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Modeling Traffic Jams in Extracellular
Transport in Axons

Jan Habscheid

✦

Abstract

A frequent reason for neurodegenerative diseases is the swelling of axons (nerve cells). This swelling is often caused by
traffic jams in intracellular traffic. This work inspects a mathematical model, combining diffusive and advective transport behavior,
for intracellular traffic. This coupled model describes the natural movement of free particles and particles riding on microtubules
towards and away from the neuron body and the interaction between these different particles.

This work aims to understand how to model diffusive and advective transport both, analytically and numerically. Furthermore,
it tries to understand circumstances for traffic jams with possible solutions to prevent those. Finally, it suggests two, theoretical,
possibilities to reduce and prevent traffic jams in nerve cells from a medical point of view.

Index Terms
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1 INTRODUCTION

Neurodegenerative diseases are a serious threat to humans health. One reason for these diseases is the swelling of
axons, caused by irregularities in intracellular traffic in the the axons. Axons are a part of neurons, transmitting an
electrical signal (compare with Figure 1.1). These axons can be up to one meter in the human body and support little
synthesis. Therefore, certain materials have to be from the cytoplasm of the cell body. Diffusive transport is not fast
enough to transport the needed materials, which leads to an additional advective transport where particles attach
themselves to molecular motors (compare with [2]).

This work will investigate the transport in the axons by investigating a mathematical model proposed in [2]. The
investigation aims to learn about certain challenges on how to solve advection equations numerically, understand
the transport behavior in axons, identify possible problems for our nerves and understand why and under what
circumstances traffic jams can occur in the axons. A traffic jam is a situation where particles accumulate along the
spatial domain and hinder an efficient transport mechanism.

Therefore, the problem to be solved is a coupled system of partial differential equations, consisting of one diffusion
and two advection equations. It reads:
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Figure 1.1: Schematic view of the neuron cell body (see [2]) Axons transmit an electrical signal and support little
synthesis. Therefore, the needed materials are transported via diffusion and advection.
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n̂t̂︸︷︷︸
1.A

= D̂0n̂x̂x̂︸ ︷︷ ︸
1.B

− (1 + k̂−)n̂+ k̂pn̂+ + k̂nn̂−︸ ︷︷ ︸
1.C

(1.1)

(n̂+)t̂︸ ︷︷ ︸
2.A

+

(
V+

V+,0
n̂+

)
x̂︸ ︷︷ ︸

2.B

= k̂+n̂− k̂pn̂+︸ ︷︷ ︸
2.C

x̂ ∈ [0, L̂] (1.2)

(n̂−)t̂︸ ︷︷ ︸
3.A

+

(
V−

V+,0
n̂−

)
x̂︸ ︷︷ ︸

3.B

= k̂−n̂− k̂nn̂−︸ ︷︷ ︸
3.C

(1.3)

with free particle concentration n̂ and n̂± the concentration of particles moving in positive/negative direction. The
spatial domain is described by x̂ = [0, L] on a timeframe of [0, tend]. Furthermore, D̂0 is the diffusion coefficient, V± the
molecular motor velocity along microtubules regarding the ± direction, V±,0 molecular velocity along microtubules
regarding ± direction in the case that the concentration of molecules riding on microtubules is very low, the rate
coefficients k̂p, k̂n, k̂+ and k̂−.

Equation 1.1 describes the movement from free particles by diffusion. The temporal change is described by term 1.A
and the diffusive behavior by 1.B. The source term 1.C describes the exchange of particles with n̂±. The two advection
equations 1.2 and 1.3 describe the movement of particles moving in positive and negative direction due to convection.
The terms 2.A and 3.A describe the temporal change, and 2.B and 3.B the advective behavior. Both equations also have
some exchange of concentration with the other particles, described by terms 2.C and 3.C.

