Commit d7149229 authored by Christian Rohlfing's avatar Christian Rohlfing
Browse files

Merge branch 'development-lab' of git.rwth-aachen.de:IENT/gdet3-demos into development-lab

parents 0fb719a0 e31db982
Pipeline #213722 passed with stage
in 2 minutes and 1 second
......@@ -206,7 +206,7 @@
"## Aufgaben\n",
"* Wähle eine cos-Funktion für $s(t)$ und setze $F$ auf die kleinstmögliche Größe. Im Spektrum ist die Frequenz des Cosinus zu erkennen und im Zeitbereich wird dieser perfekt rekonstruiert. Erhöhe nun $F$ schrittweise. Beobachte das Spektrum. Was passiert und warum?\n",
"* Betrachte das Spektrum für $F=1$. Vergleiche die Höhe der Diracs mit denen für $F=0.9$ und $F=1.1$. Wie ist der Unterschied zu erklären? \n",
"* Für $F\\leq 1$ wird das Signal nicht mehr perfekt rekonstruiert. Dieser Effekt nennt sich Aliasing. Wie verhält sich das rekonstruierte Signal bei größer werdendem $F$?\n",
"* Für $F\\geq 1$ wird das Signal nicht mehr perfekt rekonstruiert. Dieser Effekt nennt sich Aliasing. Wie verhält sich das rekonstruierte Signal bei größer werdendem $F$?\n",
"* Betrachte abschließend $F=2$. Was passiert hier? \n",
"* Wähle nun eine sin-Funktion und untersuche dieselben Dinge, wie zuvor für die cos-Funktion. Wie ist das Ergebnis für $F=1$ und $F=2$ zu erklären?\n",
"* Betrachte die si-Funktion. Das Spektrum der si-Funktion ist ein Rechteck. Was passiert, wenn $F$ größere Werte annimmt? Warum?\n",
......
%% Cell type:code id: tags:
``` python
# Copyright 2019 Institut für Nachrichtentechnik, RWTH Aachen University
%matplotlib widget
from ipywidgets import interact, interactive, fixed, HBox, VBox
import ipywidgets as widgets
from IPython.display import clear_output, display, HTML
from src.sampling.sampling_plot import SamplingPlot
from ient_nb.ient_plots import *
from ient_nb.ient_transforms import *
from ient_nb.ient_signals import *
```
%% Cell type:markdown id: tags:
<div>
<img src="ient_nb/figures/rwth_ient_logo@2x.png" style="float: right;height: 5em;">
</div>
# Ideale Abtastung
Dieses Notebook soll die ideale Abtastung veranschaulichen.
![Blockdiagramm](figures/sampling_block_diagram.png)
Das zeitkontinuierliche Signal $s(t)$ wird zu Zeitpunkten $nT$ mit Abtastperiode $T$ abgetastet. Das resultierende, ideal abgetastete Signal
$$s_\mathrm{a}(t) = \sum\limits_{n=-\infty}^\infty s(nT) \delta(t-nT)$$
besteht aus Dirac-Impulsen, positioniert an den Zeitpunkten $nT$ und gewichtet mit dem Funktionswerten $s(nT)$. Die zugehörige Fourier-Transformierte $S_{\mathrm{a}}(f)$ wird aus periodischen Wiederholungen des Signalspektrums $S(f)$ zusammengesetzt:
$$S_\mathrm{a}(f) = \frac{1}{T}\sum\limits_{k=-\infty}^\infty S\left(f-\frac{k}{T}\right) \text{.}$$
Die Wiederholungen sind bei Vielfachen der Abtastrate $r=\frac{1}{T}$ positioniert und mit $r=\frac{1}{T}$ gewichtet.
Zur Rückgewinnung wird ein Rekonstruktionsfilter $h_\mathrm{TP}(t)$ eingesetzt, welches im Idealfall die die spektrale Kopie bei $k=0$ (auch Basisband genannt) aus $S_\mathrm{a}(f)$ rekonstruieren soll.
