"Im Gegensatz zur [idealen Abtastung](GDET3%20Ideale%20Abtastung.ipynb) werden hier zwei Verfahren zur realen Abtastung betrachtet.\n",
"Im Gegensatz zur [idealen Abtastung](GDET3%20Ideale%20Abtastung.ipynb) werden hier zwei Verfahren zur realen Abtastung betrachtet. Tatsächlich kann nicht mit einem idealen Dirac an einem definierten Zeitpunkt abgetastet werden. Im Folgenden werden zwei Verfahren der Abtastung, die *Shape-top Abtastung* und die *Flat-top Abtastung* beschrieben.\n",
"\n",
"## Shape-top Abtastung\n",
"\n",
"Abtastung in Intervallen endlicher Dauer $T_0$ mit Abstand $T=\\frac{1}{r}$\n",
"Bei der Shape-top Abtastung wird das kontinuierliche Signal $s(t)$ mit Abstand $T=\\frac{1}{r}$ abgetastet. \n",
"Anstatt einer Diracfolge wird eine Folge schmaler Rechteckimpulse mit endlicher Dauer $T_0$ verwendet. Das abgetastete Signal $s_0(t)$ ist also\n",
Im Gegensatz zur [idealen Abtastung](GDET3%20Ideale%20Abtastung.ipynb) werden hier zwei Verfahren zur realen Abtastung betrachtet.
Im Gegensatz zur [idealen Abtastung](GDET3%20Ideale%20Abtastung.ipynb) werden hier zwei Verfahren zur realen Abtastung betrachtet. Tatsächlich kann nicht mit einem idealen Dirac an einem definierten Zeitpunkt abgetastet werden. Im Folgenden werden zwei Verfahren der Abtastung, die *Shape-top Abtastung* und die *Flat-top Abtastung* beschrieben.
## Shape-top Abtastung
Abtastung in Intervallen endlicher Dauer $T_0$ mit Abstand $T=\frac{1}{r}$
Bei der Shape-top Abtastung wird das kontinuierliche Signal $s(t)$ mit Abstand $T=\frac{1}{r}$ abgetastet.
Anstatt einer Diracfolge wird eine Folge schmaler Rechteckimpulse mit endlicher Dauer $T_0$ verwendet. Das abgetastete Signal $s_0(t)$ ist also
Durch die Multiplikation von $S_\mathrm{a}(f)$ mit $T \cdot \mathrm{si}(\pi f T) \cdot \mathrm{e}^{-j\pi f T}$ wird das Spektrum $S_0(f)$ im Basisband verzerrt. So ist es nicht möglich, $S(f)$ mittels eines einfachen idealen Tiefpasses zu rekonstruieren. Zusätzlich ist ein Filter zum Ausgleich nötig
$$
H_\mathrm{eq}(f) = \frac{1}{T \cdot \mathrm{si}(\pi f T) \cdot \mathrm{e}^{-j\pi f T}}
$$
%% Cell type:code id: tags:
``` python
# Reconstruction filters #plt.close('all')
## Ideal Low pass to crop the base band
H_lp=rect(f/(r+0.001))# ideal low pass between -r/2 and r/2
## Equalizing filter to compensate the influence of si(...) and exp(...) terms in S_0(f)
This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources)(OER). Feel free to use the notebook for your own purposes. The code is licensed under the [MIT license](https://opensource.org/licenses/MIT).
Please attribute the work as follows:
*Christian Rohlfing, Übungsbeispiele zur Vorlesung "Grundgebiete der Elektrotechnik 3 - Signale und Systeme"*, gehalten von Jens-Rainer Ohm, 2019, Institut für Nachrichtentechnik, RWTH Aachen University.