Equations 1.2 and 1.3 can be reformulated into a generic advection equation of the form

ut + a(x, t)ux = q(x, t, u) (1.4)

with the advection velocity a, the property of interest u and the source term q. This results in

ut,2 = (n̂+)t̂ , a2(x, t) =
V+

V+,0
, ux,2 = n̂+,x̂, q3(x, t, u) = k̂pn̂− k̂pn̂+ (1.5)

ut,3 = (n̂−)t̂ , a3(x, t) =
V−

V+,0
, ux,3 = n̂−,x̂, q3(x, t, u) = k̂−n̂− k̂nn̂− (1.6)

Therefore, it is sufficient to know how to deal with a generic advection equation in the form of equation 1.4 to solve
the two advection equations, describing the particle transport in axons, both analytically and numerically.

2 THEORY AND METHODS

2.1 Dimensionless Properties
Dimensionless quantities are introduced in the following to scale the physical values to some reference level. The
dimensionless quantities are defined as follows (compare with [2])

x̂ =
xk+
V+,0

, t̂ = tk+, D̂0 =
D0kp
V 2
+,0

, n̂ =
nV 3

+,0

k3+
,

ˆ
n± =

n±V 3
+,0

k3±

k̂± =
k±
k+

, k̂p =
kp
k+

, k̂n =
kn
k+

, V̂−,0 =
V−,0

V+,0

Inserting the dimensionless quantities in equations 1.1, 1.2 and 1.3 yields the dimensionless system of equations

nt = D0nxx − (1 + k−)n+ kpn+ + knn− (2.1)
(n+)t + (V+n+)x = k+n− kpn+ x ∈ [0, L] (2.2)
(n−)t + (V−n−)x = k−n− knn− (2.3)

For a detailed derivation of the dimensionless system of variables see Appendix A

2.2 Initial- and Boundary Conditions
Initially, there will be only free particles, no particles moving along a direction. These free particles are distributed
linearly over the domain with their maximum (N0) at the left boundary and minimum (NL) at the right boundary.

n(x, t = 0) = n0(x) = + (NL −N0)
x

L
(2.4)

n+(x, t = 0) = n0
+(x) = 0 (2.5)

n−(x, t = 0) = n0
−(x) = 0 (2.6)
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Note that the free particles initial condition already fulfills equation 2.1 for a vanishing source term.
The value for free particles is prescribed at both boundaries, consistent with the initial data. For the particles

moving in positive direction a Dirichlet boundary condition is set on the left boundary, so that this value can be
propagated through the domain. The same accounts for particles moving in negative direction and the right boundary.
The boundary conditions read

n(x = 0, t) = N0, n(x = L, t) = NL (2.7)
n+(x = 0, t) = N0σ0 (2.8)
n−(x = L, t) = NLσL (2.9)

2.3 Different Hypothesis’s for Advective Transport
There are different possible assumptions for modeling the velocity, associated with molecular motors.

The first, and simplest, is to assume constant velocities

V+ = V+,0, V− = V−,0 = −V+,0 (2.10)

which is reasonable for low concentrations.
A second closure for the velocity is the assumption that the concentration of particles moving along microtubules

affects the molecular velocity, as

V+ = V+,0 exp(−An+), V− = −V+,0 exp(−An−) (2.11)
with: A > 0

The constant motor velocities V+,0 and V−,0 = V+,0 are assumed to be known for small concentrations, according the
first assumption. Note that the velocity increases linear for A = 0.
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Figure 2.1: The motor velocities increase for small
number densities. For increasing number densities
the motor velocities decrease towards zero. The larger
the parameter A the faster the convergence towards
zero. The velocity for A = 0 increases linear. The
linear model would yields constant velocities V+, V−.

Figure 2.1 shows the values for V+ and V− for A ∈ {0, . . . , 7}.
The larger the value for A, the smaller the maximum velocity.
Note that for small concentrations the velocity of particles
increases to then decrease towards zero. The velocity has a
maximum, depending on the value of A. This is one possible
reason for traffic jams, as the velocity decreases for larger
concentrations, resulting in problems to resolve jams.

