test.py 15.4 KB
Newer Older
Marcel Rieger's avatar
Marcel Rieger committed
1 2 3 4 5 6 7 8 9 10
# coding: utf-8

"""
LBN unit tests.
"""


__all__ = ["TestCase"]


11
import sys
Marcel Rieger's avatar
Marcel Rieger committed
12 13 14 15 16
import unittest

import numpy as np
import tensorflow as tf

17
from lbn import LBN, LBNLayer, FeatureFactory
Marcel Rieger's avatar
Marcel Rieger committed
18 19


20 21 22 23 24 25 26
PY3 = sys.version.startswith("3.")
TF2 = tf.__version__.startswith("2.")

if not TF2:
    tf.enable_eager_execution()


Marcel Rieger's avatar
Marcel Rieger committed
27 28 29 30 31
class TestCase(unittest.TestCase):

    def __init__(self, *args, **kwargs):
        super(TestCase, self).__init__(*args, **kwargs)

32 33
        # fixate random seeds
        np.random.seed(123)
34 35 36 37
        if TF2:
            tf.random.set_seed(123)
        else:
            tf.random.set_random_seed(123)
38

Marcel Rieger's avatar
Marcel Rieger committed
39
        # create some four-vectors with fixed seed and batch size 2
40
        self.vectors = create_four_vectors((2, 10))
Marcel Rieger's avatar
Marcel Rieger committed
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        self.vectors_t = tf.constant(self.vectors, dtype=tf.float32)

        # common feature set
        self.feature_set = ["E", "pt", "eta", "phi", "m", "pair_cos"]

        # custom weights
        self.custom_particle_weights = tf.constant([
            [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] +
            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +
            80 * [0],

        ], shape=[10, 10], dtype=tf.float32)
        self.custom_restframe_weights = tf.constant([
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +
            [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] +
            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +
            70 * [0],

        ], shape=[10, 10], dtype=tf.float32)

    def test_vectors_seed(self):
Marcel Rieger's avatar
Marcel Rieger committed
62
        self.assertAlmostEqual(np.sum(self.vectors), 1646.26998736)
Marcel Rieger's avatar
Marcel Rieger committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

    def test_constructor(self):
        lbn = LBN(10)
        self.assertIsInstance(lbn, LBN)

    def test_constructor_boost_mode_pairs(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)
        self.assertEqual(lbn.n_particles, 10)
        self.assertEqual(lbn.n_restframes, 10)
        self.assertEqual(lbn.n_out, 10)
        self.assertIsNone(lbn.n_features)

        features = lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.n_in, 10)
        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 95))

    def test_constructor_boost_mode_product(self):
        lbn = LBN(10, 4, boost_mode=LBN.PRODUCT, is_training=True)
        self.assertEqual(lbn.n_particles, 10)
        self.assertEqual(lbn.n_restframes, 4)
        self.assertEqual(lbn.n_out, 40)
        self.assertIsNone(lbn.n_features)

        features = lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.n_in, 10)
        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 980))

    def test_constructor_boost_mode_combinations(self):
        lbn = LBN(10, boost_mode=LBN.COMBINATIONS, is_training=True)
        self.assertEqual(lbn.n_particles, 10)
        self.assertEqual(lbn.n_restframes, 10)
        self.assertEqual(lbn.n_out, 90)
        self.assertIsNone(lbn.n_features)

        features = lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.n_in, 10)
        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 4455))

    def test_unknown_boost_mode(self):
        with self.assertRaises(ValueError):
            LBN(10, boost_mode="definitely_not_there", is_training=True)

    def test_pre_build_attributes(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)

        attrs = ["is_training", "epsilon", "name"]
        for attr in attrs:
            self.assertIsNotNone(getattr(lbn, attr))

    def test_post_build_attributes(self):
        attrs = [
            "particle_weights", "abs_particle_weights", "clip_particle_weights",
            "restframe_weights", "abs_restframe_weights", "clip_restframe_weights", "n_in", "n_dim",
            "I", "U", "inputs", "inputs_E", "inputs_px", "inputs_py", "inputs_pz", "particles_E",
            "particles_px", "particles_py", "particles_pz", "particles_pvec", "particles",
            "restframes_E", "restframes_px", "restframes_py", "restframes_pz", "restframes_pvec",
            "restframes", "Lambda", "boosted_particles", "_raw_features", "_norm_features",
126
            "features", "batch_norm",
Marcel Rieger's avatar
Marcel Rieger committed
127
        ]
128 129 130 131 132 133

