX83n75mkciRBCZJSP8zHf0kHZku6XX+CJJ9TnEybAyJE+X6Ue9ptjV4/xy55ftA5DU3rYDoZlsO9OXxmGEFrRadJthJZurzOZ1EHVQkJg9Wq4paeLFnrX7A3AuuPrOJ9wPpephRBC+IseT0q7ZfVqGDRIPQnw6KNqL68CYsqGKTgUBzWK11BfMPim9CbpXp7/FKCavBA5kKTbYz45S1ulyo2KxzPPwHltE90KRSvQNLopCgoL9i/QNJZb6amxRgghhBu2b4devdR7ct97r9qtPMtCNf+lXleTr/LV9q8AuLPCnRpHIwzFoGck9FuTF8KfZCA1t/k82Rs7Fho1gitX4KmnfLyy3PWp2QeAeXuli7kQQuiFxwOpaX3G8tAh6NoV4uOhXTuYNUsdsbyA+GLrFySkJlC3VF1qlFBbuk06q4NpSc6n5z/6q8kLoQVp6dafgACYPl3dJj/9BIsXaxrOvbXV67pXHV3FlaQrmsYCujs/JIQQwlUXLkCXLupjw4bw668QHJxxGq1PCvhQqj2VqRunAsh9uXMhRX0WDPrTKIA1eSGyoPOkW89nf30aWpMm8PTT6vORI9UWAY1UL16dOiXrkOZIY9GBRZrFIYQQwgu0SmqTkqBnTzhyBCpVgt9/hyJFcpnJdwWtFl/D7N2zORN/hsiwSAbUHXDjDf1WdYQeGWx/0VeGIYRWdJp0K9dLwwLZ0u302mtQsSKcPAkvv6xpKH1qqV3M5+6dq2kcQgiRjxtC/UOLL9DhgMGDYcMGKFZMTbgjI/0fh4YUReH9mPcBGN18NEEBQYZtufQlg162LHJQgGvyQtxEp0l3ge5e7lSoEHz+ufr8449h40bNQnHeOmzZ4WUkpCZoFsfNpOIthBAGMW4czJ0LgYFql/IaNXKYOH8e3NccW8PO8zsJtYbyWNPHMryn51593iZldx4Y9IxEAa7JC3ETZ9KtswO+JN3Xde6stg4oCgwfro70qoH6petTuVhlktOSWXpoqSYxCCHEzXRWbInsfPopTJ6sPp85E+64w/V5fbCRtdpvPt70MQBDGwwlIiQCuNGrT9wg30j+U8Br8kJc5zzgS0u32/xWcH/wAZQoAbt3w3vv+WmlGZlMpvTWbq27mEtFWwgh8sCfid7ixTB6tPr8//4PBg7037p15PjV4yzcvxCAUc1HZZ6gAJZruZXlBfAryZ1Bz0jotyYvhD9J93K3+f3EdIkSMGWK+vyNN+DAAT8HoHJe173owCKS05I1iUEIIYRBbNsG99+v1jMeeghefNG1+fJh6+9nWz7DoTjoUKkDtUrWuvFG/vuowh8MdkZCfzV5IbSg86TbZLQji68MHKjeZiUlBR555MZ286PmZZpTpnAZElITWHlkpd/Xf6t8WC8TQoj84dQpuOsuuHYNOnaEadM87KZk/DpAki2J6dumA+oAalkpSNd058agly2LHOgrwxBCK+4k3bYE+OMe+HsgXDvu07AU9D96uV/LSJNJrbSEhsIff8BXX/lx5SqzyUzvmr0BmLd3nt/XL4QQwgt8fcby2jW45x44exbq1IFffgGr1bfr1LGfdv/E5aTLVChSgbuq35XhPbmmW7jFoGck9FuTF8Kf3BlI7fwaOP0bHP8RFtWGfR+CI803YUn38swqVlS7lwM895xaofEzZxfzBfsXkOajbZ8baRAQQgidUhQYNgy2b1cvjVq0yIV7cWdaiE9Cy7QWP6xGUZT0AdQeb/Y4FrMl6wmlXBP5mP5q8kJowZ2B1JJO3XhuT4RtY2H5bXB5u9fD0nPSraknn4SmTSE2Vn3uZ20qtKFEaAkuJ13mj2N/+H39QgghjYN55Msv8I03YM4ctWV73jz1ZHFeGPws6/qT69l+bjvBAcE83OjhzBPIvpwtY295cTOpyQsB7nUvt6eoj+Xvh+bTwVoULm+FZc1g27OQds17YRkg6dakLhAQAF9+CRaL2mVvwQL/rt4cQM8aPQHpYi6EEIbkq6R77lyYOFF9/tln0KaNhwvKP5no/zb/D4CBdQdSPLR4ttPJNd3CJdK9XAgDcyfpVq53JzYHQtXhcNdeNQFX7LDvfVhcB8545x7O6QOp6bAg0ryVpUEDePZZ9fkTT0BcnF9X77x12Px989O3kxY03w5CCE3psHjwK11dD7x9Ozz4oPr8qafg4SxadT1i3Pt0n40/yy97fgGyuU0YOtuGfpLTR775rQL+885XJOkWAty7ptthUx/N1wdECYmE23+CtoshtLw6uNrabupAa0nn8xbW9WTOYsrm+qeCbuJEqFIFTp+G8eP9uur2ldoTHhTO2YSzbDi1wa/rFkIIoTPnz0PPnpCYqN5l4733tI5IF77c9iVpjjRal2tNo6hGOU8sGaZwhbR0C2FgzqTb4kJy6xw4yxyQ8fUy3aHHv1BzLJjM6kBri2vB4RkeN0dK9/JchITAF1+ozz/7DP7+22+rDgoISh+BVYsu5gW9dUsIISAPPcG82bqakgK9e8PJk1C9Ovz0k3oZVF7kg9Zfu8POl9u/BGBk05HZT2j8j+qxrHbfAvx15Gv6rckL4U92u/roUvfy6y3dpixu/WENg8bvQ5dNUKwRpF6BjQ/DqvYQd8D9sBxqXHpMunVTH2jfXh0lVlFgxAi18uMnzi7mc/fOLZDd44QQosBTFBg5EmJioGhR+O039dGrjHmWdfnh5ZyIPUGx4GLcW/ve3Gcw5sf0KflK8g/91eSF0IJHLd053G8zoomaeDeaDJZQuLAWltSH3f8H9lTXw3J2L8/u9hpCNXkylCoFe/fCO+/4bbVdqnQhJCCEY1ePsePcDr+tVwghRB556USpefp0mDlTPWn/889qS7cA4Ittak+0IQ2GEBwQnO10ctJauEW6lwthYG4NpOa8pjuXrmPmAKj1DPTYDVFdwZECu16BpY3gP9e6QUv3chdFRMBHH6nP33pLTb79oFBgIbpV6waord1akLqKEKIg0zJhK7ZvH+ann1b/eecd6NTJi0s39n26z8Sf4bf9vwHwSJNHXJpHj4PGakEGUsuf9FuTF8Kf3Ole7mzpzqp7eVbCKkG7JdDqBwgqCbF7YMXtmLeOIkBJyDksRbqXu6xfP+jRA1JT1W7mDv+MKN6nZh9Abh0mhBAFyrlzNJs0CZPNBn373ribhi8YMBmdsX0GdsVOm/JtqFWyVs4T660+IfRNWrqFMDB3updfT4RxJxE2maDiALhrH1RRbyFiOfIFHZJGYzo1L9sMVkYvd4PJBJ9+CmFh6oBqn3/ul9X2qN4Dq9nK3ot72fuff1rYwZB1MCGEF+nuxKdGNBlIzWbDMmAAIZcvo9SqBTNmyEH5JnaHnS+3qQOoudrKDRguifIV+WnnT5J0CwHutXSn86B0CIqAFl9ChzUoYdUIVq4QENMf/uwF105mmly6l7upfHl48031+bhx6q3EfKxocFE6Vu4ISGu3EEIYRl6S7mefxfz339hCQ0n7+WcoXNh7caUzbuq14sgKjsceVwdQq5X7AGpyTXf29FTFEnmj35q8EP7kTku3NwrC0u1I67yV/dZ+KCYrnF4Ii2vD/o/h+ojloO+kW7dl5BNPQIsWEB8Po0b5ZZV9al3vYr7P/0m3breDEMIvdHXiUwN+T9hmzUofQ2TbmDFQo4YfVur9jezL/ebzrWpPswcbPEiINcTl+eSabuES6V4uhIG5M5CaU14LB0sw+wIHktZpE5RoBWkJsPVJWNEKruwCbtwyTEYvd4PFAtOnq/dI/fVXmOf7RLhnjZ6YTWa2nd3GsavHfL4+IYQQGtixAx5Ru0vbx4/nXIsW2sajQ54MoGbgRn2P5XSuSAZSy58k6RYC3LxPt5dLhyJ1oNM6aPYZWMPh0iZY2hh2vIDZnqyGpcOWbiddnpiuV0/tXg5qy/fVqz5dXclCJbmjwh2A/7qY6/J7F0IIo3C3LL9yBfr0gaQk6NoVx4QJvonLyaDdmGZun4ldsXN7+dupXbK2ezNLuSZcIS3dQhiYW93Lnbz4azeZodpj0GMvlLtXHaxtz7sMPv0eHUP1mXTrvj7w8svq/VLPnbuRgPuQjGIuhBD5lKLAsGFw9ChUqgTff+9mfSGvjJFdKIrCzB0zARjeaLhb8xVUWZ1AL7jfRv6mv5q8EFpwayA1Hx4OQ6OhzS9wxwIILUvRtEusKAOPpa6H5P98t978KDgYvvhCff7FF/Dnnz5dXe9avQFYf3I9Z+PP+nRdQgghVH4ZvfzDD2HBAggMhDlzICLCs3XqkDfz3b9O/MXhK4cJCwyjb+2+bs8v13RnJt9I/iFJtxCgfUv3rcreAz32sCWsFQ4FWtuPwOJacOQb3TUxm0z6iieDtm3Ve3aD+pic7LNVlQ0vS4syLVBQ+HXfrz5bz610tjsIIYRfedxK6up8MTE3ekt9+CE0aeLZ+txmvIP71zu+BqBf7X4UCizk+ozG+6hCS9K9XAgDc2sgNT+VDtbCLC/Wg9tOwklzBKRcgg1DYXVHiD/knxhyYJhkb9IkiIyEAwdu3E7MR5y3RtFiFHMhRMFimGOwkV26BPffD2lp6uPIkdrEYYAW4Gup1/h5z88ADG041LOF6P9j+oUMpJY/SdItBHh2n24/FIIOxcHmFHgrtA80fBcswXB+NSypB/++DQ6bz2MwvKJF4eOP1efvvAO7d/tsVc4u5muOruFS4iWfrQcMUQcTQgjjcjjgwQfh5EmoVk29TEkOvNmau3cuCakJVClWhdvL3+7WvAX5mm7hAYPuLpJ0CwEedi/3PectwzAHQO3noftuiOwE9mTY+SIsbQIXN2gaoyHqIPfeCz17qq0Vw4ffOMniZVUjqlK/dH3sip3fDvzmk3UIIcTNDHEM1qPcEr1Jk2DJEnV8kDlzIDzcP3Gl821m4e39xjmA2tCGQz2+Nluu6RZuMdjuIkm3EKDtLcNy4FDUkwHpo5cXrgJ3LoOW30FQCbj6DyxvBVtGgy3Ob3GBwbo2mkzwySdQuDBs3AiffuqzVTm7mM/dO9dn6xBCCOFD69apd8AAtadUgwbaxqPz7OLIlSOsPbYWEyYebPCg+wswUn3CD6R7ef4kSbcQoL+B1K5zJt0W801xmUxQ6QH19mKVhgAKHPgfLKoNJ3/1eUyGVaaM2r0c4MUX1S6DPtCnlnrrsOWHlxOfEu+TddzMUCc/hBBC7y5cgP791ZPxDzwADz+sdUS69+3ObwHoULkD5YuU93xBBSjDlLI7D2QgNSEMTI8DqQF2RW2Bz/I+3cEloOXX0H4lhFWBpNOwrjf82QcST/stRkN57DFo1QoSErCMHu2TUq9OyTpUL16dVHsqSw4u8fryhRBCeEFWx3+HA4YMgTNnoGZN+Owz7frvGyQrcyiO9FHLhzUc5tEy5JrujKSlO3+SpFsI8GwgNT+2dGeZdDtFdoDu/0Dt8WAKgFPzYVEtOPApXJ9fXGc2w/TpYLViXrKE6L//9voqTCYTfWqqrd2+7GIul74JIYSXTZkCS5feuI47LEzriK7T7wH/j2N/cDz2OOFB4fSq2UvrcAxHyvKCQ5JuIcDN7uX+v6bbYsolroAQaPgWdNsGxVtAWjxseQJW3A5XfTNat2FPTNeurXYvB+pNnw6XL3t9FffWVq/rXnJwCUm2JK8vXwghRB7dOqDmtm3wwgvq8w8/hLp1/R+TBvJaljsHUOtfpz+h1tA8LUsGUhMuke7lQhiYjm8ZBrm0dN+saD3o9Dc0/R8EFIaLMfB7I9j5sjriuVCNH49SsybBsbFYnJUsL2oS1YRy4eW4ZrvG8sPLvb78mxn25IcQIk/kt59HtptuuZmQoF7HbbNBr17w6KOahXWD/jdwQmpCeo+uIQ2HeL4g/X9Uv5Lu5fmTJN1CgHst3X6s6ThvGeZy0g1gtkD1J+CuPVC2Fyhp8O+bsKQ+nF/j9RgNeWI6KAj7tGkAmL/+GtZ493sxmUzpA6rN2zfPq8sWQgjhBWlpN54/+SQcPAhly8JXX+mvYNNbPNct2LeARFsiVYpVoWXZlnlfoD4/ptAbaekWwsDcGkjNSYct3TcLLQt3zIc28yAkGuIPwqr2sGEYpFzKc2xGb2VRWrXiaNeu6j+PPAJJ3u0G7rx12ML9C7HZbblM7T6d1sGEEH4mxwIPOZPun36CmTPVL3LWLIiI0DaudPq/T/f3/3wPwKB6g/LUNVwGUstIWrrzJ0m6hQA3u5f7r3CwOdRkzWqxer6Qcr2hxx6o9jhggiNfw6KacPR742fOebRn8GCU6Gg4dAhef92ry25VrhWlCpXiavJV1hzzfg8DIYQQeWCzwdGjN7qSv/wytG2rbUzZ0l/qdeHahfTLpwbVH+SVZco13SI/k6RbCIDUVPUxMFDbOG7hbCG1mvOQdAMEFoFmn6jXexepAykXIeYBWNMVEo7kadFGLiPTChXCPnWq+s9778HOnV5btsVsoXfN3gDM2ytdzIUQwhcUT0+EJyXBwIEQF6feSnLCBO8Gls/N3j0bu2KnaXRTqhevnreFFezz/8Jd0r1cCANzDqjiTtLth2wz1aGeDAi0eOlkQMmW0HUbNHgTzEFwbjksrgt7JoHDvS7Q+aWRXOnZE+69V+3tMGJE5hFt88B5Xff8ffPTr8/3tvyyHYQQwq82boQNG6BIEfj+ewgI0DqijHR+cHd2LX+g3gPeW6jBkqi8yGnzSvfy/EmSbiEUxc2Wbj92L7d7oXv5rSyBUOdF9d7epe8EexLsGAdLm8Glzd5bj5F8/LFa8dq8WX3uJe0qtqNocFEuXLvA+pPrvbZcIYQQKlNe05LPP4eKFb0Si+/oK/U6dPkQG09vxGwyc3/d+/O8PLmmW7hFWrqFMCi7/cYpR7e6l/uhpdvu5Zbum4VXg/ar4LaZEBgBV3fC8ttg61Ngi3d5MUbuXp4uKgomTVKfv/QSHDvmlcUGWgK5p8Y9gPe7mOeL710IIbT00ENwf96TRiPzJN/94Z8fAOhYuSORYZFei6UgXtOd1UeWlu78SZJuIW6+V6crSbcfz8imD6SW12u6s2MyQeWhcNc+qPgAKA7YPxUW14HTi3KcNd+dmB4+HO64AxITYeRIr33APjVv3DpMzuYLIYROFC0KH32kdRQ50Gd5oShKhlHLvbNQ7yxGCD2TpFsIZ9dyAKs7ya3BW7pvFlwSWn0Hdy6DQpUg8ST8cTf81Q+Szvp23XphNsMXX0BQECxdCj/+6JXFdq7SmULWQpyIPcHWs1u9skwhhJBzeCq3B1ILDVUfN22CQoW8H5Av6KgFeMuZLRy4dICQgJD0wUK9Rj8fU+iZdC8XwqBSUm48dynp9l9NJzktGYDggGD/rDCqM/TYDbWeB5MFTsyBRbXg0BdqK3gWdFQXyLsaNdTbxgCMGQMXL+Z5kSHWELpX6w7A3D1z87y8W0nFWwghPKC3gdMMwtnK3bNmTwoHFfbKMqUXWEbSvTx/0jzp/uSTT6hYsSLBwcG0aNGCTZs25Tj91atXeeKJJ4iKiiIoKIjq1auzZMkSP0Ur8qX469cvh4W5eJ/u6/yQbSakJgAQFhjm83WlCwiFRu9C1y0Q0RRssbDpUVh5B8TuSZ8s35aRzz8PdeuqCfczz3hlkc5RzOfunSuVC2Eo7pTR06dPp02bNhQrVoxixYrRsWPHDNPbbDbGjRtHvXr1KFSoENHR0Tz44IOcOXPGHx8l38pXJz49kOeB1HTLt2WFJ/tNmiONn3b/BHixa/lNCuI13cID0tLtvtmzZzN27FgmTpzItm3baNCgAV26dOHChQtZTp+amkqnTp04duwYv/zyC/v372f69OmUKVPGz5GLfOXmpNsl/kuaNEm6nYo1hM4boPEUCCgE//0NvzeEXRPBnuz/ePwlMBCmT1drJN9+CytW5HmRPar1INASyMHLB9nz357cZ3CB1E2Er7lbRq9du5YBAwawZs0aYmJiKFeuHJ07d+b06dMAJCYmsm3bNl555RW2bdvGvHnz2L9/P/fcc48/P5YQKkMdRPUR65qjazh/7TzFQ4rTpUoX7y1YzkVnIC3d+ZOmSfcHH3zAiBEjGDZsGLVr12batGmEhoYyY8aMLKefMWMGly9f5tdff6V169ZUrFiRtm3b0qBBAz9HLvKVK1fUx6JFNQ0jK5eTLgNQJLiINgGYLVBzDPTYA9F3qffy3v06/N6QllX+AAxWb3HVbbfBqFHq80cfVQdXy4PCQYXpXKUzoLZ2C2EE7pbR33//PY8//jgNGzakZs2afPnllzgcDlatWgVAkSJFWLFiBf369aNGjRrcdttt/O9//2Pr1q2cOHHCnx9N5CNuX9MtvY085mzl7lu7r3dvZeqUH+sTQlyn2QUtqampbN26lfHjx6e/Zjab6dixIzExMVnOs3DhQlq2bMkTTzzBggULKFmyJAMHDmTcuHFYLBZ/hS504vx5mPdrRb7fMZcr5iNkdar0RmGsZPg/NDmJLjt2EJKcQtPDh2kAbLal8vzrEzJNm/F/hRdKbaFbOHy2cik//nI5x/Woz7J+z6E4uHrlCm/vWHm9S1XGaW0kc0FRW5TmfFmexZoWRuWBhdQMnUuX4qMJi9vPr6PuZHqd4VjsbwKltAzON958E379FY4ehYkT4b338rS4e2vdy6IDi5i3dx4T2k7wToxI/VH4hidl9K0SExOx2WxERERkO01sbCwmk4miOjzpKYSmdHZwT7WnMn/ffADur+Pd26zJZVfCLQbtXq5Z0n3x4kXsdjulS5fO8Hrp0qXZt29flvMcOXKE1atXM2jQIJYsWcKhQ4d4/PHHsdlsTJw4Mct5UlJSSLlpoKy4uDhAvbbMdvOtojzgnD+vy9GK0eN/80349ugCqDgRsh7jK1ufLIfHt2R8bW7FI6xV3sh13mHXH4+ylnXKWvdWfKti1x9zKm/ONeCtadlXWv3HBPSlSGhH3un/Ao91+JwRd35J2pGFpEV8gFL2PkM1e+e6/wcHY/roIwJ690b54APS7rsPGjXyeH1dK3XFYrKw8/xO9l3YR5ViVTxelko9fKelpWHEn7DRjz/ejF+P34EnZfStxo0bR3R0NB07dszy/eTkZMaNG8eAAQMIDw/Pchopw7OnKCbAjN1ux2ZzsxDUAW99/3aH3a1lBKCWZjabjbwcPH2+/6TZcLYl29LSwOTtxFQtQ2w218qQZYeXcSX5CqULlaZldEuvfm6HXd1/FUVxebnG//2qW1c9lmV8LxXSB/ZNs9m0H4ArC5p+/zawYkVBIc2W5tkiNCjDDTV0o8PhoFSpUnzxxRdYLBaaNGnC6dOnee+997JNut9++21ee+21TK8vX76cUOdtI/JohReu+dSSUePfu7cx1J4DQNHYphRKqprNlKYMjybFRPsji4BYDhQtwt9lIjkYUZSfK1Wl3BlL1vPc9H+hwusg/CBFY5tR/nT9DO8BoGSeJ/N7WccGJkzKjedmRxBR//UmuNOxXL4N/5p38gX2L+nAc21fILrQEdjwAOcsH7Ir8FGSzMZq9c5x/zeZaHL77ZT96y+uDRjAn++9h5KHXjV1CtVhV8Iu3lnwDr1L5e1WK2lp3YBA1q9fz4kTCXlalpaMevxx8kb8iXm8fEGP3nnnHX766SfWrl1LcHDmuy/YbDb69euHoih89tln2S5HyvDsnT/fDIhm7969LFlyTOtwPJbX7//IkSMsSXZ9QN0edjsBwJo1a0i65aSSJ3y1/1iVeLpff75kyRL1jiJeZLN1B6z8/fffHDt2Ldfppx6fCkCTkCYsW7rMq7GcOawOpnjkyBFSlqTkMnVGRv39Qk8A/vzzT4oVy/iZEwICoEcPAH7//XesOu4JoMX3X+RIEdrRjuSUZJYvWZ6nZfmzDNcs6S5RogQWi4Xz589neP38+fNERkZmOU9UVBRWqzVDV/JatWpx7tw5UlNTCQzMfC/j8ePHM3bs2PT/4+Li0gd3ye7MuqtsNhsrVqygU6dOWN26v7M+GD3+H380QZGTAKx7fiY1itdwed6AudEAVFq9hkp16wKQuVqXNcumh+D4Qcb17sNzNTwf3dro37/NVopVy02UKL8T64FJRNq3Ujr1KRx1X8VRdRSY9X1Oz+Xvv0kTlPr1KXrkCD0OHsRx0/HEXSe3nmT0stHsM+2je/fuuc+QA6tV/X5btWpF3br6/q6zYvz933vxO1tv9cSTMtpp8uTJvPPOO6xcuZL69etnet+ZcB8/fpzVq1fnWBZLGZ69GTPUE7S1atWie/faGkfjvjx//zvUhyqVq9C9vevHU8v1u5Tc2b49VKjg/nqv8/n+k3IJFqpPu3fv7vWk21mGtG7dmtq1cy5DUtJSGDJ1CADPdn2W28vf7tVYVv+5mgtcoHKVynTo3sGleYz++3Vq2/YOypbNGP+Vm55379YNPX46Tb//7epDcHCwx3UpLcpwzWpqgYGBNGnShFWrVtGrVy+A9AFXRjkHMLpF69at+eGHH3A4HJivHzQPHDhAVFRUlgk3QFBQEEFBQZlet1qtXttJvLksLRg1foc5CYJjAYguEu3eZ0hTu6NYQ0NdvDf3Ta7vexZLABYvfG9G/f4BHCYrpnoTMFUZBJsfxXThTyw7n8dy4idoMR0iGmsdYq5y/f7LloXJk+Hhh7G89hqW++6DypU9Wte9de7lyWVPsvH0Rs4nnadseFkPowbnNQkBAQGG3X/A2Ps/eCd+PX5+T8pogEmTJvHmm2+ybNkymjZtmul9Z8J98OBB1qxZQ/HixXOMQ8rw7JlMapdci8WC1WrccW3y+v2bzWaP5rdare6X/9ksxyf7j+PGMq3WQDB5u5Ox62XI0iNLiU2JJbpwNG0rt8Xs5VjMFnV5nmxLo/5+nbKK33rr+/4NyS2afP/XV2fC5JXy119luKaXCYwdO5bp06fzzTffsHfvXkaOHMm1a9cYNky9avbBBx/MMIjLyJEjuXz5MmPGjOHAgQMsXryYt956iyeeeEKrjyA0lGpWBzEzYaZocFH3Zrbb1ccAD8476bibj2aK1IQOa6DFl2AtCle2wbJmsO1ZSMu925ruDRsGd94JSUnqaOYe7gNRhaNoVa4VAL/u+9UrocnuKHzF3TL63Xff5ZVXXmHGjBlUrFiRc+fOce7cORIS1MsfbDYbffv2ZcuWLXz//ffY7fb0aVJTUzX5jPmBgYbSEDrizn7z856fAbiv9n1eT7hBBlITbjLoQGqaJt33338/kydPZsKECTRs2JAdO3awdOnS9IFbTpw4wdmzZ9OnL1euHMuWLWPz5s3Ur1+fJ598kjFjxvDCCy9o9RGEhuzmJAACCHa/ELje0k2eRr032K/d10xmqPIw3LUXKvQHxQH73ofFdeDM71pHlzcmE3z+OQQHw8qV8N13Hi+qT60+AMzbO89b0QnhE+6W0Z999hmpqan07duXqKio9L/JkycDcPr0aRYuXMipU6do2LBhhmnWr1+vyWcUQrd0kogmpyWzYN8CAPrV6efTdZnkDBIg9+nOrzS/EHDUqFHZdlVbu3ZtptdatmzJhg0bfByVMAI76sATAWTuepgrZ9LtSUu3u/cELWhCIqH1j1BxMGx5HK4dh7Xd1US88RQIyfvANZqoVk29ddj48fD009C1K5Ryf9C43jV788zyZ/jj+B/8d+0/ShYq6VE4UjcR/uBOGX3s2LEcl1WxYkVp0RL6YaiDqHaxLj20lPjUeMqFl+O2srdpFocQ6aSlWwj/spuuJ90mfyfdwiVlukP33VBzrNoKfvwnWFQTDn+lmzP4bnvmGWjQAC5fVhNvD1QqVonGUY1xKA4W7l/o5QCFEELkyKjlj0Zm/zsb8F3XckDaMnJgsLxS5ECSbmFYjutJt5XMt6PJeUbHjULXo+7lBj3FpgVrGDR+H7psgmKNwXYVNg6HVXdC3H6to3Of1QrTp6uD6f3wA/zuWbf5PjXVLuZz9871ZnRCCCHyDf9kojmdg0i0JfLb/t8AuL/u/b4PRqpVgJyDyK8k6RaG5Wzptrjb0u0cRA2kpdtfIppAl43Q6H2whMKFP2BJffjnDbAbbAClZs1gzBj1+ciRkOD+PbLvrX0vACuPrCQ2OTZP4UijjRBC5HMadYVfcnAJ12zXqFCkAs2im2kSgxCZGLTtS5JuYVjp3cvdvabb2bUc8pZ0G+p6MB0wB0CtsdDjX4jqCo5U+GcCLG0E//2tdXTuef119f6ux4/DhAluz16zRE1qlaiFzWFj8cHFPghQCJHfyQk34Ws//6uOWt6vTj8Z5MyPZCC1/EmSbmFYjvSkO+t7tGfr5pZuT7qXS00nb8IqQrsl0OpHCC4FsXtgxe2w6TFIvap1dK4JC4Np09TnU6fC5s1uL+LeWmprt6ddzKX+I4QQeaD7g6i2dY0kW1L6SWFfj1pekAdY1P1uqGcG++4k6RaGlT56ubvdy73V0m20X7uemExQsT/02KveZgzg0OewqBac+MUYJza6doVBg9QxAoYPB5vNrdmdtw77/eDvJNoSfRGhEKIAMJkMcLzUEyOUL36QW7K37PAyEm2JlC9SniZRTfwUk9SrbiXfSBYM+hOWpFsYlmJSk2ezu3e+y3PSbdBfux4FRUCLL6HDWihcHZLPwV/3wZ894dpJraPL3YcfQvHisGsXvP++W7M2jGxIxaIVSUpLYumhpR6HIPVHIYQQ3jZv7zxAHfhTkmH/kmI9f5KkWxiWggMAM252Eb+5e7k5Lz8BKYS8pnRb6L4T6k4AsxVO/waLa8O+qeCw5z6/VkqWhA8+UJ+/+iocPOjyrCaTKb2LubNyI4QQQgCanlFNtafy2wF11HJnryyfkixTuEMGUhPCvxSTmoyZ3L1vZJ7v0S2lg09YgqH+a9BtB5RsDWkJsO0pWN4SruzQOLgcDB4MnTpBSgo8+qhbFSVnZea3A7+R6uYo7tLwIIQQBYH/D/Zrj63lavJVShUqRatyrfy3YinXABlILb+SpFsYlsct3c6k26N7dN9Esh7fKFIbOv4JzaaBtQhc3gxLm8L2cZCmw2ufTSZ1ULWQEFizBmbOdHnW28reRlRYFHEpcaw6ssqHQQohRP7k9iBczul1X4Zrd59uZ++rXjV6YTHnsa4khK/o/Sd8C0m6hWEpXG/pdnc3zmtLt1xE63smM1R7FO7aC+X6gmKHvZNgcV04u1zr6DKrXFm9jRjAs8/CuXMuzWY2meldszcgXcyFEEJkwc8nB+wOO7/u+xWAe2vf65d1FuTRy4UHDLq7SNItDEsxedjS7VDny9v13MIvQqKgzRy4YwGEloVrR2FNF1g/GJL/0zq6jJ56Cho3hitXYMwYl2dzdjH/df+vpDnScpk6M6mrCFEwyW9fJYN8eVfMqRjOXztP0eCitKvYzq/rLijbMrffrvy08yfJOoRhORQPW7rz3LXMoCM4GFnZe6DHHqgxBjDBsVmwqCYc+UY/Nc+AAJg+Xb1s4eefYdEil2ZrW7EtESERXEy8yF8n/vJxkEIIIYxBm7LN2evq7up3E2gJ1CQGIXJk0Gq4JN3CuJwt3SYPrzcqIGdU8w1rYWgyBTpvgKINIPUybBgKqztCnOujhvtU48Ywdqz6fORIiI/PdZYAcwA9a/QE4Jc9v7i8Ktl9hRCiIPDfwV5RlBu3CvPHqOUiy7LcoDmlyIUk3cKwbgyk5mFLd57J4VATJZpD183Q8F2whMD51bCkHvz7Frg5ArhPvPqqeo33qVPw0ksuzXJf7fsAmLt3LnY93yJNCKE7Bf0EXP4dSM23svr4289t53jscUKtoXSu0tl/weikw5owGIP9hCXpFoblSB9Izd8t3VI6aM5shdrPQ4/dENkJHCmw8yVY2gT+i9E2ttBQdTRzgP/9D2Jyj6dD5Q4UCy7GuYRz0sVcCCGEJpdOOVu5u1XtRqg11O/rN1oS5WvydWTDoNVwSbqFcV3vXu7xNd15Xr8cDjUXVhnuXAYtZ0FQCYjdDStaw+ZRYIvTLq5OnWDIEHVfGzECUnNugQ+0BKaPYv7zvz+7tSq9XNIuhBBayP+Db/nv80nXcn2QYj1/kqRbGJbzlmF+v6Zbshx9MZmg0iC4ax9UHgoocPATWFQbTv6qXVzvvw8lS8K//8KkSblO3q9OPwB+2fuLdDEXQgjhF84qzd7/9rL34l6sZis9qvXwcwxSrxJuMOhF75J0C8NyyDXd4mZBxeG2mdB+JYRVhaTTsK43/NkbEk/5P57ixWHKFPX5G2/Avn05Tt6+UnsiQiK4cO0Cfx7/M9fF5/vGHSGEcEH+Tdj8+7nm75sPQMfKHSkSXMSv63bK/70WXGPQnFLkQpJuYViKSa7pFlmI7ADdd0GdF8EUAKd+VVu9938E/m5BHjAAunZVu5c/8siNe8RnwWqx0qem2qXP3S7mQgghXGS0gdT8FOfC/QsB0u+mIYTuGeQn7CRJtzAw5y3DtGrpFroVEAIN3oRu26D4bZAWD1vHwPIWcHmr/+IwmdRB1QoVgnXr4Msvc5zc2cV87t65pDnSXFqF7M5CFEzy2xfeci7hHBtPbwTg7hp3+z8A2ZezZLCc0n8Mur9I0i0Myzl6uVmrlm6jnCUvyIrWg85/Q7PPwFpETbiXNYetT4Et93toe0WFCvB//6c+f/55OHMm20nvrHQnxUOK81/if/xx7A//xCeEEEKH/JdZLDqwCIBm0c2ILhztt/VmUkCqVbmdMDNoTilyIUm3MDCNRy8XxmAyQ7XH1IHWKgwAxQH7pxKwrD5RaRv8sz+MHg3NmkFsrPo8GwHmAO6tdS+QexdzOecjhAA5FuT/64B98/lu/tqcXcvvqXGPT9YlhFcZ9KJ3SbqFYTmv6dZu9HKD/doLupBIaP2DeouxsMqYkk7TPOUdLH/3gWvHfbtuiwWmT1cf582D+fOzndSTLuZCCFFQuT2QmtGu6faxpLREVhxZAUjSrYWsdkOpZeZPknQLw1Ly2tItBW7BFNUZuu/GXusFHARgPrtYHWht7/vgyyS3QQO1eznA44/D5ctZTta2YltKhpbkUtIl1hxd47t4hBBC6JefeuVt/G8VyWnJVChSgXql6vllnbfKvyPQC3GDJN3CsNLv0y23DBPuCgjBUfd11oZ8iKPE7WBPhO3PwtKmcHGj79Y7YQLUrAnnzsGYMVmH5kYXc5CrJYQQIn/zbV1j7dnFgNrKrXVXfa3XrzfybWTDoF0BJOkWhqWYrrd0uzt6uZPcMqzAizeXw95uJbT4CgIj4OpOWN4SNj8OqVe9v8LgYJg5E8xmmDULFi7McjJnF/N5++Zhs9u8H4cQQghhcvDnuRtJt9AHqWXmT5J0C8NSPB293FtNg3JGNn8wmaHKQ+pAa5WGAAoc/AwW1YLjs73flHzbbfDMM+rzRx/Nspv5HRXuoFShUlxOuszqo6uzDlt2PyGEyMf8kHpFb+ZSynnCg8K5o8Idvl9fdiTLFJ4wWD1Ikm5hWM6k2+1rup2kpVvcLLgktPwaOqyGwtUh+Rz83R/WdoeEI95d12uvQY0aajfzp57K9LbFbKFvrb6Aa13MhRAFj1xa4iGjjeviyzhrqL2tulXtRqAl0HfrcZVBNomvGbT3tP8Y9NgnSbcwLGf3crdHL5eaishJ6Tuh+y6o9xqYA+HsUlhcB/59G+yp3llHSAh8/bXazfy77+C33zJNcnMX81RvrVcIIYRwqiG3ChPCXyTpFobl8UBqTnLLMJEdSxDUmwDd/4HS7cGeDDtfhKWN4cJf3lnHbbfB2LHq80cfhStXMrx9e/nbiQqL4mryVZYeWprtYuQckhAFm1EabIW7fHtwdxQ5AqV3YzFZ6Fa1m0/XlZuCNnq5qx9XftrZMGg1XJJuYVg3bhkmLd3CR8KrQ/uV0PJbCCoJsf/CyjawcQSkZH3LL7e8/rrazfzs2UzdzC1mCwPqDgBg1q5ZeV+XEEIIA/JNZpFaUe1h1bh4G4qFFPPJOtwlo5erpJaaP0nSLQxLMV1v6dZs9HIpHAoEkwkqDVYHWqsyXH3t8JewqCYcnZW3kzghIepo5iYTfPstLFqU4e0H6j8AwML9C4lNjs0UlhBCCOGJ1Epq0t028i6NIynYpCzPA4N9d5J0C8NytnRrNnq5KFiCIqDFdOi4DorUgZT/IGYwrO4EcQc8X27Llje6mT/ySIZu5g0jG1K7ZG1S7CnM3Ts3jx9ACCGEYQZS82Fd5UrSFWxl/gDgjsgePluPyBud76HaMWg1XpJuYVzXW7r9fp9uoxTYBczZ7Wf55f5fWDNhDWe3nfXdNWKlboeu26DBW2AJhvOrYEk92DUR0pI8W+Ybb0D16mo386efTn/ZZDLxQD21tTu7LuZyDkkIIfIz79c1lh1eBmY7XKhNuUJVvL58t0k5loF8HfmTJN3CsPLc0i1Jc76y6oVV/Pvzv/z5xp980eQLppSfwuInFnN4+WHsqXbvrswSCHXGQ49/IaorOFJh9+vqKOenF+U+/61u7mb+zTfw66/pbw2sNxCAtcfWcjL2pJc+gBBCCH3zXeq15OAS9ckBnXUtl2qZcIVBr/KUpFsYVvp9uj1t6c4zg/3a87mL+y4CUDi6MNZQK3Gn4tjy6RZmdZnFpBKT+OX+X/jnh39IuuJha3RWwipDuyVw+xwILQvXjsIfd8Mf90DCUfeW1aoVPPus+nz4cLXVG6hQtAJ3VLgDBYUfd/+YPrmcMxKiYJNeLiolv7cLevlg71Ac/H7od/Wfg929umzhHQbNKUUuJOkWhpV+n253d+M8t3Tn8wLeoGyJNgAeWPYAz118jgG/DaDxiMYUKl2I1PhU/v35X+YNmsfkUpP5tsO3bP7fZlLOp+R9xSYTlO8LPfZC7XFgCoDTv8Hi2vDPG+rtxlz1xhvQsCFcugQPPZS+r+bWxVwIIYRwxZYzW7iYeBFTSjicbKV1OEDBu2WY8BKDnZWQpFsY2PVbhrmbPHvt4G6wX3s+Z0tSk25rqBVriJXqd1Xn7i/u5pkzz/Dwhoe5ffztlKxdEkeag6Orj7Ji7Ar2PrqXL5t8yepXVnNmy5m8FfzWMGj4DnTfdePe3v9MgMV14czvri0jKAi+/x6Cg2HpUvjkEwD61u5LoCWQfy78w45zOzyPUQiR7xT0Xi8mT8ti3X9xvklEFx9YDID1ZGdwWH2yDk/JLcMykm8jGwY9RyNJtzAsZ5cyt1u6naSlO99QFCW9pdsamrESYTKbKNuiLB3e6sDj/z7O6IOj6fx+Z8rfUR7McOGfC6z7v3VMbzadD8t+yKKRizi09BBpKWmeBVOklnpv79Y/QUg0JByGtd3hz95w7Xju89euDZMmqc+few727KFYSDHuqXEPAF9u+9KzuIQQQhiQd1OvJYfU67mDjnfz6nKF63I7vy+1zPxJkm5hWM6B1Eyedi8X+YY9xZ5eSt2adN8qomoELce25IGVD1D367rcPeNuat1bC2shK/Fn4tk6bSvfd/ue90q8x5z75rDzu50kXXbzOnCTCSrcr97bu9azapfzU7/Colrw71tgz6Vb+6hR0KULJCfDoEGQmsojjR8B4Ltd35FoS3QvHiGEEAXe+YTzbDmzBYDAEzpKuqVaJtxh0IveA7QOQAiPmTxMutPnl1uG5RfOruUAASGuH9YCwgOo170ejYc1Ji05jaNrjrJ/wX72L9xPwtkE9vyyhz2/7MFkMVGhTQWq31Odmj1rUqxyMddWYC0Mjd6DSkNhyxNw4Q/Y+RIc+RqaTIXobCo9JpM6mnm9erBjB7z0Eh0mvUvlYpU5cuUIP//7MybTEJc/pxBC5Ff5diA1HzQQLD20FIAmUU04kRjpq9V4TqpVgGFzSpELaekWhpV+yzB3Ry/XVQkjvMGecv2WYCawWN28hdx1AcEBVOtWjbum3cXYU2MZvmk4bV5uQ6l6pVDsCsfWHmP52OV8VOUjPq37KateWsWpjadQHC7sT0XrQIc10Op7CI6E+INql/M13SB2T9bzREXBl9e7kk+ejHnhb4xoPAKAL7Z+4dFnFEKIAs2Q5b/3Ui9n1/Lu1WTUcr2Q9ps8MNh355WkOyXFCyMAC+Gu6y3dHv/q8nxNt8F+7fmYcwA0bw3CYjKbKNOsDO3faM/IXSN58vCTdJnShYp3VsRkMfHfv//x11t/8dVtX/FBmQ9YOGIhe+fvJSU+h2OhyQQVB8Ld+6HmM2C2wtmlsKQ+bBkNKZcyz9OrFzz1lPp8yBAeDm9HgDmAmFMx2Ir945XPKoQQBVIBy3ZsdhvLDi0D9Jd0y+jlWStYe6gbDLq7eJR0//777wwZMoTKlStjtVoJDQ0lPDyctm3b8uabb3LmzBlvxylEJh4PpCYH9/zHx+dBilUuxm1jbmPI6iE8999z9J7Vm9r31SawcCAJ5xLY/uV2fu7zM5OKT+K7Tt8R82EMlw5kkUQDWMOh8WTosQfK9gLFDgf+Bwurwr6p4LBlnH7SJPUe3rGxlBwykvsq3QVAQp2P1Y8uu7MQogDzePRy3fPuwT3mVAyxKbGUCC1Bs+hmXl22t8jo5Sop1vMnt67pnj9/PuPGjSM+Pp7u3bszbtw4oqOjCQkJ4fLly+zevZuVK1fyxhtvMHToUN544w1Klizpq9hFgee8ZZi/Ry9PX0Ae5xfe4u2W7pyEFAuh/qD61B9Un7SUNI7/cZwDiw9wcPFBrhy+wpGVRziy8gjLxy4nomoEVbtXpXqP6lS4owIBwTcdcgtXhTvmw7nVsO1puLoLtj0FBz9VrwMvc7e6j1qtMHs2NGoEO3bwwcJofqwNidW+g7A3gOI+/8zCOFJSUti4cSPHjx8nMTGRkiVL0qhRIypVqqR1aEL4RL69ptvJS+XakoNq1/KuVbtiMVuQ1E4YlkE7nLqVdE+aNIkPP/yQbt26YTZnTnT69esHwOnTp/n444+ZNWsWTz/9tHciFeIW6dd0e9rSLbcMyz80OgAHBAVQpXMVqnSuQtcpXbl88DIHFh/g0JJDHPvjGJcPXWbTR5vY9NEmrKFWKnesTLUe1ajWvRrhZcPVhUS2h67b4MgMdZC1+APwZ08ofhs0fAtK3wlly8IPP0DXrkTOWcKnfcrzeP0T0OIj4DX/fmihS3///TdTp07lt99+w2azUaRIkfQT4ikpKVSuXJlHHnmExx57jMKFC2sdrhDCz5xJd/eq+upaLjIzaE4pcuFW0h0TE+PSdGXKlOGdd97xKCAhXKXkdfTyvJJuULqjZdc0k8lE8erFaVm9JS2fbklKfApHVx1NT8Ljz8Szf6E6MjpA6fqlqdy5MpU7VqZCmwpYq46A8v1gz9uw/yO4tAFWtYfIjlD/TejUCaZMgSefZOS8E6w1w8/NPiXe9jQgPYoKsnvuuYdt27YxcOBAli9fTtOmTQkJCUl//8iRI6xbt44ff/yRDz74gG+//ZZOnTppGLHwJimK3HDz9Th6/+K8eO3QidgT/HPhH8wmM12qdgF09vGlLUN4Qk/7sAs8vmVYcnIywcHBWb539uxZoqKiPA5KCNfkcfTyvN4yTOiGHgdhCSocRM1eNanZqyaKonB+5/n0BPzUhlOc33We87vOEzM5BkughXKty1G5Y2UqdxxNVI/RmPe+DYe/gHMr1b8y90D/F+DwGJg6lW/mm7g6IJaZh9+h4+3va/1xhYZ69OjB3LlzsVqzvkd95cqVqVy5MkOGDGHPnj2cPXvWzxEKITyX98zi94O/A9CybEsiQiLyvDyfMVgS5WvydWRDf1U+l3icdDdu3JgffviBhg0bZnh97ty5PPbYY/z33395jU2IHCmedsDRYYIm8kjnfbFMJhORDSOJbBjJHS/dQeKlRA4vP6xe/73iCHEn4zi25hjH1hxj9UurCS4aTKX2d1Dp9rsoX3IepUxfYTq9EE4vhO6tIa0lwZ/GsOBH6MtUDt09kqoRVbX+mEIjjz76qMvT1q5dm9q1a/swGiH8K/8OpOY9cqswfcmtGiq11PzJ43657dq147bbbuPdd98F4Nq1awwdOpTBgwfz4osvurWsTz75hIoVKxIcHEyLFi3YtGlTttN+/fXXmEymDH/ZtbiLfM50ffRyvw+kpvMMrwDy50Bq3hBaPJR6A+rR86uePHX8KUYdGEX3T7pTs3dNgooEkXw1mb3z9rJk7EY+fbAMI37+jqd3fcMPGwdxeN1ZbE22kDA5jOBuMG+xnflPdSXNkab1xxJCCL/LvwOpeedzpaSlsPLISiDrpFsP7RB67K0mdMyg1XCPW7o//fRTevTowfDhw1m0aBFnz54lLCyMTZs2UbduXZeXM3v2bMaOHcu0adNo0aIFU6ZMoUuXLuzfv59SpUplOU94eDj79+9P/98oFW3hXc6B1Ny+plsO7vmPQQ/AcP1a8GrFKV6tOM0eb4YjzcHZbWc5svIIR1cfZW6dkiyc2u361A8SkGSj5J7/qHDsODW676dhm+20ObqBQw9Xpsbrv2MqV0fTzyO0ZTabcywT7Xa7H6MRQuRd3gq2dSfWkWhLJCosigalG3gpJt8oiPX5rD6ygas0IgceJ90A3bp1o0+fPnz22WcEBATw22+/uZVwA3zwwQeMGDGCYcOGATBt2jQWL17MjBkzeOGFF7Kcx2QyERkZmZfQRT7gcdLtJC3d+YbRWrpzYg4wU6Z5Gco0L0ObF9uwwnHjJFFgShqpIVbONonmbJNoNtCSbxgKgDUhleInL1F67S7KxcdSyWymauEwyhUvSflihSlfPIQSQQGy1+Zz8+fPz/C/zWZj+/btfPPNN7z2mox0Lwo4Iw2k5iXLDi0DoEvVLvmijBQincF2Z4+T7sOHDzNw4EDOnTvHsmXL+OOPP7jnnnsYM2YMb775ZrYDutwsNTWVrVu3Mn78+PTXzGYzHTt2zHGk9ISEBCpUqIDD4aBx48a89dZb1KkjrTsFjqejl0tLd/6Tj8+DnDKrH2oW0D8ogCOKwsb/Ennpq0SSKjtQGlm5XLkItrBAztWK4lytKHZmsyyzzU6hS9cISUgiKCmFoORkgpKTCU5OJjA5BYvDjtnuUB8ddizX/8wOB2a7A5Or3R1d/Y05FGbOWpDrZKbrJ9i8rfm2aKoe83BQIQXSLBVAZ5dI9uzZM9Nrffv2pU6dOsyePZuHH35Yg6iEL0hRlt95ZwMvO3w96a7SxSvL8wnZl7OUD6s03mHQ/cXjpLthw4b06NGDZcuWUbRoUTp16kT37t158MEHWbFiBdu3b891GRcvXsRut1O6dOkMr5cuXZp9+/ZlOU+NGjWYMWMG9evXJzY2lsmTJ9OqVSv+/fdfypYtm2n6lJQUUlJS0v+Pi4sD1LP/NpvNnY+ciXP+vC5HK0aPX1Ec1x8Vtz6DKS2NANTfbJoHn93icGAG0hx2lDx8d0b//vUUvzMGk8nkcjx6ij8ncRYLmM0UTkvDoShUBCoWC+TNb0M4se/6CadACGm+jvYtfqJCRCSXS1fhRHQFzpWKJK5oOPElCpNSJBiH1UJ8ZDjxhGv5kXSh9zwY/7+8LeNKEQWbLSnPsfhjH7ztttt45JFHfL4eIYSX5aF1+kz8Gf658A8mTHSqbIDbBEqWCRg2pxS5yNM13YMHD87wWqtWrdi+fTtPPfVUXuPKVsuWLWnZsmWGddaqVYvPP/+cN954I9P0b7/9dpZd6pYvX05oaKhXYlqxYoVXlqMVo8ZvS0sF4NTJUyxZssTl+SL+/Zc2wLXERFa5MZ9Tq6SLlAR27NjB6d1F3J7/Vkb9/p30EH/KWfXEWlpamlv7Augj/pxcbtcOihRh26ZNKDfdFeLBByNYvz4aRXHWUsqg7BvL7pADJAdtoXz8IlrEn6GcKY7SIdcItgYQXziSuPCSJIWEkWgNIynQ+VeIlOBg7GYzDpMFu1n9c5gt2E0W7AEWFHP2PUqU3CqFt7x/cwudklsly0fdIfv/UAuoQlxYKqtbn/ZoGWmWVKwrsj5B7I7ExMQ8LyMnSUlJfPTRR5QpU8an6xHakB7DIjvLDy8HoGl0U4qHFs/wnuw3wvAMtg97nHTfmnA7FS5cmK+++sqlZZQoUQKLxcL58+czvH7+/HmXr9m2Wq00atSIQ4cOZfn++PHjGTt2bPr/cXFxlCtXjs6dOxMenrfWHpvNxooVK+jUqZNL3en1xujxB/z5NgAVylWk+/+3d+/hUVRp/sC/3Z1OQgjhYiABDISLgqAQJAYBFZTbDOrK7Mwz6LjKMiPOjvJTJ7uOsjsDo6NGlMXMuiyMOuozXlYdV2d2ZyKCgYgIggRQ5ObILQomhGsgIUmnu35/dLpJk75Vd1XXOae+n+dRQlNVeetUdZ16zzl1amb8Yzwd7ce9a9euutYLcH34H8BRoKhoDEYPSHxsqezlL1L8J746gd3YjTR3WtzHVKT4o1mQ5r9MTywpweQO2eq0aR6MGBEu/gEApqY2yARYXf6ulS4AQNeHXLjxoc6jpGIxMv7ACCwj9OzZM+S5TU3TcObMGWRlZeHVV1817PcQSUmmMfkGxBpIuqcPmZ70tih1FH5izhgSfY070pV0f/LJJ7j66qvjWrapqQkHDhyI+qx1eno6xo4di8rKSsyaNQsA4PP5UFlZifnz58f1e7xeL3bs2BHxRjsjIwMZGRmdPne73Ybd6Bm5LSvIGr/W/sqwNFeavvhd/ptth9OZ2H63XwXTXGmAAeUma/kHiBB/Wnti6nA4dMciQvzRBOaazkxLQ7goRY8/FsviP+H/w5XvgsvtSngzRsRv5P6Xl5eH/N3pdKJ3794YN24cevbsadjvIZKeNF29icXp03xYvd8/kkvo57nBV4ZRgmT5CrfTlXTfcccdGDx4MO666y7MnDkTXbt27bTMrl278Oqrr+Kll17C4sWLY05wVlpaijlz5qC4uBglJSUoLy9HY2NjcDbzO++8E/3790dZmb9X89FHH8XVV1+NoUOH4tSpU3j66adx6NAh3HXXXXp2hZTQPpFaou/pJnUo3CwceNpX3rRaUM3tf3axNArDzZkzx+oQiEgAW7/dimNNx9AtvRuuvjhyh5lI+a5dZlePt8ztURoJEOic1UNX0r1r1y4sX74cv/zlL/GjH/0Il156Kfr164fMzEycPHkSe/bswdmzZ/G9730Pq1atwhVXXBFzm7Nnz0Z9fT0WLlyI2tpaFBUVYeXKlcHJ1WpqauDs8CzhyZMnMW/ePNTW1qJnz54YO3YsNmzYgBEjRujcdZJdoKc74dnL+cowZaj0yrALtbX/yaTbYAp9jWtqajBgwIC4lz98+DCf7yYSXnKZReBVYVMGT4HbxRpEJpLmlBSDrqTb7Xbjvvvuw3333YctW7Zg/fr1OHToEM6dO4fRo0fj5z//Oa6//nr06qXvFSzz58+POJy8qqoq5O/PPPMMnnnmGV3bJ1X5e7qdCiZapJNCCdSFAj3dCU/AQeEpdM5cddVVmDVrFu666y5cddVVYZc5ffo03nrrLfz2t7/F3Xffjfvuuy/FURJRQhK8x1m1v/157sESPM9t4yyTt7BJkKzsEr6PKy4uRnFxsZGxEOmiIcn3dCd6pUu6p5zMomJPN4eXm0ShpHv37t147LHHMG3aNGRmZmLs2LEho9B27dqFnTt34sorr8RTTz2V0ASSJB6RhgVLQ6pCSzzWhpYGbPh6AwBgxlCxn+cOocD12AgKVU/mkOlr3IHuh2F79uyJXr16dfpv0KBBmDFjhvCv3yGFOJJMukkZKk/CEhhezp5ugyl0V/PNN9/g6aefxrfffotly5bhkksuwbFjx/C3v/0NAHD77bejuroaGzduZMJNFCBNI63+ONceWIs2XxuG9hqKwT0HmxATkQBk+Qq3030fd+HMqAGnTp1CdXU1brrpJrz99tu4+eabk42NKCotOLw8wYnU+Ey3OhQ+JOzpNkngnFFgHsYxY8agtrYWvXv3xoMPPohPP/0UF110UewViRSgcqNrot7f53+eO9qs5UK1OfAQhiXSIRKKpOeL7qQ71syoRUVFKCsrY9JNKZDkRGqkDE6kRrr52v9U4JTp0aMH9u/fj969e+PgwYPw+XyxVyIisSVxryLr+7lVrMMTwbtUNRk+YvGmm27CY489ZvRmiTrRAsPLE71IJ9vTzcpBHDbo6ebwcoMpdM58//vfx6RJk9C3b184HA4UFxfD5Qr/7vH9+/enODoic+m6B5Cy0V3fRWrfiX3Yd3If0pxpuL7wepNiIhKAZPW34fdxLS0tSE9PN3qzRGEkOLycE6EpR9Webh/O54ZMug2mUNL93HPP4e///u/x1Vdf4b777sO8efPQrVs3q8MiEpti9UVAYGj5xIKJ6JYR+zogZTuETah5hhpA0nPW8Pu43//+9ygqKjJ6s0SdBHu6eVkihRKojrwdfg7fb0kJU+yc+c53vgMAqK6uxv3338+km0h6iWUW8TzPLRo+lx+KpREnyepv3Ul3aWlp2M9Pnz6NrVu34ssvv8S6deuSDowoluBEala9Mky2b7sNqNbT3bHiVWvPBKDo1/ill16yOgSilNKVsMmY3Omo1zxeD9YcWANAvue5ASh3PY4k3tPQJsWhn4RfYyCBpHvbtm1hP8/JycG0adPwzjvvYNCgQUkHRhSb/1uX8OzlpAw7tJKz8jWYokk3EcVJsUZaAPjkm09wtvUscrNyMabvGKvDoQSpf0djT7qT7rVr15oRB5F+yb6nm68MU4eih4QVr4kCE3yzzS6qZcuW4emnn0ZtbS1Gjx6NZ599FiUlJWGXff755/GHP/wBX3zxBQBg7NixeOKJJ0KW1zQNixYtwvPPP49Tp05h4sSJWL58OS655JKU7I9KbNDWaHP6D/AH+z8AAEwdPFWuDgkbn8sKtv2kjmRlJ9E3kihUYHg5r1ik6kRqHF5uIkUbaoz05ptvorS0FIsWLcLWrVsxevRozJgxA0ePHg27fFVVFW677TasXbsWGzduREFBAaZPn47Dhw8Hl3nqqafwH//xH1ixYgU2bdqErl27YsaMGWhubk7VbpFiVLvudxb//n1woD3pHjTVrGBMpf6x1IelEYGkjTRMukleDoue6eYrw8SjaALFpNtEip4zRlq6dCnmzZuHuXPnYsSIEVixYgWysrLw4osvhl3+tddewz333IOioiIMHz4cL7zwAnw+HyorKwH4G8fKy8vxy1/+ErfccgtGjRqFP/zhDzhy5Aj+9Kc/pXDP1GL3qkj5Z7rj1NDSgE3fbAIATBk8Jebydj9vRKbuWWpvTLpJWlqirwwj5bCnm3Rj0h1Va2srqqurMXXq+R4zp9OJqVOnYuPGjXFto6mpCR6PB7169QIAHDhwALW1tSHb7N69O8aNGxf3NokMI3p9obOBYN2hdfBqXgzpOQSFPQrNickkdpiXJRGCn6HWkbT+5qtfSWLtiRZnLydFDwmTbhMpes4Y5dixY/B6vcjLywv5PC8vD3v27IlrGw899BD69esXTLJra2uD27hwm4F/u1BLSwtaWlqCf29oaAAAeDweeDye+HYmgsD6yW7HKj6fv+7zer3weORLWowqf5/PF/82PB64O/7+JH636edPmz9WDQ60xfE7Vn21CgBwQ+ENccWkaS4ADng8bckUgyF8Pl/wz3jLU+bvrz9kd/vPnk7l3woAbjegafC0taU4uvhYWf6ONgfSkAaf5oPX4429QhhGxh/vNph0k7S0ZCdSIxIck24TMek21ZNPPok33ngDVVVVyMzMTHg7ZWVleOSRRzp9vmrVKmRlZSUTYtDq1asN2U6qHT9+NYA87Ny5ExUVX1sdTsKSLf/9B/ajoqIirmWdra24uf3nVatWoc2Ac8is8yfHdxDXw9/w9H4c+/fnPX8GAPQ42SOu8mhpmQEgE5988gmOHm1IMtrkBOZ92L17N45XHNe1rozfX4/HCbSfiWvXrkXXrqGJ9f6cHOD669Hc0oKK99+3IML4WVH++dX5GIdxOHnqJNZXrE9qW0bE39TUFNdyTLpJYv6k2+VMcHh50kPLeLcuCg4vJ92YdEeVm5sLl8uFurq6kM/r6uqQn58fdd0lS5bgySefxAcffIBRo0YFPw+sV1dXh759+4Zss6ioKOy2FixYgNLS0uDfGxoaghO05eTk6N2tEB6PB6tXr8a0adPgdrtjryCYZcv8dd/IkSMxc+YVFkejX9Llv93/x5DBQzBzysz41jl3Lvjj9BkzgG7d9P/edqafP6c+A1YDGRkZmDkz+v7Vnq1FzfYaOODAz2f9HLlZuTE3n5HhAgBcffXVKC62Nh343z/+L07iJC677DKMmzkurnVk/v52GLyD66+/Hrm5ofFvb/+zSxzH3ipWlr+j1V9x9+zZM+HyMTL+wAisWJh0k7QCPd2675oNe2UYCUPRBIpJt4n4yrCo0tPTMXbsWFRWVmLWrFkAEJwUbf78+RHXe+qpp/D444/j/fffR3Fxcci/DRo0CPn5+aisrAwm2Q0NDdi0aRN+9rOfhd1eRkYGMjIyOn3udrsNu9Ezclup5HS2Nzy7XHC75b2dS7b8HQ5H/Ot3GKrrdrv9Q3iTZNr5k+bfZjz799E3HwEAivKL0Ld736jLBjgc/homLS3N8vM/MDeP0+XUHYuM319vhxHR4eIPfpv1nNsWsaT82wvI6XDC6U6uEjci/njXl/cqTYQEh5eTctjTTbop2lBjpNLSUsyZMwfFxcUoKSlBeXk5GhsbMXfuXADAnXfeif79+6OsrAwAsHjxYixcuBCvv/46CgsLg89pZ2dnIzs7Gw6HAw888AAee+wxXHLJJRg0aBB+9atfoV+/fsHEnuLHJ6UooOP7uWWmWh2eLJZGDJIVEJNukpbWftfs0jt7uVETqbFyEIeiCRSTbhMpes4Yafbs2aivr8fChQtRW1uLoqIirFy5MjgRWk1NDZwdHu9Zvnw5Wltb8YMf/CBkO4sWLcKvf/1rAMAvfvELNDY24u6778apU6dwzTXXYOXKlUk9902kpvhaVTRNCybdUwbFflUYiSXcrSTb02KQtICYdJO8Ep1IjZTDnm7SjUl3XObPnx9xOHlVVVXI3w8ePBhzew6HA48++igeffRRA6IjgO2/unQcHiBNwUWP86sTX+Hrhq+R7krHNQOuiX+rAu0+XxlGCRHoHI4HsxWSVuA93Y5U93Tzbl1cih0SJt0m4teYiBQQ6OWeUDABXdO7WhxNkng9DsHiiEDSNhom3SSv9p5up0jNtWQNSS/AsTDpNhGTbiISWZy9v5UHKgEkPrScnczi4SFRE5NukpaW6ERq7OlWjqrDyztSd88skuDLD4hIYlJmmJEvUl6fF2sOrAEg+SRqMh6WFGD1FINkBcSkm+TV/roLPtNNqraD8D7ERIHC5eWDyJ4UaKTdXrsdJ5tPIicjB8X9imOvIDiVG871YN0fg6QFxNsNklj78HInZy+3O1V7ujm83ESKNtQQkSpiZxaB57knF05GmpNzI5PNSFZ/M+kmaWmBZ7p5GpOiCRSTbhMpes6QfUg5Upr0i9KYHHiee+ogiYeWw36zl8e7u6yeIpD0dGG2QvJK9JVh7KlWjh16uslgTLqJ7EfKV4aF19zWjI9qPgIATBmsyPu55T4khmHdryYm3SSljq2iumcv50Rq6lLskPBMMxELlxQhee5IEUVPvTZ8vQHNbc3om90Xl+VepnvrPG/EEO048BDFIFkBMekmKWkdKiPd7+km9SjaLMy80EQsXCKSQviLVGDW8imDpyg3ysvuFL2lMY6kBcRshaTk03zBn/nKMFJ9eLlaeyUIvjKMSAmarHfgscR48HftwbUAgOsLr09FNOZS9BCSySSrv5l0k5S8Pm/wZxd7uknR7FTR3RIDXxlGZD9SPtPdOc6zrWex+fBmAIok3e1UazhPFksjAkkbaXi7QVLyaueTbqdD52sy+Mow5bCnm3Rj4RIpwWHDL/GGrzegzdeGgd0HYlDPQVaHQwaTNKekGJh0k5TafG3Bn13guyltT9EEStHdEgMLl4iEFjn1WnvAP7R8cuHkFMViLru9MixerJ5ikKyAmHSTlEKSbqdL38p8pls57Okm3Vi4RCSDMPVa1aEqAGoNLQfA63E7NkHEIGkBMekmKXV8ptsJnUk3qUuxCpt5oYlYuCQ5dg766ZpITcpnukOdaTmDTw9/CkCdnm6ihEj2FWbSTVIK9nT7XPp7Nw3r6SZhKH5IJKtX5MCkm4hEFqFVZX3Neng1Lwb1GISBPQamOCiTKF6HXyjeBjNWTxFIer4w6SYpnU+60yxsrOblUBSqDy8nE/CVYaQIxS571EnoAa46WAUg+aHlIp43qtXhiWLdryYm3SSljj3dunH2cfUo2mup6G6Jga8MI1KCrtnLFRheHng/t1FDy/mYgrWinYZynqEpJFkB8XaDpBR8ZZgvgZnL+cow5aje063WXgmChUukBF3PdEul836dbj6N6m+rAfB5brIxSb/yTLpJSmIMLydhKJpAKbpbYmDhEpEUzl+k1tesh0/zYUjPISjoXmBhTMbiK8NCsTTiJFn9zaSbpBRMujUrhpfzbl007Okm3Vi4RCSZwNBy5V4VFsDrcQgWRwSStkow6SYpdezpJgpSrIZiXmgiFi6R/Uj1THfnzCI4idogRZNuAiBtTkkxMOkmKQXf023FM93gM93CUbSGYl5oIs5eTpLjiFw/XROpyaj9XuNU8ylsq90GQMHnuXkuh6X4mZ08yQqISTdJic90U0ccXk66sXCJlKDuRGqh1h1aB5/mw6UXXYp+3fpZHY4pVKvDySSSfuWZdJOULH1lGLsXxKNoAqXobomBrwwjRTBPUdQF9xqBoeWTB042ZPM8b6wT6zaSd5lxkuwc5u0GSUmMZ7ol+7YrjD3dpBsLl8h+pHqmO8AfZ3ASNYOf59Y068uBs5eHZ/2RISMx6SYptXpb/T/43PrrTcNmLydhKJpAKbpbYmDhEpEkTpw7gc9qPwOg4PPcHdnwehzuVpR3mTFIWkBMuklKzW3N/h88XSyMwoa1g6DY0026sXCJSGjnM4t1h9ZBg4bhucORn51vYUyUSqyeYpCsgJh0k5TOtZ3z/9CWQNKddE83UWowLzQRC5fI3qS5B3Bg7QHF389NpAd7uolS55wnkHRnJl5v8pVh6lA8gVJ0t6zFV4YR2Y+kzw5XHaoCoPDQcjkPi2lYHHGSrP4WIuletmwZCgsLkZmZiXHjxmHz5s1xrffGG2/A4XBg1qxZ5gZIwmnyNPl/SGR4uaSVLkWm+vByMoHiDTWkPlZlqvMfYK/mw+d1nwMAJg2cZGVAplOtDk8WS0Mtlifdb775JkpLS7Fo0SJs3boVo0ePxowZM3D06NGo6x08eBD/8i//gmuvvTZFkZJITjWf8v/Q3FP/yoa9MoyXQ2EoekgU3S0x8JVhRCSBc+1z2AzPHY687DyLo6FUYHtaDJIWkOW3G0uXLsW8efMwd+5cjBgxAitWrEBWVhZefPHFiOt4vV7cfvvteOSRRzB48OAURkuiONZ0zP9D00Uc5U3K93SrtVeCYOGSIhS77JlLwleGBR6nu27AdYZuV6Td5yvDwhPoEIlJsgKy8iXHaG1tRXV1NRYsWBD8zOl0YurUqdi4cWPE9R599FH06dMHP/nJT/DRRx9F/R0tLS1oaWkJ/r2hoQEA4PF44PF4koo/sH6y27HK11978N//PQxr1gAul9fqcDrZl/Z/OJL2MbxohQ9t8MEDn6MNPrThS/eb/i/bqUJ4vW3weOK/YDs8HqTB/0inN4Fjl6b54ADQ5vVCS+LYy37+iBR/m8f/3nYNWtzxiBR/JK0A4HbDoWnwtLWF/JsM8UdjdfxpWhoccMDT5gESCMHI+GU9hkRkovZE9Fyb/3G66wYam3Rf8GvEIFkSlSihylxGkpafpUn3sWPH4PV6kZcXOlwmLy8Pe/bsCbvO+vXr8fvf/x7bt2+P63eUlZXhkUce6fT5qlWrkJWVpTvmcFavXm3IdlLtlVcuw//8z3Crwwhv4IfA3O9FX8abBuybjj17tsDlOh73pi/+7DOMBXCsvh4bKyp0h3ZDUyO6Afjkk09w3HVW9/oXkvX8CRAh/pPbTgIATpw4gQqdx1SE+CPZ3707MHkyWpqbUbFqVdhlRI4/HlbFf7PvZjjgwJq1a9Dcqznh7RgRf1NTU9LbICI1nWvzdxyZlXSTeCTNKVNPskYaS5Nuvc6cOYM77rgDzz//PHJzc+NaZ8GCBSgtLQ3+vaGhAQUFBZg+fTpycnKSisfj8WD16tWYNm0a3G53Utuywnvv+f8cN86LiROtjeVC6zL+D1sAdPcNwaWe78MJN5xaGpxI8/+MNPT3XIesvz+H//f/rkRmZvzl7zjuT9Bz+/TBzJkzdceWtjILOANcffXV0HonXgnKfv6IFP+us7twCIfQ66JecR9TkeKPZFv7n10yMzvtlwzxR2N1/A7NX1vfMOUGoK/+9Y2MPzACi4jovPOp18DuA1HQvcDCWExm4ywz2jB/yXJKisHSpDs3Nxculwt1dXUhn9fV1SE/P7/T8vv27cPBgwdx8803Bz/z+fzvfUlLS8PevXsxZMiQkHUyMjKQkZHRaVtut9uwGz0jt5VKTqd/SPnUqcBjj7ksjibUne8exZbPgX+dfjd+MfEXYZfxeDyoqKhAZuZl+so/zX/aOx0OOBM5bu1XyLQ0N2DAcZf1/AkQIX6Xy3/+Op1O3bGIEH8kgW+lw+GIGKPI8cfDsvjbb/Lc6W4giV9vRPwyHz8iq+l6HljCZ7o12KeXW7V5WRJl4zaI+EhaQJZOpJaeno6xY8eisrIy+JnP50NlZSXGjx/fafnhw4djx44d2L59e/C/v/u7v8P111+P7du3o6BA4VZAE4j8TMnRRv/s9XldTZipM9nZy0k4nEiNEmb5dKJERNHZJemmUKz7Y5CsgCwfXl5aWoo5c+aguLgYJSUlKC8vR2NjI+bOnQsAuPPOO9G/f3+UlZUhMzMTl19+ecj6PXr0AIBOn5PcTrecBgB0z+xu3i/hK8PUoeghUXS3rNexwZGFS0QCavG2IDBOU/Wkm7OXky6Sni6WJ92zZ89GfX09Fi5ciNraWhQVFWHlypXBydVqamrgdLIrwkwidg62elsBABmuzo8GJI0Xd+Wwp5t0YdJNCmBV5pfwdV/w+mJP/W6MBuB0uHBJr0usDic1xD4kKcOvdpwkO18sT7oBYP78+Zg/f37Yf6uqqoq67ssvv2x8QDYhcoXd0j5bZ0aaCUl3QMIVLlMh4Sh6SBTdLesx6SayJ5FvfC7wWd1nGA0gy52lXIMyxYdHXS3sQiYhBXq6013pxm9cokqX9FHtxoRJt0mYdJNCFLvs6abq0OTP6z4D4E+6zRA4bxQtPqnxkMQgaQEx6SYhK+wWb3tPtxnDywOSfaZbxIKzKVVvuph0m8TX4WcWLhEJps3Xhi/qvgAAZLm7WhxNCqhZhSeN1VMMkhUQk24bEzlPYU836aJ4dqroblmHPd1EUjOkoVXghvNt327DOW8zAJMfsxOMaqPVIuFtaJIkLT8m3SSk4ERqZlQ2SfdUS/ptV5jqE6mRwToWLGtBIqnpuu5Lku2sO7Qu2B6oVq1G8ZDjLCW9eLtBQjb2BiZSM6Wn2zACFpxdKdrTrehuWY893UTKUPHxonU1687/RcSbNIOpeAzjFe3wqn/kkyRZATHptjGRr3EpGV7Onm5lqN7TrdZeCYBJNxEJyqf58NGhj6wOwxq8HgPgXWZMkhYQk24SksfnAQC4nW6LI4mGtYMwFM1OFd0t6zHpJgWI3HAuLAkKbefRnTjZfBJZaZlWh0IkNsnqbybdJNzIpY7DjFxOlxm/wP+naDtOSWNPN8WFSTeR1DRZu7risO6Qf2j5yN4j2z+xwUVK3cOZFBsceVth0m1jojb4+rTz7/NxmHnJ4SvDlKHq82BMuk3CV4aRQuxeFanW2PpRjX9o+ai8Uab+HhGLTbVjmSg172gMJGkBMekm4XRswXY6TDhFFU3QbE3R7FTR3bIee7qJlJFQo6ugyZ2macGe7tEmJ93nf2dKfg0lQMyzVCCSFRCTbhJOx55uU5LugKQnUpPs264wTqRGuvCVYUT2JHiGue/kPnx79luku9IxPHd4+6esAexG7LNUAJIWEG83SLgGX9OTbsErXUqAotmportlPfZ0E5GAAr3cJf1LBH9lqrFUfUQsknh3l9VTDJIVEJNuG9M0Mc9WeXq6SRTs6SZdmHQTkYACSfd1A66DLe81eD0GYMsjr4+kBcSkm4QTMpGaGUmUYS2qrB2EoWh2quhuWY9JN5HUku4ZFbSBNjCJ2rUDrz3/oaCxkjGiHV4e+RgkKyAm3STc9bxjZSpkT7fNhkHJhD3dFBfOXk4KYFWUAIEL7ciZI9h/cj+cDicmFEywOpzUEvewWILFEYOkBcSk28ZErXukeaZbsQRPZqo/D8YzzWDs6SYiwXxc8zEA/6vCcjJyIG1mkQTVGs6TxdKIQbICYtJNwklZ0s1nutWhaJcwzzSTMOkmhTBPUcPHX/uT7okFEy/4F3MOMM8bcbHuj0HSAmLSTcJdeEOe6Rb6jljk2OyFE6mRLixYInsTsK5YX7MeAHDNgGtS+ntFGCim+mi1RIl3lgpGsgJi0m1jol7jNJj8THfSPd0kHEWTKEV3y3osWCKpaYl2dQl643O29Sy2124H0KGnW9BYTcVrMgBpO3JTR9ICYtJNwjF99vLzG09wRSbtomFPN+nCgiUigWz6ZhO8mhcDug9AQfeCC/6VFyq74pGPQbICYtJNwuWOgaTbtJnL7dh6rDpFkyhFd8t6LFgiexPsxify89ykoli3obxLjUHSAmLSbWOi5p6mJ90BfGUYCY65oUkCg2lYsET2Imj9Hf55bjFjNYWNdlUPVlExSFZATLpJOIGk27RJ1AyrdCX7tiuMw8tJFxYsKUDQ/DHlEn6+WxBtvjZs/GYjgAg93YrVa9GoVofHI9wuy31Gp4CkBcSkm4S7ngcSKGF7umX9tqtM0SRK0d2yHguWiASxo24HzraeRU5GDi7vc/n5f2Criu2xiopA0jqcSbeNiXo9l+eZbsm+7QpjTzfpEihY1oBEUkr6FVMC1RWB57knFEyAy+kKs4Q4sZqFrwwLxdKIk2RfDd5ykHCEf6abl0PxKJqdKrpb1mPBkkIEyh8toetRNAGTu8Dz3KmeRC1w3ghVJDY/ly/E4ohApHNWBybdJFyFHXym26zAjKphRCs4G2NPN+nCgiUiAWiaFmESNUDazIKSxiMfJ8nqcCbdNiZU62YHKRterliCRpDuAhwLc0OTcPZyImXIPJFazekaHD5zGGnONJT0L4mwlA0uVPIeQlOw7o9B0vOFSTcJJ1CBmj68PFEaL4fCkfQCHAvPNJOwYInsTZBG90Av95V9r0SWO8viaKyn2mi1ZLE0YpCsgATNaiiVRLvGsaeb9FJ1eHmAmntlISbdRFJLuHdbsCF+gUnUwj/PLVaslDo88jFIWkBMum1MsLonSJ6J1HjHLgxFD4mgX1H5KXq+GG3ZsmUoLCxEZmYmxo0bh82bN0dcdufOnfj+97+PwsJCOBwOlJeXd1rG6/XiV7/6FQYNGoQuXbpgyJAh+M1vfsOZiykpuiZSE0zk57k7ULQx2c7iveTxyMcgWQEx6SbhBCdSM+vbxBs85aja083c0CR8ZVhMb775JkpLS7Fo0SJs3boVo0ePxowZM3D06NGwyzc1NWHw4MF48sknkZ+fH3aZxYsXY/ny5fjP//xP7N69G4sXL8ZTTz2FZ5991sxdURarMr+Eer0FqCtONZ/CF0e/AJD6mctFw4a3UCyNGCQtIN5ykAh1T4jAxVf8nm4ShqLZqaK7ZT0WbExLly7FvHnzMHfuXIwYMQIrVqxAVlYWXnzxxbDLX3XVVXj66adx6623IiMjI+wyGzZswC233IIbb7wRhYWF+MEPfoDp06dH7UEnUtXGrzdCg4ahvYYiLzuv8wJ2TERteE2Oditqw+LQR7ICSrM6ALKOqNfzlD3TnSzRWitsLNhKrtghYW5oEhZsVK2traiursaCBQuCnzmdTkydOhUbN25MeLsTJkzAc889hy+//BKXXnopPvvsM6xfvx5Lly6NuE5LSwtaWlqCf29oaAAAeDweeDyehGMJbKPjn7LRNH8d6fN54fEIWqFHkUz5e7zn1/H5fPFvo7UVbvgvAW0Wnz/rDq4DAEy4eELYbTi8bUgD4NMArynnqAuAAx5Pm+XnT6AO97Z54y5Pmb+//pDd7T97cOEueBwOIC0Nms8Hj9eb8vjiYWX5O9uccMEFn88Hryex8jEy/ni3waSbhCP8M92itlYQh5dTfPjKsKiOHTsGr9eLvLzQ3re8vDzs2bMn4e0+/PDDaGhowPDhw+FyueD1evH444/j9ttvj7hOWVkZHnnkkU6fr1q1CllZxsz2vHr1akO2k2onT04EkIvPP/8M2dnfWh1OwhIpf4/v/E3ugQMHUFFREdd6XerrMR3+RD3edWJJ9Pz5v7/9HwCg28luYWPp07YF4wGcPn0a6wyKtaOmpikAsvHpp5tx5sxJw7evR319PQBg+2fbUdOjRte6Mn5/z55NA3AjAOCDDz6A2x16X7m1b1+gpAQnT5xAxccfWxBh/Kwo/yG7h+ByXI7DRw5ja8XWpLZlRPxNTU1xLcekm4TrsJWmp5t37OJQtB2ESbdJWLCWeOutt/Daa6/h9ddfx8iRI7F9+3Y88MAD6NevH+bMmRN2nQULFqC0tDT494aGBhQUFGD69OnIyclJKh6Px4PVq1dj2rRpcLvdSW3LCkuW+OvIUaNGY+bMMRZHo18y5d/S1gJ87v950KBBmDltZnwr1vgTOqfLhZkz41wngmTib/W24rYvbgMA/PS7P8Xw3OGdlnF8C2A90L17d8ycmlys4WRluQAAV11VgmuvdRm+fT1ef/Z1nMVZjCkag5EzR8a1jszf31Onzv88depUdO0aGv+59hvzXr16JX2emsXK8nfu8V/7+vfvj/yZ4ecQicXI+AMjsGJh0m1jonbYBidSM6s1IOlXhglacDbG4eWkCws2qtzcXLhcLtTV1YV8XldXF3GStHg8+OCDePjhh3HrrbcCAK644gocOnQIZWVlEZPujIyMsM+Iu91uw270jNxWKjkc/rrS5XLB7Zb3di6R8vc5fMGfnU5n/Oun+cvJ0f57jZBI/FvrtuJc2zlc1OUiXJ5/efj7HZc/VqfDCacJ56fD4b8QpqWlWX7+BDpZXGku3WUp4/e3Y7jh4g8cDafTCbdT7Om3LCn/9jYip8sJpzu58jEi/njXF/tIki0FZiIVdnj5+Q0YEgYZINiOouYxUXOvLMSkO6r09HSMHTsWlZWVwc98Ph8qKysxfvz4hLfb1NQE5wU3kC6X/7k8IjsJvp97wMQo9ZZ9Gvg5e3kolkYMkhaQvE2jZBjR8hR5hpeTKFTv6SaD8ZVhMZWWlmLOnDkoLi5GSUkJysvL0djYiLlz5wIA7rzzTvTv3x9lZWUA/JOv7dq1K/jz4cOHsX37dmRnZ2Po0KEAgJtvvhmPP/44BgwYgJEjR2Lbtm1YunQpfvzjH1uzk2RfFt/4BN7PHfVVYUmPypOQjXY1HiyOGCQrICbdNiZq7pmypDvZ4eV2qghFp2hPNztkTcKCjWn27Nmor6/HwoULUVtbi6KiIqxcuTI4uVpNTU1Ir/WRI0cwZsz554qXLFmCJUuWYNKkSaiqqgIAPPvss/jVr36Fe+65B0ePHkW/fv3w05/+FAsXLkzpvqlC1DqcotM0LdjTfc2Aa+JYgxcq1cT67vKrHYOkBcSkm4QTfKbb7IpGsQTNzlTv6VZst6zHgo3L/PnzMX/+/LD/FkikAwoLC2MOEe3WrRvKy8tRXl5uUIRkV1qid90CtFR8deIrHG08igxXBsb2HRtlSetjTRkb7aoerKJikKyAOLiOhBO4cRN2eLkAlTaFx55uigtfGUYKUeyyp7xAL/dV/a9CRlrnSQLPM7cGCJw3It3SqFaHxyPcLgt0SMQkaQEx6SbhKmzh39N9fgOGhEEGkPQCHAuTbpOwYInszcIbn8Dz3NcUxDO0nOyMVVQEktbhTLptTKTWzY7En0hN0IKzMQ4vJ11YsERkkeAkagOiTKIG2HMiNQLAu8y4SfbVYNJNwhF/IrUAyb7tKuNEaqQHC5bInizubahvrMfe43sBABMKJsS5lvoXKr4yLDz1j3yCJD1dmHSTcI2owYnUzA4s0e2zchAOe7pJF74yjEhqsiZpG77eAAAY0XsEenXpFWNpOfcxKazsANjyyCdGsvOFtxw2JmqdFZiVVNzh5e1Ea62wM0V7ugPU3CsLsTWDyN4sqiuCrwqL63luDi+3Ox75CATNX2Jh0k3CEX94uaTfdoWp3tNNBuPs5aQAURvOKbK4n+e2G57LIVgccZKsDmfSTcI1onL2ckqUaj3d7JA1CQuWyJ4sbKlobmtG9bfVAICJBXEk3Zr9LlSq1eGRxHsa2qM0EiBpqwSTbhsTtZU8+Ey3WZcbUXecEqfoIbXfLVeKsGBJITbJUyJK6PluCwpty5EtaPW2Iq9rHgb3HKxjTXNj5S2ReHhI4iTZtU+IpHvZsmUoLCxEZmYmxo0bh82bN0dc9p133kFxcTF69OiBrl27oqioCK+88koKoyWzBSpQDi+neKk+vFyx3bIeC5aIUuzjGv/z3BMHTIyzR9c+9xqyToxnhGinAquoCCQ9XSxPut98802UlpZi0aJF2Lp1K0aPHo0ZM2bg6NGjYZfv1asX/u3f/g0bN27E559/jrlz52Lu3Ll4//33Uxy5OkRrJefwctJN0YnUmBuahLOXE0lNS/Su28LkLjCJWlxDywHYciI1G+1qNJLmlKkn2fli+S3H0qVLMW/ePMydOxcjRozAihUrkJWVhRdffDHs8pMnT8b3vvc9XHbZZRgyZAjuv/9+jBo1CuvXr09x5PITtWExZROpWbU+GY493aQLC5ZIGTI0tmqaFnxd2DUD4pm5nIhVVESS3oanWfnLW1tbUV1djQULFgQ/czqdmDp1KjZu3BhzfU3TsGbNGuzduxeLFy8Ou0xLSwtaWlqCf29oaAAAeDweeDyepOIPrJ/sdqzi8zkAOOH1euHx+GIunyqtba0A/M90RyvbRMvf6fXCBcCrafAlcOzS4L8QerxtQBLHXvbzR6T4fW3+81fTtLjjESn+SNqcTsDlgubzweP1hvybDPFHY2X8Do8DaUiDBg1tnraEtmFk/LIeQyJppThR33t8L46fO44uaV0wJn9MfCvZcCI18pM0p0w9yb4alibdx44dg9frRV5eXsjneXl52LNnT8T1Tp8+jf79+6OlpQUulwv/9V//hWnTpoVdtqysDI888kinz1etWoWsrKzkdqDd6tWrDdlOqtXVjQVwMb78ci8qKvZbHU5Q9Sn/7J4nT5xERUVFzOX1lv+wL7/EcAA1hw7h8zi2f6Eb2zxIA/Bh1YdodH6pe/0LyXr+BIgQ/+H9hwEA+w/sR0tFS4ylQ4kQfyRfFBYCo0ejrrYWFZ9+GnYZkeOPhxXx536Wi4mYiDONZ7C2Ym1S2zIi/qampqS3QWRXMjwPHHieu6R/Cdwud5xr2SjpFv8QWsIGRz4xkp4vlibdierWrRu2b9+Os2fPorKyEqWlpRg8eDAmT57cadkFCxagtLQ0+PeGhgYUFBRg+vTpyMnJSSoOj8eD1atXY9q0aXC7472IiuPVV/1f52HDhmHmzOEWR3Ne465G4CCQe1EuZs6cGXG5RMvf2Z68DCgsxMVRth+J6900oA2YNHkykD1E9/oBsp8/IsVfua4S9ajH4MGDMWXmlLjWESn+SL52+h+xyM/P7/RdkCH+aKyM35Hhv/Z169Yt6jUmGiPjD4zAIiKTWZSg63+e255keFQgFSTNKVNPstPF0qQ7NzcXLpcLdXV1IZ/X1dUhPz8/4npOpxNDhw4FABQVFWH37t0oKysLm3RnZGQgIyOj0+dut9uwGz0jt5VKDod/SK7L5YLb7bI4mvOcLn+i4Y8rdrnqLn+XK7h9V0LHzX85dKe5AQOOu6znT4AI8Qee/4/3nOlIhPgjCcxq4HI64XaGn+NA5PjjYUn87Zc7h9OR9O82In6Zjx9ZR4IOXtPI0LvdUTDpHqAj6U76TSskOx75COT6+gdZOpFaeno6xo4di8rKyuBnPp8PlZWVGD9+fNzb8fl8Ic9tkz6iXc+Fn0gtQLSCszFOpEa6sGCJlJFQ72gK6+/6xnp8edz/KNr4i+O/t00VEdovZGtEMRtLI06S1eGWDy8vLS3FnDlzUFxcjJKSEpSXl6OxsRFz584FANx5553o378/ysrKAPif0S4uLsaQIUPQ0tKCiooKvPLKK1i+fLmVuyElUa9xgaTbYda3KdnWY1ELzs74yjDSg68MI4UodtnTTfSELTBr+cjeI9GzS08da5pbAwh53ogYkwniPWVtUhz6if2Vj8jypHv27Nmor6/HwoULUVtbi6KiIqxcuTI4uVpNTQ2cHYZVNjY24p577sE333yDLl26YPjw4Xj11Vcxe/Zsq3aBDMb3dJNe7OkmXViwRPZkQYKe+PPcvFDZlaQ5ZepJ9tWwPOkGgPnz52P+/Plh/62qqirk74899hgee+yxFERlH6K1dgYSKHGHl/NyKBz2dJMegTcksmCJ7CmFdUVCz3PbjY1vq8Kdiqz7Y5D0fOHgOhsTdUSW+D3dvBwKS7FDwjPNJCxYIkqB5rZmbDmyBUACPd02nEhNtYbzZLE0IpC0DmfSTcIRfiI1G1aEohP9mb5k8UwzmKQVNhH5aYl2daW4rthyZAtava3I65qHwT0H61ybFyq7UvuOxkCSfTWYdJNwuWNwIjWzAks6aWZFKBzFh5eTwfgVJqIU+Ljm/NBy1eonMh/PmAgkvTli0m1jonYOBlqwxR1eHtyAIWFQ8jiRGunCgiUFiFqHSyFFCXDik6gBdrpQqT5aTS+WRpwk+2ow6SbhCD+8HBxeLhzFe7rV2isB8JVhRGQyTdOCrwtLLOlODaHyXVZ2IVgcEYh0zurAWw4SLndMWdLN93Qrgz3dpAsLlhQiWh0utBTW33uP78Xxc8eRmZaJMX3H6N+AyfPH8LwRF+8y4yTZOcyk28ZEzR05eznpxp5u0oOvDCOSmgzDkQPPc5f0L0G6Kz2BLdioBhD/cBoq3tPXBkc+MZKeL0y6STjBidTMutwY9p5uXg6Fo9gh4ZlmEhYskb2loIE2uee57SXQiKJaw3miJM0pU0+y04VJNwk3xChw8RW2p5uvDBOODL0eiWBuaBIWLBGZLPmk20YXKhvt6oWi3UrasDjiI+ktH5NuGxM1TxF/IrUAXg6Foejw8gA198pCNr7BI7K1FN341DfW48vjXwIAxheMT8nvlBl7ukMJensuHslOFybdJBzhJ1LjHbtwVJ9IjQzGrzCRvZmc3AVmLR/RewR6demV2EbsNKqO1+SwWBwRSHpzxKSbhBN8ptvsisYOFZldKNrTzfsQk/CVYaQAUUerpZom4B24Mc9z26cGYE93KPHOaEFJdrrwloOEyz0DSbfL4TLnFyRzp9JxXdEKzsZU7+lWbLesx4IlkpqIiXZHMk2iJkTjDa/JYbE4IhDhnE0Ak24bE+JCG4bYw8s7Fhovh8JgTzfpwVeGkUIUu+zFpePkmbredJKCG5/mtmZsObIFADBxgLg93SKdN+zpDiXo7bl4JDtdmHSTcMR/T3dwA4aEQQZS7JAw6TYJC5ZIGQklaiYmd5sPb0artxX52fkY0nNI4hsStWfEDLwmh8XiiEDSrwaTbhKqtRMQfPZyDi8XEl8ZRrqwYImkJvLw8o8OfQQAuG7gdcb03NrgXiPY0+1Uf1+B2Leh4p7dgpHsdGHSbWOi5ikcXk66cXg56cGCJZJawg2tKbjxWVezDgBw7YBrk9ySfS5Umo/Dy8NhaUQgaP4SC5NuEo7Yw8sl/aarTtF7E0V3y3osWCJl6Hqm22RtvjZ8XOOfRO26gddZHI1EeE0OwTvNOEl2vjDpJjgcYn29Obyc9FJ9EhY198pCfGUYkdSSHl5uUl2x7dttaPQ0okdmD1ze5/Ikt2af93SrXodHE22X7VcacRIrbYkbbzlszLbDywM4kZo6FG0lF/QrKj/OXk4ktZDZywVK1NYd8g8tv2bANcnfw4h6k2YGRevwRNnoyCdHsvOFSTcJR+iebj7TLSRVW8l5H2ISFiwpwE45mWFMLrSPatonURtg5NBycy9UIpxHqtbhyWJpRCDAOZsIJt0k3MglaSZSE63g7CxwSBWb+ZS5oUlYsERSE3F4uU/znU+6DXme20YXKhvtajwkzSlTR9LzhUm3jYnQuhmO0MPLNfZ0iygw86lqh0TSekV8LFhSiB3bf0OGlwvyRd5Vvwsnzp1AljsLV/a90oAtmnuTJtJ5w57u8FgaMUhWQEy6STjyDC8nUaj6jk/mhiZhwRKRwQLPc4+/eDzcLrdxG7ZDIsprcgjeacYgaQEx6SbhrufSDC9n7SAMVd/xyfsQk7BgiaSW8PByE4f4BZJuw14VJupwRBOwpztUYK5PJmkRSFqH83jamKjXc6GHlxu5PhmHz3STHnxlGJHUtERvYJJqdI+2Wc3g57k7skENYLPKLtbpyyoqBkkLSLJwyQ6EHl7OZ7qFpOoz3QGK7pZ1+MowInsyKen+6sRXOHLmCNxON8b1H2fQVu2TibKnOxR7umOQtIAkC5fMINo1TuyebibdIgoOL1e0p5sMZp97WSIlJT283OAbn8oDlQCACQUT0MXdxZiNijoc0Qw2viaHOxXZLhwDk26SjajXc6F7uvnKMCGp2kpu4/sQc7FgSQGi1uFCMznpvmHQDYZuF4At7jVUrcMTJeno6dSRtFWCx5OEI/REarzLEZLqPd1q7ZUAAhW2y9IoiChBHZ/p1tXrbULS7dN8WHtgLQBgyqAphm03VWOdhLitYWUXQtKO3NSRtFVCsnDJDKI1LIo9vDxkA4aEQQZQtMJWdLesxzsaUohodXgqiDS8/LO6z3D83HFkp2ejpH+JYds1uwYQ6bxhT3coSTtyU0fSOlyycMkOpBlezsuhMNjTTbpIWmETUZJMSLrXHvT3cl838Dpj388dZIMagJVdCEk7clNH0lYJHk8Sjg8CDy/nM91CUrWVnPchJmHSTSQ1kV4ZVnWoCoDRQ8shyLjv1FC1Dk8Uq6gYJG2VkCxcMoNo1zihh5fzlWFCYk836cI7GiKpdRxerisBNzjp9vg8wfdzG550B4h2k2YGVnYhJO3ITR1J63DJwiUjidqIyuHlpJviFbaiu2UdSStsIkqSwUn3l01fotHTiNysXFyRd4Uh2zxP0Js0E9itpzvWbaikHbmpI2mrBI8nCcf0pNvX/m11JTB1scbh5SJSvaebDMakm0hqogwvr26oBgDMGDLDhHsWxVuTO7LRrsaDVVQMkrZKSBYumUG03NH0pNvr9f/p5OmvClVbyVnxmoQFSwoQdbRaKogye3kg6Z55yUxDtheeWvVaOKrW4YmStCM3dSStwyULl4wkaoUtdE83h5cLSdWe7vbmIb5O2miSVthElCQDk+6a0zU41HwITocTM4bMSHp7naToJk2Ie0H2dIeQtCM3dSRtleDxJOGI3dPN4eVCUrTCZtJtkkCFzYIlBdixKuo4vFxXr7eBSff7+94HAIzrPw4XZV2U9PYiMukAi3TeBHu6FWs4TxTbhWOQtFVCsnDJDlLW051I0i1EkzBdSNWebuaGJuEdDZHURBheXrGvAgDw3SHfTXpb4UnanZeAYB0uUkuAhexz5BMkaR0uWbhkJFHzx0DS7TDrcmPI8HJeCkWiaoUd6OnmhdpgklbYRJQkg5Lus61nsebAGgDAd4ealHRr7TWAwwbNrry1CiFpR27qSNoqweNJwmnztQEA0pxp5vwCIyZSUyy5k52qQ9M4vNwkTLqJpGb17OV//fKvONd2Dvnp+RjVZ1RS24ookHSbdS8kEE6kFkrSnDJ1JK3DJQuX7MDj9QAA3C63Ob8gmeHlfImTkAI93arVUEy6TSJphU1EnelKwAP1f5LJ3Vu73gIATOwx0bxE0ceebrtiFRWDpEMBJAuXzCBaw6LH1550O01KugM93Um9p1uwQrO7QM7Nnm6KB+9oiKQWeAxNNwN6us+0nEHF3/zPc0/sMTHh7cSk+Uf92SHpZk93KElzytSRtA6XLFwykqjPdJs+vNyQnm5WDCJR/Zlu9W+5UowPyxNJLemkO4nHy97Z/Q6a25oxtNdQDOoyKOHtxGSjZ7o1r/+4ONPscVGOdf/N4eUxSFpA9ji7SSpSDC9XLLmTXXB4oWKHhUm3SSRtJSfqSNSG81RIOOlOZqRbu+e3Pg8AuPOKO81t6E1R0i3CeeT1+PfVLkl3LKyiYpB0KIBk4ZIZRMsfxR5eHngejGmQSHxt/uPicqt1XFjxmoQFSyS1pJPuBHu6d9XvwsdffwyXw4U5o+ckFkO8bNTTHajDnW57XZQdjvAtHhxTGQN7ukk2IrRuhiN0T7eNnrGSibfVf3PiSlfruLCn2yQsWFKIaA3nqeANJKQX/Bx7xeR6uss/KQcA3DzsZvTN7pvQNuJmctIt0nnj87Qn3ezpBgC0tv+ZbmkUAvO0/2lSmmAWnt0kHKFfGWan2UQlwqSbdGlp/zPD0iiIKEEde7oDDfXxrdi+XgJJ99env8bL218GADw44UHd6+tmk55uzacF52VRbbRaoph0xyBpHc6km4Rq7QSA5rZmAECGy6RvUxKV7vlKUP33ZsqESTfpImmFTUR+HZPuVl9rlCUvkERP98KqhfD4PLi+8HpMKJige33dbHK/ERhaDrCnO4BVVAySFpAQZ/eyZctQWFiIzMxMjBs3Dps3b4647PPPP49rr70WPXv2RM+ePTF16tSoy1Nkog4vP9t6FgDQLaObOb+Aw8uVo2rSfa79z0xLo1BQc/ufLNio9NTNO3fuxPe//30UFhbC4XCgvLw87HKHDx/GP/zDP+Ciiy5Cly5dcMUVV2DLli0m7QGpKiTp9pqfdK85sCbYy/34DY/rWjdhNunpDkyiBtjvme5IJM0pU0fSArL87H7zzTdRWlqKRYsWYevWrRg9ejRmzJiBo0ePhl2+qqoKt912G9auXYuNGzeioKAA06dPx+HDh1McOZml0dMIAOjq7mrOL2htr6DdCTwMEki6zRr6TgkJPg+mWIXd2P6nSd8E+5K0wk4lvXVzU1MTBg8ejCeffBL5+flhlzl58iQmTpwIt9uN9957D7t27cK///u/o2fPnmbuCinI6zufqOkaXh6o/9PjH7j7t+N/w61v3woA+OnYn2J8wfj4f18ybJJ0B+pvgMPLAwLNSKyiIpB0/L3ld6hLly7FvHnzMHfuXIwYMQIrVqxAVlYWXnzxxbDLv/baa7jnnntQVFSE4cOH44UXXoDP50NlZWWKI1eHSMPLPV6P+T3dTU3+P7Oy9K/b1r6uK4F1yTSec/6brrQMtRpDmHSbJDCEgHc0Eemtm6+66io8/fTTuPXWW5GREb5gFy9ejIKCArz00ksoKSnBoEGDMH36dAwZMsTMXSEFnWs7F/xZV093c/swly5dYi7a0taCP3z2B0x4cQLqm+pRlF+EpTOW6g01cYF9TIsdq8w8Tf762+F0cHh5O1ZRMUg6DNChadYNMm5tbUVWVhbefvttzJo1K/j5nDlzcOrUKfz5z3+OuY0zZ86gT58++OMf/4ibbrqp07+3tLSgpaUl+PeGhgYUFBTg2LFjyMnJSSr+1+dUIbduZMLrJ5vrOrToW4jxz4jwpoJoa0T5WwJi/H6HwxH9d2jt/wUXijOiwCnvdOlvcdC8/l/qcMLhvDDxjl2gWocYHZoGr9cLl8uF2LF33rZDQ+T4U/Gt1gCf1wunyxUx+mhh6D//EFJMgfU1DWhr9o9A6NavGxzO+I6pQ9NwrrkFmZkZiHGmhZdkGcez/4fbj+9kzYceFyzv8/lQf7Qevfv0htORyKMS+lcxcn2fz4f6+nr07p36+J0V/t/X9n9t0GYktiGPx4PVq1dj2rRpcCcyaqaDhoYG5Obm4vTp00nXS0ZItm4uLCzEAw88gAceeCDk8xEjRmDGjBn45ptv8OGHH6J///645557MG/evIjbMrMO/+/bN+Ci45fEv0KY6080WoTripF1f7RqIKyYcUfeWCJxd/x1Ecssjh24cN0LNxX9XsERXMDRXv9rDkfYeyQtzM8ODXDA4b9OXbCOpmnR39Ud60YsCkegN9/pTmx0XYxj3dICaD4HnC6twyHw/xD7/G4vxzAlr3ePHT6f/3WsDge8XbJ1rX/+Hqp9W1riVYOue5ILgtR7P6NpQHOzA4CGvLzO69e1H5Dxmg+9Y207mbo4iXV9mg/Hjh5D7969zX1f/YU0wPmevw737PYACbbZWlGHW9otdOzYMXi9XuTl5YV8npeXhz179sS1jYceegj9+vXD1KlTw/57WVkZHnnkkU6fr1q1ClmJ9HR20Kv+Sty4pl9S2yAiqzgAyNKD0DkpdcKJvjD5lTUmsjp+b5oXH9R/gJaKltgLR7F69eqkY2kKjL4RhBF1czj79+/H8uXLUVpain/913/Fp59+ivvuuw/p6emYMyf8O4/NrMP71k3EtHW5SW2DiKwk++i2WMmquD3/TjiRj/CPEqVCc/dmrNq5Ctre5HoAUlmHS322Pvnkk3jjjTdQVVWFzMzwYwwWLFiA0tLS4N8DreTTp09PupX8tf/9K16/5WhSLTza+bbU4CcdXbjlsKdWtF8f41zUHD6k6RjO4+jQs6xp0N+8F7q1iOunOdPiKte2tjakpXXosdZCur6Dv6bzL0jzP9PtiLRAR2Ha1N3d/T3lSdA0DWcazyI7OxvOOHtnw0WWTPtiSCN8sCcg/t/dcKYB3bp1gzPB70C0ToCImwzpOjn/Z1bvrkjPjv8BH5/Ph9qjtcjPy4czkUn1Ov7+RMWx/mWahj5hPvd6vdi1excuG3FZSEu/0b/frPW9Xi927dqFESNHWBK/NkrDlCunJLy+0a3kduDz+VBcXIwnnngCADBmzBh88cUXWLFiRcSk29Q6/J2VeL1nP/11eLC3NPw/x7M1LUblHLtW0oI/udI6jKCK63cnIcGuxOAdzgUVjM/ni3j97Xz/07kudgDwRRxTcH47Woe/aE4HvOnuTpWMo+P/HUCa091+LxJYP7BE+/HXNDS3hBstFbpdzaGF3DvF1PF20JUOuBM/zwNlFu4cP3dOQ11dCzLTM86XhaPjugYJOQCRlnEA3brBkeavC+IZIKD5NJw9ewbZ2edHuMXzq6JuM87lwoUXM+YLR2toGtLS6jFs2EVwOZ2d1i+AhoI440mqLk9wXa/Xi1072+vwtNTX4a4JLnz3ku8mvL4VdbilSXdubi5cLhfq6upCPq+rq4s4EUvAkiVL8OSTT+KDDz7AqFGjIi6XkZER9vkyt9uddCHfvuJGVFRUYObMmUlvywoej4fxW8gf/8eSx79e4vi9qKioxqSZM+GWcAI2n8eHQxWHMHLmSKS55Ws/1TwaaipqcPnMy6WMP8CIukS0708ydXM0ffv2xYgRI0I+u+yyy/A///M/EdcxtQ5/4TsK1CGM3yqM31r++D+UPP5NmDhzJtwSTiDHOjx0G/Gw9E4zPT0dY8eODZkELTAp2vjxkWeHfOqpp/Cb3/wGK1euRHFxcSpCJSIisoVE6+ZYJk6ciL1794Z89uWXX2LgwIEJb5OIiEgGljdNlJaWYs6cOSguLkZJSQnKy8vR2NiIuXPnAgDuvPNO9O/fH2VlZQD8s58uXLgQr7/+OgoLC1FbWwsAyM7ORnZ2tmX7QUREpAq9dXNrayt27doV/Pnw4cPYvn07srOzMXToUADAz3/+c0yYMAFPPPEEfvjDH2Lz5s147rnn8Nxzz1mzk0RERCliedI9e/Zs1NfXY+HChaitrUVRURFWrlwZnMClpqYm5Hmf5cuXo7W1FT/4wQ9CtrNo0SL8+te/TmXoREREStJbNx85cgRjxowJ/n3JkiVYsmQJJk2ahKqqKgD+14q9++67WLBgAR599FEMGjQI5eXluP3221O6b0RERKlmedINAPPnz8f8+fPD/lugsg44ePCg+QERERHZnJ66ubCwEPG8gfSmm24K+3pPIiIilck3exARERERERGRJJh0ExEREREREZmESTcRERERERGRSZh0ExEREREREZmESTcRERERERGRSZh0ExEREREREZmESTcRERERERGRSZh0ExEREREREZmESTcRERERERGRSZh0ExEREREREZmESTcRERERERGRSdKsDiDVNE0DADQ0NCS9LY/Hg6amJjQ0NMDtdie9vVRj/NZi/NZi/NZi/OcF6qNA/USRsQ4/j/Fbi/Fbi/Fbi/GfF28dbruk+8yZMwCAgoICiyMhIiI678yZM+jevbvVYQiNdTgREYkoVh3u0GzWtO7z+XDkyBF069YNDocjqW01NDSgoKAAX3/9NXJycgyKMHUYv7UYv7UYv7UY/3mapuHMmTPo168fnE4+9RUN6/DzGL+1GL+1GL+1GP958dbhtuvpdjqduPjiiw3dZk5OjpQnXADjtxbjtxbjtxbj92MPd3xYh3fG+K3F+K3F+K3F+P3iqcPZpE5ERERERERkEibdRERERERERCZh0p2EjIwMLFq0CBkZGVaHkhDGby3Gby3Gby3GT1aT/Rgyfmsxfmsxfmsxfv1sN5EaERERERERUaqwp5uIiIiIiIjIJEy6iYiIiIiIiEzCpJuIiIiIiIjIJEy6dTpx4gRuv/125OTkoEePHvjJT36Cs2fPRl1n8uTJcDgcIf/90z/9U0riXbZsGQoLC5GZmYlx48Zh8+bNUZf/4x//iOHDhyMzMxNXXHEFKioqUhJnJHrif/nllzuVc2ZmZgqjDbVu3TrcfPPN6NevHxwOB/70pz/FXKeqqgpXXnklMjIyMHToULz88sumxxmJ3virqqo6lb/D4UBtbW1qAu6grKwMV111Fbp164Y+ffpg1qxZ2Lt3b8z1RDn/E4lfpPN/+fLlGDVqVPD9l+PHj8d7770XdR1Ryh7QH79IZU/RsQ5PLdbhL5seZySsw1mHJ4p1uDllz6Rbp9tvvx07d+7E6tWr8Ze//AXr1q3D3XffHXO9efPm4dtvvw3+99RTT5ke65tvvonS0lIsWrQIW7duxejRozFjxgwcPXo07PIbNmzAbbfdhp/85CfYtm0bZs2ahVmzZuGLL74wPdZw9MYP+F9y37GcDx06lMKIQzU2NmL06NFYtmxZXMsfOHAAN954I66//nps374dDzzwAO666y68//77Jkcant74A/bu3RtyDPr06WNShJF9+OGHuPfee/HJJ59g9erV8Hg8mD59OhobGyOuI9L5n0j8gDjn/8UXX4wnn3wS1dXV2LJlC2644Qbccsst2LlzZ9jlRSp7QH/8gDhlT9GxDk8d1uGswxPFOpx1eDKErcM1ituuXbs0ANqnn34a/Oy9997THA6Hdvjw4YjrTZo0Sbv//vtTEGGokpIS7d577w3+3ev1av369dPKysrCLv/DH/5Qu/HGG0M+GzdunPbTn/7U1Dgj0Rv/Sy+9pHXv3j1F0ekDQHv33XejLvOLX/xCGzlyZMhns2fP1mbMmGFiZPGJJ/61a9dqALSTJ0+mJCY9jh49qgHQPvzww4jLiHb+dxRP/CKf/5qmaT179tReeOGFsP8mctkHRItf9LInP9bhqcU6nHW4UViHW491ePLY063Dxo0b0aNHDxQXFwc/mzp1KpxOJzZt2hR13ddeew25ubm4/PLLsWDBAjQ1NZkaa2trK6qrqzF16tTgZ06nE1OnTsXGjRvDrrNx48aQ5QFgxowZEZc3UyLxA8DZs2cxcOBAFBQUxGzVEo1I5Z+MoqIi9O3bF9OmTcPHH39sdTgAgNOnTwMAevXqFXEZkcs/nvgBMc9/r9eLN954A42NjRg/fnzYZUQu+3jiB8QsewrFOjx1WIf7iXId04N1uPFYh1tHpDo8zfAtKqy2trbTMJu0tDT06tUr6jMvP/rRjzBw4ED069cPn3/+OR566CHs3bsX77zzjmmxHjt2DF6vF3l5eSGf5+XlYc+ePWHXqa2tDbu8Fc/zJBL/sGHD8OKLL2LUqFE4ffo0lixZggkTJmDnzp24+OKLUxF2UiKVf0NDA86dO4cuXbpYFFl8+vbtixUrVqC4uBgtLS144YUXMHnyZGzatAlXXnmlZXH5fD488MADmDhxIi6//PKIy4l0/ncUb/yinf87duzA+PHj0dzcjOzsbLz77rsYMWJE2GVFLHs98YtW9hQe6/DUYR3uxzo8eazDWYcnQsQ6nEk3gIcffhiLFy+Ouszu3bsT3n7H58WuuOIK9O3bF1OmTMG+ffswZMiQhLdLocaPHx/SijVhwgRcdtll+N3vfoff/OY3FkZmD8OGDcOwYcOCf58wYQL27duHZ555Bq+88oplcd1777344osvsH79estiSEa88Yt2/g8bNgzbt2/H6dOn8fbbb2POnDn48MMPI1Z6otETv2hlbzesw9XA75G1WIebg3W4NUSsw5l0A/jnf/5n/OM//mPUZQYPHoz8/PxOE4C0tbXhxIkTyM/Pj/v3jRs3DgDw1VdfmVZh5+bmwuVyoa6uLuTzurq6iLHm5+frWt5MicR/IbfbjTFjxuCrr74yI0TDRSr/nJwc4VvIIykpKbG0opw/f35wsqRYrZUinf8BeuK/kNXnf3p6OoYOHQoAGDt2LD799FP89re/xe9+97tOy4pY9nriv5DVZW83rMP9RPoesQ73Yx2eHNbhrMMTJWIdzme6AfTu3RvDhw+P+l96ejrGjx+PU6dOobq6OrjumjVr4PP5gpVwPLZv3w7AP5THLOnp6Rg7diwqKyuDn/l8PlRWVkZ8pmH8+PEhywPA6tWroz4DYZZE4r+Q1+vFjh07TC1nI4lU/kbZvn27JeWvaRrmz5+Pd999F2vWrMGgQYNiriNS+ScS/4VEO/99Ph9aWlrC/ptIZR9JtPgvJFrZq451uJ9I3yPW4X6iXcf0Yh2eGNbh4p37QtThpk/VppjvfOc72pgxY7RNmzZp69ev1y655BLttttuC/77N998ow0bNkzbtGmTpmma9tVXX2mPPvqotmXLFu3AgQPan//8Z23w4MHaddddZ3qsb7zxhpaRkaG9/PLL2q5du7S7775b69Gjh1ZbW6tpmqbdcccd2sMPPxxc/uOPP9bS0tK0JUuWaLt379YWLVqkud1ubceOHabHakT8jzzyiPb+++9r+/bt06qrq7Vbb71Vy8zM1Hbu3GlJ/GfOnNG2bdumbdu2TQOgLV26VNu2bZt26NAhTdM07eGHH9buuOOO4PL79+/XsrKytAcffFDbvXu3tmzZMs3lcmkrV66UIv5nnnlG+9Of/qT97W9/03bs2KHdf//9mtPp1D744IOUx/6zn/1M6969u1ZVVaV9++23wf+ampqCy4h8/icSv0jn/8MPP6x9+OGH2oEDB7TPP/9ce/jhhzWHw6GtWrUqbOwilX0i8YtU9hQd6/DUYR3OOjxRrMNZh6cy/lSVPZNunY4fP67ddtttWnZ2tpaTk6PNnTtXO3PmTPDfDxw4oAHQ1q5dq2maptXU1GjXXXed1qtXLy0jI0MbOnSo9uCDD2qnT59OSbzPPvusNmDAAC09PV0rKSnRPvnkk+C/TZo0SZszZ07I8m+99ZZ26aWXaunp6drIkSO1v/71rymJMxI98T/wwAPBZfPy8rSZM2dqW7dutSBqv8DrNy78LxDznDlztEmTJnVap6ioSEtPT9cGDx6svfTSSymPu2MseuJfvHixNmTIEC0zM1Pr1auXNnnyZG3NmjWWxB4ubgAh5Sny+Z9I/CKd/z/+8Y+1gQMHaunp6Vrv3r21KVOmBCs7TRO77DVNf/wilT1Fxzo8tViHv5TyuDvGwjqcdXgiWIebU/YOTdM0Y/vOiYiIiIiIiAjgM91EREREREREpmHSTURERERERGQSJt1EREREREREJmHSTURERERERGQSJt1EREREREREJmHSTURERERERGQSJt1EREREREREJmHSTURERERERGQSJt1EREREREREJmHSTURERERERGQSJt1EREREREREJmHSTURxq6+vR35