Their is a third hypothesis regarding mechanisms, that
might cause traffic jams. This hypothesis assumes constant
velocities, V+,0, V−,0, but assumes a non-constant detachment
rate for the particles in positive and negative direction.

kp = kp,0 exp(Bn+), kn = kn,0 exp(Bn−) (2.12)
with: B(x) = I[a,b]B0 (2.13)

for a subinterval [a, b] in [0, L] and the indicator function
I[a,b](x).

For this work, mainly hypothesis one will be used (see sec-
tions 4.1 and 4.2. Section 4.4 will explore the second hypothesis
and its effect on the solution.

2.4 Method of Characteristics
The method of characteristics (MOC) can be utilized to solve
an advection equation in terms of an initial-value problem. Uncoupling equation 2.2 from the remaining equations
results in

(n+)t + (n+)x = 0 (2.14)
⇔ Ut + Ux = 0 (2.15)

with: U(x, 0) = U0(x) ∀x ∈ R (2.16)

As an ansatz assume that some curve x(t) along the slope of U is constant, meaning

0 =
d

dt
U (x(t), t) (2.17)

= Ut ((x(t), t) + Ux (x(t), t)
dx

dt
(2.18)
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As Ut + Ux = 0 (see equation 2.15) dx
dt has to be equal to one to fulfill the partial differential equation. Insert this with

dx

dt
= 1 with: x(0) = x0 (2.19)

⇒ x(t) = x0 + t (2.20)

resulting in the solution U(x, t) = U0(x0) = U0(x− t) and for the concentrations

n+(x, t) = n+,0(x− t) (2.21)

The analytical solution for the uncoupled equation 2.3 can be derived in the same way, resulting in n−(x, t) = n−,0(x+
t). Note that the advection velocity is now a = −1, therefore dx

dt = −1 has to be fulfilled.

2.5 Discretization with Finite Differences and Upwind Discretization
The coupled system of equations will be solved numerically with the finite-difference scheme and an upwind-
discretization for the advective term. In the discrete terms, the upper index ·j indicates the j-th time step, while
the lower index ·i indicates the i-th grid point. ∆t is the time-step size and ∆x the distant between two grid points on
an uniform grid.

Discretizing the time with a simple explicit Euler method, the diffusion coefficient with a finite difference stencil of
second order and the advective terms with an Upwind discretization, the discretized equations are as follows

nj+1
i − nj

i

∆t
= D0

nj
i+1 − 2nj

i + nj
i−1

(∆x)2
− (1 + k−)n

j
i + kpn

j
+,i + knn

j
−,i (2.22)

nj+1
+,i − nj

+,i

∆t
+

1

∆x

(
U j

+,i+ 1
2

− U j

+,i− 1
2

)
= k−n

j
i − kpn

j
+,i (2.23)

nj+1
−,i − nj

−,i

∆t
− 1

∆x

(
U j

−,i+ 1
2

− U j

−,i− 1
2

)
= k−n

j
i − knn

j
−,i (2.24)

with

U j

+,i+ 1
2

= nj
+,i, U j

+,i− 1
2

= nj
+,i−1 (2.25)

U j

−,i+ 1
2

= nj
−,i+1, U j

−,i− 1
2

= nj
−,i (2.26)

Note that the assumption of constant velocities with their respective values from table 5 is inserted, for the sake of
simplicity. Inserting the upwind formulations into the discretized system of equations (2.22-2.24) and reformulating
this yields an explicit scheme for time-step j + 1, depending on time-step j.

