test.py 13.9 KB
Newer Older
Marcel Rieger's avatar
Marcel Rieger committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# coding: utf-8

"""
LBN unit tests.
"""


__all__ = ["TestCase"]


import unittest

import numpy as np
import tensorflow as tf

from lbn import LBN, FeatureFactory


tf.enable_eager_execution()


class TestCase(unittest.TestCase):

    def __init__(self, *args, **kwargs):
        super(TestCase, self).__init__(*args, **kwargs)

        # create some four-vectors with fixed seed and batch size 2
        self.vectors = create_four_vectors((2, 10), seed=123)
        self.vectors_t = tf.constant(self.vectors, dtype=tf.float32)

        # common feature set
        self.feature_set = ["E", "pt", "eta", "phi", "m", "pair_cos"]

        # custom weights
        self.custom_particle_weights = tf.constant([
            [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] +
            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +
            80 * [0],

        ], shape=[10, 10], dtype=tf.float32)
        self.custom_restframe_weights = tf.constant([
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +
            [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] +
            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +
            70 * [0],

        ], shape=[10, 10], dtype=tf.float32)

    def test_vectors_seed(self):
Marcel Rieger's avatar
Marcel Rieger committed
50
        self.assertAlmostEqual(np.sum(self.vectors), 1646.26998736)
Marcel Rieger's avatar
Marcel Rieger committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    def test_constructor(self):
        lbn = LBN(10)
        self.assertIsInstance(lbn, LBN)

    def test_constructor_boost_mode_pairs(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)
        self.assertEqual(lbn.n_particles, 10)
        self.assertEqual(lbn.n_restframes, 10)
        self.assertEqual(lbn.n_out, 10)
        self.assertIsNone(lbn.n_features)

        features = lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.n_in, 10)
        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 95))

    def test_constructor_boost_mode_product(self):
        lbn = LBN(10, 4, boost_mode=LBN.PRODUCT, is_training=True)
        self.assertEqual(lbn.n_particles, 10)
        self.assertEqual(lbn.n_restframes, 4)
        self.assertEqual(lbn.n_out, 40)
        self.assertIsNone(lbn.n_features)

        features = lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.n_in, 10)
        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 980))

    def test_constructor_boost_mode_combinations(self):
        lbn = LBN(10, boost_mode=LBN.COMBINATIONS, is_training=True)
        self.assertEqual(lbn.n_particles, 10)
        self.assertEqual(lbn.n_restframes, 10)
        self.assertEqual(lbn.n_out, 90)
        self.assertIsNone(lbn.n_features)

        features = lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.n_in, 10)
        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 4455))

    def test_unknown_boost_mode(self):
        with self.assertRaises(ValueError):
            LBN(10, boost_mode="definitely_not_there", is_training=True)

    def test_pre_build_attributes(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)

        attrs = ["is_training", "epsilon", "name"]
        for attr in attrs:
            self.assertIsNotNone(getattr(lbn, attr))

    def test_post_build_attributes(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        attrs = [
            "particle_weights", "abs_particle_weights", "clip_particle_weights",
            "restframe_weights", "abs_restframe_weights", "clip_restframe_weights", "n_in", "n_dim",
            "I", "U", "inputs", "inputs_E", "inputs_px", "inputs_py", "inputs_pz", "particles_E",
            "particles_px", "particles_py", "particles_pz", "particles_pvec", "particles",
            "restframes_E", "restframes_px", "restframes_py", "restframes_pz", "restframes_pvec",
            "restframes", "Lambda", "boosted_particles", "_raw_features", "_norm_features",
            "features",
        ]
        for attr in attrs:
            self.assertIsNotNone(getattr(lbn, attr), None)

    def test_batch_norm(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, batch_norm=True, is_training=True)
        self.assertTrue(lbn.batch_norm_center)
        self.assertTrue(lbn.batch_norm_scale)

        lbn = LBN(10, boost_mode=LBN.PAIRS, batch_norm=(True, False), is_training=True)
        self.assertTrue(lbn.batch_norm_center)
        self.assertFalse(lbn.batch_norm_scale)

        lbn = LBN(10, boost_mode=LBN.PAIRS, batch_norm=(0.5, 2.), is_training=True)
        self.assertEqual(lbn.batch_norm_center, 0.5)
        self.assertEqual(lbn.batch_norm_scale, 2.)

    def test_custom_weights(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights, is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.particle_weights.numpy().shape, (10, 10))
        self.assertEqual(lbn.restframe_weights.numpy().shape, (10, 10))

        self.assertEqual(np.sum(lbn.particle_weights.numpy()), 3)
        self.assertEqual(np.sum(lbn.restframe_weights.numpy()), 3)

        # compare sum of vector components of first combined particles and restframes in batch pos 1
        target_particle_sum = np.sum(self.vectors[1, 0] + self.vectors[1, 1])
        target_restframe_sum = np.sum(self.vectors[1, 1] + self.vectors[1, 2])

        self.assertAlmostEqual(np.sum(lbn.particles.numpy()[1, 0]), target_particle_sum, 3)
        self.assertAlmostEqual(np.sum(lbn.restframes.numpy()[1, 0]), target_restframe_sum, 3)