        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)
        for attr in attrs:
            self.assertIn(getattr(lbn, attr), (None, True, False))

        lbn(self.vectors_t, features=self.feature_set).numpy()
Marcel Rieger's avatar
Marcel Rieger committed
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        for attr in attrs:
            self.assertIsNotNone(getattr(lbn, attr), None)

    def test_batch_norm(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, batch_norm=True, is_training=True)
        self.assertTrue(lbn.batch_norm_center)
        self.assertTrue(lbn.batch_norm_scale)

        lbn = LBN(10, boost_mode=LBN.PAIRS, batch_norm=(True, False), is_training=True)
        self.assertTrue(lbn.batch_norm_center)
        self.assertFalse(lbn.batch_norm_scale)

        lbn = LBN(10, boost_mode=LBN.PAIRS, batch_norm=(0.5, 2.), is_training=True)
        self.assertEqual(lbn.batch_norm_center, 0.5)
        self.assertEqual(lbn.batch_norm_scale, 2.)

    def test_custom_weights(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights, is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        self.assertEqual(lbn.particle_weights.numpy().shape, (10, 10))
        self.assertEqual(lbn.restframe_weights.numpy().shape, (10, 10))

        self.assertEqual(np.sum(lbn.particle_weights.numpy()), 3)
        self.assertEqual(np.sum(lbn.restframe_weights.numpy()), 3)

        # compare sum of vector components of first combined particles and restframes in batch pos 1
        target_particle_sum = np.sum(self.vectors[1, 0] + self.vectors[1, 1])
        target_restframe_sum = np.sum(self.vectors[1, 1] + self.vectors[1, 2])

        self.assertAlmostEqual(np.sum(lbn.particles.numpy()[1, 0]), target_particle_sum, 3)
        self.assertAlmostEqual(np.sum(lbn.restframes.numpy()[1, 0]), target_restframe_sum, 3)

        # test wrong shape
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights[:-1], is_training=True)
        with self.assertRaises(ValueError):
            lbn(self.vectors_t, features=self.feature_set).numpy()

    def test_boosting_pairs(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights, is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        # compare all components of the first boosted particle in batch pos 1
        particle = lbn.particles.numpy()[1, 0]
        components = list(self.vectors[1, 0] + self.vectors[1, 1])
        for i, v in enumerate(components):
            self.assertAlmostEqual(particle[i], v, 3)

        restframe = lbn.restframes.numpy()[1, 0]
        components = list(self.vectors[1, 1] + self.vectors[1, 2])
        for i, v in enumerate(components):
            self.assertAlmostEqual(restframe[i], v, 3)

        # boosted values computed ROOT TLorentzVector's via
        # p = TLorentzVector(particle[1], particle[2], particle[3], particle[0])
        # r = TLorentzVector(restframe[1], restframe[2], restframe[3], restframe[0])
        # p = p.Boost(-r.BoostVector())
        boosted = lbn.boosted_particles.numpy()[1, 0]
Marcel Rieger's avatar
Marcel Rieger committed
195
        components = [217.82007, -93.470245, 56.69007, -117.862404]
Marcel Rieger's avatar
Marcel Rieger committed
196
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
197
            self.assertAlmostEqual(boosted[i], v, 4)
Marcel Rieger's avatar
Marcel Rieger committed
198 199 200 201 202 203 204 205 206

    def test_boosting_product(self):
        lbn = LBN(10, 4, boost_mode=LBN.PRODUCT, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights[:, :4], is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        # compare all components of the first boosted particle in batch pos 1
        # see test_boosting_pairs for manual boost computation
        boosted = lbn.boosted_particles.numpy()[1, 0]
Marcel Rieger's avatar
Marcel Rieger committed
207
        components = [217.82007, -93.470245, 56.69007, -117.862404]
Marcel Rieger's avatar
Marcel Rieger committed
208
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
209
            self.assertAlmostEqual(boosted[i], v, 4)
Marcel Rieger's avatar
Marcel Rieger committed
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    def test_boosting_combinations(self):
        lbn = LBN(10, boost_mode=LBN.COMBINATIONS, particle_weights=self.custom_particle_weights,
            is_training=True)
        lbn(self.vectors_t, features=self.feature_set).numpy()

        # compare all components of the first boosted particle in batch pos 1
        # see test_boosting_pairs for manual boost computation
        p1 = lbn.particles.numpy()[1, 0]
        components = list(self.vectors[1, 0] + self.vectors[1, 1])
        for i, v in enumerate(components):
            self.assertAlmostEqual(p1[i], v, 3)

        p2 = lbn.particles.numpy()[1, 1]
        components = list(self.vectors[1, 0])
        for i, v in enumerate(components):
            self.assertAlmostEqual(p2[i], v, 5)