nj+1
i = nj

i +∆t

(
D0

nj
i+1 − 2nj

i + nj
i−1

(∆x)2
− (1 + k−)n

j
i + kpn

j
+,i + knn

j
−,i

)
(2.27)

nj+1
+,i = nj

+,i +∆t

(
− 1

∆x

(
nj
+,i − nj

+,i−1

)
+ k−n

j
i − kpn

j
+,i

)
(2.28)

nj+1
−,i = nj

−,i +∆t

(
+

1

∆x

(
nj
−,i+1 − nj

−,i

)
+ k−n

j
i − knn

j
−,i

)
(2.29)

which is straight forward to implement in Python with the numpy library, in the case of homogeneous Neumann
boundary conditions, as they will be used in this work. A for-loop over all time steps has to be implemented
and for each time-step the explicit update, following equations 2.27-2.29, has to be called. The implementation is
slightly different as equations 2.27-2.29; first an intermediate value for nj+1

i , nj+1
+,i , n

j+1
−,i is computed, based only on

the finite difference approximation, without the coupling conditions. After this, the coupling is done, based on the
intermediate values. In the last step the Dirichlet boundary conditions can be enforced by setting the boundary points
nj+1
0 , nj+1

m , nj+1
+,0 , n

j+1
−,m to their respective value.

2.6 Stability Criteria
As the numerical scheme is of an explicit form, it is not unconditionally stable. For the L1-estimate, to fulfill conserva-
tion of the concentrations n, n+, n−, the scheme has to fulfill∫ 1

0
|u(x, t)|dx ≤

∫ 1

0
|u0(x)|dx (2.30)

or in the discretized formulation
M∑
j=1

|un+1
j |∆x ≤

M∑
j=1

|u0,j |∆x ⇔
M∑
j=1

|un+1
j | ≤

n∑
j=1

|un
j | (2.31)
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For the two uncoupled advection equations under the assumptions of a uniform advection velocity a=1 this results in
the following derivation.

With the triangular inequality (|a + b| ≤ |a| + |b|) and λ = ∆t
∆x the concentration at the next time step can be

reformulated to ∣∣∣un+1
j

∣∣∣ = ∣∣un
j − λ(un

j − un
j−1)

∣∣ ≤ (1− λ)
∣∣un

j

∣∣+ λ
∣∣un

j−1

∣∣ (2.32)

under the constraint 1− λ ≥ 0. Tis discretized concentration can be inserted into equation 2.31 to get

M∑
j=1

∣∣∣un+1
j

∣∣∣ ≤ (1− λ)
M∑
j=1

∣∣un
j

∣∣+ λ
M∑
j=1

∣∣un
j−1

∣∣ (2.33)

= (1− λ)
M∑
j=1

∣∣un
j

∣∣+ λ
M∑
j=1

∣∣un
j

∣∣ (2.34)

=
M∑
j=1

∣∣un
j

∣∣ (2.35)

Therefore, the discretization for the advection equation is stable under the condition

1− λ = 1− ∆t

∆x
≥ 0 (2.36)

⇔ ∆t

∆x
≤ 1 (2.37)

For general advection equation (a = a) the stability constraint is called the CFL-condition and reads:

a
∆t

∆x
≤ 1 (2.38)

For the diffusion equation a similar derivation can be performed, resulting in the more strict constraint

D0
∆t

(∆x)
2 ≤ 1

2
(2.39)

3 IMPLEMENTATION

All the following examples, visualizations and the discussed implementation can be found in the reproducability
repository for this project (see [1]). All the implementations are done with the Python programming language, mainly
with the numpy package for vector operations and matplotlib for visualizations. Furthermore, there is an additional
implementation using the open-source software FEniCSx1, which utilizes the Finite Element Method. This software
was used to check the Python implementation and the correctness of the method.