Hier wird das ideale Tiefpassfilter
$$H_\mathrm{TP}(f)=\mathrm{rect}\left(\frac{f}{2 f_\mathrm{g}}\right)$$ mit Grenzfrequenz $f_\mathrm{g} = \frac{r}{2}$ verwendet.
Zur Rückgewinnung im Spektralbereich wird dieser ideale Tiefpass mit dem Spektrums des abgetasteten Signals $S_{\mathrm{a}}(f)$ multipliziert. Das Spektrum des rekonstruierten Signals ist somit
$$G(f)=S_\mathrm{a}(f) \cdot H_\mathrm{TP}(f) \cdot T\text{.}$$
Das rekonstuierte Signal im Zeitbereich $g(t)$ wird dann durch Rücktransformation gewonnen.
%% Cell type:markdown id: tags:
## Demo
Im Folgenden wird ein ideales Abtastsystem mit fester Abtastrate $r=2$ angenommen. Das ideale Rekonstruktionsfilter wird mit $f_\mathrm{g} = \frac{r}{2} = 1$ verwendet.
Zur Auswahl stehen die folgenden Signale $s(t)$, deren Frequenz $F$ variabel ist.
* $s(t) = \cos(2 \pi F t)$ mit $S(f) = \frac{1}{2}\delta(f-F)+\frac{1}{2}\delta(f+F)$,
* $s(t) = \sin(2 \pi F t)$ mit $S(f) = \frac{1}{2\mathrm{j}}\delta(f-F)-\frac{1}{2\mathrm{j}}\delta(f+F)$,
* $s(t) = \mathrm{si}(2 \pi F t)$ mit $S(f) = \frac{1}{2 |F|}\mathrm{rect}\left(\frac{f}{2F}\right)$,
* $s(t) = \mathrm{rect} (F t)$ mit $S(f) = \frac{1}{|F|}\mathrm{si}\left(\frac{\pi f}{F}\right)$ und
* $s(t) = \Lambda(F t)$ mit $S(f) = \frac{1}{|F|}\mathrm{si}^2\left(\frac{\pi f}{F}\right)$.
Achtung: Die letzten beiden Signale $s(t)$, Rechteck- und Dreieckimpuls, haben unendlich ausgedehnte Spektren $S(f)$. Daher ist eine fehlerfreie Rekonstruktion prinzipiell nicht möglich!
Zunächst werden $s(t)$ und $s_\mathrm{a}(t)$ im Zeitbereich betrachtet. Weiterhin wird das zu $s_\mathrm{a}(t)$ gehörige Spektrum $S_\mathrm{a}(f)$ dargestellt. In der gleichen Abbildung ist die Übertragungsfunktion $H_\mathrm{TP}(f)$ des Rekonstruktionsfilters gezeigt.
Das Spektrum des rekonstruierten Signal $G(f)=S_\mathrm{a}(f) \cdot H_\mathrm{TP}(f) \cdot T$ wird in der nächsten Abbildung dargestellt.
In der letzten Abbildung wird nun das rekonstruierte Signal $g(t)$ gezeigt. Im Alias-freien Fall für cos-, sin- und si-Funktion gilt $g(t)=s(t)$.