        # boosted particle 0 is p1 boosted into p2
        boosted = lbn.boosted_particles.numpy()[1, 0]
Marcel Rieger's avatar
Marcel Rieger committed
230
        components = [288.7326, 172.70781, 102.427, 146.44083]
Marcel Rieger's avatar
Marcel Rieger committed
231
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
232
            self.assertAlmostEqual(boosted[i], v, 3)
Marcel Rieger's avatar
Marcel Rieger committed
233 234 235

        # boosted particle 45 is p2 boosted into p1
        boosted = lbn.boosted_particles.numpy()[1, 45]
Marcel Rieger's avatar
Marcel Rieger committed
236
        components = [69.299545, -19.58605, -18.497059, -53.21913]
Marcel Rieger's avatar
Marcel Rieger committed
237
        for i, v in enumerate(components):
Marcel Rieger's avatar
Marcel Rieger committed
238
            self.assertAlmostEqual(boosted[i], v, 3)
Marcel Rieger's avatar
Marcel Rieger committed
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    def test_custom_feature_factory(self):
        class MyFeatureFactory(FeatureFactory):

            def px_plus_py(self):
                return self.px() + self.py()

        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True, feature_factory=MyFeatureFactory)
        self.assertIn("px_plus_py", lbn.available_features)

        with self.assertRaises(TypeError):
            LBN(10, boost_mode=LBN.PAIRS, is_training=True, feature_factory="foo")

    def test_register_feature(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)
        self.assertNotIn("px_plus_py", lbn.available_features)

        @lbn.register_feature
        def px_plus_py(factory):
            return factory.px() + factory.py()

        self.assertIn("px_plus_py", lbn.available_features)

    def test_external_features(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True)

        ext = tf.Variable([[1, 2], [3, 4]], dtype=tf.float32)
        features = lbn(self.vectors_t, features=self.feature_set, external_features=ext).numpy()

        self.assertEqual(features.shape[1], lbn.n_features)
        self.assertEqual(features.shape, (2, 97))

    def test_feature_caching(self):
        class MyFeatureFactory(FeatureFactory):

            def __init__(self, *args, **kwargs):
                super(MyFeatureFactory, self).__init__(*args, **kwargs)
                self.count = 0

            def px_plus_py(self):
                self.count += 1
                return self.px() + self.py()

        lbn = LBN(10, boost_mode=LBN.PAIRS, is_training=True, feature_factory=MyFeatureFactory)
        self.assertEqual(lbn.feature_factory.count, 0)

        lbn(self.vectors_t, features=self.feature_set + ["px_plus_py"]).numpy()
        self.assertEqual(lbn.feature_factory.count, 1)

        lbn.feature_factory.px_plus_py()
        self.assertEqual(lbn.feature_factory.count, 1)

    def test_features(self):
        lbn = LBN(10, boost_mode=LBN.PAIRS, particle_weights=self.custom_particle_weights,
            restframe_weights=self.custom_restframe_weights, is_training=True)

Marcel Rieger's avatar
Marcel Rieger committed
295 296 297 298 299
        # add a custom feature
        @lbn.register_feature
        def px_plus_py(factory):
            return factory.px() + factory.py()

Marcel Rieger's avatar
Marcel Rieger committed
300 301
        all_features = [
            "E", "px", "py", "pz", "pt", "p", "m", "phi", "eta", "beta", "gamma", "pair_cos",
Marcel Rieger's avatar
Marcel Rieger committed
302
            "pair_dr", "pair_ds", "pair_dy", "px_plus_py",
Marcel Rieger's avatar
Marcel Rieger committed
303 304 305 306 307 308
        ]
        self.assertEqual(set(lbn.available_features), set(all_features))

        lbn(self.vectors_t, features=all_features)

        # make all tests on the first boosted particle at batch pos 1
Marcel Rieger's avatar
Marcel Rieger committed
309
        self.assertAlmostEqual(lbn.feature_factory.E().numpy()[1, 0], 217.82007, 4)
Marcel Rieger's avatar
Marcel Rieger committed
310 311 312 313 314 315 316 317 318 319
        self.assertAlmostEqual(lbn.feature_factory.px().numpy()[1, 0], -93.470245, 4)
        self.assertAlmostEqual(lbn.feature_factory.py().numpy()[1, 0], 56.69007, 4)
        self.assertAlmostEqual(lbn.feature_factory.pz().numpy()[1, 0], -117.862404, 4)
        self.assertAlmostEqual(lbn.feature_factory.pt().numpy()[1, 0], 109.318115, 4)
        self.assertAlmostEqual(lbn.feature_factory.p().numpy()[1, 0], 160.75446, 4)
        self.assertAlmostEqual(lbn.feature_factory.m().numpy()[1, 0], 146.98158, 4)
        self.assertAlmostEqual(lbn.feature_factory.phi().numpy()[1, 0], 2.5964046, 4)
        self.assertAlmostEqual(lbn.feature_factory.eta().numpy()[1, 0], -0.9355755, 4)
        self.assertAlmostEqual(lbn.feature_factory.beta().numpy()[1, 0], 0.7380149, 4)
        self.assertAlmostEqual(lbn.feature_factory.gamma().numpy()[1, 0], 1.4819548, 4)
Marcel Rieger's avatar
Marcel Rieger committed
320 321