        # test wrong shape
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights[:-1], is_training=True)
        with self.assertRaises(ValueError):
            lbn(self.vectors_t, features=self.feature_set).numpy()

    def test_boosting_pairs(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights, is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        # compare all components of the first boosted particle in batch pos 1
        particle = lbn.particles.numpy()[1, 0]
        components = list(self.vectors[1, 0] + self.vectors[1, 1])
        for i, v in enumerate(components):
            self.assertAlmostEqual(particle[i], v, 3)

        restframe = lbn.restframes.numpy()[1, 0]
        components = list(self.vectors[1, 1] + self.vectors[1, 2])
        for i, v in enumerate(components):
            self.assertAlmostEqual(restframe[i], v, 3)

        # boosted values computed ROOT TLorentzVector's via
        # p = TLorentzVector(particle[1], particle[2], particle[3], particle[0])
        # r = TLorentzVector(restframe[1], restframe[2], restframe[3], restframe[0])
        # p = p.Boost(-r.BoostVector())
        boosted = lbn.boosted_particles.numpy()[1, 0]
Marcel Rieger's avatar
Marcel Rieger committed
180
        components = [217.82007, -93.470245, 56.69007, -117.862404]
Marcel Rieger's avatar
Marcel Rieger committed
181
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
182
            self.assertAlmostEqual(boosted[i], v, 4)
Marcel Rieger's avatar
Marcel Rieger committed
183 184 185 186 187 188 189 190 191

    def test_boosting_product(self):
        lbn = LBN(10, 4, boost_mode=LBN.PRODUCT, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights[:, :4], is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        # compare all components of the first boosted particle in batch pos 1
        # see test_boosting_pairs for manual boost computation
        boosted = lbn.boosted_particles.numpy()[1, 0]
Marcel Rieger's avatar
Marcel Rieger committed
192
        components = [217.82007, -93.470245, 56.69007, -117.862404]
Marcel Rieger's avatar
Marcel Rieger committed
193
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
194
            self.assertAlmostEqual(boosted[i], v, 4)
Marcel Rieger's avatar
Marcel Rieger committed
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    def test_boosting_combinations(self):
        lbn = LBN(10, boost_mode=LBN.COMBINATIONS, particle_weights=self.custom_particle_weights,
            is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        # compare all components of the first boosted particle in batch pos 1
        # see test_boosting_pairs for manual boost computation
        p1 = lbn.particles.numpy()[1, 0]
        components = list(self.vectors[1, 0] + self.vectors[1, 1])
        for i, v in enumerate(components):
            self.assertAlmostEqual(p1[i], v, 3)

        p2 = lbn.particles.numpy()[1, 1]
        components = list(self.vectors[1, 0])
        for i, v in enumerate(components):
            self.assertAlmostEqual(p2[i], v, 5)

        # boosted particle 0 is p1 boosted into p2
        boosted = lbn.boosted_particles.numpy()[1, 0]
Marcel Rieger's avatar
Marcel Rieger committed
215
        components = [288.7326, 172.70781, 102.427, 146.44083]
Marcel Rieger's avatar
Marcel Rieger committed
216
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
217
            self.assertAlmostEqual(boosted[i], v, 3)
Marcel Rieger's avatar
Marcel Rieger committed
218 219 220

        # boosted particle 45 is p2 boosted into p1
        boosted = lbn.boosted_particles.numpy()[1, 45]
Marcel Rieger's avatar
Marcel Rieger committed
221
        components = [69.299545, -19.58605, -18.497059, -53.21913]
Marcel Rieger's avatar
Marcel Rieger committed
222
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
223
            self.assertAlmostEqual(boosted[i], v, 3)
Marcel Rieger's avatar
Marcel Rieger committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    def test_custom_feature_factory(self):
        class MyFeatureFactory(FeatureFactory):

            def px_plus_py(self):
                return self.px() + self.py()

        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True, feature_factory=MyFeatureFactory)
        self.assertIn("px_plus_py", lbn.available_features)

        with self.assertRaises(TypeError):
            LBN(10, boost_mode=LBN.PAIRS, is_training=True, feature_factory="foo")

    def test_register_feature(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)
        self.assertNotIn("px_plus_py", lbn.available_features)

        @lbn.register_feature
        def px_plus_py(factory):
            return factory.px() + factory.py()

        self.assertIn("px_plus_py", lbn.available_features)

    def test_external_features(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)

        ext = tf.Variable([[1, 2], [3, 4]], dtype=tf.float32)
        features = lbn(self.vectors_t, features=self.feature_set, external_features=ext).numpy()

        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 97))

    def test_feature_caching(self):
        class MyFeatureFactory(FeatureFactory):

            def __init__(self, *args, **kwargs):
                super(MyFeatureFactory, self).__init__(*args, **kwargs)
                self.count = 0

            def px_plus_py(self):
                self.count += 1
                return self.px() + self.py()

        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True, feature_factory=MyFeatureFactory)
        self.assertEqual(lbn.feature_factory.count, 0)

        lbn(self.vectors_t, features=self.feature_set + ["px_plus_py"]).numpy()
        self.assertEqual(lbn.feature_factory.count, 1)

        lbn.feature_factory.px_plus_py()
        self.assertEqual(lbn.feature_factory.count, 1)

    def test_features(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights, is_training=True)

Marcel Rieger's avatar
Marcel Rieger committed
280 281 282 283 284
        # add a custom feature
        @lbn.register_feature
        def px_plus_py(factory):
            return factory.px() + factory.py()

Marcel Rieger's avatar
Marcel Rieger committed
285 286
        all_features = [
            "E", "px", "py", "pz", "pt", "p", "m", "phi", "eta", "beta", "gamma", "pair_cos",
Marcel Rieger's avatar
Marcel Rieger committed
287
            "pair_dr", "pair_ds", "pair_dy", "px_plus_py",
Marcel Rieger's avatar
Marcel Rieger committed
288 289 290 291 292 293
        ]
        self.assertEqual(set(lbn.available_features), set(all_features))

        lbn(self.vectors_t, features=all_features)

        # make all tests on the first boosted particle at batch pos 1
Marcel Rieger's avatar
Marcel Rieger committed
294
        self.assertAlmostEqual(lbn.feature_factory.E().numpy()[1, 0], 217.82007, 4)
Marcel Rieger's avatar
Marcel Rieger committed
295 296 297 298 299 300 301 302 303 304
        self.assertAlmostEqual(lbn.feature_factory.px().numpy()[1, 0], -93.470245, 5)
        self.assertAlmostEqual(lbn.feature_factory.py().numpy()[1, 0], 56.69007, 5)
        self.assertAlmostEqual(lbn.feature_factory.pz().numpy()[1, 0], -117.862404, 5)
        self.assertAlmostEqual(lbn.feature_factory.pt().numpy()[1, 0], 109.318115, 5)
        self.assertAlmostEqual(lbn.feature_factory.p().numpy()[1, 0], 160.75446, 5)
        self.assertAlmostEqual(lbn.feature_factory.m().numpy()[1, 0], 146.98158, 5)
        self.assertAlmostEqual(lbn.feature_factory.phi().numpy()[1, 0], 2.5964046, 5)
        self.assertAlmostEqual(lbn.feature_factory.eta().numpy()[1, 0], -0.9355755, 5)
        self.assertAlmostEqual(lbn.feature_factory.beta().numpy()[1, 0], 0.7380149, 5)
        self.assertAlmostEqual(lbn.feature_factory.gamma().numpy()[1, 0], 1.4819548, 5)
Marcel Rieger's avatar
Marcel Rieger committed
305 306

        # test pairwise features w.r.t. boosted particle 2, i.e., feature pos 0
Marcel Rieger's avatar
Marcel Rieger committed
307 308 309 310
        self.assertAlmostEqual(lbn.feature_factory.pair_cos().numpy()[1, 0], 0.64787644, 5)
        self.assertAlmostEqual(lbn.feature_factory.pair_dr().numpy()[1, 0], 2.6730149, 5)
        self.assertAlmostEqual(lbn.feature_factory.pair_ds().numpy()[1, 0], -136.8383, 4)
        self.assertAlmostEqual(lbn.feature_factory.pair_dy().numpy()[1, 0], -1.3652772, 5)
Marcel Rieger's avatar
Marcel Rieger committed
311 312

        # test the custom feature
Marcel Rieger's avatar
Marcel Rieger committed
313
        self.assertAlmostEqual(lbn.feature_factory.px_plus_py().numpy()[1, 0], -36.780174, 5)
Marcel Rieger's avatar
Marcel Rieger committed
314 315


Marcel Rieger's avatar
Marcel Rieger committed
316
def create_four_vectors(n, p_low=-100., p_high=100., m_low=0.1, m_high=50., seed=None):
Marcel Rieger's avatar
Marcel Rieger committed
317 318 319 320 321 322 323 324
    """
    Creates a numpy array with shape ``n + (4,)`` describing four-vectors of particles whose
    momentum components are uniformly distributed between *p_low* and *p_high*, and masses between
    *m_low* and *m_high*. When *seed* is not *None*, it is initially passed to ``np.random.seed()``.
    """
    if seed is not None:
        np.random.seed(seed)

Marcel Rieger's avatar
Marcel Rieger committed
325
    # create random four-vectors
Marcel Rieger's avatar
Marcel Rieger committed
326 327
    if not isinstance(n, tuple):
        n = (n,)
Marcel Rieger's avatar
Marcel Rieger committed
328
    vecs = np.random.uniform(p_low, p_high, n + (4,))
Marcel Rieger's avatar
Marcel Rieger committed
329 330

    # the energy is also random and might be lower than the momentum,
Marcel Rieger's avatar
Marcel Rieger committed
331 332
    # so draw uniformly distributed masses, and compute and insert the energy
    m = np.abs(np.random.uniform(m_low, m_high, n))
Marcel Rieger's avatar
Marcel Rieger committed
333 334 335 336 337
    p = np.sqrt(np.sum(vecs[..., 1:]**2, axis=-1))
    E = (p**2 + m**2)**0.5
    vecs[..., 0] = E

    return vecs