3.1 Convergence Analysis
A convergence analysis was performed to ensure the numerical implemenation’s correctness for the two uncoupled
advection equations. The solutions for different grid sizes are compared to the analytical solution. To interpret the
convergence of the numerical method, a relevant error measure is introduced. The L1 norm and its relative counterpart
are calculated as

L1(u) =

∫
Ω
|u− uexact| dΩ (3.1)

L1,rel(u) =
L1(u)∫

Ω |uexact| dΩ
(3.2)

For the convergence analysis, the relative error norm L1,rel with the default parameter (see Table 5) will be used. The
grid length is chosen from ∆x ∈ {2.0, 0.2, 0.02, 0.002} at t = 10. The cfl-condition was checked for every grid size. If
the condition was not fulfilled, the time step size was reduced iteratively, until it was fulfilled.

Figure 3.1 visualizes the L1,rel error for both, the particles moving in positive and negative direction. Note that
both axis are scaled logarithmic. Both error converge approximately with an order which is somewhat below first
order. As the used finite difference stencil for the spatial derivative (n±)x is of first order, this is not the theoretical
best convergence, but it is sufficient for a rather rudimentary implementation. As the initial condition for the diffusion
equation already satisfies the diffusion equation, the numerical solution will fulfill the analytical solution at all times.

1. FEniCSx: https://fenicsproject.org/

https://fenicsproject.org/
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Figure 3.1: The numerical scheme converges with an order somewhat below first order for both, the particles moving in
positive and negative direction. The x-axis shows the grid length in dimensionless units and the y-axis the L2,rel error.
Both axis are scaled logarithmic. Note that the initial solution for the uncoupled diffusion equation already fulfills the
analytical solution and is therefore dropped in this analysis.
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Figure 4.1: The free particles already fulfill the diffusion equation at all times, while the particles moving along one
direction are propagated from the Dirichlet boundary towards the domain. This propagation results in a shock at x = t,
as the advection velocity has the value 1. The x-axis shows the spatial domain while the y-axis shows the concentration
for free particles (left), particles moving in positive direction (center) and particles moving in negative direction (right)
at time t = 10. The initial values are visualized with dotted lines, the numerical with solid lines and the analytical with
dashed lines.

4 RESULTS

In the following the numerical approximations for the system will be discussed. First, the uncoupled system will be
taken into account to then slowly increase the complexity, ending in the fully coupled system with an additional
hypothesis for the advective transport (see [2]).

4.1 Uncoupling the System
Consider the uncoupled system of equations

nt = D0nxx (4.1)
(n+)t + (n+)x = 0 (4.2)
(n−)− (n−)x = 0 (4.3)

with the analytical solutions for equations 4.2 and 4.3, as found in section 2.4.
Figure 4.1 visualizes the state of the different concentrations at t = 10. The free particle concentration (n) is the

same as initially, as this already fulfills the Diffusion equation. The concentrations of particles moving in positive (n+)
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(a) The free particles’ concentration is constant over the time frame. The number densities of particles attached to molecular motors are
propagated and result in a constant solution over the whole spatial domain.
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(b) On the left, the flux increases faster then on the right, as the number
density of particles moving in positive direction is higher as the number
density of the particles moving in negative direction. At roughly t =
10 the shocks of both species meet around x ≈ 10 and the flux has
reached its maximum on the center of the domain, increasing towards
its stationary value on the boundaries.

Figure 4.2: The numberical solution converges towards the stationary solution after approximately 21.85 dimensionless
time units. At this time, the number densities for particles moving along a direction are constant over the whole domain
and the flux is constant, too.

and negative (n−) direction are propagated, starting at the Dirichlet boundary, with an advection speed of 1. Therefore,
the analytical solution shows a shock at x = t from the Dirichlet boundary value to the initial value zero. The finite
difference scheme is not capable to capture this discontinuity, as it is only a method of first order discretized in time
with an explicit Euler. Therefore, the numerical solution shows some error close to the shock.

As the concentration is propagated with a propagation speed of 1 over a domain of length 20, it takes 20
dimensionless time units to fully propagate from one boundary to the other.

Figure 4.2a shows the three different concentrations for t ∈ [0, 25], calculated numerically. The numerical solution
needs longer to be fully propagated, due to the numerical error. However, after 21.85 time units, the numerical solution
is fully propagated, resulting in the stationary solution for t > 21.85.

Summing up equations 2.1-2.3 results in

(n+ n+ + n−)t + (n+ − n− −D0nx︸ ︷︷ ︸
J

)x = 0 (4.4)

Where n+ − n− − D0nx is the total flux J . This total flux should will vary initially and result in a constant solution
after the different concentrations reached the stationary behavior. The total mass will reach its stationary solution at
the same time as the total flux, namely t = 20 analytically and t = 21.85 numerically.
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(a) The visualized time is t = 30, showing the stationary case. The free particles converge towards zero on a major part of the domain for the
stationary case. The particles moving in positive direction increase exponentially at their Dirichlet boundary and are constant on a major part
of the remaining domain. The particles moving in negative direction show a similar behavior, just with a smaller concentration and a larger
increase at the non Dirichlet boundary. The larger increase for particles attached to molecular motors at the left boundary is in accordance
with the free particles and their Dirichlet boundary values.
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(b) The free particles reach there stationary state very fast, while the particles moving along with molecular motors need longer to do so.

Figure 4.3: Adding the coupling of free particles results in a domain with almost no free particles and mainly advective
particles.

4.2 Increasing the Complexity by Adding Source Terms
4.2.1 Coupling of Free Particles
As a next step, the source terms will be partly integrated into the system. First, consider the uncoupled system with
source terms connecting the free particles, resulting in

nt = D0nxx − (1 + k−)n (4.5)
(n+)t + (n+)x = n (4.6)
(n−)− (n−)x = k−n (4.7)

The term −(1+k−)n in equation 4.5 models the loss of free particles towards particles moving along one direction.
As these particles are added towards the moving particles along a traction, they are also added to the right-hand-side
of equation 4.6 (n) and equation 4.7 (k−n).

Figure 4.3 visualizes the concentrations (y-axis) over the spatial domain (x-axis) for the three different concentra-
tions, according to this simple coupling for t ∈ [0, 10].

The free particles concentration starts to change over time, as it loses particles to the other types. After just a few
iterations, there are no free particles left in the center of the domain and the free particle concentration increases towards
their Dirichlet values close to the boundaries. The particles moving with molecular motors into positive direction
converge towards their stationary behavior, with an exponential increase in concentration at the left boundary to a
value of 0.044 on a large part of the domain and then increases towards its maximum value at the right boundary. The
particles moving in negative direction show a similar behavior with an exponential loss at the left boundary towards
a value of 0.005 to then decrease at the right boundary towards their Dirichlet value 0.001.
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(a) The visualized time is t = 10, showing the stationary case. The number density of free particles increases, due to the gain in particles from
the coupling. These particles show a local maximum at the left side, as the particles moving in positive direction have a higher concentration
compared to the particles moving in negative direction. this results in a larger exchange at the left side. The number densities of particles
moving along with molecular motors converges towards zero at their non Dirichlet boundary, with an exponential decrease from the Dirichlet
boundary value.
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(b) Adding the coupling of advective particles results in a rather fast convergence towards the stationary solution. The free particles show a
slight shift from their initial solution, while the particles moving along molecular motors show a major change to the previous solutions.

Figure 4.4: Adding the coupling of particles attached to molecular motors results in an increase in free particles over
the domain, with a peek at the left side. The particles attached to molecular motors show an exponential decrease from
their Dirichlet boundary towards zero.