        # test pairwise features w.r.t. boosted particle 2, i.e., feature pos 0
Marcel Rieger's avatar
Marcel Rieger committed
322 323
        self.assertAlmostEqual(lbn.feature_factory.pair_cos().numpy()[1, 0], 0.64787644, 4)
        self.assertAlmostEqual(lbn.feature_factory.pair_dr().numpy()[1, 0], 2.6730149, 4)
Marcel Rieger's avatar
Marcel Rieger committed
324
        self.assertAlmostEqual(lbn.feature_factory.pair_ds().numpy()[1, 0], -136.8383, 4)
Marcel Rieger's avatar
Marcel Rieger committed
325
        self.assertAlmostEqual(lbn.feature_factory.pair_dy().numpy()[1, 0], -1.3652772, 4)
Marcel Rieger's avatar
Marcel Rieger committed
326 327

        # test the custom feature
Marcel Rieger's avatar
Marcel Rieger committed
328
        self.assertAlmostEqual(lbn.feature_factory.px_plus_py().numpy()[1, 0], -36.780174, 4)
Marcel Rieger's avatar
Marcel Rieger committed
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def test_keras_layer(self):
        l = LBNLayer(10, boost_mode=LBN.PAIRS, batch_norm=True, is_training=True)
        self.assertIsInstance(l.lbn, LBN)
        self.assertTrue(l.lbn.batch_norm_center)

        # build a custom model
        class Model(tf.keras.models.Model):

            def __init__(self):
                super(Model, self).__init__()

                self.lbn = l
                self.dense = tf.keras.layers.Dense(1024, activation="elu")
                self.softmax = tf.keras.layers.Dense(2, activation="softmax")

            def __call__(self, *args, **kwargs):
                return self.softmax(self.dense(self.lbn(*args, **kwargs)))

        model = Model()
        output = model(self.vectors_t, features=self.feature_set).numpy()

351 352 353 354
        self.assertAlmostEqual(output[0, 0], 0.548664 if PY3 else 0.795995, 5)
        self.assertAlmostEqual(output[0, 1], 0.451337 if PY3 else 0.204005, 5)
        self.assertAlmostEqual(output[1, 0], 0.394629 if PY3 else 0.177576, 5)
        self.assertAlmostEqual(output[1, 1], 0.605371 if PY3 else 0.822424, 5)
355

Marcel Rieger's avatar
Marcel Rieger committed
356

Marcel Rieger's avatar
Marcel Rieger committed
357
def create_four_vectors(n, p_low=-100., p_high=100., m_low=0.1, m_high=50., seed=None):
Marcel Rieger's avatar
Marcel Rieger committed
358 359 360 361 362 363 364 365
    """
    Creates a numpy array with shape ``n + (4,)`` describing four-vectors of particles whose
    momentum components are uniformly distributed between *p_low* and *p_high*, and masses between
    *m_low* and *m_high*. When *seed* is not *None*, it is initially passed to ``np.random.seed()``.
    """
    if seed is not None:
        np.random.seed(seed)

Marcel Rieger's avatar
Marcel Rieger committed
366
    # create random four-vectors
Marcel Rieger's avatar
Marcel Rieger committed
367 368
    if not isinstance(n, tuple):
        n = (n,)
Marcel Rieger's avatar
Marcel Rieger committed
369
    vecs = np.random.uniform(p_low, p_high, n + (4,))
Marcel Rieger's avatar
Marcel Rieger committed
370 371

    # the energy is also random and might be lower than the momentum,
Marcel Rieger's avatar
Marcel Rieger committed
372 373
    # so draw uniformly distributed masses, and compute and insert the energy
    m = np.abs(np.random.uniform(m_low, m_high, n))
Marcel Rieger's avatar
Marcel Rieger committed
374 375 376 377 378
    p = np.sqrt(np.sum(vecs[..., 1:]**2, axis=-1))
    E = (p**2 + m**2)**0.5
    vecs[..., 0] = E

    return vecs