%% Cell type:code id: tags:
``` python
r = 2; T = 1/r; # sampling frequency
signals_t = {'cos-Funktion': lambda t: np.cos(2 * np.pi * t),
'sin-Funktion': lambda t: np.sin(2 * np.pi * t),
'si-Funktion': lambda t: si(2 * np.pi * t),
'Rechteckimpuls': lambda t: rect(t / 1.05),
'Dreieckimpuls': tri}
signals_f = {'cos-Funktion': lambda f, F: np.isin(f/F, f[findIndOfLeastDiff(f/F, [-1, 1])]/F) * 0.5,
'sin-Funktion': lambda f, F: np.isin(f/F, f[findIndOfLeastDiff(f/F, [1])]/F) / 2j - np.isin(f/F, f[findIndOfLeastDiff(f/F, [-1])]/F) / 2j,
'si-Funktion': lambda f, F: 1/(2*np.abs(F))*rect(f / (2*F)),
'Rechteckimpuls': lambda f, F: 1/np.abs(F)*si(np.pi * f / F),
'Dreieckimpuls': lambda f, F: 1/np.abs(F)*si(np.pi * f/F) ** 2}
#f = t;
t,deltat = np.linspace(-10,10,50001, retstep=True) # t-axis
f,deltaf = np.linspace(-50,50,len(t), retstep=True) # f-axis
kMax = 16 # number of k values in sum for Sa(f)
# Plot
plt.close(); fig, axs = plt.subplots(4, 1); fig.canvas.layout.height = '800px'; plt.tight_layout();
@widgets.interact(s_type=widgets.Dropdown(options=list(signals_t.keys()), description=r'Wähle $s(t)$:'),
F=widgets.FloatSlider(min=0.1, max=2, value=0.9, step=.1, description=r'$F$', style=ient_wdgtl_style, continuous_update=False))
def update_plots(s_type, F):
s = lambda t: signals_t[s_type](t*F);
S = lambda f: signals_f[s_type](f, F);
nT, snT = ient_sample(t, s(t), T)
# Construct sampled spectrum
Sa = np.zeros_like(S(f))
for k in np.arange(-kMax, kMax+1): # evaluate infinite sum only for 2*kMax+1 elements
Sa += S(f-k/T)
Sa = Sa/T
# Reconstruct g(t)
H_lp = rect(f/(r+0.001)) # reconstruction filter
G = Sa * H_lp * T; # reconstruction
g = ient_idft(G);
g = np.fft.ifftshift(np.real(g)); # IDFT
# Sample
if s_type == 'cos-Funktion' or s_type == 'sin-Funktion':
fSadirac = f[np.where(Sa)]; Sadirac = Sa[np.where(Sa)]
fSdirac = f[np.where(S(f))]; Sdirac = S(f)[np.where(S(f))]
fGdirac = f[np.where(G)]; Gdirac = G[np.where(G)]
if s_type == 'sin-Funktion':
Sadirac = np.imag(Sadirac); Sdirac = np.imag(Sdirac); S = lambda f: np.imag(signals_f[s_type](f, F)); Sa = np.imag(Sa); G = np.imag(G); Gdirac = np.imag(Gdirac)
else:
g /= (len(f)/(2*f[-1])) # Parseval :)
# Plot
if not axs[0].lines: # Call plot() and decorate axes. Usually, these functions take some processing time
ax = axs[0]; ax.set_title('Zeitbereich');
ax.plot(t, s(t), color='rwth', linestyle='--', label=r'$s(t)$');
ient_plot_dirac(ax, nT, snT, 'rot', label=r'$s_\mathrm{a}(t)$')
ax.set_xlabel(r'$\rightarrow t$');
ax.set_xlim([-7.5,7.5]); ax.legend(loc=2); ient_grid(ax); ient_axis(ax);
ax = axs[1]; ax.set_title('Frequenzbereich');
ax.plot(f, H_lp, '-', color='black', label=r'$H_\mathrm{TP}(f)$')
if s_type == 'cos-Funktion' or s_type == 'sin-Funktion':
ax.plot(f, np.ones_like(f)*np.nan, '-', color='rot', label=r'$S_a(f)$');
ient_plot_dirac(ax, fSadirac, Sadirac, 'rot');
else:
ax.plot(f, Sa, '-', color='rot', label=r'$S_a(f)$');
ient_plot_dirac(ax, [], [], 'rot');
ax.plot(f, S(f), color='rwth', linestyle='--', linewidth=1, label=r'$S(f)$')
ax.set_xlim([-7.5,7.5]); ax.set_ylim([-1,2]); ax.legend(loc=2);
ax.set_xlabel(r'$\rightarrow f$'); ient_grid(ax); ient_axis(ax);
txt,_=ient_annotate_xtick(ax, r'$r=2$', r, -.15, 'black'); txt.get_bbox_patch().set_alpha(1);
txt,_=ient_annotate_xtick(ax, r'$f_\mathrm{g}$', r/2, -.15, 'black'); txt.get_bbox_patch().set_alpha(1);
ax = axs[2];
if s_type == 'cos-Funktion' or s_type == 'sin-Funktion':
ax.plot(f, np.ones_like(f)*np.nan, '-', color='grun');
ient_plot_dirac(ax, fGdirac, Gdirac, 'grun');
else:
ax.plot(f, G, '-', color='grun');
ient_plot_dirac(ax, [], [], 'rot');
ax.set_xlabel(r'$\rightarrow f$'); ax.set_ylabel(r'$\uparrow G(f)=S_\mathrm{a}(f) \cdot H_\mathrm{TP}(f) \cdot T$', bbox=ient_wbbox);
ax.set_xlim([-7.5,7.5]); ient_grid(ax); ient_axis(ax);
ax = axs[3]; ax.set_title('Zeitbereich (nach Rekonstruktion)');
ax.plot(t, s(t), color='rwth', linestyle='--', label=r'$s(t)$');
ax.plot(t/deltat/(f[-1]*2), g, 'grun', label=r'$g(t)$');
ax.set_xlabel(r'$\rightarrow t$'); ax.set_xlim([-7.5,7.5]); ax.legend(loc=2); ient_grid(ax); ient_axis(ax);
plt.tight_layout()
else:
axs[0].lines[0].set_ydata(s(t)); axs[1].lines[-3].set_ydata(S(f));
ient_dirac_set_data(axs[0].containers, nT, snT)
if s_type == 'cos-Funktion' or s_type == 'sin-Funktion': # dirac plot
ient_dirac_set_data(axs[1].containers, fSadirac, Sadirac); axs[1].lines[1].set_ydata(np.ones_like(f)*np.nan);
ient_dirac_set_data(axs[2].containers, fGdirac, Gdirac); axs[2].lines[0].set_ydata(np.ones_like(f)*np.nan);
else:
axs[1].lines[1].set_ydata(Sa); ient_dirac_set_data(axs[1].containers, [], []);
axs[2].lines[0].set_ydata(G); ient_dirac_set_data(axs[2].containers, [], []);
axs[3].lines[0].set_ydata(s(t)); axs[3].lines[1].set_ydata(g);
if s_type == 'sin-Funktion': # Adapt labels
axs[1].lines[1].set_label(r'$\mathrm{Im}\{S_\mathrm{a}(f)\}$'); axs[1].lines[-3].set_label(r'$\mathrm{Im}\{S(f)\}$');
axs[2].yaxis.label.set_text(r'$\uparrow \mathrm{Im}\{G(f)=S_\mathrm{a}(f) \cdot H_\mathrm{TP}(f) \cdot T\}$');
else:
axs[1].lines[1].set_label(r'$S_\mathrm{a}(f)$'); axs[1].lines[-3].set_label(r'$S(f)$')
axs[2].yaxis.label.set_text(r'$\uparrow G(f)=S_\mathrm{a}(f) \cdot H_\mathrm{TP}(f) \cdot T$');
axs[1].legend(loc=2)
ient_update_ylim(axs[1], Sa, 0.19, np.max(Sa)); ient_update_ylim(axs[2], G, 0.19, np.max(G));
ient_update_ylim(axs[3], np.concatenate((s(t),g)), 0.19, np.max(np.concatenate((s(t),g))));
```
%% Cell type:markdown id: tags:
## Aufgaben
* Wähle eine cos-Funktion für $s(t)$ und setze $F$ auf die kleinstmögliche Größe. Im Spektrum ist die Frequenz des Cosinus zu erkennen und im Zeitbereich wird dieser perfekt rekonstruiert. Erhöhe nun $F$ schrittweise. Beobachte das Spektrum. Was passiert und warum?