+Pp544ongZxs2bEB6ejoqKystjIyIiIiiYR1OZB2Hpmma1UEQkTwqKiowa9YsbNiwAcOGDUNRURFuueUWLF261OrQiIiIKArW4UTWYNJNRLrde++9+OCDD1BcXIwdO3bg008/RUZGhtVhERERUQysw4lSj0k3Eel27tw5XH755fj6669RXV2NK664wuqQiIiIKA6sw4lSj890E5Fu+/btw5EjR+Dz+XDw4EGrwyEiIqI4sQ4nSj32dBORLq2trSgpKUFRURGGDRuG8vJy7NixA3369LE6NCIiIoqCdTiRNZh0E5EuDz74IN5++2189tlnyM7OxqRJk9C9e3f85S9/sTo0IiIiioJ1OJE1OLyciOJWVVWF8vJyvPLKK8jJyYHT6cQrr7yCjz76CMuXL7c6PCIiIoqAdTiRddjTTURERERERGQS9nQTERERERERmYRJNxEREREREZFJmHQTERERERERmYRJNxEREREREZFJmHQTERERERERmYRJNxEREREREZFJmHQTERERERERmYRJNxEREREREZFJmHQTERERERERmYRJNxEREREREZFJmHQTERERERERmYRJNxEREREREZFJ/j9Sxgw+CteUegAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAILCAYAAAD13v8AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADkfUlEQVR4nOzdd3wT9f/A8VeSpou2lF122XsvERFEloDIFuTrQARBcaGIOMCNgx+KCwQEVByIIg6QDYoyZe8hexXKKC1daXK/P46Ulq4kTXJ37fv5ePAgvdx4J3e5z+d9n899zqQoioIQQgghhBBCCCG8zqx1AEIIIYQQQgghREElSbcQQgghhBBCCOEjknQLIYQQQgghhBA+Ikm3EEIIIYQQQgjhI5J0CyGEEEIIIYQQPiJJtxBCCCGEEEII4SOSdAshhBBCCCGEED4iSbcQQgghhBBCCOEjAVoHUNDZ7XZsNpvWYQghhBBCCCFEoWO1WrFYLJrGIEm3jyiKwrlz57hy5YrWoQghhBBCCCFEoRUZGUlUVBQmk0mT7UvS7SPOhLt06dKEhoZqtoOFEEIIIYQQojBSFIXExETOnz8PQNmyZTWJQ5JuH7Db7ekJd4kSJbQORwghhBBCCCEKpZCQEADOnz9P6dKlNelqLgOp+YDzHu7Q0FCNIxFCCCGEEEKIws2Zl2k11pYk3T4kXcqFEEIIIYQQQlta52WSdAshhBBCCCGEED4iSbcQQgghhBBCCOEjknSLdO3bt+fpp5/2+XYURWH8+PGULVuWkJAQOnbsyKFDh/Jc7tNPPyU6Oprg4GBatWrFpk2bMr2fnJzM448/TokSJQgLC6Nv377ExMT46mMYmr/29YIFC+jcuTMlSpTAZDKxfft2l5abP38+tWvXJjg4mAYNGrB48eJM73t6DBVW/tjfNpuNsWPH0qBBA4oUKUK5cuV44IEHOHPmTJ7Lym/be/z1237ooYcwmUyZ/nXt2jXP5WRfe4+ezuOe7DdXzuOXLl1i8ODBREREEBkZydChQ0lISPDmxysw9HI8XLp0iSeeeIJatWoREhJCpUqVePLJJ4mLi8t1vXI8eJdejgdnLDeXFyNGjMh1vQXxeJCkW/jde++9x0cffcS0adPYuHEjRYoUoUuXLiQnJ+e4zLx58xg9ejQTJkxg69atNGrUiC5duqQP/w/wzDPP8NtvvzF//nz+/PNPzpw5Q58+ffzxkUQOrl27xm233ca7777r8jLr1q1j0KBBDB06lG3bttGrVy969erF7t270+fx5BgSvpWYmMjWrVt55ZVX2Lp1KwsWLODAgQP07Nkz1+Xkt21cXbt25ezZs+n/vvvuu1znl31tTK6cxz3Zb66cxwcPHsyePXtYvnw5v//+O3/99RfDhw/32mcT7svreDhz5gxnzpxh0qRJ7N69mzlz5rBkyRKGDh2a63rleDAmV+t5w4YNy1RevPfee7nOXyCPB0V4XVJSkrJ3714lKSlJ61Bc9uCDDypApn9Hjx71+nYcDocSFRWlvP/+++nTrly5ogQFBSnfffddjsu1bNlSefzxx9P/ttvtSrly5ZSJEyemr8NqtSrz589Pn2ffvn0KoKxfv97rn8PI/LWvMzp69KgCKNu2bctz3gEDBijdu3fPNK1Vq1bKo48+qiiK58dQYaXF/nbatGmTAijHjx/PcR75bXuPP/f1gw8+qNxzzz1uLSP72nv0dB73ZL+5ch7fu3evAiibN29On+ePP/5QTCaTcvr0aS9+MuPT0/GQnR9++EEJDAxUbDZbtu/L8eBdejse2rVrpzz11FMur8tXx4PW+Zm0dPuBosC1a9r8UxTXYpwyZQqtW7fOdCWqYsWK2c47YsQIwsLCcv2Xk6NHj3Lu3Dk6duyYPq1o0aK0atWK9evXZ7tMamoqW7ZsybSM2WymY8eO6cts2bIFm82WaZ7atWtTqVKlHNfrK4qicC31mt//KS7ubH/ta0+tX78+034E6NKlS/p+9OQY8hkD/Li13N9xcXGYTCYiIyOzfd9Qv21FgbRr2vzT6b5es2YNpUuXplatWowcOZKLFy/mOK+R9rWiKKReS9XknxHP457sN1fO4+vXrycyMpLmzZunz9OxY0fMZjMbN27MV8zuUIBrGv1zsQqnq+MhO3FxcURERBAQEJDt+0Y6HoxwQOjxePjmm28oWbIk9evXZ9y4cSQmJuY4r6GOBzdkf/QLr0pMBB+cw1ySkABFiuQ9X9GiRQkMDCQ0NJSoqKhc53399dd57rnnPIrn3LlzAJQpUybT9DJlyqS/d7PY2Fjsdnu2y+zfvz99vYGBgVkq97mt11cSbYmETfT/Dk8Yl0CRwLx3tr/2tafOnTuX6/HhyTHkMwb4cWu1v5OTkxk7diyDBg0iIiIi23kM9du2J8IPGu3rAQkQoK993bVrV/r06UOVKlX477//ePHFF7nrrrtYv349Fosly/xG2te2RBsTwyb6bXsZjUsYR2CRwDzn09N53JP95sp5/Ny5c5QuXTrT+wEBARQvXtyvx0MioNEvnwTAhSqcro6Hm8XGxvLGG2/k2u3XSMeDEQ4IvR0P9913H5UrV6ZcuXLs3LmTsWPHcuDAARYsWJDt/IY6HtwgSbdwW+nSpbMc6KJgkn1duHhrf9tsNgYMGICiKEydOtULkQlvy+++HjhwYPrrBg0a0LBhQ6pVq8aaNWu48847vRGi8BI5j4uM/Hk8XL16le7du1O3bl1effVVv2xTuMcfx0PGCy4NGjSgbNmy3Hnnnfz3339Uq1bNp9vWE0m6/SA0VG2U0mrb3jZixAjmzp2b6zw5jR7ovOIWExND2bJl06fHxMTQuHHjbJcpWbIkFosly0ioMTEx6euLiooiNTWVK1euZLrannEefwm1hpIwzv87PNTq/Z2dn33tqaioqDz3tXOaq8eQzxSwH7c39rcz4T5+/DirVq3KsZUbDPbbtoSqLc5asOhzX2dUtWpVSpYsyeHDh7NNuo20r62hVsYljPPb9m7etrf5+jzuyX5z5TweFRWVaZA9gLS0NC5duuTX4yEUtYFRCz6owvmtXI+Pj6dr166Eh4fz888/Y7XmfGwb6XgoaAeEFvW8Vq1aAXD48OFsk25DHQ9ukKTbD0wm17p4ay0wMBC73Z7nfPnpilKlShWioqJYuXJl+g/n6tWrbNy4kZEjR+YYV7NmzVi5ciW9evUCwOFwsHLlSkaNGgVAs2bNsFqtrFy5kr59+wJw4MABTpw4QevWrT2K1VMmk8mlbt5a8se+9lTr1q1ZuXJlpkddLF++PH0/enIM+YxBftz+2t/OhPvQoUOsXr2aEiVK5BmXYX7bJpNLXby1ptVv+9SpU1y8eDFTBenmuIyyr00mk0tdvLWml/O4J/vNlfN469atuXLlClu2bKFZs2YArFq1CofDkV5p9wcTrnXx1ppejgdQ92WXLl0ICgri119/JTg4ONf5jXQ8GOWA0NPxcDPnY8VyKi8MdTy4Q5Ph2wo4rUfH89SwYcOUFi1aKEePHlUuXLig2O12n2znnXfeUSIjI5VffvlF2blzp3LPPfcoVapUyfR9dejQQfn444/T//7++++VoKAgZc6cOcrevXuV4cOHK5GRkcq5c+fS5xkxYoRSqVIlZdWqVcq///6rtG7dWmndurVPPoPR+WtfX7x4Udm2bZuyaNEiBVC+//57Zdu2bcrZs2fT57n//vuVF154If3vf/75RwkICFAmTZqk7Nu3T5kwYYJitVqVXbt2pc/jyjEkbvDH/k5NTVV69uypVKhQQdm+fbty9uzZ9H8pKSnp88lv27f8sa/j4+OV5557Tlm/fr1y9OhRZcWKFUrTpk2VGjVqKMnJyenzyb72LT2dx13Zb7Vq1VIWLFiQ/rcr5/GuXbsqTZo0UTZu3Kj8/fffSo0aNZRBgwb55HManV6Oh7i4OKVVq1ZKgwYNlMOHD2cqC9LS0tLXI8eDb+nleDh8+LDy+uuvK//++69y9OhR5ZdfflGqVq2q3H777ZnW44/jQev8TJJuH9B6p3rqwIEDyi233KKEhIT49PECDodDeeWVV5QyZcooQUFByp133qkcOHAg0zyVK1dWJkyYkGnaxx9/rFSqVEkJDAxUWrZsqWzYsCHT+0lJScpjjz2mFCtWTAkNDVV69+6dqVIgbvDXvp49e3aWx1YAmfZtu3btlAcffDDTcj/88INSs2ZNJTAwUKlXr56yaNGiTO+7cgyJG/yxv52PC8nu3+rVq9Pnk9+2b/ljXycmJiqdO3dWSpUqpVitVqVy5crKsGHDMiXPiiL72tf0dB53Zb8ByuzZs9P/duU8fvHiRWXQoEFKWFiYEhERoQwZMkSJj4/3yec0Or0cD6tXr86xLMgYkxwPvqWX4+HEiRPK7bffrhQvXlwJCgpSqlevrowZM0aJi4vLtB5/HA9a52cmRXH1oVLCVcnJyRw9epQqVark2aVGCCGEEEIIIYTvaJ2fyXO6hRBCCCGEEEIIH5GkWwghhBBCCCGE8BFJuoUQQgghhBBCCB+RpFsIIYQQQgghhPARSbp9SMaoE0IIIYQQQghtaZ2XSdLtA1arFYDExESNIxFCCCGEEEKIws2ZlznzNH8L0GSrBZzFYiEyMpLz588DEBoaislk0jgqIYQQQgghhCg8FEUhMTGR8+fPExkZicVi0SQOeU63jyiKwrlz57hy5YrWoQghhBBCCCFEoRUZGUlUVJRmDaGSdPuY3W7HZrNpHYYQQgghhBBCFDpWq1WzFm4nSbqFEEIIIYQQQggfkYHUhBBCCCGEEEIIH5GkWwghhBBCCCGE8BFJuoUQQgghhBBCCB+RpFsIIYQQQgghhPARSbqFEEIIIYQQQggfkaRbCCGEEEIIIYTwEUm6hRBCCCGEEEIIH5GkW4gM5syZg8lk4tixY4ZYr7dt3ryZW2+9lSJFimAymdi+fbvWIbnF4XDw5ptvUq1aNaxWK9WqVQPgvffeo3bt2jgcDrfXOW3aNCpVqkRKSoq3wxVCCFEAaV3m+6IsdPLGOjyRU1ksZbQwCkm6heHt2rWLfv36UblyZYKDgylfvjydOnXi448/9msc69at49VXX+XKlSt+3a632Gw2+vfvz6VLl/jggw/4+uuvqVy5stZhueWzzz5j/Pjx9OnTh1mzZvH5559z9epV3n33XcaOHYvZ7P4p76GHHiI1NZXPP//cBxG7JyUlhbFjx1KuXDlCQkJo1aoVy5cv1zosIYQoNJwJdXb/XnjhBa3DA3xTFgJeWUdeFEXh9ddfZ+3atZmm51QW66mMFiI3AVoHIER+rFu3jjvuuINKlSoxbNgwoqKiOHnyJBs2bGDKlCk88cQTfo3ltdde46GHHiIyMjLTe/fffz8DBw4kKCjIb/G467///uP48ePMmDGDRx55ROtwPDJ79mw6derE+++/nz7tww8/JC0tjUGDBnm0zuDgYB588EEmT57ME088gclk8la4bnvooYf48ccfefrpp6lRowZz5syhW7durF69mttuu02zuIQQorB5/fXXqVKlSqZp9evX1yiazHxRFgLMmjUr3+vIy8GDB5kwYQK1a9fOND2nslhPZbQQuZGkWxjaW2+9RdGiRdm8eXOWRPf8+fPaBJUNi8WCxWLROoxcOb+vm79HLbRv357o6GjmzJnj8jLJycns2LGD1157LdP02bNn07NnT4KDgz2OZ8CAAbz33nusXr2aDh06eLye/Ni0aRPff/8977//Ps899xwADzzwAPXr1+f5559n3bp1msQlhBCF0V133UXz5s21DiMLX5aF3lhHXrZs2QJA06ZNs7yXU1mshzJaiLxI93JhaP/99x/16tXLNlEsXbp0pr+3bdvGXXfdRUREBGFhYdx5551s2LAhz2089NBDREdHZ5n+6quvpl9RffXVVxkzZgwAVapUSe9q5ryfK6f7u1yJybmdw4cPp7eiFy1alCFDhpCYmJhn/K5s56GHHqJdu3YA9O/fH5PJRPv27XNdZ6lSpRg1alSW6c2bN6d79+4uxeUtQ4cOJSQkBLvdzssvv4zJZKJ169YcPXqUnTt30rFjxyzLuBN/s2bNKF68OL/88ovPPkNefvzxRywWC8OHD0+fFhwczNChQ1m/fj0nT57ULDYhhBC5c6UukZSURO3atalduzZJSUnp81y6dImyZcty6623Yrfbc9yGJ2UhuFYe5raO06dPExwczMMPP5xp+ooVK7BarTzzzDM5xpxRy5YtGTx4MAA1atTAZDJlqt/lVBbroYwWIi/S0i0MrXLlyqxfv57du3fn2q1rz549tG3bloiICJ5//nmsViuff/457du3588//6RVq1b5iqNPnz4cPHiQ7777jg8++ICSJUsCakHmrZgGDBhAlSpVmDhxIlu3bmXmzJmULl2ad999N9fYXNnOo48+Svny5Xn77bd58sknadGiBWXKlMlxnWfOnCE2NpZGjRplmm6329mzZw+dOnXK6yvzqsGDB6d/rilTplC8eHEqV66c3vp78xVzT+Jv2rQp//zzj0fx2Ww24uLiXJq3ePHi2d4rt23bNmrWrElERESm6S1btgRg+/btVKxY0aP4hBBCuCcuLo7Y2NhM05xlv6dCQkL48ssvadOmDS+99BKTJ08G4PHHHycuLo45c+bk2mvO3bIQXC8Pc1tH+fLleeSRR5g+fToTJkygcuXK7N+/n/79+3PXXXfxf//3fy59/rFjx/Lqq6+SkpLC+PHjgay973Iqi/NTRgvhF4oQBrZs2TLFYrEoFotFad26tfL8888rS5cuVVJTUzPN16tXLyUwMFD577//0qedOXNGCQ8PV26//fb0abNnz1YA5ejRo+nTHnzwQaVy5cpZtj1hwgQl40/o/fffz7Jsbut1NSbndh5++OFM6+zdu7dSokSJHL8bd7ezevVqBVDmz5+f5zr/+OMPBVA2btyYafru3bsVQPnmm2/yXEdu2rVrpzz44INuLfPiiy8qRYoUUex2e/q0l19+WQGU+Pj4TPN6Ev/w4cOVkJAQt2Jycn63rvzL7vhRFEWpV6+e0qFDhyzT9+zZowDKtGnTPIpNCCGE65zleXb/bp7Hk7qEoijKuHHjFLPZrPz111/K/PnzFUD58MMPXYrPnbJQUVwvD3Nbh6IoyqlTp5SgoCBl5MiRSmxsrFKtWjWlcePGSkJCgktxO1WqVEl56KGHcnw/p7I4P2W0EP4gLd3C0Dp16sT69euZOHEiS5cuZf369bz33nuUKlWKmTNn0rNnT+x2O8uWLaNXr15UrVo1fdmyZcty3333MWPGDK5evZqlBdGXPIlpxIgRmdbRtm1bfv7551xj99Vn37lzJ2azOUvvgh07dgDQoEEDl9eVXSuwzWYjJSUlSytCTq3Azpjq1auX6f2LFy8SEBBAWFhYvuMvVqwYSUlJJCYmEhoa6vLnA2jUqJHLo4xHRUVlOz0pKSnbgfic99Zl7IoohBDCtz799FNq1qzpk3W/+uqr/P777zz44IMkJCTQrl07nnzySZeWdacsdM7vSnmY2zpAbe0eNmwYM2bMYOvWrSQlJfHnn39SpEgRl+IGtffAiRMnaNiwYY7z5FQW56eMFsIfJOkWhteiRQsWLFhAamoqO3bs4Oeff+aDDz6gX79+bN++neLFi5OYmEitWrWyLFunTh0cDgcnT56kXr16fov5woULbsdUqVKlTPMVK1YMgMuXL+eYNHuyHVfs2LGD6tWrZynYtm/fjtVqTR91VFEUwsPDOXLkSJZ77J3++ecf7rjjjizT161bx/fff59p2tGjR7O9J84ZU5cuXbwaf0aKogB4NDJqsWLFcryXzlUhISHZPoc0OTk5/X0hhBD+0bJlS58NpBYYGMisWbNo0aIFwcHBzJ492+Wyx52y0Dm/u+VhTp577jk++eQTdu7cydq1aylfvrzLy4J6AQDINenOqSzOTxkthD9I0i0KjMDAQFq0aEGLFi2oWbMmQ4YMYf78+Tz66KP5Wm9OJ/DcBjPxhZzu43IWNP60a9euLPd/AWzevJlatWphtVoBNUkODQ3NMeGG7FuBn332WaKiotIHp3PKqRX4ypUrnDx5MksLdYkSJUhLSyM+Pp7w8HC348/o8uXLhIaGepTcpqamcunSJZfmLVWqVLb7umzZspw+fTrL9LNnzwJQrlw5t+MSQgjhH+7WJZYuXQqoF1YPHTqU5fFk2XG3LATXy8Pc1uH01ltvAZCWlkbx4sXzjPdmzqQ7u3icciqL81NGC+EPMnq5KJCcV5/Pnj1LqVKlCA0N5cCBA1nm279/P2azOdcBqIoVK8aVK1eyTD9+/Himv925uprfmLTcjsPh4MCBA9SpUyfT9PPnz/P333+nX6Het28fdevW5fLly4SFhdGiRYts1+dsBc74r1ixYpQtWzbL9JweU5LT1XHnFfqjR4+6Hf/Njh49mmmZUaNGpV/QcTgc3HPPPTmO0Lpu3TrKli3r0r+cRiFv3LgxBw8e5OrVq5mmb9y4Mf19IYQQ+uRqXQLUMu31119nyJAhNGnShEceecSlwTjdKQvBvfIwp3U4vf/++8ycOZNPPvmEgICA9ATcHTt37qRs2bK5Dkh3c1mc13Qh9EKSbmFoq1evzrald/HixQDUqlULi8VC586d+eWXXzI9sismJoZvv/2W2267Ldd7mqtVq0ZcXFx6YQZqMv/zzz9nms9531J2herN8huTq3yxHbvdjs1my/S4srS0NB599FHS0tLSr7DXqVOHCRMmMHLkSBISEti8eXO+P09OnPee3VzRaN26NQD//vuv2/HfbOvWrdx6663pf48bN47vv/+e06dPM2bMGBRFyXGEVmdrviv/cmrN79evH3a7nenTp6dPS0lJYfbs2bRq1UpGLhdCCB1ztS5hs9l46KGHKFeuHFOmTGHOnDnExMS49Ngtd8pCcK88zGkdAAsXLuSFF17gjTfe4PHHH2f48OF89dVXOSboOTlx4gQVKlTIdZ6by+K8pguhF9K9XBjaE088QWJiIr1796Z27dqkpqaybt065s2bR3R0NEOGDAHgzTffZPny5dx222089thjBAQE8Pnnn5OSksJ7772X6zYGDhzI2LFj6d27N08++SSJiYlMnTqVmjVrsnXr1vT5mjVrBsBLL73EwIEDsVqt3H333TkOIpKfmNzh7e1YrVYaNmzI1KlTCQkJISQkhPnz56d36cpYSO/cuZMOHTp47bPkZOfOnZQvXz5Ld7aqVatSv359VqxYkf78UHfid9qyZQuXLl3innvuSZ9Wvnx57r//fnr06AHA33//neMgb964p7tVq1b079+fcePGcf78eapXr86XX37JsWPH+OKLL/K1biGEEL7lal3izTffZPv27axcuZLw8HAaNmzI+PHjefnll+nXrx/dunXLcRvulIXgXnmY0zq2bNnC4MGDGTx4MC+99BIAzz//PNOmTeOtt95i5syZmWIxmUy0a9eONWvWZIm/SpUqrFq1ivfee49y5cpRp06d9LqVc1s3l8W5TRdCVzQcOV2IfPvjjz+Uhx9+WKldu7YSFhamBAYGKtWrV1eeeOIJJSYmJtO8W7duVbp06aKEhYUpoaGhyh133KGsW7cu0zzZPeZDUdRHk9WvX18JDAxUatWqpcydOzfbx3y88cYbSvny5RWz2ZxpPTmt15WYnNu5cOGCS7Fmx5XtuPPIsK1btyrNmjVTgoODlXr16inTp09XvvjiCwVQjh8/nj5f3bp1lQ0bNuS5vpu5+8iwli1bKnfddVe2702ePFkJCwtTEhMT3Y7faezYsUqlSpUUh8ORafr06dMVIMt36StJSUnKc889p0RFRSlBQUFKixYtlCVLlvhl20IIIW6UvZs3b85zHnfrElu2bFECAgKUJ554ItNyaWlpSosWLZRy5coply9fznG77paFiuJeeXjzOk6ePKmULVtWadOmjZKcnJxp3pEjRypWq1U5cuRI+rT4+HgFUAYOHJhtjKdPn06vqwDKRx99lOn9nMrinKYLoScmRdFgFCYhRIGXmppKWFgYly9fduuRId4WFxdH1apVee+99xg6dKjby6ekpBAdHc0LL7zAU089lT5948aN9OvXj1atWlGyZEmmTZvmzbCFEEIIr8lvWeiNdSxevJgePXqwY8cOtx4tCjmXxTlNF0Jv5J5uIYRPxMfHA2ryraWiRYvy/PPP8/777+NwONxefvbs2Vit1kzPST9x4gT9+/dn7ty5TJkyhW+//ZYTJ054M2whhBDCa/JbFnpjHatXr2bgwIFuJ9yQfVmc23Qh9EZauoUQPvPggw+yYMEC6tWrx4YNG7QOxyvi4+Np06YNTz31VPqV/pEjR6IoirR2CyGEEEKILCTpFkIIIYQQQgghfES6lwshhBBCCCGEED4iSbcQQgghhBBCCOEjknQLIYQQQgghhBA+EqB1AFpxOBycOXOG8PBwTCaT1uEIIYQoxBRFIT4+nnLlymE2y/Xw3Ej5LYQQQi9cLb8LbdJ95swZKlasqHUYQgghRLqTJ09SoUIFrcPQNSm/hRBC6E1e5XehTbrDw8MB9QuKiIjI17psNhvLli2jc+fOWK1Wb4TnVxK/tiR+7Rg5dpD4tebN+K9evUrFihXTyyaRMym/b5D4tSXxa8fIsYPErzUtyu9Cm3Q7u6RFRER4pdAODQ0lIiLCsAeexK8diV87Ro4dJH6t+SJ+6S6dNym/b5D4tSXxa8fIsYPErzUtym+5cUwIIYQQQgghhPARSbqFEEIIIYQQQggfkaRbCCGEEEIIIYTwEUm6hRBCCCGEEEIIH5GkWwghhBBCCCGE8BFJuoUQQgghhBBCCB+RpFsIIYQQQgghhPARSbqFEEIIIYQQQggfkaRbCCGEEEIIIYTwEUm6hRBCCCGEEEIIH5GkWwghhBBCCCGE8BHdJN2ffvop0dHRBAcH06pVKzZt2pTr/B9++CG1atUiJCSEihUr8swzz5CcnOynaIUQQgghhBBCiLzpIumeN28eo0ePZsKECWzdupVGjRrRpUsXzp8/n+383377LS+88AITJkxg3759fPHFF8ybN48XX3zRz5ELIYQQQgghhBA500XSPXnyZIYNG8aQIUOoW7cu06ZNIzQ0lFmzZmU7/7p162jTpg333Xcf0dHRdO7cmUGDBuXZOi6EEEIIIYQQQvhTgNYBpKamsmXLFsaNG5c+zWw207FjR9avX5/tMrfeeitz585l06ZNtGzZkiNHjrB48WLuv/9+f4UtCrK4OFiwAJKSQFEyv2cyqf+cr12dlsv7JrudCjt2YLp8GazWHJdxKAqbzv5LXPIVFFN6QOmvTWYz6dGaTNhCg7lauQwJZYqByYSJ69szpS+c67SM03OapgDbt9nZseMs8w9exmK2ZPyysixLNtuDbOLJbplcpllNwVQMaEqEOQp32O1m9uypwvHjZiyWvOfXG7vdzNmzZenaVetIhBBCCM/FnYjj/J7z1LirhtahuExRFOwpdmxJNtKS0rAl2rAlJGJPvIojNQlHagqO5CQcCVdxxMfjuBaPPeEayQlxXL1ylUtHLjP/859BsWNS7Or/2EFRUBTYdktTYkuXymbLJmcAmf/2KwW73c4vU2drsn1rqoUW26sSnGL1cA0KNopAN6+GlSvNk+7Y2FjsdjtlypTJNL1MmTLs378/22Xuu+8+YmNjue2221AUhbS0NEaMGJFr9/KUlBRSUlLS/7569SoANpsNm82Wr8/gXD6/69GKxJ+BomDp0AHz1q35X5eLAoBmLsxnBm7xYP2nwmF+PZjcGk4V9WAFrigGJPpo3e442B0WfwJXol1cwAI09GFAvmYBWtK+fTIdOmgdi/vk3JN1XUIIURhNqToFxa5w36L7qNHNt4m34lBIupREYmwiiRcTSYlLITkuOdP/KXGJpFyKI/lKAilXEkm5mqIm1cl20pIVbMlgSzGToRXEDYFAyev/svdfx6p8/YY0JuZk8jPwyDf5W8eFkg7A7pV4XKF50u2JNWvW8Pbbb/PZZ5/RqlUrDh8+zFNPPcUbb7zBK6+8ku0yEydO5LXXXssyfdmyZYSGhnolruXLl3tlPVqR+CHwyhXuup5wn23VCsdNzZ8m51XFDC3g2U1DUW5Mz/BejtNcWN+hxEOk2lMIMQcRaA7CpHC9rRlQwHT9pXNaRGIa5S6mUCFe4ZkN8PhmE7M7l+erO8uRls2NJcqNdvJMr2+epmSI62q8lcOHimG2OIiISMl2/vTAnIFm+h8UU9ZpWeYzZXwn6/xp1jiSihyCmosIiF5P/c3zCb1WK+uHLGB27SpJfHwQq1btJDn5rNbheEzOPZCYqIerVkIUEopyozeZ3tmuQkC4ceL1kGJXy/SDvx/0KOl2pDmIPxPP1VNXiTsZR8K5BBIvJKqJ9YVErl24lv466VISiiNrPcc12d+ZazI7sAbasAbasATYMZsdN/6ZHFgsdkwmByazA5NJna7+nbmeo6CAYmJ3l9rp626+ZGPW7UHW3ph+p6BNKzu0XVUHKEpCSBobmsV5tI6UoGQ6U9q7geVC86S7ZMmSWCwWYmJiMk2PiYkhKir7rqKvvPIK999/P4888ggADRo04Nq1awwfPpyXXnoJsznrD2LcuHGMHj06/e+rV69SsWJFOnfuTERERL4+g81mY/ny5XTq1Amr1dNuDtqR+G8wXR8XQKlQgZJr13ojvDy5Gv+d70WQnAb7R+6garGqrq08OZm0FSswT5lC4J9/8ugfpxiWXAP7Dz9A0fw3e69aZaLrqwFUrBzH3r1WTY+fAxcPcP/C+9kes53L3R5m+dB/KRqc+2c0+rF/xx1m/vkHGjVqRLduTbQOx21G//69Gb+z95UQwnXxKfEEBQQRaAl0faGEBGjWDDp1gk8+8V1w3nBhPSy/Fao8CK3naB2NX6RcTckyzW6zk3A2gbiTcVw9dZWrp65y5fgVjv57lDlvzSH+dDwJ5xLcTqSDQ5MICUsiODSZoNAU9f+QFIJCkwkOTSEoOIVgcwpB9iSC7ClYU21YU9KwJtsISLZhTU3DGhhIQMnSpJQozS7lKqviD7HddI2zYXAuDBKLhlCzSnOaV7mNxmWbUKNEDaoXr84DA0P5+WczH39sZ9SorPe3HQN+BEYCn3Vt5dF36Us2m43FixfTrVs3bcrv8ep/YfMD6Ni9hNuLq/H/jT/7l2uedAcGBtKsWTNWrlxJr169AHA4HKxcuZJRo0Zlu0xiYmKWxNpyvUVSyeGqT1BQEEFBQVmmW63eSxS8uS4tSPzA9dYmU/Hifv8ucos/zZFGcpr6SLxS4aVcj81qhd69oVcv+OYbGDkS8+rVmDt1gmXLoFR29wq5LmNHAK2Pn/pR9VnxwApazmzJkctHeGnNS3x+9+cuLat17J4ymRyAev6zWjU/nXvMqN+/kzfiN/LnF0ILcclxRL4bSVRYFGefdaOnzzffwMGD6j+9J9173lL/P/ploUm6d32zi9CSoVw9eTU9wY4/G082HfAAiONGK6c5ACJK2YgocZXwsPOEhscTGn6NIhGJhIYnEhp+jdDwRIpEJBISkYYlogKEVIDEYDiRALvPwrYTcMwGF8l821zFitCgATRuqP5fuzZUrcpe2xne/OtNvt/9fXpPvNJFStO3Tl/G1u5F++j2OVwUcuT6PaRd/9+4JbuPGfAL0kWoo0eP5sEHH6R58+a0bNmSDz/8kGvXrjFkyBAAHnjgAcqXL8/EiRMBuPvuu5k8eTJNmjRJ717+yiuvcPfdd6cn30J4JClJ/T84WNs4bpJkS0p/HRIQ4v4KTCb43/+gbl246y7Yvh26dYNVqyA83HuBaqxEaAlm3zObdnPaMX3rdB5v+TgNyxj5nm0hhBDZ2XRa7Zl2LuGcewtq3iXXDabCWafdOCVrd2qz1UxEhQgioqwULZVEWNELBJj3UbbUaYoWPUtEiTiKhCfe6K4NYA6EsGoQXh3Ca9z4/1IgLN8C81bBmjVq74eMiheH9rfArbfCLbdA06ZQrFimWU7GnWTsiscyJdudqnbi0WaP0rNWT6yW/F1IdeaUcjk2B5J0e+bee+/lwoULjB8/nnPnztG4cWOWLFmSPrjaiRMnMrVsv/zyy5hMJl5++WVOnz5NqVKluPvuu3nrrbe0+giioEhWW5MJ8SCx9aGktBtJd3BAPi4ING0Kf/4JbdvCv/9Cnz6wePGNUdM9pKdbzW6vfDv31ruXeXvmMX71eBYOXKh1SD5npDqkEEJoSk8FVl5Muniyr18ERwaTfCWZUnVLUaNHDYpWiCCiZBIRYceICN5DEWUzpitbIS0+68Imi5pMF60PkQ0gsr76OqwamC1qIbltG3y9EBZOhV27Mi9fsiTceSd07KjWj2rWzPE4SU5LZtK6Sby99u30ulmfOn14ue3LNCnrvdu8nENr6iJR0yNJuj03atSoHLuTr1mzJtPfAQEBTJgwgQkTJvghMlGoOJNunbZ0BwcE3/S4LQ/Urq0m2h06wIoV8NxzMGWKR6vSa7L3avtXmb93Pr8c+IXt57bTOKqx1iEJIYTQA0m6dSkgJACuQJ83k4gqOR0u/A3J5yAe9Z+TJQSKNcYe2ZQdJyw0aHc/1uL1wXJTvU1RYMcOmDsX5s+HEycyrMMC7dpB165qot2oEWQzHtTNNp/ezAMLH2B/rPp0pbaV2jKl6xSvJttOBswp/cuAX5CBQhXCD5zdy3Xa0p2vVu6MWrSAr79W7/f+6CN1UJkHHvDOunWgdsna9K/bn3l75vHRxo+Ydc8srUPyCSPVHYUQQheMdOIsyN3L7ckQux5iVsOFfyCpKRAG+yZB9PVbBsxWiGwMJVpA8eZQojlE1AFzAA6bjZNnF9MgshFk7Mp9/Dh8+6167/6ePTemh4aqt9f16qXeXle8uMuhptpTeePPN5j490Tsip2osCg+6PIB99a7N/8NITmQ7uV5kKRbCIPTaUu3cxA1j+7nzkmvXvDKK/DGGzB8ODRsCI0be2/9Gnuq1VPM2zOPb3d9y7sd36VUkfwNGieEEKIAMFLSncPjqQzJYYfLW+HcSohZqbZk25MzzHC9tbh0G2jUDEq1geItwJV6T2oq/PwzfP45rF59Y3pQEPTsCffdB126eNSgcib+DP3n92fdyXUADKo/iE+6fULxENeTdk8YMKf0LwN+QQYKVQg/0GnSnZKmPkIjKCDrCPz58uqrsHUrLFoEAwfCli1QpIjLi+u1eznALRVuoXm55vx75l+mb5nOS7e/pHVIPqPn/SCEELpipKTb6N3LE47CmT/g3Aq1Rdt2JfP7wVFQpgOUvh0l8DKQAi0+gXrZPzL4ZqHnzmF+8UX46is4f16daDJB+/bq4LF9++br8ah/HvuTe3+8l5hrMRQNKsr0u6czoN4Aj9eXUV7lttzTnQdJuoUwuLTrv2KdPb7HoVx/NJS3u5qZzTBnjno/04ED8PTTMGOGd7ehEZPJxBMtn+DBhQ/yxbYvGNd2HGajV2CEEELkj6GSboN1L3fY1K7iZxbB6UVwdV/m960RUOYOKHMnRN2pdhV37g/TJCAl7+7aigLLl2OZPJlOS5femF6uHDzyCAwdCpUq5fujzNgyg5GLRmJX7DQo3YAF9y6gevHq+V6vqwyYU/qXAb8gA4UqhB84rj83UWeFsjPp9sm9QyVLqvd3d+wIM2eqXbD69XNrFSaTPpta+9Xtx6jFozh65Sh/Hf+L9tHttQ7Jq3R2mAohhP4Z6cRphKQ7+QKcWawm2meXge3Gc7MxWdRu4mW7qIl28Wbqw7Szk1c1IjUVvvsO/u//YNcuzIBiMqF06oR55Ejo0QMC8p/WKIrC+NXjeXPtmwDc1+A+Ztw9g1BraL7X7VYc1/+XpoIcOJNuA/xEnCTpFiIjZ9LtwiiW/uRMun3WUtuhA7zwAkycCMOGQcuWXrlSrLVQaygD6w9kxtYZzNo2q8Al3UIIIdxkqKRbX3WRdImn4OTPcPInuLAWrtdRAAgqCWXvgvLdoWxnCCyW83qyc/PuuXoVPvtMHfT17Fl1WpEi2IcMYVW9erQfOhSzl3on2uw2hv02jC93fAnAhHYTmNBugs8GSwNjHY66YsCrEpJ0C5GR8yYbnSXdyvWzi0+7R7/2GqxaBRs3qt2zli3LszQwwr3EDzd5mBlbZ/Dj3h/5pNsnRARFaB2SEEKIfPI4ETJSlqOnpDvhCJz4SU20L27M/F6xJlC+B5Trpg5+Zna/+VG5uUIRF6cm2h98AJcvq9PKlYMnn4Thw3GEhZG4eLGHHyarVHsqg34axIJ9C7CYLHze43OGNh3qtfW7ywDVK+EmSbqFyKiwtnSDeh/7V1+pI5ivWAHTpsHIkb7bnp+0Kt+K2iVrsz92Pz/s+YFHmj6idUheZ4SLH0II4U1ZkjRXGSrp1rjvbMIxOP4dHJ8HV3ZkeMMEpW6FCn2gYh8Ii/baJk3x8fDaNPjwQ7hyRZ1Yp47aG2/gQAgMVKfZbDmtwm2p9lQGzB/ALwd+IdASyI/9f+TuWnd7bf35YaCj1b8MWO+RpFuIjApz0g1Qsya88w489RQ89xx07gzVquW5mJ7rMCaTiYcaPcQLK1/gm13fFMikWwghhIv0XGBloUFdJDkWTs6HY9+og6I5mSxQuh1U7AsVe0NIWe9u13E9i+rSRW1VB6hbF8aPV8eZsfjmAkSqPZV+P/Tjt4O/EWQJYuHAhXSt3tUn23KHAXNKbRjo56yvzEIIrel8IDW/jL49apT6uI3ERHjoIbDbc5zVKC2sgxoMAtTHf5y+elrjaLxHZ4epEELon84uqufKXy3dadfg2Lewpgf8XBY2P3Y94Tapo423nA69z8GdK6HmY95NuNPS1KemXL6k/p0Qrybb8+bBrl1w770+S7gdioMHfn6A3w7+RnBAML8O+lUXCXdGUsznwCD1z4wMdOYRwg903tJt8sfp12yGWbMgLAz+/humTPH9Nn2sUtFKtKnYBgWFH/b8oHU4QgghtGKkq5W+vNCuKJhi/6FJykcE/FoB1g1WRyBX0qBYU2gyCXqdhDtXQfVhEFzS69vn11+hYUMYPhzF2dL97rtqsj1ggE/rYoqi8NQfTzFvzzysZisL711I52qdfbY94SMG+jnrK7MQQmt6HUhN8cNAahlVqaI+lgPgxRdh377c5zeAQfXV1u7vdn+ncSRCCCHyy5cjSuuGL8r8xDOw5x34vRYBq++gUtoqTPZrEFYN6r8C3ffBXVugzrMQWt772wfYuRPuuAPuuUetXxQvDkWKAGDq0cMvdbA3/nqDTzZ/ggkTX/X+ii7Vu/h8m+4wYEOuyIO+MgshtKbzlm6/Jd2gPjqsSxdIScmxm7lRupcD9K/XH4vJwuYzmzl08ZDW4XiVkfaDEEJoykjJure6l9tT1Ud8rbkbfqkIO8ZB/CEUSxGOB9xJ2h1r4O5D0PB1KFrbO9vMzuXL8MQT0KQJ/PknBAerA6T99x8EBftuuzeZvW02E9ZMAOCjuz5iYP2Bftu2k6vltoGOVv8yYL1HX5mFEFqTpPsGkwlmzoSICNi0yfDdzEsXKc2dVe8E4Pvd32scjRBCiPzwePRyI8lv0p10FnZOUBPttX3gzO/qM7VL3QatZpHW8yTbg55AKXmrby9GOBzwxRfqYK2ffKL+3b8/HDgAEydCZOSNeX2cZa49vpZHf38UgJfavsSolqN8u0EPFYKj2zsMdFVCX5mFEFqTgdQyq1AB3n9fff3yy3D4cLaz6ezrylHGLuYFocJmlO9dCCF0w0gnTk/L/NiN8M9gWFgJdr8OyechOArqjoUe+6HTWqg2BALCvBtvdrZuhVtugUcegdhYdZC0lSvhhx+gUqX02fxRJh+7cow+P/TB5rDRr24/Xr/jdZ9vMy95HY4GOlr9y4BVOEm6hchIWrqzGjZMvfcqKUl97fyOMF635t61exNkCWJf7D52xuzUOhwhhBAe8viebiMl3e5U0+2p6gjkS2+BZbfA8W/VQdFKtYHbfoBeJ6DxOxBRy3fhZpSYCM8/Dy1bwubNEB4OkyfD9u3QoUOOi/nqXv34lHju/u5uYhNjaVq2KV/2+lKbOpXwLgP9nOVoEyIjnQ6klj56uRaVBZNJfZxHSAisWaO+NqiiwUXpVqMbULC6mBvt4ocQQggXuNK9PCkGdr0Bv0arI5Bf3AjmQKjyIHT9Fzr9DZX6g9nq83DTrVwJDRqoPeXsdvWxXwcOwDPPgDWHOHxYjimKwsO/Pszu87uJCovil4G/EGoN9d0GvUCK9YJHX5mFEFrTaUu3gp9HL79ZtWrw1lvq6zFj4NSpTG+bTMYpHgbUGwDAj/t+LBBdzIUQQhRQ5sAbr28ury5thfUPwi+VYNd49f7t4Cho8DrccwJaz4HizfwaLpcuwcMPQ8eOcOSIeovar7/C999DWRef7e2DtoVPNn3Cj3t/xGq28vO9P1MhooL3N+IjBmrI9S8DVt8CtA5ACF3RadKtafdypyefVO/B2rABRoyA335DUYxXHHSv0Z3ggGAOXzrMzvPG7mJuqF6SQgjhRR5fNDXSiTMw8sZre6KahJ/8GQ5+BBf+ufFeiVZQ60mo2A8sgVlW4xeLFqn3bZ87p37Hjz0Gb7+tDsbqAl9dBN90ehPPLnsWgEmdJ3FLhVt8sh1vM2BOqQ0D/Zz1lVkIoTUZSC1nFos6+mhgoFq4fvutdrHkQ3hQOF2rdwXgp30/aRyNEEIIv9JZ+Z6rgAxdoLeNhV+rwj/3qgm3KQAq3wedN0CXDRB9nzYJd0ICPPoo9OihJty1a8Pateoo5S4m3Bl58za6S0mXGDB/ADaHjb51+vJEyye8tm5/MdDRKvIgSbcQGUlLd+7q1oVXXlFfP/UUgVfOA8aqwwD0r9sfgJ/2/yRdzIUQwoA0GeNES4c+hcRTEFwa6o+He45Dm2+gZCvtYvrnH2jUCKZPV/9+5hl1tPI2bdxfl5eLYkVRGPLLEI7HHadasWp80fOLwnfMFGTO48VAu1RfmYUQWtP7QGp6OLuMHasWshcvUm+a8a4aA/So2YMgSxCHLh3iePJxrcPJN7luIIQQBVDGk3uxpnDLl+r92g1fg9By2sWVmgrjxsHtt6v3bleqBKtWqaOTh4Tkb91equbM3DqTXw/8SqAlkPn951M0uKh3VuwleZXbUqwXPPrKLITQmrR0581qhVmzwGKh3N8/cA8LtY7IbRFBEXSp3gWA9VfWaxyNEEIIvzFia2eJlupI5FUfAEuQtrEcPgytW8M776h1pgcfhJ071UeL5oM3e50dvnSYZ5Y+A8DbHd6mSdkmXlu3vxnwaPUPA16V0EENXggd0WnS7SyMdJF0AzRtqo5iDnzGY0TYr2gbjwecXcz/ufJPHnPqlxHrjkIIIdwUHKWPE/7336vl/9atULw4/PQTzJkDRb3XipzfLuBpjjTu//l+rtmu0T66Pc+0fsZLkflGTk9/MWBOqQ0d/CxcpZMavBA6IQOpuW7CBBLK16IcZxkT+6rW0bjt7pp3E2gJ5FTKKfZe2Kt1OEIIIfxBZ+V77nSSeiUmwrBhMGgQxMdD27awYwf06eO9bXjpo77z9ztsOLWBiKAI5twzR1/1Jg8Y6WgVuTP2kSiEt+m0pVuXSXdwMDtGzQDg3qtfYfrrL40Dck/R4KJ0rNIRUAdUE0IIIXRJywsFe/dCy5Ywc6Yax8svq/dvV/DRs67z8VG3n9vOa3++BsCn3T6lcmRlLwUldEcn16PcoaMavBA6oPOB1HSVdAOX6rXlc4YDYBk5EpKTNY7IPX1qq1fpF+xfoHEk+SMDqQkhhPC6b7+F5s1hzx4oUwaWL4c33oCAAK9vKr/3dKc50hj661DSHGn0rdOXwQ0GeykybUix7iIDdQXQVw1eCK3pvKVbb4+7UBQYy7uct5TBdOgQvPmm1iG55e4adxNgCmDPhT3sj92vdThCCCF8TWflaO40Sr1sNvXxX4MHQ1ISdOyodie/806fb9rTes6HGz5k69mtRAZH8km3T3RXX/JUwfgUPmDAqxL6yiyE0JpOk24FnQ2klkEckbxe+l31j3ffhV27tA3IDcVCitEwrCEAP+79UeNo3FdA6hRCCOE/hjxx+jHmmBg1yf7wQ/Xvl16CJUvUlm5fykcS9d+l/xi/ejwA/9f5/4gKi/JSUEL3DPRz1l8NXggtyUBqHlkRcTeOnj0hLU0dbMVu1zokl7WJbAPA/L3zNY5ECCGEX8m9OZlt2KCOTv7XXxAeDgsWqD3YLBb/xeBm9UtRFIb/PpyktCTurHInQxoP8U1cfiZHZsGjzxq8EFrRaUu3XpPujPUV+5QpEBEBGzfCp59qF5SbWhZtSYA5gJ0xOzl48aDW4XhE6o3Clz799FOio6MJDg6mVatWbNq0Kcd5Z8yYQdu2bSlWrBjFihWjY8eOuc4/YsQITCYTHzpb1YQQN/jz5D5jBtx+O5w5A7Vrw6ZN0Lu33zbv6T3dX+38ilVHVxESEMLnPT4vMN3KnQrWp/EiA9Z79FWDF0JrMpCa58qXV7uXA7z4Ipw4oW08LgoPCKdDdAcAFuwz9oBqQnjbvHnzGD16NBMmTGDr1q00atSILl26cP78+WznX7NmDYMGDWL16tWsX7+eihUr0rlzZ06fPp1l3p9//pkNGzZQrlw5X38MIW7ImJQZ5oqlD1Mvux3zs8/C8OHqvdx9+qgJd+3avttmLtxJmuPT4nlh1QsAvNb+NaoVr+arsLwur0PPKEem5gx0VULHNXghNCAt3fkzfDjcdhtcuwYjRxqmQtOrVi8AftpnrEeHFbAL+kKHJk+ezLBhwxgyZAh169Zl2rRphIaGMmvWrGzn/+abb3jsscdo3LgxtWvXZubMmTgcDlauXJlpvtOnT/PEE0/wzTffYLVa/fFRhMjKIGWUz1y9yi1vvYXl44/Vv19/HX78Ue1a7m8e7Ipvz33LxaSL1CtVj6dvedrrIemBFPM5MOBP1/tj/gthZDpPuk06O/1mqa+YzTB9OjRuDIsXw7x5MHCgFqG5pWfNnjz+x+P8e+ZfTsSdoFLRSlqHJITmUlNT2bJlC+PGjUufZjab6dixI+vXr3dpHYmJidhsNooXL54+zeFwcP/99zNmzBjq1auX5zpSUlJISUlJ//vq1asA2Gw2bDabqx8nW87l87serfzwg4O33rqNiRPNmEwOrcNxm6KYuXKlrUfxxxVXoKX6unVr15dte0nhveuv27Rx4MjH1cv8xO+K3vXtPH8HrPlTYdxY766/bPJR/u/gPVRJ3IMSEoL9iy9Q+vVTx2bRUFpamku/x82nNrM0dikAH3b+EBxgcxjnd6woJsCMw2HHZsuaQTosFjCbsdvt2Bz6+21rfe4MIAATJmxpNvAgBG/G7+o6JOkWIiOdDqTmvNdJ9y3dAHXqqKOdTpgATz4JnTpBiRJaR5Wr0kVK07ZyW/46/hc/7/uZp255SuuQhNBcbGwsdrudMjeNWlymTBn273ftEXtjx46lXLlydOzYMX3au+++S0BAAE8++aRL65g4cSKvvfZalunLli0jNDTUpXXkZfny5V5Zj7+99trtHDqk7/Nr3ornPUt2qpjTk+4NG1wvG0tn6OS5caMJe747fXoYvwsaFTHDHXDxotmtz5iXW/mHafSmNBe4GFSa3W88z5XQUPViuUbs1wdgXb16NYGlA3Od16E4GHdoHA4ctI1sy7U911i8R7vYPXH+fEugLHv37mPx4uNZ3j/XsiWULcvuXbtYfDzr+3qh1bnzbuVuTJhYtWoVySWSPV6PN+JPTEx0aT5JuoXISOct3XpNuk2mm67SvvCC2sq9dy889xzMnq1NYG7oU7sPfx3/i5/2/WS4pLuw95AU+vTOO+/w/fffs2bNGoKDgwHYsmULU6ZMYevWrS7fuzlu3DhGjx6d/vfVq1fT7xWPiIjIV4w2m43ly5fTqVMnQ3Zzf/VVdVTpF16w0ayZvi4Wu8Jut7N9+3YaN26Mxc0RsncmpPHG9Vxk/nzXW2fLbrbjbOqe950NJR814fzE74qqdjvYoVUrxa3PmJuKa7+j+WePYElLZStNeL/FZ3wxsqHmx/8u8y7s2Lmjwx0UrVQ013m/2vkVB3YcINgczBcDvyC6eLR/gvSimTPV32vdunXo1i1rj59Z14+nBvXr082FHkH+pvW509nzs0OHDlDe/eW9Gb+z91VeJOkWIiMZSM07AgNh5kxo0wbmzIH//Q/uvFPrqHLVu05vnl76NH+f+JuYhBjKhPn4maRC6FzJkiWxWCzExMRkmh4TE0NUVO7PwZ00aRLvvPMOK1asoGHDhunT165dy/nz56lU6cYtHHa7nWeffZYPP/yQY8eOZVlXUFAQQUFBWaZbrVavVfa8uS5/cl7wbNPGRI8exqvS2WwKwcHn6NbNjNXqXvyRRyzwtfq6Xz83lg28MW/fvgHg5nYzyk/8Ljlkhs1QoYKJfm3zuX5FgUmT4KPnAThQtzdt937NrcGx+jj+r1e/8oolLjmOF1e/CMCAMgOILh6tfewecN6OYLFYsj12nJfQLAEB6PnTaX3sWAOt5OcL8kb8ri5vkBq8EH4iLd1uybWFtXVreOwx9fWjj4KL3W+0UqloJVqUa4GCwi8HftE6HJfo7C4IUcAEBgbSrFmzTIOgOQdFa926dY7Lvffee7zxxhssWbKE5s2bZ3rv/vvvZ+fOnWzfvj39X7ly5RgzZgxLly712WcRIl1hHL3cboenn4bn1YSbp59mwX0/kkiRfEfmdXl81Hf+fofz185To3gN7i51t39i0pAU8wWHvmrwQmhN50m33gZSy9Pbb6uPEvvvP8jmnky96VOnDyCPDhPCafTo0cyYMYMvv/ySffv2MXLkSK5du8aQIUMAeOCBBzINtPbuu+/yyiuvMGvWLKKjozl37hznzp0jISEBgBIlSlC/fv1M/6xWK1FRUdSqVUuTzyiMySvloWGS7nxITlYHNP3oI/XvSZPggw90V89x5TndJ+JO8OHGDwF4p8M7WM16bgMWPuU8XAxULdbXL04Irel1IDX0PZBajl9XRAR89pn6+v/+D7Zt81tMnnAm3SuPruRy0mWNoxFCe/feey+TJk1i/PjxNG7cmO3bt7NkyZL0wdVOnDjB2bNn0+efOnUqqamp9OvXj7Jly6b/mzRpklYfQYjMdFa+5yq/FwUuX4YuXdTHgFmt8O238Oyz3onNR3Ib6+HlVS+TnJZMu8rt6FGjhx+j8r9CcDmo0DHeDUBC+JLOW7r1lnS7VB/o2RP694f582HYMNiwAQL0eeqpWaIm9UrVY8+FPfx+8Hfub3S/1iG5pDA01gjtjBo1ilGjRmX73po1azL9nd092XnxZBkhvMIwJ08PLhScOgVdu8KePeoF8J9/hg4dvB+at+SxK7ae3crXO9Wb+Cd1nuTyQIx65eqhZ+xP6UNG+elmoK8avBBak4HUfOOjjyAyErZsgSlTtI4mV33r9AVgwX7pYi6EEAWaYZJuN/33H9x2m5pwly0Lf/2l74Q7o2yyTEVReG7ZcwAMbjCY5uWaZ52pgCmgR6b3GeiqhEFr8EL4iLR0+0ZUFLz/vvp6/Hg4elTbeHLh7GK+5PASrqVe0zia3Bn8Qr8QIp8Kas7oU4Y6cXqwg3fvhrZt4fhxqF4d1q2DRo1y3oJOjqHc7ulefGgxq4+tJsgSxFsd3vJjVL6X1+FopKNV5M6gNXghfESSbre4VVgPHQrt26ujmI8YoZ+S/iYNyzSkarGqJKcl88fhP7QORwghhDcZcfRyVy8UbN4M7drB2bNQvz6sXQvR0T4Nzdtu7jZud9h5foU66vpTrZ6icmRlLcISeiMDqQlhcDodSC199HKdxeUWkwmmT4egIFi2DObO1TqibJlMJvrUNtYo5kapNwohfMPIRYOmCtLJ888/4c474dIlaNlS/TsqKsfZdXfM5LArvt/9PXsv7KVYcDHGtR2X/UwFUAE6MsV1knQLkZFOW7qd3a701tLtZDK5WDzUqKF2Lwd45hm4cMF3QeVD37rqfd2/H/ydlLQUjaMRQghRKLl6UWDxYnXQtPh4tUfZihVQvLhPQ/OZDBcDbHYbr/75KgBjbh1DZHCkJiFpSW/XRoTn9FmDF0IrMpCaWzxqJBgzBho0gIsX1cRbh1qWb0m58HLEp8az8uhKrcPJke5aKoQQQu+M2L08t9Tr55+hVy/1edzdu6sJeHi43yLzpS93fMnhS4cpFVqKJ1o9oXU4fmWUI1NzBqoH6asGL4TWdNrSrdek2yNWK8ycqX7H33wDS5dqHVEWZpOZ3rV7A/DT3p80jkYIIYRP6D7pziO+BQtgwACw2eDee9UEPCTEP6F52c0DqaWkpfD6n68DMO62cYQFhmkRluYMlFOKPBSAGrwQXiRJt0fcbnFt2RKeuH7VesQIuKa/UcKdo5j/cuAX0hxpGkcjhBDCKwzZRSibmH/6SU2409LgvvvUcVKsVv+H5mXOsWtmbJ3ByasnKRdejhHNR2gcldAVvV8ry4E+a/BCaEXvA6np7JpnvhoJ3nwTKlWCY8dgwgRvheQ1t1e+nRIhJbiYdJG1x9dqHU6udN9YI4QQemTUk+ePP6ot23Y7DB4MX30FAQFaR5U/GXZFoi2Rt9aqjwZ75fZXCLEas/U+N3kdegY9Mv1PX9XiXOkq6f7000+Jjo4mODiYVq1asWnTphznbd++PSaTKcu/7t27+zFiUeBIS7f/hIXB1Knq6w8+gC1btI3nJgHmAO6pdQ9gnFHMhRCFi1FzRt3Q/ReYTXzz58PAgWrC/b//wZdfgsXi/9B8xQSfbf6McwnniI6M5uEmD2sdkaYMlFOKPOimBj9v3jxGjx7NhAkT2Lp1K40aNaJLly6cP38+2/kXLFjA2bNn0//t3r0bi8VC//79/Ry5KFB0OpCagr5HL/dYt25q5cHhgGHD1G5yOuLsYr5g/4L0Cx96orMOGUII4TceP0LTiCdOZ8w//ACDBqkJ9/33w5w5BSvhBpJtyUxaNwlQW7kDLYEaR+RbOR2Oer8cpKmMX46Bfs66qcFPnjyZYcOGMWTIEOrWrcu0adMIDQ1l1qxZ2c5fvHhxoqKi0v8tX76c0NBQSbpF/khLt1u80kjw4YdQrBhs26a2eOtIx6odCQ8M50z8GTadzrnnjRBCaMmIeWR+3TzwlssMOXo56qBp992nJtwPPgizZ+cr4dbrMfPt7m+JuRZD5aKVub/h/VqHozmd7ibhAV3U4FNTU9myZQsdO3ZMn2Y2m+nYsSPr1693aR1ffPEFAwcOpEiRIr4KUxQGknT7X5kyMEm9qs2ECXDkiLbxZBAUEESPmj0A6WIuhBAFjt6Tbmd8Z87e6FL+wAPwxRcFqoU74wWUjzd9DMDYNmOxWow/MJzwAZ3/bHOii1EXYmNjsdvtlClTJtP0MmXKsH///jyX37RpE7t37+aLL77IcZ6UlBRSUlLS/7569SoANpsNm83mYeSkryPj/0Yj8d8QYLdjAtLsdhQ/fR+uxJ9mV7tdK4qiq/2UlmYCAjCZ8hnX//6H5euvMa9Zg2P4cOyLF/vlMrwr333PGj35bvd3LNi3gDfbvel5l0YfcDjUizBpaXZsNuOVQnLuybouIYTIYu1asDnU0cpnzSpQCffNziScoWyZsgxpMkTrUDRlvBJdI/qpkuVJF0l3fn3xxRc0aNCAli1b5jjPxIkTee2117JMX7ZsGaGhoV6JY/ny5V5Zj1YkfuiQkEA4sH7jRi4lJOQ/KDfkFv+xk8cAOHzoMIvjF/sporxt21YOaAHk//svMmAAd/zzD5aVK9n+/POcvOMOL0Tomlxjt0OgKZD/Lv/HZws+o0pIFb/FlZfY2FuAMuzZs4fFi09qHY7H5NwDiYmJXohECJEnI3UvP35M/d/hgB494OuvC2bCfdNuGHPrGIIDgrWJRWcMlFOKPOgi6S5ZsiQWi4WYmJhM02NiYoiKisp12WvXrvH999/z+uuv5zrfuHHjGD16dPrfV69epWLFinTu3JmIiAjPg0dtoVi+fDmdOnXCasBnJEr8NwSEqI+laN2mDcqtt3ojvDy5Ev/vi3+Hi1CrZi263dbNL3G5IiHhRnHglePn4kV45RWazJ1Lg+efh1Kl8hlh7lw9dr5N+ZbfDv5GbKlYHr/9cZ/G5I6pU9WW7nr16tGtWwONo3GfnHtucPa+EkK4JmOvI0VRPOuFpOeke/t2+Hwa9OP6bVjzIbBgDyoGUDy0OMObDdc6DM3p+MjUnkEHUtNF0h0YGEizZs1YuXIlvXr1AsDhcLBy5UpGjRqV67Lz588nJSWF//3vf7nOFxQURFBQUJbpVqvVa5U9b65LCxI/6QVwQGAg+Pm7yDX+6ycVa4C+9pHzsaAmk5e+/7FjYf58TDt3Yh07Vr2q7wd5xd6/bn9+O/gbvxz8hTfvfNMvMbnCbFbv9Q8IsGC16uJ07hE592Dozy+EFrwykJpe7dsHnTpB82T173btILjgtvzaHfb01yOajaBIoIzPJAoe3YzKNHr0aGbMmMGXX37Jvn37GDlyJNeuXWPIEPWejgceeIBx48ZlWe6LL76gV69elChRwt8hi4JIBlJzi9cbCaxWmDFDrRTNnQtLl3p5A57pUbMHAeYAdp/fzcGLB7UOJws9N9YIIYRu6fHkefQodOwIsbFQoYI6zWLci6qu+GX/L+mvhzYdqmEk+mOAS0T+p8OfrSt0U4O/9957mTRpEuPHj6dx48Zs376dJUuWpA+uduLECc6ePZtpmQMHDvD3338zdKj8QIWXOJNunV0Jd6DPpNsnWraEJ59UX48YAdeuaRsPUCykGB2qdABkFHMhhH7oMWc0FL19gefPQ+fOcOYM1KsHIx71+SYVRdv6jqIoTPpnUvrfEcH5u+XTKPI69HR2ZOqXvqrrudJVDX7UqFEcP36clJQUNm7cSKtWrdLfW7NmDXPmzMk0f61atVAUhU6dOvk5UlFgOc+C0tKtrTffhEqV4Ngx9TFiOtCndh9AX0m3zq4NCSGE32S6p9udFEWvJ874eOjWDQ4fhsqVYdkycD4GV68xe8G6k+vYdHpT+t96ekKIHsi3UXAUkhq8EC7Sefdyk85Ovz5rJAgLg88+U19/8AFs2eKjDbnuntr3YMLE5jObORF3QutwhBAineQpbtDj6OWpqdCnj1rWlSypJtzlyvl0k3o5Ziatn5T3TAWYXvaDoRh0IDV9ZRZCaE2nSbdzwJhC09IN0L073Huvuk+GDYO0NE3DiQqL4rZKtwHw876fNY1FCCGEF+gh6XY44MEHYcUKtWV78WKoWVN9Tw/x+dDBiwcz3c8NGCqJ8qWCvecLp0JUgxfCBTpNuvXevdxnV2qnTIFixWDbNrXFW2N96lzvYr5fP13MocDXy4QQIguPRy/X0wlTUeCZZ+D779XHgSxYAC1aZDNjwcxEP1j/AQoK3Wt01zoU3SqYez6fdPQTdoc+a/BCaEWvA6npNOn2ed2lTBmYdL3r2YQJcOSIjzeYu961ewOw9vhaYhJiNI1FCCFEPmmdgL/7Lnz0kfr6yy/VQdQKiQvXLjBnxxwAnmn1TPp0uadbZdC80v8MdLjoqwYvhNZkIDX9GTIE7rgDkpLU0cw1rCRVjqxMs7LNUFD49cCvmsUhhBCFXaaB1IzY6v3VV+B8FO4HH8B992UzU8FNvab+O5XktGSal2uefuuWyMpAOaXIQyGswQuRC513L9frFWCTyYcVA5MJPv8cgoJg+XL1+d0a6lunL6C/LuZCCCEMYtUqcD7uduxYePrpPBbQZ9nvqSRbEp9s+gSA51o/l7luU7A+qvAFGUhNiAJA50l3oWzpBqhR48ajw555Bi5c0CwU533dK4+s5EryFc3iEEIIrXtHG54WX+DevepI5WlpMHAgvP22/2PIQIuvYO7OuVxIvEDlopXpW7dvQW7Q95h8JQVPIa3BC5EDnSbdzmeQ6i3p9mth/dxz0LAhXLwIo0f7ccOZ1SpZi7ql6mJz2Pj94O+axZGRVLyFEMJFGU+Y/j55njunPos7Lg7atIHZs/OobxS8k7uiKHy0Sb2P/clWTxJgDsj0vl579GlFvo2CQ181eCG0JgOp6ZfVCjNmqPtm7lxYulSzUPrUvj6K+T7pYi6E0J7Oiiy/U4yQnCYmQs+ecPw4VK8OCxdCcLBry/pgB2t1zPx5/E92n99NqDWUh5s8DOTjnvwCTL6RXEj3ciEKABlITd9atoQnnlBfjxgB165pEoazi/mSw0u4lqpNDCAVbSGEyBd/JXt2OwweDJs3Q4kS6rO4S5b0z7Z15uNNHwNwf8P7iQyOzDpDISvX8irHC9nXUaAV8hq8EDfRafdyvSbdmlycfvNNqFgRjh27cZ+3nzWOakyVyCokpSWx9D/tWtyFEELkg78KsTFj1JbtoCD45Rd1nBJXFLAW4BNxJ1i4fyEAo1qOuvFGwfqYwtekpVuIAkDnSbfJSGcXXwkPh6lT1dcffABbt/o9BJPJlN7arYcu5gWsXiaEEL7j7xPmp5+qZRWoz+Ju08aDlRSMsn/q5qk4FAcdqnSgfun62c4j93SrpFgvePSVWQihNXeS7gv/wNLWsGci2FN9Gpbzfie9tXQ7+b2M7N4d7r1X3V+PPKKOAutnzqT7t4O/kZKW4vftCyGEyCdfJ+ArVsBTT6mv335bLbcKqSRbEjO2zgDgiZZPZHpP7unOmVyCKDj0WYMXQivuDKR28DO4uAF2vAhLmsCFdb4LS7qXZzVlChQrBtu2wYcf+n3zt1S4hbJhZbmacpVVR1f5ffsg93QLIQTkI2nzZSF26BD076/ez33//fDCCx6spOAko9/v/p6LSRepXLQyd9e8O+cZpVwDCtKe9wHpXi5EAeDOQGpJp268jtsLy9vA5scgNc7rYek16dZUmTIwaZL6evx4OHLEr5s3m8z0rt0b0EcXcyFE4SMNhDoVF6eOVH7lCtxyC0yfnr+rpAa/wqooSvoAao+1eAyL2XLTDBoEZRDG3vMiI6nBC5GRO93L7de7FN8yG6qqj73g0FRYVBdO/uzdsHSedJtMGpWYQ4bAHXdAUpI6mrmfa6DOLuYLDyzE7rD7ddtCCCHyyRdlht0OAwfC/v1QvjwsWOD6o8GyKBjZ6LqT69h2bhvBAcEMbTI013nlnm6RJ4P+LPRZgxdCC4riXku3cv0+4qDScMsXcOcqCKsOSWdgbR/4qzcknvZKaOkDqemsMNK8lcVkgs8/V0eEXb5cfX63H91e+XaKhxQnNjGWtSfW+nXbGWm+H4QQmtJZ0aBvGU+Yvjh5jh0LS5ZASIg6UnnZsl5YqbGf0z31X3Xw0/vq30eJ0BJZ3i+M93Tn9ZEL3zfiIQOd+yTpFsIp4xnQldLIYVP/N1vV/8vcAd12Qr2XwBQApxbC73XUe7+vJ82ecibdFpMljzkLoRo1bjw67Jln4MIFv23aarHSs1ZPQLqYCyGEP2V8moeilxTlyy/h//5PfT17NjRrpm08OnAx8SI/7v0RgBHNR+S9gIGSKH+Qr6PgkKRbCCdHhsTY4kJym550B9yYFhACjd6Eu7ZBiVsgLR7+fRyW3wZXdnsemu67l2scwHPPQYMGcPEijB7t1033qX3j0WGOfF5ccZfm37sQQmjEK4m2N1tY162D4cPV1y+/7J2RygtAC/BXO74ixZ5Ck6gmNC/XPPuZjP8xPZZTOV6Iv5K8yUBqQhicPcM9ue50LzdZs74XWR86/Q3NP4GAcIhdD380gR0vgz3Z/dAUNTa9Jd26qQ9YrTBjhlp6zZ0Ly5b5bdOdqnUiLDCM0/Gn+ffMv37brhBCiHzyViF2+jT06QOpqdC7N7z2mnfWm85AmUUGiqLw+ZbPAXi02aMu3SKnt9votCbfRsGhrxq8EFrK2NLtStJ9c/fym5ktUPNx6LEXKtyjJul73oLFDSFmjXuhObuX3zzip7ihVSt44vqzP0eMgGvX/LLZ4IBgutfoDkgXcyGEKGzMNhuWgQMhJkbtcfXVV67VIQqBv47/xYGLByhiLcKgBoNynK8w3tMt8sGgh4ucFYRw8kb38uyEVoDbF0LbBRBSFuIPwco7YMNQSLnkWmg6716uG2++CRUrwtGj8OqrftuscxTzn/b9pEnlQeorQgjhIi8PpFb/iy8wb9wIkZHw888QFpbvdd5g7JP79K3TAbivwX1EBEW4tpA07QJG3/N+ZKDjRWrwQjh5s3t5dir2hu77oMZI9e8js2BRHUwnvs+z4Hc+jkpvSbfukr3wcJiqjpLK5MmwdatfNntX9bsIsgRx+NJhdp/3/N59IYQQrsk0kJqnhVE+CzHTV19RZckSFJMJvvkGqlXL1/py3pCBMovrYhNj0wdQG95seO4z660uoSPG2/MiJ/qqwQuhJXdbuq/fZ407iXBgUWjxmXq/d9G6kHyegI0PcEvKG3DtWM6hyejlruveXR3AxuGARx6BtDSfbzI8KJzO1ToD/u1ibsB6mBDCi3R34bMw2boVy+OPA+B45RXo1k3jgDyjKL4pSL7a8RWp9lSalm2a8wBq2ZB7ulXy086FDKQmhMG529KdzoNffKk20HUbNHwDxRxIGftWApY2hn2TwZE1SdR793KTSWfFw5QpUKwYbNsGH37ol032rdMXgAX75b5uIYTwNU1HL4+NhT59MKWkcK55cxwvvpj/WLKls7LVRYqiMH2L2rX80WaPujS/yJ6BckqRB33W4IXQgrsDqeW3MLQEQv2XSeu8hVhzPUz2RNj2LCxtBZcyd4uW0cvdVKYMTJqkvh4/Ho4c8fkm7651NxaThZ0xOzl86bDPt5eRr1oqhBDGII2DHvKkELPbYdAgOH4cpVo1tjz9tB8GTvP+DvblMfPn8T85cPEAYYFhDKqf8wBq2ZJjWRRQ+qrBC6ElZ9JtMrlXGuW35AqvxT/Bb5DW/HOwRsLlrbC0JWwbA2nqCNwyerkHhgyB9u0hKUkdzdzHVwiKhxTnjip3ADKKuRBC+Fqme7rduQie37LglVdgxQoIDSXthx9I8+rAaQXDjK0zALiv/n2EB4XnvYBeL+D7UF6HYSH8Slwn3cuFMDhn93JXr1h7M4kzmVGqDIEe+6DSver94vsmwaIGcGapAbqXax1BNkwmmD4dgoJg+XJ1kBsf61NbHcXcX0m3Lr93IYQwCnfL8YULYeJE9fUXX6iPCPMl3XYny9mV5CvpZeAjTR9xe3m5pzsz+TYKDn3W4IXQgrOl2+1uYl48JYZEwW3fQ7vfIbQSXDsKa7ryXugZSln0l3Trvj5Qo4bavRzgmWfU+/B8qFftXpgwsfH0Rk5dPeXTbQkhhMgndwqxI0fgoYfU108/DQMH+iKiHBgn9Zq3ex7JacnUK1XP5QHU5J7urOQbyYW0dAthcM6WbldGLgd8ekos3x2674Faz4DJzD3BCeyrDGVi/jBApqszY8aorRGxsTB6tE83VTa8LLdWvBWAhfsX+nRbQghRmHllIDVXpaTAgAEQFwetW8N77/lv2wYze/tsAIY0HuJZq7WBkigh3CFJtxBOemjpzsgaBs0mQ+eN7LFZKWGBagffhFUdId6/A3UZmtUKM2aofbG//hqWLfPp5vrUUbuY/7TvJ59uJyO5DiOEEB5w9eT53HOwZQsULw7z5qnlil8Y6+S+78I+Np7eiMVk4X8N/+f6gsb6mH4l1yAKDkm6hXDyOOn2sRLN6XGpNGMugMMcBDGrYHED2DMRHDZNQzNMsteqFTzxhPp6xAi4ds1nm+pduzcAfx3/iwvXLvhsO0IIYZhzsA9kGkjNnS/C3S9t/nz45BP19ddfQ8WK7i3vDT68z9mbx5Czlbt7ze6UCSvj0Trknm5VIf5p5026lwthcO52L3eWVH4oIFIVhUlXYH/L+RDVCezJsONFWNIMYjf6fPsFwptvqpWlo0fh1Vd9tpkqxarQJKoJDsXBrwd+9dl2QAZSE0KIfMkr4zx8GIYOVV+PHQvduvk+JoNKc6Tx9c6vAbVruTvknu6cSTFfcEjSLYSTXlu6ufHIsLQileGOpdD6awgqCVd2wbLW8O+TYIvXLD6TyQAFZng4TJ2qvp48GbZuzX3+fOhbpy8AC/bLo8OEEL4nF+A8lFuyl5wM/ftDfDzcdpt64dbffJiMevuYWXJ4CecSzlEytCTdauTj4oQcyyIv0tIthMG5+8gwP3b+sTvU2Mwms1pSVvkfdN8HVR5Q4zj4MSyqC6d827J6M8NdnO7eHe69V73A8sgjkJbmk8047+tecWQFcclxPtmGEEIIH3rmGdi+HUqWhO+/h4AADYPRf2bh7Fr+vwb/I9AS6N7CRqtL+IF8JQWPJN1CODlbul0evdzJ94Whs6XbYsoQW3BJaP0ldFgOYVUh8RT8dQ+s7QdJZ30ek2F9+CFERsK2bZg//tgnm6hTqg61S9Ym1Z7KokOLfLKNjAx38UMIIbSS8YSZ08nzu+9g2jT1IvfcuVC+vH9iM6jYxFh+O/AbAEOauNe1/GaF5Z5uV8vtwvFtFA6SdAvh5Hb3cv9lOs6kO9vndEd1hG67oO4LYLLAyZ/g9zpw6HO4vpyvGaqMjIqCSZMAML/2GqExMT7ZTJ/aamv3gn3SxVwIIXzJ48eHZZf5/PcfDB+uvn7xRejSxfPA8s0YV1S/3fUtNoeNpmWb0rBMQ7eXl3u6s5JvJBfSvVwIg3P7Od1Ovv/F25UM3cuzExAKjSdC1y1QvAXY4mDzCFhxO8Tt9Xl8hvPww9C+PabERBpNneqTpmJnF/M/Dv9Boi3R6+sHg13sEEIIvUtNhUGDICEB2rb16aCb7tH3yT7js7mFe/Iqx/W954U7JOkWwsndlm4/XplN