4.2.2 Coupling of Particles Moving with Molecular Motors
Next, only consider coupling conditions for particles moving along one direction, resulting in

nt = D0nxx + kpn+ + knn− (4.8)
(n+) + (n+)x = −kpn+ (4.9)
(n−)− (n−)x = −knn− (4.10)

The particles moving with a velocity now lose particles to the free particles with the factor (kp, kn).
The increase in concentration for the free particles can be seen in Figure 4.4, mainly at the left side of the domain for

the free particles, where a local maximum in free particles forms. The concentration of particles moving with molecular
motors decreases exponentially to zero, starting from their Dirichlet boundary value. Therefore, no particles moving in
positive direction will reach the right boundary and no particles moving in left direction will reach the left boundary.
Before, they will attach to the diffusive behavior and convert to free particles.The peek of free particles on the left of
the domain is due to the maximum of particles moving in positive direction on the left side being one order higher
then the maximum of particles moving in negative direction on the right.

4.3 Fully Coupled System of Intercellular Transport in Axons with a Constant Velocity
Consider the fully coupled system (equations 2.1-2.3) with the hypothesis of constant velocities (V+ = V+,0, V− =
V−,0 = −V+,0). For this system, free particles attach to molecular motors and vice versa.
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(a) The visualization shows the fully coupled system at time step t = 10. The free particles’ concentration decreases on the interior of the
domain, not going towards zero, with a smaller concentration on the right. The particles moving in positive direction show a slight traffic jam
at the left side, which is resolved on the remaining domain. The particles moving in negative direction show an exponential increase on both
boundaries, with an almost linear behavior on the interior of the domain.
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(b) The fully coupled system reaches its stationary behavior very fast, compared to the simplified systems.

Figure 4.5: Solving the fully coupled system of equations with constant velocities results in a traffic jam for particles
moving in positive direction.

The behavior of the free particles is similar to section 4.2.1. However, there is a positive concentration over the whole
domain with its smallest value close to the right boundary. Further, the particles moving towards the neuron body (n−)
have its minimum at their right boundary and then strictly increase towards their maximum at the left boundary. Close
to the boundary, their is a sharp increase. This increase is explainable with the behavior of the particles moving away
from the neuron body (n+). These particles form a traffic jam close to the left boundary (∼ x = 2) with a maximum
number density max(n+) ≈ 0.035. This traffic jam is then resolved over the remaining part of the domain.

4.4 Fully Coupled System of Intercellular Transport in Axons with a Nonlinear Velocity Profile
Consider the same system as in section 4.3, but with the nonlinear velocity profile presented in equation 2.11.

V+ = V+,0 exp(−An+), V− = −V+,0 exp(−An−)

with: A > 0

This velocity profile slows down the velocity, if the number density increases (compare with Figure 2.1). Furthermore,
a larger value for A leads to a smaller velocity, which then increases the maximum number density, making the traffic
jam even worse.

Figure 4.6 visualizes the effect of A (for A ∈ [0, . . . , 7]) on the number densities of the different species. The
advection velocity has almost no effect on the free particles concentration, while it has a large effect on the number
density of particles moving in positive direction, as discussed above. The larger the value for A, the smaller the total
maximum of particles moving in negative direction (at the left boundary). Besides this, the concentration of these
particles differs at the point of the traffic jam, depending on A, but on the remaining domain there is almost no
difference over the different values of A.
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Figure 4.6: The nonlinear velocities yield the same qualitatively solution as the fully coupled system with linear
velocities. However, it shows quantitatively different solutions for different values of A. The free particles concentration
is almost not influenced by the parameter A. The particles moving along molecular motors in negative direction yield a
different boundary value at the left. The larger A, the larger this boundary value. Further, the significance of the traffic
jam increases for increasing values of A

The qualitatively solution can be verified with existing literature (compare with Figure 2 from [2]). However, the
values of the maxima have a certain offset. It can be shown, that the solution converges towards the correct solution for
a refined mesh. However, the current Python implementation lacks an efficient implementation in terms of memory
usage and efficiency, resulting in the need of a rather coarse mesh (∆x = 0.05) to solve the system efficiently.

5 DISCUSSION AND CONCLUSION

To sum it up, traffic jam situations can occur in axons under the assumption of a coupling between the diffusive and
advective transport. The linear model approximates this traffic jam situation qualitatively, but quantitatively there are
differences to the nonlinear velocity model for different nonlinear parameter A.