* Betrachte das Spektrum für $F=1$. Vergleiche die Höhe der Diracs mit denen für $F=0.9$ und $F=1.1$. Wie ist der Unterschied zu erklären?
* Für $F\leq 1$ wird das Signal nicht mehr perfekt rekonstruiert. Dieser Effekt nennt sich Aliasing. Wie verhält sich das rekonstruierte Signal bei größer werdendem $F$?
* Für $F\geq 1$ wird das Signal nicht mehr perfekt rekonstruiert. Dieser Effekt nennt sich Aliasing. Wie verhält sich das rekonstruierte Signal bei größer werdendem $F$?
* Betrachte abschließend $F=2$. Was passiert hier?
* Wähle nun eine sin-Funktion und untersuche dieselben Dinge, wie zuvor für die cos-Funktion. Wie ist das Ergebnis für $F=1$ und $F=2$ zu erklären?
* Betrachte die si-Funktion. Das Spektrum der si-Funktion ist ein Rechteck. Was passiert, wenn $F$ größere Werte annimmt? Warum?
* Setze $F=1$. Kann aus $S_a(f)$ prinzipiell das ursprüngliche Signal rekonstruiert werden? Warum wird das Signal trotzdem perfekt rekonstruiert?
* Betrachte $F \leq 1$. Welche Form nimmt $G(f)$ an und wie wirkt sich das auf das rekonstruierte Signal aus?
Nun wird der Rechteckimpuls und der Dreiecksimpuls betrachtet. Im Gegensatz zu den vorherigen Funktionen ist das Spektrum hier, wie bereits oben erwähnt, unendlich ausgedehnt. Daher ist eine fehlerfreie Rekonstruktion prinzipiell nicht möglich.
* Starte wieder mit dem kleinstmöglichen $F$. Betrachte das Spektrum des abgetasteten Signals $S_{\mathrm{a}}(f)$ und das Spektrum nach Anwendung des Rekonstruktionsfilters $G(f)$. Wie müsste $G(f)$ für fehlerfreie Rekonstruktion aussehen? Was erzeugt den Unterschied?
* Erhöhe nun $F$ schrittweise und betrachte die Änderung von $S_{\mathrm{a}}(f)$, $G(f)$ und $g(t)$. Ab welchem $F$ ist das Ausgangssignal nicht mehr zu erkennen?
* Was passiert für $F \leq 1$ und wie erklärt sich das?
* Führe dieselben Überlegungen für den Dreiecksimpuls aus. Wie erklärt sich das unterschiedliche Verhalten?
%% Cell type:markdown id: tags:
This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources) (OER). Feel free to use the notebook for your own purposes. The code is licensed under the [MIT license](https://opensource.org/licenses/MIT).
Please attribute the work as follows:
*Emin Kosar, Christian Rohlfing, Übungsbeispiele zur Vorlesung "Grundgebiete der Elektrotechnik 3 - Signale und Systeme"*, gehalten von Jens-Rainer Ohm, 2019, Institut für Nachrichtentechnik, RWTH Aachen University.
......
......@@ -78,7 +78,7 @@
"metadata": {},
"source": [
"### Anleitung\n",
"Es können vier verschiedene Filter (Butterworth, Sprungfunktion, Sinus und Cosinus) voreingestellt werden. Über den Schieberegler kann der Wert für $H_0$ angepasst werden. \n",
"Es können vier verschiedene Filter (Butterworth, Sprungfunktion, Sinus und Cosinus) voreingestellt werden. Über den Schieberegler kann der Wert für $H_0$ angepasst werden. Wird der Butterworthfilter gewählt, ist hier der Grad $P$ einstellbar.\n",
"\n",
"Bei *Modus* kann die Position des Konvergenzbereichs geändert werden, indem die entsprechende Option eingestellt und im Pol-/Nullstellendiagramm auf den Bereich geklickt wird, der der neue Konvergenzbereich sein soll. \n",
"\n",
......