715uzuOCQLFG0Hk9NJsCAUXgwj/wR2PY+SrYU7wel2EvTptMMH06SlAQpbdvx/Ttt17fRNOyTalctDKJtkSW/efbZ4MLIYTwgPNiu9OECbB5MxQrBt98o/F93Maw+/xutp/bjtVsZVD9QVqHIwoDg9Y9JekWwsntgdSu80NzY67dy29mtkCtJ6H7XijXQ32W9+7X1OT7/FrfBmokNWrgeOklACxjxkBsrFdXbzKZ0lu7f9r3k1fXfTPDXvwQQuSL/PbzyWa78XrVKnj3XfX1zJnaPI87C/3v4G92fgNAtxrdKBFawrOV6P9j+p18JS4yUFcASbqFcPJ4IDXfyzR6uauKVIJ2v8JtP0BwGbi6X+1uvulRSL3im0ANxvHss8RVrowpNhZGj/b6+p1J928HfiPVnur19QshhHDznuCM8zqT7thY+N//1PeGD4c+fbwbYH7p9F4ih+Lgm11q0v2/hv/L/wr1+TE1JV9JwSFJtxBOHg+kprOW7oxMJqjUH3rsg+rXB4Y5PF0daO3E/Hw3kxi+lcVqZcfjj6OYTPD117DMu93AW1doTZkiZYhLiWP10dVeXTfoth4mhPAzORd4yGZTC7KHH4azZ6FOHfjgA62jukHnz+lee3wtJ6+eJCIogh41e3i8HhlILSv5RnIhA6kJYXCedi/3MUVRsDnUq/FWs9WzlQQWg5afQ8e/IKI2JJ+DvwfAnz3h2kkvRms8l2vWxPH44+ofI0bAtWteW7fFbKF37d6AjGIuhBC6Y7PBZ5/Bb79BYKD6qLDQUK2jyoY+MwtnK3e/Ov0IDgjO9/oKy+PC3CHfSMGhr+xCCC2lXu/+Gxjo4gL+uQ7pHLkcwGrxMOl2Kt0W7toO9SeA2QpnfodFdeHAR+Cw57l4ToxeTjpee029f+/oUXjtNa+u29nFfOGBhem3CQghhNCBbdvg2WfV1++/D40aaRuPgaSkpTB/73zAC13LpVlXFAKSdAvh5Ly3y+Wk+zofZ5w2+42BXjxu6c7IEgQNX4W7dkCp2yAtAbY8Bctaw+Udbq2qwPQICw9XWzsAJk9WK2Je0j66PZHBkZy/dp5/Tv7jtfVmVGD2gxBCuMgrraJjx0JKCnTvDk88kf/1eZ1+T+6LDy3mSvIVyoeXp110O++s1OAX8N2RV7mt3z2vAwb9ciTpFsLJ3ZZuP2U6GQfgCrS4eUEgN0XrQMc/1W7n1qJwaTMsaQbbX4C0JO9txyh69IABA9TbDB55BNLSvLJaq8VKz1o9AeliLoQQvqC4Uwu/ueyOioLZs3XeZUt/sc3dNReA+xrc5/54MzeRe7pzpr89LzwlSbcQTm53L3fycUu3I0NLd367l9/MZFYHWOuxDyr2A8UOe9+FxQ3g3ArXV2MqIAXmlCkQGQlbt6qvvaRPbbWL+YJ9C7xaudB1HVEIIXzIa+fSr76CUqW8s65C4nLSZX4/+DvgpVHLryuM93Tn9JELSK3KN/w3jrFXSdIthJPb3cv929JtMVnyfTU5RyFloe18uP0XCK0ACf/Bqk6w/kFIzvn51QXu4nRUFEyapL4eP169x9sLOlfrTBFrEU5ePcmWs1u8sk4hhBD5NGECdOqkdRS50Gch+9O+n0i1p1K/dH0almmY/xXq82PqgsHySpELSbqFcHK2dFvdbU32zz3dXm/lzk6FntB9D9R8AjDB0a9gUR04OrcAZtg5ePhhaN8eEhPV0cy98LlDrCF0q9ENgJ/2/pTv9QkhBBSe07JPNG4Mr76qdRSu8WELsCfH0Nydatfy/zXwXis3IBmmKNAk6RbCKSVF/T8oSNs4bpJ0/f5qbzyOwyXWCGj+EXReD5ENICUW1t8Pq7tAwhH/xKAlkwmmT1ePg2XL4JtvvLJa5yjmP+37yev3r0nFWwhR2GTsiuzROdXtW8kEwMm4k/x5/E8ABjUY5JV1yj3dWck3kgvpXp4/n376KdHR0QQHB9OqVSs2bdqU6/xXrlzh8ccfp2zZsgQFBVGzZk0WL17sp2hFgRQfr/4fHu7iAtd/9T6+BykhNQGA8EBX4/KSkq2g6xZo9DaYg+DcclhUH/a+Bw51kLECW07WqKF2Lwd45hmIzbmLvau61ehGoCWQQ5cOsffC3nyvTwh/cad8njFjBm3btqVYsWIUK1aMjh07ZprfZrMxduxYGjRoQJEiRShXrhwPPPAAZ86c8cdHKbAK4a2wnjNSweXDWD09ZubtmQfA7ZVvp1LRSl6MqHDe050X+UYKDl0k3fPmzWP06NFMmDCBrVu30qhRI7p06cL58+eznT81NZVOnTpx7NgxfvzxRw4cOMCMGTMoX768nyMXBYoz6Q4L0zaOmziT7rBADeIyW6HeOOi2C8p0AHsSbB8LS1vAxX/9H48/jRkD9eurCbfzOa75EBEUQaeq6r2D3hrFXOonwtfcLZ/XrFnDoEGDWL16NevXr6dixYp07tyZ06dPA5CYmMjWrVt55ZVX2Lp1KwsWLODAgQP07NnTnx9LFAD5bh011AlUP7E6k+6B9QZ6b6UGug7iL/KV5EJauj03efJkhg0bxpAhQ6hbty7Tpk0jNDSUWbNmZTv/rFmzuHTpEgsXLqRNmzZER0fTrl07GjVq5OfIRYFy+bL6f2Ska/P76Wr5paRLABQNLuqX7WUrogZ0WAG3zIHA4nB5Oyxrxa3Bz1AkKMFYdRdXWa0wc6ZaMfvqK1i+PN+r7FunLwAL9sujw4QxuFs+f/PNNzz22GM0btyY2rVrM3PmTBwOBytXrgSgaNGiLF++nAEDBlCrVi1uueUWPvnkE7Zs2cKJEyf8+dGEEG7679J//HvmX8wmM33r9vX+BgpiXSKf5CspOAK0DiA1NZUtW7Ywbty49Glms5mOHTuyfv36bJf59ddfad26NY8//ji//PILpUqV4r777mPs2LFYLBZ/hS50Yvt2mPtTGWZsn06K+Uq289x4hqeS4W+FyufPc8v+AwQ4HPTdsIGiwAc7t/Pr6+OzzHvzepZVTSPIDP2mvMv5tPBc583tb4fi4MqVS0zcviI9ec0470FlCQAJpyvy1lvufjveZAIeJNR8Fx1LjKZB2Dc0CvqQPe8t4KP1bwJevOqtF61awahR8PHH6qBqu3ZBaKjHq7u71t1YTBa2n9vOkctHqFqsqlfCNFJvSWEcnpTPN0tMTMRms1G8ePEc54mLi8NkMhHp6gVPISgsXZH1dXL/Yc8PAHSo0oHSRUp7bb1yT7coDDRPumNjY7Hb7ZQpUybT9DJlyrB///5slzly5AirVq1i8ODBLF68mMOHD/PYY49hs9mYMGFCtsukpKSQ4hwoC7h69Sqg3l9ms9myXcZVzuXzux6tGD3+wYMtHGr7HPAPOFxfzuyAY19Bxas3pjmA6dF/sF/5w+X1bFKmcjK/5UXk9f9zWc/u3zrwsi56dJcG5tK5wf1Me3gEVUof4//ufoC0db9iazoZgqO0DtBlLh37r75KwMKFmI4cwf7KKzjeecfj7RW1FuX2Srez+vhq5u+ez+hbRnu8LgBFMQFm7HY7NpsbB79OGP3c48349fgdeFI+32zs2LGUK1eOjh07Zvt+cnIyY8eOZdCgQURERGQ7j5TfubEAJtLS0rDZjJe45Of7T0tLS3+dakvFZnZtHaa0NAIAh6Jg1/nxY3bYsQB2h4LDy9uw282ox4/r8X+/+3sA+tXu59XPnGZT96XJZHJ5vUb/7arfP9fL76y/XUdAAJiu/7Z1eFFC0+8/FaxYUUxK+rHjLi3Kb82Tbk84HA5Kly7N9OnTsVgsNGvWjNOnT/P+++/nmHRPnDiR1157Lcv0ZcuWEZqPlquMlnuh+6mWjBr/uWuNoNI/AJQ93wezI6cRSU2Z/q8cl0DFq78C8H2tasQFBbKmYnmupZWl4hlTlmVMNy1PtTmAg3Ln7sWUEpb5fcWUvlR2277xfsbYMs9jUm78HZpcmahinTB1OpbLN+FfCrV4atkiHmj6IX3qfEHA6R9JPf0HewIf4kRAR0PdL5fXsV/mgQe45a23MH34If9UqEBcVc9bqGuk1WA1q5m9YTa1L9X2eD0AMTHNgArs37+fxYu980xxLRj13OPkjfgTExO9EIm+vPPOO3z//fesWbOG4OCsT1+w2WwMGDAARVGYOnVqjuuR8jtnCQkdgHD+/fdfkpMvah2Oxzz5/nfF70p/vWzZMkItrh0LUf/+SyvUAXnXemkAXl8dP7VT/6MWcOzYMXaf9e5gwXv3VgUaAK7Ffzr5NDvP78SChdAToSw+4714UmLUi2p2h93tQZGN+tu9eLE1UJrdu3ezePGpLO9fbdcOIiPZvGkTaRcu+D9AF2nx/QdfDKYLXVAUJd+DaPuz/NY86S5ZsiQWi4WYmJhM02NiYoiKyr7FrGzZslit1kxdyevUqcO5c+dITU0lMJvHQIwbN47Ro2+0Kl29ejV9gJecrq67ymazsXz5cjp16oTV7Wc8a8/o8ZuLbQEgKqQixz/83uXlTBs2wHe/olSpQt9d+wB42I3tBvz4NSgO1r75NoRWdCfkTIz+/dtsH/LXkjq0Df6awCvbaJL6KY2K7sLe7FMIr6V1eLly+bvv1g3HgQOYf/yRdl9/Tdo//0CAZ6fPxvGNmf7xdA4kHqBx28aUCy/nYfQwd656YaN27dp061bH4/VoxfjHvvfid7be6okn5bPTpEmTeOedd1ixYgUNGzbM8r4z4T5+/DirVq3KtRyW8jtnRYqo9aDmzZvToYPxbq/Lz/df5HgR+E993blzZyKCXDsWTHY7AJHFitGtWze3tnkzXx8/5l3rYT9ER0dTqUn+Yr3Z4cNqS6uimFyK/62/34L90LFqRwb29O7tZFeOXWEf+7BYLC7vE6P/dj/+WP3+GzSoT7duWc+R46/XMVq2bEknnbZ0a/b9q+NyYjKbPP4Na1F+a550BwYG0qxZM1auXEmvXr0A0gddGTVqVLbLtGnThm+//RaHw4HZrB60Bw8epGzZstkm3ABBQUEEZfP8ZavV6rWDxZvr0oJR41dC1CuAxQJLeRS/ydPPbQIUsFoD1UG38smo3z9AnKUqjjv/wXJ0Gux4GfOFvzAvawb1Xoa6Y8Gi7+ehuvTdf/wxrFiBads2rJ995vGI5pWLV6Z1hdasP7WeRf8t4rEWj3m0HgCTSe1SbrFYsFqNV+F2MvKxD96JX4+f35PyGeC9997jrbfeYunSpTRv3jzL+86E+9ChQ6xevZoSJUrkGoeU37lRK+MBAQFYrZpX6TzmyfcfkOHCp1vLX1/ObDJh1vvxc71xyWKxYPHy+jMOgeRK/D/u+xGAgQ0Gev2zZlyfu+s26m/XbM5Yfmf97Tr7CloDAtDzp9Pk+7/+dZkweaXs9Vf5rYvRy0ePHs2MGTP48ssv2bdvHyNHjuTatWsMGTIEgAceeCDTQC4jR47k0qVLPPXUUxw8eJBFixbx9ttv8/jjj2v1EYSGHMFql7piQSXdW/D61W5PWyzFTcwBUPsZ6L4Hyt4FjlTYNR6WNIEL67SOLv+iomDSJPX1+PFw1PPu3H3q9AHgp30/eSMyGUhN+Iy75fO7777LK6+8wqxZs4iOjubcuXOcO3eOhAT10Yc2m41+/frx77//8s0332C329PnSU1N1eQzFgQGupvHJ2QgLve5c8zsOb+HPRf2EGgJpFftXl6PRfafKAx0kXTfe++9TJo0ifHjx9O4cWO2b9/OkiVL0gdvOXHiBGfPnk2fv2LFiixdupTNmzfTsGFDnnzySZ566ileeOEFrT6C0JBiSQIgyJL1nsFcOQdh8TTpTi8kCnlt52Zh0dB+Edz6HQSXhri9sLwNbH4MUuO0ji5/Hn4Y2reHxEQYOdLjbLd37d4A/HnsT2ITY70YoBDe5W75PHXqVFJTU+nXrx9ly5ZN/zfp+gWr06dP8+uvv3Lq1CkaN26caZ516wrAxTmhf0ZK8HQSq3PU8i7VuhAZHOmz7RSOEeldo489r1MGrX7rpolv1KhROXZXW7NmTZZprVu3ZsOGDT6OShiBYlEH4Ag0Z+1+mCtn0i2PmfM+kwmiB0LZzrD9efjvCzg0FU4thOafQMU+WkfoGZMJPv8cGjaEpUvh229h8GC3V1OteDUalWnEjpgd/HbgN4Y0GeJxOEL4mjvl87Fjx3JdV3R0tLRqCX0w1AlUu1gVRWHennkA3FvvXs3iKKyMdJSK3OmipVuIfLmedFs9Tbo97l4uFcc8BRWHVjPhztUQXhOSzsLavvBXb0jMOlqnIdSsCa+8or5++mmI9aylum+dvgAs2L/AS4EJIYQQ3rUzZicHLh4gyBLE3bXu1jocIW4w2BUJSbqF4Tlbut3uXu61e7oN9qvXQpn20G2HOrCaKUBt8f69Lhz8FBTjPV+aMWOgfn014fZwQDXnfd3L/lvG1RT9jVwthBBCa9pf3He2cner0c3lEeLdZtDuwr6k/Z7XMYN+OZJ0C+PTrHu5QX/1WrEEQ6M34K5tULI1pMXDv6Ng+W1wZbfW0bknMBBmzlS7J371FXjwnMe6pepSs0RNUu2pLD6Uv+dMSm9dIURhphT48libbFRRFObvnQ9I13Jvc7XclusQBYck3cLwFHM+k+78tnQb6r4wHYisD53+huafQkA4xK6HP5rAjpfBnqx1dK5r1Qqc97mOGKEOruYGk8lEn9pqa/eCfdLFXAjhPrng5gH50ly26/wuDl86THBAMN1rdtc6nEJFjtJcGLRnhCTdwvDSB1Jz91nQ+e1eLgW350xmqPkY9NgHFXqBkgZ73oLFDSFmjdbRue6tt6BiRThyBF591e3FnV3MFx9aTJItye3l5XqPEEJ4yBAnUG3rGc4Lwl2qdSEsMMxn2ynMgyvmdRga4SgVrpGkWxhffruXyz3d2gktD7f/DG0XQEg5iD8EK++ADUMh5ZLW0eUtPBw++0x9PXkybNvm1uLNyzWnYkRFrtmusfyI+13UhRACDJI/Cs/5YAe7ssqf9v0E3LhA7GvyyDBRkEnSLQxPMavJs8XsZvIsjwzTj4q9ofteqPEYYIIjs2BRHTj2nf57FPToAQMGqD0nhg27cVy5wGQypVdmnJUbT+j9KxJCCG8zZbjgXZhbSn3l4MWD7D6/mwBzAHfXlFHL/U2O6FxI93IhNGJSf31mk5vJc75HLzfor16vAotCi0/V+72L1oPk87DuPljTHRKOaR1d7qZMgchI2LIFPvrIrUWdSfevB37FZrf5IDghhCh4Cv7gaWh6RfXnfT8D0KFKB4qFFPPtxgrBrvSU1DALDkm6hfGZ1OTZYnLzcPZa93LhVaVuha5boeEbYA6Es3/AonqwbzI4XG9F9quoKJg0SX39yitw9KjLi7ap2IZSoaW4knyFNcfWuLVZ6YknhBBuMmSruP9P9uldy2v7p2s5IBlmBkY8Sv3GoG1eknQLw1NQn/Psdku3t7qXS+bjfZZAqP8ydNsJpduBPRG2PQtLW8GlrVpHl72HH4Z27dRRzEeOdLliZzFb6FW7FyCjmAshhN8YouzWJvU6EXeCzWc2Y8KUXj4JbRjhKBWukaRbGJ9Zbek2u3s4S0u3/kXUgjtXQ6svILAYXN4KS1vCtjGQdk3r6DIzmWD6dAgKgqVL4dtvXV60b52+APy8/2fsDruvIhRCiALDVJjSET9fIFi4fyEAt1W6jTJhZfy6bSEKKkm6hfGZ1JZui9nNFmuHuhxmD34GhuyeZlAmE1R7GLrvg8oDQbHDvkmwqD6cWap1dJnVrKl2Lwd4+mmIjXVpsTuq3EHRoKLEXIth/an1bm9WDkchCif57asKxf3dPpLdMeTvUcudA+EVptHL8/rtyhGdC+leLoQ2lOv3dJvdvafbecbL90neYL96owopA22+g3aLILQSXDsGa7rCP4PVQdf0YswYqF9fTbiffdalRQItgdxdSx0dVrqYCyFE3gpHou3/zxiTEMPa42sB/yXdImdSwyw4JOkWBYCH93Q7eZR0F4bCXqfKd4Pue6DWM2Ayw/Fv4fc6cGSOPpp9AgNh5kz1uPrqK1ixwqXFnIPV/LTvJ5cff1OIGgWEEMI79FBOuM1/J/tfDvyCgkLzcs2pVLSS37ZbWOVUjhvxKPU7g9WBJOkWxmfOZ0t3vhnsV18QWMOg2WTovBGKNYbUS7BhCKzqCPGHtY4OWrWCUaPU148+qg6uloeu1btSxFqEE3En2HR6k48DFEIUJHIBzgOF/EvL6eM7e1v5ddRyyTBzVLiP0hwY9HiRpFsYX/ojw/zZ0i10oURz6LIZmrwPlhCIWQWLG8CeieDQ+JnXb70FFSvCkSPw2mt5zh5iDaFnrZ4A/LDnB19HJ4QQhlYoBlLzc6v8leQrrDy6EoC+dfv6dduAZJiiQJOkWxjf9YHUTP5s6c64rCTt2jIHQJ3n1C7nUZ3Bngw7XoQlzSB2o3ZxhYfDZ5+pr//v/2DbtjwX6V+3PwDz987HoThc3pQhe0sKIYSXuHpLjnH5p57x+8HfSXOkUa9UPWqWqOmXbYrsFfQjOl9kIDUhtOEcSC3A3aTbSZLmgiGsCtyxBFrPhaCScGUXLGsN/z4JtnhtYurRAwYMALsdhg278Zi6HHSt3pWwwDBOXj0pXcyFEEL41S8HfgHw+7O5C/5FE89JDbXgkKRbGJ8WLd2ZrkHKKVE3TCaoMhh67IcqDwIKHPwYFtWFU79qE9OUKRAZCVu2wEcf5Tqru13M5XqREEK4yVAJnv9iTUlLYcnhJQDcU+sev203o8L0yLC8GOko1YzBDhdJuoXxyT3d4mZBJaD1HOiwAsKqQeIp+Ose+KuP+tqfoqLg/ffV16+8AkeP5jr7gLoDAPe7mAshhHCDkcp+P8S6+thqElITKBdejmblmvl8e8I1BjpK/cegVyQk6RbGp3lLt9CtqDuh2y6o+wKYAuDUz+rjxQ58BA67/+IYOhTatVNHMR85Mtdjr0v1LoQHhnPq6ik2nNrg0uoN1XAjhPAa+e2rCsczu31DUdS07tcDam+wu2ve7f7TYIQQeZJflTC+9Hu6NWrpNtLV8sIoIAQaT4S7tkHJWyEtAbY8BctaweWt/onBZILp0yEoCJYuhe++y3HW4IBg7qmtdu2TUcyFEKIQ89NVFUVR0pNu5y1OfmXQgbHyI69dK5eRcmHQ40WSbmF4itajlwtjiKwPndZCy8/BGgmXthCw4lbqp3zhn4HWatZUu5cDPP00XLyY46yudjGX6z1CCJBzgVsMWX57fwdnPGa2x2zndPxpiliL0KFKB69vS3hOftoFhyTdwvg8vafbWfDmu7Yip0TDMJmh+nDosQ8qD8KEg2ppvxGwtBGcXOj77Y8ZA/Xrw4UL8OyzOc7WuVpnIoIiOBN/hvUn1/s+LiGEKGzkSkW6Xw+qrdxdqnchOCBY42gKl5wOQyNeGvI7g/2EJekWxne9pVvuQRIuC4mCNt+S1nYR10xlMCWdgrW94a9ecO2k77YbGAgzZ6ql7JdfwpIl2c4WFBCUPnqsdDEXQojCyj+p1++HfgegZ00NupYjjwzLjcHySv8w6OEiWYowPk1auuWRYQWBEtWJVSEfYa899vpAa7/Aojqw/wNw5P5MbY+1aqV2Lwf12d1xcdnONqCe66OYS31FCFGYFfykzXf1jJTg0+yI2YHZZKZbjW4+244r5JFhoiCTpFsYn6f3dKcvLyf5wsxhCsLR4A24azuUagNp12DraFjaEi7+65uNvvkmVK8Op07l2M28U9VOFA0qytmEs/xz4h/fxCGEEKJQu1RyOQC3VryVUkVKaRyNcCrol5HyRQZSE0Ibivn66OVmD1u6PdvqjZeStBcMkfWg41/QcoY60NrlbeoI5/8+Bbar3t1WaCjMmqUeO198oY5ofpOggCB61e4F5NzFXA49IYRwk6FaxX0f66XSywDSb2nShJF2iZ9JMV9wSNItjO9693KTp4ezZC7CyWSG6o9Aj/0QPRgUBxz8SH2298kF3q2stW0LTz6pvn7kkWy7mTu7mP+470fs/nyuuBBC6Fy+uyIbqez3VaxBccQVUwfr1ORRYTcz0C7xNbkOUfBI0i2M73r3cos/W7oNdaVcuC2kDNw6Fzosh7DqkHQG1vaFP3vCtePe285bb0G1amo38zFjsrzdsWpHIoMjOZdwjr9P/O297QohhMFlvI9bkRTFM9WXopht1Cxek5olamodjciGXIfIhnQvF0Ij11u6PR69XB4ZJnIS1RG67YR6L4PZCmd+h9/rwr7/885Aa0WKqN3MAWbMgGXLMr0daAmkd+3eAHy3+7scVyPXgIQo3IzUaCvc4MOTu8kE1FIfFdajZg+fbUdkT8rtwkeSbmF8zpZuT0cv94icLQuNgBBo9AbctQNKtQV7Imx7DpY0h9iN+V//7bfDE0+or4cNg6uZ7x8f3GAwoN7XnZKWkv/tCSGEMBjvX1WxKzaosQiAnjW07Vru7LUgo5ffILVMFxjscJGkWxiftHQLfyhaBzqugVZfQGBxuLIDlrWGzaMgNfvHfrls4kSoWhVOnMjSzbx9dHvKhZfjcvJl/jj8R6b3pH4ihBBukiZGAI6krYOQKwSkFqdV+VZah1No5VWOSzGfDYP+hCXpFsanxT3donAymaHaw+pAa1UeABQ49Kn6bO8T8z0/pooUUUcxB5g+HVasSH/LYrZwX/37AJi7c24+P4AQQgjAIFctfVdP2ZOqtnIXi73D/fqTEMJtknQLw1OcLd3uHs7OBMmjglceGaZHjjQHS0cv5Zehv7D3p72kJqT6ZkPBpaD1l9BhJYTXgKSz8PcAWNMd4g97ts727eHxx9XXQ4dCfHz6W/9r+D8Afjv4G1eSr2RZVK4fCSEKm4yDpykF/iTo/XrGntTFABSL7eD1dbutoO8+D8hXkgsZSE0IjVxv6fa4e7koMA4uOsiGDzawfdZ25vebz3sl3+Pb7t+yZfoW4s/G570Cd0V1UAdaqz8ezIFw9g9YVB92ToC0JPfX9847EB2tdjMfPTp9csMyDalfuj6p9lR+3Puj9+IXQgihY75JvY5fOc5Z+x5wmImMbeeTbXjEYEmUP8hXUnBIliKMz6y2dFvMfmzpznRVXU6JehG7Pzb9dbGqxbCn2Dm0+BC/P/o7k8tNZuYtM1k7cS3n95z3XsuIJRgavqYm31EdwZECu1+HRfXg9O/urSssDGbPVo/JmTPhl18AdXCZ/zVQW7szdjGXThZCFG4FvoFXqLx8sl90SO1azslbCUiL9Oq6hXfIT9sFBqsDSdItjC+9pVvuSSrsbIk2AJqPbM4Th59g5K6R3PHmHZRvWR6A0xtPs+rFVUytP5WPa3zMiudXkLAnAUeaI/8bj6gFdyyD236AkPJw7Sj8eTf8eQ8kHHN9Pe3bw3PPqa8feQTOnQPgvgbqfd1/Hv+TE3En8h+vEEIURnKlgsWH1K7lHOqubSAiTwbLK/3DoD9hSbqF8V1Puk3unpq8dU+3nBJ1Iy1JfXa2NdSKyWSidP3S3P7S7Tyy8RFGnx5N92ndqX5XdSyBFi7/d5lNH27i8EuHmVJxCgsfXMi+Bfvydx+4yQSV+qsDrdUZA6YAOP0rLKoLu98Cu4uP/HrjDWjUCGJj4eGHQVGoWLQi7aPbA/DNzm88j1EIUeAU9l4viie1cCN8aT64QJBkS2LV0VXqHwf1kXTLI8NEYSBJtygA1JO1do8ME3rhbOkOCAnI8l54uXCaP9qcwYsHMyZ2DP1/7E/9wfWxhFtIupjEjq928EPfH7xzH7g1DJq8B3dth9LtwZ4EO1+GxQ3g7LK8lw8Kgm++Uf//4w+YOhWA+xveD8Ds7bMzdY+XhhshhCjIvFdPWXNsDUlpSUSaK8D5+l5br3BPXuW2FOu5kIHUhNBI+iPDPLynWxQYzqTbGmrNdb6g8CDq9q1Lz9k9qT+nPoOXD+aWZ27x/n3gkfXgzlVw6zcQHAXxh2B1F1jbD66dzH3ZevXgvffU188+C/v2MaDeAMIDwzl06RBrjq1xLxYhhChACv6I5b7hvJ+7fmB3DJe1FEKyhwoOSbqF8aV3L/dnS7c8MkyPMnYvd5XJYqJyu8p0mdwl/T7wDm91yPE+8KXPLuX4X8ddvw/cZILo++DuA1DraTBZ4ORP8Htt2PMO2JNzXnbUKOjcGZKTYfBgwhQrgxsMBmD61uly6AkhRIHm3QsLiqKkJ931Art5dd35YtCWS1+SS0ouMNjxkq+k22azcfLkSQ4cOMClS5e8FZMQ7vH0kWFylbzASUtRk25LoGeD6jnvA2/7YttM94HX6FYDS5B6H/iGyRuY024Ok6ImuXcfuDUCmn0AXbdCqdvAngg7xsHvdeHkguyPR7NZHc28RAnYtg2eeYbhzYYDsGDfApLNFzz6nEIIUWgZsuz3TnaxP3Y/x64cI9ASSK3AO72yTpE/eV08N1he6R9G/AnjQdIdHx/P1KlTadeuHREREURHR1OnTh1KlSpF5cqVGTZsGJs3b/ZFrEJkLz3p9uNAavLIMH1K36Xe2SfO+8DvW3Qfz8c+T/8f+9Pw/oaEFA/J9j7wzZ9t5srxK7mvtFhD6PgXtP4KQsqpo5yv7QsrO8Dl7VnnL1cO5s5Vj9OpU2myai/NyzUn1Z7K4bCvvPI5hRDCyDzqal4Iuwo5Ry1vH92eIFMRjaMRonBxK+mePHky0dHRzJ49m44dO7Jw4UK2b9/OwYMHWb9+PRMmTCAtLY3OnTvTtWtXDh065Ku4hcggnwOpiQIjveLlg7pUYFggdfvWpfdXvXku5jkeXPNglvvAFz++mCnRU/is/mcsf345x/48ht1mz7oykwmq3A89DkD9V9RnfZ9fA380hY3DICkm8/xdu8LLL6uvhw9nbNEeAByImArmNGM23AghhMiDd0/uzq7l3WvoY9RyJxm9PCsp1nNh0NsRsg7xm4vNmzfz119/Ua9evWzfb9myJQ8//DDTpk1j9uzZrF27lho1anglUCFy5Lyn29Pu5fLIsILDyy3dOTEHmIluF010u2g6/19nLuy5wMHfD3Jo8SFOrjvJhT0XuLDnAuveX0dQ0SCqd6lO9W7VqXFXDYqUztC6YA2Dhq9DtaGw/QU4/j38NxOOz4P6L0HNJyEgRJ13wgRYvx5WrKDP+G+JHlSMY9ajUGcB0Nenn1cYS0pKChs3buT48eMkJiZSqlQpmjRpQpUqVbQOTXhZYb7g5tFjwozKC2Xa1ZSrrD2xFoBuNbqxbIs6XVGkDqNnsncKDreS7u+++y79dXx8POHh4dnOFxQUxIgRI/IXmRCuco5eLi3dhZ4vW7pz4rwPvHT90tz2wm0kXU7iv6X/cWjxIQ7/cZjE2ET2/LCHPT/sAROUb1GeGt1rUKN7Dco2KYvJbIIilaHNd1BzFGx5Gi79qybhBz6C+uOh2sNgscK330KTJpgPHGTF71Wpfddl0tq8h6L08d8HFrr1zz//MGXKFH777TdsNhtFixYlJCSES5cukZKSQtWqVRk+fDgjRozIsfwWosArpFcqlv+3nDRHGjVL1KR68eq48PBKoaHCeZS6yWBXJDzOUtq2bcu5c+e8GYsQnsnvQGoyenmBo2UXtZBiIdQfWJ/eX/Xm2XPPMnT9UNq+3JaoJlGgwOlNp1kzYQ0zms9gcvnJLHxoITvn7iThXAKUagNdNsItX0JoJUg6A5tHqCOdH50LJYrDr79CkSJU+/cI0363QNktHFaWa/Z5hT707NmTe++9l+joaJYtW0Z8fDwXL17k1KlTJCYmcujQIV5++WVWrlxJzZo1Wb5cjpmCpLAXQx61ehvhS/PiBQLn/dzdqqujlhvh4wvD5ZX+YdArEm61dGfUpEkTWrVqxdKlS6ldu3b69O3bt/Piiy+yePFirwQoRJ7Mzu7lcmoq9HR2IjZbzFS4pQIVbqlAhzc6EH8mnkN/HOLQokMcWX6EhHMJ7PhyBzu+3AFA6fqlqdqpKlU7tqbyHbsJPDcH9rwJCUdg/f2w9x2o9yJ89w306sPQbXbOhsGnHcZhd3TGYvZs1HZhfN27d+enn37Cas3+cXlVq1alatWqPPjgg+zdu5ezZ8/6OUIhhOfyV79RFIXFh9V6efea+rqfGzDsPbpCuMPjpHv27NlMmDCB2267jYULF1K6dGlefvllfvrpJ7p109Gz/0SBlnHEUv+2dAs90qJ7uTvCy4XTdGhTmg5tij3VzvG1xzmy/AhHVhzh7NaznN99nvO7z7Phgw2YrWYqtq5IlQ7fEB29kXIBH2CN2wPrBqvd0af3hcfn8/JasCg7+Krnlwxp+rDWH1Fo5NFHH3V53rp161K3bl0fRiOE0JMdMTs4l3COItYitK3UVutwBHl3YtBZG4I+6bSulxOPk26A1157jaCgIDp16oTdbufOO+9k/fr1tGzZ0qP1ffrpp7z//vucO3eORo0a8fHHH+e4rjlz5jBkyJBM04KCgkhOTvZo28KYMnYp83j0cnlkWMHhp4HUvMESaKHqnVWpemdVABJjEzm6+ihHVhzhyPIjXDl6heN/Hef4X8cBiG34Bil3laZR8j+0CVpFjSqLCPgslKA1iYxbA3OHj+TkorZULCODVwohRMHgndRr6eGlANxR5Q6CAoK8sk7hH/qvzWjAoFckPE66Y2JiePvtt5kxYwZ169Zl//79PPTQQx4n3PPmzWP06NFMmzaNVq1a8eGHH9KlSxcOHDhA6dKls10mIiKCAwcOpP9thIq28C6H4kh/7XFLtygw9N7SnZvQkqHU61+Pev3Vp0NcPnKZ/5b/x9GVR9l6Mo5P1z6MEmAG+mKyOyh++BLlD52m5u0Hadh4Jy3ObSZp1K0kPfURIbcN0vbDCE2ZzeZcy0O7PZvH2AlhMB49m1td0LuB+EX+CrWl/6lJd5dqXbwRjNcV5keG5fSRjXiU+p3BDhePk+4qVapQq1Yt5s+fT/fu3VmyZAn33nsvJ06cYMyYMW6vb/LkyQwbNiy99XratGksWrSIWbNm8cILL2S7jMlkIioqytOPIAqAfCXdTvLIsILDQC3deSlWtRjNH21O80ebY1MUlOufKTwhlfiwQC7WKsnFWiXZSSN+pD8AZpudyFNXKPPPPspfvkQ0DqqFhhJdoiQVi0VSuUQIZYsEInd+F2w///xzpr9tNhvbtm3jyy+/5LXXXtMoKiF8x6MEvACUE65ISE3g7xN/A/pNukXOCsdR6iaDXpHwOOmeNWsWAwcOTP+7a9eurF69mh49enDs2DE+/fRTl9eVmprKli1bGDduXPo0s9lMx44dWb9+fY7LJSQkULlyZRwOB02bNuXtt9/O8RniomDKmHS7nWgZ8mq3yI2RW7pzc/r6sT0Y+DoskBhgy9UU3v7uKocDHJiaWrhUKwJbaCCXqpTgUpUS7MthXSaHg9BLiYTEJxGUlEJQUjLBSckEJScRlJyCxW5X/znsmBX1tVlxqH/bHZhc/d24Op9DYfbcX/KczYQjz3k80Wh3GeoeLOXZIaOAw1QVdDaMyT333JNlWr9+/ahXrx7z5s1j6NChGkQlfEGKsYIu/zt4zbE12Bw2qkRWoXrx6lm3IMeQEH7hcdKdMeF2atq0KevWreOuu+5ya12xsbHY7XbKlCmTaXqZMmXYv39/tsvUqlWLWbNm0bBhQ+Li4pg0aRK33nore/bsoUKFClnmT0lJISUlJf3vq1evAmoLgM1mcyvemzmXz+96tGLk+FNtqemv7Wl2tz6D2W7HAtgVBYe7n92WinOMYFtaWvpjyzxh5O8f9BW/M+l22B0uxaOn2HNz2WwGi4WidjtpDgclgM4hZhbvjGTdZ9ePRBME1D5O8w6f0KSUlcTS1TlRLpozUeW4EhlJfIlwEouHopjNXCsZxrWSYZp+Jj24bS28ms+x51KtCjZbUr5j8ccxeMsttzB8+HCfb0cI4WX5aJV33s/dpVoX/fYCk9HLs5BrIS4w2PGSr4HUshMdHc26deu8vdosWrduTevWrdP/vvXWW6lTpw6ff/45b7zxRpb5J06cmG23umXLlhEaGuqVmIz+3FMjxp9svzFw3vp/1nPsgOu/wLpHjlADOHLkCHvdfMRdoHIV56WlxYsXg6dd2zMw4vefkR7iv3D+AgA7du7g5OKTLi+nh9hzc7BOHahZk5PHjrF49+706U2aBNOnT1VSUjJ0GD82kgOnzxIX+i/lkubSIeEUlVMvUa7INYpYFRLDShEXXpqk0HCSAsNJDAwnKbAISYFFSAkKwW6xkGayYLcE4DBbsJvM6a8dZnOuhZySW4Xupvdubl1Rcvvp+qii2O+3qkBdkoPSWNLe9eMlI8XkwLx8d94z5iExMTHf68hNUlISH330EeXLl/fpdoQ29JpLCe2l389dPXPXcjlmjEF2UzYMekXCraT7xIkTVKpUKc/5ihUrBsDp06ddKuBLliyJxWIhJiYm0/SYmBiX79m2Wq00adKEw4cPZ/v+uHHjGD16dPrfV69epWLFinTu3JmIiAiXtpETm83G8uXL6dSpU47PSNUzI8cfnxIPu9TXt7dtS40qru9L859/Aurza6PdfcxdygX4VX3ZrVv3fJVeRv7+QV/xf/fJd8QTT6NGjWjQrUGe8+sp9tz8aVYv6tSIjqZbhnOwzWajVKns4q8IeDaopT9p/f2b/1W/V+sIE93fz9pDKi/ejN/Z+8obihUrlqlFS1EU4uPjCQ0NZe7cuV7bjhCGZKT+1PmM9ejloxy6dIgAcwAdqnTwUlDCHwx0lAoXuZV0t2jx/+3de3gUVZo/8G93p3MTwsVAwiUQLgJyDRCJ4SKoXBwcV3bHZ9BllGVmcHaUHd3sOsLuCuM1qAwy67Iy6qC/dZzVGXd0nmcGkRgMykXuUeQ2itwhARRISCDpdNfvj053OqTT3dVd1XXOqe/neXiATlXlrVPV9dZb51TVDZg1axZ+/OMf44Ybbgg7zcWLF/H73/8ev/rVr3D//ffjZz/7WdTlpqamYuzYsSgvL8esWbMAAD6fD+Xl5ViwYEFMsXm9XuzZs6fdd4SnpaUhLa3taxLcbrdhJ3tGLssKMsbv8rb08KWmpumLv7mQcblccOldb2/L9G6325BLxjK2fygR4nc0XxNOcafoikWE2CMJ3LyQ5nLB7Wr7GDTR44/GsvjP+/9ydXfB5Y7/8XJGxG/k+q9YsaLV/51OJ7p164aioqLgRXEi2YW+MlSLp0SRqqs3vlgDvdzFvYuRlZZYBxNZQ6a9NGkkvR1BV9G9b98+PP3005g2bRrS09MxduxY9OzZE+np6Th//jz27duHvXv3YsyYMXjuuefaLYDDKSkpwdy5c1FYWIhx48ZhxYoVqKurCz7N/L777kOvXr1QWloKAHjiiSdw4403YuDAgbhw4QKef/55HD16FD/+8Y/1rBJJrtWD1PR++4IP3ZLsW0vtUvVBaoG7feUtqwUVuDslw9IoDDd37lyrQyAiAYj+qrAAO74yTKYBF2QMXUX3tddei+XLl+Ppp5/GX/7yF2zcuBFHjx7F5cuXkZ2djTlz5mDGjBkYPny47kBmz56Ns2fPYvHixaiqqkJBQQHWrl0bfLjasWPH4HS23Dd7/vx5zJ8/H1VVVejSpQvGjh2LzZs3Y+jQobp/N8kr9Oq2y5n4fdV6fnOQjZKE8BR6ZViopua/WXQbTNKr5eHEevtXQKy3fxGRleKvzDxeD8q/LgfQ9n5uEh9r8hhIlrvjepBaRkYGbrnlFtx1112GBrNgwYJ2h5NXVFS0+v8LL7yAF154wdDfT/JJ6D3d7OlWjuo93YY/+dLuFCq6zbr9i4gEEMd5yqcnPkVtYy2yM7MxpscYE4IiI0TbtAqkJ+NJekUi7nO47Oxs9OrVC6NGjWr1Z9CgQcr1MpG4EhpengiOCxKaascgDi83iUJF9/79+/HUU0+ZcvsXiYupyE/T0xBSNVr8sQaGlk/rP01/p0SyKXQsNopMeynFJu6ie8+ePaisrMRnn32G7du34+WXX8a3336L9PR0DB8+HFu3bjUyTqKwgkW35oDTyXu6bU/RLBUYXs6eboMpdKJ34sQJPP/883j66aexZs0afPLJJ4bd/kUkIl2FdjhS5X79scpyPzdFJtNemnSSNU7c53DDhg3DsGHDMGfOHAD+g9/atWvxT//0T7j11lsNC5AoktCiO25xJV6FztYVovrwcvZ0GyzwNRa8EygWo0ePRlVVFbp164ZHHnkE27dvx7XXXmt1WJQkUtWPZLpz9eew89ROAMD0AdPDTsN9hqQlaQeLYacaDocD3/nOd/Db3/4WVVVVRi2WKKJgkaXFsStLNcSMYsIHqZEegbtTFNhdOnfujK+//hoAcOTIEfh8vihzEJHw4jxPKTtUBg0aRuaMRI+OPQwOynh2fHp5NDxDjYFku4vhoxVvvPFG3HPPPUYvliislp5up/6rtgkNL+fQdBGp3tPN4eUGU2jAyve+9z1MnjwZPXr0gMPhQGFhIVxh3ukOIFicE9mSlBfc9R2kOLRcHQqkJ+PJ+BVGAudwHTp0wIgRIzBq1CiMHDkSo0aNwpAhQ7B9+3bU1tYaGSNRu7y+lqKbSPWebhbdBlOo6H755Zfxd3/3d/jqq6/ws5/9DPPnz0fHjh2tDosoKbR4zsIVyxMBmqax6CYSUNzncO+88w4qKytRWVmJX/3qVzh06BA0TYPD4cCTTz5pZIxE7Qrt6daND1JTjqo93d7mv8P3W1LcFCq6AeC2224DAOzcuRMPPfQQi24i6em/mPDFmS9QdakKGSkZmNhnogkxUTJI2pmbXJLl7riL7ttuuy2Y4AGgvr4ehw8fxrXXXovc3FxDgiOKpuWVYY7k1s6aYmfrilGtp5t7m0kUbdjXXnvN6hCITBdX7zYg5/ByHTntw68/BADc1PcmpKWkmRWRsRQ9FkcS625ooyaJnYRfYcDA0YqZmZkYNmyYUYsjionPiAepKVag2ZqkB+JYcU81mA1P9IiomaK5v/xwOQBgav+pFkdCiVD8dMYYkn2FeSMsSS2h4eUJ4dm6iFQdXs7kaxKFXhlmppUrVyI/Px/p6ekoKirCtm3b2p32lVdewaRJk9ClSxd06dIFU6dObTO9pmlYvHgxevTogYyMDEydOhVffvml2auhJBk7bc2Q8Du7haVvvTxeDyqOVACIvejWEnnlKiUs2rUfbp0wJP2681SDpGbd08tJSIo+SI2XeEyi0CvDzPL222+jpKQES5Yswa5duzBq1CjMmDEDZ86cCTt9RUUF7rnnHnz00UfYsmUL8vLyMH36dJw8eTI4zXPPPYf//M//xKpVq7B161Zcc801mDFjBq5cuZKs1SKSTGwHqa0nt6LOU4fszGyMzBlpckzG4SvDyA5YdJPULO/pZoIQiuo93YqtlvXYsFEtX74c8+fPx7x58zB06FCsWrUKmZmZWL16ddjp33zzTTzwwAMoKCjAkCFD8Oqrr8Ln86G83D/kVdM0rFixAv/xH/+BO++8EyNHjsT//M//4NSpU3jvvfeSuGZqYSrSQdle8Zb7uW/pdwucjsjnRdxnxKbuXmogyfZhFt0ktZZXhsXxzWNPt3rY0016sGEjamxsxM6dOzF1asswVafTialTp2LLli0xLaO+vh4ejwddu3YFABw+fBhVVVWtltmpUycUFRXFvEwiwIAh5TLkCZ3rGCi6p/bj/dyqkGAvTT5Jr0jwta8kteDTS5Pd082nlwuJPd2kCxs2onPnzsHr9SInJ6fV5zk5OThw4EBMy3j00UfRs2fPYJFdVVUVXMbVywz87GoNDQ1oaGgI/r+mpgYA4PF44PF4YluZdgTmT3Q5VtE0FwAHmpqa4PHIdyaaSPs3eZtaltMU+77gaGpCCvwPYvUKvv+4fD444e9g8EX5HbUNtdh6cisAYHKfyVFj8nodCJQBVu//TU3N29IReyzyf3f9561erzfsd1dLSQEcDv9xLtnBxcDK9nc0OZCCFGgODU2epugzhGFk/LEug0U3SY33dJMdsDY0CRvWVEuXLsVbb72FiooKpKenx72c0tJSPP74420+X7duHTIzMxMJMaisrMyQ5STb5cvTAGRi69at+PbbC1aHE7d42n93ze7gv9evX4+ctJwIU7fI++wzjAFw9swZfLpmje7fG45Z+8/ohhPoA+DA/gP46lDkWHdc3IEmXxNyUnOwf/N+7Mf+iNPv2dMXQAEA6/f/uoN1APwjY9bo3CZWxx6v8+cnAMjG559/hg4dTrf5uec73wFSU/Hxhg04VFeX/ABjZEX7d93fFZMwCXV1dShfU57QsoyIv76+PqbpWHST1FqGl1v1yjCerQuFw8tJDz69PKLs7Gy4XC5UV1e3+ry6uhq5ubkR5122bBmWLl2KDz/8ECNHtjzQKTBfdXU1evTo0WqZBQUFYZe1aNEilJSUBP9fU1MTfEBbVlaW3tVqxePxoKysDNOmTYPb7U5oWVbIyHABAIqKinDjjS6Lo9EvkfZP+ToF+Nr/75tvvhn5nfNjms9x7hwAoFv37pg5c6au33k1s/cf17Z3gKPAkOuHYNDgyLGuL1sPHAa+O/S7Ma3XqVMtGcXq/f/ktSfxJb5EZmZmzNtE9u/usmX+xDNy5CjMnDm6zc/dKf4SbfLkyRiU1MhiY2X7Ozr7991rrrkm7u+wkfEHRl9Fw6KbpGb5g9RIKBxeTrqwYSNKTU3F2LFjUV5ejlmzZgFA8KFoCxYsaHe+5557Dk8//TQ++OADFBYWtvpZv379kJubi/Ly8mCRXVNTg61bt+KnP/1p2OWlpaUhLS2tzedut9uwkz0jl5VMDod/J05JSYHbLe8pXTztn+JqWV9d87v8FyecTiecou8/Tv+5jcuVAleU5a8/uh4AMH3g9JhicYVco7F6/09Jab0t9bA69vj5z19dLlfY724gPbndboi8dpa0f3NzORyOhH+3EfHHOr+8R2gihBTdcHB4ObGnm/ThK8OiKikpwdy5c1FYWIhx48ZhxYoVqKurw7x58wAA9913H3r16oXS0lIAwLPPPovFixfjd7/7HfLz84P3aXfo0AEdOnSAw+HAww8/jKeeegrXXXcd+vXrh8ceeww9e/YMFvYUO4UfxE06VF2qwhdnvgDgf3K5HiLsQ3xlWPvYImEIsM/Gg0U3SS3Ys8lXhhHY0006sWGjmj17Ns6ePYvFixejqqoKBQUFWLt2bfBBaMeOHYPT2XL8femll9DY2Ii77rqr1XKWLFmCX/ziFwCAn//856irq8P999+PCxcuYOLEiVi7dm1C932T/WghZ966nmQuQpUZqxhjXX/Y38s9Onc0sjOzzYyIDNbeaaREeynFiEU3SS2h4eXs6VYPe7pJDzZsTBYsWNDucPKKiopW/z9y5EjU5TkcDjzxxBN44oknDIiOAKYx9UXewIFXhd3a79bYl8h9RgrcTBFI1jh8fAxJLaGnlyeCrwwTGzcLxYJfYyL7UqTq1DSt5f3c/SV9PzePxaSHpMMAWHST1Kx/ejmJRNcQQ4nwfMQkbFgiElr0nPbVt1/heM1xpLpSMbHPxCTERMmg5tmMwSTL3Sy6SWotPd3J/ubxbF1IHF5OevCVYUT2I+XF2faP/oFe7vF543FN6jXJCoiShHk/DBm/wuCpBkku+CCVeIaXs6dbOXyQGunCp5cTSSt0ZJMWz1m4Irn/w8P67+cWlWoXzBMhaV1JEbDoJqklNLzcCEwQYmFPN+nBhiUioUUuvbw+b/DJ5dLezw11bw0zAtNTBJI1Dotukpp1Ty9nghARe7pJFzYsSY61ShxkbLR2zlN2V+3GhSsXkJWWhcKehUkOihIh424oDEnbjkU3SS2hp5fziKce9nSTHmxYIpJYoJd7ct/JSHEq8BZgHouDeIYaA8n2FxbdJDVNM+CmzHgKNL4yTGyKbRbubSZhw5IiHA57n6LHNTxZhouzUdbroyMfAQBu6XeL7kULtfo23n2jbQeRNpMwJN1fWHST1HyBhMRXhhHUvS+MtaFJ+PRyIpJC26O/x+vBJ0c/AQBMyZ+S5HjIbGqezdgbTzVIagnd050QlkFC4vBy0oMNSyStuJ5YDkh2a1n7se44tQN1njp0zeiKkTkjkxgTJRPTUwSSNQ6LbpKaV/P6/8FXhhH4IDXSia8MIyIptD1IVRypAOC/n9vpkPt0PpC7VbtgTiaR6bpZCLm/pWR7Tb7motuX5AeIsGAXk6I93QFqrpWFeDWDyL4kzxOB+7lvzr/Z4kjIDJLWlckl2VeYRTdJzetr8v8jnqKbhbNyVO/pJoOx6CZSQtxDzYUXfr0avY3YdHwTAODmfiy6Vcb0FIakX3cW3SS1pmDR7bKodubhUCiK9nSzNjQJG5bIfqS6p7vZVTlt28ltqPfUIzszG8O6DbMoKBPwWBwk4V5KUbDoJqklNLw8oZ5uHg6FpljiZm1oEjYsSU7G+tEoqr6tIhYfHfYPLZ+SPyXhi8xCNKMIMQiK6SkCyRqHRTdJrSmR4eWkHFVPwlgbmoSvDCOyLxlGRLWT0yqOVgDg/dwyU/R0JTkkbTueapDUQu/pTu7Ty1kGCYnDy0kPNiwpQrFDnrmkrHZaNnBDUwM2H98MILGiW8R9RrXcnQgZ99Kkk2x3YdFNUgsOL9dc+meWMvFSJKo/SE2x1bIeXxlGpARVRzmF8+mJT3Gl6QpyO+RiSPYQq8MxhJ2239WiXWdgelIHi26SmiHDy+O5ssonn4uJPd2kBxuWyL6kyBNti9HAq8KMuJ+bSEqSXqNh0U1Sa9KsGl5OImJPN+nChiUiKbQcpCqOVAAApvSdYk0olBSS1pXJJVnuZtFNUvMGn14ex/DyhPBsXUjs6SY92LBE0or73dwSD2W+7LmMLSe2AFDs/dw8FreLTRKGpF9hFt0ktYSGl7OnW12KbVKej5iEDUukhLgLcOG1Xq8tJ7ag0duInh174rqu11kUEyWDqnu0oSTL3Sy6SWpNiTy93Ags2IWi6sNYWBuahK8MI8kpeshLDpnyd3Osgfdz35x/s2EjujRNonawIW4ddfBUg6TWMrw82T3dPNMRkqLDywPUXCsL8WoGEUlE9fdzq5q7yWCSnoKz6CapBXu643llGClH9QepkcH4yjAi+5FpeEBIrPWeemw9sRWAMfdzi1TfqjpKLZJoq2y/FomDQPtwLFh0k9Qse3q5xi4yISna0829zSRsWCJp2atQc2DTsU3w+DzIy8pDv879rA6IkoTpKQxJv/osuklqHm+j/x9et/6ZbZWw7UH1nm7FVst6bFgiJcRVgEt2cTbwfu6b+xl3P7dwFF2tSNrblDxDVQ+LbpLalaYr/n80ZcS/kITu6bZhhhAZe7pJDzYskf1IdcG9JdbA+7mVvJ9bpk2SZExPEUjWOCy6SWqXmy77/+GJo+iWKvGSnbE2NAmfXk5EEmj0ebD91HYAwOS+ky2Ohshikp6+81SDpHYlUHQ3ZcQ/UiyRnm7FelRlx+HlpAsblogkcPj8YTT5mtA7qzfyO+dbHQ4lgaR1ZXJJlruFKrpXrlyJ/Px8pKeno6ioCNu2bYtpvrfeegsOhwOzZs0yN0ASTr2n3v8P9nQTwOHlpA8bliTHNOanxVOiSJEn/Ov15bdfAvD3cquW30KpvG7xYouEIelxT5ii++2330ZJSQmWLFmCXbt2YdSoUZgxYwbOnDkTcb4jR47gX//1XzFp0qQkRUoiudhwwf+PK13iX0hCB3keDkXCnm7Sha8MI5JWXIU2IOWVii+//QoAcFPfmyyOxBz2ehJ9bNgi6hGm6F6+fDnmz5+PefPmYejQoVi1ahUyMzOxevXqdufxer2YM2cOHn/8cfTv3z+J0ZIovrlyzv+Py10temUYCYU93aQHG5YUodghj67y9fmvARhbdHOfkQM3UwSSNU6K1QEAQGNjI3bu3IlFixYFP3M6nZg6dSq2bNnS7nxPPPEEunfvjh/96Ef45JNPIv6OhoYGNDQ0BP9fU1MDAPB4PPB4PAnFH5g/0eVY5YsvmvA//zMU69cDLpfX6nBa8aIRX6SuxkXn1/DCAw1N8Dqa/0YjDqTu8U94Ib95W8a+bJfPByf8F298erddkwduABocaLL5/iNS/IGr5U1NTTHFI1LskWgpKYDDv6+FRipL/O2xOv4ULQUOOOBp8gBxhGBk/LJuQyJpyVB1Nuc0j68J3TK7YfC1gy0OyGQSbBKjsO8mAZK2nRBF97lz5+D1epGTk9Pq85ycHBw4cCDsPBs3bsRvfvMbVFZWxvQ7SktL8fjjj7f5fN26dcjMzNQdczhlZWWGLCfZnnlmHLZtu87qMMKb/Bxw8y8iT3NuENy1+Vi/fi1crti/iTecPo2eAL7YuxdH1qzRFVaW9zBuhv9izgc6522PrPtPgAjxNzb639v+ycZPkH40Peb5RIg9kiszZgDp6di0cSNONl8wDCV6/NFYFf+MKzOQjnRs3LQRNafbtmusjIi/vr4+4WUQkZo0zd/LrdooriBJiygzsUliINnXQYiiW6/a2lrce++9eOWVV5CdnR3TPIsWLUJJSUnw/zU1NcjLy8P06dORlZWVUDwejwdlZWWYNm0a3G53Qsuywgsv+O8y+M53vLj+eouDucqb1/wZ1QDymm5GD+84OOGGU0vx/40UpGgZGOCehdxHd+K226bqan/X//t/AIDhw4dj6MyZ+gK78BlQBqSlpWGm3nmvIvv+I1L8B90HcRmXMWnSJHQb2i3q9CLFHklaiv9QPWniRIwI+VyW+Ntjdfwpqf52nXjTRGCk/vmNjL8mzMUUIoqNrnuCpepibIlV1fu57S7adRTJ6kqKQIiiOzs7Gy6XC9XV1a0+r66uRm5ubpvpDx06hCNHjuCOO+4Ifubz+Z+Ik5KSgoMHD2LAgAGt5klLS0NaWlqbZbndbsNO9oxcVjI5nf62+/u/1/CDHwixSwT9/oUqoAZ45x+XYlyvcWGn8Xg8WLNml/72bz7SuVJS4NK73ZqLIIfDYfv9J0CE+AMnXu5UfbGIEHskgdMut9uNcFGKHn80lsXf3LDuVDfCNmyMjIhf5u1HZAU7PHzLp2lwwn+oskPRrWxPPhlL0q++EA9SS01NxdixY1FeXh78zOfzoby8HMXFxW2mHzJkCPbs2YPKysrgn7/5m7/BzTffjMrKSuTl5SUzfOmJmrc0TcOZOv/T63OuyYkydVy/wPhlkrX4IDXSgw1LZF8S5ImLDRcBABkpGRjRfUSUqeVlhwso8RJ/L7WQZI0jTLdmSUkJ5s6di8LCQowbNw4rVqxAXV0d5s2bBwC477770KtXL5SWliI9PR3Dhw9vNX/nzp0BoM3nJK8GbwMavf57dDundzbvF/GVYcrgK8NIF74yjMh+JCrwvqk/hy4ABl47EC6ny+pwiMQgz1e4FWGK7tmzZ+Ps2bNYvHgxqqqqUFBQgLVr1wYfrnbs2DE4nUJ0zCtLtIu+gYIbANJS2t4akLBEEq9ESdtW2NNNerBhSXJMRX5xv7NbcN/Un8NAANd1Ne9ht0LtQzwWA5C2pkw+yfYXYYpuAFiwYAEWLFgQ9mcVFRUR53399deND8gmhDrghmhoannFW6or1bxfxJ5uZbCnm3RhwxKRoHyaD99c/gbIAAZdO8jqcMgiTE/qYNcxCSvQ053iTIHTYcKumtDVBkGvVBAA9nRTjAINy0xIklPskJccgjfa/rP74fF6AAB9OvUxfPlCrT5PqVphc0QhaQPxVIOChDoAw39PN2ByLzeQ2IqL1mh2J+mBOBoW3SZhwxJJK+4h5aIO77vKx0c/Dv47xcm3G9gV01MEkjUOi24SNv8EerrTXCbczw2wp1tBHF5OurBhiUhQHx/7OPpEilFtlFokop57S0HStmPRTcIKFN1C93STWPggNdKDDUukBNVeOaVpGjYc2WCbQ5Nq2y9RbI0YSfYFYdFNQaLVKYEHqZlWdAd7ReNYcY1n6yJiTzfpwleGEdmXaCc9IQ6dP4TTl07DGYhR4FgpMdE2Lbe8Olh0k7BDXILDy814XRipiT3dpAcblsh+RD3pCRG4n7tzeheLI0kyHosBsKc7KkkbiEU3Ccvj8z+1M8Vp0pvtEunpDmKGEImqPd1kEhbdJDkJ6kfTqDwkOVB0Z2d0Nf13aZoAB0B1N2XCBNg64pKscVh0U5BonYM+zT/20+VwmfML+CA1ZbGnm2LCV4YRKSGuJ5kLnCcCRXfXzGubPxE3ViKKDU81SNgr5YGi2/QCiq8MU4eg+3KiWHSbhA1LimAq0kHUk55mxy8ex+ELh+F0ONHVxOHlIu4zql0wj5fYe6gAJG0gFt0krMDQMafDpN00kcQreNK2K1WHl7M2NAkblogE88mxTwAAY3qMQYrTpJF+JA2mpwgkaxwW3SSsQE+3aUV3AO/pVgcfpEZ6sGGJSDCBoeWT+kwK+VTtg5TK9+fHg60RhaQNxKKbgkSrU0wvunlPt3LY00268JVhRPYl2klPs43HNgK4uugm1cR6CirmXioIyRqHRTcJO1Jajp5uEgp7ukkPNiyRtEIfnqarp1TUkx4A5y+fx96zewEAE/pMgO0u8PNYDMB2W10/SRuIRTcJK5BQHWYdhQ3p6WaGEAl7ukkXNiwRCWTz8c0AgEHXDkL3a7q3/ECxC8ltSFpEGSHaplV8yydGssZh0U1Boh3T2dNN8WJPN8WErwwjyQncaUtxCAwtn5A3weJIyEr8WkchaQPxVIOETdpi39PdTLHiTnqC7suJYtFtMjYskf0ImL83Hd8EAJjYZ6L/A1FP0Eyi2gVzI7BFIpCscVh0k7CE7um2WSKUjmQH4mhYdJsg9CvMhiXJsVbRQdD83dDUgG0ntwEIKbqDjN/AIu0zfHp5a2yNKCRtIBbdFCTSARhoKbpNu/IZvP+XrwxTQWjSVvVquZprZREW3URSCz3ma7KehYfYeXonGrwN6JbZDdd1vc7qcEgQTE8RSNY4LLpJ1Iu+wYQq5vByQRvNzhQuori3mcAX8m/F9hciks+mY/6h5RP6TAi5cGyzoz+PxQBst9X1k7SBWHSTsIQeXt4ys2FhUGJU7unm8HITKHyRhogiMGSUm/E2Hvc/RG1i3tVDywEepOyLWz4MSU+KWHRTkGD5R/AHqUl6mU1lNiiiFF0ta4TuL8yERGQhTdNa9XTbjg1PqSKdgtqwOWyBpxok7PByOXq6icxlg2sJ1mDDEilD9gdxHfzmIL65/A3SU9IxpseYkJ/IvV6UOKanMNjTTWSswINRHGZ9qxJJ0oIOT7MzVYeXszY0CRuWFCB5rWktgfJE4P3cRb2KkOpKbTuBibGKtA+plLtjFW6VBdokZCAW3RQk2rGOPd2ki6JFlKKrZT02LJHU4n5iuUhVZrPA+7kn5F01tFzAWM0g+0gFMzE9hcGebpKVqMc6se/pDpDsG68w9nSTLmxYIhJEoKe77fu5A3iQshNBT8vFI9nXgkU3CUvsnm4eEoWjaBGl6GpZj68MI4UodJ3RdqovVeOrb7+CAw4U5xUn7fcKuc+IGJPF2CRhSHoKzqKbgkQ7AAd6Lk3rtTSip1u0RrMx9nSTLmxYImXENdRckDwRGFo+vPtwdE7vfNVPJa0uKCHc6jES4yscMxbdZN/h5QHs6VaPZAfiSFgbmoSvDCOyJ8FOeqIPLQeUP/qLtUksx7wfhaT7C081SFhJu6c7oavdPBwKQ9KDcDRMviZhwxJJTZWHbwWK7jYPUbMhlUapGYUtEoFkjcOim4JEO9YJ/SA1RZK9SlQdXh5KzbWyCItuIrJYXWMddlftBtBeTzfPNeyIWz0KSRuIRTcJWz+KPbw8OLNhYVCCFC2iBP16yk/R/cVoK1euRH5+PtLT01FUVIRt27a1O+3evXvxve99D/n5+XA4HFixYkWbabxeLx577DH069cPGRkZGDBgAJ588kllei3JGrr2H0NGuRlj28ltaPI1oXdWb/Tp1Kf9CQWI1Ux2/P7Huspqb/kESdY4LLpJWIEHozjM+lYldJC3X4IQnao93awNTcKnl0f19ttvo6SkBEuWLMGuXbswatQozJgxA2fOnAk7fX19Pfr374+lS5ciNzc37DTPPvssXnrpJfzXf/0X9u/fj2effRbPPfccXnzxRTNXRVk2rFWUEjq03Kq8pWk8AIqGX+soJG0gFt0UJFqdIkdPNwlD0epU0dWyHhs2quXLl2P+/PmYN28ehg4dilWrViEzMxOrV68OO/0NN9yA559/HnfffTfS0tLCTrN582bceeeduP3225Gfn4+77roL06dPj9iDTqSqwJPL232Imt2uqtjwWBztFNSGTRJd4GshWeOkWB0AWU/UY7rQ93QHsGAXBnu6SRc+vTyixsZG7Ny5E4sWLQp+5nQ6MXXqVGzZsiXu5Y4fPx4vv/wy/vrXv2LQoEH47LPPsHHjRixfvrzdeRoaGtDQ0BD8f01NDQDA4/HA4/HEHUtgGaF/y0bT/KdxXm8TZFyFRNq/ydvUspym2PcFp9cLFwCfzwevhfuP1+fF5uObAQBFPYvCLsOlaXACaPJ6oRm8gb1eBwJlgNX7f5PHvy01TYs5Fvm/u/7E4//utj4fbQQAtxuAf/1EPE23sv0dTQ6kIAU+zQevxxvXMoyMP9ZlsOgmYYnd0y3iIZCCFKpOWXSbhA0b0blz5+D1epGTk9Pq85ycHBw4cCDu5S5cuBA1NTUYMmQIXC4XvF4vnn76acyZM6fdeUpLS/H444+3+XzdunXIzMyMO5ZQZWVlhiwn2Tye2wCkYcuWLTh5stbqcOIWT/vvOr8r+O9NGzfhdObpmOYbuH8/hgE4cfIkdq9Zo/v3hhNP/F/Xf43axlpkODNwfMdxnHKcajPN+Mvn0A1AZWUlTn6RZUCkLT77rDeAsQCs3/8v7LwAADh//jzW6NwmVscer5qamwB0we7dlXC5qlv9rNbtBmbOBAC8v2YNXBbEFysr2j/vszyMwRicPXcWn675NKFlGRF/fX19TNOx6KYg0ToHAz2XQvd082xdHIpeB2FtaBJF9xfR/f73v8ebb76J3/3udxg2bBgqKyvx8MMPo2fPnpg7d27YeRYtWoSSkpLg/2tqapCXl4fp06cjKyuxQsTj8aCsrAzTpk2Du7lnSSZut/80rri4GKNGyXdKl0j71+2rA476/z1h4gSMzh0d03zOffsAAL1790aP5sImXonE/9KOl4C/AhP7TsQdt98RdhrXhl8BZ4CCggKM6pNYrFc7f74lo1i9/x/0HMQRHEHXrl0xM8ZtIvt398kn/ee2o0cXYObM1mX1NyH/njlzppBFt5Xt7/jGv+9269Yt5v3lakbGHxh9FY18R2gynOjDy00bKpzIE0xFbTQb4/By0kXSe8KSJTs7Gy6XC9XVrXtgqqur231IWiweeeQRLFy4EHfffTcAYMSIETh69ChKS0vbLbrT0tLC3iPudrsNO9kzclnJ5HD4d+SUlBQp4w+Ip/1TUlJa/Tvm+V3+EsbpdMJp4f6z5ZT/No1JfSe1P29zLktxuYPDjY0S0nyW7/+BbelwOHTHYXXs8XI4/Oe4LldK8OJZQOjapLrdQt8BZUn7N1+F8H+HE2sdI+KPdX6RtyPZnNjDy4MzGxYGJcgG1amiq2UNFt0RpaamYuzYsSgvLw9+5vP5UF5ejuLi4riXW19fD6ez9THd5XLB5/O1MweRwQR5ZVjwyeV9JkSYyh4X+O34yrBI2BpqYk83BYnWORgsus26NsRXhinFDj3dZKBAjafOrmK4kpISzJ07F4WFhRg3bhxWrFiBuro6zJs3DwBw3333oVevXigtLQXgf/javuahu42NjTh58iQqKyvRoUMHDBw4EABwxx134Omnn0afPn0wbNgw7N69G8uXL8cPf/hDa1aSyALHLh7DiZoTcDlcKOpV1P6EglwgSBqbrKYebJIwJL1ozqKbhB0pHXhPt+n3dCeSzOySCGWgaE+3oqtlPUmTdjLNnj0bZ8+exeLFi1FVVYWCggKsXbs2+HC1Y8eOteq1PnXqFEaPbrmvdtmyZVi2bBkmT56MiooKAMCLL76Ixx57DA888ADOnDmDnj174ic/+QkWL16c1HVThaj5OxlCL7TK1lMa6OUe02MMrkm9JoY5zDtQSdZ0yojU7twkamLRTcIy/Z7uAD69XAl26OlWZ60EEGhY3mQV0YIFC7BgwYKwPwsU0gH5+flRi5+OHTtixYoVWLFihUEREsknOLQ8L9LQcsA25xo2Wc14MO+HIelFc55ukLCkeE83iUmyA3EkLLpNImnSJgpHoeuM5hNgyPam45sARLufO4QJsYq4z6h0wTxW4VaZZ6dqYtFNQaId6/ggNdJF0SzFotskLLqJyAIXr1zEnuo9AICJfSZGmVrRxEaUCEnzN4tugqaJudcK/Z5u9pILh8PLSRdJkzYRye3TE59Cg4b+Xfojt0OU1+9p9jhQyXZPvtnYGjGS7GvBopuElbTh5ezpVoOiWYpFt0nscS5LZAuaRAkgOLQ86v3coXigsiNu9XbI83VvhUU3BYnWORh8kJrZhx0+SE0JwSvlgu3HieKeZhK+MoxIanEX2hbf0x0ousfnjY9haptlAB6PAdhuq+sn6UVzFt0k7EhpKR6kJtqVCjsLnkepuU3UXCsL8enlRJRkTb4mbD2xFYDOnm5F8xpFxq2uFp5ukLCEHl4u6pUKG2NPN+ki6ZVyolBMRXL5vPpz1Hnq0CmtE4Z1HxbDHDbZwDZZzVixOaKQNH+z6KYg0S6kBoaO8enlpIdqPd2S5hbxsWGJlKHrQVwWXqnYdMw/tLw4rzi2cxubPEgtQLX8HUksu6F9WsMeWHSTsFfKg/d0m3UQTmjFBW00O1N0k9jrlCuJ2LCkEBvVKsaxoNGC93P3juV+7lD2eE83+Sl6OmMcSfO3UEX3ypUrkZ+fj/T0dBQVFWHbtm3tTvvHP/4RhYWF6Ny5M6655hoUFBTgjTfeSGK0ZDahh5eTcFQfXq7YalmPDUskNRlfM7X5+GYAwIQ+sd7PLd86xkPGbWmUSKegTE9qEabofvvtt1FSUoIlS5Zg165dGDVqFGbMmIEzZ86Enb5r167493//d2zZsgWff/455s2bh3nz5uGDDz5IcuTqEK32NL3oDuDwcjUo+iA11oYmYcMSURIdv3gcx2uOw+VwoahXkb6ZFctr7bLJakZj30sQMZI0fwtTdC9fvhzz58/HvHnzMHToUKxatQqZmZlYvXp12OmnTJmCv/3bv8X111+PAQMG4KGHHsLIkSOxcePGJEcuP1EvMAaufIr59HJBG83G2NNNuvCVYUT2ZNEot8DQ8oLcAlyTek1sM4l6gkZJwfSklhSrAwCAxsZG7Ny5E4sWLQp+5nQ6MXXqVGzZsiXq/JqmYf369Th48CCeffbZsNM0NDSgoaEh+P+amhoAgMfjgcfjSSj+wPyJLscqmuYC4EBTUxM8HnEO8E3eJgCA5tMitm287Z+iaXAAaPJ6oemc19HUhBT4z9u9Nt9/RInf0+j//Q6HI+ZYRIk9kkYAcLvh0DR4mppa/UyG+COxNP5GwA03NKeGJk9T9OnDMDJ+WbchkQjifmd3EgUeoqbrVWF2uewq/uZLKjZHFJJ+LYQous+dOwev14ucnJxWn+fk5ODAgQPtznfx4kX06tULDQ0NcLlc+O///m9MmzYt7LSlpaV4/PHH23y+bt06ZGZmJrYCzcrKygxZTrLV1k4B0Am7d++Cpp21OpygwycOAwAOfXUIa+rWRJ1eb/tPvngRnQFs374dZ7xeXfN2b9qBYgA1Fy9iw5roscVC1v0nwOr4G6r9F9W8Pi/W6NwmVsceydmMDGD6dGg+X7vrJXL8sbAi/o5HOuIW3IKGxgZ8sCax25KMiL++vj7hZRCRuIIPUcvT+xA1QLrqggzBra4WIYrueHXs2BGVlZW4dOkSysvLUVJSgv79+2PKlCltpl20aBFKSkqC/6+pqUFeXh6mT5+OrKyshOLweDwoKyvDtGnT4Ha7E1qWFf7jP1wAgDFjxuC221wWR9NizftrgHPAoEGDMHPSzHani7f9UxYvBgDcMG4ctOnTdcXmOO0ANgJZnTpj5tT2Y4uF7PuPKPFfOHwB+7EfLpcLM2fGtk1EiT2So81/O53ONuslQ/yRWBr/5/6/0tLTYt5frmZk/IHRV0SknkuNl/BZ9WcA9DxEDbBbn6dqz2SJl722ehzY0x2/7OxsuFwuVFdXt/q8uroaubm57c7ndDoxcOBAAEBBQQH279+P0tLSsEV3Wloa0tLS2nzudrsNO9kzclnJ5HD4996UlBS43ULsEgAAh9P/bXK7YmtX3e3ffHBPcbsBvdvN5b844XQ44LT5/hNgdfwpKf591+Fw6I7D6tgjCXwjI62XyPHHwpL4mxs2nv3lakbEL/P2I+vY+ZbfuIeUW3BP99YTW+HTfOjTqQ96Z/XWvwATY9U0ySoXG+GWaYekxz0hHqSWmpqKsWPHory8PPiZz+dDeXk5iouLY16Oz+drdd826SPaBcakvTIsIYI1mo3xQWqkCxuWiJIkMLRc3/3csM1VFTu/MiwctkaMJMvfwnRrlpSUYO7cuSgsLMS4ceOwYsUK1NXVYd68eQCA++67D7169UJpaSkA/z3ahYWFGDBgABoaGrBmzRq88cYbeOmll6xcDSmJeqwLFN2mDTdK6Gq3oI1mZ3xlGOnBhiWFKHbY0030oi3uotvEA5WQ+4yIMZkklhEGNmoOfcT+urdLmKJ79uzZOHv2LBYvXoyqqioUFBRg7dq1wYerHTt2DE5nS49nXV0dHnjgAZw4cQIZGRkYMmQIfvvb32L27NlWrQIZTIr3dAuZteyJPd2kC18ZRmRPSS7QvT4vPj3xKYB4H6IG8EBlL5LWlMkn2ddCmKIbABYsWIAFCxaE/VlFRUWr/z/11FN46qmnkhCVfYhWPwbu1xJyeLngV9VtiT3dpEegYYW4yYqIki5JuWLv2b2oaahBh9QOGJEzQufcNjnXsMlqhhNuN2Tej0LS/YWnGyRs/Sh2TzcPicJSbJNwTzMJG5ZIaqIPKQ8IvJ/7xt43IsWps6/Lgoe+WUm1i+aJYmtEIVkDsegmYYn9IDWesYtGlhOweHFPMxi/wkTKiPtJ5kkQ//3coXigshNx92ZBSJq/WXRTkGgXGIMPUjPrW5XIFWSbXX2WguLDy8lgkiZtIkpQkvP35uObAcRbdDMD2BnTk1pYdBOHl3N4uRL4IDXShQ1LChA1f5Pf6drTOHzhMJwOJ4p6FyWwJDPf023aonXEIEAQAmFrRCFp/mbRTcIKHITFHF5OwlG8p1uttRIAG5aITBYYWj6i+whkpWXFsQSbnafweNwKm0MtLLopSLRaJWn3dCfS0y1ao9kYe7pJl8Arw5gFSQFMRWIKPEQt7vu5TRwKz31GXDa71KKfpCdGPN0gYTt8hR5erkn6jVcZe7pJDzYskdRCH56ma3hyEu/pDj5ErU8iD1EDlD9QCXoeaqZYdlnFt7rtsOgmYQUfpGZWYuTTy9Wk2CbhnmYSNiwRmajeU4/dVbsBAOPzxse5FHtUo4GLJqpdNI+XPbZ6AiTN3yy6KUi0Y13gKraQPd0cXi4cVR/EImluER8blohMtP3kdjT5mtCzY0/07dQ3sYWpfq5h4+NxpE1rw+aIjaSneyy6yb7DyxNZcVEbzc4UHV4eoOZaWcjGJ3lEtpak/B36fu7485I9zjXY092aPba6ASTbXVh0k7DEfpBagGTfeIWp/iA1MhiLbiJlaPEcKU0u8EKL7rjZ5fkxNllNvdgc7ZD0xIhFNwkreE+32YcdvqdbDYr2dHNPMwkblhTAQVdi8mk+bDm+BYARD1EDVD9Qsae7NX6tYyTZ7sKim4JEO9YFim6X02XOLzBieLlojWZjqvd0K7Za1uMrw4ikJvJzPPad3YfzV84j052JUTmjEliSuOtoKCa6sNgc7ZD0a8HTDRL2SrnYw8uZIYTDnm7Sgw1LClHssBeTuIaUA0k56fnk6CcAgOLexXC73IkvUPH3dLOnuzVBT8vFI9nuwqKbhCX0e7p5xi4uxTYJ9zSTsGGJ7M3EAu/jYx8DAG7qe1OCS7JJ+cXjcVhsjnZI+rVg0U1Bol1g5NPLSQ+RhxomguciJmHDEkkt9Jgv0vFf07RgT/ekPpMSXVjzP9Q+UAV7up1qr2eoSLusOHuz4CTbXVh0k7D1o9jDy5H4vGQsDi8nPdiwRFKLe3i5yY5cOIKTtSfhdrpR1LvIoKWqfaDSfBxeHg5box1ifvWjYtFNwuLwctKDD1IjXdiwRPZk8oNQPznm7+Uu7FmITHdmgkuTtLrQi8fjVmyy1RMn2f7CopuCRLvAKPTwcmYI8Sja0x2g5lpZKPAVZhYkkpJIQ8pDfXzUfz93wkPLQyma1wLs/CC1SKtsv9aIkZhf/ah4ukH2HV4eEM9Bnq8ME47qPd1ksMArwxTbX4jsInR4uUhDzQM93ZP6GlF0i7NepmI/Ris22eqJk2x/YdFNwpKjp5uEoWhPN89FTMKGJQWIetFcaCY2WvWlavz1m7/CAQcm5E1IfIFJeJCaCPuQnXu6I2FrtEOAfTYeLLopSLRjndgPUuMZu2hUffop9zSTsGGJpJbw8HITTno2HtsIABiRMwJdMroYuGTFD1Q8HrciaU2ZPJLuLyy6SYirnOEIPby8ZWbDwqDEBJ5+qtomkTS3iI8NSwoR7aJ5Mog0pDzA+Pu5zVtHkfYZ9nSHx9aIQrIGYtFNwhJ6eDnv6RZPYJOwp5tiwYYlIoMF7+c28iFqgPrnGjwetyLe5STBSNpALLopSLRjOoeXkx6qvueTe5pJ2LBEUgsdXq5rqLlJw/suXrmIz6o/A2DUQ9Qg7lBEg7Gnu7XAcz5ZpLVD0rePSBYu2YnYw8t5xi4a3tNNukiatInIL+7h5SaNVNt0fBN8mg8DugxAz449DVqqTTKATVYzVKTrKUxPUUi6v3B7krCkGF5Owgj2dCtWdAeouVYW4ivDiOzJpKJ7/eH1AICb8282dLl+ah+o2NPdGnu6o5C0gSQLl8wk2rFOip5u0RrNziS98hkNL++YRNH9hcgu4n56uclF9y39bjFwqTbJADY+HofbDXlNOAoW3SQrUTtthe7pDuIhURSq9nTb+FzEXGxYUoCo+TvZdA01N6Ho/qb+G1RWVQIwuuhuZuIFfk2z/iDInu7WOLw8CkmvSnB7krCkeJAaE4QwVE3arA1NIumVciLyE+me7g3HNkCDhmHdhiGnQ45hy7XNVRUmulaYnqKQ9KqEZOGSmUSrVYQeXq4xQ4iGPd2kS+CsxmVpFESGEC1/J4NIw8srjlQAMKOX27wMINI+o+pF83hJ2pGbPJJelZAsXDKDqBdSxR5eLmij2Zmi1amiq2U9SZM2ESXIhKL7o6MfATBpaDkA5TMAE10rknbkJo+k+VuycMlOpBhezgwhDPZ0ky6SJm0i8hNlePm3nm9x8JuDcMCByX0nG7LMFva4wM+e7taYnqKQ9MSI25OCRDvWSTG8XLRGszFVk7akuUV8PKshklro8HJdQ80Nzt+f134OABjTYwy6ZHQxZJltKJbX2mCia4XDy6OQNH9LFi6ZgcPL45q5+W8eEkWhak93gJprZSFJkzYRJcjgont37W4AwK39bjVkea2IeoJmMFUvmkcSadNyeHkUkuZvycIlOzG96PY1f2tdiTxJyT4JQniKXgexxymXBSRN2kTkJ8Lwcp/mw+4af9E987qZCS+vLUUT29VsspqxYnqKQtKrEpKFS2YS7QKj6UW31+v/2xnH8jm8XDiq9nQz+ZqEDUsKsElHaFgiPL185+mdqPHWICstC+Pzxie8vHYpfq4R3JZqr2ZY4TYth5dHIWkD8XSDhE3aYvd0C9poNqbq8LTmS0N8s5XRWHQT2ZOBRff7X70PALg1/1a4Xe6El9eWTc41gptErfwdL0k7cpNH0vwtWbhkJ0kruuPp6eZYKOGo2tPNotskkiZtonDsWKuEDi/XNdTcwKL7g68/AAB8Z+B3El5WZDZ5T7di+TteTE9RSHpVQrJwyUwiHYCBJA4vj6enW2PRLZzAeZRiSTuQfFl0G4xnNURSs3p4+Zm6M9hxagcAYHr/6Qktq12apONodQpcNFd8NWNmj62eAEkbiKcbJPzwcodZ3yojerpFu1JhY6om7UBPNw/WBmPRTWRPBhXd7x14Dxo0DMgYgJ4dexoQWBhacwZwKH7ZlcPLW5G0Izd5JM3fkoVLdtLkawIApDhTzPkFCRXdAUwQolB1eBqHl5tE0qRNRH5WP738nX3vAAAmdJ6Q0HIisknRbecHqYUjaUdu8kiavyULl+zE4/UAgEkPJ0Fiw8vt8nATiQTv6VbsSjmLbpNImrSJqC1dQ80D0yZwwf2b+m+w/vB6AEBx5+K4lxOVTYpu9nS3xvQUhaRDASQLl8wk2rHO42suup0mFd2J9HTznm7xKHpPN4tuk/CshkhqvuD9zjoZ0NP93oH34NW8GJUzCj3SesS9nKiaR/ypXnSzp7s1SWvK5JF0KAC3Jwl5T7dP8wUTqinDyzWtZcUT6ekW7UqFjal+T7fap1wW4M3yRFKLu+g24Nay1z97HQBw1/V3xb2MmAR6up1qZwDN68/fzhT7HJAjnXtLWlMmj6QXzSULl+wicD83YNLwcl9IsuYrw5TA93STLpImbaJQIl40T5aEi+64LrgDB88dxMZjG+F0OHHviHvjiyFWweHlJj3bBmLsQ16Pfz3tVHRHwvQUhaRDASQLl8wkUq0SuJ8bMGl4eaJFdyDZKz7kSya+puZXzLnVOqwx+ZqE72IjkprX540+UdgZA73H8R1Vf7P7NwCAmdfNNO+p5QE2uac7kL9dbrXXM5xw597s1olC0qEAPI8jIa5yXi1wPzeQhJ7uuN7TbY/7rGTibfSfnLhS1dom7Ok2CYeXk0JEumieLKE93V5NRwGewENUaxpq8MquVwAA88fM1z2/biYW3SLtMz6PmhfN49XY/HeqpVEILFAimPTIJ7Nw7yYhhQ4vN+Webm9Igo7nanfgCrtZrzMj3YJFt2JXyll0m6Sh+e80S6MgojiFFtqho+Oizxh/0b1qxypcuHIBQ7KH4LuDvqt7fl00DS3Pj1E7A3B4eWssuqOQNH9z76Ygh0OcLu8rTVcA+Atup8OE3TThnm57DPmSCXu6SRdJkzYR+YX2dDd6GyNMeZU4i+6zdWexdONSAMCjEx4159wkVGjvveLnGnYeXh4O01MUgQaS7KqEUEX3ypUrkZ+fj/T0dBQVFWHbtm3tTvvKK69g0qRJ6NKlC7p06YKpU6dGnJ7aJ+Lw8kuNlwAAHVM7mvMLEr6nOzC8nD3doggU3c5UoQ5rCbvc/He6pVEo6Erz32zYiPTk5b179+J73/se8vPz4XA4sGLFirDTnTx5Ej/4wQ9w7bXXIiMjAyNGjMCOHTtMWgNSVbKL7n9Z9y84f+U8RuWMwg9G/kDXvHGxU9HN4eWtSFpTJo+kVyWE2bvffvttlJSUYMmSJdi1axdGjRqFGTNm4MyZM2Gnr6iowD333IOPPvoIW7ZsQV5eHqZPn46TJ08mOXIyQ11jHQDgmtRrzPkFjSEJOiWOwplFt3ACSVu1nu665r9N+ibYl6RJO5n05uX6+nr0798fS5cuRW5ubthpzp8/jwkTJsDtduP999/Hvn378Mtf/hJdunQxc1VIQaEPUgt9DkxUgfyfGntJ859b/xNvfP4GHHBg5cyV5tz2djU7Ft0cXg6gZXg501M7JG0gYfbu5cuXY/78+Zg3bx6GDh2KVatWITMzE6tXrw47/ZtvvokHHngABQUFGDJkCF599VX4fD6Ul5cnOXJ1iPRQjQtXLgAwsae7vt7/d1pafMPLm5r7H1MyjYuJEuK57D/pYtFNMQkMIZAsaSeT3rx8ww034Pnnn8fdd9+NtLTwDfvss88iLy8Pr732GsaNG4d+/fph+vTpGDBggJmrQgoK3IYG6OzpvtI8X0ZG1ElP157Gg395EA+tfQgA8PQtT2NCnwm64oyb93LLv11qD8nx1PvztztDsidjmYTpKQpJG8ihadYPLm5sbERmZibeeecdzJo1K/j53LlzceHCBfzpT3+Kuoza2lp0794df/jDH/Dd77Z9uEVDQwMaGhqC/6+pqUFeXh7OnTuHrKyshOL/3x9swrXnBsU9f6K1rkOLvIQoP4b+W7kdEf4Xhyi/3xnhaoCG5vi10EBiiCiw22tIqKfb4UgFnKFXy6M3phYSn7/tNXi9XrhcLkSPvfXyHRoiXy0x+dvt0Py/wuf1wulyhY0+UghxPUYg5JeEzu+57N8m6VlpSM2K7Ujs0DRcuXIFaenpcMSzJyfYvrGs/8nm7TtE0zDkqsO1z+fD2TNn0a17t/juL0x0/0hwfp/Ph7Nnz6Jbt+TH71zj/31Nv2mCdm98C/J4PCgrK8O0adPgdid2slhTU4Ps7GxcvHgx4ZxkhETzcn5+Ph5++GE8/PDDrT4fOnQoZsyYgRMnTmDDhg3o1asXHnjgAcyf3/6ToM3M32/fswNdzveNfYZ2jj/t0do5rhiZ96OlgTaixt3+wuKJO/j6o4jJIPqSr57/6sVFXILmCE7gaD6O+hyOsDNpV/078HudDiccYeLUNC3s561+d1w0OHw+f4yu6BcIwswekdcLeBodgEML6XvwxxpbbtYCUbb5id41dnj9+duXlgG4Yj8nazl3al5OyKldPGI+JwmzgnrPZ640AJrPgS5dNKRdlT6qm/en6zQN10cr0yzK4z7Nh3NnzqFbt26R938TBPP3x03QbpQnfwsxNvbcuXPwer3Iyclp9XlOTg4OHDgQ0zIeffRR9OzZE1OnTg3789LSUjz++ONtPl+3bh0yMxPrrex+5kbcVpETfUIiEowDgCyjFRy4OtM74UQP9LAmHANYHb/m0PBx/ceoXVOb0HLKysoSjqU+MPpGEEbk5XC+/vprvPTSSygpKcG//du/Yfv27fjZz36G1NRUzJ07N+w8ZubvvJNTMPnTTgktg4isIkQZk6BIBWvbvC8KJ5zIRfjbiJKhKb0JHxz7AE3fNkWfOIJk5m8V9lYsXboUb731FioqKpCeHn4IzqJFi1BSUhL8f+BK+fTp0xO+Uv7mu2vwuzt7J3SlR2u5Fhz8JJSj1bTtiPTro10Icvjg0nEvjSOkZ1kLvRQcF0fY+R1wICXGK55NTU1ISXG1XC3XWnV9B39NG2npgMsRYYKAMOvndAMpWQkfD33QcOnSJXTo0AFOp/6FhVlTffNfPXP4zdEuHzTU1taiY8eOEUclxPz7rw4nWvd5yM9TMlLQoUfstyT4fD5UnalCbk4unPE8UO+q32/W/LmahkFhJvV6vdi3fx+uH3p9q6v9Rv9+s+b3er3Yt28fhg4bak38g4BJ4yfFPbvRV8rtwOfzobCwEM888wwAYPTo0fjiiy+watWqdotuU/P3O2U4mZOjP3839z6FO37FuiQtSmKOPu5JC/7LleLQ+bsTEBjipHc2+C90Xc3n84U//mptj/9Xt5kDjmB/a6TfG5yi+T++FBd87rbnF6Gt6HQ64Xa64XI6m5ceMkot8Fs1DVcaGpCenhYyWipMb7ijvTEPUYIGAHcn//lGHALtFb6HHvjmGw2XLjUiPTW1pbEDp1Fx/cYwwp/WtpWeBkfzRbRYBgdoPg2XLtWiQ4eOcDhbtlwyOn7bCy9i3FeP1NA0eDznUVDQyb+PXTVvFoDhsa6NBXnc6/Vi397m/J2S/PytjdEwfcT0uOe3In8LUXRnZ2fD5XKhurq61efV1dXtPowlYNmyZVi6dCk+/PBDjBw5st3p0tLSwt5j5na7E27sOa/MxJo1azBz5syEl2UFj8fD+C3kj38T47eAx+PFmjU7MXnmTLglfGqqz+PD0TVHMWzmMKSEOYEUnebRcGzNMQyfOVzK+AOMyCOifXcSycuR9OjRA0OHDm312fXXX4//+7//a3ceU/P36mkK5A/GbxXGbx1/7BukjB1oOXeaMHMm3BK+Ko35u/UyYiHEWWZqairGjh3b6iFogYeiFRcXtzvfc889hyeffBJr165FYWFhMkIlIiJSXrx5OZoJEybg4MGDrT7761//ir59ddxXTUREJBlhLk2UlJRg7ty5KCwsxLhx47BixQrU1dVh3rx5AID77rsPvXr1QmlpKQD/E1AXL16M3/3ud8jPz0dVVRUAoEOHDujQoYNl60FERKQCvXm5sbER+/btC/775MmTqKysRIcOHTBw4EAAwD//8z9j/PjxeOaZZ/D9738f27Ztw8svv4yXX37ZmpUkIiJKAmGK7tmzZ+Ps2bNYvHgxqqqqUFBQgLVr1wYf4nLs2LFW9/y89NJLaGxsxF133dVqOUuWLMEvfvGLZIZORESkHL15+dSpUxg9enTw/8uWLcOyZcswefJkVFRUAPC/Vuzdd9/FokWL8MQTT6Bfv35YsWIF5syZk9R1IyIiSiZhim4AWLBgARYsWBD2Z4GEHXDkyBHzAyIiIrIxPXk5Pz8fsbyF9Lvf/W7YV3sSERGpSoh7uomIiIiIiIhUxKKbiIiIiIiIyCQsuomIiIiIiIhMwqKbiIiIiIiIyCQsuomIiIiIiIhMwqKbiIiIiIiIyCQsuomIiIiIiIhMwqKbiIiIiIiIyCQsuomIiIiIiIhMwqKbiIiIiIiIyCQsuomIiIiIiIhMkmJ1AFbRNA0AUFNTk/CyPB4P6uvrUVNTA7fbnfDyko3xW4vxW0fm2AHGbzUj4w/kokBuovYxf7dg/NZi/NaROXaA8VvNivxt26K7trYWAJCXl2dxJERERH61tbXo1KmT1WEIjfmbiIhEEy1/OzSbXlb3+Xw4deoUOnbsCIfDkdCyampqkJeXh+PHjyMrK8ugCJOH8VuL8VtH5tgBxm81I+PXNA21tbXo2bMnnE7e+RUJ83cLxm8txm8dmWMHGL/VrMjftu3pdjqd6N27t6HLzMrKknLHC2D81mL81pE5doDxW82o+NnDHRvm77YYv7UYv3Vkjh1g/FZLZv7m5XQiIiIiIiIik7DoJiIiIiIiIjIJi24DpKWlYcmSJUhLS7M6lLgwfmsxfuvIHDvA+K0me/wk/zZk/NZi/NaROXaA8VvNivht+yA1IiIiIiIiIrOxp5uIiIiIiIjIJCy6iYiIiIiIiEzCopuIiIiIiIjIJCy64/Ttt99izpw5yMrKQufOnfGjH/0Ily5dijjPlClT4HA4Wv35x3/8x6TEu3LlSuTn5yM9PR1FRUXYtm1bxOn/8Ic/YMiQIUhPT8eIESOwZs2apMTZHj3xv/76623aOT09PYnRtvj4449xxx13oGfPnnA4HHjvvfeizlNRUYExY8YgLS0NAwcOxOuvv256nO3RG39FRUWbtnc4HKiqqkpOwFcpLS3FDTfcgI4dO6J79+6YNWsWDh48GHU+Efb/eGIXad9/6aWXMHLkyOA7MIuLi/H+++9HnEeEdg/QG79IbU+RMX8nF/O3NWTO3zLnboD52+rjjqj5m0V3nObMmYO9e/eirKwMf/7zn/Hxxx/j/vvvjzrf/Pnzcfr06eCf5557zvRY3377bZSUlGDJkiXYtWsXRo0ahRkzZuDMmTNhp9+8eTPuuece/OhHP8Lu3bsxa9YszJo1C1988YXpsYajN37A/7L70HY+evRoEiNuUVdXh1GjRmHlypUxTX/48GHcfvvtuPnmm1FZWYmHH34YP/7xj/HBBx+YHGl4euMPOHjwYKv27969u0kRRrZhwwY8+OCD+PTTT1FWVgaPx4Pp06ejrq6u3XlE2f/jiR0QZ9/v3bs3li5dip07d2LHjh245ZZbcOedd2Lv3r1hpxel3QP0xg+I0/YUGfN38jB/M3/HQ+bcDTB/W33cETZ/a6Tbvn37NADa9u3bg5+9//77msPh0E6ePNnufJMnT9YeeuihJETY2rhx47QHH3ww+H+v16v17NlTKy0tDTv997//fe32229v9VlRUZH2k5/8xNQ426M3/tdee03r1KlTkqKLHQDt3XffjTjNz3/+c23YsGGtPps9e7Y2Y8YMEyOLTSzxf/TRRxoA7fz580mJSa8zZ85oALQNGza0O41o+39ALLGLuu8HdOnSRXv11VfD/kzUdg8VKX7R2578mL+Ti/mb+dsIMuduTWP+FoEI+Zs93XHYsmULOnfujMLCwuBnU6dOhdPpxNatWyPO++abbyI7OxvDhw/HokWLUF9fb2qsjY2N2LlzJ6ZOnRr8zOl0YurUqdiyZUvYebZs2dJqegCYMWNGu9ObKZ74AeDSpUvo27cv8vLyol7dEolIbZ+IgoIC9OjRA9OmTcOmTZusDifo4sWLAICuXbu2O42o2yCW2AEx932v14u33noLdXV1KC4uDjuNqO0OxBY/IGbbU2vM38nD/C3OMUwPEfO3zLkbYP62kkj5O8XwJdpAVVVVm+E2KSkp6Nq1a8R7X/7+7/8effv2Rc+ePfH555/j0UcfxcGDB/HHP/7RtFjPnTsHr9eLnJycVp/n5OTgwIEDYeepqqoKO70V9/XEE//gwYOxevVqjBw5EhcvXsSyZcswfvx47N27F717905G2HFrr+1rampw+fJlZGRkWBRZbHr06IFVq1ahsLAQDQ0NePXVVzFlyhRs3boVY8aMsTQ2n8+Hhx9+GBMmTMDw4cPbnU6k/T8g1thF2/f37NmD4uJiXLlyBR06dMC7776LoUOHhp1WxHbXE79obU/hMX8nD/M387cRZM7dAPO3VUTM3yy6QyxcuBDPPvtsxGn2798f9/JD7xkbMWIEevTogVtvvRWHDh3CgAED4l4utVZcXNzqatb48eNx/fXX49e//jWefPJJCyNT3+DBgzF48ODg/8ePH49Dhw7hhRdewBtvvGFhZMCDDz6IL774Ahs3brQ0jnjEGrto+/7gwYNRWVmJixcv4p133sHcuXOxYcOGdhOfaPTEL1rb2w3ztxr4PbKOqPlb5twNMH9bRcT8zaI7xL/8y7/gH/7hHyJO079/f+Tm5rZ5CEhTUxO+/fZb5Obmxvz7ioqKAABfffWVaUk7OzsbLpcL1dXVrT6vrq5uN9bc3Fxd05spnviv5na7MXr0aHz11VdmhGio9to+KytL+Kvk7Rk3bpzlyXLBggXBByZFu2op0v4P6Iv9albv+6mpqRg4cCAAYOzYsdi+fTt+9atf4de//nWbaUVrd0Bf/Fezuu3thvnbT6TvEfM383eiZM7dAPM383drvKc7RLdu3TBkyJCIf1JTU1FcXIwLFy5g586dwXnXr18Pn88XTMSxqKysBOAf0mOW1NRUjB07FuXl5cHPfD4fysvL2723obi4uNX0AFBWVhbxXgizxBP/1bxeL/bs2WNqOxtFpLY3SmVlpWVtr2kaFixYgHfffRfr169Hv379os4jyjaIJ/aribbv+3w+NDQ0hP2ZKO0eSaT4ryZa26uO+dtPpO8R87d4xzC9rMrfMudugPkbEG/fFyJ/m/6oNkXddttt2ujRo7WtW7dqGzdu1K677jrtnnvuCf78xIkT2uDBg7WtW7dqmqZpX331lfbEE09oO3bs0A4fPqz96U9/0vr376/ddNNNpsf61ltvaWlpadrrr7+u7du3T7v//vu1zp07a1VVVZqmadq9996rLVy4MDj9pk2btJSUFG3ZsmXa/v37tSVLlmhut1vbs2eP6bEaEf/jjz+uffDBB9qhQ4e0nTt3anfffbeWnp6u7d27N+mx19bWart379Z2796tAdCWL1+u7d69Wzt69KimaZq2cOFC7d577w1O//XXX2uZmZnaI488ou3fv19buXKl5nK5tLVr1yY99njif+GFF7T33ntP+/LLL7U9e/ZoDz30kOZ0OrUPP/zQkvh/+tOfap06ddIqKiq006dPB//U19cHpxF1/48ndpH2/YULF2obNmzQDh8+rH3++efawoULNYfDoa1bty5s7KK0e7zxi9T2FBnzd/IwfzN/x0Pm3B1v/CLt+8zf5rQ9i+44ffPNN9o999yjdejQQcvKytLmzZun1dbWBn9++PBhDYD20UcfaZqmaceOHdNuuukmrWvXrlpaWpo2cOBA7ZFHHtEuXryYlHhffPFFrU+fPlpqaqo2btw47dNPPw3+bPLkydrcuXNbTf/73/9eGzRokJaamqoNGzZM+8tf/pKUONujJ/6HH344OG1OTo42c+ZMbdeuXRZE3fIKjqv/BOKdO3euNnny5DbzFBQUaKmpqVr//v211157Lelxh8aiJ/5nn31WGzBggJaenq517dpVmzJlirZ+/Xprgte0sLEDaNWmou7/8cQu0r7/wx/+UOvbt6+WmpqqdevWTbv11luDCU/TxG33AL3xi9T2FBnzd3Ixf1tD5vwtc+7WNOZvq487ouZvh6ZpmrF950REREREREQE8J5uIiIiIiIiItOw6CYiIiIiIiIyCYtuIiIiIiIiIpOw6CYiIiIiIiIyCYtuIiIiIiIiIpOw6CYiIiIiIiIyCYtuIiIiIiIiIpOw6CYiIiIiIiIyCYtuIiIiIiIiIpOw6CYiIiIiIiIyCYtuIiIiIiIiIpOw6CYi3f73f/8XGRkZOH36dPCzefPmYeTIkbh48aKFkREREVF7zp49i9zcXDzzzDPBzzZv3ozU1FSUl5dbGBmR2hyapmlWB0FEctE0DQUFBbjpppvw4osvYsmSJVi9ejU+/fRT9OrVy+rwiIiIqB1r1qzBrFmzsHnzZgwePBgFBQW48847sXz5cqtDI1IWi24iisuf//xn3HXXXXjsscfwy1/+Ep988gmGDRtmdVhEREQUxYMPPogPP/wQhYWF2LNnD7Zv3460tDSrwyJSFotuIorbmDFjsHfvXqxbtw6TJ0+2OhwiIiKKweXLlzF8+HAcP34cO3fuxIgRI6wOiUhpvKebiOKydu1aHDhwAF6vFzk5OVaHQ0RERDE6dOgQTp06BZ/PhyNHjlgdDpHy2NNNRLrt2rULU6ZMwa9//Wu8/vrryMrKwh/+8AerwyIiIqIoGhsbMW7cOBQUFGDw4MFYsWIF9uzZg+7du1sdGpGyWHQTkS5HjhxBcXExHnroISxcuBBbt25FcXExduzYgTFjxlgdHhEREUXwyCOP4J133sFnn32GDh06YPLkyejUqRP+/Oc/Wx0akbJYdBNRzL799luMHz8eU6ZMwapVq4Kf33777fB6vVi7dq2F0REREVEkFRUVmDZtGj766CNMnDgRgP9i+qhRo7B06VL89Kc/tThCIjWx6CYiIiIiIiIyCR+kRkRERERERGQSFt1EREREREREJmHRTURERERERGQSFt1EREREREREJmHRTURERERERGQSFt1EREREREREJmHRTURERERERGQSFt1EREREREREJmHRTURERERERGQSFt1EREREREREJmHRTURERERERGQSFt1EREREREREJvn/fwDFaA08OOYAAAAASUVORK5CYII=",
       "text/plain": [
        "<Figure size 1000x500 with 2 Axes>"
       ]
@@ -273,8 +273,8 @@
     "        axs[0].plot(system.x, system.u_vec[i], label=f't = {system.t_vec[i]:.2f}', ls='-', color=colors[counter])\n",
     "    # axs[0].legend(loc='best')\n",
     "    axs[0].grid()\n",
-    "    axs[0].set_xlabel('x')\n",
-    "    axs[0].set_ylabel('U(x)')\n",
+    "    axs[0].set_xlabel('$x$')\n",
+    "    axs[0].set_ylabel('$u(x)$')\n",
     "\n",
     "    # Flux function (initial and final)\n",
     "    axs[1].set_title('Flux $f(u(x,t))$')\n",
diff --git a/Project2/src/Problem_2_3.ipynb b/Project2/src/Problem_2_3.ipynb
index 532edcb..1ab070a 100644
--- a/Project2/src/Problem_2_3.ipynb
+++ b/Project2/src/Problem_2_3.ipynb
@@ -228,7 +228,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/3866153160.py:17: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/3866153160.py:17: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -365,7 +365,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/1589535761.py:8: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/1589535761.py:8: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -400,9 +400,9 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/1239769646.py:12: RuntimeWarning: divide by zero encountered in divide\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/1239769646.py:12: RuntimeWarning: divide by zero encountered in divide\n",
       "  (2 - (x-1)/t)/4,\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/346561436.py:3: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/346561436.py:3: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -432,13 +432,13 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/1239769646.py:12: RuntimeWarning: divide by zero encountered in divide\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/1239769646.py:12: RuntimeWarning: divide by zero encountered in divide\n",
       "  (2 - (x-1)/t)/4,\n",
       "/Users/janhabscheid/Documents/git/ddm/Project2/src/SystemGeneric.py:358: RuntimeWarning: divide by zero encountered in divide\n",
       "  rel_error = abs_error / np.abs(u_analytical)\n",
       "/Users/janhabscheid/Documents/git/ddm/Project2/src/SystemGeneric.py:358: RuntimeWarning: invalid value encountered in divide\n",
       "  rel_error = abs_error / np.abs(u_analytical)\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/71401304.py:3: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/71401304.py:3: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -496,7 +496,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/3459604413.py:43: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/3459604413.py:43: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -604,13 +604,13 @@
       "<>:16: SyntaxWarning: invalid escape sequence '\\D'\n",
       "<>:7: SyntaxWarning: invalid escape sequence '\\D'\n",
       "<>:16: SyntaxWarning: invalid escape sequence '\\D'\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/2350136093.py:7: SyntaxWarning: invalid escape sequence '\\D'\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/2350136093.py:7: SyntaxWarning: invalid escape sequence '\\D'\n",
       "  axs.set_xlabel('$\\Delta x$')\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/2350136093.py:16: SyntaxWarning: invalid escape sequence '\\D'\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/2350136093.py:16: SyntaxWarning: invalid escape sequence '\\D'\n",
       "  axs.set_xlabel('$\\Delta x$')\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/2350136093.py:12: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/2350136093.py:12: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/2350136093.py:21: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/2350136093.py:21: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
@@ -682,11 +682,11 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/2362550528.py:2: RuntimeWarning: overflow encountered in multiply\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/2362550528.py:2: RuntimeWarning: overflow encountered in multiply\n",
       "  f = lambda u: 2 * u * (1 - u)\n",
       "/Users/janhabscheid/Documents/git/ddm/Project2/src/SystemGeneric.py:203: RuntimeWarning: invalid value encountered in subtract\n",
       "  1 / self.dx * (upwind_n_1 - upwind_n_2)\n",
-      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_49601/521724299.py:35: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
+      "/var/folders/v_/5q1gkdc53z34pdsfnpkx2t340000gn/T/ipykernel_57260/521724299.py:35: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
       "  fig.show()\n"
      ]
     },
-- 
GitLab