Traffic jam situations, where particles accumulate along the spatial domain and hinder an efficient transport
mechanism mainly occur when these particles do not move fast enough or these accumulated particles are not
converted to other particles fast enough. Therefore, a smaller advection velocity at higher number densities is a major
problem, as the formation of traffic jams is supported by this. However, if the exchange of particles can be increased at
higher number densities, this can help to prevent and break traffic jams.

From a medical point of view two different approaches are interesting:

1) Medicine that increases the particles overall velocity and the velocity of particles for the situation of a high
number density

2) Medicaments that increase the particle loss, if the number density increases.

For future work it will be interesting to implement the third closure for the velocities into the existing Python
framework and check its performance. Further, the influence of different parameter on the significance of traffic jams
can be analyzed in a parameter study.

List of Variables
All the variables, listed in the following table, are in their dimensionless form.
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DIMENSIONLESS VARIABLES
Variable Default Value Property

L 20 Axon length
N0 0.1 Diffusion coefficient
NL 0.01 Concentration of free particles at left boundary
k− 1 Concentration of free particles at right boundary

σ0, σL 0.1, 0.1 binding rate in negative direction
kp, kn 0.5 Degree of loading at left and right boundary
∆x 0.2 Detachment rate for particles in positive and negative direction
tend 10 Grid length
Ntime 200 Number of time steps
∆t 0.05 Time step size

INDEXING
Variable Meaning

·j j-th time step
·i i-th grid point
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APPENDIX

Inserting the dimensionless variables

x̂ =
xk+
V+,0

, t̂ = tk+, D̂0 =
D0kp
V 2
+,0

, n̂ =
nV 3

+,0

k3+
,

ˆ
n± =

n±V 3
+,0

k3±

k̂± =
k±
k+

, k̂p =
kp
k+

, k̂n =
kn
k+

, V̂−,0 =
V−,0

V+,0

in equations 1.1-1.3 yields the dimensionless system of equations 2.1-2.3.
First, insert the respective dimensionless variables in equation 1.1.

n̂t̂ = D̂0n̂x̂x̂ − (1 + k̂−)n̂+ k̂pn̂+ + k̂nn̂−

⇔
n
�
��V 3
+,0

��k
3
+ tk+

=
D0k+
V 2
+,0

n
�
��V 3
+,0

��k
3
+ xk+

V+,0

xk+
V+,0

+
kp
k+

n+�
��V 3
+,0

��k
3
+

+
kn
k+

n−�
��V 3
+,0

��k
3
+

⇔ nt
1

k+
=

D0��k+

�
��V 2
+,0

nxx
�

��V 2
+,0

k �2+
+

kp
k+

n+ +
kn
k+

n−

⇔ nt

��k+
=

D0nxx

��k+
+

kpn+

��k+
+

kn

��k+
n−

⇔ nt = D0nxx + kpn+ + knn−

Note that this is the proposed dimensionless equation for free particles. Second, insert the dimensionless variables in
equation 1.2.

(n̂+)t̂ +

(
V+

V+,0
n̂+

)
x̂

= k̂+n̂− k̂pn̂+ (A.1)(
nV 3

+,0

k3+

)
tk+

+

(
V+

V+,0

nV 3
+,0

k3+

)
xk+
V+,0

=
k+
k+

nV 3
+,0

k3+
− kp

k+

n+V
3
+,0

k3+
(A.2)

⇔
(
n
�
��V 3
+,0

��k
4
+

)
+

(
V+�

��V 3
+,0n

��k
4
+

)
x

= n�
��V 3
+,0

��k
4
+

− nkp�
��V 3
+,0

��k
4
+

(A.3)

This yields equation 2.2. The dimensionless form of equation 1.3 can be derived in the same way, as it is of the same
form as shown above.
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