%% Cell type:code id: tags:
``` python
# Copyright 2019 Institut für Nachrichtentechnik, RWTH Aachen University
%matplotlib widget
from ient_nb.ient_signals import *
from src.laplace.laplace_plot import pzPoint, pzPlot
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
t = np.linspace(-6,6,1024)
f = np.linspace(-6,6,1024)
```
%% Cell type:markdown id: tags:
<div>
<img src="ient_nb/figures/rwth_ient_logo@2x.png" style="float: right;height: 5em;">
</div>
# Laplace-Transformation
Zum Starten: Im Menü: Run <span class="fa-chevron-right fa"></span> Run All Cells auswählen.
%% Cell type:markdown id: tags:
## Interaktive Demo
%% Cell type:markdown id: tags:
In der interaktiven Demo kann eine Laplace-Übertragungsfunktion vom Typ
$$
H(p) = H_0 \frac{
\prod\limits_{q=1}^Q \left( p-p_{\mathrm{N},q} \right)
}{
\prod\limits_{r=1}^R \left( p-p_{\mathrm{P},r} \right)
}
$$
mit $Q$ Nullstellen $p_{\mathrm{N},q}$ und $R$ Polstellen $p_{\mathrm{P},r}$ betrachtet und verändert werden. Dargestellt ist ein Pol-/Nullstellendiagramm, sowie die zugehörige Impulsantwort und Übertragungsfunktion.
%% Cell type:code id: tags:
``` python
pzp = pzPlot()
```
%% Cell type:markdown id: tags:
### Anleitung
Es können vier verschiedene Filter (Butterworth, Sprungfunktion, Sinus und Cosinus) voreingestellt werden. Über den Schieberegler kann der Wert für $H_0$ angepasst werden.
Es können vier verschiedene Filter (Butterworth, Sprungfunktion, Sinus und Cosinus) voreingestellt werden. Über den Schieberegler kann der Wert für $H_0$ angepasst werden. Wird der Butterworthfilter gewählt, ist hier der Grad $P$ einstellbar.
Bei *Modus* kann die Position des Konvergenzbereichs geändert werden, indem die entsprechende Option eingestellt und im Pol-/Nullstellendiagramm auf den Bereich geklickt wird, der der neue Konvergenzbereich sein soll.
Ähnlich können auch Pol- und Nullstellen hinzugefügt oder gelöscht werden. Bei *Typ* wird eingestellt, ob es sich um eine Pol- oder Nullstelle handeln soll und unter *Modus* wird dann *hinzufügen* oder *löschen* ausgewählt. Durch Klicken im Pol-/Nullstellendiagramm können nun Pol- und Nullstellen hinzugefügt oder gelöscht werden. Entsprechend ändern sich dann auch die zugehörige Impulsantwort und Übertragungsfunktion.
### Aufgaben
* Teste verschiedene Einstellungen und ihre Auswirkungen auf Impulsantwort und Übertragungsfunktion. Welche Auswirkung hat das Ändern von $H_0$? Wie sehen die voreingestellten Funktionen aus?
* Entferne alle Pole und Nullstellen. Wie sieht die Impulsantwort aus? Welche Auswirkung hat das Ändern von $H_0$?
* Erstelle eine Polstelle auf der imaginären Achse. Welche Auswirkung hat diese auf die Übertragungsfunktion?
* Erstelle ein Pol-/Nullstellendiagram mit mehreren möglichen Polstellen. Ändere den Konvergenzbereich. Wann existiert eine Übertragungsfunktion?
%% Cell type:markdown id: tags:
This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources) (OER). Feel free to use the notebook for your own purposes. The code is licensed under the [MIT license](https://opensource.org/licenses/MIT).
Please attribute the work as follows:
*Emin Kosar, Christian Rohlfing, Übungsbeispiele zur Vorlesung "Grundgebiete der Elektrotechnik 3 - Signale und Systeme"*, gehalten von Jens-Rainer Ohm, 2019, Institut für Nachrichtentechnik, RWTH Aachen University.
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment